1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 /*
3  * Copyright(c) 2018 - 2020 Intel Corporation.
4  *
5  */
6 
7 #include "hfi.h"
8 #include "qp.h"
9 #include "rc.h"
10 #include "verbs.h"
11 #include "tid_rdma.h"
12 #include "exp_rcv.h"
13 #include "trace.h"
14 
15 /**
16  * DOC: TID RDMA READ protocol
17  *
18  * This is an end-to-end protocol at the hfi1 level between two nodes that
19  * improves performance by avoiding data copy on the requester side. It
20  * converts a qualified RDMA READ request into a TID RDMA READ request on
21  * the requester side and thereafter handles the request and response
22  * differently. To be qualified, the RDMA READ request should meet the
23  * following:
24  * -- The total data length should be greater than 256K;
25  * -- The total data length should be a multiple of 4K page size;
26  * -- Each local scatter-gather entry should be 4K page aligned;
27  * -- Each local scatter-gather entry should be a multiple of 4K page size;
28  */
29 
30 #define RCV_TID_FLOW_TABLE_CTRL_FLOW_VALID_SMASK BIT_ULL(32)
31 #define RCV_TID_FLOW_TABLE_CTRL_HDR_SUPP_EN_SMASK BIT_ULL(33)
32 #define RCV_TID_FLOW_TABLE_CTRL_KEEP_AFTER_SEQ_ERR_SMASK BIT_ULL(34)
33 #define RCV_TID_FLOW_TABLE_CTRL_KEEP_ON_GEN_ERR_SMASK BIT_ULL(35)
34 #define RCV_TID_FLOW_TABLE_STATUS_SEQ_MISMATCH_SMASK BIT_ULL(37)
35 #define RCV_TID_FLOW_TABLE_STATUS_GEN_MISMATCH_SMASK BIT_ULL(38)
36 
37 /* Maximum number of packets within a flow generation. */
38 #define MAX_TID_FLOW_PSN BIT(HFI1_KDETH_BTH_SEQ_SHIFT)
39 
40 #define GENERATION_MASK 0xFFFFF
41 
42 static u32 mask_generation(u32 a)
43 {
44 	return a & GENERATION_MASK;
45 }
46 
47 /* Reserved generation value to set to unused flows for kernel contexts */
48 #define KERN_GENERATION_RESERVED mask_generation(U32_MAX)
49 
50 /*
51  * J_KEY for kernel contexts when TID RDMA is used.
52  * See generate_jkey() in hfi.h for more information.
53  */
54 #define TID_RDMA_JKEY                   32
55 #define HFI1_KERNEL_MIN_JKEY HFI1_ADMIN_JKEY_RANGE
56 #define HFI1_KERNEL_MAX_JKEY (2 * HFI1_ADMIN_JKEY_RANGE - 1)
57 
58 /* Maximum number of segments in flight per QP request. */
59 #define TID_RDMA_MAX_READ_SEGS_PER_REQ  6
60 #define TID_RDMA_MAX_WRITE_SEGS_PER_REQ 4
61 #define MAX_REQ max_t(u16, TID_RDMA_MAX_READ_SEGS_PER_REQ, \
62 			TID_RDMA_MAX_WRITE_SEGS_PER_REQ)
63 #define MAX_FLOWS roundup_pow_of_two(MAX_REQ + 1)
64 
65 #define MAX_EXPECTED_PAGES     (MAX_EXPECTED_BUFFER / PAGE_SIZE)
66 
67 #define TID_RDMA_DESTQP_FLOW_SHIFT      11
68 #define TID_RDMA_DESTQP_FLOW_MASK       0x1f
69 
70 #define TID_OPFN_QP_CTXT_MASK 0xff
71 #define TID_OPFN_QP_CTXT_SHIFT 56
72 #define TID_OPFN_QP_KDETH_MASK 0xff
73 #define TID_OPFN_QP_KDETH_SHIFT 48
74 #define TID_OPFN_MAX_LEN_MASK 0x7ff
75 #define TID_OPFN_MAX_LEN_SHIFT 37
76 #define TID_OPFN_TIMEOUT_MASK 0x1f
77 #define TID_OPFN_TIMEOUT_SHIFT 32
78 #define TID_OPFN_RESERVED_MASK 0x3f
79 #define TID_OPFN_RESERVED_SHIFT 26
80 #define TID_OPFN_URG_MASK 0x1
81 #define TID_OPFN_URG_SHIFT 25
82 #define TID_OPFN_VER_MASK 0x7
83 #define TID_OPFN_VER_SHIFT 22
84 #define TID_OPFN_JKEY_MASK 0x3f
85 #define TID_OPFN_JKEY_SHIFT 16
86 #define TID_OPFN_MAX_READ_MASK 0x3f
87 #define TID_OPFN_MAX_READ_SHIFT 10
88 #define TID_OPFN_MAX_WRITE_MASK 0x3f
89 #define TID_OPFN_MAX_WRITE_SHIFT 4
90 
91 /*
92  * OPFN TID layout
93  *
94  * 63               47               31               15
95  * NNNNNNNNKKKKKKKK MMMMMMMMMMMTTTTT DDDDDDUVVVJJJJJJ RRRRRRWWWWWWCCCC
96  * 3210987654321098 7654321098765432 1098765432109876 5432109876543210
97  * N - the context Number
98  * K - the Kdeth_qp
99  * M - Max_len
100  * T - Timeout
101  * D - reserveD
102  * V - version
103  * U - Urg capable
104  * J - Jkey
105  * R - max_Read
106  * W - max_Write
107  * C - Capcode
108  */
109 
110 static void tid_rdma_trigger_resume(struct work_struct *work);
111 static void hfi1_kern_exp_rcv_free_flows(struct tid_rdma_request *req);
112 static int hfi1_kern_exp_rcv_alloc_flows(struct tid_rdma_request *req,
113 					 gfp_t gfp);
114 static void hfi1_init_trdma_req(struct rvt_qp *qp,
115 				struct tid_rdma_request *req);
116 static void hfi1_tid_write_alloc_resources(struct rvt_qp *qp, bool intr_ctx);
117 static void hfi1_tid_timeout(struct timer_list *t);
118 static void hfi1_add_tid_reap_timer(struct rvt_qp *qp);
119 static void hfi1_mod_tid_reap_timer(struct rvt_qp *qp);
120 static void hfi1_mod_tid_retry_timer(struct rvt_qp *qp);
121 static int hfi1_stop_tid_retry_timer(struct rvt_qp *qp);
122 static void hfi1_tid_retry_timeout(struct timer_list *t);
123 static int make_tid_rdma_ack(struct rvt_qp *qp,
124 			     struct ib_other_headers *ohdr,
125 			     struct hfi1_pkt_state *ps);
126 static void hfi1_do_tid_send(struct rvt_qp *qp);
127 static u32 read_r_next_psn(struct hfi1_devdata *dd, u8 ctxt, u8 fidx);
128 static void tid_rdma_rcv_err(struct hfi1_packet *packet,
129 			     struct ib_other_headers *ohdr,
130 			     struct rvt_qp *qp, u32 psn, int diff, bool fecn);
131 static void update_r_next_psn_fecn(struct hfi1_packet *packet,
132 				   struct hfi1_qp_priv *priv,
133 				   struct hfi1_ctxtdata *rcd,
134 				   struct tid_rdma_flow *flow,
135 				   bool fecn);
136 
137 static void validate_r_tid_ack(struct hfi1_qp_priv *priv)
138 {
139 	if (priv->r_tid_ack == HFI1_QP_WQE_INVALID)
140 		priv->r_tid_ack = priv->r_tid_tail;
141 }
142 
143 static void tid_rdma_schedule_ack(struct rvt_qp *qp)
144 {
145 	struct hfi1_qp_priv *priv = qp->priv;
146 
147 	priv->s_flags |= RVT_S_ACK_PENDING;
148 	hfi1_schedule_tid_send(qp);
149 }
150 
151 static void tid_rdma_trigger_ack(struct rvt_qp *qp)
152 {
153 	validate_r_tid_ack(qp->priv);
154 	tid_rdma_schedule_ack(qp);
155 }
156 
157 static u64 tid_rdma_opfn_encode(struct tid_rdma_params *p)
158 {
159 	return
160 		(((u64)p->qp & TID_OPFN_QP_CTXT_MASK) <<
161 			TID_OPFN_QP_CTXT_SHIFT) |
162 		((((u64)p->qp >> 16) & TID_OPFN_QP_KDETH_MASK) <<
163 			TID_OPFN_QP_KDETH_SHIFT) |
164 		(((u64)((p->max_len >> PAGE_SHIFT) - 1) &
165 			TID_OPFN_MAX_LEN_MASK) << TID_OPFN_MAX_LEN_SHIFT) |
166 		(((u64)p->timeout & TID_OPFN_TIMEOUT_MASK) <<
167 			TID_OPFN_TIMEOUT_SHIFT) |
168 		(((u64)p->urg & TID_OPFN_URG_MASK) << TID_OPFN_URG_SHIFT) |
169 		(((u64)p->jkey & TID_OPFN_JKEY_MASK) << TID_OPFN_JKEY_SHIFT) |
170 		(((u64)p->max_read & TID_OPFN_MAX_READ_MASK) <<
171 			TID_OPFN_MAX_READ_SHIFT) |
172 		(((u64)p->max_write & TID_OPFN_MAX_WRITE_MASK) <<
173 			TID_OPFN_MAX_WRITE_SHIFT);
174 }
175 
176 static void tid_rdma_opfn_decode(struct tid_rdma_params *p, u64 data)
177 {
178 	p->max_len = (((data >> TID_OPFN_MAX_LEN_SHIFT) &
179 		TID_OPFN_MAX_LEN_MASK) + 1) << PAGE_SHIFT;
180 	p->jkey = (data >> TID_OPFN_JKEY_SHIFT) & TID_OPFN_JKEY_MASK;
181 	p->max_write = (data >> TID_OPFN_MAX_WRITE_SHIFT) &
182 		TID_OPFN_MAX_WRITE_MASK;
183 	p->max_read = (data >> TID_OPFN_MAX_READ_SHIFT) &
184 		TID_OPFN_MAX_READ_MASK;
185 	p->qp =
186 		((((data >> TID_OPFN_QP_KDETH_SHIFT) & TID_OPFN_QP_KDETH_MASK)
187 			<< 16) |
188 		((data >> TID_OPFN_QP_CTXT_SHIFT) & TID_OPFN_QP_CTXT_MASK));
189 	p->urg = (data >> TID_OPFN_URG_SHIFT) & TID_OPFN_URG_MASK;
190 	p->timeout = (data >> TID_OPFN_TIMEOUT_SHIFT) & TID_OPFN_TIMEOUT_MASK;
191 }
192 
193 void tid_rdma_opfn_init(struct rvt_qp *qp, struct tid_rdma_params *p)
194 {
195 	struct hfi1_qp_priv *priv = qp->priv;
196 
197 	p->qp = (RVT_KDETH_QP_PREFIX << 16) | priv->rcd->ctxt;
198 	p->max_len = TID_RDMA_MAX_SEGMENT_SIZE;
199 	p->jkey = priv->rcd->jkey;
200 	p->max_read = TID_RDMA_MAX_READ_SEGS_PER_REQ;
201 	p->max_write = TID_RDMA_MAX_WRITE_SEGS_PER_REQ;
202 	p->timeout = qp->timeout;
203 	p->urg = is_urg_masked(priv->rcd);
204 }
205 
206 bool tid_rdma_conn_req(struct rvt_qp *qp, u64 *data)
207 {
208 	struct hfi1_qp_priv *priv = qp->priv;
209 
210 	*data = tid_rdma_opfn_encode(&priv->tid_rdma.local);
211 	return true;
212 }
213 
214 bool tid_rdma_conn_reply(struct rvt_qp *qp, u64 data)
215 {
216 	struct hfi1_qp_priv *priv = qp->priv;
217 	struct tid_rdma_params *remote, *old;
218 	bool ret = true;
219 
220 	old = rcu_dereference_protected(priv->tid_rdma.remote,
221 					lockdep_is_held(&priv->opfn.lock));
222 	data &= ~0xfULL;
223 	/*
224 	 * If data passed in is zero, return true so as not to continue the
225 	 * negotiation process
226 	 */
227 	if (!data || !HFI1_CAP_IS_KSET(TID_RDMA))
228 		goto null;
229 	/*
230 	 * If kzalloc fails, return false. This will result in:
231 	 * * at the requester a new OPFN request being generated to retry
232 	 *   the negotiation
233 	 * * at the responder, 0 being returned to the requester so as to
234 	 *   disable TID RDMA at both the requester and the responder
235 	 */
236 	remote = kzalloc(sizeof(*remote), GFP_ATOMIC);
237 	if (!remote) {
238 		ret = false;
239 		goto null;
240 	}
241 
242 	tid_rdma_opfn_decode(remote, data);
243 	priv->tid_timer_timeout_jiffies =
244 		usecs_to_jiffies((((4096UL * (1UL << remote->timeout)) /
245 				   1000UL) << 3) * 7);
246 	trace_hfi1_opfn_param(qp, 0, &priv->tid_rdma.local);
247 	trace_hfi1_opfn_param(qp, 1, remote);
248 	rcu_assign_pointer(priv->tid_rdma.remote, remote);
249 	/*
250 	 * A TID RDMA READ request's segment size is not equal to
251 	 * remote->max_len only when the request's data length is smaller
252 	 * than remote->max_len. In that case, there will be only one segment.
253 	 * Therefore, when priv->pkts_ps is used to calculate req->cur_seg
254 	 * during retry, it will lead to req->cur_seg = 0, which is exactly
255 	 * what is expected.
256 	 */
257 	priv->pkts_ps = (u16)rvt_div_mtu(qp, remote->max_len);
258 	priv->timeout_shift = ilog2(priv->pkts_ps - 1) + 1;
259 	goto free;
260 null:
261 	RCU_INIT_POINTER(priv->tid_rdma.remote, NULL);
262 	priv->timeout_shift = 0;
263 free:
264 	if (old)
265 		kfree_rcu(old, rcu_head);
266 	return ret;
267 }
268 
269 bool tid_rdma_conn_resp(struct rvt_qp *qp, u64 *data)
270 {
271 	bool ret;
272 
273 	ret = tid_rdma_conn_reply(qp, *data);
274 	*data = 0;
275 	/*
276 	 * If tid_rdma_conn_reply() returns error, set *data as 0 to indicate
277 	 * TID RDMA could not be enabled. This will result in TID RDMA being
278 	 * disabled at the requester too.
279 	 */
280 	if (ret)
281 		(void)tid_rdma_conn_req(qp, data);
282 	return ret;
283 }
284 
285 void tid_rdma_conn_error(struct rvt_qp *qp)
286 {
287 	struct hfi1_qp_priv *priv = qp->priv;
288 	struct tid_rdma_params *old;
289 
290 	old = rcu_dereference_protected(priv->tid_rdma.remote,
291 					lockdep_is_held(&priv->opfn.lock));
292 	RCU_INIT_POINTER(priv->tid_rdma.remote, NULL);
293 	if (old)
294 		kfree_rcu(old, rcu_head);
295 }
296 
297 /* This is called at context initialization time */
298 int hfi1_kern_exp_rcv_init(struct hfi1_ctxtdata *rcd, int reinit)
299 {
300 	if (reinit)
301 		return 0;
302 
303 	BUILD_BUG_ON(TID_RDMA_JKEY < HFI1_KERNEL_MIN_JKEY);
304 	BUILD_BUG_ON(TID_RDMA_JKEY > HFI1_KERNEL_MAX_JKEY);
305 	rcd->jkey = TID_RDMA_JKEY;
306 	hfi1_set_ctxt_jkey(rcd->dd, rcd, rcd->jkey);
307 	return hfi1_alloc_ctxt_rcv_groups(rcd);
308 }
309 
310 /**
311  * qp_to_rcd - determine the receive context used by a qp
312  * @qp - the qp
313  *
314  * This routine returns the receive context associated
315  * with a a qp's qpn.
316  *
317  * Returns the context.
318  */
319 static struct hfi1_ctxtdata *qp_to_rcd(struct rvt_dev_info *rdi,
320 				       struct rvt_qp *qp)
321 {
322 	struct hfi1_ibdev *verbs_dev = container_of(rdi,
323 						    struct hfi1_ibdev,
324 						    rdi);
325 	struct hfi1_devdata *dd = container_of(verbs_dev,
326 					       struct hfi1_devdata,
327 					       verbs_dev);
328 	unsigned int ctxt;
329 
330 	if (qp->ibqp.qp_num == 0)
331 		ctxt = 0;
332 	else
333 		ctxt = hfi1_get_qp_map(dd, qp->ibqp.qp_num >> dd->qos_shift);
334 	return dd->rcd[ctxt];
335 }
336 
337 int hfi1_qp_priv_init(struct rvt_dev_info *rdi, struct rvt_qp *qp,
338 		      struct ib_qp_init_attr *init_attr)
339 {
340 	struct hfi1_qp_priv *qpriv = qp->priv;
341 	int i, ret;
342 
343 	qpriv->rcd = qp_to_rcd(rdi, qp);
344 
345 	spin_lock_init(&qpriv->opfn.lock);
346 	INIT_WORK(&qpriv->opfn.opfn_work, opfn_send_conn_request);
347 	INIT_WORK(&qpriv->tid_rdma.trigger_work, tid_rdma_trigger_resume);
348 	qpriv->flow_state.psn = 0;
349 	qpriv->flow_state.index = RXE_NUM_TID_FLOWS;
350 	qpriv->flow_state.last_index = RXE_NUM_TID_FLOWS;
351 	qpriv->flow_state.generation = KERN_GENERATION_RESERVED;
352 	qpriv->s_state = TID_OP(WRITE_RESP);
353 	qpriv->s_tid_cur = HFI1_QP_WQE_INVALID;
354 	qpriv->s_tid_head = HFI1_QP_WQE_INVALID;
355 	qpriv->s_tid_tail = HFI1_QP_WQE_INVALID;
356 	qpriv->rnr_nak_state = TID_RNR_NAK_INIT;
357 	qpriv->r_tid_head = HFI1_QP_WQE_INVALID;
358 	qpriv->r_tid_tail = HFI1_QP_WQE_INVALID;
359 	qpriv->r_tid_ack = HFI1_QP_WQE_INVALID;
360 	qpriv->r_tid_alloc = HFI1_QP_WQE_INVALID;
361 	atomic_set(&qpriv->n_requests, 0);
362 	atomic_set(&qpriv->n_tid_requests, 0);
363 	timer_setup(&qpriv->s_tid_timer, hfi1_tid_timeout, 0);
364 	timer_setup(&qpriv->s_tid_retry_timer, hfi1_tid_retry_timeout, 0);
365 	INIT_LIST_HEAD(&qpriv->tid_wait);
366 
367 	if (init_attr->qp_type == IB_QPT_RC && HFI1_CAP_IS_KSET(TID_RDMA)) {
368 		struct hfi1_devdata *dd = qpriv->rcd->dd;
369 
370 		qpriv->pages = kzalloc_node(TID_RDMA_MAX_PAGES *
371 						sizeof(*qpriv->pages),
372 					    GFP_KERNEL, dd->node);
373 		if (!qpriv->pages)
374 			return -ENOMEM;
375 		for (i = 0; i < qp->s_size; i++) {
376 			struct hfi1_swqe_priv *priv;
377 			struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, i);
378 
379 			priv = kzalloc_node(sizeof(*priv), GFP_KERNEL,
380 					    dd->node);
381 			if (!priv)
382 				return -ENOMEM;
383 
384 			hfi1_init_trdma_req(qp, &priv->tid_req);
385 			priv->tid_req.e.swqe = wqe;
386 			wqe->priv = priv;
387 		}
388 		for (i = 0; i < rvt_max_atomic(rdi); i++) {
389 			struct hfi1_ack_priv *priv;
390 
391 			priv = kzalloc_node(sizeof(*priv), GFP_KERNEL,
392 					    dd->node);
393 			if (!priv)
394 				return -ENOMEM;
395 
396 			hfi1_init_trdma_req(qp, &priv->tid_req);
397 			priv->tid_req.e.ack = &qp->s_ack_queue[i];
398 
399 			ret = hfi1_kern_exp_rcv_alloc_flows(&priv->tid_req,
400 							    GFP_KERNEL);
401 			if (ret) {
402 				kfree(priv);
403 				return ret;
404 			}
405 			qp->s_ack_queue[i].priv = priv;
406 		}
407 	}
408 
409 	return 0;
410 }
411 
412 void hfi1_qp_priv_tid_free(struct rvt_dev_info *rdi, struct rvt_qp *qp)
413 {
414 	struct hfi1_qp_priv *qpriv = qp->priv;
415 	struct rvt_swqe *wqe;
416 	u32 i;
417 
418 	if (qp->ibqp.qp_type == IB_QPT_RC && HFI1_CAP_IS_KSET(TID_RDMA)) {
419 		for (i = 0; i < qp->s_size; i++) {
420 			wqe = rvt_get_swqe_ptr(qp, i);
421 			kfree(wqe->priv);
422 			wqe->priv = NULL;
423 		}
424 		for (i = 0; i < rvt_max_atomic(rdi); i++) {
425 			struct hfi1_ack_priv *priv = qp->s_ack_queue[i].priv;
426 
427 			if (priv)
428 				hfi1_kern_exp_rcv_free_flows(&priv->tid_req);
429 			kfree(priv);
430 			qp->s_ack_queue[i].priv = NULL;
431 		}
432 		cancel_work_sync(&qpriv->opfn.opfn_work);
433 		kfree(qpriv->pages);
434 		qpriv->pages = NULL;
435 	}
436 }
437 
438 /* Flow and tid waiter functions */
439 /**
440  * DOC: lock ordering
441  *
442  * There are two locks involved with the queuing
443  * routines: the qp s_lock and the exp_lock.
444  *
445  * Since the tid space allocation is called from
446  * the send engine, the qp s_lock is already held.
447  *
448  * The allocation routines will get the exp_lock.
449  *
450  * The first_qp() call is provided to allow the head of
451  * the rcd wait queue to be fetched under the exp_lock and
452  * followed by a drop of the exp_lock.
453  *
454  * Any qp in the wait list will have the qp reference count held
455  * to hold the qp in memory.
456  */
457 
458 /*
459  * return head of rcd wait list
460  *
461  * Must hold the exp_lock.
462  *
463  * Get a reference to the QP to hold the QP in memory.
464  *
465  * The caller must release the reference when the local
466  * is no longer being used.
467  */
468 static struct rvt_qp *first_qp(struct hfi1_ctxtdata *rcd,
469 			       struct tid_queue *queue)
470 	__must_hold(&rcd->exp_lock)
471 {
472 	struct hfi1_qp_priv *priv;
473 
474 	lockdep_assert_held(&rcd->exp_lock);
475 	priv = list_first_entry_or_null(&queue->queue_head,
476 					struct hfi1_qp_priv,
477 					tid_wait);
478 	if (!priv)
479 		return NULL;
480 	rvt_get_qp(priv->owner);
481 	return priv->owner;
482 }
483 
484 /**
485  * kernel_tid_waiters - determine rcd wait
486  * @rcd: the receive context
487  * @qp: the head of the qp being processed
488  *
489  * This routine will return false IFF
490  * the list is NULL or the head of the
491  * list is the indicated qp.
492  *
493  * Must hold the qp s_lock and the exp_lock.
494  *
495  * Return:
496  * false if either of the conditions below are satisfied:
497  * 1. The list is empty or
498  * 2. The indicated qp is at the head of the list and the
499  *    HFI1_S_WAIT_TID_SPACE bit is set in qp->s_flags.
500  * true is returned otherwise.
501  */
502 static bool kernel_tid_waiters(struct hfi1_ctxtdata *rcd,
503 			       struct tid_queue *queue, struct rvt_qp *qp)
504 	__must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
505 {
506 	struct rvt_qp *fqp;
507 	bool ret = true;
508 
509 	lockdep_assert_held(&qp->s_lock);
510 	lockdep_assert_held(&rcd->exp_lock);
511 	fqp = first_qp(rcd, queue);
512 	if (!fqp || (fqp == qp && (qp->s_flags & HFI1_S_WAIT_TID_SPACE)))
513 		ret = false;
514 	rvt_put_qp(fqp);
515 	return ret;
516 }
517 
518 /**
519  * dequeue_tid_waiter - dequeue the qp from the list
520  * @qp - the qp to remove the wait list
521  *
522  * This routine removes the indicated qp from the
523  * wait list if it is there.
524  *
525  * This should be done after the hardware flow and
526  * tid array resources have been allocated.
527  *
528  * Must hold the qp s_lock and the rcd exp_lock.
529  *
530  * It assumes the s_lock to protect the s_flags
531  * field and to reliably test the HFI1_S_WAIT_TID_SPACE flag.
532  */
533 static void dequeue_tid_waiter(struct hfi1_ctxtdata *rcd,
534 			       struct tid_queue *queue, struct rvt_qp *qp)
535 	__must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
536 {
537 	struct hfi1_qp_priv *priv = qp->priv;
538 
539 	lockdep_assert_held(&qp->s_lock);
540 	lockdep_assert_held(&rcd->exp_lock);
541 	if (list_empty(&priv->tid_wait))
542 		return;
543 	list_del_init(&priv->tid_wait);
544 	qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
545 	queue->dequeue++;
546 	rvt_put_qp(qp);
547 }
548 
549 /**
550  * queue_qp_for_tid_wait - suspend QP on tid space
551  * @rcd: the receive context
552  * @qp: the qp
553  *
554  * The qp is inserted at the tail of the rcd
555  * wait queue and the HFI1_S_WAIT_TID_SPACE s_flag is set.
556  *
557  * Must hold the qp s_lock and the exp_lock.
558  */
559 static void queue_qp_for_tid_wait(struct hfi1_ctxtdata *rcd,
560 				  struct tid_queue *queue, struct rvt_qp *qp)
561 	__must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
562 {
563 	struct hfi1_qp_priv *priv = qp->priv;
564 
565 	lockdep_assert_held(&qp->s_lock);
566 	lockdep_assert_held(&rcd->exp_lock);
567 	if (list_empty(&priv->tid_wait)) {
568 		qp->s_flags |= HFI1_S_WAIT_TID_SPACE;
569 		list_add_tail(&priv->tid_wait, &queue->queue_head);
570 		priv->tid_enqueue = ++queue->enqueue;
571 		rcd->dd->verbs_dev.n_tidwait++;
572 		trace_hfi1_qpsleep(qp, HFI1_S_WAIT_TID_SPACE);
573 		rvt_get_qp(qp);
574 	}
575 }
576 
577 /**
578  * __trigger_tid_waiter - trigger tid waiter
579  * @qp: the qp
580  *
581  * This is a private entrance to schedule the qp
582  * assuming the caller is holding the qp->s_lock.
583  */
584 static void __trigger_tid_waiter(struct rvt_qp *qp)
585 	__must_hold(&qp->s_lock)
586 {
587 	lockdep_assert_held(&qp->s_lock);
588 	if (!(qp->s_flags & HFI1_S_WAIT_TID_SPACE))
589 		return;
590 	trace_hfi1_qpwakeup(qp, HFI1_S_WAIT_TID_SPACE);
591 	hfi1_schedule_send(qp);
592 }
593 
594 /**
595  * tid_rdma_schedule_tid_wakeup - schedule wakeup for a qp
596  * @qp - the qp
597  *
598  * trigger a schedule or a waiting qp in a deadlock
599  * safe manner.  The qp reference is held prior
600  * to this call via first_qp().
601  *
602  * If the qp trigger was already scheduled (!rval)
603  * the the reference is dropped, otherwise the resume
604  * or the destroy cancel will dispatch the reference.
605  */
606 static void tid_rdma_schedule_tid_wakeup(struct rvt_qp *qp)
607 {
608 	struct hfi1_qp_priv *priv;
609 	struct hfi1_ibport *ibp;
610 	struct hfi1_pportdata *ppd;
611 	struct hfi1_devdata *dd;
612 	bool rval;
613 
614 	if (!qp)
615 		return;
616 
617 	priv = qp->priv;
618 	ibp = to_iport(qp->ibqp.device, qp->port_num);
619 	ppd = ppd_from_ibp(ibp);
620 	dd = dd_from_ibdev(qp->ibqp.device);
621 
622 	rval = queue_work_on(priv->s_sde ?
623 			     priv->s_sde->cpu :
624 			     cpumask_first(cpumask_of_node(dd->node)),
625 			     ppd->hfi1_wq,
626 			     &priv->tid_rdma.trigger_work);
627 	if (!rval)
628 		rvt_put_qp(qp);
629 }
630 
631 /**
632  * tid_rdma_trigger_resume - field a trigger work request
633  * @work - the work item
634  *
635  * Complete the off qp trigger processing by directly
636  * calling the progress routine.
637  */
638 static void tid_rdma_trigger_resume(struct work_struct *work)
639 {
640 	struct tid_rdma_qp_params *tr;
641 	struct hfi1_qp_priv *priv;
642 	struct rvt_qp *qp;
643 
644 	tr = container_of(work, struct tid_rdma_qp_params, trigger_work);
645 	priv = container_of(tr, struct hfi1_qp_priv, tid_rdma);
646 	qp = priv->owner;
647 	spin_lock_irq(&qp->s_lock);
648 	if (qp->s_flags & HFI1_S_WAIT_TID_SPACE) {
649 		spin_unlock_irq(&qp->s_lock);
650 		hfi1_do_send(priv->owner, true);
651 	} else {
652 		spin_unlock_irq(&qp->s_lock);
653 	}
654 	rvt_put_qp(qp);
655 }
656 
657 /**
658  * tid_rdma_flush_wait - unwind any tid space wait
659  *
660  * This is called when resetting a qp to
661  * allow a destroy or reset to get rid
662  * of any tid space linkage and reference counts.
663  */
664 static void _tid_rdma_flush_wait(struct rvt_qp *qp, struct tid_queue *queue)
665 	__must_hold(&qp->s_lock)
666 {
667 	struct hfi1_qp_priv *priv;
668 
669 	if (!qp)
670 		return;
671 	lockdep_assert_held(&qp->s_lock);
672 	priv = qp->priv;
673 	qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
674 	spin_lock(&priv->rcd->exp_lock);
675 	if (!list_empty(&priv->tid_wait)) {
676 		list_del_init(&priv->tid_wait);
677 		qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
678 		queue->dequeue++;
679 		rvt_put_qp(qp);
680 	}
681 	spin_unlock(&priv->rcd->exp_lock);
682 }
683 
684 void hfi1_tid_rdma_flush_wait(struct rvt_qp *qp)
685 	__must_hold(&qp->s_lock)
686 {
687 	struct hfi1_qp_priv *priv = qp->priv;
688 
689 	_tid_rdma_flush_wait(qp, &priv->rcd->flow_queue);
690 	_tid_rdma_flush_wait(qp, &priv->rcd->rarr_queue);
691 }
692 
693 /* Flow functions */
694 /**
695  * kern_reserve_flow - allocate a hardware flow
696  * @rcd - the context to use for allocation
697  * @last - the index of the preferred flow. Use RXE_NUM_TID_FLOWS to
698  *         signify "don't care".
699  *
700  * Use a bit mask based allocation to reserve a hardware
701  * flow for use in receiving KDETH data packets. If a preferred flow is
702  * specified the function will attempt to reserve that flow again, if
703  * available.
704  *
705  * The exp_lock must be held.
706  *
707  * Return:
708  * On success: a value postive value between 0 and RXE_NUM_TID_FLOWS - 1
709  * On failure: -EAGAIN
710  */
711 static int kern_reserve_flow(struct hfi1_ctxtdata *rcd, int last)
712 	__must_hold(&rcd->exp_lock)
713 {
714 	int nr;
715 
716 	/* Attempt to reserve the preferred flow index */
717 	if (last >= 0 && last < RXE_NUM_TID_FLOWS &&
718 	    !test_and_set_bit(last, &rcd->flow_mask))
719 		return last;
720 
721 	nr = ffz(rcd->flow_mask);
722 	BUILD_BUG_ON(RXE_NUM_TID_FLOWS >=
723 		     (sizeof(rcd->flow_mask) * BITS_PER_BYTE));
724 	if (nr > (RXE_NUM_TID_FLOWS - 1))
725 		return -EAGAIN;
726 	set_bit(nr, &rcd->flow_mask);
727 	return nr;
728 }
729 
730 static void kern_set_hw_flow(struct hfi1_ctxtdata *rcd, u32 generation,
731 			     u32 flow_idx)
732 {
733 	u64 reg;
734 
735 	reg = ((u64)generation << HFI1_KDETH_BTH_SEQ_SHIFT) |
736 		RCV_TID_FLOW_TABLE_CTRL_FLOW_VALID_SMASK |
737 		RCV_TID_FLOW_TABLE_CTRL_KEEP_AFTER_SEQ_ERR_SMASK |
738 		RCV_TID_FLOW_TABLE_CTRL_KEEP_ON_GEN_ERR_SMASK |
739 		RCV_TID_FLOW_TABLE_STATUS_SEQ_MISMATCH_SMASK |
740 		RCV_TID_FLOW_TABLE_STATUS_GEN_MISMATCH_SMASK;
741 
742 	if (generation != KERN_GENERATION_RESERVED)
743 		reg |= RCV_TID_FLOW_TABLE_CTRL_HDR_SUPP_EN_SMASK;
744 
745 	write_uctxt_csr(rcd->dd, rcd->ctxt,
746 			RCV_TID_FLOW_TABLE + 8 * flow_idx, reg);
747 }
748 
749 static u32 kern_setup_hw_flow(struct hfi1_ctxtdata *rcd, u32 flow_idx)
750 	__must_hold(&rcd->exp_lock)
751 {
752 	u32 generation = rcd->flows[flow_idx].generation;
753 
754 	kern_set_hw_flow(rcd, generation, flow_idx);
755 	return generation;
756 }
757 
758 static u32 kern_flow_generation_next(u32 gen)
759 {
760 	u32 generation = mask_generation(gen + 1);
761 
762 	if (generation == KERN_GENERATION_RESERVED)
763 		generation = mask_generation(generation + 1);
764 	return generation;
765 }
766 
767 static void kern_clear_hw_flow(struct hfi1_ctxtdata *rcd, u32 flow_idx)
768 	__must_hold(&rcd->exp_lock)
769 {
770 	rcd->flows[flow_idx].generation =
771 		kern_flow_generation_next(rcd->flows[flow_idx].generation);
772 	kern_set_hw_flow(rcd, KERN_GENERATION_RESERVED, flow_idx);
773 }
774 
775 int hfi1_kern_setup_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp)
776 {
777 	struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv;
778 	struct tid_flow_state *fs = &qpriv->flow_state;
779 	struct rvt_qp *fqp;
780 	unsigned long flags;
781 	int ret = 0;
782 
783 	/* The QP already has an allocated flow */
784 	if (fs->index != RXE_NUM_TID_FLOWS)
785 		return ret;
786 
787 	spin_lock_irqsave(&rcd->exp_lock, flags);
788 	if (kernel_tid_waiters(rcd, &rcd->flow_queue, qp))
789 		goto queue;
790 
791 	ret = kern_reserve_flow(rcd, fs->last_index);
792 	if (ret < 0)
793 		goto queue;
794 	fs->index = ret;
795 	fs->last_index = fs->index;
796 
797 	/* Generation received in a RESYNC overrides default flow generation */
798 	if (fs->generation != KERN_GENERATION_RESERVED)
799 		rcd->flows[fs->index].generation = fs->generation;
800 	fs->generation = kern_setup_hw_flow(rcd, fs->index);
801 	fs->psn = 0;
802 	dequeue_tid_waiter(rcd, &rcd->flow_queue, qp);
803 	/* get head before dropping lock */
804 	fqp = first_qp(rcd, &rcd->flow_queue);
805 	spin_unlock_irqrestore(&rcd->exp_lock, flags);
806 
807 	tid_rdma_schedule_tid_wakeup(fqp);
808 	return 0;
809 queue:
810 	queue_qp_for_tid_wait(rcd, &rcd->flow_queue, qp);
811 	spin_unlock_irqrestore(&rcd->exp_lock, flags);
812 	return -EAGAIN;
813 }
814 
815 void hfi1_kern_clear_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp)
816 {
817 	struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv;
818 	struct tid_flow_state *fs = &qpriv->flow_state;
819 	struct rvt_qp *fqp;
820 	unsigned long flags;
821 
822 	if (fs->index >= RXE_NUM_TID_FLOWS)
823 		return;
824 	spin_lock_irqsave(&rcd->exp_lock, flags);
825 	kern_clear_hw_flow(rcd, fs->index);
826 	clear_bit(fs->index, &rcd->flow_mask);
827 	fs->index = RXE_NUM_TID_FLOWS;
828 	fs->psn = 0;
829 	fs->generation = KERN_GENERATION_RESERVED;
830 
831 	/* get head before dropping lock */
832 	fqp = first_qp(rcd, &rcd->flow_queue);
833 	spin_unlock_irqrestore(&rcd->exp_lock, flags);
834 
835 	if (fqp == qp) {
836 		__trigger_tid_waiter(fqp);
837 		rvt_put_qp(fqp);
838 	} else {
839 		tid_rdma_schedule_tid_wakeup(fqp);
840 	}
841 }
842 
843 void hfi1_kern_init_ctxt_generations(struct hfi1_ctxtdata *rcd)
844 {
845 	int i;
846 
847 	for (i = 0; i < RXE_NUM_TID_FLOWS; i++) {
848 		rcd->flows[i].generation = mask_generation(prandom_u32());
849 		kern_set_hw_flow(rcd, KERN_GENERATION_RESERVED, i);
850 	}
851 }
852 
853 /* TID allocation functions */
854 static u8 trdma_pset_order(struct tid_rdma_pageset *s)
855 {
856 	u8 count = s->count;
857 
858 	return ilog2(count) + 1;
859 }
860 
861 /**
862  * tid_rdma_find_phys_blocks_4k - get groups base on mr info
863  * @npages - number of pages
864  * @pages - pointer to an array of page structs
865  * @list - page set array to return
866  *
867  * This routine returns the number of groups associated with
868  * the current sge information.  This implementation is based
869  * on the expected receive find_phys_blocks() adjusted to
870  * use the MR information vs. the pfn.
871  *
872  * Return:
873  * the number of RcvArray entries
874  */
875 static u32 tid_rdma_find_phys_blocks_4k(struct tid_rdma_flow *flow,
876 					struct page **pages,
877 					u32 npages,
878 					struct tid_rdma_pageset *list)
879 {
880 	u32 pagecount, pageidx, setcount = 0, i;
881 	void *vaddr, *this_vaddr;
882 
883 	if (!npages)
884 		return 0;
885 
886 	/*
887 	 * Look for sets of physically contiguous pages in the user buffer.
888 	 * This will allow us to optimize Expected RcvArray entry usage by
889 	 * using the bigger supported sizes.
890 	 */
891 	vaddr = page_address(pages[0]);
892 	trace_hfi1_tid_flow_page(flow->req->qp, flow, 0, 0, 0, vaddr);
893 	for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) {
894 		this_vaddr = i < npages ? page_address(pages[i]) : NULL;
895 		trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 0, 0,
896 					 this_vaddr);
897 		/*
898 		 * If the vaddr's are not sequential, pages are not physically
899 		 * contiguous.
900 		 */
901 		if (this_vaddr != (vaddr + PAGE_SIZE)) {
902 			/*
903 			 * At this point we have to loop over the set of
904 			 * physically contiguous pages and break them down it
905 			 * sizes supported by the HW.
906 			 * There are two main constraints:
907 			 *     1. The max buffer size is MAX_EXPECTED_BUFFER.
908 			 *        If the total set size is bigger than that
909 			 *        program only a MAX_EXPECTED_BUFFER chunk.
910 			 *     2. The buffer size has to be a power of two. If
911 			 *        it is not, round down to the closes power of
912 			 *        2 and program that size.
913 			 */
914 			while (pagecount) {
915 				int maxpages = pagecount;
916 				u32 bufsize = pagecount * PAGE_SIZE;
917 
918 				if (bufsize > MAX_EXPECTED_BUFFER)
919 					maxpages =
920 						MAX_EXPECTED_BUFFER >>
921 						PAGE_SHIFT;
922 				else if (!is_power_of_2(bufsize))
923 					maxpages =
924 						rounddown_pow_of_two(bufsize) >>
925 						PAGE_SHIFT;
926 
927 				list[setcount].idx = pageidx;
928 				list[setcount].count = maxpages;
929 				trace_hfi1_tid_pageset(flow->req->qp, setcount,
930 						       list[setcount].idx,
931 						       list[setcount].count);
932 				pagecount -= maxpages;
933 				pageidx += maxpages;
934 				setcount++;
935 			}
936 			pageidx = i;
937 			pagecount = 1;
938 			vaddr = this_vaddr;
939 		} else {
940 			vaddr += PAGE_SIZE;
941 			pagecount++;
942 		}
943 	}
944 	/* insure we always return an even number of sets */
945 	if (setcount & 1)
946 		list[setcount++].count = 0;
947 	return setcount;
948 }
949 
950 /**
951  * tid_flush_pages - dump out pages into pagesets
952  * @list - list of pagesets
953  * @idx - pointer to current page index
954  * @pages - number of pages to dump
955  * @sets - current number of pagesset
956  *
957  * This routine flushes out accumuated pages.
958  *
959  * To insure an even number of sets the
960  * code may add a filler.
961  *
962  * This can happen with when pages is not
963  * a power of 2 or pages is a power of 2
964  * less than the maximum pages.
965  *
966  * Return:
967  * The new number of sets
968  */
969 
970 static u32 tid_flush_pages(struct tid_rdma_pageset *list,
971 			   u32 *idx, u32 pages, u32 sets)
972 {
973 	while (pages) {
974 		u32 maxpages = pages;
975 
976 		if (maxpages > MAX_EXPECTED_PAGES)
977 			maxpages = MAX_EXPECTED_PAGES;
978 		else if (!is_power_of_2(maxpages))
979 			maxpages = rounddown_pow_of_two(maxpages);
980 		list[sets].idx = *idx;
981 		list[sets++].count = maxpages;
982 		*idx += maxpages;
983 		pages -= maxpages;
984 	}
985 	/* might need a filler */
986 	if (sets & 1)
987 		list[sets++].count = 0;
988 	return sets;
989 }
990 
991 /**
992  * tid_rdma_find_phys_blocks_8k - get groups base on mr info
993  * @pages - pointer to an array of page structs
994  * @npages - number of pages
995  * @list - page set array to return
996  *
997  * This routine parses an array of pages to compute pagesets
998  * in an 8k compatible way.
999  *
1000  * pages are tested two at a time, i, i + 1 for contiguous
1001  * pages and i - 1 and i contiguous pages.
1002  *
1003  * If any condition is false, any accumlated pages are flushed and
1004  * v0,v1 are emitted as separate PAGE_SIZE pagesets
1005  *
1006  * Otherwise, the current 8k is totaled for a future flush.
1007  *
1008  * Return:
1009  * The number of pagesets
1010  * list set with the returned number of pagesets
1011  *
1012  */
1013 static u32 tid_rdma_find_phys_blocks_8k(struct tid_rdma_flow *flow,
1014 					struct page **pages,
1015 					u32 npages,
1016 					struct tid_rdma_pageset *list)
1017 {
1018 	u32 idx, sets = 0, i;
1019 	u32 pagecnt = 0;
1020 	void *v0, *v1, *vm1;
1021 
1022 	if (!npages)
1023 		return 0;
1024 	for (idx = 0, i = 0, vm1 = NULL; i < npages; i += 2) {
1025 		/* get a new v0 */
1026 		v0 = page_address(pages[i]);
1027 		trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 1, 0, v0);
1028 		v1 = i + 1 < npages ?
1029 				page_address(pages[i + 1]) : NULL;
1030 		trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 1, 1, v1);
1031 		/* compare i, i + 1 vaddr */
1032 		if (v1 != (v0 + PAGE_SIZE)) {
1033 			/* flush out pages */
1034 			sets = tid_flush_pages(list, &idx, pagecnt, sets);
1035 			/* output v0,v1 as two pagesets */
1036 			list[sets].idx = idx++;
1037 			list[sets++].count = 1;
1038 			if (v1) {
1039 				list[sets].count = 1;
1040 				list[sets++].idx = idx++;
1041 			} else {
1042 				list[sets++].count = 0;
1043 			}
1044 			vm1 = NULL;
1045 			pagecnt = 0;
1046 			continue;
1047 		}
1048 		/* i,i+1 consecutive, look at i-1,i */
1049 		if (vm1 && v0 != (vm1 + PAGE_SIZE)) {
1050 			/* flush out pages */
1051 			sets = tid_flush_pages(list, &idx, pagecnt, sets);
1052 			pagecnt = 0;
1053 		}
1054 		/* pages will always be a multiple of 8k */
1055 		pagecnt += 2;
1056 		/* save i-1 */
1057 		vm1 = v1;
1058 		/* move to next pair */
1059 	}
1060 	/* dump residual pages at end */
1061 	sets = tid_flush_pages(list, &idx, npages - idx, sets);
1062 	/* by design cannot be odd sets */
1063 	WARN_ON(sets & 1);
1064 	return sets;
1065 }
1066 
1067 /**
1068  * Find pages for one segment of a sge array represented by @ss. The function
1069  * does not check the sge, the sge must have been checked for alignment with a
1070  * prior call to hfi1_kern_trdma_ok. Other sge checking is done as part of
1071  * rvt_lkey_ok and rvt_rkey_ok. Also, the function only modifies the local sge
1072  * copy maintained in @ss->sge, the original sge is not modified.
1073  *
1074  * Unlike IB RDMA WRITE, we can't decrement ss->num_sge here because we are not
1075  * releasing the MR reference count at the same time. Otherwise, we'll "leak"
1076  * references to the MR. This difference requires that we keep track of progress
1077  * into the sg_list. This is done by the cur_seg cursor in the tid_rdma_request
1078  * structure.
1079  */
1080 static u32 kern_find_pages(struct tid_rdma_flow *flow,
1081 			   struct page **pages,
1082 			   struct rvt_sge_state *ss, bool *last)
1083 {
1084 	struct tid_rdma_request *req = flow->req;
1085 	struct rvt_sge *sge = &ss->sge;
1086 	u32 length = flow->req->seg_len;
1087 	u32 len = PAGE_SIZE;
1088 	u32 i = 0;
1089 
1090 	while (length && req->isge < ss->num_sge) {
1091 		pages[i++] = virt_to_page(sge->vaddr);
1092 
1093 		sge->vaddr += len;
1094 		sge->length -= len;
1095 		sge->sge_length -= len;
1096 		if (!sge->sge_length) {
1097 			if (++req->isge < ss->num_sge)
1098 				*sge = ss->sg_list[req->isge - 1];
1099 		} else if (sge->length == 0 && sge->mr->lkey) {
1100 			if (++sge->n >= RVT_SEGSZ) {
1101 				++sge->m;
1102 				sge->n = 0;
1103 			}
1104 			sge->vaddr = sge->mr->map[sge->m]->segs[sge->n].vaddr;
1105 			sge->length = sge->mr->map[sge->m]->segs[sge->n].length;
1106 		}
1107 		length -= len;
1108 	}
1109 
1110 	flow->length = flow->req->seg_len - length;
1111 	*last = req->isge == ss->num_sge ? false : true;
1112 	return i;
1113 }
1114 
1115 static void dma_unmap_flow(struct tid_rdma_flow *flow)
1116 {
1117 	struct hfi1_devdata *dd;
1118 	int i;
1119 	struct tid_rdma_pageset *pset;
1120 
1121 	dd = flow->req->rcd->dd;
1122 	for (i = 0, pset = &flow->pagesets[0]; i < flow->npagesets;
1123 			i++, pset++) {
1124 		if (pset->count && pset->addr) {
1125 			dma_unmap_page(&dd->pcidev->dev,
1126 				       pset->addr,
1127 				       PAGE_SIZE * pset->count,
1128 				       DMA_FROM_DEVICE);
1129 			pset->mapped = 0;
1130 		}
1131 	}
1132 }
1133 
1134 static int dma_map_flow(struct tid_rdma_flow *flow, struct page **pages)
1135 {
1136 	int i;
1137 	struct hfi1_devdata *dd = flow->req->rcd->dd;
1138 	struct tid_rdma_pageset *pset;
1139 
1140 	for (i = 0, pset = &flow->pagesets[0]; i < flow->npagesets;
1141 			i++, pset++) {
1142 		if (pset->count) {
1143 			pset->addr = dma_map_page(&dd->pcidev->dev,
1144 						  pages[pset->idx],
1145 						  0,
1146 						  PAGE_SIZE * pset->count,
1147 						  DMA_FROM_DEVICE);
1148 
1149 			if (dma_mapping_error(&dd->pcidev->dev, pset->addr)) {
1150 				dma_unmap_flow(flow);
1151 				return -ENOMEM;
1152 			}
1153 			pset->mapped = 1;
1154 		}
1155 	}
1156 	return 0;
1157 }
1158 
1159 static inline bool dma_mapped(struct tid_rdma_flow *flow)
1160 {
1161 	return !!flow->pagesets[0].mapped;
1162 }
1163 
1164 /*
1165  * Get pages pointers and identify contiguous physical memory chunks for a
1166  * segment. All segments are of length flow->req->seg_len.
1167  */
1168 static int kern_get_phys_blocks(struct tid_rdma_flow *flow,
1169 				struct page **pages,
1170 				struct rvt_sge_state *ss, bool *last)
1171 {
1172 	u8 npages;
1173 
1174 	/* Reuse previously computed pagesets, if any */
1175 	if (flow->npagesets) {
1176 		trace_hfi1_tid_flow_alloc(flow->req->qp, flow->req->setup_head,
1177 					  flow);
1178 		if (!dma_mapped(flow))
1179 			return dma_map_flow(flow, pages);
1180 		return 0;
1181 	}
1182 
1183 	npages = kern_find_pages(flow, pages, ss, last);
1184 
1185 	if (flow->req->qp->pmtu == enum_to_mtu(OPA_MTU_4096))
1186 		flow->npagesets =
1187 			tid_rdma_find_phys_blocks_4k(flow, pages, npages,
1188 						     flow->pagesets);
1189 	else
1190 		flow->npagesets =
1191 			tid_rdma_find_phys_blocks_8k(flow, pages, npages,
1192 						     flow->pagesets);
1193 
1194 	return dma_map_flow(flow, pages);
1195 }
1196 
1197 static inline void kern_add_tid_node(struct tid_rdma_flow *flow,
1198 				     struct hfi1_ctxtdata *rcd, char *s,
1199 				     struct tid_group *grp, u8 cnt)
1200 {
1201 	struct kern_tid_node *node = &flow->tnode[flow->tnode_cnt++];
1202 
1203 	WARN_ON_ONCE(flow->tnode_cnt >=
1204 		     (TID_RDMA_MAX_SEGMENT_SIZE >> PAGE_SHIFT));
1205 	if (WARN_ON_ONCE(cnt & 1))
1206 		dd_dev_err(rcd->dd,
1207 			   "unexpected odd allocation cnt %u map 0x%x used %u",
1208 			   cnt, grp->map, grp->used);
1209 
1210 	node->grp = grp;
1211 	node->map = grp->map;
1212 	node->cnt = cnt;
1213 	trace_hfi1_tid_node_add(flow->req->qp, s, flow->tnode_cnt - 1,
1214 				grp->base, grp->map, grp->used, cnt);
1215 }
1216 
1217 /*
1218  * Try to allocate pageset_count TID's from TID groups for a context
1219  *
1220  * This function allocates TID's without moving groups between lists or
1221  * modifying grp->map. This is done as follows, being cogizant of the lists
1222  * between which the TID groups will move:
1223  * 1. First allocate complete groups of 8 TID's since this is more efficient,
1224  *    these groups will move from group->full without affecting used
1225  * 2. If more TID's are needed allocate from used (will move from used->full or
1226  *    stay in used)
1227  * 3. If we still don't have the required number of TID's go back and look again
1228  *    at a complete group (will move from group->used)
1229  */
1230 static int kern_alloc_tids(struct tid_rdma_flow *flow)
1231 {
1232 	struct hfi1_ctxtdata *rcd = flow->req->rcd;
1233 	struct hfi1_devdata *dd = rcd->dd;
1234 	u32 ngroups, pageidx = 0;
1235 	struct tid_group *group = NULL, *used;
1236 	u8 use;
1237 
1238 	flow->tnode_cnt = 0;
1239 	ngroups = flow->npagesets / dd->rcv_entries.group_size;
1240 	if (!ngroups)
1241 		goto used_list;
1242 
1243 	/* First look at complete groups */
1244 	list_for_each_entry(group,  &rcd->tid_group_list.list, list) {
1245 		kern_add_tid_node(flow, rcd, "complete groups", group,
1246 				  group->size);
1247 
1248 		pageidx += group->size;
1249 		if (!--ngroups)
1250 			break;
1251 	}
1252 
1253 	if (pageidx >= flow->npagesets)
1254 		goto ok;
1255 
1256 used_list:
1257 	/* Now look at partially used groups */
1258 	list_for_each_entry(used, &rcd->tid_used_list.list, list) {
1259 		use = min_t(u32, flow->npagesets - pageidx,
1260 			    used->size - used->used);
1261 		kern_add_tid_node(flow, rcd, "used groups", used, use);
1262 
1263 		pageidx += use;
1264 		if (pageidx >= flow->npagesets)
1265 			goto ok;
1266 	}
1267 
1268 	/*
1269 	 * Look again at a complete group, continuing from where we left.
1270 	 * However, if we are at the head, we have reached the end of the
1271 	 * complete groups list from the first loop above
1272 	 */
1273 	if (group && &group->list == &rcd->tid_group_list.list)
1274 		goto bail_eagain;
1275 	group = list_prepare_entry(group, &rcd->tid_group_list.list,
1276 				   list);
1277 	if (list_is_last(&group->list, &rcd->tid_group_list.list))
1278 		goto bail_eagain;
1279 	group = list_next_entry(group, list);
1280 	use = min_t(u32, flow->npagesets - pageidx, group->size);
1281 	kern_add_tid_node(flow, rcd, "complete continue", group, use);
1282 	pageidx += use;
1283 	if (pageidx >= flow->npagesets)
1284 		goto ok;
1285 bail_eagain:
1286 	trace_hfi1_msg_alloc_tids(flow->req->qp, " insufficient tids: needed ",
1287 				  (u64)flow->npagesets);
1288 	return -EAGAIN;
1289 ok:
1290 	return 0;
1291 }
1292 
1293 static void kern_program_rcv_group(struct tid_rdma_flow *flow, int grp_num,
1294 				   u32 *pset_idx)
1295 {
1296 	struct hfi1_ctxtdata *rcd = flow->req->rcd;
1297 	struct hfi1_devdata *dd = rcd->dd;
1298 	struct kern_tid_node *node = &flow->tnode[grp_num];
1299 	struct tid_group *grp = node->grp;
1300 	struct tid_rdma_pageset *pset;
1301 	u32 pmtu_pg = flow->req->qp->pmtu >> PAGE_SHIFT;
1302 	u32 rcventry, npages = 0, pair = 0, tidctrl;
1303 	u8 i, cnt = 0;
1304 
1305 	for (i = 0; i < grp->size; i++) {
1306 		rcventry = grp->base + i;
1307 
1308 		if (node->map & BIT(i) || cnt >= node->cnt) {
1309 			rcv_array_wc_fill(dd, rcventry);
1310 			continue;
1311 		}
1312 		pset = &flow->pagesets[(*pset_idx)++];
1313 		if (pset->count) {
1314 			hfi1_put_tid(dd, rcventry, PT_EXPECTED,
1315 				     pset->addr, trdma_pset_order(pset));
1316 		} else {
1317 			hfi1_put_tid(dd, rcventry, PT_INVALID, 0, 0);
1318 		}
1319 		npages += pset->count;
1320 
1321 		rcventry -= rcd->expected_base;
1322 		tidctrl = pair ? 0x3 : rcventry & 0x1 ? 0x2 : 0x1;
1323 		/*
1324 		 * A single TID entry will be used to use a rcvarr pair (with
1325 		 * tidctrl 0x3), if ALL these are true (a) the bit pos is even
1326 		 * (b) the group map shows current and the next bits as free
1327 		 * indicating two consecutive rcvarry entries are available (c)
1328 		 * we actually need 2 more entries
1329 		 */
1330 		pair = !(i & 0x1) && !((node->map >> i) & 0x3) &&
1331 			node->cnt >= cnt + 2;
1332 		if (!pair) {
1333 			if (!pset->count)
1334 				tidctrl = 0x1;
1335 			flow->tid_entry[flow->tidcnt++] =
1336 				EXP_TID_SET(IDX, rcventry >> 1) |
1337 				EXP_TID_SET(CTRL, tidctrl) |
1338 				EXP_TID_SET(LEN, npages);
1339 			trace_hfi1_tid_entry_alloc(/* entry */
1340 			   flow->req->qp, flow->tidcnt - 1,
1341 			   flow->tid_entry[flow->tidcnt - 1]);
1342 
1343 			/* Efficient DIV_ROUND_UP(npages, pmtu_pg) */
1344 			flow->npkts += (npages + pmtu_pg - 1) >> ilog2(pmtu_pg);
1345 			npages = 0;
1346 		}
1347 
1348 		if (grp->used == grp->size - 1)
1349 			tid_group_move(grp, &rcd->tid_used_list,
1350 				       &rcd->tid_full_list);
1351 		else if (!grp->used)
1352 			tid_group_move(grp, &rcd->tid_group_list,
1353 				       &rcd->tid_used_list);
1354 
1355 		grp->used++;
1356 		grp->map |= BIT(i);
1357 		cnt++;
1358 	}
1359 }
1360 
1361 static void kern_unprogram_rcv_group(struct tid_rdma_flow *flow, int grp_num)
1362 {
1363 	struct hfi1_ctxtdata *rcd = flow->req->rcd;
1364 	struct hfi1_devdata *dd = rcd->dd;
1365 	struct kern_tid_node *node = &flow->tnode[grp_num];
1366 	struct tid_group *grp = node->grp;
1367 	u32 rcventry;
1368 	u8 i, cnt = 0;
1369 
1370 	for (i = 0; i < grp->size; i++) {
1371 		rcventry = grp->base + i;
1372 
1373 		if (node->map & BIT(i) || cnt >= node->cnt) {
1374 			rcv_array_wc_fill(dd, rcventry);
1375 			continue;
1376 		}
1377 
1378 		hfi1_put_tid(dd, rcventry, PT_INVALID, 0, 0);
1379 
1380 		grp->used--;
1381 		grp->map &= ~BIT(i);
1382 		cnt++;
1383 
1384 		if (grp->used == grp->size - 1)
1385 			tid_group_move(grp, &rcd->tid_full_list,
1386 				       &rcd->tid_used_list);
1387 		else if (!grp->used)
1388 			tid_group_move(grp, &rcd->tid_used_list,
1389 				       &rcd->tid_group_list);
1390 	}
1391 	if (WARN_ON_ONCE(cnt & 1)) {
1392 		struct hfi1_ctxtdata *rcd = flow->req->rcd;
1393 		struct hfi1_devdata *dd = rcd->dd;
1394 
1395 		dd_dev_err(dd, "unexpected odd free cnt %u map 0x%x used %u",
1396 			   cnt, grp->map, grp->used);
1397 	}
1398 }
1399 
1400 static void kern_program_rcvarray(struct tid_rdma_flow *flow)
1401 {
1402 	u32 pset_idx = 0;
1403 	int i;
1404 
1405 	flow->npkts = 0;
1406 	flow->tidcnt = 0;
1407 	for (i = 0; i < flow->tnode_cnt; i++)
1408 		kern_program_rcv_group(flow, i, &pset_idx);
1409 	trace_hfi1_tid_flow_alloc(flow->req->qp, flow->req->setup_head, flow);
1410 }
1411 
1412 /**
1413  * hfi1_kern_exp_rcv_setup() - setup TID's and flow for one segment of a
1414  * TID RDMA request
1415  *
1416  * @req: TID RDMA request for which the segment/flow is being set up
1417  * @ss: sge state, maintains state across successive segments of a sge
1418  * @last: set to true after the last sge segment has been processed
1419  *
1420  * This function
1421  * (1) finds a free flow entry in the flow circular buffer
1422  * (2) finds pages and continuous physical chunks constituing one segment
1423  *     of an sge
1424  * (3) allocates TID group entries for those chunks
1425  * (4) programs rcvarray entries in the hardware corresponding to those
1426  *     TID's
1427  * (5) computes a tidarray with formatted TID entries which can be sent
1428  *     to the sender
1429  * (6) Reserves and programs HW flows.
1430  * (7) It also manages queing the QP when TID/flow resources are not
1431  *     available.
1432  *
1433  * @req points to struct tid_rdma_request of which the segments are a part. The
1434  * function uses qp, rcd and seg_len members of @req. In the absence of errors,
1435  * req->flow_idx is the index of the flow which has been prepared in this
1436  * invocation of function call. With flow = &req->flows[req->flow_idx],
1437  * flow->tid_entry contains the TID array which the sender can use for TID RDMA
1438  * sends and flow->npkts contains number of packets required to send the
1439  * segment.
1440  *
1441  * hfi1_check_sge_align should be called prior to calling this function and if
1442  * it signals error TID RDMA cannot be used for this sge and this function
1443  * should not be called.
1444  *
1445  * For the queuing, caller must hold the flow->req->qp s_lock from the send
1446  * engine and the function will procure the exp_lock.
1447  *
1448  * Return:
1449  * The function returns -EAGAIN if sufficient number of TID/flow resources to
1450  * map the segment could not be allocated. In this case the function should be
1451  * called again with previous arguments to retry the TID allocation. There are
1452  * no other error returns. The function returns 0 on success.
1453  */
1454 int hfi1_kern_exp_rcv_setup(struct tid_rdma_request *req,
1455 			    struct rvt_sge_state *ss, bool *last)
1456 	__must_hold(&req->qp->s_lock)
1457 {
1458 	struct tid_rdma_flow *flow = &req->flows[req->setup_head];
1459 	struct hfi1_ctxtdata *rcd = req->rcd;
1460 	struct hfi1_qp_priv *qpriv = req->qp->priv;
1461 	unsigned long flags;
1462 	struct rvt_qp *fqp;
1463 	u16 clear_tail = req->clear_tail;
1464 
1465 	lockdep_assert_held(&req->qp->s_lock);
1466 	/*
1467 	 * We return error if either (a) we don't have space in the flow
1468 	 * circular buffer, or (b) we already have max entries in the buffer.
1469 	 * Max entries depend on the type of request we are processing and the
1470 	 * negotiated TID RDMA parameters.
1471 	 */
1472 	if (!CIRC_SPACE(req->setup_head, clear_tail, MAX_FLOWS) ||
1473 	    CIRC_CNT(req->setup_head, clear_tail, MAX_FLOWS) >=
1474 	    req->n_flows)
1475 		return -EINVAL;
1476 
1477 	/*
1478 	 * Get pages, identify contiguous physical memory chunks for the segment
1479 	 * If we can not determine a DMA address mapping we will treat it just
1480 	 * like if we ran out of space above.
1481 	 */
1482 	if (kern_get_phys_blocks(flow, qpriv->pages, ss, last)) {
1483 		hfi1_wait_kmem(flow->req->qp);
1484 		return -ENOMEM;
1485 	}
1486 
1487 	spin_lock_irqsave(&rcd->exp_lock, flags);
1488 	if (kernel_tid_waiters(rcd, &rcd->rarr_queue, flow->req->qp))
1489 		goto queue;
1490 
1491 	/*
1492 	 * At this point we know the number of pagesets and hence the number of
1493 	 * TID's to map the segment. Allocate the TID's from the TID groups. If
1494 	 * we cannot allocate the required number we exit and try again later
1495 	 */
1496 	if (kern_alloc_tids(flow))
1497 		goto queue;
1498 	/*
1499 	 * Finally program the TID entries with the pagesets, compute the
1500 	 * tidarray and enable the HW flow
1501 	 */
1502 	kern_program_rcvarray(flow);
1503 
1504 	/*
1505 	 * Setup the flow state with relevant information.
1506 	 * This information is used for tracking the sequence of data packets
1507 	 * for the segment.
1508 	 * The flow is setup here as this is the most accurate time and place
1509 	 * to do so. Doing at a later time runs the risk of the flow data in
1510 	 * qpriv getting out of sync.
1511 	 */
1512 	memset(&flow->flow_state, 0x0, sizeof(flow->flow_state));
1513 	flow->idx = qpriv->flow_state.index;
1514 	flow->flow_state.generation = qpriv->flow_state.generation;
1515 	flow->flow_state.spsn = qpriv->flow_state.psn;
1516 	flow->flow_state.lpsn = flow->flow_state.spsn + flow->npkts - 1;
1517 	flow->flow_state.r_next_psn =
1518 		full_flow_psn(flow, flow->flow_state.spsn);
1519 	qpriv->flow_state.psn += flow->npkts;
1520 
1521 	dequeue_tid_waiter(rcd, &rcd->rarr_queue, flow->req->qp);
1522 	/* get head before dropping lock */
1523 	fqp = first_qp(rcd, &rcd->rarr_queue);
1524 	spin_unlock_irqrestore(&rcd->exp_lock, flags);
1525 	tid_rdma_schedule_tid_wakeup(fqp);
1526 
1527 	req->setup_head = (req->setup_head + 1) & (MAX_FLOWS - 1);
1528 	return 0;
1529 queue:
1530 	queue_qp_for_tid_wait(rcd, &rcd->rarr_queue, flow->req->qp);
1531 	spin_unlock_irqrestore(&rcd->exp_lock, flags);
1532 	return -EAGAIN;
1533 }
1534 
1535 static void hfi1_tid_rdma_reset_flow(struct tid_rdma_flow *flow)
1536 {
1537 	flow->npagesets = 0;
1538 }
1539 
1540 /*
1541  * This function is called after one segment has been successfully sent to
1542  * release the flow and TID HW/SW resources for that segment. The segments for a
1543  * TID RDMA request are setup and cleared in FIFO order which is managed using a
1544  * circular buffer.
1545  */
1546 int hfi1_kern_exp_rcv_clear(struct tid_rdma_request *req)
1547 	__must_hold(&req->qp->s_lock)
1548 {
1549 	struct tid_rdma_flow *flow = &req->flows[req->clear_tail];
1550 	struct hfi1_ctxtdata *rcd = req->rcd;
1551 	unsigned long flags;
1552 	int i;
1553 	struct rvt_qp *fqp;
1554 
1555 	lockdep_assert_held(&req->qp->s_lock);
1556 	/* Exit if we have nothing in the flow circular buffer */
1557 	if (!CIRC_CNT(req->setup_head, req->clear_tail, MAX_FLOWS))
1558 		return -EINVAL;
1559 
1560 	spin_lock_irqsave(&rcd->exp_lock, flags);
1561 
1562 	for (i = 0; i < flow->tnode_cnt; i++)
1563 		kern_unprogram_rcv_group(flow, i);
1564 	/* To prevent double unprogramming */
1565 	flow->tnode_cnt = 0;
1566 	/* get head before dropping lock */
1567 	fqp = first_qp(rcd, &rcd->rarr_queue);
1568 	spin_unlock_irqrestore(&rcd->exp_lock, flags);
1569 
1570 	dma_unmap_flow(flow);
1571 
1572 	hfi1_tid_rdma_reset_flow(flow);
1573 	req->clear_tail = (req->clear_tail + 1) & (MAX_FLOWS - 1);
1574 
1575 	if (fqp == req->qp) {
1576 		__trigger_tid_waiter(fqp);
1577 		rvt_put_qp(fqp);
1578 	} else {
1579 		tid_rdma_schedule_tid_wakeup(fqp);
1580 	}
1581 
1582 	return 0;
1583 }
1584 
1585 /*
1586  * This function is called to release all the tid entries for
1587  * a request.
1588  */
1589 void hfi1_kern_exp_rcv_clear_all(struct tid_rdma_request *req)
1590 	__must_hold(&req->qp->s_lock)
1591 {
1592 	/* Use memory barrier for proper ordering */
1593 	while (CIRC_CNT(req->setup_head, req->clear_tail, MAX_FLOWS)) {
1594 		if (hfi1_kern_exp_rcv_clear(req))
1595 			break;
1596 	}
1597 }
1598 
1599 /**
1600  * hfi1_kern_exp_rcv_free_flows - free priviously allocated flow information
1601  * @req - the tid rdma request to be cleaned
1602  */
1603 static void hfi1_kern_exp_rcv_free_flows(struct tid_rdma_request *req)
1604 {
1605 	kfree(req->flows);
1606 	req->flows = NULL;
1607 }
1608 
1609 /**
1610  * __trdma_clean_swqe - clean up for large sized QPs
1611  * @qp: the queue patch
1612  * @wqe: the send wqe
1613  */
1614 void __trdma_clean_swqe(struct rvt_qp *qp, struct rvt_swqe *wqe)
1615 {
1616 	struct hfi1_swqe_priv *p = wqe->priv;
1617 
1618 	hfi1_kern_exp_rcv_free_flows(&p->tid_req);
1619 }
1620 
1621 /*
1622  * This can be called at QP create time or in the data path.
1623  */
1624 static int hfi1_kern_exp_rcv_alloc_flows(struct tid_rdma_request *req,
1625 					 gfp_t gfp)
1626 {
1627 	struct tid_rdma_flow *flows;
1628 	int i;
1629 
1630 	if (likely(req->flows))
1631 		return 0;
1632 	flows = kmalloc_node(MAX_FLOWS * sizeof(*flows), gfp,
1633 			     req->rcd->numa_id);
1634 	if (!flows)
1635 		return -ENOMEM;
1636 	/* mini init */
1637 	for (i = 0; i < MAX_FLOWS; i++) {
1638 		flows[i].req = req;
1639 		flows[i].npagesets = 0;
1640 		flows[i].pagesets[0].mapped =  0;
1641 		flows[i].resync_npkts = 0;
1642 	}
1643 	req->flows = flows;
1644 	return 0;
1645 }
1646 
1647 static void hfi1_init_trdma_req(struct rvt_qp *qp,
1648 				struct tid_rdma_request *req)
1649 {
1650 	struct hfi1_qp_priv *qpriv = qp->priv;
1651 
1652 	/*
1653 	 * Initialize various TID RDMA request variables.
1654 	 * These variables are "static", which is why they
1655 	 * can be pre-initialized here before the WRs has
1656 	 * even been submitted.
1657 	 * However, non-NULL values for these variables do not
1658 	 * imply that this WQE has been enabled for TID RDMA.
1659 	 * Drivers should check the WQE's opcode to determine
1660 	 * if a request is a TID RDMA one or not.
1661 	 */
1662 	req->qp = qp;
1663 	req->rcd = qpriv->rcd;
1664 }
1665 
1666 u64 hfi1_access_sw_tid_wait(const struct cntr_entry *entry,
1667 			    void *context, int vl, int mode, u64 data)
1668 {
1669 	struct hfi1_devdata *dd = context;
1670 
1671 	return dd->verbs_dev.n_tidwait;
1672 }
1673 
1674 static struct tid_rdma_flow *find_flow_ib(struct tid_rdma_request *req,
1675 					  u32 psn, u16 *fidx)
1676 {
1677 	u16 head, tail;
1678 	struct tid_rdma_flow *flow;
1679 
1680 	head = req->setup_head;
1681 	tail = req->clear_tail;
1682 	for ( ; CIRC_CNT(head, tail, MAX_FLOWS);
1683 	     tail = CIRC_NEXT(tail, MAX_FLOWS)) {
1684 		flow = &req->flows[tail];
1685 		if (cmp_psn(psn, flow->flow_state.ib_spsn) >= 0 &&
1686 		    cmp_psn(psn, flow->flow_state.ib_lpsn) <= 0) {
1687 			if (fidx)
1688 				*fidx = tail;
1689 			return flow;
1690 		}
1691 	}
1692 	return NULL;
1693 }
1694 
1695 /* TID RDMA READ functions */
1696 u32 hfi1_build_tid_rdma_read_packet(struct rvt_swqe *wqe,
1697 				    struct ib_other_headers *ohdr, u32 *bth1,
1698 				    u32 *bth2, u32 *len)
1699 {
1700 	struct tid_rdma_request *req = wqe_to_tid_req(wqe);
1701 	struct tid_rdma_flow *flow = &req->flows[req->flow_idx];
1702 	struct rvt_qp *qp = req->qp;
1703 	struct hfi1_qp_priv *qpriv = qp->priv;
1704 	struct hfi1_swqe_priv *wpriv = wqe->priv;
1705 	struct tid_rdma_read_req *rreq = &ohdr->u.tid_rdma.r_req;
1706 	struct tid_rdma_params *remote;
1707 	u32 req_len = 0;
1708 	void *req_addr = NULL;
1709 
1710 	/* This is the IB psn used to send the request */
1711 	*bth2 = mask_psn(flow->flow_state.ib_spsn + flow->pkt);
1712 	trace_hfi1_tid_flow_build_read_pkt(qp, req->flow_idx, flow);
1713 
1714 	/* TID Entries for TID RDMA READ payload */
1715 	req_addr = &flow->tid_entry[flow->tid_idx];
1716 	req_len = sizeof(*flow->tid_entry) *
1717 			(flow->tidcnt - flow->tid_idx);
1718 
1719 	memset(&ohdr->u.tid_rdma.r_req, 0, sizeof(ohdr->u.tid_rdma.r_req));
1720 	wpriv->ss.sge.vaddr = req_addr;
1721 	wpriv->ss.sge.sge_length = req_len;
1722 	wpriv->ss.sge.length = wpriv->ss.sge.sge_length;
1723 	/*
1724 	 * We can safely zero these out. Since the first SGE covers the
1725 	 * entire packet, nothing else should even look at the MR.
1726 	 */
1727 	wpriv->ss.sge.mr = NULL;
1728 	wpriv->ss.sge.m = 0;
1729 	wpriv->ss.sge.n = 0;
1730 
1731 	wpriv->ss.sg_list = NULL;
1732 	wpriv->ss.total_len = wpriv->ss.sge.sge_length;
1733 	wpriv->ss.num_sge = 1;
1734 
1735 	/* Construct the TID RDMA READ REQ packet header */
1736 	rcu_read_lock();
1737 	remote = rcu_dereference(qpriv->tid_rdma.remote);
1738 
1739 	KDETH_RESET(rreq->kdeth0, KVER, 0x1);
1740 	KDETH_RESET(rreq->kdeth1, JKEY, remote->jkey);
1741 	rreq->reth.vaddr = cpu_to_be64(wqe->rdma_wr.remote_addr +
1742 			   req->cur_seg * req->seg_len + flow->sent);
1743 	rreq->reth.rkey = cpu_to_be32(wqe->rdma_wr.rkey);
1744 	rreq->reth.length = cpu_to_be32(*len);
1745 	rreq->tid_flow_psn =
1746 		cpu_to_be32((flow->flow_state.generation <<
1747 			     HFI1_KDETH_BTH_SEQ_SHIFT) |
1748 			    ((flow->flow_state.spsn + flow->pkt) &
1749 			     HFI1_KDETH_BTH_SEQ_MASK));
1750 	rreq->tid_flow_qp =
1751 		cpu_to_be32(qpriv->tid_rdma.local.qp |
1752 			    ((flow->idx & TID_RDMA_DESTQP_FLOW_MASK) <<
1753 			     TID_RDMA_DESTQP_FLOW_SHIFT) |
1754 			    qpriv->rcd->ctxt);
1755 	rreq->verbs_qp = cpu_to_be32(qp->remote_qpn);
1756 	*bth1 &= ~RVT_QPN_MASK;
1757 	*bth1 |= remote->qp;
1758 	*bth2 |= IB_BTH_REQ_ACK;
1759 	rcu_read_unlock();
1760 
1761 	/* We are done with this segment */
1762 	flow->sent += *len;
1763 	req->cur_seg++;
1764 	qp->s_state = TID_OP(READ_REQ);
1765 	req->ack_pending++;
1766 	req->flow_idx = (req->flow_idx + 1) & (MAX_FLOWS - 1);
1767 	qpriv->pending_tid_r_segs++;
1768 	qp->s_num_rd_atomic++;
1769 
1770 	/* Set the TID RDMA READ request payload size */
1771 	*len = req_len;
1772 
1773 	return sizeof(ohdr->u.tid_rdma.r_req) / sizeof(u32);
1774 }
1775 
1776 /*
1777  * @len: contains the data length to read upon entry and the read request
1778  *       payload length upon exit.
1779  */
1780 u32 hfi1_build_tid_rdma_read_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
1781 				 struct ib_other_headers *ohdr, u32 *bth1,
1782 				 u32 *bth2, u32 *len)
1783 	__must_hold(&qp->s_lock)
1784 {
1785 	struct hfi1_qp_priv *qpriv = qp->priv;
1786 	struct tid_rdma_request *req = wqe_to_tid_req(wqe);
1787 	struct tid_rdma_flow *flow = NULL;
1788 	u32 hdwords = 0;
1789 	bool last;
1790 	bool retry = true;
1791 	u32 npkts = rvt_div_round_up_mtu(qp, *len);
1792 
1793 	trace_hfi1_tid_req_build_read_req(qp, 0, wqe->wr.opcode, wqe->psn,
1794 					  wqe->lpsn, req);
1795 	/*
1796 	 * Check sync conditions. Make sure that there are no pending
1797 	 * segments before freeing the flow.
1798 	 */
1799 sync_check:
1800 	if (req->state == TID_REQUEST_SYNC) {
1801 		if (qpriv->pending_tid_r_segs)
1802 			goto done;
1803 
1804 		hfi1_kern_clear_hw_flow(req->rcd, qp);
1805 		qpriv->s_flags &= ~HFI1_R_TID_SW_PSN;
1806 		req->state = TID_REQUEST_ACTIVE;
1807 	}
1808 
1809 	/*
1810 	 * If the request for this segment is resent, the tid resources should
1811 	 * have been allocated before. In this case, req->flow_idx should
1812 	 * fall behind req->setup_head.
1813 	 */
1814 	if (req->flow_idx == req->setup_head) {
1815 		retry = false;
1816 		if (req->state == TID_REQUEST_RESEND) {
1817 			/*
1818 			 * This is the first new segment for a request whose
1819 			 * earlier segments have been re-sent. We need to
1820 			 * set up the sge pointer correctly.
1821 			 */
1822 			restart_sge(&qp->s_sge, wqe, req->s_next_psn,
1823 				    qp->pmtu);
1824 			req->isge = 0;
1825 			req->state = TID_REQUEST_ACTIVE;
1826 		}
1827 
1828 		/*
1829 		 * Check sync. The last PSN of each generation is reserved for
1830 		 * RESYNC.
1831 		 */
1832 		if ((qpriv->flow_state.psn + npkts) > MAX_TID_FLOW_PSN - 1) {
1833 			req->state = TID_REQUEST_SYNC;
1834 			goto sync_check;
1835 		}
1836 
1837 		/* Allocate the flow if not yet */
1838 		if (hfi1_kern_setup_hw_flow(qpriv->rcd, qp))
1839 			goto done;
1840 
1841 		/*
1842 		 * The following call will advance req->setup_head after
1843 		 * allocating the tid entries.
1844 		 */
1845 		if (hfi1_kern_exp_rcv_setup(req, &qp->s_sge, &last)) {
1846 			req->state = TID_REQUEST_QUEUED;
1847 
1848 			/*
1849 			 * We don't have resources for this segment. The QP has
1850 			 * already been queued.
1851 			 */
1852 			goto done;
1853 		}
1854 	}
1855 
1856 	/* req->flow_idx should only be one slot behind req->setup_head */
1857 	flow = &req->flows[req->flow_idx];
1858 	flow->pkt = 0;
1859 	flow->tid_idx = 0;
1860 	flow->sent = 0;
1861 	if (!retry) {
1862 		/* Set the first and last IB PSN for the flow in use.*/
1863 		flow->flow_state.ib_spsn = req->s_next_psn;
1864 		flow->flow_state.ib_lpsn =
1865 			flow->flow_state.ib_spsn + flow->npkts - 1;
1866 	}
1867 
1868 	/* Calculate the next segment start psn.*/
1869 	req->s_next_psn += flow->npkts;
1870 
1871 	/* Build the packet header */
1872 	hdwords = hfi1_build_tid_rdma_read_packet(wqe, ohdr, bth1, bth2, len);
1873 done:
1874 	return hdwords;
1875 }
1876 
1877 /*
1878  * Validate and accept the TID RDMA READ request parameters.
1879  * Return 0 if the request is accepted successfully;
1880  * Return 1 otherwise.
1881  */
1882 static int tid_rdma_rcv_read_request(struct rvt_qp *qp,
1883 				     struct rvt_ack_entry *e,
1884 				     struct hfi1_packet *packet,
1885 				     struct ib_other_headers *ohdr,
1886 				     u32 bth0, u32 psn, u64 vaddr, u32 len)
1887 {
1888 	struct hfi1_qp_priv *qpriv = qp->priv;
1889 	struct tid_rdma_request *req;
1890 	struct tid_rdma_flow *flow;
1891 	u32 flow_psn, i, tidlen = 0, pktlen, tlen;
1892 
1893 	req = ack_to_tid_req(e);
1894 
1895 	/* Validate the payload first */
1896 	flow = &req->flows[req->setup_head];
1897 
1898 	/* payload length = packet length - (header length + ICRC length) */
1899 	pktlen = packet->tlen - (packet->hlen + 4);
1900 	if (pktlen > sizeof(flow->tid_entry))
1901 		return 1;
1902 	memcpy(flow->tid_entry, packet->ebuf, pktlen);
1903 	flow->tidcnt = pktlen / sizeof(*flow->tid_entry);
1904 
1905 	/*
1906 	 * Walk the TID_ENTRY list to make sure we have enough space for a
1907 	 * complete segment. Also calculate the number of required packets.
1908 	 */
1909 	flow->npkts = rvt_div_round_up_mtu(qp, len);
1910 	for (i = 0; i < flow->tidcnt; i++) {
1911 		trace_hfi1_tid_entry_rcv_read_req(qp, i,
1912 						  flow->tid_entry[i]);
1913 		tlen = EXP_TID_GET(flow->tid_entry[i], LEN);
1914 		if (!tlen)
1915 			return 1;
1916 
1917 		/*
1918 		 * For tid pair (tidctr == 3), the buffer size of the pair
1919 		 * should be the sum of the buffer size described by each
1920 		 * tid entry. However, only the first entry needs to be
1921 		 * specified in the request (see WFR HAS Section 8.5.7.1).
1922 		 */
1923 		tidlen += tlen;
1924 	}
1925 	if (tidlen * PAGE_SIZE < len)
1926 		return 1;
1927 
1928 	/* Empty the flow array */
1929 	req->clear_tail = req->setup_head;
1930 	flow->pkt = 0;
1931 	flow->tid_idx = 0;
1932 	flow->tid_offset = 0;
1933 	flow->sent = 0;
1934 	flow->tid_qpn = be32_to_cpu(ohdr->u.tid_rdma.r_req.tid_flow_qp);
1935 	flow->idx = (flow->tid_qpn >> TID_RDMA_DESTQP_FLOW_SHIFT) &
1936 		    TID_RDMA_DESTQP_FLOW_MASK;
1937 	flow_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.r_req.tid_flow_psn));
1938 	flow->flow_state.generation = flow_psn >> HFI1_KDETH_BTH_SEQ_SHIFT;
1939 	flow->flow_state.spsn = flow_psn & HFI1_KDETH_BTH_SEQ_MASK;
1940 	flow->length = len;
1941 
1942 	flow->flow_state.lpsn = flow->flow_state.spsn +
1943 		flow->npkts - 1;
1944 	flow->flow_state.ib_spsn = psn;
1945 	flow->flow_state.ib_lpsn = flow->flow_state.ib_spsn + flow->npkts - 1;
1946 
1947 	trace_hfi1_tid_flow_rcv_read_req(qp, req->setup_head, flow);
1948 	/* Set the initial flow index to the current flow. */
1949 	req->flow_idx = req->setup_head;
1950 
1951 	/* advance circular buffer head */
1952 	req->setup_head = (req->setup_head + 1) & (MAX_FLOWS - 1);
1953 
1954 	/*
1955 	 * Compute last PSN for request.
1956 	 */
1957 	e->opcode = (bth0 >> 24) & 0xff;
1958 	e->psn = psn;
1959 	e->lpsn = psn + flow->npkts - 1;
1960 	e->sent = 0;
1961 
1962 	req->n_flows = qpriv->tid_rdma.local.max_read;
1963 	req->state = TID_REQUEST_ACTIVE;
1964 	req->cur_seg = 0;
1965 	req->comp_seg = 0;
1966 	req->ack_seg = 0;
1967 	req->isge = 0;
1968 	req->seg_len = qpriv->tid_rdma.local.max_len;
1969 	req->total_len = len;
1970 	req->total_segs = 1;
1971 	req->r_flow_psn = e->psn;
1972 
1973 	trace_hfi1_tid_req_rcv_read_req(qp, 0, e->opcode, e->psn, e->lpsn,
1974 					req);
1975 	return 0;
1976 }
1977 
1978 static int tid_rdma_rcv_error(struct hfi1_packet *packet,
1979 			      struct ib_other_headers *ohdr,
1980 			      struct rvt_qp *qp, u32 psn, int diff)
1981 {
1982 	struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
1983 	struct hfi1_ctxtdata *rcd = ((struct hfi1_qp_priv *)qp->priv)->rcd;
1984 	struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
1985 	struct hfi1_qp_priv *qpriv = qp->priv;
1986 	struct rvt_ack_entry *e;
1987 	struct tid_rdma_request *req;
1988 	unsigned long flags;
1989 	u8 prev;
1990 	bool old_req;
1991 
1992 	trace_hfi1_rsp_tid_rcv_error(qp, psn);
1993 	trace_hfi1_tid_rdma_rcv_err(qp, 0, psn, diff);
1994 	if (diff > 0) {
1995 		/* sequence error */
1996 		if (!qp->r_nak_state) {
1997 			ibp->rvp.n_rc_seqnak++;
1998 			qp->r_nak_state = IB_NAK_PSN_ERROR;
1999 			qp->r_ack_psn = qp->r_psn;
2000 			rc_defered_ack(rcd, qp);
2001 		}
2002 		goto done;
2003 	}
2004 
2005 	ibp->rvp.n_rc_dupreq++;
2006 
2007 	spin_lock_irqsave(&qp->s_lock, flags);
2008 	e = find_prev_entry(qp, psn, &prev, NULL, &old_req);
2009 	if (!e || (e->opcode != TID_OP(READ_REQ) &&
2010 		   e->opcode != TID_OP(WRITE_REQ)))
2011 		goto unlock;
2012 
2013 	req = ack_to_tid_req(e);
2014 	req->r_flow_psn = psn;
2015 	trace_hfi1_tid_req_rcv_err(qp, 0, e->opcode, e->psn, e->lpsn, req);
2016 	if (e->opcode == TID_OP(READ_REQ)) {
2017 		struct ib_reth *reth;
2018 		u32 len;
2019 		u32 rkey;
2020 		u64 vaddr;
2021 		int ok;
2022 		u32 bth0;
2023 
2024 		reth = &ohdr->u.tid_rdma.r_req.reth;
2025 		/*
2026 		 * The requester always restarts from the start of the original
2027 		 * request.
2028 		 */
2029 		len = be32_to_cpu(reth->length);
2030 		if (psn != e->psn || len != req->total_len)
2031 			goto unlock;
2032 
2033 		release_rdma_sge_mr(e);
2034 
2035 		rkey = be32_to_cpu(reth->rkey);
2036 		vaddr = get_ib_reth_vaddr(reth);
2037 
2038 		qp->r_len = len;
2039 		ok = rvt_rkey_ok(qp, &e->rdma_sge, len, vaddr, rkey,
2040 				 IB_ACCESS_REMOTE_READ);
2041 		if (unlikely(!ok))
2042 			goto unlock;
2043 
2044 		/*
2045 		 * If all the response packets for the current request have
2046 		 * been sent out and this request is complete (old_request
2047 		 * == false) and the TID flow may be unusable (the
2048 		 * req->clear_tail is advanced). However, when an earlier
2049 		 * request is received, this request will not be complete any
2050 		 * more (qp->s_tail_ack_queue is moved back, see below).
2051 		 * Consequently, we need to update the TID flow info everytime
2052 		 * a duplicate request is received.
2053 		 */
2054 		bth0 = be32_to_cpu(ohdr->bth[0]);
2055 		if (tid_rdma_rcv_read_request(qp, e, packet, ohdr, bth0, psn,
2056 					      vaddr, len))
2057 			goto unlock;
2058 
2059 		/*
2060 		 * True if the request is already scheduled (between
2061 		 * qp->s_tail_ack_queue and qp->r_head_ack_queue);
2062 		 */
2063 		if (old_req)
2064 			goto unlock;
2065 	} else {
2066 		struct flow_state *fstate;
2067 		bool schedule = false;
2068 		u8 i;
2069 
2070 		if (req->state == TID_REQUEST_RESEND) {
2071 			req->state = TID_REQUEST_RESEND_ACTIVE;
2072 		} else if (req->state == TID_REQUEST_INIT_RESEND) {
2073 			req->state = TID_REQUEST_INIT;
2074 			schedule = true;
2075 		}
2076 
2077 		/*
2078 		 * True if the request is already scheduled (between
2079 		 * qp->s_tail_ack_queue and qp->r_head_ack_queue).
2080 		 * Also, don't change requests, which are at the SYNC
2081 		 * point and haven't generated any responses yet.
2082 		 * There is nothing to retransmit for them yet.
2083 		 */
2084 		if (old_req || req->state == TID_REQUEST_INIT ||
2085 		    (req->state == TID_REQUEST_SYNC && !req->cur_seg)) {
2086 			for (i = prev + 1; ; i++) {
2087 				if (i > rvt_size_atomic(&dev->rdi))
2088 					i = 0;
2089 				if (i == qp->r_head_ack_queue)
2090 					break;
2091 				e = &qp->s_ack_queue[i];
2092 				req = ack_to_tid_req(e);
2093 				if (e->opcode == TID_OP(WRITE_REQ) &&
2094 				    req->state == TID_REQUEST_INIT)
2095 					req->state = TID_REQUEST_INIT_RESEND;
2096 			}
2097 			/*
2098 			 * If the state of the request has been changed,
2099 			 * the first leg needs to get scheduled in order to
2100 			 * pick up the change. Otherwise, normal response
2101 			 * processing should take care of it.
2102 			 */
2103 			if (!schedule)
2104 				goto unlock;
2105 		}
2106 
2107 		/*
2108 		 * If there is no more allocated segment, just schedule the qp
2109 		 * without changing any state.
2110 		 */
2111 		if (req->clear_tail == req->setup_head)
2112 			goto schedule;
2113 		/*
2114 		 * If this request has sent responses for segments, which have
2115 		 * not received data yet (flow_idx != clear_tail), the flow_idx
2116 		 * pointer needs to be adjusted so the same responses can be
2117 		 * re-sent.
2118 		 */
2119 		if (CIRC_CNT(req->flow_idx, req->clear_tail, MAX_FLOWS)) {
2120 			fstate = &req->flows[req->clear_tail].flow_state;
2121 			qpriv->pending_tid_w_segs -=
2122 				CIRC_CNT(req->flow_idx, req->clear_tail,
2123 					 MAX_FLOWS);
2124 			req->flow_idx =
2125 				CIRC_ADD(req->clear_tail,
2126 					 delta_psn(psn, fstate->resp_ib_psn),
2127 					 MAX_FLOWS);
2128 			qpriv->pending_tid_w_segs +=
2129 				delta_psn(psn, fstate->resp_ib_psn);
2130 			/*
2131 			 * When flow_idx == setup_head, we've gotten a duplicate
2132 			 * request for a segment, which has not been allocated
2133 			 * yet. In that case, don't adjust this request.
2134 			 * However, we still want to go through the loop below
2135 			 * to adjust all subsequent requests.
2136 			 */
2137 			if (CIRC_CNT(req->setup_head, req->flow_idx,
2138 				     MAX_FLOWS)) {
2139 				req->cur_seg = delta_psn(psn, e->psn);
2140 				req->state = TID_REQUEST_RESEND_ACTIVE;
2141 			}
2142 		}
2143 
2144 		for (i = prev + 1; ; i++) {
2145 			/*
2146 			 * Look at everything up to and including
2147 			 * s_tail_ack_queue
2148 			 */
2149 			if (i > rvt_size_atomic(&dev->rdi))
2150 				i = 0;
2151 			if (i == qp->r_head_ack_queue)
2152 				break;
2153 			e = &qp->s_ack_queue[i];
2154 			req = ack_to_tid_req(e);
2155 			trace_hfi1_tid_req_rcv_err(qp, 0, e->opcode, e->psn,
2156 						   e->lpsn, req);
2157 			if (e->opcode != TID_OP(WRITE_REQ) ||
2158 			    req->cur_seg == req->comp_seg ||
2159 			    req->state == TID_REQUEST_INIT ||
2160 			    req->state == TID_REQUEST_INIT_RESEND) {
2161 				if (req->state == TID_REQUEST_INIT)
2162 					req->state = TID_REQUEST_INIT_RESEND;
2163 				continue;
2164 			}
2165 			qpriv->pending_tid_w_segs -=
2166 				CIRC_CNT(req->flow_idx,
2167 					 req->clear_tail,
2168 					 MAX_FLOWS);
2169 			req->flow_idx = req->clear_tail;
2170 			req->state = TID_REQUEST_RESEND;
2171 			req->cur_seg = req->comp_seg;
2172 		}
2173 		qpriv->s_flags &= ~HFI1_R_TID_WAIT_INTERLCK;
2174 	}
2175 	/* Re-process old requests.*/
2176 	if (qp->s_acked_ack_queue == qp->s_tail_ack_queue)
2177 		qp->s_acked_ack_queue = prev;
2178 	qp->s_tail_ack_queue = prev;
2179 	/*
2180 	 * Since the qp->s_tail_ack_queue is modified, the
2181 	 * qp->s_ack_state must be changed to re-initialize
2182 	 * qp->s_ack_rdma_sge; Otherwise, we will end up in
2183 	 * wrong memory region.
2184 	 */
2185 	qp->s_ack_state = OP(ACKNOWLEDGE);
2186 schedule:
2187 	/*
2188 	 * It's possible to receive a retry psn that is earlier than an RNRNAK
2189 	 * psn. In this case, the rnrnak state should be cleared.
2190 	 */
2191 	if (qpriv->rnr_nak_state) {
2192 		qp->s_nak_state = 0;
2193 		qpriv->rnr_nak_state = TID_RNR_NAK_INIT;
2194 		qp->r_psn = e->lpsn + 1;
2195 		hfi1_tid_write_alloc_resources(qp, true);
2196 	}
2197 
2198 	qp->r_state = e->opcode;
2199 	qp->r_nak_state = 0;
2200 	qp->s_flags |= RVT_S_RESP_PENDING;
2201 	hfi1_schedule_send(qp);
2202 unlock:
2203 	spin_unlock_irqrestore(&qp->s_lock, flags);
2204 done:
2205 	return 1;
2206 }
2207 
2208 void hfi1_rc_rcv_tid_rdma_read_req(struct hfi1_packet *packet)
2209 {
2210 	/* HANDLER FOR TID RDMA READ REQUEST packet (Responder side)*/
2211 
2212 	/*
2213 	 * 1. Verify TID RDMA READ REQ as per IB_OPCODE_RC_RDMA_READ
2214 	 *    (see hfi1_rc_rcv())
2215 	 * 2. Put TID RDMA READ REQ into the response queueu (s_ack_queue)
2216 	 *     - Setup struct tid_rdma_req with request info
2217 	 *     - Initialize struct tid_rdma_flow info;
2218 	 *     - Copy TID entries;
2219 	 * 3. Set the qp->s_ack_state.
2220 	 * 4. Set RVT_S_RESP_PENDING in s_flags.
2221 	 * 5. Kick the send engine (hfi1_schedule_send())
2222 	 */
2223 	struct hfi1_ctxtdata *rcd = packet->rcd;
2224 	struct rvt_qp *qp = packet->qp;
2225 	struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
2226 	struct ib_other_headers *ohdr = packet->ohdr;
2227 	struct rvt_ack_entry *e;
2228 	unsigned long flags;
2229 	struct ib_reth *reth;
2230 	struct hfi1_qp_priv *qpriv = qp->priv;
2231 	u32 bth0, psn, len, rkey;
2232 	bool fecn;
2233 	u8 next;
2234 	u64 vaddr;
2235 	int diff;
2236 	u8 nack_state = IB_NAK_INVALID_REQUEST;
2237 
2238 	bth0 = be32_to_cpu(ohdr->bth[0]);
2239 	if (hfi1_ruc_check_hdr(ibp, packet))
2240 		return;
2241 
2242 	fecn = process_ecn(qp, packet);
2243 	psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
2244 	trace_hfi1_rsp_rcv_tid_read_req(qp, psn);
2245 
2246 	if (qp->state == IB_QPS_RTR && !(qp->r_flags & RVT_R_COMM_EST))
2247 		rvt_comm_est(qp);
2248 
2249 	if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ)))
2250 		goto nack_inv;
2251 
2252 	reth = &ohdr->u.tid_rdma.r_req.reth;
2253 	vaddr = be64_to_cpu(reth->vaddr);
2254 	len = be32_to_cpu(reth->length);
2255 	/* The length needs to be in multiples of PAGE_SIZE */
2256 	if (!len || len & ~PAGE_MASK || len > qpriv->tid_rdma.local.max_len)
2257 		goto nack_inv;
2258 
2259 	diff = delta_psn(psn, qp->r_psn);
2260 	if (unlikely(diff)) {
2261 		tid_rdma_rcv_err(packet, ohdr, qp, psn, diff, fecn);
2262 		return;
2263 	}
2264 
2265 	/* We've verified the request, insert it into the ack queue. */
2266 	next = qp->r_head_ack_queue + 1;
2267 	if (next > rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
2268 		next = 0;
2269 	spin_lock_irqsave(&qp->s_lock, flags);
2270 	if (unlikely(next == qp->s_tail_ack_queue)) {
2271 		if (!qp->s_ack_queue[next].sent) {
2272 			nack_state = IB_NAK_REMOTE_OPERATIONAL_ERROR;
2273 			goto nack_inv_unlock;
2274 		}
2275 		update_ack_queue(qp, next);
2276 	}
2277 	e = &qp->s_ack_queue[qp->r_head_ack_queue];
2278 	release_rdma_sge_mr(e);
2279 
2280 	rkey = be32_to_cpu(reth->rkey);
2281 	qp->r_len = len;
2282 
2283 	if (unlikely(!rvt_rkey_ok(qp, &e->rdma_sge, qp->r_len, vaddr,
2284 				  rkey, IB_ACCESS_REMOTE_READ)))
2285 		goto nack_acc;
2286 
2287 	/* Accept the request parameters */
2288 	if (tid_rdma_rcv_read_request(qp, e, packet, ohdr, bth0, psn, vaddr,
2289 				      len))
2290 		goto nack_inv_unlock;
2291 
2292 	qp->r_state = e->opcode;
2293 	qp->r_nak_state = 0;
2294 	/*
2295 	 * We need to increment the MSN here instead of when we
2296 	 * finish sending the result since a duplicate request would
2297 	 * increment it more than once.
2298 	 */
2299 	qp->r_msn++;
2300 	qp->r_psn += e->lpsn - e->psn + 1;
2301 
2302 	qp->r_head_ack_queue = next;
2303 
2304 	/*
2305 	 * For all requests other than TID WRITE which are added to the ack
2306 	 * queue, qpriv->r_tid_alloc follows qp->r_head_ack_queue. It is ok to
2307 	 * do this because of interlocks between these and TID WRITE
2308 	 * requests. The same change has also been made in hfi1_rc_rcv().
2309 	 */
2310 	qpriv->r_tid_alloc = qp->r_head_ack_queue;
2311 
2312 	/* Schedule the send tasklet. */
2313 	qp->s_flags |= RVT_S_RESP_PENDING;
2314 	if (fecn)
2315 		qp->s_flags |= RVT_S_ECN;
2316 	hfi1_schedule_send(qp);
2317 
2318 	spin_unlock_irqrestore(&qp->s_lock, flags);
2319 	return;
2320 
2321 nack_inv_unlock:
2322 	spin_unlock_irqrestore(&qp->s_lock, flags);
2323 nack_inv:
2324 	rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR);
2325 	qp->r_nak_state = nack_state;
2326 	qp->r_ack_psn = qp->r_psn;
2327 	/* Queue NAK for later */
2328 	rc_defered_ack(rcd, qp);
2329 	return;
2330 nack_acc:
2331 	spin_unlock_irqrestore(&qp->s_lock, flags);
2332 	rvt_rc_error(qp, IB_WC_LOC_PROT_ERR);
2333 	qp->r_nak_state = IB_NAK_REMOTE_ACCESS_ERROR;
2334 	qp->r_ack_psn = qp->r_psn;
2335 }
2336 
2337 u32 hfi1_build_tid_rdma_read_resp(struct rvt_qp *qp, struct rvt_ack_entry *e,
2338 				  struct ib_other_headers *ohdr, u32 *bth0,
2339 				  u32 *bth1, u32 *bth2, u32 *len, bool *last)
2340 {
2341 	struct hfi1_ack_priv *epriv = e->priv;
2342 	struct tid_rdma_request *req = &epriv->tid_req;
2343 	struct hfi1_qp_priv *qpriv = qp->priv;
2344 	struct tid_rdma_flow *flow = &req->flows[req->clear_tail];
2345 	u32 tidentry = flow->tid_entry[flow->tid_idx];
2346 	u32 tidlen = EXP_TID_GET(tidentry, LEN) << PAGE_SHIFT;
2347 	struct tid_rdma_read_resp *resp = &ohdr->u.tid_rdma.r_rsp;
2348 	u32 next_offset, om = KDETH_OM_LARGE;
2349 	bool last_pkt;
2350 	u32 hdwords = 0;
2351 	struct tid_rdma_params *remote;
2352 
2353 	*len = min_t(u32, qp->pmtu, tidlen - flow->tid_offset);
2354 	flow->sent += *len;
2355 	next_offset = flow->tid_offset + *len;
2356 	last_pkt = (flow->sent >= flow->length);
2357 
2358 	trace_hfi1_tid_entry_build_read_resp(qp, flow->tid_idx, tidentry);
2359 	trace_hfi1_tid_flow_build_read_resp(qp, req->clear_tail, flow);
2360 
2361 	rcu_read_lock();
2362 	remote = rcu_dereference(qpriv->tid_rdma.remote);
2363 	if (!remote) {
2364 		rcu_read_unlock();
2365 		goto done;
2366 	}
2367 	KDETH_RESET(resp->kdeth0, KVER, 0x1);
2368 	KDETH_SET(resp->kdeth0, SH, !last_pkt);
2369 	KDETH_SET(resp->kdeth0, INTR, !!(!last_pkt && remote->urg));
2370 	KDETH_SET(resp->kdeth0, TIDCTRL, EXP_TID_GET(tidentry, CTRL));
2371 	KDETH_SET(resp->kdeth0, TID, EXP_TID_GET(tidentry, IDX));
2372 	KDETH_SET(resp->kdeth0, OM, om == KDETH_OM_LARGE);
2373 	KDETH_SET(resp->kdeth0, OFFSET, flow->tid_offset / om);
2374 	KDETH_RESET(resp->kdeth1, JKEY, remote->jkey);
2375 	resp->verbs_qp = cpu_to_be32(qp->remote_qpn);
2376 	rcu_read_unlock();
2377 
2378 	resp->aeth = rvt_compute_aeth(qp);
2379 	resp->verbs_psn = cpu_to_be32(mask_psn(flow->flow_state.ib_spsn +
2380 					       flow->pkt));
2381 
2382 	*bth0 = TID_OP(READ_RESP) << 24;
2383 	*bth1 = flow->tid_qpn;
2384 	*bth2 = mask_psn(((flow->flow_state.spsn + flow->pkt++) &
2385 			  HFI1_KDETH_BTH_SEQ_MASK) |
2386 			 (flow->flow_state.generation <<
2387 			  HFI1_KDETH_BTH_SEQ_SHIFT));
2388 	*last = last_pkt;
2389 	if (last_pkt)
2390 		/* Advance to next flow */
2391 		req->clear_tail = (req->clear_tail + 1) &
2392 				  (MAX_FLOWS - 1);
2393 
2394 	if (next_offset >= tidlen) {
2395 		flow->tid_offset = 0;
2396 		flow->tid_idx++;
2397 	} else {
2398 		flow->tid_offset = next_offset;
2399 	}
2400 
2401 	hdwords = sizeof(ohdr->u.tid_rdma.r_rsp) / sizeof(u32);
2402 
2403 done:
2404 	return hdwords;
2405 }
2406 
2407 static inline struct tid_rdma_request *
2408 find_tid_request(struct rvt_qp *qp, u32 psn, enum ib_wr_opcode opcode)
2409 	__must_hold(&qp->s_lock)
2410 {
2411 	struct rvt_swqe *wqe;
2412 	struct tid_rdma_request *req = NULL;
2413 	u32 i, end;
2414 
2415 	end = qp->s_cur + 1;
2416 	if (end == qp->s_size)
2417 		end = 0;
2418 	for (i = qp->s_acked; i != end;) {
2419 		wqe = rvt_get_swqe_ptr(qp, i);
2420 		if (cmp_psn(psn, wqe->psn) >= 0 &&
2421 		    cmp_psn(psn, wqe->lpsn) <= 0) {
2422 			if (wqe->wr.opcode == opcode)
2423 				req = wqe_to_tid_req(wqe);
2424 			break;
2425 		}
2426 		if (++i == qp->s_size)
2427 			i = 0;
2428 	}
2429 
2430 	return req;
2431 }
2432 
2433 void hfi1_rc_rcv_tid_rdma_read_resp(struct hfi1_packet *packet)
2434 {
2435 	/* HANDLER FOR TID RDMA READ RESPONSE packet (Requestor side */
2436 
2437 	/*
2438 	 * 1. Find matching SWQE
2439 	 * 2. Check that the entire segment has been read.
2440 	 * 3. Remove HFI1_S_WAIT_TID_RESP from s_flags.
2441 	 * 4. Free the TID flow resources.
2442 	 * 5. Kick the send engine (hfi1_schedule_send())
2443 	 */
2444 	struct ib_other_headers *ohdr = packet->ohdr;
2445 	struct rvt_qp *qp = packet->qp;
2446 	struct hfi1_qp_priv *priv = qp->priv;
2447 	struct hfi1_ctxtdata *rcd = packet->rcd;
2448 	struct tid_rdma_request *req;
2449 	struct tid_rdma_flow *flow;
2450 	u32 opcode, aeth;
2451 	bool fecn;
2452 	unsigned long flags;
2453 	u32 kpsn, ipsn;
2454 
2455 	trace_hfi1_sender_rcv_tid_read_resp(qp);
2456 	fecn = process_ecn(qp, packet);
2457 	kpsn = mask_psn(be32_to_cpu(ohdr->bth[2]));
2458 	aeth = be32_to_cpu(ohdr->u.tid_rdma.r_rsp.aeth);
2459 	opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;
2460 
2461 	spin_lock_irqsave(&qp->s_lock, flags);
2462 	ipsn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_psn));
2463 	req = find_tid_request(qp, ipsn, IB_WR_TID_RDMA_READ);
2464 	if (unlikely(!req))
2465 		goto ack_op_err;
2466 
2467 	flow = &req->flows[req->clear_tail];
2468 	/* When header suppression is disabled */
2469 	if (cmp_psn(ipsn, flow->flow_state.ib_lpsn)) {
2470 		update_r_next_psn_fecn(packet, priv, rcd, flow, fecn);
2471 
2472 		if (cmp_psn(kpsn, flow->flow_state.r_next_psn))
2473 			goto ack_done;
2474 		flow->flow_state.r_next_psn = mask_psn(kpsn + 1);
2475 		/*
2476 		 * Copy the payload to destination buffer if this packet is
2477 		 * delivered as an eager packet due to RSM rule and FECN.
2478 		 * The RSM rule selects FECN bit in BTH and SH bit in
2479 		 * KDETH header and therefore will not match the last
2480 		 * packet of each segment that has SH bit cleared.
2481 		 */
2482 		if (fecn && packet->etype == RHF_RCV_TYPE_EAGER) {
2483 			struct rvt_sge_state ss;
2484 			u32 len;
2485 			u32 tlen = packet->tlen;
2486 			u16 hdrsize = packet->hlen;
2487 			u8 pad = packet->pad;
2488 			u8 extra_bytes = pad + packet->extra_byte +
2489 				(SIZE_OF_CRC << 2);
2490 			u32 pmtu = qp->pmtu;
2491 
2492 			if (unlikely(tlen != (hdrsize + pmtu + extra_bytes)))
2493 				goto ack_op_err;
2494 			len = restart_sge(&ss, req->e.swqe, ipsn, pmtu);
2495 			if (unlikely(len < pmtu))
2496 				goto ack_op_err;
2497 			rvt_copy_sge(qp, &ss, packet->payload, pmtu, false,
2498 				     false);
2499 			/* Raise the sw sequence check flag for next packet */
2500 			priv->s_flags |= HFI1_R_TID_SW_PSN;
2501 		}
2502 
2503 		goto ack_done;
2504 	}
2505 	flow->flow_state.r_next_psn = mask_psn(kpsn + 1);
2506 	req->ack_pending--;
2507 	priv->pending_tid_r_segs--;
2508 	qp->s_num_rd_atomic--;
2509 	if ((qp->s_flags & RVT_S_WAIT_FENCE) &&
2510 	    !qp->s_num_rd_atomic) {
2511 		qp->s_flags &= ~(RVT_S_WAIT_FENCE |
2512 				 RVT_S_WAIT_ACK);
2513 		hfi1_schedule_send(qp);
2514 	}
2515 	if (qp->s_flags & RVT_S_WAIT_RDMAR) {
2516 		qp->s_flags &= ~(RVT_S_WAIT_RDMAR | RVT_S_WAIT_ACK);
2517 		hfi1_schedule_send(qp);
2518 	}
2519 
2520 	trace_hfi1_ack(qp, ipsn);
2521 	trace_hfi1_tid_req_rcv_read_resp(qp, 0, req->e.swqe->wr.opcode,
2522 					 req->e.swqe->psn, req->e.swqe->lpsn,
2523 					 req);
2524 	trace_hfi1_tid_flow_rcv_read_resp(qp, req->clear_tail, flow);
2525 
2526 	/* Release the tid resources */
2527 	hfi1_kern_exp_rcv_clear(req);
2528 
2529 	if (!do_rc_ack(qp, aeth, ipsn, opcode, 0, rcd))
2530 		goto ack_done;
2531 
2532 	/* If not done yet, build next read request */
2533 	if (++req->comp_seg >= req->total_segs) {
2534 		priv->tid_r_comp++;
2535 		req->state = TID_REQUEST_COMPLETE;
2536 	}
2537 
2538 	/*
2539 	 * Clear the hw flow under two conditions:
2540 	 * 1. This request is a sync point and it is complete;
2541 	 * 2. Current request is completed and there are no more requests.
2542 	 */
2543 	if ((req->state == TID_REQUEST_SYNC &&
2544 	     req->comp_seg == req->cur_seg) ||
2545 	    priv->tid_r_comp == priv->tid_r_reqs) {
2546 		hfi1_kern_clear_hw_flow(priv->rcd, qp);
2547 		priv->s_flags &= ~HFI1_R_TID_SW_PSN;
2548 		if (req->state == TID_REQUEST_SYNC)
2549 			req->state = TID_REQUEST_ACTIVE;
2550 	}
2551 
2552 	hfi1_schedule_send(qp);
2553 	goto ack_done;
2554 
2555 ack_op_err:
2556 	/*
2557 	 * The test indicates that the send engine has finished its cleanup
2558 	 * after sending the request and it's now safe to put the QP into error
2559 	 * state. However, if the wqe queue is empty (qp->s_acked == qp->s_tail
2560 	 * == qp->s_head), it would be unsafe to complete the wqe pointed by
2561 	 * qp->s_acked here. Putting the qp into error state will safely flush
2562 	 * all remaining requests.
2563 	 */
2564 	if (qp->s_last == qp->s_acked)
2565 		rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
2566 
2567 ack_done:
2568 	spin_unlock_irqrestore(&qp->s_lock, flags);
2569 }
2570 
2571 void hfi1_kern_read_tid_flow_free(struct rvt_qp *qp)
2572 	__must_hold(&qp->s_lock)
2573 {
2574 	u32 n = qp->s_acked;
2575 	struct rvt_swqe *wqe;
2576 	struct tid_rdma_request *req;
2577 	struct hfi1_qp_priv *priv = qp->priv;
2578 
2579 	lockdep_assert_held(&qp->s_lock);
2580 	/* Free any TID entries */
2581 	while (n != qp->s_tail) {
2582 		wqe = rvt_get_swqe_ptr(qp, n);
2583 		if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
2584 			req = wqe_to_tid_req(wqe);
2585 			hfi1_kern_exp_rcv_clear_all(req);
2586 		}
2587 
2588 		if (++n == qp->s_size)
2589 			n = 0;
2590 	}
2591 	/* Free flow */
2592 	hfi1_kern_clear_hw_flow(priv->rcd, qp);
2593 }
2594 
2595 static bool tid_rdma_tid_err(struct hfi1_packet *packet, u8 rcv_type)
2596 {
2597 	struct rvt_qp *qp = packet->qp;
2598 
2599 	if (rcv_type >= RHF_RCV_TYPE_IB)
2600 		goto done;
2601 
2602 	spin_lock(&qp->s_lock);
2603 
2604 	/*
2605 	 * We've ran out of space in the eager buffer.
2606 	 * Eagerly received KDETH packets which require space in the
2607 	 * Eager buffer (packet that have payload) are TID RDMA WRITE
2608 	 * response packets. In this case, we have to re-transmit the
2609 	 * TID RDMA WRITE request.
2610 	 */
2611 	if (rcv_type == RHF_RCV_TYPE_EAGER) {
2612 		hfi1_restart_rc(qp, qp->s_last_psn + 1, 1);
2613 		hfi1_schedule_send(qp);
2614 	}
2615 
2616 	/* Since no payload is delivered, just drop the packet */
2617 	spin_unlock(&qp->s_lock);
2618 done:
2619 	return true;
2620 }
2621 
2622 static void restart_tid_rdma_read_req(struct hfi1_ctxtdata *rcd,
2623 				      struct rvt_qp *qp, struct rvt_swqe *wqe)
2624 {
2625 	struct tid_rdma_request *req;
2626 	struct tid_rdma_flow *flow;
2627 
2628 	/* Start from the right segment */
2629 	qp->r_flags |= RVT_R_RDMAR_SEQ;
2630 	req = wqe_to_tid_req(wqe);
2631 	flow = &req->flows[req->clear_tail];
2632 	hfi1_restart_rc(qp, flow->flow_state.ib_spsn, 0);
2633 	if (list_empty(&qp->rspwait)) {
2634 		qp->r_flags |= RVT_R_RSP_SEND;
2635 		rvt_get_qp(qp);
2636 		list_add_tail(&qp->rspwait, &rcd->qp_wait_list);
2637 	}
2638 }
2639 
2640 /*
2641  * Handle the KDETH eflags for TID RDMA READ response.
2642  *
2643  * Return true if the last packet for a segment has been received and it is
2644  * time to process the response normally; otherwise, return true.
2645  *
2646  * The caller must hold the packet->qp->r_lock and the rcu_read_lock.
2647  */
2648 static bool handle_read_kdeth_eflags(struct hfi1_ctxtdata *rcd,
2649 				     struct hfi1_packet *packet, u8 rcv_type,
2650 				     u8 rte, u32 psn, u32 ibpsn)
2651 	__must_hold(&packet->qp->r_lock) __must_hold(RCU)
2652 {
2653 	struct hfi1_pportdata *ppd = rcd->ppd;
2654 	struct hfi1_devdata *dd = ppd->dd;
2655 	struct hfi1_ibport *ibp;
2656 	struct rvt_swqe *wqe;
2657 	struct tid_rdma_request *req;
2658 	struct tid_rdma_flow *flow;
2659 	u32 ack_psn;
2660 	struct rvt_qp *qp = packet->qp;
2661 	struct hfi1_qp_priv *priv = qp->priv;
2662 	bool ret = true;
2663 	int diff = 0;
2664 	u32 fpsn;
2665 
2666 	lockdep_assert_held(&qp->r_lock);
2667 	trace_hfi1_rsp_read_kdeth_eflags(qp, ibpsn);
2668 	trace_hfi1_sender_read_kdeth_eflags(qp);
2669 	trace_hfi1_tid_read_sender_kdeth_eflags(qp, 0);
2670 	spin_lock(&qp->s_lock);
2671 	/* If the psn is out of valid range, drop the packet */
2672 	if (cmp_psn(ibpsn, qp->s_last_psn) < 0 ||
2673 	    cmp_psn(ibpsn, qp->s_psn) > 0)
2674 		goto s_unlock;
2675 
2676 	/*
2677 	 * Note that NAKs implicitly ACK outstanding SEND and RDMA write
2678 	 * requests and implicitly NAK RDMA read and atomic requests issued
2679 	 * before the NAK'ed request.
2680 	 */
2681 	ack_psn = ibpsn - 1;
2682 	wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
2683 	ibp = to_iport(qp->ibqp.device, qp->port_num);
2684 
2685 	/* Complete WQEs that the PSN finishes. */
2686 	while ((int)delta_psn(ack_psn, wqe->lpsn) >= 0) {
2687 		/*
2688 		 * If this request is a RDMA read or atomic, and the NACK is
2689 		 * for a later operation, this NACK NAKs the RDMA read or
2690 		 * atomic.
2691 		 */
2692 		if (wqe->wr.opcode == IB_WR_RDMA_READ ||
2693 		    wqe->wr.opcode == IB_WR_TID_RDMA_READ ||
2694 		    wqe->wr.opcode == IB_WR_ATOMIC_CMP_AND_SWP ||
2695 		    wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) {
2696 			/* Retry this request. */
2697 			if (!(qp->r_flags & RVT_R_RDMAR_SEQ)) {
2698 				qp->r_flags |= RVT_R_RDMAR_SEQ;
2699 				if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
2700 					restart_tid_rdma_read_req(rcd, qp,
2701 								  wqe);
2702 				} else {
2703 					hfi1_restart_rc(qp, qp->s_last_psn + 1,
2704 							0);
2705 					if (list_empty(&qp->rspwait)) {
2706 						qp->r_flags |= RVT_R_RSP_SEND;
2707 						rvt_get_qp(qp);
2708 						list_add_tail(/* wait */
2709 						   &qp->rspwait,
2710 						   &rcd->qp_wait_list);
2711 					}
2712 				}
2713 			}
2714 			/*
2715 			 * No need to process the NAK since we are
2716 			 * restarting an earlier request.
2717 			 */
2718 			break;
2719 		}
2720 
2721 		wqe = do_rc_completion(qp, wqe, ibp);
2722 		if (qp->s_acked == qp->s_tail)
2723 			goto s_unlock;
2724 	}
2725 
2726 	if (qp->s_acked == qp->s_tail)
2727 		goto s_unlock;
2728 
2729 	/* Handle the eflags for the request */
2730 	if (wqe->wr.opcode != IB_WR_TID_RDMA_READ)
2731 		goto s_unlock;
2732 
2733 	req = wqe_to_tid_req(wqe);
2734 	trace_hfi1_tid_req_read_kdeth_eflags(qp, 0, wqe->wr.opcode, wqe->psn,
2735 					     wqe->lpsn, req);
2736 	switch (rcv_type) {
2737 	case RHF_RCV_TYPE_EXPECTED:
2738 		switch (rte) {
2739 		case RHF_RTE_EXPECTED_FLOW_SEQ_ERR:
2740 			/*
2741 			 * On the first occurrence of a Flow Sequence error,
2742 			 * the flag TID_FLOW_SW_PSN is set.
2743 			 *
2744 			 * After that, the flow is *not* reprogrammed and the
2745 			 * protocol falls back to SW PSN checking. This is done
2746 			 * to prevent continuous Flow Sequence errors for any
2747 			 * packets that could be still in the fabric.
2748 			 */
2749 			flow = &req->flows[req->clear_tail];
2750 			trace_hfi1_tid_flow_read_kdeth_eflags(qp,
2751 							      req->clear_tail,
2752 							      flow);
2753 			if (priv->s_flags & HFI1_R_TID_SW_PSN) {
2754 				diff = cmp_psn(psn,
2755 					       flow->flow_state.r_next_psn);
2756 				if (diff > 0) {
2757 					/* Drop the packet.*/
2758 					goto s_unlock;
2759 				} else if (diff < 0) {
2760 					/*
2761 					 * If a response packet for a restarted
2762 					 * request has come back, reset the
2763 					 * restart flag.
2764 					 */
2765 					if (qp->r_flags & RVT_R_RDMAR_SEQ)
2766 						qp->r_flags &=
2767 							~RVT_R_RDMAR_SEQ;
2768 
2769 					/* Drop the packet.*/
2770 					goto s_unlock;
2771 				}
2772 
2773 				/*
2774 				 * If SW PSN verification is successful and
2775 				 * this is the last packet in the segment, tell
2776 				 * the caller to process it as a normal packet.
2777 				 */
2778 				fpsn = full_flow_psn(flow,
2779 						     flow->flow_state.lpsn);
2780 				if (cmp_psn(fpsn, psn) == 0) {
2781 					ret = false;
2782 					if (qp->r_flags & RVT_R_RDMAR_SEQ)
2783 						qp->r_flags &=
2784 							~RVT_R_RDMAR_SEQ;
2785 				}
2786 				flow->flow_state.r_next_psn =
2787 					mask_psn(psn + 1);
2788 			} else {
2789 				u32 last_psn;
2790 
2791 				last_psn = read_r_next_psn(dd, rcd->ctxt,
2792 							   flow->idx);
2793 				flow->flow_state.r_next_psn = last_psn;
2794 				priv->s_flags |= HFI1_R_TID_SW_PSN;
2795 				/*
2796 				 * If no request has been restarted yet,
2797 				 * restart the current one.
2798 				 */
2799 				if (!(qp->r_flags & RVT_R_RDMAR_SEQ))
2800 					restart_tid_rdma_read_req(rcd, qp,
2801 								  wqe);
2802 			}
2803 
2804 			break;
2805 
2806 		case RHF_RTE_EXPECTED_FLOW_GEN_ERR:
2807 			/*
2808 			 * Since the TID flow is able to ride through
2809 			 * generation mismatch, drop this stale packet.
2810 			 */
2811 			break;
2812 
2813 		default:
2814 			break;
2815 		}
2816 		break;
2817 
2818 	case RHF_RCV_TYPE_ERROR:
2819 		switch (rte) {
2820 		case RHF_RTE_ERROR_OP_CODE_ERR:
2821 		case RHF_RTE_ERROR_KHDR_MIN_LEN_ERR:
2822 		case RHF_RTE_ERROR_KHDR_HCRC_ERR:
2823 		case RHF_RTE_ERROR_KHDR_KVER_ERR:
2824 		case RHF_RTE_ERROR_CONTEXT_ERR:
2825 		case RHF_RTE_ERROR_KHDR_TID_ERR:
2826 		default:
2827 			break;
2828 		}
2829 	default:
2830 		break;
2831 	}
2832 s_unlock:
2833 	spin_unlock(&qp->s_lock);
2834 	return ret;
2835 }
2836 
2837 bool hfi1_handle_kdeth_eflags(struct hfi1_ctxtdata *rcd,
2838 			      struct hfi1_pportdata *ppd,
2839 			      struct hfi1_packet *packet)
2840 {
2841 	struct hfi1_ibport *ibp = &ppd->ibport_data;
2842 	struct hfi1_devdata *dd = ppd->dd;
2843 	struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
2844 	u8 rcv_type = rhf_rcv_type(packet->rhf);
2845 	u8 rte = rhf_rcv_type_err(packet->rhf);
2846 	struct ib_header *hdr = packet->hdr;
2847 	struct ib_other_headers *ohdr = NULL;
2848 	int lnh = be16_to_cpu(hdr->lrh[0]) & 3;
2849 	u16 lid  = be16_to_cpu(hdr->lrh[1]);
2850 	u8 opcode;
2851 	u32 qp_num, psn, ibpsn;
2852 	struct rvt_qp *qp;
2853 	struct hfi1_qp_priv *qpriv;
2854 	unsigned long flags;
2855 	bool ret = true;
2856 	struct rvt_ack_entry *e;
2857 	struct tid_rdma_request *req;
2858 	struct tid_rdma_flow *flow;
2859 	int diff = 0;
2860 
2861 	trace_hfi1_msg_handle_kdeth_eflags(NULL, "Kdeth error: rhf ",
2862 					   packet->rhf);
2863 	if (packet->rhf & RHF_ICRC_ERR)
2864 		return ret;
2865 
2866 	packet->ohdr = &hdr->u.oth;
2867 	ohdr = packet->ohdr;
2868 	trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
2869 
2870 	/* Get the destination QP number. */
2871 	qp_num = be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_qp) &
2872 		RVT_QPN_MASK;
2873 	if (lid >= be16_to_cpu(IB_MULTICAST_LID_BASE))
2874 		goto drop;
2875 
2876 	psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
2877 	opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;
2878 
2879 	rcu_read_lock();
2880 	qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
2881 	if (!qp)
2882 		goto rcu_unlock;
2883 
2884 	packet->qp = qp;
2885 
2886 	/* Check for valid receive state. */
2887 	spin_lock_irqsave(&qp->r_lock, flags);
2888 	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) {
2889 		ibp->rvp.n_pkt_drops++;
2890 		goto r_unlock;
2891 	}
2892 
2893 	if (packet->rhf & RHF_TID_ERR) {
2894 		/* For TIDERR and RC QPs preemptively schedule a NAK */
2895 		u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */
2896 
2897 		/* Sanity check packet */
2898 		if (tlen < 24)
2899 			goto r_unlock;
2900 
2901 		/*
2902 		 * Check for GRH. We should never get packets with GRH in this
2903 		 * path.
2904 		 */
2905 		if (lnh == HFI1_LRH_GRH)
2906 			goto r_unlock;
2907 
2908 		if (tid_rdma_tid_err(packet, rcv_type))
2909 			goto r_unlock;
2910 	}
2911 
2912 	/* handle TID RDMA READ */
2913 	if (opcode == TID_OP(READ_RESP)) {
2914 		ibpsn = be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_psn);
2915 		ibpsn = mask_psn(ibpsn);
2916 		ret = handle_read_kdeth_eflags(rcd, packet, rcv_type, rte, psn,
2917 					       ibpsn);
2918 		goto r_unlock;
2919 	}
2920 
2921 	/*
2922 	 * qp->s_tail_ack_queue points to the rvt_ack_entry currently being
2923 	 * processed. These a completed sequentially so we can be sure that
2924 	 * the pointer will not change until the entire request has completed.
2925 	 */
2926 	spin_lock(&qp->s_lock);
2927 	qpriv = qp->priv;
2928 	if (qpriv->r_tid_tail == HFI1_QP_WQE_INVALID ||
2929 	    qpriv->r_tid_tail == qpriv->r_tid_head)
2930 		goto unlock;
2931 	e = &qp->s_ack_queue[qpriv->r_tid_tail];
2932 	if (e->opcode != TID_OP(WRITE_REQ))
2933 		goto unlock;
2934 	req = ack_to_tid_req(e);
2935 	if (req->comp_seg == req->cur_seg)
2936 		goto unlock;
2937 	flow = &req->flows[req->clear_tail];
2938 	trace_hfi1_eflags_err_write(qp, rcv_type, rte, psn);
2939 	trace_hfi1_rsp_handle_kdeth_eflags(qp, psn);
2940 	trace_hfi1_tid_write_rsp_handle_kdeth_eflags(qp);
2941 	trace_hfi1_tid_req_handle_kdeth_eflags(qp, 0, e->opcode, e->psn,
2942 					       e->lpsn, req);
2943 	trace_hfi1_tid_flow_handle_kdeth_eflags(qp, req->clear_tail, flow);
2944 
2945 	switch (rcv_type) {
2946 	case RHF_RCV_TYPE_EXPECTED:
2947 		switch (rte) {
2948 		case RHF_RTE_EXPECTED_FLOW_SEQ_ERR:
2949 			if (!(qpriv->s_flags & HFI1_R_TID_SW_PSN)) {
2950 				qpriv->s_flags |= HFI1_R_TID_SW_PSN;
2951 				flow->flow_state.r_next_psn =
2952 					read_r_next_psn(dd, rcd->ctxt,
2953 							flow->idx);
2954 				qpriv->r_next_psn_kdeth =
2955 					flow->flow_state.r_next_psn;
2956 				goto nak_psn;
2957 			} else {
2958 				/*
2959 				 * If the received PSN does not match the next
2960 				 * expected PSN, NAK the packet.
2961 				 * However, only do that if we know that the a
2962 				 * NAK has already been sent. Otherwise, this
2963 				 * mismatch could be due to packets that were
2964 				 * already in flight.
2965 				 */
2966 				diff = cmp_psn(psn,
2967 					       flow->flow_state.r_next_psn);
2968 				if (diff > 0)
2969 					goto nak_psn;
2970 				else if (diff < 0)
2971 					break;
2972 
2973 				qpriv->s_nak_state = 0;
2974 				/*
2975 				 * If SW PSN verification is successful and this
2976 				 * is the last packet in the segment, tell the
2977 				 * caller to process it as a normal packet.
2978 				 */
2979 				if (psn == full_flow_psn(flow,
2980 							 flow->flow_state.lpsn))
2981 					ret = false;
2982 				flow->flow_state.r_next_psn =
2983 					mask_psn(psn + 1);
2984 				qpriv->r_next_psn_kdeth =
2985 					flow->flow_state.r_next_psn;
2986 			}
2987 			break;
2988 
2989 		case RHF_RTE_EXPECTED_FLOW_GEN_ERR:
2990 			goto nak_psn;
2991 
2992 		default:
2993 			break;
2994 		}
2995 		break;
2996 
2997 	case RHF_RCV_TYPE_ERROR:
2998 		switch (rte) {
2999 		case RHF_RTE_ERROR_OP_CODE_ERR:
3000 		case RHF_RTE_ERROR_KHDR_MIN_LEN_ERR:
3001 		case RHF_RTE_ERROR_KHDR_HCRC_ERR:
3002 		case RHF_RTE_ERROR_KHDR_KVER_ERR:
3003 		case RHF_RTE_ERROR_CONTEXT_ERR:
3004 		case RHF_RTE_ERROR_KHDR_TID_ERR:
3005 		default:
3006 			break;
3007 		}
3008 	default:
3009 		break;
3010 	}
3011 
3012 unlock:
3013 	spin_unlock(&qp->s_lock);
3014 r_unlock:
3015 	spin_unlock_irqrestore(&qp->r_lock, flags);
3016 rcu_unlock:
3017 	rcu_read_unlock();
3018 drop:
3019 	return ret;
3020 nak_psn:
3021 	ibp->rvp.n_rc_seqnak++;
3022 	if (!qpriv->s_nak_state) {
3023 		qpriv->s_nak_state = IB_NAK_PSN_ERROR;
3024 		/* We are NAK'ing the next expected PSN */
3025 		qpriv->s_nak_psn = mask_psn(flow->flow_state.r_next_psn);
3026 		tid_rdma_trigger_ack(qp);
3027 	}
3028 	goto unlock;
3029 }
3030 
3031 /*
3032  * "Rewind" the TID request information.
3033  * This means that we reset the state back to ACTIVE,
3034  * find the proper flow, set the flow index to that flow,
3035  * and reset the flow information.
3036  */
3037 void hfi1_tid_rdma_restart_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
3038 			       u32 *bth2)
3039 {
3040 	struct tid_rdma_request *req = wqe_to_tid_req(wqe);
3041 	struct tid_rdma_flow *flow;
3042 	struct hfi1_qp_priv *qpriv = qp->priv;
3043 	int diff, delta_pkts;
3044 	u32 tididx = 0, i;
3045 	u16 fidx;
3046 
3047 	if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
3048 		*bth2 = mask_psn(qp->s_psn);
3049 		flow = find_flow_ib(req, *bth2, &fidx);
3050 		if (!flow) {
3051 			trace_hfi1_msg_tid_restart_req(/* msg */
3052 			   qp, "!!!!!! Could not find flow to restart: bth2 ",
3053 			   (u64)*bth2);
3054 			trace_hfi1_tid_req_restart_req(qp, 0, wqe->wr.opcode,
3055 						       wqe->psn, wqe->lpsn,
3056 						       req);
3057 			return;
3058 		}
3059 	} else {
3060 		fidx = req->acked_tail;
3061 		flow = &req->flows[fidx];
3062 		*bth2 = mask_psn(req->r_ack_psn);
3063 	}
3064 
3065 	if (wqe->wr.opcode == IB_WR_TID_RDMA_READ)
3066 		delta_pkts = delta_psn(*bth2, flow->flow_state.ib_spsn);
3067 	else
3068 		delta_pkts = delta_psn(*bth2,
3069 				       full_flow_psn(flow,
3070 						     flow->flow_state.spsn));
3071 
3072 	trace_hfi1_tid_flow_restart_req(qp, fidx, flow);
3073 	diff = delta_pkts + flow->resync_npkts;
3074 
3075 	flow->sent = 0;
3076 	flow->pkt = 0;
3077 	flow->tid_idx = 0;
3078 	flow->tid_offset = 0;
3079 	if (diff) {
3080 		for (tididx = 0; tididx < flow->tidcnt; tididx++) {
3081 			u32 tidentry = flow->tid_entry[tididx], tidlen,
3082 				tidnpkts, npkts;
3083 
3084 			flow->tid_offset = 0;
3085 			tidlen = EXP_TID_GET(tidentry, LEN) * PAGE_SIZE;
3086 			tidnpkts = rvt_div_round_up_mtu(qp, tidlen);
3087 			npkts = min_t(u32, diff, tidnpkts);
3088 			flow->pkt += npkts;
3089 			flow->sent += (npkts == tidnpkts ? tidlen :
3090 				       npkts * qp->pmtu);
3091 			flow->tid_offset += npkts * qp->pmtu;
3092 			diff -= npkts;
3093 			if (!diff)
3094 				break;
3095 		}
3096 	}
3097 	if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE) {
3098 		rvt_skip_sge(&qpriv->tid_ss, (req->cur_seg * req->seg_len) +
3099 			     flow->sent, 0);
3100 		/*
3101 		 * Packet PSN is based on flow_state.spsn + flow->pkt. However,
3102 		 * during a RESYNC, the generation is incremented and the
3103 		 * sequence is reset to 0. Since we've adjusted the npkts in the
3104 		 * flow and the SGE has been sufficiently advanced, we have to
3105 		 * adjust flow->pkt in order to calculate the correct PSN.
3106 		 */
3107 		flow->pkt -= flow->resync_npkts;
3108 	}
3109 
3110 	if (flow->tid_offset ==
3111 	    EXP_TID_GET(flow->tid_entry[tididx], LEN) * PAGE_SIZE) {
3112 		tididx++;
3113 		flow->tid_offset = 0;
3114 	}
3115 	flow->tid_idx = tididx;
3116 	if (wqe->wr.opcode == IB_WR_TID_RDMA_READ)
3117 		/* Move flow_idx to correct index */
3118 		req->flow_idx = fidx;
3119 	else
3120 		req->clear_tail = fidx;
3121 
3122 	trace_hfi1_tid_flow_restart_req(qp, fidx, flow);
3123 	trace_hfi1_tid_req_restart_req(qp, 0, wqe->wr.opcode, wqe->psn,
3124 				       wqe->lpsn, req);
3125 	req->state = TID_REQUEST_ACTIVE;
3126 	if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE) {
3127 		/* Reset all the flows that we are going to resend */
3128 		fidx = CIRC_NEXT(fidx, MAX_FLOWS);
3129 		i = qpriv->s_tid_tail;
3130 		do {
3131 			for (; CIRC_CNT(req->setup_head, fidx, MAX_FLOWS);
3132 			      fidx = CIRC_NEXT(fidx, MAX_FLOWS)) {
3133 				req->flows[fidx].sent = 0;
3134 				req->flows[fidx].pkt = 0;
3135 				req->flows[fidx].tid_idx = 0;
3136 				req->flows[fidx].tid_offset = 0;
3137 				req->flows[fidx].resync_npkts = 0;
3138 			}
3139 			if (i == qpriv->s_tid_cur)
3140 				break;
3141 			do {
3142 				i = (++i == qp->s_size ? 0 : i);
3143 				wqe = rvt_get_swqe_ptr(qp, i);
3144 			} while (wqe->wr.opcode != IB_WR_TID_RDMA_WRITE);
3145 			req = wqe_to_tid_req(wqe);
3146 			req->cur_seg = req->ack_seg;
3147 			fidx = req->acked_tail;
3148 			/* Pull req->clear_tail back */
3149 			req->clear_tail = fidx;
3150 		} while (1);
3151 	}
3152 }
3153 
3154 void hfi1_qp_kern_exp_rcv_clear_all(struct rvt_qp *qp)
3155 {
3156 	int i, ret;
3157 	struct hfi1_qp_priv *qpriv = qp->priv;
3158 	struct tid_flow_state *fs;
3159 
3160 	if (qp->ibqp.qp_type != IB_QPT_RC || !HFI1_CAP_IS_KSET(TID_RDMA))
3161 		return;
3162 
3163 	/*
3164 	 * First, clear the flow to help prevent any delayed packets from
3165 	 * being delivered.
3166 	 */
3167 	fs = &qpriv->flow_state;
3168 	if (fs->index != RXE_NUM_TID_FLOWS)
3169 		hfi1_kern_clear_hw_flow(qpriv->rcd, qp);
3170 
3171 	for (i = qp->s_acked; i != qp->s_head;) {
3172 		struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, i);
3173 
3174 		if (++i == qp->s_size)
3175 			i = 0;
3176 		/* Free only locally allocated TID entries */
3177 		if (wqe->wr.opcode != IB_WR_TID_RDMA_READ)
3178 			continue;
3179 		do {
3180 			struct hfi1_swqe_priv *priv = wqe->priv;
3181 
3182 			ret = hfi1_kern_exp_rcv_clear(&priv->tid_req);
3183 		} while (!ret);
3184 	}
3185 	for (i = qp->s_acked_ack_queue; i != qp->r_head_ack_queue;) {
3186 		struct rvt_ack_entry *e = &qp->s_ack_queue[i];
3187 
3188 		if (++i == rvt_max_atomic(ib_to_rvt(qp->ibqp.device)))
3189 			i = 0;
3190 		/* Free only locally allocated TID entries */
3191 		if (e->opcode != TID_OP(WRITE_REQ))
3192 			continue;
3193 		do {
3194 			struct hfi1_ack_priv *priv = e->priv;
3195 
3196 			ret = hfi1_kern_exp_rcv_clear(&priv->tid_req);
3197 		} while (!ret);
3198 	}
3199 }
3200 
3201 bool hfi1_tid_rdma_wqe_interlock(struct rvt_qp *qp, struct rvt_swqe *wqe)
3202 {
3203 	struct rvt_swqe *prev;
3204 	struct hfi1_qp_priv *priv = qp->priv;
3205 	u32 s_prev;
3206 	struct tid_rdma_request *req;
3207 
3208 	s_prev = (qp->s_cur == 0 ? qp->s_size : qp->s_cur) - 1;
3209 	prev = rvt_get_swqe_ptr(qp, s_prev);
3210 
3211 	switch (wqe->wr.opcode) {
3212 	case IB_WR_SEND:
3213 	case IB_WR_SEND_WITH_IMM:
3214 	case IB_WR_SEND_WITH_INV:
3215 	case IB_WR_ATOMIC_CMP_AND_SWP:
3216 	case IB_WR_ATOMIC_FETCH_AND_ADD:
3217 	case IB_WR_RDMA_WRITE:
3218 		switch (prev->wr.opcode) {
3219 		case IB_WR_TID_RDMA_WRITE:
3220 			req = wqe_to_tid_req(prev);
3221 			if (req->ack_seg != req->total_segs)
3222 				goto interlock;
3223 		default:
3224 			break;
3225 		}
3226 		break;
3227 	case IB_WR_RDMA_READ:
3228 		if (prev->wr.opcode != IB_WR_TID_RDMA_WRITE)
3229 			break;
3230 		/* fall through */
3231 	case IB_WR_TID_RDMA_READ:
3232 		switch (prev->wr.opcode) {
3233 		case IB_WR_RDMA_READ:
3234 			if (qp->s_acked != qp->s_cur)
3235 				goto interlock;
3236 			break;
3237 		case IB_WR_TID_RDMA_WRITE:
3238 			req = wqe_to_tid_req(prev);
3239 			if (req->ack_seg != req->total_segs)
3240 				goto interlock;
3241 		default:
3242 			break;
3243 		}
3244 	default:
3245 		break;
3246 	}
3247 	return false;
3248 
3249 interlock:
3250 	priv->s_flags |= HFI1_S_TID_WAIT_INTERLCK;
3251 	return true;
3252 }
3253 
3254 /* Does @sge meet the alignment requirements for tid rdma? */
3255 static inline bool hfi1_check_sge_align(struct rvt_qp *qp,
3256 					struct rvt_sge *sge, int num_sge)
3257 {
3258 	int i;
3259 
3260 	for (i = 0; i < num_sge; i++, sge++) {
3261 		trace_hfi1_sge_check_align(qp, i, sge);
3262 		if ((u64)sge->vaddr & ~PAGE_MASK ||
3263 		    sge->sge_length & ~PAGE_MASK)
3264 			return false;
3265 	}
3266 	return true;
3267 }
3268 
3269 void setup_tid_rdma_wqe(struct rvt_qp *qp, struct rvt_swqe *wqe)
3270 {
3271 	struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv;
3272 	struct hfi1_swqe_priv *priv = wqe->priv;
3273 	struct tid_rdma_params *remote;
3274 	enum ib_wr_opcode new_opcode;
3275 	bool do_tid_rdma = false;
3276 	struct hfi1_pportdata *ppd = qpriv->rcd->ppd;
3277 
3278 	if ((rdma_ah_get_dlid(&qp->remote_ah_attr) & ~((1 << ppd->lmc) - 1)) ==
3279 				ppd->lid)
3280 		return;
3281 	if (qpriv->hdr_type != HFI1_PKT_TYPE_9B)
3282 		return;
3283 
3284 	rcu_read_lock();
3285 	remote = rcu_dereference(qpriv->tid_rdma.remote);
3286 	/*
3287 	 * If TID RDMA is disabled by the negotiation, don't
3288 	 * use it.
3289 	 */
3290 	if (!remote)
3291 		goto exit;
3292 
3293 	if (wqe->wr.opcode == IB_WR_RDMA_READ) {
3294 		if (hfi1_check_sge_align(qp, &wqe->sg_list[0],
3295 					 wqe->wr.num_sge)) {
3296 			new_opcode = IB_WR_TID_RDMA_READ;
3297 			do_tid_rdma = true;
3298 		}
3299 	} else if (wqe->wr.opcode == IB_WR_RDMA_WRITE) {
3300 		/*
3301 		 * TID RDMA is enabled for this RDMA WRITE request iff:
3302 		 *   1. The remote address is page-aligned,
3303 		 *   2. The length is larger than the minimum segment size,
3304 		 *   3. The length is page-multiple.
3305 		 */
3306 		if (!(wqe->rdma_wr.remote_addr & ~PAGE_MASK) &&
3307 		    !(wqe->length & ~PAGE_MASK)) {
3308 			new_opcode = IB_WR_TID_RDMA_WRITE;
3309 			do_tid_rdma = true;
3310 		}
3311 	}
3312 
3313 	if (do_tid_rdma) {
3314 		if (hfi1_kern_exp_rcv_alloc_flows(&priv->tid_req, GFP_ATOMIC))
3315 			goto exit;
3316 		wqe->wr.opcode = new_opcode;
3317 		priv->tid_req.seg_len =
3318 			min_t(u32, remote->max_len, wqe->length);
3319 		priv->tid_req.total_segs =
3320 			DIV_ROUND_UP(wqe->length, priv->tid_req.seg_len);
3321 		/* Compute the last PSN of the request */
3322 		wqe->lpsn = wqe->psn;
3323 		if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
3324 			priv->tid_req.n_flows = remote->max_read;
3325 			qpriv->tid_r_reqs++;
3326 			wqe->lpsn += rvt_div_round_up_mtu(qp, wqe->length) - 1;
3327 		} else {
3328 			wqe->lpsn += priv->tid_req.total_segs - 1;
3329 			atomic_inc(&qpriv->n_requests);
3330 		}
3331 
3332 		priv->tid_req.cur_seg = 0;
3333 		priv->tid_req.comp_seg = 0;
3334 		priv->tid_req.ack_seg = 0;
3335 		priv->tid_req.state = TID_REQUEST_INACTIVE;
3336 		/*
3337 		 * Reset acked_tail.
3338 		 * TID RDMA READ does not have ACKs so it does not
3339 		 * update the pointer. We have to reset it so TID RDMA
3340 		 * WRITE does not get confused.
3341 		 */
3342 		priv->tid_req.acked_tail = priv->tid_req.setup_head;
3343 		trace_hfi1_tid_req_setup_tid_wqe(qp, 1, wqe->wr.opcode,
3344 						 wqe->psn, wqe->lpsn,
3345 						 &priv->tid_req);
3346 	}
3347 exit:
3348 	rcu_read_unlock();
3349 }
3350 
3351 /* TID RDMA WRITE functions */
3352 
3353 u32 hfi1_build_tid_rdma_write_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
3354 				  struct ib_other_headers *ohdr,
3355 				  u32 *bth1, u32 *bth2, u32 *len)
3356 {
3357 	struct hfi1_qp_priv *qpriv = qp->priv;
3358 	struct tid_rdma_request *req = wqe_to_tid_req(wqe);
3359 	struct tid_rdma_params *remote;
3360 
3361 	rcu_read_lock();
3362 	remote = rcu_dereference(qpriv->tid_rdma.remote);
3363 	/*
3364 	 * Set the number of flow to be used based on negotiated
3365 	 * parameters.
3366 	 */
3367 	req->n_flows = remote->max_write;
3368 	req->state = TID_REQUEST_ACTIVE;
3369 
3370 	KDETH_RESET(ohdr->u.tid_rdma.w_req.kdeth0, KVER, 0x1);
3371 	KDETH_RESET(ohdr->u.tid_rdma.w_req.kdeth1, JKEY, remote->jkey);
3372 	ohdr->u.tid_rdma.w_req.reth.vaddr =
3373 		cpu_to_be64(wqe->rdma_wr.remote_addr + (wqe->length - *len));
3374 	ohdr->u.tid_rdma.w_req.reth.rkey =
3375 		cpu_to_be32(wqe->rdma_wr.rkey);
3376 	ohdr->u.tid_rdma.w_req.reth.length = cpu_to_be32(*len);
3377 	ohdr->u.tid_rdma.w_req.verbs_qp = cpu_to_be32(qp->remote_qpn);
3378 	*bth1 &= ~RVT_QPN_MASK;
3379 	*bth1 |= remote->qp;
3380 	qp->s_state = TID_OP(WRITE_REQ);
3381 	qp->s_flags |= HFI1_S_WAIT_TID_RESP;
3382 	*bth2 |= IB_BTH_REQ_ACK;
3383 	*len = 0;
3384 
3385 	rcu_read_unlock();
3386 	return sizeof(ohdr->u.tid_rdma.w_req) / sizeof(u32);
3387 }
3388 
3389 static u32 hfi1_compute_tid_rdma_flow_wt(struct rvt_qp *qp)
3390 {
3391 	/*
3392 	 * Heuristic for computing the RNR timeout when waiting on the flow
3393 	 * queue. Rather than a computationaly expensive exact estimate of when
3394 	 * a flow will be available, we assume that if a QP is at position N in
3395 	 * the flow queue it has to wait approximately (N + 1) * (number of
3396 	 * segments between two sync points). The rationale for this is that
3397 	 * flows are released and recycled at each sync point.
3398 	 */
3399 	return (MAX_TID_FLOW_PSN * qp->pmtu) >> TID_RDMA_SEGMENT_SHIFT;
3400 }
3401 
3402 static u32 position_in_queue(struct hfi1_qp_priv *qpriv,
3403 			     struct tid_queue *queue)
3404 {
3405 	return qpriv->tid_enqueue - queue->dequeue;
3406 }
3407 
3408 /*
3409  * @qp: points to rvt_qp context.
3410  * @to_seg: desired RNR timeout in segments.
3411  * Return: index of the next highest timeout in the ib_hfi1_rnr_table[]
3412  */
3413 static u32 hfi1_compute_tid_rnr_timeout(struct rvt_qp *qp, u32 to_seg)
3414 {
3415 	struct hfi1_qp_priv *qpriv = qp->priv;
3416 	u64 timeout;
3417 	u32 bytes_per_us;
3418 	u8 i;
3419 
3420 	bytes_per_us = active_egress_rate(qpriv->rcd->ppd) / 8;
3421 	timeout = (to_seg * TID_RDMA_MAX_SEGMENT_SIZE) / bytes_per_us;
3422 	/*
3423 	 * Find the next highest value in the RNR table to the required
3424 	 * timeout. This gives the responder some padding.
3425 	 */
3426 	for (i = 1; i <= IB_AETH_CREDIT_MASK; i++)
3427 		if (rvt_rnr_tbl_to_usec(i) >= timeout)
3428 			return i;
3429 	return 0;
3430 }
3431 
3432 /**
3433  * Central place for resource allocation at TID write responder,
3434  * is called from write_req and write_data interrupt handlers as
3435  * well as the send thread when a queued QP is scheduled for
3436  * resource allocation.
3437  *
3438  * Iterates over (a) segments of a request and then (b) queued requests
3439  * themselves to allocate resources for up to local->max_write
3440  * segments across multiple requests. Stop allocating when we
3441  * hit a sync point, resume allocating after data packets at
3442  * sync point have been received.
3443  *
3444  * Resource allocation and sending of responses is decoupled. The
3445  * request/segment which are being allocated and sent are as follows.
3446  * Resources are allocated for:
3447  *     [request: qpriv->r_tid_alloc, segment: req->alloc_seg]
3448  * The send thread sends:
3449  *     [request: qp->s_tail_ack_queue, segment:req->cur_seg]
3450  */
3451 static void hfi1_tid_write_alloc_resources(struct rvt_qp *qp, bool intr_ctx)
3452 {
3453 	struct tid_rdma_request *req;
3454 	struct hfi1_qp_priv *qpriv = qp->priv;
3455 	struct hfi1_ctxtdata *rcd = qpriv->rcd;
3456 	struct tid_rdma_params *local = &qpriv->tid_rdma.local;
3457 	struct rvt_ack_entry *e;
3458 	u32 npkts, to_seg;
3459 	bool last;
3460 	int ret = 0;
3461 
3462 	lockdep_assert_held(&qp->s_lock);
3463 
3464 	while (1) {
3465 		trace_hfi1_rsp_tid_write_alloc_res(qp, 0);
3466 		trace_hfi1_tid_write_rsp_alloc_res(qp);
3467 		/*
3468 		 * Don't allocate more segments if a RNR NAK has already been
3469 		 * scheduled to avoid messing up qp->r_psn: the RNR NAK will
3470 		 * be sent only when all allocated segments have been sent.
3471 		 * However, if more segments are allocated before that, TID RDMA
3472 		 * WRITE RESP packets will be sent out for these new segments
3473 		 * before the RNR NAK packet. When the requester receives the
3474 		 * RNR NAK packet, it will restart with qp->s_last_psn + 1,
3475 		 * which does not match qp->r_psn and will be dropped.
3476 		 * Consequently, the requester will exhaust its retries and
3477 		 * put the qp into error state.
3478 		 */
3479 		if (qpriv->rnr_nak_state == TID_RNR_NAK_SEND)
3480 			break;
3481 
3482 		/* No requests left to process */
3483 		if (qpriv->r_tid_alloc == qpriv->r_tid_head) {
3484 			/* If all data has been received, clear the flow */
3485 			if (qpriv->flow_state.index < RXE_NUM_TID_FLOWS &&
3486 			    !qpriv->alloc_w_segs) {
3487 				hfi1_kern_clear_hw_flow(rcd, qp);
3488 				qpriv->s_flags &= ~HFI1_R_TID_SW_PSN;
3489 			}
3490 			break;
3491 		}
3492 
3493 		e = &qp->s_ack_queue[qpriv->r_tid_alloc];
3494 		if (e->opcode != TID_OP(WRITE_REQ))
3495 			goto next_req;
3496 		req = ack_to_tid_req(e);
3497 		trace_hfi1_tid_req_write_alloc_res(qp, 0, e->opcode, e->psn,
3498 						   e->lpsn, req);
3499 		/* Finished allocating for all segments of this request */
3500 		if (req->alloc_seg >= req->total_segs)
3501 			goto next_req;
3502 
3503 		/* Can allocate only a maximum of local->max_write for a QP */
3504 		if (qpriv->alloc_w_segs >= local->max_write)
3505 			break;
3506 
3507 		/* Don't allocate at a sync point with data packets pending */
3508 		if (qpriv->sync_pt && qpriv->alloc_w_segs)
3509 			break;
3510 
3511 		/* All data received at the sync point, continue */
3512 		if (qpriv->sync_pt && !qpriv->alloc_w_segs) {
3513 			hfi1_kern_clear_hw_flow(rcd, qp);
3514 			qpriv->sync_pt = false;
3515 			qpriv->s_flags &= ~HFI1_R_TID_SW_PSN;
3516 		}
3517 
3518 		/* Allocate flow if we don't have one */
3519 		if (qpriv->flow_state.index >= RXE_NUM_TID_FLOWS) {
3520 			ret = hfi1_kern_setup_hw_flow(qpriv->rcd, qp);
3521 			if (ret) {
3522 				to_seg = hfi1_compute_tid_rdma_flow_wt(qp) *
3523 					position_in_queue(qpriv,
3524 							  &rcd->flow_queue);
3525 				break;
3526 			}
3527 		}
3528 
3529 		npkts = rvt_div_round_up_mtu(qp, req->seg_len);
3530 
3531 		/*
3532 		 * We are at a sync point if we run out of KDETH PSN space.
3533 		 * Last PSN of every generation is reserved for RESYNC.
3534 		 */
3535 		if (qpriv->flow_state.psn + npkts > MAX_TID_FLOW_PSN - 1) {
3536 			qpriv->sync_pt = true;
3537 			break;
3538 		}
3539 
3540 		/*
3541 		 * If overtaking req->acked_tail, send an RNR NAK. Because the
3542 		 * QP is not queued in this case, and the issue can only be
3543 		 * caused by a delay in scheduling the second leg which we
3544 		 * cannot estimate, we use a rather arbitrary RNR timeout of
3545 		 * (MAX_FLOWS / 2) segments
3546 		 */
3547 		if (!CIRC_SPACE(req->setup_head, req->acked_tail,
3548 				MAX_FLOWS)) {
3549 			ret = -EAGAIN;
3550 			to_seg = MAX_FLOWS >> 1;
3551 			tid_rdma_trigger_ack(qp);
3552 			break;
3553 		}
3554 
3555 		/* Try to allocate rcv array / TID entries */
3556 		ret = hfi1_kern_exp_rcv_setup(req, &req->ss, &last);
3557 		if (ret == -EAGAIN)
3558 			to_seg = position_in_queue(qpriv, &rcd->rarr_queue);
3559 		if (ret)
3560 			break;
3561 
3562 		qpriv->alloc_w_segs++;
3563 		req->alloc_seg++;
3564 		continue;
3565 next_req:
3566 		/* Begin processing the next request */
3567 		if (++qpriv->r_tid_alloc >
3568 		    rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
3569 			qpriv->r_tid_alloc = 0;
3570 	}
3571 
3572 	/*
3573 	 * Schedule an RNR NAK to be sent if (a) flow or rcv array allocation
3574 	 * has failed (b) we are called from the rcv handler interrupt context
3575 	 * (c) an RNR NAK has not already been scheduled
3576 	 */
3577 	if (ret == -EAGAIN && intr_ctx && !qp->r_nak_state)
3578 		goto send_rnr_nak;
3579 
3580 	return;
3581 
3582 send_rnr_nak:
3583 	lockdep_assert_held(&qp->r_lock);
3584 
3585 	/* Set r_nak_state to prevent unrelated events from generating NAK's */
3586 	qp->r_nak_state = hfi1_compute_tid_rnr_timeout(qp, to_seg) | IB_RNR_NAK;
3587 
3588 	/* Pull back r_psn to the segment being RNR NAK'd */
3589 	qp->r_psn = e->psn + req->alloc_seg;
3590 	qp->r_ack_psn = qp->r_psn;
3591 	/*
3592 	 * Pull back r_head_ack_queue to the ack entry following the request
3593 	 * being RNR NAK'd. This allows resources to be allocated to the request
3594 	 * if the queued QP is scheduled.
3595 	 */
3596 	qp->r_head_ack_queue = qpriv->r_tid_alloc + 1;
3597 	if (qp->r_head_ack_queue > rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
3598 		qp->r_head_ack_queue = 0;
3599 	qpriv->r_tid_head = qp->r_head_ack_queue;
3600 	/*
3601 	 * These send side fields are used in make_rc_ack(). They are set in
3602 	 * hfi1_send_rc_ack() but must be set here before dropping qp->s_lock
3603 	 * for consistency
3604 	 */
3605 	qp->s_nak_state = qp->r_nak_state;
3606 	qp->s_ack_psn = qp->r_ack_psn;
3607 	/*
3608 	 * Clear the ACK PENDING flag to prevent unwanted ACK because we
3609 	 * have modified qp->s_ack_psn here.
3610 	 */
3611 	qp->s_flags &= ~(RVT_S_ACK_PENDING);
3612 
3613 	trace_hfi1_rsp_tid_write_alloc_res(qp, qp->r_psn);
3614 	/*
3615 	 * qpriv->rnr_nak_state is used to determine when the scheduled RNR NAK
3616 	 * has actually been sent. qp->s_flags RVT_S_ACK_PENDING bit cannot be
3617 	 * used for this because qp->s_lock is dropped before calling
3618 	 * hfi1_send_rc_ack() leading to inconsistency between the receive
3619 	 * interrupt handlers and the send thread in make_rc_ack()
3620 	 */
3621 	qpriv->rnr_nak_state = TID_RNR_NAK_SEND;
3622 
3623 	/*
3624 	 * Schedule RNR NAK to be sent. RNR NAK's are scheduled from the receive
3625 	 * interrupt handlers but will be sent from the send engine behind any
3626 	 * previous responses that may have been scheduled
3627 	 */
3628 	rc_defered_ack(rcd, qp);
3629 }
3630 
3631 void hfi1_rc_rcv_tid_rdma_write_req(struct hfi1_packet *packet)
3632 {
3633 	/* HANDLER FOR TID RDMA WRITE REQUEST packet (Responder side)*/
3634 
3635 	/*
3636 	 * 1. Verify TID RDMA WRITE REQ as per IB_OPCODE_RC_RDMA_WRITE_FIRST
3637 	 *    (see hfi1_rc_rcv())
3638 	 *     - Don't allow 0-length requests.
3639 	 * 2. Put TID RDMA WRITE REQ into the response queueu (s_ack_queue)
3640 	 *     - Setup struct tid_rdma_req with request info
3641 	 *     - Prepare struct tid_rdma_flow array?
3642 	 * 3. Set the qp->s_ack_state as state diagram in design doc.
3643 	 * 4. Set RVT_S_RESP_PENDING in s_flags.
3644 	 * 5. Kick the send engine (hfi1_schedule_send())
3645 	 */
3646 	struct hfi1_ctxtdata *rcd = packet->rcd;
3647 	struct rvt_qp *qp = packet->qp;
3648 	struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
3649 	struct ib_other_headers *ohdr = packet->ohdr;
3650 	struct rvt_ack_entry *e;
3651 	unsigned long flags;
3652 	struct ib_reth *reth;
3653 	struct hfi1_qp_priv *qpriv = qp->priv;
3654 	struct tid_rdma_request *req;
3655 	u32 bth0, psn, len, rkey, num_segs;
3656 	bool fecn;
3657 	u8 next;
3658 	u64 vaddr;
3659 	int diff;
3660 
3661 	bth0 = be32_to_cpu(ohdr->bth[0]);
3662 	if (hfi1_ruc_check_hdr(ibp, packet))
3663 		return;
3664 
3665 	fecn = process_ecn(qp, packet);
3666 	psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
3667 	trace_hfi1_rsp_rcv_tid_write_req(qp, psn);
3668 
3669 	if (qp->state == IB_QPS_RTR && !(qp->r_flags & RVT_R_COMM_EST))
3670 		rvt_comm_est(qp);
3671 
3672 	if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3673 		goto nack_inv;
3674 
3675 	reth = &ohdr->u.tid_rdma.w_req.reth;
3676 	vaddr = be64_to_cpu(reth->vaddr);
3677 	len = be32_to_cpu(reth->length);
3678 
3679 	num_segs = DIV_ROUND_UP(len, qpriv->tid_rdma.local.max_len);
3680 	diff = delta_psn(psn, qp->r_psn);
3681 	if (unlikely(diff)) {
3682 		tid_rdma_rcv_err(packet, ohdr, qp, psn, diff, fecn);
3683 		return;
3684 	}
3685 
3686 	/*
3687 	 * The resent request which was previously RNR NAK'd is inserted at the
3688 	 * location of the original request, which is one entry behind
3689 	 * r_head_ack_queue
3690 	 */
3691 	if (qpriv->rnr_nak_state)
3692 		qp->r_head_ack_queue = qp->r_head_ack_queue ?
3693 			qp->r_head_ack_queue - 1 :
3694 			rvt_size_atomic(ib_to_rvt(qp->ibqp.device));
3695 
3696 	/* We've verified the request, insert it into the ack queue. */
3697 	next = qp->r_head_ack_queue + 1;
3698 	if (next > rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
3699 		next = 0;
3700 	spin_lock_irqsave(&qp->s_lock, flags);
3701 	if (unlikely(next == qp->s_acked_ack_queue)) {
3702 		if (!qp->s_ack_queue[next].sent)
3703 			goto nack_inv_unlock;
3704 		update_ack_queue(qp, next);
3705 	}
3706 	e = &qp->s_ack_queue[qp->r_head_ack_queue];
3707 	req = ack_to_tid_req(e);
3708 
3709 	/* Bring previously RNR NAK'd request back to life */
3710 	if (qpriv->rnr_nak_state) {
3711 		qp->r_nak_state = 0;
3712 		qp->s_nak_state = 0;
3713 		qpriv->rnr_nak_state = TID_RNR_NAK_INIT;
3714 		qp->r_psn = e->lpsn + 1;
3715 		req->state = TID_REQUEST_INIT;
3716 		goto update_head;
3717 	}
3718 
3719 	release_rdma_sge_mr(e);
3720 
3721 	/* The length needs to be in multiples of PAGE_SIZE */
3722 	if (!len || len & ~PAGE_MASK)
3723 		goto nack_inv_unlock;
3724 
3725 	rkey = be32_to_cpu(reth->rkey);
3726 	qp->r_len = len;
3727 
3728 	if (e->opcode == TID_OP(WRITE_REQ) &&
3729 	    (req->setup_head != req->clear_tail ||
3730 	     req->clear_tail != req->acked_tail))
3731 		goto nack_inv_unlock;
3732 
3733 	if (unlikely(!rvt_rkey_ok(qp, &e->rdma_sge, qp->r_len, vaddr,
3734 				  rkey, IB_ACCESS_REMOTE_WRITE)))
3735 		goto nack_acc;
3736 
3737 	qp->r_psn += num_segs - 1;
3738 
3739 	e->opcode = (bth0 >> 24) & 0xff;
3740 	e->psn = psn;
3741 	e->lpsn = qp->r_psn;
3742 	e->sent = 0;
3743 
3744 	req->n_flows = min_t(u16, num_segs, qpriv->tid_rdma.local.max_write);
3745 	req->state = TID_REQUEST_INIT;
3746 	req->cur_seg = 0;
3747 	req->comp_seg = 0;
3748 	req->ack_seg = 0;
3749 	req->alloc_seg = 0;
3750 	req->isge = 0;
3751 	req->seg_len = qpriv->tid_rdma.local.max_len;
3752 	req->total_len = len;
3753 	req->total_segs = num_segs;
3754 	req->r_flow_psn = e->psn;
3755 	req->ss.sge = e->rdma_sge;
3756 	req->ss.num_sge = 1;
3757 
3758 	req->flow_idx = req->setup_head;
3759 	req->clear_tail = req->setup_head;
3760 	req->acked_tail = req->setup_head;
3761 
3762 	qp->r_state = e->opcode;
3763 	qp->r_nak_state = 0;
3764 	/*
3765 	 * We need to increment the MSN here instead of when we
3766 	 * finish sending the result since a duplicate request would
3767 	 * increment it more than once.
3768 	 */
3769 	qp->r_msn++;
3770 	qp->r_psn++;
3771 
3772 	trace_hfi1_tid_req_rcv_write_req(qp, 0, e->opcode, e->psn, e->lpsn,
3773 					 req);
3774 
3775 	if (qpriv->r_tid_tail == HFI1_QP_WQE_INVALID) {
3776 		qpriv->r_tid_tail = qp->r_head_ack_queue;
3777 	} else if (qpriv->r_tid_tail == qpriv->r_tid_head) {
3778 		struct tid_rdma_request *ptr;
3779 
3780 		e = &qp->s_ack_queue[qpriv->r_tid_tail];
3781 		ptr = ack_to_tid_req(e);
3782 
3783 		if (e->opcode != TID_OP(WRITE_REQ) ||
3784 		    ptr->comp_seg == ptr->total_segs) {
3785 			if (qpriv->r_tid_tail == qpriv->r_tid_ack)
3786 				qpriv->r_tid_ack = qp->r_head_ack_queue;
3787 			qpriv->r_tid_tail = qp->r_head_ack_queue;
3788 		}
3789 	}
3790 update_head:
3791 	qp->r_head_ack_queue = next;
3792 	qpriv->r_tid_head = qp->r_head_ack_queue;
3793 
3794 	hfi1_tid_write_alloc_resources(qp, true);
3795 	trace_hfi1_tid_write_rsp_rcv_req(qp);
3796 
3797 	/* Schedule the send tasklet. */
3798 	qp->s_flags |= RVT_S_RESP_PENDING;
3799 	if (fecn)
3800 		qp->s_flags |= RVT_S_ECN;
3801 	hfi1_schedule_send(qp);
3802 
3803 	spin_unlock_irqrestore(&qp->s_lock, flags);
3804 	return;
3805 
3806 nack_inv_unlock:
3807 	spin_unlock_irqrestore(&qp->s_lock, flags);
3808 nack_inv:
3809 	rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR);
3810 	qp->r_nak_state = IB_NAK_INVALID_REQUEST;
3811 	qp->r_ack_psn = qp->r_psn;
3812 	/* Queue NAK for later */
3813 	rc_defered_ack(rcd, qp);
3814 	return;
3815 nack_acc:
3816 	spin_unlock_irqrestore(&qp->s_lock, flags);
3817 	rvt_rc_error(qp, IB_WC_LOC_PROT_ERR);
3818 	qp->r_nak_state = IB_NAK_REMOTE_ACCESS_ERROR;
3819 	qp->r_ack_psn = qp->r_psn;
3820 }
3821 
3822 u32 hfi1_build_tid_rdma_write_resp(struct rvt_qp *qp, struct rvt_ack_entry *e,
3823 				   struct ib_other_headers *ohdr, u32 *bth1,
3824 				   u32 bth2, u32 *len,
3825 				   struct rvt_sge_state **ss)
3826 {
3827 	struct hfi1_ack_priv *epriv = e->priv;
3828 	struct tid_rdma_request *req = &epriv->tid_req;
3829 	struct hfi1_qp_priv *qpriv = qp->priv;
3830 	struct tid_rdma_flow *flow = NULL;
3831 	u32 resp_len = 0, hdwords = 0;
3832 	void *resp_addr = NULL;
3833 	struct tid_rdma_params *remote;
3834 
3835 	trace_hfi1_tid_req_build_write_resp(qp, 0, e->opcode, e->psn, e->lpsn,
3836 					    req);
3837 	trace_hfi1_tid_write_rsp_build_resp(qp);
3838 	trace_hfi1_rsp_build_tid_write_resp(qp, bth2);
3839 	flow = &req->flows[req->flow_idx];
3840 	switch (req->state) {
3841 	default:
3842 		/*
3843 		 * Try to allocate resources here in case QP was queued and was
3844 		 * later scheduled when resources became available
3845 		 */
3846 		hfi1_tid_write_alloc_resources(qp, false);
3847 
3848 		/* We've already sent everything which is ready */
3849 		if (req->cur_seg >= req->alloc_seg)
3850 			goto done;
3851 
3852 		/*
3853 		 * Resources can be assigned but responses cannot be sent in
3854 		 * rnr_nak state, till the resent request is received
3855 		 */
3856 		if (qpriv->rnr_nak_state == TID_RNR_NAK_SENT)
3857 			goto done;
3858 
3859 		req->state = TID_REQUEST_ACTIVE;
3860 		trace_hfi1_tid_flow_build_write_resp(qp, req->flow_idx, flow);
3861 		req->flow_idx = CIRC_NEXT(req->flow_idx, MAX_FLOWS);
3862 		hfi1_add_tid_reap_timer(qp);
3863 		break;
3864 
3865 	case TID_REQUEST_RESEND_ACTIVE:
3866 	case TID_REQUEST_RESEND:
3867 		trace_hfi1_tid_flow_build_write_resp(qp, req->flow_idx, flow);
3868 		req->flow_idx = CIRC_NEXT(req->flow_idx, MAX_FLOWS);
3869 		if (!CIRC_CNT(req->setup_head, req->flow_idx, MAX_FLOWS))
3870 			req->state = TID_REQUEST_ACTIVE;
3871 
3872 		hfi1_mod_tid_reap_timer(qp);
3873 		break;
3874 	}
3875 	flow->flow_state.resp_ib_psn = bth2;
3876 	resp_addr = (void *)flow->tid_entry;
3877 	resp_len = sizeof(*flow->tid_entry) * flow->tidcnt;
3878 	req->cur_seg++;
3879 
3880 	memset(&ohdr->u.tid_rdma.w_rsp, 0, sizeof(ohdr->u.tid_rdma.w_rsp));
3881 	epriv->ss.sge.vaddr = resp_addr;
3882 	epriv->ss.sge.sge_length = resp_len;
3883 	epriv->ss.sge.length = epriv->ss.sge.sge_length;
3884 	/*
3885 	 * We can safely zero these out. Since the first SGE covers the
3886 	 * entire packet, nothing else should even look at the MR.
3887 	 */
3888 	epriv->ss.sge.mr = NULL;
3889 	epriv->ss.sge.m = 0;
3890 	epriv->ss.sge.n = 0;
3891 
3892 	epriv->ss.sg_list = NULL;
3893 	epriv->ss.total_len = epriv->ss.sge.sge_length;
3894 	epriv->ss.num_sge = 1;
3895 
3896 	*ss = &epriv->ss;
3897 	*len = epriv->ss.total_len;
3898 
3899 	/* Construct the TID RDMA WRITE RESP packet header */
3900 	rcu_read_lock();
3901 	remote = rcu_dereference(qpriv->tid_rdma.remote);
3902 
3903 	KDETH_RESET(ohdr->u.tid_rdma.w_rsp.kdeth0, KVER, 0x1);
3904 	KDETH_RESET(ohdr->u.tid_rdma.w_rsp.kdeth1, JKEY, remote->jkey);
3905 	ohdr->u.tid_rdma.w_rsp.aeth = rvt_compute_aeth(qp);
3906 	ohdr->u.tid_rdma.w_rsp.tid_flow_psn =
3907 		cpu_to_be32((flow->flow_state.generation <<
3908 			     HFI1_KDETH_BTH_SEQ_SHIFT) |
3909 			    (flow->flow_state.spsn &
3910 			     HFI1_KDETH_BTH_SEQ_MASK));
3911 	ohdr->u.tid_rdma.w_rsp.tid_flow_qp =
3912 		cpu_to_be32(qpriv->tid_rdma.local.qp |
3913 			    ((flow->idx & TID_RDMA_DESTQP_FLOW_MASK) <<
3914 			     TID_RDMA_DESTQP_FLOW_SHIFT) |
3915 			    qpriv->rcd->ctxt);
3916 	ohdr->u.tid_rdma.w_rsp.verbs_qp = cpu_to_be32(qp->remote_qpn);
3917 	*bth1 = remote->qp;
3918 	rcu_read_unlock();
3919 	hdwords = sizeof(ohdr->u.tid_rdma.w_rsp) / sizeof(u32);
3920 	qpriv->pending_tid_w_segs++;
3921 done:
3922 	return hdwords;
3923 }
3924 
3925 static void hfi1_add_tid_reap_timer(struct rvt_qp *qp)
3926 {
3927 	struct hfi1_qp_priv *qpriv = qp->priv;
3928 
3929 	lockdep_assert_held(&qp->s_lock);
3930 	if (!(qpriv->s_flags & HFI1_R_TID_RSC_TIMER)) {
3931 		qpriv->s_flags |= HFI1_R_TID_RSC_TIMER;
3932 		qpriv->s_tid_timer.expires = jiffies +
3933 			qpriv->tid_timer_timeout_jiffies;
3934 		add_timer(&qpriv->s_tid_timer);
3935 	}
3936 }
3937 
3938 static void hfi1_mod_tid_reap_timer(struct rvt_qp *qp)
3939 {
3940 	struct hfi1_qp_priv *qpriv = qp->priv;
3941 
3942 	lockdep_assert_held(&qp->s_lock);
3943 	qpriv->s_flags |= HFI1_R_TID_RSC_TIMER;
3944 	mod_timer(&qpriv->s_tid_timer, jiffies +
3945 		  qpriv->tid_timer_timeout_jiffies);
3946 }
3947 
3948 static int hfi1_stop_tid_reap_timer(struct rvt_qp *qp)
3949 {
3950 	struct hfi1_qp_priv *qpriv = qp->priv;
3951 	int rval = 0;
3952 
3953 	lockdep_assert_held(&qp->s_lock);
3954 	if (qpriv->s_flags & HFI1_R_TID_RSC_TIMER) {
3955 		rval = del_timer(&qpriv->s_tid_timer);
3956 		qpriv->s_flags &= ~HFI1_R_TID_RSC_TIMER;
3957 	}
3958 	return rval;
3959 }
3960 
3961 void hfi1_del_tid_reap_timer(struct rvt_qp *qp)
3962 {
3963 	struct hfi1_qp_priv *qpriv = qp->priv;
3964 
3965 	del_timer_sync(&qpriv->s_tid_timer);
3966 	qpriv->s_flags &= ~HFI1_R_TID_RSC_TIMER;
3967 }
3968 
3969 static void hfi1_tid_timeout(struct timer_list *t)
3970 {
3971 	struct hfi1_qp_priv *qpriv = from_timer(qpriv, t, s_tid_timer);
3972 	struct rvt_qp *qp = qpriv->owner;
3973 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
3974 	unsigned long flags;
3975 	u32 i;
3976 
3977 	spin_lock_irqsave(&qp->r_lock, flags);
3978 	spin_lock(&qp->s_lock);
3979 	if (qpriv->s_flags & HFI1_R_TID_RSC_TIMER) {
3980 		dd_dev_warn(dd_from_ibdev(qp->ibqp.device), "[QP%u] %s %d\n",
3981 			    qp->ibqp.qp_num, __func__, __LINE__);
3982 		trace_hfi1_msg_tid_timeout(/* msg */
3983 			qp, "resource timeout = ",
3984 			(u64)qpriv->tid_timer_timeout_jiffies);
3985 		hfi1_stop_tid_reap_timer(qp);
3986 		/*
3987 		 * Go though the entire ack queue and clear any outstanding
3988 		 * HW flow and RcvArray resources.
3989 		 */
3990 		hfi1_kern_clear_hw_flow(qpriv->rcd, qp);
3991 		for (i = 0; i < rvt_max_atomic(rdi); i++) {
3992 			struct tid_rdma_request *req =
3993 				ack_to_tid_req(&qp->s_ack_queue[i]);
3994 
3995 			hfi1_kern_exp_rcv_clear_all(req);
3996 		}
3997 		spin_unlock(&qp->s_lock);
3998 		if (qp->ibqp.event_handler) {
3999 			struct ib_event ev;
4000 
4001 			ev.device = qp->ibqp.device;
4002 			ev.element.qp = &qp->ibqp;
4003 			ev.event = IB_EVENT_QP_FATAL;
4004 			qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
4005 		}
4006 		rvt_rc_error(qp, IB_WC_RESP_TIMEOUT_ERR);
4007 		goto unlock_r_lock;
4008 	}
4009 	spin_unlock(&qp->s_lock);
4010 unlock_r_lock:
4011 	spin_unlock_irqrestore(&qp->r_lock, flags);
4012 }
4013 
4014 void hfi1_rc_rcv_tid_rdma_write_resp(struct hfi1_packet *packet)
4015 {
4016 	/* HANDLER FOR TID RDMA WRITE RESPONSE packet (Requestor side */
4017 
4018 	/*
4019 	 * 1. Find matching SWQE
4020 	 * 2. Check that TIDENTRY array has enough space for a complete
4021 	 *    segment. If not, put QP in error state.
4022 	 * 3. Save response data in struct tid_rdma_req and struct tid_rdma_flow
4023 	 * 4. Remove HFI1_S_WAIT_TID_RESP from s_flags.
4024 	 * 5. Set qp->s_state
4025 	 * 6. Kick the send engine (hfi1_schedule_send())
4026 	 */
4027 	struct ib_other_headers *ohdr = packet->ohdr;
4028 	struct rvt_qp *qp = packet->qp;
4029 	struct hfi1_qp_priv *qpriv = qp->priv;
4030 	struct hfi1_ctxtdata *rcd = packet->rcd;
4031 	struct rvt_swqe *wqe;
4032 	struct tid_rdma_request *req;
4033 	struct tid_rdma_flow *flow;
4034 	enum ib_wc_status status;
4035 	u32 opcode, aeth, psn, flow_psn, i, tidlen = 0, pktlen;
4036 	bool fecn;
4037 	unsigned long flags;
4038 
4039 	fecn = process_ecn(qp, packet);
4040 	psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4041 	aeth = be32_to_cpu(ohdr->u.tid_rdma.w_rsp.aeth);
4042 	opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;
4043 
4044 	spin_lock_irqsave(&qp->s_lock, flags);
4045 
4046 	/* Ignore invalid responses */
4047 	if (cmp_psn(psn, qp->s_next_psn) >= 0)
4048 		goto ack_done;
4049 
4050 	/* Ignore duplicate responses. */
4051 	if (unlikely(cmp_psn(psn, qp->s_last_psn) <= 0))
4052 		goto ack_done;
4053 
4054 	if (unlikely(qp->s_acked == qp->s_tail))
4055 		goto ack_done;
4056 
4057 	/*
4058 	 * If we are waiting for a particular packet sequence number
4059 	 * due to a request being resent, check for it. Otherwise,
4060 	 * ensure that we haven't missed anything.
4061 	 */
4062 	if (qp->r_flags & RVT_R_RDMAR_SEQ) {
4063 		if (cmp_psn(psn, qp->s_last_psn + 1) != 0)
4064 			goto ack_done;
4065 		qp->r_flags &= ~RVT_R_RDMAR_SEQ;
4066 	}
4067 
4068 	wqe = rvt_get_swqe_ptr(qp, qpriv->s_tid_cur);
4069 	if (unlikely(wqe->wr.opcode != IB_WR_TID_RDMA_WRITE))
4070 		goto ack_op_err;
4071 
4072 	req = wqe_to_tid_req(wqe);
4073 	/*
4074 	 * If we've lost ACKs and our acked_tail pointer is too far
4075 	 * behind, don't overwrite segments. Just drop the packet and
4076 	 * let the reliability protocol take care of it.
4077 	 */
4078 	if (!CIRC_SPACE(req->setup_head, req->acked_tail, MAX_FLOWS))
4079 		goto ack_done;
4080 
4081 	/*
4082 	 * The call to do_rc_ack() should be last in the chain of
4083 	 * packet checks because it will end up updating the QP state.
4084 	 * Therefore, anything that would prevent the packet from
4085 	 * being accepted as a successful response should be prior
4086 	 * to it.
4087 	 */
4088 	if (!do_rc_ack(qp, aeth, psn, opcode, 0, rcd))
4089 		goto ack_done;
4090 
4091 	trace_hfi1_ack(qp, psn);
4092 
4093 	flow = &req->flows[req->setup_head];
4094 	flow->pkt = 0;
4095 	flow->tid_idx = 0;
4096 	flow->tid_offset = 0;
4097 	flow->sent = 0;
4098 	flow->resync_npkts = 0;
4099 	flow->tid_qpn = be32_to_cpu(ohdr->u.tid_rdma.w_rsp.tid_flow_qp);
4100 	flow->idx = (flow->tid_qpn >> TID_RDMA_DESTQP_FLOW_SHIFT) &
4101 		TID_RDMA_DESTQP_FLOW_MASK;
4102 	flow_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.w_rsp.tid_flow_psn));
4103 	flow->flow_state.generation = flow_psn >> HFI1_KDETH_BTH_SEQ_SHIFT;
4104 	flow->flow_state.spsn = flow_psn & HFI1_KDETH_BTH_SEQ_MASK;
4105 	flow->flow_state.resp_ib_psn = psn;
4106 	flow->length = min_t(u32, req->seg_len,
4107 			     (wqe->length - (req->comp_seg * req->seg_len)));
4108 
4109 	flow->npkts = rvt_div_round_up_mtu(qp, flow->length);
4110 	flow->flow_state.lpsn = flow->flow_state.spsn +
4111 		flow->npkts - 1;
4112 	/* payload length = packet length - (header length + ICRC length) */
4113 	pktlen = packet->tlen - (packet->hlen + 4);
4114 	if (pktlen > sizeof(flow->tid_entry)) {
4115 		status = IB_WC_LOC_LEN_ERR;
4116 		goto ack_err;
4117 	}
4118 	memcpy(flow->tid_entry, packet->ebuf, pktlen);
4119 	flow->tidcnt = pktlen / sizeof(*flow->tid_entry);
4120 	trace_hfi1_tid_flow_rcv_write_resp(qp, req->setup_head, flow);
4121 
4122 	req->comp_seg++;
4123 	trace_hfi1_tid_write_sender_rcv_resp(qp, 0);
4124 	/*
4125 	 * Walk the TID_ENTRY list to make sure we have enough space for a
4126 	 * complete segment.
4127 	 */
4128 	for (i = 0; i < flow->tidcnt; i++) {
4129 		trace_hfi1_tid_entry_rcv_write_resp(/* entry */
4130 			qp, i, flow->tid_entry[i]);
4131 		if (!EXP_TID_GET(flow->tid_entry[i], LEN)) {
4132 			status = IB_WC_LOC_LEN_ERR;
4133 			goto ack_err;
4134 		}
4135 		tidlen += EXP_TID_GET(flow->tid_entry[i], LEN);
4136 	}
4137 	if (tidlen * PAGE_SIZE < flow->length) {
4138 		status = IB_WC_LOC_LEN_ERR;
4139 		goto ack_err;
4140 	}
4141 
4142 	trace_hfi1_tid_req_rcv_write_resp(qp, 0, wqe->wr.opcode, wqe->psn,
4143 					  wqe->lpsn, req);
4144 	/*
4145 	 * If this is the first response for this request, set the initial
4146 	 * flow index to the current flow.
4147 	 */
4148 	if (!cmp_psn(psn, wqe->psn)) {
4149 		req->r_last_acked = mask_psn(wqe->psn - 1);
4150 		/* Set acked flow index to head index */
4151 		req->acked_tail = req->setup_head;
4152 	}
4153 
4154 	/* advance circular buffer head */
4155 	req->setup_head = CIRC_NEXT(req->setup_head, MAX_FLOWS);
4156 	req->state = TID_REQUEST_ACTIVE;
4157 
4158 	/*
4159 	 * If all responses for this TID RDMA WRITE request have been received
4160 	 * advance the pointer to the next one.
4161 	 * Since TID RDMA requests could be mixed in with regular IB requests,
4162 	 * they might not appear sequentially in the queue. Therefore, the
4163 	 * next request needs to be "found".
4164 	 */
4165 	if (qpriv->s_tid_cur != qpriv->s_tid_head &&
4166 	    req->comp_seg == req->total_segs) {
4167 		for (i = qpriv->s_tid_cur + 1; ; i++) {
4168 			if (i == qp->s_size)
4169 				i = 0;
4170 			wqe = rvt_get_swqe_ptr(qp, i);
4171 			if (i == qpriv->s_tid_head)
4172 				break;
4173 			if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE)
4174 				break;
4175 		}
4176 		qpriv->s_tid_cur = i;
4177 	}
4178 	qp->s_flags &= ~HFI1_S_WAIT_TID_RESP;
4179 	hfi1_schedule_tid_send(qp);
4180 	goto ack_done;
4181 
4182 ack_op_err:
4183 	status = IB_WC_LOC_QP_OP_ERR;
4184 ack_err:
4185 	rvt_error_qp(qp, status);
4186 ack_done:
4187 	if (fecn)
4188 		qp->s_flags |= RVT_S_ECN;
4189 	spin_unlock_irqrestore(&qp->s_lock, flags);
4190 }
4191 
4192 bool hfi1_build_tid_rdma_packet(struct rvt_swqe *wqe,
4193 				struct ib_other_headers *ohdr,
4194 				u32 *bth1, u32 *bth2, u32 *len)
4195 {
4196 	struct tid_rdma_request *req = wqe_to_tid_req(wqe);
4197 	struct tid_rdma_flow *flow = &req->flows[req->clear_tail];
4198 	struct tid_rdma_params *remote;
4199 	struct rvt_qp *qp = req->qp;
4200 	struct hfi1_qp_priv *qpriv = qp->priv;
4201 	u32 tidentry = flow->tid_entry[flow->tid_idx];
4202 	u32 tidlen = EXP_TID_GET(tidentry, LEN) << PAGE_SHIFT;
4203 	struct tid_rdma_write_data *wd = &ohdr->u.tid_rdma.w_data;
4204 	u32 next_offset, om = KDETH_OM_LARGE;
4205 	bool last_pkt;
4206 
4207 	if (!tidlen) {
4208 		hfi1_trdma_send_complete(qp, wqe, IB_WC_REM_INV_RD_REQ_ERR);
4209 		rvt_error_qp(qp, IB_WC_REM_INV_RD_REQ_ERR);
4210 	}
4211 
4212 	*len = min_t(u32, qp->pmtu, tidlen - flow->tid_offset);
4213 	flow->sent += *len;
4214 	next_offset = flow->tid_offset + *len;
4215 	last_pkt = (flow->tid_idx == (flow->tidcnt - 1) &&
4216 		    next_offset >= tidlen) || (flow->sent >= flow->length);
4217 	trace_hfi1_tid_entry_build_write_data(qp, flow->tid_idx, tidentry);
4218 	trace_hfi1_tid_flow_build_write_data(qp, req->clear_tail, flow);
4219 
4220 	rcu_read_lock();
4221 	remote = rcu_dereference(qpriv->tid_rdma.remote);
4222 	KDETH_RESET(wd->kdeth0, KVER, 0x1);
4223 	KDETH_SET(wd->kdeth0, SH, !last_pkt);
4224 	KDETH_SET(wd->kdeth0, INTR, !!(!last_pkt && remote->urg));
4225 	KDETH_SET(wd->kdeth0, TIDCTRL, EXP_TID_GET(tidentry, CTRL));
4226 	KDETH_SET(wd->kdeth0, TID, EXP_TID_GET(tidentry, IDX));
4227 	KDETH_SET(wd->kdeth0, OM, om == KDETH_OM_LARGE);
4228 	KDETH_SET(wd->kdeth0, OFFSET, flow->tid_offset / om);
4229 	KDETH_RESET(wd->kdeth1, JKEY, remote->jkey);
4230 	wd->verbs_qp = cpu_to_be32(qp->remote_qpn);
4231 	rcu_read_unlock();
4232 
4233 	*bth1 = flow->tid_qpn;
4234 	*bth2 = mask_psn(((flow->flow_state.spsn + flow->pkt++) &
4235 			 HFI1_KDETH_BTH_SEQ_MASK) |
4236 			 (flow->flow_state.generation <<
4237 			  HFI1_KDETH_BTH_SEQ_SHIFT));
4238 	if (last_pkt) {
4239 		/* PSNs are zero-based, so +1 to count number of packets */
4240 		if (flow->flow_state.lpsn + 1 +
4241 		    rvt_div_round_up_mtu(qp, req->seg_len) >
4242 		    MAX_TID_FLOW_PSN)
4243 			req->state = TID_REQUEST_SYNC;
4244 		*bth2 |= IB_BTH_REQ_ACK;
4245 	}
4246 
4247 	if (next_offset >= tidlen) {
4248 		flow->tid_offset = 0;
4249 		flow->tid_idx++;
4250 	} else {
4251 		flow->tid_offset = next_offset;
4252 	}
4253 	return last_pkt;
4254 }
4255 
4256 void hfi1_rc_rcv_tid_rdma_write_data(struct hfi1_packet *packet)
4257 {
4258 	struct rvt_qp *qp = packet->qp;
4259 	struct hfi1_qp_priv *priv = qp->priv;
4260 	struct hfi1_ctxtdata *rcd = priv->rcd;
4261 	struct ib_other_headers *ohdr = packet->ohdr;
4262 	struct rvt_ack_entry *e;
4263 	struct tid_rdma_request *req;
4264 	struct tid_rdma_flow *flow;
4265 	struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
4266 	unsigned long flags;
4267 	u32 psn, next;
4268 	u8 opcode;
4269 	bool fecn;
4270 
4271 	fecn = process_ecn(qp, packet);
4272 	psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4273 	opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;
4274 
4275 	/*
4276 	 * All error handling should be done by now. If we are here, the packet
4277 	 * is either good or been accepted by the error handler.
4278 	 */
4279 	spin_lock_irqsave(&qp->s_lock, flags);
4280 	e = &qp->s_ack_queue[priv->r_tid_tail];
4281 	req = ack_to_tid_req(e);
4282 	flow = &req->flows[req->clear_tail];
4283 	if (cmp_psn(psn, full_flow_psn(flow, flow->flow_state.lpsn))) {
4284 		update_r_next_psn_fecn(packet, priv, rcd, flow, fecn);
4285 
4286 		if (cmp_psn(psn, flow->flow_state.r_next_psn))
4287 			goto send_nak;
4288 
4289 		flow->flow_state.r_next_psn = mask_psn(psn + 1);
4290 		/*
4291 		 * Copy the payload to destination buffer if this packet is
4292 		 * delivered as an eager packet due to RSM rule and FECN.
4293 		 * The RSM rule selects FECN bit in BTH and SH bit in
4294 		 * KDETH header and therefore will not match the last
4295 		 * packet of each segment that has SH bit cleared.
4296 		 */
4297 		if (fecn && packet->etype == RHF_RCV_TYPE_EAGER) {
4298 			struct rvt_sge_state ss;
4299 			u32 len;
4300 			u32 tlen = packet->tlen;
4301 			u16 hdrsize = packet->hlen;
4302 			u8 pad = packet->pad;
4303 			u8 extra_bytes = pad + packet->extra_byte +
4304 				(SIZE_OF_CRC << 2);
4305 			u32 pmtu = qp->pmtu;
4306 
4307 			if (unlikely(tlen != (hdrsize + pmtu + extra_bytes)))
4308 				goto send_nak;
4309 			len = req->comp_seg * req->seg_len;
4310 			len += delta_psn(psn,
4311 				full_flow_psn(flow, flow->flow_state.spsn)) *
4312 				pmtu;
4313 			if (unlikely(req->total_len - len < pmtu))
4314 				goto send_nak;
4315 
4316 			/*
4317 			 * The e->rdma_sge field is set when TID RDMA WRITE REQ
4318 			 * is first received and is never modified thereafter.
4319 			 */
4320 			ss.sge = e->rdma_sge;
4321 			ss.sg_list = NULL;
4322 			ss.num_sge = 1;
4323 			ss.total_len = req->total_len;
4324 			rvt_skip_sge(&ss, len, false);
4325 			rvt_copy_sge(qp, &ss, packet->payload, pmtu, false,
4326 				     false);
4327 			/* Raise the sw sequence check flag for next packet */
4328 			priv->r_next_psn_kdeth = mask_psn(psn + 1);
4329 			priv->s_flags |= HFI1_R_TID_SW_PSN;
4330 		}
4331 		goto exit;
4332 	}
4333 	flow->flow_state.r_next_psn = mask_psn(psn + 1);
4334 	hfi1_kern_exp_rcv_clear(req);
4335 	priv->alloc_w_segs--;
4336 	rcd->flows[flow->idx].psn = psn & HFI1_KDETH_BTH_SEQ_MASK;
4337 	req->comp_seg++;
4338 	priv->s_nak_state = 0;
4339 
4340 	/*
4341 	 * Release the flow if one of the following conditions has been met:
4342 	 *  - The request has reached a sync point AND all outstanding
4343 	 *    segments have been completed, or
4344 	 *  - The entire request is complete and there are no more requests
4345 	 *    (of any kind) in the queue.
4346 	 */
4347 	trace_hfi1_rsp_rcv_tid_write_data(qp, psn);
4348 	trace_hfi1_tid_req_rcv_write_data(qp, 0, e->opcode, e->psn, e->lpsn,
4349 					  req);
4350 	trace_hfi1_tid_write_rsp_rcv_data(qp);
4351 	validate_r_tid_ack(priv);
4352 
4353 	if (opcode == TID_OP(WRITE_DATA_LAST)) {
4354 		release_rdma_sge_mr(e);
4355 		for (next = priv->r_tid_tail + 1; ; next++) {
4356 			if (next > rvt_size_atomic(&dev->rdi))
4357 				next = 0;
4358 			if (next == priv->r_tid_head)
4359 				break;
4360 			e = &qp->s_ack_queue[next];
4361 			if (e->opcode == TID_OP(WRITE_REQ))
4362 				break;
4363 		}
4364 		priv->r_tid_tail = next;
4365 		if (++qp->s_acked_ack_queue > rvt_size_atomic(&dev->rdi))
4366 			qp->s_acked_ack_queue = 0;
4367 	}
4368 
4369 	hfi1_tid_write_alloc_resources(qp, true);
4370 
4371 	/*
4372 	 * If we need to generate more responses, schedule the
4373 	 * send engine.
4374 	 */
4375 	if (req->cur_seg < req->total_segs ||
4376 	    qp->s_tail_ack_queue != qp->r_head_ack_queue) {
4377 		qp->s_flags |= RVT_S_RESP_PENDING;
4378 		hfi1_schedule_send(qp);
4379 	}
4380 
4381 	priv->pending_tid_w_segs--;
4382 	if (priv->s_flags & HFI1_R_TID_RSC_TIMER) {
4383 		if (priv->pending_tid_w_segs)
4384 			hfi1_mod_tid_reap_timer(req->qp);
4385 		else
4386 			hfi1_stop_tid_reap_timer(req->qp);
4387 	}
4388 
4389 done:
4390 	tid_rdma_schedule_ack(qp);
4391 exit:
4392 	priv->r_next_psn_kdeth = flow->flow_state.r_next_psn;
4393 	if (fecn)
4394 		qp->s_flags |= RVT_S_ECN;
4395 	spin_unlock_irqrestore(&qp->s_lock, flags);
4396 	return;
4397 
4398 send_nak:
4399 	if (!priv->s_nak_state) {
4400 		priv->s_nak_state = IB_NAK_PSN_ERROR;
4401 		priv->s_nak_psn = flow->flow_state.r_next_psn;
4402 		tid_rdma_trigger_ack(qp);
4403 	}
4404 	goto done;
4405 }
4406 
4407 static bool hfi1_tid_rdma_is_resync_psn(u32 psn)
4408 {
4409 	return (bool)((psn & HFI1_KDETH_BTH_SEQ_MASK) ==
4410 		      HFI1_KDETH_BTH_SEQ_MASK);
4411 }
4412 
4413 u32 hfi1_build_tid_rdma_write_ack(struct rvt_qp *qp, struct rvt_ack_entry *e,
4414 				  struct ib_other_headers *ohdr, u16 iflow,
4415 				  u32 *bth1, u32 *bth2)
4416 {
4417 	struct hfi1_qp_priv *qpriv = qp->priv;
4418 	struct tid_flow_state *fs = &qpriv->flow_state;
4419 	struct tid_rdma_request *req = ack_to_tid_req(e);
4420 	struct tid_rdma_flow *flow = &req->flows[iflow];
4421 	struct tid_rdma_params *remote;
4422 
4423 	rcu_read_lock();
4424 	remote = rcu_dereference(qpriv->tid_rdma.remote);
4425 	KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth1, JKEY, remote->jkey);
4426 	ohdr->u.tid_rdma.ack.verbs_qp = cpu_to_be32(qp->remote_qpn);
4427 	*bth1 = remote->qp;
4428 	rcu_read_unlock();
4429 
4430 	if (qpriv->resync) {
4431 		*bth2 = mask_psn((fs->generation <<
4432 				  HFI1_KDETH_BTH_SEQ_SHIFT) - 1);
4433 		ohdr->u.tid_rdma.ack.aeth = rvt_compute_aeth(qp);
4434 	} else if (qpriv->s_nak_state) {
4435 		*bth2 = mask_psn(qpriv->s_nak_psn);
4436 		ohdr->u.tid_rdma.ack.aeth =
4437 			cpu_to_be32((qp->r_msn & IB_MSN_MASK) |
4438 				    (qpriv->s_nak_state <<
4439 				     IB_AETH_CREDIT_SHIFT));
4440 	} else {
4441 		*bth2 = full_flow_psn(flow, flow->flow_state.lpsn);
4442 		ohdr->u.tid_rdma.ack.aeth = rvt_compute_aeth(qp);
4443 	}
4444 	KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth0, KVER, 0x1);
4445 	ohdr->u.tid_rdma.ack.tid_flow_qp =
4446 		cpu_to_be32(qpriv->tid_rdma.local.qp |
4447 			    ((flow->idx & TID_RDMA_DESTQP_FLOW_MASK) <<
4448 			     TID_RDMA_DESTQP_FLOW_SHIFT) |
4449 			    qpriv->rcd->ctxt);
4450 
4451 	ohdr->u.tid_rdma.ack.tid_flow_psn = 0;
4452 	ohdr->u.tid_rdma.ack.verbs_psn =
4453 		cpu_to_be32(flow->flow_state.resp_ib_psn);
4454 
4455 	if (qpriv->resync) {
4456 		/*
4457 		 * If the PSN before the current expect KDETH PSN is the
4458 		 * RESYNC PSN, then we never received a good TID RDMA WRITE
4459 		 * DATA packet after a previous RESYNC.
4460 		 * In this case, the next expected KDETH PSN stays the same.
4461 		 */
4462 		if (hfi1_tid_rdma_is_resync_psn(qpriv->r_next_psn_kdeth - 1)) {
4463 			ohdr->u.tid_rdma.ack.tid_flow_psn =
4464 				cpu_to_be32(qpriv->r_next_psn_kdeth_save);
4465 		} else {
4466 			/*
4467 			 * Because the KDETH PSNs jump during a RESYNC, it's
4468 			 * not possible to infer (or compute) the previous value
4469 			 * of r_next_psn_kdeth in the case of back-to-back
4470 			 * RESYNC packets. Therefore, we save it.
4471 			 */
4472 			qpriv->r_next_psn_kdeth_save =
4473 				qpriv->r_next_psn_kdeth - 1;
4474 			ohdr->u.tid_rdma.ack.tid_flow_psn =
4475 				cpu_to_be32(qpriv->r_next_psn_kdeth_save);
4476 			qpriv->r_next_psn_kdeth = mask_psn(*bth2 + 1);
4477 		}
4478 		qpriv->resync = false;
4479 	}
4480 
4481 	return sizeof(ohdr->u.tid_rdma.ack) / sizeof(u32);
4482 }
4483 
4484 void hfi1_rc_rcv_tid_rdma_ack(struct hfi1_packet *packet)
4485 {
4486 	struct ib_other_headers *ohdr = packet->ohdr;
4487 	struct rvt_qp *qp = packet->qp;
4488 	struct hfi1_qp_priv *qpriv = qp->priv;
4489 	struct rvt_swqe *wqe;
4490 	struct tid_rdma_request *req;
4491 	struct tid_rdma_flow *flow;
4492 	u32 aeth, psn, req_psn, ack_psn, flpsn, resync_psn, ack_kpsn;
4493 	unsigned long flags;
4494 	u16 fidx;
4495 
4496 	trace_hfi1_tid_write_sender_rcv_tid_ack(qp, 0);
4497 	process_ecn(qp, packet);
4498 	psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4499 	aeth = be32_to_cpu(ohdr->u.tid_rdma.ack.aeth);
4500 	req_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.ack.verbs_psn));
4501 	resync_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.ack.tid_flow_psn));
4502 
4503 	spin_lock_irqsave(&qp->s_lock, flags);
4504 	trace_hfi1_rcv_tid_ack(qp, aeth, psn, req_psn, resync_psn);
4505 
4506 	/* If we are waiting for an ACK to RESYNC, drop any other packets */
4507 	if ((qp->s_flags & HFI1_S_WAIT_HALT) &&
4508 	    cmp_psn(psn, qpriv->s_resync_psn))
4509 		goto ack_op_err;
4510 
4511 	ack_psn = req_psn;
4512 	if (hfi1_tid_rdma_is_resync_psn(psn))
4513 		ack_kpsn = resync_psn;
4514 	else
4515 		ack_kpsn = psn;
4516 	if (aeth >> 29) {
4517 		ack_psn--;
4518 		ack_kpsn--;
4519 	}
4520 
4521 	if (unlikely(qp->s_acked == qp->s_tail))
4522 		goto ack_op_err;
4523 
4524 	wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
4525 
4526 	if (wqe->wr.opcode != IB_WR_TID_RDMA_WRITE)
4527 		goto ack_op_err;
4528 
4529 	req = wqe_to_tid_req(wqe);
4530 	trace_hfi1_tid_req_rcv_tid_ack(qp, 0, wqe->wr.opcode, wqe->psn,
4531 				       wqe->lpsn, req);
4532 	flow = &req->flows[req->acked_tail];
4533 	trace_hfi1_tid_flow_rcv_tid_ack(qp, req->acked_tail, flow);
4534 
4535 	/* Drop stale ACK/NAK */
4536 	if (cmp_psn(psn, full_flow_psn(flow, flow->flow_state.spsn)) < 0 ||
4537 	    cmp_psn(req_psn, flow->flow_state.resp_ib_psn) < 0)
4538 		goto ack_op_err;
4539 
4540 	while (cmp_psn(ack_kpsn,
4541 		       full_flow_psn(flow, flow->flow_state.lpsn)) >= 0 &&
4542 	       req->ack_seg < req->cur_seg) {
4543 		req->ack_seg++;
4544 		/* advance acked segment pointer */
4545 		req->acked_tail = CIRC_NEXT(req->acked_tail, MAX_FLOWS);
4546 		req->r_last_acked = flow->flow_state.resp_ib_psn;
4547 		trace_hfi1_tid_req_rcv_tid_ack(qp, 0, wqe->wr.opcode, wqe->psn,
4548 					       wqe->lpsn, req);
4549 		if (req->ack_seg == req->total_segs) {
4550 			req->state = TID_REQUEST_COMPLETE;
4551 			wqe = do_rc_completion(qp, wqe,
4552 					       to_iport(qp->ibqp.device,
4553 							qp->port_num));
4554 			trace_hfi1_sender_rcv_tid_ack(qp);
4555 			atomic_dec(&qpriv->n_tid_requests);
4556 			if (qp->s_acked == qp->s_tail)
4557 				break;
4558 			if (wqe->wr.opcode != IB_WR_TID_RDMA_WRITE)
4559 				break;
4560 			req = wqe_to_tid_req(wqe);
4561 		}
4562 		flow = &req->flows[req->acked_tail];
4563 		trace_hfi1_tid_flow_rcv_tid_ack(qp, req->acked_tail, flow);
4564 	}
4565 
4566 	trace_hfi1_tid_req_rcv_tid_ack(qp, 0, wqe->wr.opcode, wqe->psn,
4567 				       wqe->lpsn, req);
4568 	switch (aeth >> 29) {
4569 	case 0:         /* ACK */
4570 		if (qpriv->s_flags & RVT_S_WAIT_ACK)
4571 			qpriv->s_flags &= ~RVT_S_WAIT_ACK;
4572 		if (!hfi1_tid_rdma_is_resync_psn(psn)) {
4573 			/* Check if there is any pending TID ACK */
4574 			if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE &&
4575 			    req->ack_seg < req->cur_seg)
4576 				hfi1_mod_tid_retry_timer(qp);
4577 			else
4578 				hfi1_stop_tid_retry_timer(qp);
4579 			hfi1_schedule_send(qp);
4580 		} else {
4581 			u32 spsn, fpsn, last_acked, generation;
4582 			struct tid_rdma_request *rptr;
4583 
4584 			/* ACK(RESYNC) */
4585 			hfi1_stop_tid_retry_timer(qp);
4586 			/* Allow new requests (see hfi1_make_tid_rdma_pkt) */
4587 			qp->s_flags &= ~HFI1_S_WAIT_HALT;
4588 			/*
4589 			 * Clear RVT_S_SEND_ONE flag in case that the TID RDMA
4590 			 * ACK is received after the TID retry timer is fired
4591 			 * again. In this case, do not send any more TID
4592 			 * RESYNC request or wait for any more TID ACK packet.
4593 			 */
4594 			qpriv->s_flags &= ~RVT_S_SEND_ONE;
4595 			hfi1_schedule_send(qp);
4596 
4597 			if ((qp->s_acked == qpriv->s_tid_tail &&
4598 			     req->ack_seg == req->total_segs) ||
4599 			    qp->s_acked == qp->s_tail) {
4600 				qpriv->s_state = TID_OP(WRITE_DATA_LAST);
4601 				goto done;
4602 			}
4603 
4604 			if (req->ack_seg == req->comp_seg) {
4605 				qpriv->s_state = TID_OP(WRITE_DATA);
4606 				goto done;
4607 			}
4608 
4609 			/*
4610 			 * The PSN to start with is the next PSN after the
4611 			 * RESYNC PSN.
4612 			 */
4613 			psn = mask_psn(psn + 1);
4614 			generation = psn >> HFI1_KDETH_BTH_SEQ_SHIFT;
4615 			spsn = 0;
4616 
4617 			/*
4618 			 * Update to the correct WQE when we get an ACK(RESYNC)
4619 			 * in the middle of a request.
4620 			 */
4621 			if (delta_psn(ack_psn, wqe->lpsn))
4622 				wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
4623 			req = wqe_to_tid_req(wqe);
4624 			flow = &req->flows[req->acked_tail];
4625 			/*
4626 			 * RESYNC re-numbers the PSN ranges of all remaining
4627 			 * segments. Also, PSN's start from 0 in the middle of a
4628 			 * segment and the first segment size is less than the
4629 			 * default number of packets. flow->resync_npkts is used
4630 			 * to track the number of packets from the start of the
4631 			 * real segment to the point of 0 PSN after the RESYNC
4632 			 * in order to later correctly rewind the SGE.
4633 			 */
4634 			fpsn = full_flow_psn(flow, flow->flow_state.spsn);
4635 			req->r_ack_psn = psn;
4636 			/*
4637 			 * If resync_psn points to the last flow PSN for a
4638 			 * segment and the new segment (likely from a new
4639 			 * request) starts with a new generation number, we
4640 			 * need to adjust resync_psn accordingly.
4641 			 */
4642 			if (flow->flow_state.generation !=
4643 			    (resync_psn >> HFI1_KDETH_BTH_SEQ_SHIFT))
4644 				resync_psn = mask_psn(fpsn - 1);
4645 			flow->resync_npkts +=
4646 				delta_psn(mask_psn(resync_psn + 1), fpsn);
4647 			/*
4648 			 * Renumber all packet sequence number ranges
4649 			 * based on the new generation.
4650 			 */
4651 			last_acked = qp->s_acked;
4652 			rptr = req;
4653 			while (1) {
4654 				/* start from last acked segment */
4655 				for (fidx = rptr->acked_tail;
4656 				     CIRC_CNT(rptr->setup_head, fidx,
4657 					      MAX_FLOWS);
4658 				     fidx = CIRC_NEXT(fidx, MAX_FLOWS)) {
4659 					u32 lpsn;
4660 					u32 gen;
4661 
4662 					flow = &rptr->flows[fidx];
4663 					gen = flow->flow_state.generation;
4664 					if (WARN_ON(gen == generation &&
4665 						    flow->flow_state.spsn !=
4666 						     spsn))
4667 						continue;
4668 					lpsn = flow->flow_state.lpsn;
4669 					lpsn = full_flow_psn(flow, lpsn);
4670 					flow->npkts =
4671 						delta_psn(lpsn,
4672 							  mask_psn(resync_psn)
4673 							  );
4674 					flow->flow_state.generation =
4675 						generation;
4676 					flow->flow_state.spsn = spsn;
4677 					flow->flow_state.lpsn =
4678 						flow->flow_state.spsn +
4679 						flow->npkts - 1;
4680 					flow->pkt = 0;
4681 					spsn += flow->npkts;
4682 					resync_psn += flow->npkts;
4683 					trace_hfi1_tid_flow_rcv_tid_ack(qp,
4684 									fidx,
4685 									flow);
4686 				}
4687 				if (++last_acked == qpriv->s_tid_cur + 1)
4688 					break;
4689 				if (last_acked == qp->s_size)
4690 					last_acked = 0;
4691 				wqe = rvt_get_swqe_ptr(qp, last_acked);
4692 				rptr = wqe_to_tid_req(wqe);
4693 			}
4694 			req->cur_seg = req->ack_seg;
4695 			qpriv->s_tid_tail = qp->s_acked;
4696 			qpriv->s_state = TID_OP(WRITE_REQ);
4697 			hfi1_schedule_tid_send(qp);
4698 		}
4699 done:
4700 		qpriv->s_retry = qp->s_retry_cnt;
4701 		break;
4702 
4703 	case 3:         /* NAK */
4704 		hfi1_stop_tid_retry_timer(qp);
4705 		switch ((aeth >> IB_AETH_CREDIT_SHIFT) &
4706 			IB_AETH_CREDIT_MASK) {
4707 		case 0: /* PSN sequence error */
4708 			if (!req->flows)
4709 				break;
4710 			flow = &req->flows[req->acked_tail];
4711 			flpsn = full_flow_psn(flow, flow->flow_state.lpsn);
4712 			if (cmp_psn(psn, flpsn) > 0)
4713 				break;
4714 			trace_hfi1_tid_flow_rcv_tid_ack(qp, req->acked_tail,
4715 							flow);
4716 			req->r_ack_psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4717 			req->cur_seg = req->ack_seg;
4718 			qpriv->s_tid_tail = qp->s_acked;
4719 			qpriv->s_state = TID_OP(WRITE_REQ);
4720 			qpriv->s_retry = qp->s_retry_cnt;
4721 			hfi1_schedule_tid_send(qp);
4722 			break;
4723 
4724 		default:
4725 			break;
4726 		}
4727 		break;
4728 
4729 	default:
4730 		break;
4731 	}
4732 
4733 ack_op_err:
4734 	spin_unlock_irqrestore(&qp->s_lock, flags);
4735 }
4736 
4737 void hfi1_add_tid_retry_timer(struct rvt_qp *qp)
4738 {
4739 	struct hfi1_qp_priv *priv = qp->priv;
4740 	struct ib_qp *ibqp = &qp->ibqp;
4741 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
4742 
4743 	lockdep_assert_held(&qp->s_lock);
4744 	if (!(priv->s_flags & HFI1_S_TID_RETRY_TIMER)) {
4745 		priv->s_flags |= HFI1_S_TID_RETRY_TIMER;
4746 		priv->s_tid_retry_timer.expires = jiffies +
4747 			priv->tid_retry_timeout_jiffies + rdi->busy_jiffies;
4748 		add_timer(&priv->s_tid_retry_timer);
4749 	}
4750 }
4751 
4752 static void hfi1_mod_tid_retry_timer(struct rvt_qp *qp)
4753 {
4754 	struct hfi1_qp_priv *priv = qp->priv;
4755 	struct ib_qp *ibqp = &qp->ibqp;
4756 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
4757 
4758 	lockdep_assert_held(&qp->s_lock);
4759 	priv->s_flags |= HFI1_S_TID_RETRY_TIMER;
4760 	mod_timer(&priv->s_tid_retry_timer, jiffies +
4761 		  priv->tid_retry_timeout_jiffies + rdi->busy_jiffies);
4762 }
4763 
4764 static int hfi1_stop_tid_retry_timer(struct rvt_qp *qp)
4765 {
4766 	struct hfi1_qp_priv *priv = qp->priv;
4767 	int rval = 0;
4768 
4769 	lockdep_assert_held(&qp->s_lock);
4770 	if (priv->s_flags & HFI1_S_TID_RETRY_TIMER) {
4771 		rval = del_timer(&priv->s_tid_retry_timer);
4772 		priv->s_flags &= ~HFI1_S_TID_RETRY_TIMER;
4773 	}
4774 	return rval;
4775 }
4776 
4777 void hfi1_del_tid_retry_timer(struct rvt_qp *qp)
4778 {
4779 	struct hfi1_qp_priv *priv = qp->priv;
4780 
4781 	del_timer_sync(&priv->s_tid_retry_timer);
4782 	priv->s_flags &= ~HFI1_S_TID_RETRY_TIMER;
4783 }
4784 
4785 static void hfi1_tid_retry_timeout(struct timer_list *t)
4786 {
4787 	struct hfi1_qp_priv *priv = from_timer(priv, t, s_tid_retry_timer);
4788 	struct rvt_qp *qp = priv->owner;
4789 	struct rvt_swqe *wqe;
4790 	unsigned long flags;
4791 	struct tid_rdma_request *req;
4792 
4793 	spin_lock_irqsave(&qp->r_lock, flags);
4794 	spin_lock(&qp->s_lock);
4795 	trace_hfi1_tid_write_sender_retry_timeout(qp, 0);
4796 	if (priv->s_flags & HFI1_S_TID_RETRY_TIMER) {
4797 		hfi1_stop_tid_retry_timer(qp);
4798 		if (!priv->s_retry) {
4799 			trace_hfi1_msg_tid_retry_timeout(/* msg */
4800 				qp,
4801 				"Exhausted retries. Tid retry timeout = ",
4802 				(u64)priv->tid_retry_timeout_jiffies);
4803 
4804 			wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
4805 			hfi1_trdma_send_complete(qp, wqe, IB_WC_RETRY_EXC_ERR);
4806 			rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
4807 		} else {
4808 			wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
4809 			req = wqe_to_tid_req(wqe);
4810 			trace_hfi1_tid_req_tid_retry_timeout(/* req */
4811 			   qp, 0, wqe->wr.opcode, wqe->psn, wqe->lpsn, req);
4812 
4813 			priv->s_flags &= ~RVT_S_WAIT_ACK;
4814 			/* Only send one packet (the RESYNC) */
4815 			priv->s_flags |= RVT_S_SEND_ONE;
4816 			/*
4817 			 * No additional request shall be made by this QP until
4818 			 * the RESYNC has been complete.
4819 			 */
4820 			qp->s_flags |= HFI1_S_WAIT_HALT;
4821 			priv->s_state = TID_OP(RESYNC);
4822 			priv->s_retry--;
4823 			hfi1_schedule_tid_send(qp);
4824 		}
4825 	}
4826 	spin_unlock(&qp->s_lock);
4827 	spin_unlock_irqrestore(&qp->r_lock, flags);
4828 }
4829 
4830 u32 hfi1_build_tid_rdma_resync(struct rvt_qp *qp, struct rvt_swqe *wqe,
4831 			       struct ib_other_headers *ohdr, u32 *bth1,
4832 			       u32 *bth2, u16 fidx)
4833 {
4834 	struct hfi1_qp_priv *qpriv = qp->priv;
4835 	struct tid_rdma_params *remote;
4836 	struct tid_rdma_request *req = wqe_to_tid_req(wqe);
4837 	struct tid_rdma_flow *flow = &req->flows[fidx];
4838 	u32 generation;
4839 
4840 	rcu_read_lock();
4841 	remote = rcu_dereference(qpriv->tid_rdma.remote);
4842 	KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth1, JKEY, remote->jkey);
4843 	ohdr->u.tid_rdma.ack.verbs_qp = cpu_to_be32(qp->remote_qpn);
4844 	*bth1 = remote->qp;
4845 	rcu_read_unlock();
4846 
4847 	generation = kern_flow_generation_next(flow->flow_state.generation);
4848 	*bth2 = mask_psn((generation << HFI1_KDETH_BTH_SEQ_SHIFT) - 1);
4849 	qpriv->s_resync_psn = *bth2;
4850 	*bth2 |= IB_BTH_REQ_ACK;
4851 	KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth0, KVER, 0x1);
4852 
4853 	return sizeof(ohdr->u.tid_rdma.resync) / sizeof(u32);
4854 }
4855 
4856 void hfi1_rc_rcv_tid_rdma_resync(struct hfi1_packet *packet)
4857 {
4858 	struct ib_other_headers *ohdr = packet->ohdr;
4859 	struct rvt_qp *qp = packet->qp;
4860 	struct hfi1_qp_priv *qpriv = qp->priv;
4861 	struct hfi1_ctxtdata *rcd = qpriv->rcd;
4862 	struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
4863 	struct rvt_ack_entry *e;
4864 	struct tid_rdma_request *req;
4865 	struct tid_rdma_flow *flow;
4866 	struct tid_flow_state *fs = &qpriv->flow_state;
4867 	u32 psn, generation, idx, gen_next;
4868 	bool fecn;
4869 	unsigned long flags;
4870 
4871 	fecn = process_ecn(qp, packet);
4872 	psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4873 
4874 	generation = mask_psn(psn + 1) >> HFI1_KDETH_BTH_SEQ_SHIFT;
4875 	spin_lock_irqsave(&qp->s_lock, flags);
4876 
4877 	gen_next = (fs->generation == KERN_GENERATION_RESERVED) ?
4878 		generation : kern_flow_generation_next(fs->generation);
4879 	/*
4880 	 * RESYNC packet contains the "next" generation and can only be
4881 	 * from the current or previous generations
4882 	 */
4883 	if (generation != mask_generation(gen_next - 1) &&
4884 	    generation != gen_next)
4885 		goto bail;
4886 	/* Already processing a resync */
4887 	if (qpriv->resync)
4888 		goto bail;
4889 
4890 	spin_lock(&rcd->exp_lock);
4891 	if (fs->index >= RXE_NUM_TID_FLOWS) {
4892 		/*
4893 		 * If we don't have a flow, save the generation so it can be
4894 		 * applied when a new flow is allocated
4895 		 */
4896 		fs->generation = generation;
4897 	} else {
4898 		/* Reprogram the QP flow with new generation */
4899 		rcd->flows[fs->index].generation = generation;
4900 		fs->generation = kern_setup_hw_flow(rcd, fs->index);
4901 	}
4902 	fs->psn = 0;
4903 	/*
4904 	 * Disable SW PSN checking since a RESYNC is equivalent to a
4905 	 * sync point and the flow has/will be reprogrammed
4906 	 */
4907 	qpriv->s_flags &= ~HFI1_R_TID_SW_PSN;
4908 	trace_hfi1_tid_write_rsp_rcv_resync(qp);
4909 
4910 	/*
4911 	 * Reset all TID flow information with the new generation.
4912 	 * This is done for all requests and segments after the
4913 	 * last received segment
4914 	 */
4915 	for (idx = qpriv->r_tid_tail; ; idx++) {
4916 		u16 flow_idx;
4917 
4918 		if (idx > rvt_size_atomic(&dev->rdi))
4919 			idx = 0;
4920 		e = &qp->s_ack_queue[idx];
4921 		if (e->opcode == TID_OP(WRITE_REQ)) {
4922 			req = ack_to_tid_req(e);
4923 			trace_hfi1_tid_req_rcv_resync(qp, 0, e->opcode, e->psn,
4924 						      e->lpsn, req);
4925 
4926 			/* start from last unacked segment */
4927 			for (flow_idx = req->clear_tail;
4928 			     CIRC_CNT(req->setup_head, flow_idx,
4929 				      MAX_FLOWS);
4930 			     flow_idx = CIRC_NEXT(flow_idx, MAX_FLOWS)) {
4931 				u32 lpsn;
4932 				u32 next;
4933 
4934 				flow = &req->flows[flow_idx];
4935 				lpsn = full_flow_psn(flow,
4936 						     flow->flow_state.lpsn);
4937 				next = flow->flow_state.r_next_psn;
4938 				flow->npkts = delta_psn(lpsn, next - 1);
4939 				flow->flow_state.generation = fs->generation;
4940 				flow->flow_state.spsn = fs->psn;
4941 				flow->flow_state.lpsn =
4942 					flow->flow_state.spsn + flow->npkts - 1;
4943 				flow->flow_state.r_next_psn =
4944 					full_flow_psn(flow,
4945 						      flow->flow_state.spsn);
4946 				fs->psn += flow->npkts;
4947 				trace_hfi1_tid_flow_rcv_resync(qp, flow_idx,
4948 							       flow);
4949 			}
4950 		}
4951 		if (idx == qp->s_tail_ack_queue)
4952 			break;
4953 	}
4954 
4955 	spin_unlock(&rcd->exp_lock);
4956 	qpriv->resync = true;
4957 	/* RESYNC request always gets a TID RDMA ACK. */
4958 	qpriv->s_nak_state = 0;
4959 	tid_rdma_trigger_ack(qp);
4960 bail:
4961 	if (fecn)
4962 		qp->s_flags |= RVT_S_ECN;
4963 	spin_unlock_irqrestore(&qp->s_lock, flags);
4964 }
4965 
4966 /*
4967  * Call this function when the last TID RDMA WRITE DATA packet for a request
4968  * is built.
4969  */
4970 static void update_tid_tail(struct rvt_qp *qp)
4971 	__must_hold(&qp->s_lock)
4972 {
4973 	struct hfi1_qp_priv *priv = qp->priv;
4974 	u32 i;
4975 	struct rvt_swqe *wqe;
4976 
4977 	lockdep_assert_held(&qp->s_lock);
4978 	/* Can't move beyond s_tid_cur */
4979 	if (priv->s_tid_tail == priv->s_tid_cur)
4980 		return;
4981 	for (i = priv->s_tid_tail + 1; ; i++) {
4982 		if (i == qp->s_size)
4983 			i = 0;
4984 
4985 		if (i == priv->s_tid_cur)
4986 			break;
4987 		wqe = rvt_get_swqe_ptr(qp, i);
4988 		if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE)
4989 			break;
4990 	}
4991 	priv->s_tid_tail = i;
4992 	priv->s_state = TID_OP(WRITE_RESP);
4993 }
4994 
4995 int hfi1_make_tid_rdma_pkt(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
4996 	__must_hold(&qp->s_lock)
4997 {
4998 	struct hfi1_qp_priv *priv = qp->priv;
4999 	struct rvt_swqe *wqe;
5000 	u32 bth1 = 0, bth2 = 0, hwords = 5, len, middle = 0;
5001 	struct ib_other_headers *ohdr;
5002 	struct rvt_sge_state *ss = &qp->s_sge;
5003 	struct rvt_ack_entry *e = &qp->s_ack_queue[qp->s_tail_ack_queue];
5004 	struct tid_rdma_request *req = ack_to_tid_req(e);
5005 	bool last = false;
5006 	u8 opcode = TID_OP(WRITE_DATA);
5007 
5008 	lockdep_assert_held(&qp->s_lock);
5009 	trace_hfi1_tid_write_sender_make_tid_pkt(qp, 0);
5010 	/*
5011 	 * Prioritize the sending of the requests and responses over the
5012 	 * sending of the TID RDMA data packets.
5013 	 */
5014 	if (((atomic_read(&priv->n_tid_requests) < HFI1_TID_RDMA_WRITE_CNT) &&
5015 	     atomic_read(&priv->n_requests) &&
5016 	     !(qp->s_flags & (RVT_S_BUSY | RVT_S_WAIT_ACK |
5017 			     HFI1_S_ANY_WAIT_IO))) ||
5018 	    (e->opcode == TID_OP(WRITE_REQ) && req->cur_seg < req->alloc_seg &&
5019 	     !(qp->s_flags & (RVT_S_BUSY | HFI1_S_ANY_WAIT_IO)))) {
5020 		struct iowait_work *iowork;
5021 
5022 		iowork = iowait_get_ib_work(&priv->s_iowait);
5023 		ps->s_txreq = get_waiting_verbs_txreq(iowork);
5024 		if (ps->s_txreq || hfi1_make_rc_req(qp, ps)) {
5025 			priv->s_flags |= HFI1_S_TID_BUSY_SET;
5026 			return 1;
5027 		}
5028 	}
5029 
5030 	ps->s_txreq = get_txreq(ps->dev, qp);
5031 	if (!ps->s_txreq)
5032 		goto bail_no_tx;
5033 
5034 	ohdr = &ps->s_txreq->phdr.hdr.ibh.u.oth;
5035 
5036 	if ((priv->s_flags & RVT_S_ACK_PENDING) &&
5037 	    make_tid_rdma_ack(qp, ohdr, ps))
5038 		return 1;
5039 
5040 	/*
5041 	 * Bail out if we can't send data.
5042 	 * Be reminded that this check must been done after the call to
5043 	 * make_tid_rdma_ack() because the responding QP could be in
5044 	 * RTR state where it can send TID RDMA ACK, not TID RDMA WRITE DATA.
5045 	 */
5046 	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_SEND_OK))
5047 		goto bail;
5048 
5049 	if (priv->s_flags & RVT_S_WAIT_ACK)
5050 		goto bail;
5051 
5052 	/* Check whether there is anything to do. */
5053 	if (priv->s_tid_tail == HFI1_QP_WQE_INVALID)
5054 		goto bail;
5055 	wqe = rvt_get_swqe_ptr(qp, priv->s_tid_tail);
5056 	req = wqe_to_tid_req(wqe);
5057 	trace_hfi1_tid_req_make_tid_pkt(qp, 0, wqe->wr.opcode, wqe->psn,
5058 					wqe->lpsn, req);
5059 	switch (priv->s_state) {
5060 	case TID_OP(WRITE_REQ):
5061 	case TID_OP(WRITE_RESP):
5062 		priv->tid_ss.sge = wqe->sg_list[0];
5063 		priv->tid_ss.sg_list = wqe->sg_list + 1;
5064 		priv->tid_ss.num_sge = wqe->wr.num_sge;
5065 		priv->tid_ss.total_len = wqe->length;
5066 
5067 		if (priv->s_state == TID_OP(WRITE_REQ))
5068 			hfi1_tid_rdma_restart_req(qp, wqe, &bth2);
5069 		priv->s_state = TID_OP(WRITE_DATA);
5070 		/* fall through */
5071 
5072 	case TID_OP(WRITE_DATA):
5073 		/*
5074 		 * 1. Check whether TID RDMA WRITE RESP available.
5075 		 * 2. If no:
5076 		 *    2.1 If have more segments and no TID RDMA WRITE RESP,
5077 		 *        set HFI1_S_WAIT_TID_RESP
5078 		 *    2.2 Return indicating no progress made.
5079 		 * 3. If yes:
5080 		 *    3.1 Build TID RDMA WRITE DATA packet.
5081 		 *    3.2 If last packet in segment:
5082 		 *        3.2.1 Change KDETH header bits
5083 		 *        3.2.2 Advance RESP pointers.
5084 		 *    3.3 Return indicating progress made.
5085 		 */
5086 		trace_hfi1_sender_make_tid_pkt(qp);
5087 		trace_hfi1_tid_write_sender_make_tid_pkt(qp, 0);
5088 		wqe = rvt_get_swqe_ptr(qp, priv->s_tid_tail);
5089 		req = wqe_to_tid_req(wqe);
5090 		len = wqe->length;
5091 
5092 		if (!req->comp_seg || req->cur_seg == req->comp_seg)
5093 			goto bail;
5094 
5095 		trace_hfi1_tid_req_make_tid_pkt(qp, 0, wqe->wr.opcode,
5096 						wqe->psn, wqe->lpsn, req);
5097 		last = hfi1_build_tid_rdma_packet(wqe, ohdr, &bth1, &bth2,
5098 						  &len);
5099 
5100 		if (last) {
5101 			/* move pointer to next flow */
5102 			req->clear_tail = CIRC_NEXT(req->clear_tail,
5103 						    MAX_FLOWS);
5104 			if (++req->cur_seg < req->total_segs) {
5105 				if (!CIRC_CNT(req->setup_head, req->clear_tail,
5106 					      MAX_FLOWS))
5107 					qp->s_flags |= HFI1_S_WAIT_TID_RESP;
5108 			} else {
5109 				priv->s_state = TID_OP(WRITE_DATA_LAST);
5110 				opcode = TID_OP(WRITE_DATA_LAST);
5111 
5112 				/* Advance the s_tid_tail now */
5113 				update_tid_tail(qp);
5114 			}
5115 		}
5116 		hwords += sizeof(ohdr->u.tid_rdma.w_data) / sizeof(u32);
5117 		ss = &priv->tid_ss;
5118 		break;
5119 
5120 	case TID_OP(RESYNC):
5121 		trace_hfi1_sender_make_tid_pkt(qp);
5122 		/* Use generation from the most recently received response */
5123 		wqe = rvt_get_swqe_ptr(qp, priv->s_tid_cur);
5124 		req = wqe_to_tid_req(wqe);
5125 		/* If no responses for this WQE look at the previous one */
5126 		if (!req->comp_seg) {
5127 			wqe = rvt_get_swqe_ptr(qp,
5128 					       (!priv->s_tid_cur ? qp->s_size :
5129 						priv->s_tid_cur) - 1);
5130 			req = wqe_to_tid_req(wqe);
5131 		}
5132 		hwords += hfi1_build_tid_rdma_resync(qp, wqe, ohdr, &bth1,
5133 						     &bth2,
5134 						     CIRC_PREV(req->setup_head,
5135 							       MAX_FLOWS));
5136 		ss = NULL;
5137 		len = 0;
5138 		opcode = TID_OP(RESYNC);
5139 		break;
5140 
5141 	default:
5142 		goto bail;
5143 	}
5144 	if (priv->s_flags & RVT_S_SEND_ONE) {
5145 		priv->s_flags &= ~RVT_S_SEND_ONE;
5146 		priv->s_flags |= RVT_S_WAIT_ACK;
5147 		bth2 |= IB_BTH_REQ_ACK;
5148 	}
5149 	qp->s_len -= len;
5150 	ps->s_txreq->hdr_dwords = hwords;
5151 	ps->s_txreq->sde = priv->s_sde;
5152 	ps->s_txreq->ss = ss;
5153 	ps->s_txreq->s_cur_size = len;
5154 	hfi1_make_ruc_header(qp, ohdr, (opcode << 24), bth1, bth2,
5155 			     middle, ps);
5156 	return 1;
5157 bail:
5158 	hfi1_put_txreq(ps->s_txreq);
5159 bail_no_tx:
5160 	ps->s_txreq = NULL;
5161 	priv->s_flags &= ~RVT_S_BUSY;
5162 	/*
5163 	 * If we didn't get a txreq, the QP will be woken up later to try
5164 	 * again, set the flags to the the wake up which work item to wake
5165 	 * up.
5166 	 * (A better algorithm should be found to do this and generalize the
5167 	 * sleep/wakeup flags.)
5168 	 */
5169 	iowait_set_flag(&priv->s_iowait, IOWAIT_PENDING_TID);
5170 	return 0;
5171 }
5172 
5173 static int make_tid_rdma_ack(struct rvt_qp *qp,
5174 			     struct ib_other_headers *ohdr,
5175 			     struct hfi1_pkt_state *ps)
5176 {
5177 	struct rvt_ack_entry *e;
5178 	struct hfi1_qp_priv *qpriv = qp->priv;
5179 	struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
5180 	u32 hwords, next;
5181 	u32 len = 0;
5182 	u32 bth1 = 0, bth2 = 0;
5183 	int middle = 0;
5184 	u16 flow;
5185 	struct tid_rdma_request *req, *nreq;
5186 
5187 	trace_hfi1_tid_write_rsp_make_tid_ack(qp);
5188 	/* Don't send an ACK if we aren't supposed to. */
5189 	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK))
5190 		goto bail;
5191 
5192 	/* header size in 32-bit words LRH+BTH = (8+12)/4. */
5193 	hwords = 5;
5194 
5195 	e = &qp->s_ack_queue[qpriv->r_tid_ack];
5196 	req = ack_to_tid_req(e);
5197 	/*
5198 	 * In the RESYNC case, we are exactly one segment past the
5199 	 * previously sent ack or at the previously sent NAK. So to send
5200 	 * the resync ack, we go back one segment (which might be part of
5201 	 * the previous request) and let the do-while loop execute again.
5202 	 * The advantage of executing the do-while loop is that any data
5203 	 * received after the previous ack is automatically acked in the
5204 	 * RESYNC ack. It turns out that for the do-while loop we only need
5205 	 * to pull back qpriv->r_tid_ack, not the segment
5206 	 * indices/counters. The scheme works even if the previous request
5207 	 * was not a TID WRITE request.
5208 	 */
5209 	if (qpriv->resync) {
5210 		if (!req->ack_seg || req->ack_seg == req->total_segs)
5211 			qpriv->r_tid_ack = !qpriv->r_tid_ack ?
5212 				rvt_size_atomic(&dev->rdi) :
5213 				qpriv->r_tid_ack - 1;
5214 		e = &qp->s_ack_queue[qpriv->r_tid_ack];
5215 		req = ack_to_tid_req(e);
5216 	}
5217 
5218 	trace_hfi1_rsp_make_tid_ack(qp, e->psn);
5219 	trace_hfi1_tid_req_make_tid_ack(qp, 0, e->opcode, e->psn, e->lpsn,
5220 					req);
5221 	/*
5222 	 * If we've sent all the ACKs that we can, we are done
5223 	 * until we get more segments...
5224 	 */
5225 	if (!qpriv->s_nak_state && !qpriv->resync &&
5226 	    req->ack_seg == req->comp_seg)
5227 		goto bail;
5228 
5229 	do {
5230 		/*
5231 		 * To deal with coalesced ACKs, the acked_tail pointer
5232 		 * into the flow array is used. The distance between it
5233 		 * and the clear_tail is the number of flows that are
5234 		 * being ACK'ed.
5235 		 */
5236 		req->ack_seg +=
5237 			/* Get up-to-date value */
5238 			CIRC_CNT(req->clear_tail, req->acked_tail,
5239 				 MAX_FLOWS);
5240 		/* Advance acked index */
5241 		req->acked_tail = req->clear_tail;
5242 
5243 		/*
5244 		 * req->clear_tail points to the segment currently being
5245 		 * received. So, when sending an ACK, the previous
5246 		 * segment is being ACK'ed.
5247 		 */
5248 		flow = CIRC_PREV(req->acked_tail, MAX_FLOWS);
5249 		if (req->ack_seg != req->total_segs)
5250 			break;
5251 		req->state = TID_REQUEST_COMPLETE;
5252 
5253 		next = qpriv->r_tid_ack + 1;
5254 		if (next > rvt_size_atomic(&dev->rdi))
5255 			next = 0;
5256 		qpriv->r_tid_ack = next;
5257 		if (qp->s_ack_queue[next].opcode != TID_OP(WRITE_REQ))
5258 			break;
5259 		nreq = ack_to_tid_req(&qp->s_ack_queue[next]);
5260 		if (!nreq->comp_seg || nreq->ack_seg == nreq->comp_seg)
5261 			break;
5262 
5263 		/* Move to the next ack entry now */
5264 		e = &qp->s_ack_queue[qpriv->r_tid_ack];
5265 		req = ack_to_tid_req(e);
5266 	} while (1);
5267 
5268 	/*
5269 	 * At this point qpriv->r_tid_ack == qpriv->r_tid_tail but e and
5270 	 * req could be pointing at the previous ack queue entry
5271 	 */
5272 	if (qpriv->s_nak_state ||
5273 	    (qpriv->resync &&
5274 	     !hfi1_tid_rdma_is_resync_psn(qpriv->r_next_psn_kdeth - 1) &&
5275 	     (cmp_psn(qpriv->r_next_psn_kdeth - 1,
5276 		      full_flow_psn(&req->flows[flow],
5277 				    req->flows[flow].flow_state.lpsn)) > 0))) {
5278 		/*
5279 		 * A NAK will implicitly acknowledge all previous TID RDMA
5280 		 * requests. Therefore, we NAK with the req->acked_tail
5281 		 * segment for the request at qpriv->r_tid_ack (same at
5282 		 * this point as the req->clear_tail segment for the
5283 		 * qpriv->r_tid_tail request)
5284 		 */
5285 		e = &qp->s_ack_queue[qpriv->r_tid_ack];
5286 		req = ack_to_tid_req(e);
5287 		flow = req->acked_tail;
5288 	} else if (req->ack_seg == req->total_segs &&
5289 		   qpriv->s_flags & HFI1_R_TID_WAIT_INTERLCK)
5290 		qpriv->s_flags &= ~HFI1_R_TID_WAIT_INTERLCK;
5291 
5292 	trace_hfi1_tid_write_rsp_make_tid_ack(qp);
5293 	trace_hfi1_tid_req_make_tid_ack(qp, 0, e->opcode, e->psn, e->lpsn,
5294 					req);
5295 	hwords += hfi1_build_tid_rdma_write_ack(qp, e, ohdr, flow, &bth1,
5296 						&bth2);
5297 	len = 0;
5298 	qpriv->s_flags &= ~RVT_S_ACK_PENDING;
5299 	ps->s_txreq->hdr_dwords = hwords;
5300 	ps->s_txreq->sde = qpriv->s_sde;
5301 	ps->s_txreq->s_cur_size = len;
5302 	ps->s_txreq->ss = NULL;
5303 	hfi1_make_ruc_header(qp, ohdr, (TID_OP(ACK) << 24), bth1, bth2, middle,
5304 			     ps);
5305 	ps->s_txreq->txreq.flags |= SDMA_TXREQ_F_VIP;
5306 	return 1;
5307 bail:
5308 	/*
5309 	 * Ensure s_rdma_ack_cnt changes are committed prior to resetting
5310 	 * RVT_S_RESP_PENDING
5311 	 */
5312 	smp_wmb();
5313 	qpriv->s_flags &= ~RVT_S_ACK_PENDING;
5314 	return 0;
5315 }
5316 
5317 static int hfi1_send_tid_ok(struct rvt_qp *qp)
5318 {
5319 	struct hfi1_qp_priv *priv = qp->priv;
5320 
5321 	return !(priv->s_flags & RVT_S_BUSY ||
5322 		 qp->s_flags & HFI1_S_ANY_WAIT_IO) &&
5323 		(verbs_txreq_queued(iowait_get_tid_work(&priv->s_iowait)) ||
5324 		 (priv->s_flags & RVT_S_RESP_PENDING) ||
5325 		 !(qp->s_flags & HFI1_S_ANY_TID_WAIT_SEND));
5326 }
5327 
5328 void _hfi1_do_tid_send(struct work_struct *work)
5329 {
5330 	struct iowait_work *w = container_of(work, struct iowait_work, iowork);
5331 	struct rvt_qp *qp = iowait_to_qp(w->iow);
5332 
5333 	hfi1_do_tid_send(qp);
5334 }
5335 
5336 static void hfi1_do_tid_send(struct rvt_qp *qp)
5337 {
5338 	struct hfi1_pkt_state ps;
5339 	struct hfi1_qp_priv *priv = qp->priv;
5340 
5341 	ps.dev = to_idev(qp->ibqp.device);
5342 	ps.ibp = to_iport(qp->ibqp.device, qp->port_num);
5343 	ps.ppd = ppd_from_ibp(ps.ibp);
5344 	ps.wait = iowait_get_tid_work(&priv->s_iowait);
5345 	ps.in_thread = false;
5346 	ps.timeout_int = qp->timeout_jiffies / 8;
5347 
5348 	trace_hfi1_rc_do_tid_send(qp, false);
5349 	spin_lock_irqsave(&qp->s_lock, ps.flags);
5350 
5351 	/* Return if we are already busy processing a work request. */
5352 	if (!hfi1_send_tid_ok(qp)) {
5353 		if (qp->s_flags & HFI1_S_ANY_WAIT_IO)
5354 			iowait_set_flag(&priv->s_iowait, IOWAIT_PENDING_TID);
5355 		spin_unlock_irqrestore(&qp->s_lock, ps.flags);
5356 		return;
5357 	}
5358 
5359 	priv->s_flags |= RVT_S_BUSY;
5360 
5361 	ps.timeout = jiffies + ps.timeout_int;
5362 	ps.cpu = priv->s_sde ? priv->s_sde->cpu :
5363 		cpumask_first(cpumask_of_node(ps.ppd->dd->node));
5364 	ps.pkts_sent = false;
5365 
5366 	/* insure a pre-built packet is handled  */
5367 	ps.s_txreq = get_waiting_verbs_txreq(ps.wait);
5368 	do {
5369 		/* Check for a constructed packet to be sent. */
5370 		if (ps.s_txreq) {
5371 			if (priv->s_flags & HFI1_S_TID_BUSY_SET) {
5372 				qp->s_flags |= RVT_S_BUSY;
5373 				ps.wait = iowait_get_ib_work(&priv->s_iowait);
5374 			}
5375 			spin_unlock_irqrestore(&qp->s_lock, ps.flags);
5376 
5377 			/*
5378 			 * If the packet cannot be sent now, return and
5379 			 * the send tasklet will be woken up later.
5380 			 */
5381 			if (hfi1_verbs_send(qp, &ps))
5382 				return;
5383 
5384 			/* allow other tasks to run */
5385 			if (hfi1_schedule_send_yield(qp, &ps, true))
5386 				return;
5387 
5388 			spin_lock_irqsave(&qp->s_lock, ps.flags);
5389 			if (priv->s_flags & HFI1_S_TID_BUSY_SET) {
5390 				qp->s_flags &= ~RVT_S_BUSY;
5391 				priv->s_flags &= ~HFI1_S_TID_BUSY_SET;
5392 				ps.wait = iowait_get_tid_work(&priv->s_iowait);
5393 				if (iowait_flag_set(&priv->s_iowait,
5394 						    IOWAIT_PENDING_IB))
5395 					hfi1_schedule_send(qp);
5396 			}
5397 		}
5398 	} while (hfi1_make_tid_rdma_pkt(qp, &ps));
5399 	iowait_starve_clear(ps.pkts_sent, &priv->s_iowait);
5400 	spin_unlock_irqrestore(&qp->s_lock, ps.flags);
5401 }
5402 
5403 static bool _hfi1_schedule_tid_send(struct rvt_qp *qp)
5404 {
5405 	struct hfi1_qp_priv *priv = qp->priv;
5406 	struct hfi1_ibport *ibp =
5407 		to_iport(qp->ibqp.device, qp->port_num);
5408 	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
5409 	struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
5410 
5411 	return iowait_tid_schedule(&priv->s_iowait, ppd->hfi1_wq,
5412 				   priv->s_sde ?
5413 				   priv->s_sde->cpu :
5414 				   cpumask_first(cpumask_of_node(dd->node)));
5415 }
5416 
5417 /**
5418  * hfi1_schedule_tid_send - schedule progress on TID RDMA state machine
5419  * @qp: the QP
5420  *
5421  * This schedules qp progress on the TID RDMA state machine. Caller
5422  * should hold the s_lock.
5423  * Unlike hfi1_schedule_send(), this cannot use hfi1_send_ok() because
5424  * the two state machines can step on each other with respect to the
5425  * RVT_S_BUSY flag.
5426  * Therefore, a modified test is used.
5427  * @return true if the second leg is scheduled;
5428  *  false if the second leg is not scheduled.
5429  */
5430 bool hfi1_schedule_tid_send(struct rvt_qp *qp)
5431 {
5432 	lockdep_assert_held(&qp->s_lock);
5433 	if (hfi1_send_tid_ok(qp)) {
5434 		/*
5435 		 * The following call returns true if the qp is not on the
5436 		 * queue and false if the qp is already on the queue before
5437 		 * this call. Either way, the qp will be on the queue when the
5438 		 * call returns.
5439 		 */
5440 		_hfi1_schedule_tid_send(qp);
5441 		return true;
5442 	}
5443 	if (qp->s_flags & HFI1_S_ANY_WAIT_IO)
5444 		iowait_set_flag(&((struct hfi1_qp_priv *)qp->priv)->s_iowait,
5445 				IOWAIT_PENDING_TID);
5446 	return false;
5447 }
5448 
5449 bool hfi1_tid_rdma_ack_interlock(struct rvt_qp *qp, struct rvt_ack_entry *e)
5450 {
5451 	struct rvt_ack_entry *prev;
5452 	struct tid_rdma_request *req;
5453 	struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
5454 	struct hfi1_qp_priv *priv = qp->priv;
5455 	u32 s_prev;
5456 
5457 	s_prev = qp->s_tail_ack_queue == 0 ? rvt_size_atomic(&dev->rdi) :
5458 		(qp->s_tail_ack_queue - 1);
5459 	prev = &qp->s_ack_queue[s_prev];
5460 
5461 	if ((e->opcode == TID_OP(READ_REQ) ||
5462 	     e->opcode == OP(RDMA_READ_REQUEST)) &&
5463 	    prev->opcode == TID_OP(WRITE_REQ)) {
5464 		req = ack_to_tid_req(prev);
5465 		if (req->ack_seg != req->total_segs) {
5466 			priv->s_flags |= HFI1_R_TID_WAIT_INTERLCK;
5467 			return true;
5468 		}
5469 	}
5470 	return false;
5471 }
5472 
5473 static u32 read_r_next_psn(struct hfi1_devdata *dd, u8 ctxt, u8 fidx)
5474 {
5475 	u64 reg;
5476 
5477 	/*
5478 	 * The only sane way to get the amount of
5479 	 * progress is to read the HW flow state.
5480 	 */
5481 	reg = read_uctxt_csr(dd, ctxt, RCV_TID_FLOW_TABLE + (8 * fidx));
5482 	return mask_psn(reg);
5483 }
5484 
5485 static void tid_rdma_rcv_err(struct hfi1_packet *packet,
5486 			     struct ib_other_headers *ohdr,
5487 			     struct rvt_qp *qp, u32 psn, int diff, bool fecn)
5488 {
5489 	unsigned long flags;
5490 
5491 	tid_rdma_rcv_error(packet, ohdr, qp, psn, diff);
5492 	if (fecn) {
5493 		spin_lock_irqsave(&qp->s_lock, flags);
5494 		qp->s_flags |= RVT_S_ECN;
5495 		spin_unlock_irqrestore(&qp->s_lock, flags);
5496 	}
5497 }
5498 
5499 static void update_r_next_psn_fecn(struct hfi1_packet *packet,
5500 				   struct hfi1_qp_priv *priv,
5501 				   struct hfi1_ctxtdata *rcd,
5502 				   struct tid_rdma_flow *flow,
5503 				   bool fecn)
5504 {
5505 	/*
5506 	 * If a start/middle packet is delivered here due to
5507 	 * RSM rule and FECN, we need to update the r_next_psn.
5508 	 */
5509 	if (fecn && packet->etype == RHF_RCV_TYPE_EAGER &&
5510 	    !(priv->s_flags & HFI1_R_TID_SW_PSN)) {
5511 		struct hfi1_devdata *dd = rcd->dd;
5512 
5513 		flow->flow_state.r_next_psn =
5514 			read_r_next_psn(dd, rcd->ctxt, flow->idx);
5515 	}
5516 }
5517