1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 /*
3  * Copyright(c) 2018 Intel Corporation.
4  *
5  */
6 
7 #include "hfi.h"
8 #include "qp.h"
9 #include "rc.h"
10 #include "verbs.h"
11 #include "tid_rdma.h"
12 #include "exp_rcv.h"
13 #include "trace.h"
14 
15 /**
16  * DOC: TID RDMA READ protocol
17  *
18  * This is an end-to-end protocol at the hfi1 level between two nodes that
19  * improves performance by avoiding data copy on the requester side. It
20  * converts a qualified RDMA READ request into a TID RDMA READ request on
21  * the requester side and thereafter handles the request and response
22  * differently. To be qualified, the RDMA READ request should meet the
23  * following:
24  * -- The total data length should be greater than 256K;
25  * -- The total data length should be a multiple of 4K page size;
26  * -- Each local scatter-gather entry should be 4K page aligned;
27  * -- Each local scatter-gather entry should be a multiple of 4K page size;
28  */
29 
30 #define RCV_TID_FLOW_TABLE_CTRL_FLOW_VALID_SMASK BIT_ULL(32)
31 #define RCV_TID_FLOW_TABLE_CTRL_HDR_SUPP_EN_SMASK BIT_ULL(33)
32 #define RCV_TID_FLOW_TABLE_CTRL_KEEP_AFTER_SEQ_ERR_SMASK BIT_ULL(34)
33 #define RCV_TID_FLOW_TABLE_CTRL_KEEP_ON_GEN_ERR_SMASK BIT_ULL(35)
34 #define RCV_TID_FLOW_TABLE_STATUS_SEQ_MISMATCH_SMASK BIT_ULL(37)
35 #define RCV_TID_FLOW_TABLE_STATUS_GEN_MISMATCH_SMASK BIT_ULL(38)
36 
37 /* Maximum number of packets within a flow generation. */
38 #define MAX_TID_FLOW_PSN BIT(HFI1_KDETH_BTH_SEQ_SHIFT)
39 
40 #define GENERATION_MASK 0xFFFFF
41 
42 static u32 mask_generation(u32 a)
43 {
44 	return a & GENERATION_MASK;
45 }
46 
47 /* Reserved generation value to set to unused flows for kernel contexts */
48 #define KERN_GENERATION_RESERVED mask_generation(U32_MAX)
49 
50 /*
51  * J_KEY for kernel contexts when TID RDMA is used.
52  * See generate_jkey() in hfi.h for more information.
53  */
54 #define TID_RDMA_JKEY                   32
55 #define HFI1_KERNEL_MIN_JKEY HFI1_ADMIN_JKEY_RANGE
56 #define HFI1_KERNEL_MAX_JKEY (2 * HFI1_ADMIN_JKEY_RANGE - 1)
57 
58 /* Maximum number of segments in flight per QP request. */
59 #define TID_RDMA_MAX_READ_SEGS_PER_REQ  6
60 #define TID_RDMA_MAX_WRITE_SEGS_PER_REQ 4
61 #define MAX_REQ max_t(u16, TID_RDMA_MAX_READ_SEGS_PER_REQ, \
62 			TID_RDMA_MAX_WRITE_SEGS_PER_REQ)
63 #define MAX_FLOWS roundup_pow_of_two(MAX_REQ + 1)
64 
65 #define MAX_EXPECTED_PAGES     (MAX_EXPECTED_BUFFER / PAGE_SIZE)
66 
67 #define TID_RDMA_DESTQP_FLOW_SHIFT      11
68 #define TID_RDMA_DESTQP_FLOW_MASK       0x1f
69 
70 #define TID_OPFN_QP_CTXT_MASK 0xff
71 #define TID_OPFN_QP_CTXT_SHIFT 56
72 #define TID_OPFN_QP_KDETH_MASK 0xff
73 #define TID_OPFN_QP_KDETH_SHIFT 48
74 #define TID_OPFN_MAX_LEN_MASK 0x7ff
75 #define TID_OPFN_MAX_LEN_SHIFT 37
76 #define TID_OPFN_TIMEOUT_MASK 0x1f
77 #define TID_OPFN_TIMEOUT_SHIFT 32
78 #define TID_OPFN_RESERVED_MASK 0x3f
79 #define TID_OPFN_RESERVED_SHIFT 26
80 #define TID_OPFN_URG_MASK 0x1
81 #define TID_OPFN_URG_SHIFT 25
82 #define TID_OPFN_VER_MASK 0x7
83 #define TID_OPFN_VER_SHIFT 22
84 #define TID_OPFN_JKEY_MASK 0x3f
85 #define TID_OPFN_JKEY_SHIFT 16
86 #define TID_OPFN_MAX_READ_MASK 0x3f
87 #define TID_OPFN_MAX_READ_SHIFT 10
88 #define TID_OPFN_MAX_WRITE_MASK 0x3f
89 #define TID_OPFN_MAX_WRITE_SHIFT 4
90 
91 /*
92  * OPFN TID layout
93  *
94  * 63               47               31               15
95  * NNNNNNNNKKKKKKKK MMMMMMMMMMMTTTTT DDDDDDUVVVJJJJJJ RRRRRRWWWWWWCCCC
96  * 3210987654321098 7654321098765432 1098765432109876 5432109876543210
97  * N - the context Number
98  * K - the Kdeth_qp
99  * M - Max_len
100  * T - Timeout
101  * D - reserveD
102  * V - version
103  * U - Urg capable
104  * J - Jkey
105  * R - max_Read
106  * W - max_Write
107  * C - Capcode
108  */
109 
110 static u32 tid_rdma_flow_wt;
111 
112 static void tid_rdma_trigger_resume(struct work_struct *work);
113 static void hfi1_kern_exp_rcv_free_flows(struct tid_rdma_request *req);
114 static int hfi1_kern_exp_rcv_alloc_flows(struct tid_rdma_request *req,
115 					 gfp_t gfp);
116 static void hfi1_init_trdma_req(struct rvt_qp *qp,
117 				struct tid_rdma_request *req);
118 static void hfi1_tid_write_alloc_resources(struct rvt_qp *qp, bool intr_ctx);
119 static void hfi1_tid_timeout(struct timer_list *t);
120 static void hfi1_add_tid_reap_timer(struct rvt_qp *qp);
121 static void hfi1_mod_tid_reap_timer(struct rvt_qp *qp);
122 static void hfi1_mod_tid_retry_timer(struct rvt_qp *qp);
123 static int hfi1_stop_tid_retry_timer(struct rvt_qp *qp);
124 static void hfi1_tid_retry_timeout(struct timer_list *t);
125 static int make_tid_rdma_ack(struct rvt_qp *qp,
126 			     struct ib_other_headers *ohdr,
127 			     struct hfi1_pkt_state *ps);
128 static void hfi1_do_tid_send(struct rvt_qp *qp);
129 static u32 read_r_next_psn(struct hfi1_devdata *dd, u8 ctxt, u8 fidx);
130 static void tid_rdma_rcv_err(struct hfi1_packet *packet,
131 			     struct ib_other_headers *ohdr,
132 			     struct rvt_qp *qp, u32 psn, int diff, bool fecn);
133 static void update_r_next_psn_fecn(struct hfi1_packet *packet,
134 				   struct hfi1_qp_priv *priv,
135 				   struct hfi1_ctxtdata *rcd,
136 				   struct tid_rdma_flow *flow,
137 				   bool fecn);
138 
139 static u64 tid_rdma_opfn_encode(struct tid_rdma_params *p)
140 {
141 	return
142 		(((u64)p->qp & TID_OPFN_QP_CTXT_MASK) <<
143 			TID_OPFN_QP_CTXT_SHIFT) |
144 		((((u64)p->qp >> 16) & TID_OPFN_QP_KDETH_MASK) <<
145 			TID_OPFN_QP_KDETH_SHIFT) |
146 		(((u64)((p->max_len >> PAGE_SHIFT) - 1) &
147 			TID_OPFN_MAX_LEN_MASK) << TID_OPFN_MAX_LEN_SHIFT) |
148 		(((u64)p->timeout & TID_OPFN_TIMEOUT_MASK) <<
149 			TID_OPFN_TIMEOUT_SHIFT) |
150 		(((u64)p->urg & TID_OPFN_URG_MASK) << TID_OPFN_URG_SHIFT) |
151 		(((u64)p->jkey & TID_OPFN_JKEY_MASK) << TID_OPFN_JKEY_SHIFT) |
152 		(((u64)p->max_read & TID_OPFN_MAX_READ_MASK) <<
153 			TID_OPFN_MAX_READ_SHIFT) |
154 		(((u64)p->max_write & TID_OPFN_MAX_WRITE_MASK) <<
155 			TID_OPFN_MAX_WRITE_SHIFT);
156 }
157 
158 static void tid_rdma_opfn_decode(struct tid_rdma_params *p, u64 data)
159 {
160 	p->max_len = (((data >> TID_OPFN_MAX_LEN_SHIFT) &
161 		TID_OPFN_MAX_LEN_MASK) + 1) << PAGE_SHIFT;
162 	p->jkey = (data >> TID_OPFN_JKEY_SHIFT) & TID_OPFN_JKEY_MASK;
163 	p->max_write = (data >> TID_OPFN_MAX_WRITE_SHIFT) &
164 		TID_OPFN_MAX_WRITE_MASK;
165 	p->max_read = (data >> TID_OPFN_MAX_READ_SHIFT) &
166 		TID_OPFN_MAX_READ_MASK;
167 	p->qp =
168 		((((data >> TID_OPFN_QP_KDETH_SHIFT) & TID_OPFN_QP_KDETH_MASK)
169 			<< 16) |
170 		((data >> TID_OPFN_QP_CTXT_SHIFT) & TID_OPFN_QP_CTXT_MASK));
171 	p->urg = (data >> TID_OPFN_URG_SHIFT) & TID_OPFN_URG_MASK;
172 	p->timeout = (data >> TID_OPFN_TIMEOUT_SHIFT) & TID_OPFN_TIMEOUT_MASK;
173 }
174 
175 void tid_rdma_opfn_init(struct rvt_qp *qp, struct tid_rdma_params *p)
176 {
177 	struct hfi1_qp_priv *priv = qp->priv;
178 
179 	p->qp = (kdeth_qp << 16) | priv->rcd->ctxt;
180 	p->max_len = TID_RDMA_MAX_SEGMENT_SIZE;
181 	p->jkey = priv->rcd->jkey;
182 	p->max_read = TID_RDMA_MAX_READ_SEGS_PER_REQ;
183 	p->max_write = TID_RDMA_MAX_WRITE_SEGS_PER_REQ;
184 	p->timeout = qp->timeout;
185 	p->urg = is_urg_masked(priv->rcd);
186 }
187 
188 bool tid_rdma_conn_req(struct rvt_qp *qp, u64 *data)
189 {
190 	struct hfi1_qp_priv *priv = qp->priv;
191 
192 	*data = tid_rdma_opfn_encode(&priv->tid_rdma.local);
193 	return true;
194 }
195 
196 bool tid_rdma_conn_reply(struct rvt_qp *qp, u64 data)
197 {
198 	struct hfi1_qp_priv *priv = qp->priv;
199 	struct tid_rdma_params *remote, *old;
200 	bool ret = true;
201 
202 	old = rcu_dereference_protected(priv->tid_rdma.remote,
203 					lockdep_is_held(&priv->opfn.lock));
204 	data &= ~0xfULL;
205 	/*
206 	 * If data passed in is zero, return true so as not to continue the
207 	 * negotiation process
208 	 */
209 	if (!data || !HFI1_CAP_IS_KSET(TID_RDMA))
210 		goto null;
211 	/*
212 	 * If kzalloc fails, return false. This will result in:
213 	 * * at the requester a new OPFN request being generated to retry
214 	 *   the negotiation
215 	 * * at the responder, 0 being returned to the requester so as to
216 	 *   disable TID RDMA at both the requester and the responder
217 	 */
218 	remote = kzalloc(sizeof(*remote), GFP_ATOMIC);
219 	if (!remote) {
220 		ret = false;
221 		goto null;
222 	}
223 
224 	tid_rdma_opfn_decode(remote, data);
225 	priv->tid_timer_timeout_jiffies =
226 		usecs_to_jiffies((((4096UL * (1UL << remote->timeout)) /
227 				   1000UL) << 3) * 7);
228 	trace_hfi1_opfn_param(qp, 0, &priv->tid_rdma.local);
229 	trace_hfi1_opfn_param(qp, 1, remote);
230 	rcu_assign_pointer(priv->tid_rdma.remote, remote);
231 	/*
232 	 * A TID RDMA READ request's segment size is not equal to
233 	 * remote->max_len only when the request's data length is smaller
234 	 * than remote->max_len. In that case, there will be only one segment.
235 	 * Therefore, when priv->pkts_ps is used to calculate req->cur_seg
236 	 * during retry, it will lead to req->cur_seg = 0, which is exactly
237 	 * what is expected.
238 	 */
239 	priv->pkts_ps = (u16)rvt_div_mtu(qp, remote->max_len);
240 	priv->timeout_shift = ilog2(priv->pkts_ps - 1) + 1;
241 	goto free;
242 null:
243 	RCU_INIT_POINTER(priv->tid_rdma.remote, NULL);
244 	priv->timeout_shift = 0;
245 free:
246 	if (old)
247 		kfree_rcu(old, rcu_head);
248 	return ret;
249 }
250 
251 bool tid_rdma_conn_resp(struct rvt_qp *qp, u64 *data)
252 {
253 	bool ret;
254 
255 	ret = tid_rdma_conn_reply(qp, *data);
256 	*data = 0;
257 	/*
258 	 * If tid_rdma_conn_reply() returns error, set *data as 0 to indicate
259 	 * TID RDMA could not be enabled. This will result in TID RDMA being
260 	 * disabled at the requester too.
261 	 */
262 	if (ret)
263 		(void)tid_rdma_conn_req(qp, data);
264 	return ret;
265 }
266 
267 void tid_rdma_conn_error(struct rvt_qp *qp)
268 {
269 	struct hfi1_qp_priv *priv = qp->priv;
270 	struct tid_rdma_params *old;
271 
272 	old = rcu_dereference_protected(priv->tid_rdma.remote,
273 					lockdep_is_held(&priv->opfn.lock));
274 	RCU_INIT_POINTER(priv->tid_rdma.remote, NULL);
275 	if (old)
276 		kfree_rcu(old, rcu_head);
277 }
278 
279 /* This is called at context initialization time */
280 int hfi1_kern_exp_rcv_init(struct hfi1_ctxtdata *rcd, int reinit)
281 {
282 	if (reinit)
283 		return 0;
284 
285 	BUILD_BUG_ON(TID_RDMA_JKEY < HFI1_KERNEL_MIN_JKEY);
286 	BUILD_BUG_ON(TID_RDMA_JKEY > HFI1_KERNEL_MAX_JKEY);
287 	rcd->jkey = TID_RDMA_JKEY;
288 	hfi1_set_ctxt_jkey(rcd->dd, rcd, rcd->jkey);
289 	return hfi1_alloc_ctxt_rcv_groups(rcd);
290 }
291 
292 /**
293  * qp_to_rcd - determine the receive context used by a qp
294  * @qp - the qp
295  *
296  * This routine returns the receive context associated
297  * with a a qp's qpn.
298  *
299  * Returns the context.
300  */
301 static struct hfi1_ctxtdata *qp_to_rcd(struct rvt_dev_info *rdi,
302 				       struct rvt_qp *qp)
303 {
304 	struct hfi1_ibdev *verbs_dev = container_of(rdi,
305 						    struct hfi1_ibdev,
306 						    rdi);
307 	struct hfi1_devdata *dd = container_of(verbs_dev,
308 					       struct hfi1_devdata,
309 					       verbs_dev);
310 	unsigned int ctxt;
311 
312 	if (qp->ibqp.qp_num == 0)
313 		ctxt = 0;
314 	else
315 		ctxt = hfi1_get_qp_map(dd, qp->ibqp.qp_num >> dd->qos_shift);
316 	return dd->rcd[ctxt];
317 }
318 
319 int hfi1_qp_priv_init(struct rvt_dev_info *rdi, struct rvt_qp *qp,
320 		      struct ib_qp_init_attr *init_attr)
321 {
322 	struct hfi1_qp_priv *qpriv = qp->priv;
323 	int i, ret;
324 
325 	qpriv->rcd = qp_to_rcd(rdi, qp);
326 
327 	spin_lock_init(&qpriv->opfn.lock);
328 	INIT_WORK(&qpriv->opfn.opfn_work, opfn_send_conn_request);
329 	INIT_WORK(&qpriv->tid_rdma.trigger_work, tid_rdma_trigger_resume);
330 	qpriv->flow_state.psn = 0;
331 	qpriv->flow_state.index = RXE_NUM_TID_FLOWS;
332 	qpriv->flow_state.last_index = RXE_NUM_TID_FLOWS;
333 	qpriv->flow_state.generation = KERN_GENERATION_RESERVED;
334 	qpriv->s_state = TID_OP(WRITE_RESP);
335 	qpriv->s_tid_cur = HFI1_QP_WQE_INVALID;
336 	qpriv->s_tid_head = HFI1_QP_WQE_INVALID;
337 	qpriv->s_tid_tail = HFI1_QP_WQE_INVALID;
338 	qpriv->rnr_nak_state = TID_RNR_NAK_INIT;
339 	qpriv->r_tid_head = HFI1_QP_WQE_INVALID;
340 	qpriv->r_tid_tail = HFI1_QP_WQE_INVALID;
341 	qpriv->r_tid_ack = HFI1_QP_WQE_INVALID;
342 	qpriv->r_tid_alloc = HFI1_QP_WQE_INVALID;
343 	atomic_set(&qpriv->n_requests, 0);
344 	atomic_set(&qpriv->n_tid_requests, 0);
345 	timer_setup(&qpriv->s_tid_timer, hfi1_tid_timeout, 0);
346 	timer_setup(&qpriv->s_tid_retry_timer, hfi1_tid_retry_timeout, 0);
347 	INIT_LIST_HEAD(&qpriv->tid_wait);
348 
349 	if (init_attr->qp_type == IB_QPT_RC && HFI1_CAP_IS_KSET(TID_RDMA)) {
350 		struct hfi1_devdata *dd = qpriv->rcd->dd;
351 
352 		qpriv->pages = kzalloc_node(TID_RDMA_MAX_PAGES *
353 						sizeof(*qpriv->pages),
354 					    GFP_KERNEL, dd->node);
355 		if (!qpriv->pages)
356 			return -ENOMEM;
357 		for (i = 0; i < qp->s_size; i++) {
358 			struct hfi1_swqe_priv *priv;
359 			struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, i);
360 
361 			priv = kzalloc_node(sizeof(*priv), GFP_KERNEL,
362 					    dd->node);
363 			if (!priv)
364 				return -ENOMEM;
365 
366 			hfi1_init_trdma_req(qp, &priv->tid_req);
367 			priv->tid_req.e.swqe = wqe;
368 			wqe->priv = priv;
369 		}
370 		for (i = 0; i < rvt_max_atomic(rdi); i++) {
371 			struct hfi1_ack_priv *priv;
372 
373 			priv = kzalloc_node(sizeof(*priv), GFP_KERNEL,
374 					    dd->node);
375 			if (!priv)
376 				return -ENOMEM;
377 
378 			hfi1_init_trdma_req(qp, &priv->tid_req);
379 			priv->tid_req.e.ack = &qp->s_ack_queue[i];
380 
381 			ret = hfi1_kern_exp_rcv_alloc_flows(&priv->tid_req,
382 							    GFP_KERNEL);
383 			if (ret) {
384 				kfree(priv);
385 				return ret;
386 			}
387 			qp->s_ack_queue[i].priv = priv;
388 		}
389 	}
390 
391 	return 0;
392 }
393 
394 void hfi1_qp_priv_tid_free(struct rvt_dev_info *rdi, struct rvt_qp *qp)
395 {
396 	struct hfi1_qp_priv *qpriv = qp->priv;
397 	struct rvt_swqe *wqe;
398 	u32 i;
399 
400 	if (qp->ibqp.qp_type == IB_QPT_RC && HFI1_CAP_IS_KSET(TID_RDMA)) {
401 		for (i = 0; i < qp->s_size; i++) {
402 			wqe = rvt_get_swqe_ptr(qp, i);
403 			kfree(wqe->priv);
404 			wqe->priv = NULL;
405 		}
406 		for (i = 0; i < rvt_max_atomic(rdi); i++) {
407 			struct hfi1_ack_priv *priv = qp->s_ack_queue[i].priv;
408 
409 			if (priv)
410 				hfi1_kern_exp_rcv_free_flows(&priv->tid_req);
411 			kfree(priv);
412 			qp->s_ack_queue[i].priv = NULL;
413 		}
414 		cancel_work_sync(&qpriv->opfn.opfn_work);
415 		kfree(qpriv->pages);
416 		qpriv->pages = NULL;
417 	}
418 }
419 
420 /* Flow and tid waiter functions */
421 /**
422  * DOC: lock ordering
423  *
424  * There are two locks involved with the queuing
425  * routines: the qp s_lock and the exp_lock.
426  *
427  * Since the tid space allocation is called from
428  * the send engine, the qp s_lock is already held.
429  *
430  * The allocation routines will get the exp_lock.
431  *
432  * The first_qp() call is provided to allow the head of
433  * the rcd wait queue to be fetched under the exp_lock and
434  * followed by a drop of the exp_lock.
435  *
436  * Any qp in the wait list will have the qp reference count held
437  * to hold the qp in memory.
438  */
439 
440 /*
441  * return head of rcd wait list
442  *
443  * Must hold the exp_lock.
444  *
445  * Get a reference to the QP to hold the QP in memory.
446  *
447  * The caller must release the reference when the local
448  * is no longer being used.
449  */
450 static struct rvt_qp *first_qp(struct hfi1_ctxtdata *rcd,
451 			       struct tid_queue *queue)
452 	__must_hold(&rcd->exp_lock)
453 {
454 	struct hfi1_qp_priv *priv;
455 
456 	lockdep_assert_held(&rcd->exp_lock);
457 	priv = list_first_entry_or_null(&queue->queue_head,
458 					struct hfi1_qp_priv,
459 					tid_wait);
460 	if (!priv)
461 		return NULL;
462 	rvt_get_qp(priv->owner);
463 	return priv->owner;
464 }
465 
466 /**
467  * kernel_tid_waiters - determine rcd wait
468  * @rcd: the receive context
469  * @qp: the head of the qp being processed
470  *
471  * This routine will return false IFF
472  * the list is NULL or the head of the
473  * list is the indicated qp.
474  *
475  * Must hold the qp s_lock and the exp_lock.
476  *
477  * Return:
478  * false if either of the conditions below are statisfied:
479  * 1. The list is empty or
480  * 2. The indicated qp is at the head of the list and the
481  *    HFI1_S_WAIT_TID_SPACE bit is set in qp->s_flags.
482  * true is returned otherwise.
483  */
484 static bool kernel_tid_waiters(struct hfi1_ctxtdata *rcd,
485 			       struct tid_queue *queue, struct rvt_qp *qp)
486 	__must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
487 {
488 	struct rvt_qp *fqp;
489 	bool ret = true;
490 
491 	lockdep_assert_held(&qp->s_lock);
492 	lockdep_assert_held(&rcd->exp_lock);
493 	fqp = first_qp(rcd, queue);
494 	if (!fqp || (fqp == qp && (qp->s_flags & HFI1_S_WAIT_TID_SPACE)))
495 		ret = false;
496 	rvt_put_qp(fqp);
497 	return ret;
498 }
499 
500 /**
501  * dequeue_tid_waiter - dequeue the qp from the list
502  * @qp - the qp to remove the wait list
503  *
504  * This routine removes the indicated qp from the
505  * wait list if it is there.
506  *
507  * This should be done after the hardware flow and
508  * tid array resources have been allocated.
509  *
510  * Must hold the qp s_lock and the rcd exp_lock.
511  *
512  * It assumes the s_lock to protect the s_flags
513  * field and to reliably test the HFI1_S_WAIT_TID_SPACE flag.
514  */
515 static void dequeue_tid_waiter(struct hfi1_ctxtdata *rcd,
516 			       struct tid_queue *queue, struct rvt_qp *qp)
517 	__must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
518 {
519 	struct hfi1_qp_priv *priv = qp->priv;
520 
521 	lockdep_assert_held(&qp->s_lock);
522 	lockdep_assert_held(&rcd->exp_lock);
523 	if (list_empty(&priv->tid_wait))
524 		return;
525 	list_del_init(&priv->tid_wait);
526 	qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
527 	queue->dequeue++;
528 	rvt_put_qp(qp);
529 }
530 
531 /**
532  * queue_qp_for_tid_wait - suspend QP on tid space
533  * @rcd: the receive context
534  * @qp: the qp
535  *
536  * The qp is inserted at the tail of the rcd
537  * wait queue and the HFI1_S_WAIT_TID_SPACE s_flag is set.
538  *
539  * Must hold the qp s_lock and the exp_lock.
540  */
541 static void queue_qp_for_tid_wait(struct hfi1_ctxtdata *rcd,
542 				  struct tid_queue *queue, struct rvt_qp *qp)
543 	__must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
544 {
545 	struct hfi1_qp_priv *priv = qp->priv;
546 
547 	lockdep_assert_held(&qp->s_lock);
548 	lockdep_assert_held(&rcd->exp_lock);
549 	if (list_empty(&priv->tid_wait)) {
550 		qp->s_flags |= HFI1_S_WAIT_TID_SPACE;
551 		list_add_tail(&priv->tid_wait, &queue->queue_head);
552 		priv->tid_enqueue = ++queue->enqueue;
553 		rcd->dd->verbs_dev.n_tidwait++;
554 		trace_hfi1_qpsleep(qp, HFI1_S_WAIT_TID_SPACE);
555 		rvt_get_qp(qp);
556 	}
557 }
558 
559 /**
560  * __trigger_tid_waiter - trigger tid waiter
561  * @qp: the qp
562  *
563  * This is a private entrance to schedule the qp
564  * assuming the caller is holding the qp->s_lock.
565  */
566 static void __trigger_tid_waiter(struct rvt_qp *qp)
567 	__must_hold(&qp->s_lock)
568 {
569 	lockdep_assert_held(&qp->s_lock);
570 	if (!(qp->s_flags & HFI1_S_WAIT_TID_SPACE))
571 		return;
572 	trace_hfi1_qpwakeup(qp, HFI1_S_WAIT_TID_SPACE);
573 	hfi1_schedule_send(qp);
574 }
575 
576 /**
577  * tid_rdma_schedule_tid_wakeup - schedule wakeup for a qp
578  * @qp - the qp
579  *
580  * trigger a schedule or a waiting qp in a deadlock
581  * safe manner.  The qp reference is held prior
582  * to this call via first_qp().
583  *
584  * If the qp trigger was already scheduled (!rval)
585  * the the reference is dropped, otherwise the resume
586  * or the destroy cancel will dispatch the reference.
587  */
588 static void tid_rdma_schedule_tid_wakeup(struct rvt_qp *qp)
589 {
590 	struct hfi1_qp_priv *priv;
591 	struct hfi1_ibport *ibp;
592 	struct hfi1_pportdata *ppd;
593 	struct hfi1_devdata *dd;
594 	bool rval;
595 
596 	if (!qp)
597 		return;
598 
599 	priv = qp->priv;
600 	ibp = to_iport(qp->ibqp.device, qp->port_num);
601 	ppd = ppd_from_ibp(ibp);
602 	dd = dd_from_ibdev(qp->ibqp.device);
603 
604 	rval = queue_work_on(priv->s_sde ?
605 			     priv->s_sde->cpu :
606 			     cpumask_first(cpumask_of_node(dd->node)),
607 			     ppd->hfi1_wq,
608 			     &priv->tid_rdma.trigger_work);
609 	if (!rval)
610 		rvt_put_qp(qp);
611 }
612 
613 /**
614  * tid_rdma_trigger_resume - field a trigger work request
615  * @work - the work item
616  *
617  * Complete the off qp trigger processing by directly
618  * calling the progress routine.
619  */
620 static void tid_rdma_trigger_resume(struct work_struct *work)
621 {
622 	struct tid_rdma_qp_params *tr;
623 	struct hfi1_qp_priv *priv;
624 	struct rvt_qp *qp;
625 
626 	tr = container_of(work, struct tid_rdma_qp_params, trigger_work);
627 	priv = container_of(tr, struct hfi1_qp_priv, tid_rdma);
628 	qp = priv->owner;
629 	spin_lock_irq(&qp->s_lock);
630 	if (qp->s_flags & HFI1_S_WAIT_TID_SPACE) {
631 		spin_unlock_irq(&qp->s_lock);
632 		hfi1_do_send(priv->owner, true);
633 	} else {
634 		spin_unlock_irq(&qp->s_lock);
635 	}
636 	rvt_put_qp(qp);
637 }
638 
639 /**
640  * tid_rdma_flush_wait - unwind any tid space wait
641  *
642  * This is called when resetting a qp to
643  * allow a destroy or reset to get rid
644  * of any tid space linkage and reference counts.
645  */
646 static void _tid_rdma_flush_wait(struct rvt_qp *qp, struct tid_queue *queue)
647 	__must_hold(&qp->s_lock)
648 {
649 	struct hfi1_qp_priv *priv;
650 
651 	if (!qp)
652 		return;
653 	lockdep_assert_held(&qp->s_lock);
654 	priv = qp->priv;
655 	qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
656 	spin_lock(&priv->rcd->exp_lock);
657 	if (!list_empty(&priv->tid_wait)) {
658 		list_del_init(&priv->tid_wait);
659 		qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
660 		queue->dequeue++;
661 		rvt_put_qp(qp);
662 	}
663 	spin_unlock(&priv->rcd->exp_lock);
664 }
665 
666 void hfi1_tid_rdma_flush_wait(struct rvt_qp *qp)
667 	__must_hold(&qp->s_lock)
668 {
669 	struct hfi1_qp_priv *priv = qp->priv;
670 
671 	_tid_rdma_flush_wait(qp, &priv->rcd->flow_queue);
672 	_tid_rdma_flush_wait(qp, &priv->rcd->rarr_queue);
673 }
674 
675 /* Flow functions */
676 /**
677  * kern_reserve_flow - allocate a hardware flow
678  * @rcd - the context to use for allocation
679  * @last - the index of the preferred flow. Use RXE_NUM_TID_FLOWS to
680  *         signify "don't care".
681  *
682  * Use a bit mask based allocation to reserve a hardware
683  * flow for use in receiving KDETH data packets. If a preferred flow is
684  * specified the function will attempt to reserve that flow again, if
685  * available.
686  *
687  * The exp_lock must be held.
688  *
689  * Return:
690  * On success: a value postive value between 0 and RXE_NUM_TID_FLOWS - 1
691  * On failure: -EAGAIN
692  */
693 static int kern_reserve_flow(struct hfi1_ctxtdata *rcd, int last)
694 	__must_hold(&rcd->exp_lock)
695 {
696 	int nr;
697 
698 	/* Attempt to reserve the preferred flow index */
699 	if (last >= 0 && last < RXE_NUM_TID_FLOWS &&
700 	    !test_and_set_bit(last, &rcd->flow_mask))
701 		return last;
702 
703 	nr = ffz(rcd->flow_mask);
704 	BUILD_BUG_ON(RXE_NUM_TID_FLOWS >=
705 		     (sizeof(rcd->flow_mask) * BITS_PER_BYTE));
706 	if (nr > (RXE_NUM_TID_FLOWS - 1))
707 		return -EAGAIN;
708 	set_bit(nr, &rcd->flow_mask);
709 	return nr;
710 }
711 
712 static void kern_set_hw_flow(struct hfi1_ctxtdata *rcd, u32 generation,
713 			     u32 flow_idx)
714 {
715 	u64 reg;
716 
717 	reg = ((u64)generation << HFI1_KDETH_BTH_SEQ_SHIFT) |
718 		RCV_TID_FLOW_TABLE_CTRL_FLOW_VALID_SMASK |
719 		RCV_TID_FLOW_TABLE_CTRL_KEEP_AFTER_SEQ_ERR_SMASK |
720 		RCV_TID_FLOW_TABLE_CTRL_KEEP_ON_GEN_ERR_SMASK |
721 		RCV_TID_FLOW_TABLE_STATUS_SEQ_MISMATCH_SMASK |
722 		RCV_TID_FLOW_TABLE_STATUS_GEN_MISMATCH_SMASK;
723 
724 	if (generation != KERN_GENERATION_RESERVED)
725 		reg |= RCV_TID_FLOW_TABLE_CTRL_HDR_SUPP_EN_SMASK;
726 
727 	write_uctxt_csr(rcd->dd, rcd->ctxt,
728 			RCV_TID_FLOW_TABLE + 8 * flow_idx, reg);
729 }
730 
731 static u32 kern_setup_hw_flow(struct hfi1_ctxtdata *rcd, u32 flow_idx)
732 	__must_hold(&rcd->exp_lock)
733 {
734 	u32 generation = rcd->flows[flow_idx].generation;
735 
736 	kern_set_hw_flow(rcd, generation, flow_idx);
737 	return generation;
738 }
739 
740 static u32 kern_flow_generation_next(u32 gen)
741 {
742 	u32 generation = mask_generation(gen + 1);
743 
744 	if (generation == KERN_GENERATION_RESERVED)
745 		generation = mask_generation(generation + 1);
746 	return generation;
747 }
748 
749 static void kern_clear_hw_flow(struct hfi1_ctxtdata *rcd, u32 flow_idx)
750 	__must_hold(&rcd->exp_lock)
751 {
752 	rcd->flows[flow_idx].generation =
753 		kern_flow_generation_next(rcd->flows[flow_idx].generation);
754 	kern_set_hw_flow(rcd, KERN_GENERATION_RESERVED, flow_idx);
755 }
756 
757 int hfi1_kern_setup_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp)
758 {
759 	struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv;
760 	struct tid_flow_state *fs = &qpriv->flow_state;
761 	struct rvt_qp *fqp;
762 	unsigned long flags;
763 	int ret = 0;
764 
765 	/* The QP already has an allocated flow */
766 	if (fs->index != RXE_NUM_TID_FLOWS)
767 		return ret;
768 
769 	spin_lock_irqsave(&rcd->exp_lock, flags);
770 	if (kernel_tid_waiters(rcd, &rcd->flow_queue, qp))
771 		goto queue;
772 
773 	ret = kern_reserve_flow(rcd, fs->last_index);
774 	if (ret < 0)
775 		goto queue;
776 	fs->index = ret;
777 	fs->last_index = fs->index;
778 
779 	/* Generation received in a RESYNC overrides default flow generation */
780 	if (fs->generation != KERN_GENERATION_RESERVED)
781 		rcd->flows[fs->index].generation = fs->generation;
782 	fs->generation = kern_setup_hw_flow(rcd, fs->index);
783 	fs->psn = 0;
784 	dequeue_tid_waiter(rcd, &rcd->flow_queue, qp);
785 	/* get head before dropping lock */
786 	fqp = first_qp(rcd, &rcd->flow_queue);
787 	spin_unlock_irqrestore(&rcd->exp_lock, flags);
788 
789 	tid_rdma_schedule_tid_wakeup(fqp);
790 	return 0;
791 queue:
792 	queue_qp_for_tid_wait(rcd, &rcd->flow_queue, qp);
793 	spin_unlock_irqrestore(&rcd->exp_lock, flags);
794 	return -EAGAIN;
795 }
796 
797 void hfi1_kern_clear_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp)
798 {
799 	struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv;
800 	struct tid_flow_state *fs = &qpriv->flow_state;
801 	struct rvt_qp *fqp;
802 	unsigned long flags;
803 
804 	if (fs->index >= RXE_NUM_TID_FLOWS)
805 		return;
806 	spin_lock_irqsave(&rcd->exp_lock, flags);
807 	kern_clear_hw_flow(rcd, fs->index);
808 	clear_bit(fs->index, &rcd->flow_mask);
809 	fs->index = RXE_NUM_TID_FLOWS;
810 	fs->psn = 0;
811 	fs->generation = KERN_GENERATION_RESERVED;
812 
813 	/* get head before dropping lock */
814 	fqp = first_qp(rcd, &rcd->flow_queue);
815 	spin_unlock_irqrestore(&rcd->exp_lock, flags);
816 
817 	if (fqp == qp) {
818 		__trigger_tid_waiter(fqp);
819 		rvt_put_qp(fqp);
820 	} else {
821 		tid_rdma_schedule_tid_wakeup(fqp);
822 	}
823 }
824 
825 void hfi1_kern_init_ctxt_generations(struct hfi1_ctxtdata *rcd)
826 {
827 	int i;
828 
829 	for (i = 0; i < RXE_NUM_TID_FLOWS; i++) {
830 		rcd->flows[i].generation = mask_generation(prandom_u32());
831 		kern_set_hw_flow(rcd, KERN_GENERATION_RESERVED, i);
832 	}
833 }
834 
835 /* TID allocation functions */
836 static u8 trdma_pset_order(struct tid_rdma_pageset *s)
837 {
838 	u8 count = s->count;
839 
840 	return ilog2(count) + 1;
841 }
842 
843 /**
844  * tid_rdma_find_phys_blocks_4k - get groups base on mr info
845  * @npages - number of pages
846  * @pages - pointer to an array of page structs
847  * @list - page set array to return
848  *
849  * This routine returns the number of groups associated with
850  * the current sge information.  This implementation is based
851  * on the expected receive find_phys_blocks() adjusted to
852  * use the MR information vs. the pfn.
853  *
854  * Return:
855  * the number of RcvArray entries
856  */
857 static u32 tid_rdma_find_phys_blocks_4k(struct tid_rdma_flow *flow,
858 					struct page **pages,
859 					u32 npages,
860 					struct tid_rdma_pageset *list)
861 {
862 	u32 pagecount, pageidx, setcount = 0, i;
863 	void *vaddr, *this_vaddr;
864 
865 	if (!npages)
866 		return 0;
867 
868 	/*
869 	 * Look for sets of physically contiguous pages in the user buffer.
870 	 * This will allow us to optimize Expected RcvArray entry usage by
871 	 * using the bigger supported sizes.
872 	 */
873 	vaddr = page_address(pages[0]);
874 	trace_hfi1_tid_flow_page(flow->req->qp, flow, 0, 0, 0, vaddr);
875 	for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) {
876 		this_vaddr = i < npages ? page_address(pages[i]) : NULL;
877 		trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 0, 0,
878 					 this_vaddr);
879 		/*
880 		 * If the vaddr's are not sequential, pages are not physically
881 		 * contiguous.
882 		 */
883 		if (this_vaddr != (vaddr + PAGE_SIZE)) {
884 			/*
885 			 * At this point we have to loop over the set of
886 			 * physically contiguous pages and break them down it
887 			 * sizes supported by the HW.
888 			 * There are two main constraints:
889 			 *     1. The max buffer size is MAX_EXPECTED_BUFFER.
890 			 *        If the total set size is bigger than that
891 			 *        program only a MAX_EXPECTED_BUFFER chunk.
892 			 *     2. The buffer size has to be a power of two. If
893 			 *        it is not, round down to the closes power of
894 			 *        2 and program that size.
895 			 */
896 			while (pagecount) {
897 				int maxpages = pagecount;
898 				u32 bufsize = pagecount * PAGE_SIZE;
899 
900 				if (bufsize > MAX_EXPECTED_BUFFER)
901 					maxpages =
902 						MAX_EXPECTED_BUFFER >>
903 						PAGE_SHIFT;
904 				else if (!is_power_of_2(bufsize))
905 					maxpages =
906 						rounddown_pow_of_two(bufsize) >>
907 						PAGE_SHIFT;
908 
909 				list[setcount].idx = pageidx;
910 				list[setcount].count = maxpages;
911 				trace_hfi1_tid_pageset(flow->req->qp, setcount,
912 						       list[setcount].idx,
913 						       list[setcount].count);
914 				pagecount -= maxpages;
915 				pageidx += maxpages;
916 				setcount++;
917 			}
918 			pageidx = i;
919 			pagecount = 1;
920 			vaddr = this_vaddr;
921 		} else {
922 			vaddr += PAGE_SIZE;
923 			pagecount++;
924 		}
925 	}
926 	/* insure we always return an even number of sets */
927 	if (setcount & 1)
928 		list[setcount++].count = 0;
929 	return setcount;
930 }
931 
932 /**
933  * tid_flush_pages - dump out pages into pagesets
934  * @list - list of pagesets
935  * @idx - pointer to current page index
936  * @pages - number of pages to dump
937  * @sets - current number of pagesset
938  *
939  * This routine flushes out accumuated pages.
940  *
941  * To insure an even number of sets the
942  * code may add a filler.
943  *
944  * This can happen with when pages is not
945  * a power of 2 or pages is a power of 2
946  * less than the maximum pages.
947  *
948  * Return:
949  * The new number of sets
950  */
951 
952 static u32 tid_flush_pages(struct tid_rdma_pageset *list,
953 			   u32 *idx, u32 pages, u32 sets)
954 {
955 	while (pages) {
956 		u32 maxpages = pages;
957 
958 		if (maxpages > MAX_EXPECTED_PAGES)
959 			maxpages = MAX_EXPECTED_PAGES;
960 		else if (!is_power_of_2(maxpages))
961 			maxpages = rounddown_pow_of_two(maxpages);
962 		list[sets].idx = *idx;
963 		list[sets++].count = maxpages;
964 		*idx += maxpages;
965 		pages -= maxpages;
966 	}
967 	/* might need a filler */
968 	if (sets & 1)
969 		list[sets++].count = 0;
970 	return sets;
971 }
972 
973 /**
974  * tid_rdma_find_phys_blocks_8k - get groups base on mr info
975  * @pages - pointer to an array of page structs
976  * @npages - number of pages
977  * @list - page set array to return
978  *
979  * This routine parses an array of pages to compute pagesets
980  * in an 8k compatible way.
981  *
982  * pages are tested two at a time, i, i + 1 for contiguous
983  * pages and i - 1 and i contiguous pages.
984  *
985  * If any condition is false, any accumlated pages are flushed and
986  * v0,v1 are emitted as separate PAGE_SIZE pagesets
987  *
988  * Otherwise, the current 8k is totaled for a future flush.
989  *
990  * Return:
991  * The number of pagesets
992  * list set with the returned number of pagesets
993  *
994  */
995 static u32 tid_rdma_find_phys_blocks_8k(struct tid_rdma_flow *flow,
996 					struct page **pages,
997 					u32 npages,
998 					struct tid_rdma_pageset *list)
999 {
1000 	u32 idx, sets = 0, i;
1001 	u32 pagecnt = 0;
1002 	void *v0, *v1, *vm1;
1003 
1004 	if (!npages)
1005 		return 0;
1006 	for (idx = 0, i = 0, vm1 = NULL; i < npages; i += 2) {
1007 		/* get a new v0 */
1008 		v0 = page_address(pages[i]);
1009 		trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 1, 0, v0);
1010 		v1 = i + 1 < npages ?
1011 				page_address(pages[i + 1]) : NULL;
1012 		trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 1, 1, v1);
1013 		/* compare i, i + 1 vaddr */
1014 		if (v1 != (v0 + PAGE_SIZE)) {
1015 			/* flush out pages */
1016 			sets = tid_flush_pages(list, &idx, pagecnt, sets);
1017 			/* output v0,v1 as two pagesets */
1018 			list[sets].idx = idx++;
1019 			list[sets++].count = 1;
1020 			if (v1) {
1021 				list[sets].count = 1;
1022 				list[sets++].idx = idx++;
1023 			} else {
1024 				list[sets++].count = 0;
1025 			}
1026 			vm1 = NULL;
1027 			pagecnt = 0;
1028 			continue;
1029 		}
1030 		/* i,i+1 consecutive, look at i-1,i */
1031 		if (vm1 && v0 != (vm1 + PAGE_SIZE)) {
1032 			/* flush out pages */
1033 			sets = tid_flush_pages(list, &idx, pagecnt, sets);
1034 			pagecnt = 0;
1035 		}
1036 		/* pages will always be a multiple of 8k */
1037 		pagecnt += 2;
1038 		/* save i-1 */
1039 		vm1 = v1;
1040 		/* move to next pair */
1041 	}
1042 	/* dump residual pages at end */
1043 	sets = tid_flush_pages(list, &idx, npages - idx, sets);
1044 	/* by design cannot be odd sets */
1045 	WARN_ON(sets & 1);
1046 	return sets;
1047 }
1048 
1049 /**
1050  * Find pages for one segment of a sge array represented by @ss. The function
1051  * does not check the sge, the sge must have been checked for alignment with a
1052  * prior call to hfi1_kern_trdma_ok. Other sge checking is done as part of
1053  * rvt_lkey_ok and rvt_rkey_ok. Also, the function only modifies the local sge
1054  * copy maintained in @ss->sge, the original sge is not modified.
1055  *
1056  * Unlike IB RDMA WRITE, we can't decrement ss->num_sge here because we are not
1057  * releasing the MR reference count at the same time. Otherwise, we'll "leak"
1058  * references to the MR. This difference requires that we keep track of progress
1059  * into the sg_list. This is done by the cur_seg cursor in the tid_rdma_request
1060  * structure.
1061  */
1062 static u32 kern_find_pages(struct tid_rdma_flow *flow,
1063 			   struct page **pages,
1064 			   struct rvt_sge_state *ss, bool *last)
1065 {
1066 	struct tid_rdma_request *req = flow->req;
1067 	struct rvt_sge *sge = &ss->sge;
1068 	u32 length = flow->req->seg_len;
1069 	u32 len = PAGE_SIZE;
1070 	u32 i = 0;
1071 
1072 	while (length && req->isge < ss->num_sge) {
1073 		pages[i++] = virt_to_page(sge->vaddr);
1074 
1075 		sge->vaddr += len;
1076 		sge->length -= len;
1077 		sge->sge_length -= len;
1078 		if (!sge->sge_length) {
1079 			if (++req->isge < ss->num_sge)
1080 				*sge = ss->sg_list[req->isge - 1];
1081 		} else if (sge->length == 0 && sge->mr->lkey) {
1082 			if (++sge->n >= RVT_SEGSZ) {
1083 				++sge->m;
1084 				sge->n = 0;
1085 			}
1086 			sge->vaddr = sge->mr->map[sge->m]->segs[sge->n].vaddr;
1087 			sge->length = sge->mr->map[sge->m]->segs[sge->n].length;
1088 		}
1089 		length -= len;
1090 	}
1091 
1092 	flow->length = flow->req->seg_len - length;
1093 	*last = req->isge == ss->num_sge ? false : true;
1094 	return i;
1095 }
1096 
1097 static void dma_unmap_flow(struct tid_rdma_flow *flow)
1098 {
1099 	struct hfi1_devdata *dd;
1100 	int i;
1101 	struct tid_rdma_pageset *pset;
1102 
1103 	dd = flow->req->rcd->dd;
1104 	for (i = 0, pset = &flow->pagesets[0]; i < flow->npagesets;
1105 			i++, pset++) {
1106 		if (pset->count && pset->addr) {
1107 			dma_unmap_page(&dd->pcidev->dev,
1108 				       pset->addr,
1109 				       PAGE_SIZE * pset->count,
1110 				       DMA_FROM_DEVICE);
1111 			pset->mapped = 0;
1112 		}
1113 	}
1114 }
1115 
1116 static int dma_map_flow(struct tid_rdma_flow *flow, struct page **pages)
1117 {
1118 	int i;
1119 	struct hfi1_devdata *dd = flow->req->rcd->dd;
1120 	struct tid_rdma_pageset *pset;
1121 
1122 	for (i = 0, pset = &flow->pagesets[0]; i < flow->npagesets;
1123 			i++, pset++) {
1124 		if (pset->count) {
1125 			pset->addr = dma_map_page(&dd->pcidev->dev,
1126 						  pages[pset->idx],
1127 						  0,
1128 						  PAGE_SIZE * pset->count,
1129 						  DMA_FROM_DEVICE);
1130 
1131 			if (dma_mapping_error(&dd->pcidev->dev, pset->addr)) {
1132 				dma_unmap_flow(flow);
1133 				return -ENOMEM;
1134 			}
1135 			pset->mapped = 1;
1136 		}
1137 	}
1138 	return 0;
1139 }
1140 
1141 static inline bool dma_mapped(struct tid_rdma_flow *flow)
1142 {
1143 	return !!flow->pagesets[0].mapped;
1144 }
1145 
1146 /*
1147  * Get pages pointers and identify contiguous physical memory chunks for a
1148  * segment. All segments are of length flow->req->seg_len.
1149  */
1150 static int kern_get_phys_blocks(struct tid_rdma_flow *flow,
1151 				struct page **pages,
1152 				struct rvt_sge_state *ss, bool *last)
1153 {
1154 	u8 npages;
1155 
1156 	/* Reuse previously computed pagesets, if any */
1157 	if (flow->npagesets) {
1158 		trace_hfi1_tid_flow_alloc(flow->req->qp, flow->req->setup_head,
1159 					  flow);
1160 		if (!dma_mapped(flow))
1161 			return dma_map_flow(flow, pages);
1162 		return 0;
1163 	}
1164 
1165 	npages = kern_find_pages(flow, pages, ss, last);
1166 
1167 	if (flow->req->qp->pmtu == enum_to_mtu(OPA_MTU_4096))
1168 		flow->npagesets =
1169 			tid_rdma_find_phys_blocks_4k(flow, pages, npages,
1170 						     flow->pagesets);
1171 	else
1172 		flow->npagesets =
1173 			tid_rdma_find_phys_blocks_8k(flow, pages, npages,
1174 						     flow->pagesets);
1175 
1176 	return dma_map_flow(flow, pages);
1177 }
1178 
1179 static inline void kern_add_tid_node(struct tid_rdma_flow *flow,
1180 				     struct hfi1_ctxtdata *rcd, char *s,
1181 				     struct tid_group *grp, u8 cnt)
1182 {
1183 	struct kern_tid_node *node = &flow->tnode[flow->tnode_cnt++];
1184 
1185 	WARN_ON_ONCE(flow->tnode_cnt >=
1186 		     (TID_RDMA_MAX_SEGMENT_SIZE >> PAGE_SHIFT));
1187 	if (WARN_ON_ONCE(cnt & 1))
1188 		dd_dev_err(rcd->dd,
1189 			   "unexpected odd allocation cnt %u map 0x%x used %u",
1190 			   cnt, grp->map, grp->used);
1191 
1192 	node->grp = grp;
1193 	node->map = grp->map;
1194 	node->cnt = cnt;
1195 	trace_hfi1_tid_node_add(flow->req->qp, s, flow->tnode_cnt - 1,
1196 				grp->base, grp->map, grp->used, cnt);
1197 }
1198 
1199 /*
1200  * Try to allocate pageset_count TID's from TID groups for a context
1201  *
1202  * This function allocates TID's without moving groups between lists or
1203  * modifying grp->map. This is done as follows, being cogizant of the lists
1204  * between which the TID groups will move:
1205  * 1. First allocate complete groups of 8 TID's since this is more efficient,
1206  *    these groups will move from group->full without affecting used
1207  * 2. If more TID's are needed allocate from used (will move from used->full or
1208  *    stay in used)
1209  * 3. If we still don't have the required number of TID's go back and look again
1210  *    at a complete group (will move from group->used)
1211  */
1212 static int kern_alloc_tids(struct tid_rdma_flow *flow)
1213 {
1214 	struct hfi1_ctxtdata *rcd = flow->req->rcd;
1215 	struct hfi1_devdata *dd = rcd->dd;
1216 	u32 ngroups, pageidx = 0;
1217 	struct tid_group *group = NULL, *used;
1218 	u8 use;
1219 
1220 	flow->tnode_cnt = 0;
1221 	ngroups = flow->npagesets / dd->rcv_entries.group_size;
1222 	if (!ngroups)
1223 		goto used_list;
1224 
1225 	/* First look at complete groups */
1226 	list_for_each_entry(group,  &rcd->tid_group_list.list, list) {
1227 		kern_add_tid_node(flow, rcd, "complete groups", group,
1228 				  group->size);
1229 
1230 		pageidx += group->size;
1231 		if (!--ngroups)
1232 			break;
1233 	}
1234 
1235 	if (pageidx >= flow->npagesets)
1236 		goto ok;
1237 
1238 used_list:
1239 	/* Now look at partially used groups */
1240 	list_for_each_entry(used, &rcd->tid_used_list.list, list) {
1241 		use = min_t(u32, flow->npagesets - pageidx,
1242 			    used->size - used->used);
1243 		kern_add_tid_node(flow, rcd, "used groups", used, use);
1244 
1245 		pageidx += use;
1246 		if (pageidx >= flow->npagesets)
1247 			goto ok;
1248 	}
1249 
1250 	/*
1251 	 * Look again at a complete group, continuing from where we left.
1252 	 * However, if we are at the head, we have reached the end of the
1253 	 * complete groups list from the first loop above
1254 	 */
1255 	if (group && &group->list == &rcd->tid_group_list.list)
1256 		goto bail_eagain;
1257 	group = list_prepare_entry(group, &rcd->tid_group_list.list,
1258 				   list);
1259 	if (list_is_last(&group->list, &rcd->tid_group_list.list))
1260 		goto bail_eagain;
1261 	group = list_next_entry(group, list);
1262 	use = min_t(u32, flow->npagesets - pageidx, group->size);
1263 	kern_add_tid_node(flow, rcd, "complete continue", group, use);
1264 	pageidx += use;
1265 	if (pageidx >= flow->npagesets)
1266 		goto ok;
1267 bail_eagain:
1268 	trace_hfi1_msg_alloc_tids(flow->req->qp, " insufficient tids: needed ",
1269 				  (u64)flow->npagesets);
1270 	return -EAGAIN;
1271 ok:
1272 	return 0;
1273 }
1274 
1275 static void kern_program_rcv_group(struct tid_rdma_flow *flow, int grp_num,
1276 				   u32 *pset_idx)
1277 {
1278 	struct hfi1_ctxtdata *rcd = flow->req->rcd;
1279 	struct hfi1_devdata *dd = rcd->dd;
1280 	struct kern_tid_node *node = &flow->tnode[grp_num];
1281 	struct tid_group *grp = node->grp;
1282 	struct tid_rdma_pageset *pset;
1283 	u32 pmtu_pg = flow->req->qp->pmtu >> PAGE_SHIFT;
1284 	u32 rcventry, npages = 0, pair = 0, tidctrl;
1285 	u8 i, cnt = 0;
1286 
1287 	for (i = 0; i < grp->size; i++) {
1288 		rcventry = grp->base + i;
1289 
1290 		if (node->map & BIT(i) || cnt >= node->cnt) {
1291 			rcv_array_wc_fill(dd, rcventry);
1292 			continue;
1293 		}
1294 		pset = &flow->pagesets[(*pset_idx)++];
1295 		if (pset->count) {
1296 			hfi1_put_tid(dd, rcventry, PT_EXPECTED,
1297 				     pset->addr, trdma_pset_order(pset));
1298 		} else {
1299 			hfi1_put_tid(dd, rcventry, PT_INVALID, 0, 0);
1300 		}
1301 		npages += pset->count;
1302 
1303 		rcventry -= rcd->expected_base;
1304 		tidctrl = pair ? 0x3 : rcventry & 0x1 ? 0x2 : 0x1;
1305 		/*
1306 		 * A single TID entry will be used to use a rcvarr pair (with
1307 		 * tidctrl 0x3), if ALL these are true (a) the bit pos is even
1308 		 * (b) the group map shows current and the next bits as free
1309 		 * indicating two consecutive rcvarry entries are available (c)
1310 		 * we actually need 2 more entries
1311 		 */
1312 		pair = !(i & 0x1) && !((node->map >> i) & 0x3) &&
1313 			node->cnt >= cnt + 2;
1314 		if (!pair) {
1315 			if (!pset->count)
1316 				tidctrl = 0x1;
1317 			flow->tid_entry[flow->tidcnt++] =
1318 				EXP_TID_SET(IDX, rcventry >> 1) |
1319 				EXP_TID_SET(CTRL, tidctrl) |
1320 				EXP_TID_SET(LEN, npages);
1321 			trace_hfi1_tid_entry_alloc(/* entry */
1322 			   flow->req->qp, flow->tidcnt - 1,
1323 			   flow->tid_entry[flow->tidcnt - 1]);
1324 
1325 			/* Efficient DIV_ROUND_UP(npages, pmtu_pg) */
1326 			flow->npkts += (npages + pmtu_pg - 1) >> ilog2(pmtu_pg);
1327 			npages = 0;
1328 		}
1329 
1330 		if (grp->used == grp->size - 1)
1331 			tid_group_move(grp, &rcd->tid_used_list,
1332 				       &rcd->tid_full_list);
1333 		else if (!grp->used)
1334 			tid_group_move(grp, &rcd->tid_group_list,
1335 				       &rcd->tid_used_list);
1336 
1337 		grp->used++;
1338 		grp->map |= BIT(i);
1339 		cnt++;
1340 	}
1341 }
1342 
1343 static void kern_unprogram_rcv_group(struct tid_rdma_flow *flow, int grp_num)
1344 {
1345 	struct hfi1_ctxtdata *rcd = flow->req->rcd;
1346 	struct hfi1_devdata *dd = rcd->dd;
1347 	struct kern_tid_node *node = &flow->tnode[grp_num];
1348 	struct tid_group *grp = node->grp;
1349 	u32 rcventry;
1350 	u8 i, cnt = 0;
1351 
1352 	for (i = 0; i < grp->size; i++) {
1353 		rcventry = grp->base + i;
1354 
1355 		if (node->map & BIT(i) || cnt >= node->cnt) {
1356 			rcv_array_wc_fill(dd, rcventry);
1357 			continue;
1358 		}
1359 
1360 		hfi1_put_tid(dd, rcventry, PT_INVALID, 0, 0);
1361 
1362 		grp->used--;
1363 		grp->map &= ~BIT(i);
1364 		cnt++;
1365 
1366 		if (grp->used == grp->size - 1)
1367 			tid_group_move(grp, &rcd->tid_full_list,
1368 				       &rcd->tid_used_list);
1369 		else if (!grp->used)
1370 			tid_group_move(grp, &rcd->tid_used_list,
1371 				       &rcd->tid_group_list);
1372 	}
1373 	if (WARN_ON_ONCE(cnt & 1)) {
1374 		struct hfi1_ctxtdata *rcd = flow->req->rcd;
1375 		struct hfi1_devdata *dd = rcd->dd;
1376 
1377 		dd_dev_err(dd, "unexpected odd free cnt %u map 0x%x used %u",
1378 			   cnt, grp->map, grp->used);
1379 	}
1380 }
1381 
1382 static void kern_program_rcvarray(struct tid_rdma_flow *flow)
1383 {
1384 	u32 pset_idx = 0;
1385 	int i;
1386 
1387 	flow->npkts = 0;
1388 	flow->tidcnt = 0;
1389 	for (i = 0; i < flow->tnode_cnt; i++)
1390 		kern_program_rcv_group(flow, i, &pset_idx);
1391 	trace_hfi1_tid_flow_alloc(flow->req->qp, flow->req->setup_head, flow);
1392 }
1393 
1394 /**
1395  * hfi1_kern_exp_rcv_setup() - setup TID's and flow for one segment of a
1396  * TID RDMA request
1397  *
1398  * @req: TID RDMA request for which the segment/flow is being set up
1399  * @ss: sge state, maintains state across successive segments of a sge
1400  * @last: set to true after the last sge segment has been processed
1401  *
1402  * This function
1403  * (1) finds a free flow entry in the flow circular buffer
1404  * (2) finds pages and continuous physical chunks constituing one segment
1405  *     of an sge
1406  * (3) allocates TID group entries for those chunks
1407  * (4) programs rcvarray entries in the hardware corresponding to those
1408  *     TID's
1409  * (5) computes a tidarray with formatted TID entries which can be sent
1410  *     to the sender
1411  * (6) Reserves and programs HW flows.
1412  * (7) It also manages queing the QP when TID/flow resources are not
1413  *     available.
1414  *
1415  * @req points to struct tid_rdma_request of which the segments are a part. The
1416  * function uses qp, rcd and seg_len members of @req. In the absence of errors,
1417  * req->flow_idx is the index of the flow which has been prepared in this
1418  * invocation of function call. With flow = &req->flows[req->flow_idx],
1419  * flow->tid_entry contains the TID array which the sender can use for TID RDMA
1420  * sends and flow->npkts contains number of packets required to send the
1421  * segment.
1422  *
1423  * hfi1_check_sge_align should be called prior to calling this function and if
1424  * it signals error TID RDMA cannot be used for this sge and this function
1425  * should not be called.
1426  *
1427  * For the queuing, caller must hold the flow->req->qp s_lock from the send
1428  * engine and the function will procure the exp_lock.
1429  *
1430  * Return:
1431  * The function returns -EAGAIN if sufficient number of TID/flow resources to
1432  * map the segment could not be allocated. In this case the function should be
1433  * called again with previous arguments to retry the TID allocation. There are
1434  * no other error returns. The function returns 0 on success.
1435  */
1436 int hfi1_kern_exp_rcv_setup(struct tid_rdma_request *req,
1437 			    struct rvt_sge_state *ss, bool *last)
1438 	__must_hold(&req->qp->s_lock)
1439 {
1440 	struct tid_rdma_flow *flow = &req->flows[req->setup_head];
1441 	struct hfi1_ctxtdata *rcd = req->rcd;
1442 	struct hfi1_qp_priv *qpriv = req->qp->priv;
1443 	unsigned long flags;
1444 	struct rvt_qp *fqp;
1445 	u16 clear_tail = req->clear_tail;
1446 
1447 	lockdep_assert_held(&req->qp->s_lock);
1448 	/*
1449 	 * We return error if either (a) we don't have space in the flow
1450 	 * circular buffer, or (b) we already have max entries in the buffer.
1451 	 * Max entries depend on the type of request we are processing and the
1452 	 * negotiated TID RDMA parameters.
1453 	 */
1454 	if (!CIRC_SPACE(req->setup_head, clear_tail, MAX_FLOWS) ||
1455 	    CIRC_CNT(req->setup_head, clear_tail, MAX_FLOWS) >=
1456 	    req->n_flows)
1457 		return -EINVAL;
1458 
1459 	/*
1460 	 * Get pages, identify contiguous physical memory chunks for the segment
1461 	 * If we can not determine a DMA address mapping we will treat it just
1462 	 * like if we ran out of space above.
1463 	 */
1464 	if (kern_get_phys_blocks(flow, qpriv->pages, ss, last)) {
1465 		hfi1_wait_kmem(flow->req->qp);
1466 		return -ENOMEM;
1467 	}
1468 
1469 	spin_lock_irqsave(&rcd->exp_lock, flags);
1470 	if (kernel_tid_waiters(rcd, &rcd->rarr_queue, flow->req->qp))
1471 		goto queue;
1472 
1473 	/*
1474 	 * At this point we know the number of pagesets and hence the number of
1475 	 * TID's to map the segment. Allocate the TID's from the TID groups. If
1476 	 * we cannot allocate the required number we exit and try again later
1477 	 */
1478 	if (kern_alloc_tids(flow))
1479 		goto queue;
1480 	/*
1481 	 * Finally program the TID entries with the pagesets, compute the
1482 	 * tidarray and enable the HW flow
1483 	 */
1484 	kern_program_rcvarray(flow);
1485 
1486 	/*
1487 	 * Setup the flow state with relevant information.
1488 	 * This information is used for tracking the sequence of data packets
1489 	 * for the segment.
1490 	 * The flow is setup here as this is the most accurate time and place
1491 	 * to do so. Doing at a later time runs the risk of the flow data in
1492 	 * qpriv getting out of sync.
1493 	 */
1494 	memset(&flow->flow_state, 0x0, sizeof(flow->flow_state));
1495 	flow->idx = qpriv->flow_state.index;
1496 	flow->flow_state.generation = qpriv->flow_state.generation;
1497 	flow->flow_state.spsn = qpriv->flow_state.psn;
1498 	flow->flow_state.lpsn = flow->flow_state.spsn + flow->npkts - 1;
1499 	flow->flow_state.r_next_psn =
1500 		full_flow_psn(flow, flow->flow_state.spsn);
1501 	qpriv->flow_state.psn += flow->npkts;
1502 
1503 	dequeue_tid_waiter(rcd, &rcd->rarr_queue, flow->req->qp);
1504 	/* get head before dropping lock */
1505 	fqp = first_qp(rcd, &rcd->rarr_queue);
1506 	spin_unlock_irqrestore(&rcd->exp_lock, flags);
1507 	tid_rdma_schedule_tid_wakeup(fqp);
1508 
1509 	req->setup_head = (req->setup_head + 1) & (MAX_FLOWS - 1);
1510 	return 0;
1511 queue:
1512 	queue_qp_for_tid_wait(rcd, &rcd->rarr_queue, flow->req->qp);
1513 	spin_unlock_irqrestore(&rcd->exp_lock, flags);
1514 	return -EAGAIN;
1515 }
1516 
1517 static void hfi1_tid_rdma_reset_flow(struct tid_rdma_flow *flow)
1518 {
1519 	flow->npagesets = 0;
1520 }
1521 
1522 /*
1523  * This function is called after one segment has been successfully sent to
1524  * release the flow and TID HW/SW resources for that segment. The segments for a
1525  * TID RDMA request are setup and cleared in FIFO order which is managed using a
1526  * circular buffer.
1527  */
1528 int hfi1_kern_exp_rcv_clear(struct tid_rdma_request *req)
1529 	__must_hold(&req->qp->s_lock)
1530 {
1531 	struct tid_rdma_flow *flow = &req->flows[req->clear_tail];
1532 	struct hfi1_ctxtdata *rcd = req->rcd;
1533 	unsigned long flags;
1534 	int i;
1535 	struct rvt_qp *fqp;
1536 
1537 	lockdep_assert_held(&req->qp->s_lock);
1538 	/* Exit if we have nothing in the flow circular buffer */
1539 	if (!CIRC_CNT(req->setup_head, req->clear_tail, MAX_FLOWS))
1540 		return -EINVAL;
1541 
1542 	spin_lock_irqsave(&rcd->exp_lock, flags);
1543 
1544 	for (i = 0; i < flow->tnode_cnt; i++)
1545 		kern_unprogram_rcv_group(flow, i);
1546 	/* To prevent double unprogramming */
1547 	flow->tnode_cnt = 0;
1548 	/* get head before dropping lock */
1549 	fqp = first_qp(rcd, &rcd->rarr_queue);
1550 	spin_unlock_irqrestore(&rcd->exp_lock, flags);
1551 
1552 	dma_unmap_flow(flow);
1553 
1554 	hfi1_tid_rdma_reset_flow(flow);
1555 	req->clear_tail = (req->clear_tail + 1) & (MAX_FLOWS - 1);
1556 
1557 	if (fqp == req->qp) {
1558 		__trigger_tid_waiter(fqp);
1559 		rvt_put_qp(fqp);
1560 	} else {
1561 		tid_rdma_schedule_tid_wakeup(fqp);
1562 	}
1563 
1564 	return 0;
1565 }
1566 
1567 /*
1568  * This function is called to release all the tid entries for
1569  * a request.
1570  */
1571 void hfi1_kern_exp_rcv_clear_all(struct tid_rdma_request *req)
1572 	__must_hold(&req->qp->s_lock)
1573 {
1574 	/* Use memory barrier for proper ordering */
1575 	while (CIRC_CNT(req->setup_head, req->clear_tail, MAX_FLOWS)) {
1576 		if (hfi1_kern_exp_rcv_clear(req))
1577 			break;
1578 	}
1579 }
1580 
1581 /**
1582  * hfi1_kern_exp_rcv_free_flows - free priviously allocated flow information
1583  * @req - the tid rdma request to be cleaned
1584  */
1585 static void hfi1_kern_exp_rcv_free_flows(struct tid_rdma_request *req)
1586 {
1587 	kfree(req->flows);
1588 	req->flows = NULL;
1589 }
1590 
1591 /**
1592  * __trdma_clean_swqe - clean up for large sized QPs
1593  * @qp: the queue patch
1594  * @wqe: the send wqe
1595  */
1596 void __trdma_clean_swqe(struct rvt_qp *qp, struct rvt_swqe *wqe)
1597 {
1598 	struct hfi1_swqe_priv *p = wqe->priv;
1599 
1600 	hfi1_kern_exp_rcv_free_flows(&p->tid_req);
1601 }
1602 
1603 /*
1604  * This can be called at QP create time or in the data path.
1605  */
1606 static int hfi1_kern_exp_rcv_alloc_flows(struct tid_rdma_request *req,
1607 					 gfp_t gfp)
1608 {
1609 	struct tid_rdma_flow *flows;
1610 	int i;
1611 
1612 	if (likely(req->flows))
1613 		return 0;
1614 	flows = kmalloc_node(MAX_FLOWS * sizeof(*flows), gfp,
1615 			     req->rcd->numa_id);
1616 	if (!flows)
1617 		return -ENOMEM;
1618 	/* mini init */
1619 	for (i = 0; i < MAX_FLOWS; i++) {
1620 		flows[i].req = req;
1621 		flows[i].npagesets = 0;
1622 		flows[i].pagesets[0].mapped =  0;
1623 	}
1624 	req->flows = flows;
1625 	return 0;
1626 }
1627 
1628 static void hfi1_init_trdma_req(struct rvt_qp *qp,
1629 				struct tid_rdma_request *req)
1630 {
1631 	struct hfi1_qp_priv *qpriv = qp->priv;
1632 
1633 	/*
1634 	 * Initialize various TID RDMA request variables.
1635 	 * These variables are "static", which is why they
1636 	 * can be pre-initialized here before the WRs has
1637 	 * even been submitted.
1638 	 * However, non-NULL values for these variables do not
1639 	 * imply that this WQE has been enabled for TID RDMA.
1640 	 * Drivers should check the WQE's opcode to determine
1641 	 * if a request is a TID RDMA one or not.
1642 	 */
1643 	req->qp = qp;
1644 	req->rcd = qpriv->rcd;
1645 }
1646 
1647 u64 hfi1_access_sw_tid_wait(const struct cntr_entry *entry,
1648 			    void *context, int vl, int mode, u64 data)
1649 {
1650 	struct hfi1_devdata *dd = context;
1651 
1652 	return dd->verbs_dev.n_tidwait;
1653 }
1654 
1655 static struct tid_rdma_flow *find_flow_ib(struct tid_rdma_request *req,
1656 					  u32 psn, u16 *fidx)
1657 {
1658 	u16 head, tail;
1659 	struct tid_rdma_flow *flow;
1660 
1661 	head = req->setup_head;
1662 	tail = req->clear_tail;
1663 	for ( ; CIRC_CNT(head, tail, MAX_FLOWS);
1664 	     tail = CIRC_NEXT(tail, MAX_FLOWS)) {
1665 		flow = &req->flows[tail];
1666 		if (cmp_psn(psn, flow->flow_state.ib_spsn) >= 0 &&
1667 		    cmp_psn(psn, flow->flow_state.ib_lpsn) <= 0) {
1668 			if (fidx)
1669 				*fidx = tail;
1670 			return flow;
1671 		}
1672 	}
1673 	return NULL;
1674 }
1675 
1676 static struct tid_rdma_flow *
1677 __find_flow_ranged(struct tid_rdma_request *req, u16 head, u16 tail,
1678 		   u32 psn, u16 *fidx)
1679 {
1680 	for ( ; CIRC_CNT(head, tail, MAX_FLOWS);
1681 	      tail = CIRC_NEXT(tail, MAX_FLOWS)) {
1682 		struct tid_rdma_flow *flow = &req->flows[tail];
1683 		u32 spsn, lpsn;
1684 
1685 		spsn = full_flow_psn(flow, flow->flow_state.spsn);
1686 		lpsn = full_flow_psn(flow, flow->flow_state.lpsn);
1687 
1688 		if (cmp_psn(psn, spsn) >= 0 && cmp_psn(psn, lpsn) <= 0) {
1689 			if (fidx)
1690 				*fidx = tail;
1691 			return flow;
1692 		}
1693 	}
1694 	return NULL;
1695 }
1696 
1697 static struct tid_rdma_flow *find_flow(struct tid_rdma_request *req,
1698 				       u32 psn, u16 *fidx)
1699 {
1700 	return __find_flow_ranged(req, req->setup_head, req->clear_tail, psn,
1701 				  fidx);
1702 }
1703 
1704 /* TID RDMA READ functions */
1705 u32 hfi1_build_tid_rdma_read_packet(struct rvt_swqe *wqe,
1706 				    struct ib_other_headers *ohdr, u32 *bth1,
1707 				    u32 *bth2, u32 *len)
1708 {
1709 	struct tid_rdma_request *req = wqe_to_tid_req(wqe);
1710 	struct tid_rdma_flow *flow = &req->flows[req->flow_idx];
1711 	struct rvt_qp *qp = req->qp;
1712 	struct hfi1_qp_priv *qpriv = qp->priv;
1713 	struct hfi1_swqe_priv *wpriv = wqe->priv;
1714 	struct tid_rdma_read_req *rreq = &ohdr->u.tid_rdma.r_req;
1715 	struct tid_rdma_params *remote;
1716 	u32 req_len = 0;
1717 	void *req_addr = NULL;
1718 
1719 	/* This is the IB psn used to send the request */
1720 	*bth2 = mask_psn(flow->flow_state.ib_spsn + flow->pkt);
1721 	trace_hfi1_tid_flow_build_read_pkt(qp, req->flow_idx, flow);
1722 
1723 	/* TID Entries for TID RDMA READ payload */
1724 	req_addr = &flow->tid_entry[flow->tid_idx];
1725 	req_len = sizeof(*flow->tid_entry) *
1726 			(flow->tidcnt - flow->tid_idx);
1727 
1728 	memset(&ohdr->u.tid_rdma.r_req, 0, sizeof(ohdr->u.tid_rdma.r_req));
1729 	wpriv->ss.sge.vaddr = req_addr;
1730 	wpriv->ss.sge.sge_length = req_len;
1731 	wpriv->ss.sge.length = wpriv->ss.sge.sge_length;
1732 	/*
1733 	 * We can safely zero these out. Since the first SGE covers the
1734 	 * entire packet, nothing else should even look at the MR.
1735 	 */
1736 	wpriv->ss.sge.mr = NULL;
1737 	wpriv->ss.sge.m = 0;
1738 	wpriv->ss.sge.n = 0;
1739 
1740 	wpriv->ss.sg_list = NULL;
1741 	wpriv->ss.total_len = wpriv->ss.sge.sge_length;
1742 	wpriv->ss.num_sge = 1;
1743 
1744 	/* Construct the TID RDMA READ REQ packet header */
1745 	rcu_read_lock();
1746 	remote = rcu_dereference(qpriv->tid_rdma.remote);
1747 
1748 	KDETH_RESET(rreq->kdeth0, KVER, 0x1);
1749 	KDETH_RESET(rreq->kdeth1, JKEY, remote->jkey);
1750 	rreq->reth.vaddr = cpu_to_be64(wqe->rdma_wr.remote_addr +
1751 			   req->cur_seg * req->seg_len + flow->sent);
1752 	rreq->reth.rkey = cpu_to_be32(wqe->rdma_wr.rkey);
1753 	rreq->reth.length = cpu_to_be32(*len);
1754 	rreq->tid_flow_psn =
1755 		cpu_to_be32((flow->flow_state.generation <<
1756 			     HFI1_KDETH_BTH_SEQ_SHIFT) |
1757 			    ((flow->flow_state.spsn + flow->pkt) &
1758 			     HFI1_KDETH_BTH_SEQ_MASK));
1759 	rreq->tid_flow_qp =
1760 		cpu_to_be32(qpriv->tid_rdma.local.qp |
1761 			    ((flow->idx & TID_RDMA_DESTQP_FLOW_MASK) <<
1762 			     TID_RDMA_DESTQP_FLOW_SHIFT) |
1763 			    qpriv->rcd->ctxt);
1764 	rreq->verbs_qp = cpu_to_be32(qp->remote_qpn);
1765 	*bth1 &= ~RVT_QPN_MASK;
1766 	*bth1 |= remote->qp;
1767 	*bth2 |= IB_BTH_REQ_ACK;
1768 	rcu_read_unlock();
1769 
1770 	/* We are done with this segment */
1771 	flow->sent += *len;
1772 	req->cur_seg++;
1773 	qp->s_state = TID_OP(READ_REQ);
1774 	req->ack_pending++;
1775 	req->flow_idx = (req->flow_idx + 1) & (MAX_FLOWS - 1);
1776 	qpriv->pending_tid_r_segs++;
1777 	qp->s_num_rd_atomic++;
1778 
1779 	/* Set the TID RDMA READ request payload size */
1780 	*len = req_len;
1781 
1782 	return sizeof(ohdr->u.tid_rdma.r_req) / sizeof(u32);
1783 }
1784 
1785 /*
1786  * @len: contains the data length to read upon entry and the read request
1787  *       payload length upon exit.
1788  */
1789 u32 hfi1_build_tid_rdma_read_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
1790 				 struct ib_other_headers *ohdr, u32 *bth1,
1791 				 u32 *bth2, u32 *len)
1792 	__must_hold(&qp->s_lock)
1793 {
1794 	struct hfi1_qp_priv *qpriv = qp->priv;
1795 	struct tid_rdma_request *req = wqe_to_tid_req(wqe);
1796 	struct tid_rdma_flow *flow = NULL;
1797 	u32 hdwords = 0;
1798 	bool last;
1799 	bool retry = true;
1800 	u32 npkts = rvt_div_round_up_mtu(qp, *len);
1801 
1802 	trace_hfi1_tid_req_build_read_req(qp, 0, wqe->wr.opcode, wqe->psn,
1803 					  wqe->lpsn, req);
1804 	/*
1805 	 * Check sync conditions. Make sure that there are no pending
1806 	 * segments before freeing the flow.
1807 	 */
1808 sync_check:
1809 	if (req->state == TID_REQUEST_SYNC) {
1810 		if (qpriv->pending_tid_r_segs)
1811 			goto done;
1812 
1813 		hfi1_kern_clear_hw_flow(req->rcd, qp);
1814 		qpriv->s_flags &= ~HFI1_R_TID_SW_PSN;
1815 		req->state = TID_REQUEST_ACTIVE;
1816 	}
1817 
1818 	/*
1819 	 * If the request for this segment is resent, the tid resources should
1820 	 * have been allocated before. In this case, req->flow_idx should
1821 	 * fall behind req->setup_head.
1822 	 */
1823 	if (req->flow_idx == req->setup_head) {
1824 		retry = false;
1825 		if (req->state == TID_REQUEST_RESEND) {
1826 			/*
1827 			 * This is the first new segment for a request whose
1828 			 * earlier segments have been re-sent. We need to
1829 			 * set up the sge pointer correctly.
1830 			 */
1831 			restart_sge(&qp->s_sge, wqe, req->s_next_psn,
1832 				    qp->pmtu);
1833 			req->isge = 0;
1834 			req->state = TID_REQUEST_ACTIVE;
1835 		}
1836 
1837 		/*
1838 		 * Check sync. The last PSN of each generation is reserved for
1839 		 * RESYNC.
1840 		 */
1841 		if ((qpriv->flow_state.psn + npkts) > MAX_TID_FLOW_PSN - 1) {
1842 			req->state = TID_REQUEST_SYNC;
1843 			goto sync_check;
1844 		}
1845 
1846 		/* Allocate the flow if not yet */
1847 		if (hfi1_kern_setup_hw_flow(qpriv->rcd, qp))
1848 			goto done;
1849 
1850 		/*
1851 		 * The following call will advance req->setup_head after
1852 		 * allocating the tid entries.
1853 		 */
1854 		if (hfi1_kern_exp_rcv_setup(req, &qp->s_sge, &last)) {
1855 			req->state = TID_REQUEST_QUEUED;
1856 
1857 			/*
1858 			 * We don't have resources for this segment. The QP has
1859 			 * already been queued.
1860 			 */
1861 			goto done;
1862 		}
1863 	}
1864 
1865 	/* req->flow_idx should only be one slot behind req->setup_head */
1866 	flow = &req->flows[req->flow_idx];
1867 	flow->pkt = 0;
1868 	flow->tid_idx = 0;
1869 	flow->sent = 0;
1870 	if (!retry) {
1871 		/* Set the first and last IB PSN for the flow in use.*/
1872 		flow->flow_state.ib_spsn = req->s_next_psn;
1873 		flow->flow_state.ib_lpsn =
1874 			flow->flow_state.ib_spsn + flow->npkts - 1;
1875 	}
1876 
1877 	/* Calculate the next segment start psn.*/
1878 	req->s_next_psn += flow->npkts;
1879 
1880 	/* Build the packet header */
1881 	hdwords = hfi1_build_tid_rdma_read_packet(wqe, ohdr, bth1, bth2, len);
1882 done:
1883 	return hdwords;
1884 }
1885 
1886 /*
1887  * Validate and accept the TID RDMA READ request parameters.
1888  * Return 0 if the request is accepted successfully;
1889  * Return 1 otherwise.
1890  */
1891 static int tid_rdma_rcv_read_request(struct rvt_qp *qp,
1892 				     struct rvt_ack_entry *e,
1893 				     struct hfi1_packet *packet,
1894 				     struct ib_other_headers *ohdr,
1895 				     u32 bth0, u32 psn, u64 vaddr, u32 len)
1896 {
1897 	struct hfi1_qp_priv *qpriv = qp->priv;
1898 	struct tid_rdma_request *req;
1899 	struct tid_rdma_flow *flow;
1900 	u32 flow_psn, i, tidlen = 0, pktlen, tlen;
1901 
1902 	req = ack_to_tid_req(e);
1903 
1904 	/* Validate the payload first */
1905 	flow = &req->flows[req->setup_head];
1906 
1907 	/* payload length = packet length - (header length + ICRC length) */
1908 	pktlen = packet->tlen - (packet->hlen + 4);
1909 	if (pktlen > sizeof(flow->tid_entry))
1910 		return 1;
1911 	memcpy(flow->tid_entry, packet->ebuf, pktlen);
1912 	flow->tidcnt = pktlen / sizeof(*flow->tid_entry);
1913 
1914 	/*
1915 	 * Walk the TID_ENTRY list to make sure we have enough space for a
1916 	 * complete segment. Also calculate the number of required packets.
1917 	 */
1918 	flow->npkts = rvt_div_round_up_mtu(qp, len);
1919 	for (i = 0; i < flow->tidcnt; i++) {
1920 		trace_hfi1_tid_entry_rcv_read_req(qp, i,
1921 						  flow->tid_entry[i]);
1922 		tlen = EXP_TID_GET(flow->tid_entry[i], LEN);
1923 		if (!tlen)
1924 			return 1;
1925 
1926 		/*
1927 		 * For tid pair (tidctr == 3), the buffer size of the pair
1928 		 * should be the sum of the buffer size described by each
1929 		 * tid entry. However, only the first entry needs to be
1930 		 * specified in the request (see WFR HAS Section 8.5.7.1).
1931 		 */
1932 		tidlen += tlen;
1933 	}
1934 	if (tidlen * PAGE_SIZE < len)
1935 		return 1;
1936 
1937 	/* Empty the flow array */
1938 	req->clear_tail = req->setup_head;
1939 	flow->pkt = 0;
1940 	flow->tid_idx = 0;
1941 	flow->tid_offset = 0;
1942 	flow->sent = 0;
1943 	flow->tid_qpn = be32_to_cpu(ohdr->u.tid_rdma.r_req.tid_flow_qp);
1944 	flow->idx = (flow->tid_qpn >> TID_RDMA_DESTQP_FLOW_SHIFT) &
1945 		    TID_RDMA_DESTQP_FLOW_MASK;
1946 	flow_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.r_req.tid_flow_psn));
1947 	flow->flow_state.generation = flow_psn >> HFI1_KDETH_BTH_SEQ_SHIFT;
1948 	flow->flow_state.spsn = flow_psn & HFI1_KDETH_BTH_SEQ_MASK;
1949 	flow->length = len;
1950 
1951 	flow->flow_state.lpsn = flow->flow_state.spsn +
1952 		flow->npkts - 1;
1953 	flow->flow_state.ib_spsn = psn;
1954 	flow->flow_state.ib_lpsn = flow->flow_state.ib_spsn + flow->npkts - 1;
1955 
1956 	trace_hfi1_tid_flow_rcv_read_req(qp, req->setup_head, flow);
1957 	/* Set the initial flow index to the current flow. */
1958 	req->flow_idx = req->setup_head;
1959 
1960 	/* advance circular buffer head */
1961 	req->setup_head = (req->setup_head + 1) & (MAX_FLOWS - 1);
1962 
1963 	/*
1964 	 * Compute last PSN for request.
1965 	 */
1966 	e->opcode = (bth0 >> 24) & 0xff;
1967 	e->psn = psn;
1968 	e->lpsn = psn + flow->npkts - 1;
1969 	e->sent = 0;
1970 
1971 	req->n_flows = qpriv->tid_rdma.local.max_read;
1972 	req->state = TID_REQUEST_ACTIVE;
1973 	req->cur_seg = 0;
1974 	req->comp_seg = 0;
1975 	req->ack_seg = 0;
1976 	req->isge = 0;
1977 	req->seg_len = qpriv->tid_rdma.local.max_len;
1978 	req->total_len = len;
1979 	req->total_segs = 1;
1980 	req->r_flow_psn = e->psn;
1981 
1982 	trace_hfi1_tid_req_rcv_read_req(qp, 0, e->opcode, e->psn, e->lpsn,
1983 					req);
1984 	return 0;
1985 }
1986 
1987 static int tid_rdma_rcv_error(struct hfi1_packet *packet,
1988 			      struct ib_other_headers *ohdr,
1989 			      struct rvt_qp *qp, u32 psn, int diff)
1990 {
1991 	struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
1992 	struct hfi1_ctxtdata *rcd = ((struct hfi1_qp_priv *)qp->priv)->rcd;
1993 	struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
1994 	struct hfi1_qp_priv *qpriv = qp->priv;
1995 	struct rvt_ack_entry *e;
1996 	struct tid_rdma_request *req;
1997 	unsigned long flags;
1998 	u8 prev;
1999 	bool old_req;
2000 
2001 	trace_hfi1_rsp_tid_rcv_error(qp, psn);
2002 	trace_hfi1_tid_rdma_rcv_err(qp, 0, psn, diff);
2003 	if (diff > 0) {
2004 		/* sequence error */
2005 		if (!qp->r_nak_state) {
2006 			ibp->rvp.n_rc_seqnak++;
2007 			qp->r_nak_state = IB_NAK_PSN_ERROR;
2008 			qp->r_ack_psn = qp->r_psn;
2009 			rc_defered_ack(rcd, qp);
2010 		}
2011 		goto done;
2012 	}
2013 
2014 	ibp->rvp.n_rc_dupreq++;
2015 
2016 	spin_lock_irqsave(&qp->s_lock, flags);
2017 	e = find_prev_entry(qp, psn, &prev, NULL, &old_req);
2018 	if (!e || (e->opcode != TID_OP(READ_REQ) &&
2019 		   e->opcode != TID_OP(WRITE_REQ)))
2020 		goto unlock;
2021 
2022 	req = ack_to_tid_req(e);
2023 	req->r_flow_psn = psn;
2024 	trace_hfi1_tid_req_rcv_err(qp, 0, e->opcode, e->psn, e->lpsn, req);
2025 	if (e->opcode == TID_OP(READ_REQ)) {
2026 		struct ib_reth *reth;
2027 		u32 offset;
2028 		u32 len;
2029 		u32 rkey;
2030 		u64 vaddr;
2031 		int ok;
2032 		u32 bth0;
2033 
2034 		reth = &ohdr->u.tid_rdma.r_req.reth;
2035 		/*
2036 		 * The requester always restarts from the start of the original
2037 		 * request.
2038 		 */
2039 		offset = delta_psn(psn, e->psn) * qp->pmtu;
2040 		len = be32_to_cpu(reth->length);
2041 		if (psn != e->psn || len != req->total_len)
2042 			goto unlock;
2043 
2044 		release_rdma_sge_mr(e);
2045 
2046 		rkey = be32_to_cpu(reth->rkey);
2047 		vaddr = get_ib_reth_vaddr(reth);
2048 
2049 		qp->r_len = len;
2050 		ok = rvt_rkey_ok(qp, &e->rdma_sge, len, vaddr, rkey,
2051 				 IB_ACCESS_REMOTE_READ);
2052 		if (unlikely(!ok))
2053 			goto unlock;
2054 
2055 		/*
2056 		 * If all the response packets for the current request have
2057 		 * been sent out and this request is complete (old_request
2058 		 * == false) and the TID flow may be unusable (the
2059 		 * req->clear_tail is advanced). However, when an earlier
2060 		 * request is received, this request will not be complete any
2061 		 * more (qp->s_tail_ack_queue is moved back, see below).
2062 		 * Consequently, we need to update the TID flow info everytime
2063 		 * a duplicate request is received.
2064 		 */
2065 		bth0 = be32_to_cpu(ohdr->bth[0]);
2066 		if (tid_rdma_rcv_read_request(qp, e, packet, ohdr, bth0, psn,
2067 					      vaddr, len))
2068 			goto unlock;
2069 
2070 		/*
2071 		 * True if the request is already scheduled (between
2072 		 * qp->s_tail_ack_queue and qp->r_head_ack_queue);
2073 		 */
2074 		if (old_req)
2075 			goto unlock;
2076 	} else {
2077 		struct flow_state *fstate;
2078 		bool schedule = false;
2079 		u8 i;
2080 
2081 		if (req->state == TID_REQUEST_RESEND) {
2082 			req->state = TID_REQUEST_RESEND_ACTIVE;
2083 		} else if (req->state == TID_REQUEST_INIT_RESEND) {
2084 			req->state = TID_REQUEST_INIT;
2085 			schedule = true;
2086 		}
2087 
2088 		/*
2089 		 * True if the request is already scheduled (between
2090 		 * qp->s_tail_ack_queue and qp->r_head_ack_queue).
2091 		 * Also, don't change requests, which are at the SYNC
2092 		 * point and haven't generated any responses yet.
2093 		 * There is nothing to retransmit for them yet.
2094 		 */
2095 		if (old_req || req->state == TID_REQUEST_INIT ||
2096 		    (req->state == TID_REQUEST_SYNC && !req->cur_seg)) {
2097 			for (i = prev + 1; ; i++) {
2098 				if (i > rvt_size_atomic(&dev->rdi))
2099 					i = 0;
2100 				if (i == qp->r_head_ack_queue)
2101 					break;
2102 				e = &qp->s_ack_queue[i];
2103 				req = ack_to_tid_req(e);
2104 				if (e->opcode == TID_OP(WRITE_REQ) &&
2105 				    req->state == TID_REQUEST_INIT)
2106 					req->state = TID_REQUEST_INIT_RESEND;
2107 			}
2108 			/*
2109 			 * If the state of the request has been changed,
2110 			 * the first leg needs to get scheduled in order to
2111 			 * pick up the change. Otherwise, normal response
2112 			 * processing should take care of it.
2113 			 */
2114 			if (!schedule)
2115 				goto unlock;
2116 		}
2117 
2118 		/*
2119 		 * If there is no more allocated segment, just schedule the qp
2120 		 * without changing any state.
2121 		 */
2122 		if (req->clear_tail == req->setup_head)
2123 			goto schedule;
2124 		/*
2125 		 * If this request has sent responses for segments, which have
2126 		 * not received data yet (flow_idx != clear_tail), the flow_idx
2127 		 * pointer needs to be adjusted so the same responses can be
2128 		 * re-sent.
2129 		 */
2130 		if (CIRC_CNT(req->flow_idx, req->clear_tail, MAX_FLOWS)) {
2131 			fstate = &req->flows[req->clear_tail].flow_state;
2132 			qpriv->pending_tid_w_segs -=
2133 				CIRC_CNT(req->flow_idx, req->clear_tail,
2134 					 MAX_FLOWS);
2135 			req->flow_idx =
2136 				CIRC_ADD(req->clear_tail,
2137 					 delta_psn(psn, fstate->resp_ib_psn),
2138 					 MAX_FLOWS);
2139 			qpriv->pending_tid_w_segs +=
2140 				delta_psn(psn, fstate->resp_ib_psn);
2141 			/*
2142 			 * When flow_idx == setup_head, we've gotten a duplicate
2143 			 * request for a segment, which has not been allocated
2144 			 * yet. In that case, don't adjust this request.
2145 			 * However, we still want to go through the loop below
2146 			 * to adjust all subsequent requests.
2147 			 */
2148 			if (CIRC_CNT(req->setup_head, req->flow_idx,
2149 				     MAX_FLOWS)) {
2150 				req->cur_seg = delta_psn(psn, e->psn);
2151 				req->state = TID_REQUEST_RESEND_ACTIVE;
2152 			}
2153 		}
2154 
2155 		for (i = prev + 1; ; i++) {
2156 			/*
2157 			 * Look at everything up to and including
2158 			 * s_tail_ack_queue
2159 			 */
2160 			if (i > rvt_size_atomic(&dev->rdi))
2161 				i = 0;
2162 			if (i == qp->r_head_ack_queue)
2163 				break;
2164 			e = &qp->s_ack_queue[i];
2165 			req = ack_to_tid_req(e);
2166 			trace_hfi1_tid_req_rcv_err(qp, 0, e->opcode, e->psn,
2167 						   e->lpsn, req);
2168 			if (e->opcode != TID_OP(WRITE_REQ) ||
2169 			    req->cur_seg == req->comp_seg ||
2170 			    req->state == TID_REQUEST_INIT ||
2171 			    req->state == TID_REQUEST_INIT_RESEND) {
2172 				if (req->state == TID_REQUEST_INIT)
2173 					req->state = TID_REQUEST_INIT_RESEND;
2174 				continue;
2175 			}
2176 			qpriv->pending_tid_w_segs -=
2177 				CIRC_CNT(req->flow_idx,
2178 					 req->clear_tail,
2179 					 MAX_FLOWS);
2180 			req->flow_idx = req->clear_tail;
2181 			req->state = TID_REQUEST_RESEND;
2182 			req->cur_seg = req->comp_seg;
2183 		}
2184 		qpriv->s_flags &= ~HFI1_R_TID_WAIT_INTERLCK;
2185 	}
2186 	/* Re-process old requests.*/
2187 	if (qp->s_acked_ack_queue == qp->s_tail_ack_queue)
2188 		qp->s_acked_ack_queue = prev;
2189 	qp->s_tail_ack_queue = prev;
2190 	/*
2191 	 * Since the qp->s_tail_ack_queue is modified, the
2192 	 * qp->s_ack_state must be changed to re-initialize
2193 	 * qp->s_ack_rdma_sge; Otherwise, we will end up in
2194 	 * wrong memory region.
2195 	 */
2196 	qp->s_ack_state = OP(ACKNOWLEDGE);
2197 schedule:
2198 	/*
2199 	 * It's possible to receive a retry psn that is earlier than an RNRNAK
2200 	 * psn. In this case, the rnrnak state should be cleared.
2201 	 */
2202 	if (qpriv->rnr_nak_state) {
2203 		qp->s_nak_state = 0;
2204 		qpriv->rnr_nak_state = TID_RNR_NAK_INIT;
2205 		qp->r_psn = e->lpsn + 1;
2206 		hfi1_tid_write_alloc_resources(qp, true);
2207 	}
2208 
2209 	qp->r_state = e->opcode;
2210 	qp->r_nak_state = 0;
2211 	qp->s_flags |= RVT_S_RESP_PENDING;
2212 	hfi1_schedule_send(qp);
2213 unlock:
2214 	spin_unlock_irqrestore(&qp->s_lock, flags);
2215 done:
2216 	return 1;
2217 }
2218 
2219 void hfi1_rc_rcv_tid_rdma_read_req(struct hfi1_packet *packet)
2220 {
2221 	/* HANDLER FOR TID RDMA READ REQUEST packet (Responder side)*/
2222 
2223 	/*
2224 	 * 1. Verify TID RDMA READ REQ as per IB_OPCODE_RC_RDMA_READ
2225 	 *    (see hfi1_rc_rcv())
2226 	 * 2. Put TID RDMA READ REQ into the response queueu (s_ack_queue)
2227 	 *     - Setup struct tid_rdma_req with request info
2228 	 *     - Initialize struct tid_rdma_flow info;
2229 	 *     - Copy TID entries;
2230 	 * 3. Set the qp->s_ack_state.
2231 	 * 4. Set RVT_S_RESP_PENDING in s_flags.
2232 	 * 5. Kick the send engine (hfi1_schedule_send())
2233 	 */
2234 	struct hfi1_ctxtdata *rcd = packet->rcd;
2235 	struct rvt_qp *qp = packet->qp;
2236 	struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
2237 	struct ib_other_headers *ohdr = packet->ohdr;
2238 	struct rvt_ack_entry *e;
2239 	unsigned long flags;
2240 	struct ib_reth *reth;
2241 	struct hfi1_qp_priv *qpriv = qp->priv;
2242 	u32 bth0, psn, len, rkey;
2243 	bool fecn;
2244 	u8 next;
2245 	u64 vaddr;
2246 	int diff;
2247 	u8 nack_state = IB_NAK_INVALID_REQUEST;
2248 
2249 	bth0 = be32_to_cpu(ohdr->bth[0]);
2250 	if (hfi1_ruc_check_hdr(ibp, packet))
2251 		return;
2252 
2253 	fecn = process_ecn(qp, packet);
2254 	psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
2255 	trace_hfi1_rsp_rcv_tid_read_req(qp, psn);
2256 
2257 	if (qp->state == IB_QPS_RTR && !(qp->r_flags & RVT_R_COMM_EST))
2258 		rvt_comm_est(qp);
2259 
2260 	if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ)))
2261 		goto nack_inv;
2262 
2263 	reth = &ohdr->u.tid_rdma.r_req.reth;
2264 	vaddr = be64_to_cpu(reth->vaddr);
2265 	len = be32_to_cpu(reth->length);
2266 	/* The length needs to be in multiples of PAGE_SIZE */
2267 	if (!len || len & ~PAGE_MASK || len > qpriv->tid_rdma.local.max_len)
2268 		goto nack_inv;
2269 
2270 	diff = delta_psn(psn, qp->r_psn);
2271 	if (unlikely(diff)) {
2272 		tid_rdma_rcv_err(packet, ohdr, qp, psn, diff, fecn);
2273 		return;
2274 	}
2275 
2276 	/* We've verified the request, insert it into the ack queue. */
2277 	next = qp->r_head_ack_queue + 1;
2278 	if (next > rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
2279 		next = 0;
2280 	spin_lock_irqsave(&qp->s_lock, flags);
2281 	if (unlikely(next == qp->s_tail_ack_queue)) {
2282 		if (!qp->s_ack_queue[next].sent) {
2283 			nack_state = IB_NAK_REMOTE_OPERATIONAL_ERROR;
2284 			goto nack_inv_unlock;
2285 		}
2286 		update_ack_queue(qp, next);
2287 	}
2288 	e = &qp->s_ack_queue[qp->r_head_ack_queue];
2289 	release_rdma_sge_mr(e);
2290 
2291 	rkey = be32_to_cpu(reth->rkey);
2292 	qp->r_len = len;
2293 
2294 	if (unlikely(!rvt_rkey_ok(qp, &e->rdma_sge, qp->r_len, vaddr,
2295 				  rkey, IB_ACCESS_REMOTE_READ)))
2296 		goto nack_acc;
2297 
2298 	/* Accept the request parameters */
2299 	if (tid_rdma_rcv_read_request(qp, e, packet, ohdr, bth0, psn, vaddr,
2300 				      len))
2301 		goto nack_inv_unlock;
2302 
2303 	qp->r_state = e->opcode;
2304 	qp->r_nak_state = 0;
2305 	/*
2306 	 * We need to increment the MSN here instead of when we
2307 	 * finish sending the result since a duplicate request would
2308 	 * increment it more than once.
2309 	 */
2310 	qp->r_msn++;
2311 	qp->r_psn += e->lpsn - e->psn + 1;
2312 
2313 	qp->r_head_ack_queue = next;
2314 
2315 	/*
2316 	 * For all requests other than TID WRITE which are added to the ack
2317 	 * queue, qpriv->r_tid_alloc follows qp->r_head_ack_queue. It is ok to
2318 	 * do this because of interlocks between these and TID WRITE
2319 	 * requests. The same change has also been made in hfi1_rc_rcv().
2320 	 */
2321 	qpriv->r_tid_alloc = qp->r_head_ack_queue;
2322 
2323 	/* Schedule the send tasklet. */
2324 	qp->s_flags |= RVT_S_RESP_PENDING;
2325 	if (fecn)
2326 		qp->s_flags |= RVT_S_ECN;
2327 	hfi1_schedule_send(qp);
2328 
2329 	spin_unlock_irqrestore(&qp->s_lock, flags);
2330 	return;
2331 
2332 nack_inv_unlock:
2333 	spin_unlock_irqrestore(&qp->s_lock, flags);
2334 nack_inv:
2335 	rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR);
2336 	qp->r_nak_state = nack_state;
2337 	qp->r_ack_psn = qp->r_psn;
2338 	/* Queue NAK for later */
2339 	rc_defered_ack(rcd, qp);
2340 	return;
2341 nack_acc:
2342 	spin_unlock_irqrestore(&qp->s_lock, flags);
2343 	rvt_rc_error(qp, IB_WC_LOC_PROT_ERR);
2344 	qp->r_nak_state = IB_NAK_REMOTE_ACCESS_ERROR;
2345 	qp->r_ack_psn = qp->r_psn;
2346 }
2347 
2348 u32 hfi1_build_tid_rdma_read_resp(struct rvt_qp *qp, struct rvt_ack_entry *e,
2349 				  struct ib_other_headers *ohdr, u32 *bth0,
2350 				  u32 *bth1, u32 *bth2, u32 *len, bool *last)
2351 {
2352 	struct hfi1_ack_priv *epriv = e->priv;
2353 	struct tid_rdma_request *req = &epriv->tid_req;
2354 	struct hfi1_qp_priv *qpriv = qp->priv;
2355 	struct tid_rdma_flow *flow = &req->flows[req->clear_tail];
2356 	u32 tidentry = flow->tid_entry[flow->tid_idx];
2357 	u32 tidlen = EXP_TID_GET(tidentry, LEN) << PAGE_SHIFT;
2358 	struct tid_rdma_read_resp *resp = &ohdr->u.tid_rdma.r_rsp;
2359 	u32 next_offset, om = KDETH_OM_LARGE;
2360 	bool last_pkt;
2361 	u32 hdwords = 0;
2362 	struct tid_rdma_params *remote;
2363 
2364 	*len = min_t(u32, qp->pmtu, tidlen - flow->tid_offset);
2365 	flow->sent += *len;
2366 	next_offset = flow->tid_offset + *len;
2367 	last_pkt = (flow->sent >= flow->length);
2368 
2369 	trace_hfi1_tid_entry_build_read_resp(qp, flow->tid_idx, tidentry);
2370 	trace_hfi1_tid_flow_build_read_resp(qp, req->clear_tail, flow);
2371 
2372 	rcu_read_lock();
2373 	remote = rcu_dereference(qpriv->tid_rdma.remote);
2374 	if (!remote) {
2375 		rcu_read_unlock();
2376 		goto done;
2377 	}
2378 	KDETH_RESET(resp->kdeth0, KVER, 0x1);
2379 	KDETH_SET(resp->kdeth0, SH, !last_pkt);
2380 	KDETH_SET(resp->kdeth0, INTR, !!(!last_pkt && remote->urg));
2381 	KDETH_SET(resp->kdeth0, TIDCTRL, EXP_TID_GET(tidentry, CTRL));
2382 	KDETH_SET(resp->kdeth0, TID, EXP_TID_GET(tidentry, IDX));
2383 	KDETH_SET(resp->kdeth0, OM, om == KDETH_OM_LARGE);
2384 	KDETH_SET(resp->kdeth0, OFFSET, flow->tid_offset / om);
2385 	KDETH_RESET(resp->kdeth1, JKEY, remote->jkey);
2386 	resp->verbs_qp = cpu_to_be32(qp->remote_qpn);
2387 	rcu_read_unlock();
2388 
2389 	resp->aeth = rvt_compute_aeth(qp);
2390 	resp->verbs_psn = cpu_to_be32(mask_psn(flow->flow_state.ib_spsn +
2391 					       flow->pkt));
2392 
2393 	*bth0 = TID_OP(READ_RESP) << 24;
2394 	*bth1 = flow->tid_qpn;
2395 	*bth2 = mask_psn(((flow->flow_state.spsn + flow->pkt++) &
2396 			  HFI1_KDETH_BTH_SEQ_MASK) |
2397 			 (flow->flow_state.generation <<
2398 			  HFI1_KDETH_BTH_SEQ_SHIFT));
2399 	*last = last_pkt;
2400 	if (last_pkt)
2401 		/* Advance to next flow */
2402 		req->clear_tail = (req->clear_tail + 1) &
2403 				  (MAX_FLOWS - 1);
2404 
2405 	if (next_offset >= tidlen) {
2406 		flow->tid_offset = 0;
2407 		flow->tid_idx++;
2408 	} else {
2409 		flow->tid_offset = next_offset;
2410 	}
2411 
2412 	hdwords = sizeof(ohdr->u.tid_rdma.r_rsp) / sizeof(u32);
2413 
2414 done:
2415 	return hdwords;
2416 }
2417 
2418 static inline struct tid_rdma_request *
2419 find_tid_request(struct rvt_qp *qp, u32 psn, enum ib_wr_opcode opcode)
2420 	__must_hold(&qp->s_lock)
2421 {
2422 	struct rvt_swqe *wqe;
2423 	struct tid_rdma_request *req = NULL;
2424 	u32 i, end;
2425 
2426 	end = qp->s_cur + 1;
2427 	if (end == qp->s_size)
2428 		end = 0;
2429 	for (i = qp->s_acked; i != end;) {
2430 		wqe = rvt_get_swqe_ptr(qp, i);
2431 		if (cmp_psn(psn, wqe->psn) >= 0 &&
2432 		    cmp_psn(psn, wqe->lpsn) <= 0) {
2433 			if (wqe->wr.opcode == opcode)
2434 				req = wqe_to_tid_req(wqe);
2435 			break;
2436 		}
2437 		if (++i == qp->s_size)
2438 			i = 0;
2439 	}
2440 
2441 	return req;
2442 }
2443 
2444 void hfi1_rc_rcv_tid_rdma_read_resp(struct hfi1_packet *packet)
2445 {
2446 	/* HANDLER FOR TID RDMA READ RESPONSE packet (Requestor side */
2447 
2448 	/*
2449 	 * 1. Find matching SWQE
2450 	 * 2. Check that the entire segment has been read.
2451 	 * 3. Remove HFI1_S_WAIT_TID_RESP from s_flags.
2452 	 * 4. Free the TID flow resources.
2453 	 * 5. Kick the send engine (hfi1_schedule_send())
2454 	 */
2455 	struct ib_other_headers *ohdr = packet->ohdr;
2456 	struct rvt_qp *qp = packet->qp;
2457 	struct hfi1_qp_priv *priv = qp->priv;
2458 	struct hfi1_ctxtdata *rcd = packet->rcd;
2459 	struct tid_rdma_request *req;
2460 	struct tid_rdma_flow *flow;
2461 	u32 opcode, aeth;
2462 	bool fecn;
2463 	unsigned long flags;
2464 	u32 kpsn, ipsn;
2465 
2466 	trace_hfi1_sender_rcv_tid_read_resp(qp);
2467 	fecn = process_ecn(qp, packet);
2468 	kpsn = mask_psn(be32_to_cpu(ohdr->bth[2]));
2469 	aeth = be32_to_cpu(ohdr->u.tid_rdma.r_rsp.aeth);
2470 	opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;
2471 
2472 	spin_lock_irqsave(&qp->s_lock, flags);
2473 	ipsn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_psn));
2474 	req = find_tid_request(qp, ipsn, IB_WR_TID_RDMA_READ);
2475 	if (unlikely(!req))
2476 		goto ack_op_err;
2477 
2478 	flow = &req->flows[req->clear_tail];
2479 	/* When header suppression is disabled */
2480 	if (cmp_psn(ipsn, flow->flow_state.ib_lpsn)) {
2481 		update_r_next_psn_fecn(packet, priv, rcd, flow, fecn);
2482 
2483 		if (cmp_psn(kpsn, flow->flow_state.r_next_psn))
2484 			goto ack_done;
2485 		flow->flow_state.r_next_psn = mask_psn(kpsn + 1);
2486 		/*
2487 		 * Copy the payload to destination buffer if this packet is
2488 		 * delivered as an eager packet due to RSM rule and FECN.
2489 		 * The RSM rule selects FECN bit in BTH and SH bit in
2490 		 * KDETH header and therefore will not match the last
2491 		 * packet of each segment that has SH bit cleared.
2492 		 */
2493 		if (fecn && packet->etype == RHF_RCV_TYPE_EAGER) {
2494 			struct rvt_sge_state ss;
2495 			u32 len;
2496 			u32 tlen = packet->tlen;
2497 			u16 hdrsize = packet->hlen;
2498 			u8 pad = packet->pad;
2499 			u8 extra_bytes = pad + packet->extra_byte +
2500 				(SIZE_OF_CRC << 2);
2501 			u32 pmtu = qp->pmtu;
2502 
2503 			if (unlikely(tlen != (hdrsize + pmtu + extra_bytes)))
2504 				goto ack_op_err;
2505 			len = restart_sge(&ss, req->e.swqe, ipsn, pmtu);
2506 			if (unlikely(len < pmtu))
2507 				goto ack_op_err;
2508 			rvt_copy_sge(qp, &ss, packet->payload, pmtu, false,
2509 				     false);
2510 			/* Raise the sw sequence check flag for next packet */
2511 			priv->s_flags |= HFI1_R_TID_SW_PSN;
2512 		}
2513 
2514 		goto ack_done;
2515 	}
2516 	flow->flow_state.r_next_psn = mask_psn(kpsn + 1);
2517 	req->ack_pending--;
2518 	priv->pending_tid_r_segs--;
2519 	qp->s_num_rd_atomic--;
2520 	if ((qp->s_flags & RVT_S_WAIT_FENCE) &&
2521 	    !qp->s_num_rd_atomic) {
2522 		qp->s_flags &= ~(RVT_S_WAIT_FENCE |
2523 				 RVT_S_WAIT_ACK);
2524 		hfi1_schedule_send(qp);
2525 	}
2526 	if (qp->s_flags & RVT_S_WAIT_RDMAR) {
2527 		qp->s_flags &= ~(RVT_S_WAIT_RDMAR | RVT_S_WAIT_ACK);
2528 		hfi1_schedule_send(qp);
2529 	}
2530 
2531 	trace_hfi1_ack(qp, ipsn);
2532 	trace_hfi1_tid_req_rcv_read_resp(qp, 0, req->e.swqe->wr.opcode,
2533 					 req->e.swqe->psn, req->e.swqe->lpsn,
2534 					 req);
2535 	trace_hfi1_tid_flow_rcv_read_resp(qp, req->clear_tail, flow);
2536 
2537 	/* Release the tid resources */
2538 	hfi1_kern_exp_rcv_clear(req);
2539 
2540 	if (!do_rc_ack(qp, aeth, ipsn, opcode, 0, rcd))
2541 		goto ack_done;
2542 
2543 	/* If not done yet, build next read request */
2544 	if (++req->comp_seg >= req->total_segs) {
2545 		priv->tid_r_comp++;
2546 		req->state = TID_REQUEST_COMPLETE;
2547 	}
2548 
2549 	/*
2550 	 * Clear the hw flow under two conditions:
2551 	 * 1. This request is a sync point and it is complete;
2552 	 * 2. Current request is completed and there are no more requests.
2553 	 */
2554 	if ((req->state == TID_REQUEST_SYNC &&
2555 	     req->comp_seg == req->cur_seg) ||
2556 	    priv->tid_r_comp == priv->tid_r_reqs) {
2557 		hfi1_kern_clear_hw_flow(priv->rcd, qp);
2558 		priv->s_flags &= ~HFI1_R_TID_SW_PSN;
2559 		if (req->state == TID_REQUEST_SYNC)
2560 			req->state = TID_REQUEST_ACTIVE;
2561 	}
2562 
2563 	hfi1_schedule_send(qp);
2564 	goto ack_done;
2565 
2566 ack_op_err:
2567 	/*
2568 	 * The test indicates that the send engine has finished its cleanup
2569 	 * after sending the request and it's now safe to put the QP into error
2570 	 * state. However, if the wqe queue is empty (qp->s_acked == qp->s_tail
2571 	 * == qp->s_head), it would be unsafe to complete the wqe pointed by
2572 	 * qp->s_acked here. Putting the qp into error state will safely flush
2573 	 * all remaining requests.
2574 	 */
2575 	if (qp->s_last == qp->s_acked)
2576 		rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
2577 
2578 ack_done:
2579 	spin_unlock_irqrestore(&qp->s_lock, flags);
2580 }
2581 
2582 void hfi1_kern_read_tid_flow_free(struct rvt_qp *qp)
2583 	__must_hold(&qp->s_lock)
2584 {
2585 	u32 n = qp->s_acked;
2586 	struct rvt_swqe *wqe;
2587 	struct tid_rdma_request *req;
2588 	struct hfi1_qp_priv *priv = qp->priv;
2589 
2590 	lockdep_assert_held(&qp->s_lock);
2591 	/* Free any TID entries */
2592 	while (n != qp->s_tail) {
2593 		wqe = rvt_get_swqe_ptr(qp, n);
2594 		if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
2595 			req = wqe_to_tid_req(wqe);
2596 			hfi1_kern_exp_rcv_clear_all(req);
2597 		}
2598 
2599 		if (++n == qp->s_size)
2600 			n = 0;
2601 	}
2602 	/* Free flow */
2603 	hfi1_kern_clear_hw_flow(priv->rcd, qp);
2604 }
2605 
2606 static bool tid_rdma_tid_err(struct hfi1_ctxtdata *rcd,
2607 			     struct hfi1_packet *packet, u8 rcv_type,
2608 			     u8 opcode)
2609 {
2610 	struct rvt_qp *qp = packet->qp;
2611 	struct hfi1_qp_priv *qpriv = qp->priv;
2612 	u32 ipsn;
2613 	struct ib_other_headers *ohdr = packet->ohdr;
2614 	struct rvt_ack_entry *e;
2615 	struct tid_rdma_request *req;
2616 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2617 	u32 i;
2618 
2619 	if (rcv_type >= RHF_RCV_TYPE_IB)
2620 		goto done;
2621 
2622 	spin_lock(&qp->s_lock);
2623 
2624 	/*
2625 	 * We've ran out of space in the eager buffer.
2626 	 * Eagerly received KDETH packets which require space in the
2627 	 * Eager buffer (packet that have payload) are TID RDMA WRITE
2628 	 * response packets. In this case, we have to re-transmit the
2629 	 * TID RDMA WRITE request.
2630 	 */
2631 	if (rcv_type == RHF_RCV_TYPE_EAGER) {
2632 		hfi1_restart_rc(qp, qp->s_last_psn + 1, 1);
2633 		hfi1_schedule_send(qp);
2634 		goto done_unlock;
2635 	}
2636 
2637 	/*
2638 	 * For TID READ response, error out QP after freeing the tid
2639 	 * resources.
2640 	 */
2641 	if (opcode == TID_OP(READ_RESP)) {
2642 		ipsn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_psn));
2643 		if (cmp_psn(ipsn, qp->s_last_psn) > 0 &&
2644 		    cmp_psn(ipsn, qp->s_psn) < 0) {
2645 			hfi1_kern_read_tid_flow_free(qp);
2646 			spin_unlock(&qp->s_lock);
2647 			rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR);
2648 			goto done;
2649 		}
2650 		goto done_unlock;
2651 	}
2652 
2653 	/*
2654 	 * Error out the qp for TID RDMA WRITE
2655 	 */
2656 	hfi1_kern_clear_hw_flow(qpriv->rcd, qp);
2657 	for (i = 0; i < rvt_max_atomic(rdi); i++) {
2658 		e = &qp->s_ack_queue[i];
2659 		if (e->opcode == TID_OP(WRITE_REQ)) {
2660 			req = ack_to_tid_req(e);
2661 			hfi1_kern_exp_rcv_clear_all(req);
2662 		}
2663 	}
2664 	spin_unlock(&qp->s_lock);
2665 	rvt_rc_error(qp, IB_WC_LOC_LEN_ERR);
2666 	goto done;
2667 
2668 done_unlock:
2669 	spin_unlock(&qp->s_lock);
2670 done:
2671 	return true;
2672 }
2673 
2674 static void restart_tid_rdma_read_req(struct hfi1_ctxtdata *rcd,
2675 				      struct rvt_qp *qp, struct rvt_swqe *wqe)
2676 {
2677 	struct tid_rdma_request *req;
2678 	struct tid_rdma_flow *flow;
2679 
2680 	/* Start from the right segment */
2681 	qp->r_flags |= RVT_R_RDMAR_SEQ;
2682 	req = wqe_to_tid_req(wqe);
2683 	flow = &req->flows[req->clear_tail];
2684 	hfi1_restart_rc(qp, flow->flow_state.ib_spsn, 0);
2685 	if (list_empty(&qp->rspwait)) {
2686 		qp->r_flags |= RVT_R_RSP_SEND;
2687 		rvt_get_qp(qp);
2688 		list_add_tail(&qp->rspwait, &rcd->qp_wait_list);
2689 	}
2690 }
2691 
2692 /*
2693  * Handle the KDETH eflags for TID RDMA READ response.
2694  *
2695  * Return true if the last packet for a segment has been received and it is
2696  * time to process the response normally; otherwise, return true.
2697  *
2698  * The caller must hold the packet->qp->r_lock and the rcu_read_lock.
2699  */
2700 static bool handle_read_kdeth_eflags(struct hfi1_ctxtdata *rcd,
2701 				     struct hfi1_packet *packet, u8 rcv_type,
2702 				     u8 rte, u32 psn, u32 ibpsn)
2703 	__must_hold(&packet->qp->r_lock) __must_hold(RCU)
2704 {
2705 	struct hfi1_pportdata *ppd = rcd->ppd;
2706 	struct hfi1_devdata *dd = ppd->dd;
2707 	struct hfi1_ibport *ibp;
2708 	struct rvt_swqe *wqe;
2709 	struct tid_rdma_request *req;
2710 	struct tid_rdma_flow *flow;
2711 	u32 ack_psn;
2712 	struct rvt_qp *qp = packet->qp;
2713 	struct hfi1_qp_priv *priv = qp->priv;
2714 	bool ret = true;
2715 	int diff = 0;
2716 	u32 fpsn;
2717 
2718 	lockdep_assert_held(&qp->r_lock);
2719 	/* If the psn is out of valid range, drop the packet */
2720 	if (cmp_psn(ibpsn, qp->s_last_psn) < 0 ||
2721 	    cmp_psn(ibpsn, qp->s_psn) > 0)
2722 		return ret;
2723 
2724 	spin_lock(&qp->s_lock);
2725 	/*
2726 	 * Note that NAKs implicitly ACK outstanding SEND and RDMA write
2727 	 * requests and implicitly NAK RDMA read and atomic requests issued
2728 	 * before the NAK'ed request.
2729 	 */
2730 	ack_psn = ibpsn - 1;
2731 	wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
2732 	ibp = to_iport(qp->ibqp.device, qp->port_num);
2733 
2734 	/* Complete WQEs that the PSN finishes. */
2735 	while ((int)delta_psn(ack_psn, wqe->lpsn) >= 0) {
2736 		/*
2737 		 * If this request is a RDMA read or atomic, and the NACK is
2738 		 * for a later operation, this NACK NAKs the RDMA read or
2739 		 * atomic.
2740 		 */
2741 		if (wqe->wr.opcode == IB_WR_RDMA_READ ||
2742 		    wqe->wr.opcode == IB_WR_TID_RDMA_READ ||
2743 		    wqe->wr.opcode == IB_WR_ATOMIC_CMP_AND_SWP ||
2744 		    wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) {
2745 			/* Retry this request. */
2746 			if (!(qp->r_flags & RVT_R_RDMAR_SEQ)) {
2747 				qp->r_flags |= RVT_R_RDMAR_SEQ;
2748 				if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
2749 					restart_tid_rdma_read_req(rcd, qp,
2750 								  wqe);
2751 				} else {
2752 					hfi1_restart_rc(qp, qp->s_last_psn + 1,
2753 							0);
2754 					if (list_empty(&qp->rspwait)) {
2755 						qp->r_flags |= RVT_R_RSP_SEND;
2756 						rvt_get_qp(qp);
2757 						list_add_tail(/* wait */
2758 						   &qp->rspwait,
2759 						   &rcd->qp_wait_list);
2760 					}
2761 				}
2762 			}
2763 			/*
2764 			 * No need to process the NAK since we are
2765 			 * restarting an earlier request.
2766 			 */
2767 			break;
2768 		}
2769 
2770 		wqe = do_rc_completion(qp, wqe, ibp);
2771 		if (qp->s_acked == qp->s_tail)
2772 			break;
2773 	}
2774 
2775 	/* Handle the eflags for the request */
2776 	if (wqe->wr.opcode != IB_WR_TID_RDMA_READ)
2777 		goto s_unlock;
2778 
2779 	req = wqe_to_tid_req(wqe);
2780 	switch (rcv_type) {
2781 	case RHF_RCV_TYPE_EXPECTED:
2782 		switch (rte) {
2783 		case RHF_RTE_EXPECTED_FLOW_SEQ_ERR:
2784 			/*
2785 			 * On the first occurrence of a Flow Sequence error,
2786 			 * the flag TID_FLOW_SW_PSN is set.
2787 			 *
2788 			 * After that, the flow is *not* reprogrammed and the
2789 			 * protocol falls back to SW PSN checking. This is done
2790 			 * to prevent continuous Flow Sequence errors for any
2791 			 * packets that could be still in the fabric.
2792 			 */
2793 			flow = find_flow(req, psn, NULL);
2794 			if (!flow) {
2795 				/*
2796 				 * We can't find the IB PSN matching the
2797 				 * received KDETH PSN. The only thing we can
2798 				 * do at this point is report the error to
2799 				 * the QP.
2800 				 */
2801 				hfi1_kern_read_tid_flow_free(qp);
2802 				spin_unlock(&qp->s_lock);
2803 				rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR);
2804 				return ret;
2805 			}
2806 			if (priv->s_flags & HFI1_R_TID_SW_PSN) {
2807 				diff = cmp_psn(psn,
2808 					       flow->flow_state.r_next_psn);
2809 				if (diff > 0) {
2810 					if (!(qp->r_flags & RVT_R_RDMAR_SEQ))
2811 						restart_tid_rdma_read_req(rcd,
2812 									  qp,
2813 									  wqe);
2814 
2815 					/* Drop the packet.*/
2816 					goto s_unlock;
2817 				} else if (diff < 0) {
2818 					/*
2819 					 * If a response packet for a restarted
2820 					 * request has come back, reset the
2821 					 * restart flag.
2822 					 */
2823 					if (qp->r_flags & RVT_R_RDMAR_SEQ)
2824 						qp->r_flags &=
2825 							~RVT_R_RDMAR_SEQ;
2826 
2827 					/* Drop the packet.*/
2828 					goto s_unlock;
2829 				}
2830 
2831 				/*
2832 				 * If SW PSN verification is successful and
2833 				 * this is the last packet in the segment, tell
2834 				 * the caller to process it as a normal packet.
2835 				 */
2836 				fpsn = full_flow_psn(flow,
2837 						     flow->flow_state.lpsn);
2838 				if (cmp_psn(fpsn, psn) == 0) {
2839 					ret = false;
2840 					if (qp->r_flags & RVT_R_RDMAR_SEQ)
2841 						qp->r_flags &=
2842 							~RVT_R_RDMAR_SEQ;
2843 				}
2844 				flow->flow_state.r_next_psn =
2845 					mask_psn(psn + 1);
2846 			} else {
2847 				u32 last_psn;
2848 
2849 				last_psn = read_r_next_psn(dd, rcd->ctxt,
2850 							   flow->idx);
2851 				flow->flow_state.r_next_psn = last_psn;
2852 				priv->s_flags |= HFI1_R_TID_SW_PSN;
2853 				/*
2854 				 * If no request has been restarted yet,
2855 				 * restart the current one.
2856 				 */
2857 				if (!(qp->r_flags & RVT_R_RDMAR_SEQ))
2858 					restart_tid_rdma_read_req(rcd, qp,
2859 								  wqe);
2860 			}
2861 
2862 			break;
2863 
2864 		case RHF_RTE_EXPECTED_FLOW_GEN_ERR:
2865 			/*
2866 			 * Since the TID flow is able to ride through
2867 			 * generation mismatch, drop this stale packet.
2868 			 */
2869 			break;
2870 
2871 		default:
2872 			break;
2873 		}
2874 		break;
2875 
2876 	case RHF_RCV_TYPE_ERROR:
2877 		switch (rte) {
2878 		case RHF_RTE_ERROR_OP_CODE_ERR:
2879 		case RHF_RTE_ERROR_KHDR_MIN_LEN_ERR:
2880 		case RHF_RTE_ERROR_KHDR_HCRC_ERR:
2881 		case RHF_RTE_ERROR_KHDR_KVER_ERR:
2882 		case RHF_RTE_ERROR_CONTEXT_ERR:
2883 		case RHF_RTE_ERROR_KHDR_TID_ERR:
2884 		default:
2885 			break;
2886 		}
2887 	default:
2888 		break;
2889 	}
2890 s_unlock:
2891 	spin_unlock(&qp->s_lock);
2892 	return ret;
2893 }
2894 
2895 bool hfi1_handle_kdeth_eflags(struct hfi1_ctxtdata *rcd,
2896 			      struct hfi1_pportdata *ppd,
2897 			      struct hfi1_packet *packet)
2898 {
2899 	struct hfi1_ibport *ibp = &ppd->ibport_data;
2900 	struct hfi1_devdata *dd = ppd->dd;
2901 	struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
2902 	u8 rcv_type = rhf_rcv_type(packet->rhf);
2903 	u8 rte = rhf_rcv_type_err(packet->rhf);
2904 	struct ib_header *hdr = packet->hdr;
2905 	struct ib_other_headers *ohdr = NULL;
2906 	int lnh = be16_to_cpu(hdr->lrh[0]) & 3;
2907 	u16 lid  = be16_to_cpu(hdr->lrh[1]);
2908 	u8 opcode;
2909 	u32 qp_num, psn, ibpsn;
2910 	struct rvt_qp *qp;
2911 	struct hfi1_qp_priv *qpriv;
2912 	unsigned long flags;
2913 	bool ret = true;
2914 	struct rvt_ack_entry *e;
2915 	struct tid_rdma_request *req;
2916 	struct tid_rdma_flow *flow;
2917 	int diff = 0;
2918 
2919 	trace_hfi1_msg_handle_kdeth_eflags(NULL, "Kdeth error: rhf ",
2920 					   packet->rhf);
2921 	if (packet->rhf & RHF_ICRC_ERR)
2922 		return ret;
2923 
2924 	packet->ohdr = &hdr->u.oth;
2925 	ohdr = packet->ohdr;
2926 	trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
2927 
2928 	/* Get the destination QP number. */
2929 	qp_num = be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_qp) &
2930 		RVT_QPN_MASK;
2931 	if (lid >= be16_to_cpu(IB_MULTICAST_LID_BASE))
2932 		goto drop;
2933 
2934 	psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
2935 	opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;
2936 
2937 	rcu_read_lock();
2938 	qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
2939 	if (!qp)
2940 		goto rcu_unlock;
2941 
2942 	packet->qp = qp;
2943 
2944 	/* Check for valid receive state. */
2945 	spin_lock_irqsave(&qp->r_lock, flags);
2946 	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) {
2947 		ibp->rvp.n_pkt_drops++;
2948 		goto r_unlock;
2949 	}
2950 
2951 	if (packet->rhf & RHF_TID_ERR) {
2952 		/* For TIDERR and RC QPs preemptively schedule a NAK */
2953 		u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */
2954 
2955 		/* Sanity check packet */
2956 		if (tlen < 24)
2957 			goto r_unlock;
2958 
2959 		/*
2960 		 * Check for GRH. We should never get packets with GRH in this
2961 		 * path.
2962 		 */
2963 		if (lnh == HFI1_LRH_GRH)
2964 			goto r_unlock;
2965 
2966 		if (tid_rdma_tid_err(rcd, packet, rcv_type, opcode))
2967 			goto r_unlock;
2968 	}
2969 
2970 	/* handle TID RDMA READ */
2971 	if (opcode == TID_OP(READ_RESP)) {
2972 		ibpsn = be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_psn);
2973 		ibpsn = mask_psn(ibpsn);
2974 		ret = handle_read_kdeth_eflags(rcd, packet, rcv_type, rte, psn,
2975 					       ibpsn);
2976 		goto r_unlock;
2977 	}
2978 
2979 	/*
2980 	 * qp->s_tail_ack_queue points to the rvt_ack_entry currently being
2981 	 * processed. These a completed sequentially so we can be sure that
2982 	 * the pointer will not change until the entire request has completed.
2983 	 */
2984 	spin_lock(&qp->s_lock);
2985 	qpriv = qp->priv;
2986 	e = &qp->s_ack_queue[qpriv->r_tid_tail];
2987 	req = ack_to_tid_req(e);
2988 	flow = &req->flows[req->clear_tail];
2989 	trace_hfi1_eflags_err_write(qp, rcv_type, rte, psn);
2990 	trace_hfi1_rsp_handle_kdeth_eflags(qp, psn);
2991 	trace_hfi1_tid_write_rsp_handle_kdeth_eflags(qp);
2992 	trace_hfi1_tid_req_handle_kdeth_eflags(qp, 0, e->opcode, e->psn,
2993 					       e->lpsn, req);
2994 	trace_hfi1_tid_flow_handle_kdeth_eflags(qp, req->clear_tail, flow);
2995 
2996 	switch (rcv_type) {
2997 	case RHF_RCV_TYPE_EXPECTED:
2998 		switch (rte) {
2999 		case RHF_RTE_EXPECTED_FLOW_SEQ_ERR:
3000 			if (!(qpriv->s_flags & HFI1_R_TID_SW_PSN)) {
3001 				qpriv->s_flags |= HFI1_R_TID_SW_PSN;
3002 				flow->flow_state.r_next_psn =
3003 					read_r_next_psn(dd, rcd->ctxt,
3004 							flow->idx);
3005 				qpriv->r_next_psn_kdeth =
3006 					flow->flow_state.r_next_psn;
3007 				goto nak_psn;
3008 			} else {
3009 				/*
3010 				 * If the received PSN does not match the next
3011 				 * expected PSN, NAK the packet.
3012 				 * However, only do that if we know that the a
3013 				 * NAK has already been sent. Otherwise, this
3014 				 * mismatch could be due to packets that were
3015 				 * already in flight.
3016 				 */
3017 				diff = cmp_psn(psn,
3018 					       flow->flow_state.r_next_psn);
3019 				if (diff > 0)
3020 					goto nak_psn;
3021 				else if (diff < 0)
3022 					break;
3023 
3024 				qpriv->s_nak_state = 0;
3025 				/*
3026 				 * If SW PSN verification is successful and this
3027 				 * is the last packet in the segment, tell the
3028 				 * caller to process it as a normal packet.
3029 				 */
3030 				if (psn == full_flow_psn(flow,
3031 							 flow->flow_state.lpsn))
3032 					ret = false;
3033 				flow->flow_state.r_next_psn =
3034 					mask_psn(psn + 1);
3035 				qpriv->r_next_psn_kdeth =
3036 					flow->flow_state.r_next_psn;
3037 			}
3038 			break;
3039 
3040 		case RHF_RTE_EXPECTED_FLOW_GEN_ERR:
3041 			goto nak_psn;
3042 
3043 		default:
3044 			break;
3045 		}
3046 		break;
3047 
3048 	case RHF_RCV_TYPE_ERROR:
3049 		switch (rte) {
3050 		case RHF_RTE_ERROR_OP_CODE_ERR:
3051 		case RHF_RTE_ERROR_KHDR_MIN_LEN_ERR:
3052 		case RHF_RTE_ERROR_KHDR_HCRC_ERR:
3053 		case RHF_RTE_ERROR_KHDR_KVER_ERR:
3054 		case RHF_RTE_ERROR_CONTEXT_ERR:
3055 		case RHF_RTE_ERROR_KHDR_TID_ERR:
3056 		default:
3057 			break;
3058 		}
3059 	default:
3060 		break;
3061 	}
3062 
3063 unlock:
3064 	spin_unlock(&qp->s_lock);
3065 r_unlock:
3066 	spin_unlock_irqrestore(&qp->r_lock, flags);
3067 rcu_unlock:
3068 	rcu_read_unlock();
3069 drop:
3070 	return ret;
3071 nak_psn:
3072 	ibp->rvp.n_rc_seqnak++;
3073 	if (!qpriv->s_nak_state) {
3074 		qpriv->s_nak_state = IB_NAK_PSN_ERROR;
3075 		/* We are NAK'ing the next expected PSN */
3076 		qpriv->s_nak_psn = mask_psn(flow->flow_state.r_next_psn);
3077 		qpriv->s_flags |= RVT_S_ACK_PENDING;
3078 		if (qpriv->r_tid_ack == HFI1_QP_WQE_INVALID)
3079 			qpriv->r_tid_ack = qpriv->r_tid_tail;
3080 		hfi1_schedule_tid_send(qp);
3081 	}
3082 	goto unlock;
3083 }
3084 
3085 /*
3086  * "Rewind" the TID request information.
3087  * This means that we reset the state back to ACTIVE,
3088  * find the proper flow, set the flow index to that flow,
3089  * and reset the flow information.
3090  */
3091 void hfi1_tid_rdma_restart_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
3092 			       u32 *bth2)
3093 {
3094 	struct tid_rdma_request *req = wqe_to_tid_req(wqe);
3095 	struct tid_rdma_flow *flow;
3096 	struct hfi1_qp_priv *qpriv = qp->priv;
3097 	int diff, delta_pkts;
3098 	u32 tididx = 0, i;
3099 	u16 fidx;
3100 
3101 	if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
3102 		*bth2 = mask_psn(qp->s_psn);
3103 		flow = find_flow_ib(req, *bth2, &fidx);
3104 		if (!flow) {
3105 			trace_hfi1_msg_tid_restart_req(/* msg */
3106 			   qp, "!!!!!! Could not find flow to restart: bth2 ",
3107 			   (u64)*bth2);
3108 			trace_hfi1_tid_req_restart_req(qp, 0, wqe->wr.opcode,
3109 						       wqe->psn, wqe->lpsn,
3110 						       req);
3111 			return;
3112 		}
3113 	} else {
3114 		fidx = req->acked_tail;
3115 		flow = &req->flows[fidx];
3116 		*bth2 = mask_psn(req->r_ack_psn);
3117 	}
3118 
3119 	if (wqe->wr.opcode == IB_WR_TID_RDMA_READ)
3120 		delta_pkts = delta_psn(*bth2, flow->flow_state.ib_spsn);
3121 	else
3122 		delta_pkts = delta_psn(*bth2,
3123 				       full_flow_psn(flow,
3124 						     flow->flow_state.spsn));
3125 
3126 	trace_hfi1_tid_flow_restart_req(qp, fidx, flow);
3127 	diff = delta_pkts + flow->resync_npkts;
3128 
3129 	flow->sent = 0;
3130 	flow->pkt = 0;
3131 	flow->tid_idx = 0;
3132 	flow->tid_offset = 0;
3133 	if (diff) {
3134 		for (tididx = 0; tididx < flow->tidcnt; tididx++) {
3135 			u32 tidentry = flow->tid_entry[tididx], tidlen,
3136 				tidnpkts, npkts;
3137 
3138 			flow->tid_offset = 0;
3139 			tidlen = EXP_TID_GET(tidentry, LEN) * PAGE_SIZE;
3140 			tidnpkts = rvt_div_round_up_mtu(qp, tidlen);
3141 			npkts = min_t(u32, diff, tidnpkts);
3142 			flow->pkt += npkts;
3143 			flow->sent += (npkts == tidnpkts ? tidlen :
3144 				       npkts * qp->pmtu);
3145 			flow->tid_offset += npkts * qp->pmtu;
3146 			diff -= npkts;
3147 			if (!diff)
3148 				break;
3149 		}
3150 	}
3151 	if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE) {
3152 		rvt_skip_sge(&qpriv->tid_ss, (req->cur_seg * req->seg_len) +
3153 			     flow->sent, 0);
3154 		/*
3155 		 * Packet PSN is based on flow_state.spsn + flow->pkt. However,
3156 		 * during a RESYNC, the generation is incremented and the
3157 		 * sequence is reset to 0. Since we've adjusted the npkts in the
3158 		 * flow and the SGE has been sufficiently advanced, we have to
3159 		 * adjust flow->pkt in order to calculate the correct PSN.
3160 		 */
3161 		flow->pkt -= flow->resync_npkts;
3162 	}
3163 
3164 	if (flow->tid_offset ==
3165 	    EXP_TID_GET(flow->tid_entry[tididx], LEN) * PAGE_SIZE) {
3166 		tididx++;
3167 		flow->tid_offset = 0;
3168 	}
3169 	flow->tid_idx = tididx;
3170 	if (wqe->wr.opcode == IB_WR_TID_RDMA_READ)
3171 		/* Move flow_idx to correct index */
3172 		req->flow_idx = fidx;
3173 	else
3174 		req->clear_tail = fidx;
3175 
3176 	trace_hfi1_tid_flow_restart_req(qp, fidx, flow);
3177 	trace_hfi1_tid_req_restart_req(qp, 0, wqe->wr.opcode, wqe->psn,
3178 				       wqe->lpsn, req);
3179 	req->state = TID_REQUEST_ACTIVE;
3180 	if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE) {
3181 		/* Reset all the flows that we are going to resend */
3182 		fidx = CIRC_NEXT(fidx, MAX_FLOWS);
3183 		i = qpriv->s_tid_tail;
3184 		do {
3185 			for (; CIRC_CNT(req->setup_head, fidx, MAX_FLOWS);
3186 			      fidx = CIRC_NEXT(fidx, MAX_FLOWS)) {
3187 				req->flows[fidx].sent = 0;
3188 				req->flows[fidx].pkt = 0;
3189 				req->flows[fidx].tid_idx = 0;
3190 				req->flows[fidx].tid_offset = 0;
3191 				req->flows[fidx].resync_npkts = 0;
3192 			}
3193 			if (i == qpriv->s_tid_cur)
3194 				break;
3195 			do {
3196 				i = (++i == qp->s_size ? 0 : i);
3197 				wqe = rvt_get_swqe_ptr(qp, i);
3198 			} while (wqe->wr.opcode != IB_WR_TID_RDMA_WRITE);
3199 			req = wqe_to_tid_req(wqe);
3200 			req->cur_seg = req->ack_seg;
3201 			fidx = req->acked_tail;
3202 			/* Pull req->clear_tail back */
3203 			req->clear_tail = fidx;
3204 		} while (1);
3205 	}
3206 }
3207 
3208 void hfi1_qp_kern_exp_rcv_clear_all(struct rvt_qp *qp)
3209 {
3210 	int i, ret;
3211 	struct hfi1_qp_priv *qpriv = qp->priv;
3212 	struct tid_flow_state *fs;
3213 
3214 	if (qp->ibqp.qp_type != IB_QPT_RC || !HFI1_CAP_IS_KSET(TID_RDMA))
3215 		return;
3216 
3217 	/*
3218 	 * First, clear the flow to help prevent any delayed packets from
3219 	 * being delivered.
3220 	 */
3221 	fs = &qpriv->flow_state;
3222 	if (fs->index != RXE_NUM_TID_FLOWS)
3223 		hfi1_kern_clear_hw_flow(qpriv->rcd, qp);
3224 
3225 	for (i = qp->s_acked; i != qp->s_head;) {
3226 		struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, i);
3227 
3228 		if (++i == qp->s_size)
3229 			i = 0;
3230 		/* Free only locally allocated TID entries */
3231 		if (wqe->wr.opcode != IB_WR_TID_RDMA_READ)
3232 			continue;
3233 		do {
3234 			struct hfi1_swqe_priv *priv = wqe->priv;
3235 
3236 			ret = hfi1_kern_exp_rcv_clear(&priv->tid_req);
3237 		} while (!ret);
3238 	}
3239 	for (i = qp->s_acked_ack_queue; i != qp->r_head_ack_queue;) {
3240 		struct rvt_ack_entry *e = &qp->s_ack_queue[i];
3241 
3242 		if (++i == rvt_max_atomic(ib_to_rvt(qp->ibqp.device)))
3243 			i = 0;
3244 		/* Free only locally allocated TID entries */
3245 		if (e->opcode != TID_OP(WRITE_REQ))
3246 			continue;
3247 		do {
3248 			struct hfi1_ack_priv *priv = e->priv;
3249 
3250 			ret = hfi1_kern_exp_rcv_clear(&priv->tid_req);
3251 		} while (!ret);
3252 	}
3253 }
3254 
3255 bool hfi1_tid_rdma_wqe_interlock(struct rvt_qp *qp, struct rvt_swqe *wqe)
3256 {
3257 	struct rvt_swqe *prev;
3258 	struct hfi1_qp_priv *priv = qp->priv;
3259 	u32 s_prev;
3260 	struct tid_rdma_request *req;
3261 
3262 	s_prev = (qp->s_cur == 0 ? qp->s_size : qp->s_cur) - 1;
3263 	prev = rvt_get_swqe_ptr(qp, s_prev);
3264 
3265 	switch (wqe->wr.opcode) {
3266 	case IB_WR_SEND:
3267 	case IB_WR_SEND_WITH_IMM:
3268 	case IB_WR_SEND_WITH_INV:
3269 	case IB_WR_ATOMIC_CMP_AND_SWP:
3270 	case IB_WR_ATOMIC_FETCH_AND_ADD:
3271 	case IB_WR_RDMA_WRITE:
3272 		switch (prev->wr.opcode) {
3273 		case IB_WR_TID_RDMA_WRITE:
3274 			req = wqe_to_tid_req(prev);
3275 			if (req->ack_seg != req->total_segs)
3276 				goto interlock;
3277 		default:
3278 			break;
3279 		}
3280 		break;
3281 	case IB_WR_RDMA_READ:
3282 		if (prev->wr.opcode != IB_WR_TID_RDMA_WRITE)
3283 			break;
3284 		/* fall through */
3285 	case IB_WR_TID_RDMA_READ:
3286 		switch (prev->wr.opcode) {
3287 		case IB_WR_RDMA_READ:
3288 			if (qp->s_acked != qp->s_cur)
3289 				goto interlock;
3290 			break;
3291 		case IB_WR_TID_RDMA_WRITE:
3292 			req = wqe_to_tid_req(prev);
3293 			if (req->ack_seg != req->total_segs)
3294 				goto interlock;
3295 		default:
3296 			break;
3297 		}
3298 	default:
3299 		break;
3300 	}
3301 	return false;
3302 
3303 interlock:
3304 	priv->s_flags |= HFI1_S_TID_WAIT_INTERLCK;
3305 	return true;
3306 }
3307 
3308 /* Does @sge meet the alignment requirements for tid rdma? */
3309 static inline bool hfi1_check_sge_align(struct rvt_qp *qp,
3310 					struct rvt_sge *sge, int num_sge)
3311 {
3312 	int i;
3313 
3314 	for (i = 0; i < num_sge; i++, sge++) {
3315 		trace_hfi1_sge_check_align(qp, i, sge);
3316 		if ((u64)sge->vaddr & ~PAGE_MASK ||
3317 		    sge->sge_length & ~PAGE_MASK)
3318 			return false;
3319 	}
3320 	return true;
3321 }
3322 
3323 void setup_tid_rdma_wqe(struct rvt_qp *qp, struct rvt_swqe *wqe)
3324 {
3325 	struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv;
3326 	struct hfi1_swqe_priv *priv = wqe->priv;
3327 	struct tid_rdma_params *remote;
3328 	enum ib_wr_opcode new_opcode;
3329 	bool do_tid_rdma = false;
3330 	struct hfi1_pportdata *ppd = qpriv->rcd->ppd;
3331 
3332 	if ((rdma_ah_get_dlid(&qp->remote_ah_attr) & ~((1 << ppd->lmc) - 1)) ==
3333 				ppd->lid)
3334 		return;
3335 	if (qpriv->hdr_type != HFI1_PKT_TYPE_9B)
3336 		return;
3337 
3338 	rcu_read_lock();
3339 	remote = rcu_dereference(qpriv->tid_rdma.remote);
3340 	/*
3341 	 * If TID RDMA is disabled by the negotiation, don't
3342 	 * use it.
3343 	 */
3344 	if (!remote)
3345 		goto exit;
3346 
3347 	if (wqe->wr.opcode == IB_WR_RDMA_READ) {
3348 		if (hfi1_check_sge_align(qp, &wqe->sg_list[0],
3349 					 wqe->wr.num_sge)) {
3350 			new_opcode = IB_WR_TID_RDMA_READ;
3351 			do_tid_rdma = true;
3352 		}
3353 	} else if (wqe->wr.opcode == IB_WR_RDMA_WRITE) {
3354 		/*
3355 		 * TID RDMA is enabled for this RDMA WRITE request iff:
3356 		 *   1. The remote address is page-aligned,
3357 		 *   2. The length is larger than the minimum segment size,
3358 		 *   3. The length is page-multiple.
3359 		 */
3360 		if (!(wqe->rdma_wr.remote_addr & ~PAGE_MASK) &&
3361 		    !(wqe->length & ~PAGE_MASK)) {
3362 			new_opcode = IB_WR_TID_RDMA_WRITE;
3363 			do_tid_rdma = true;
3364 		}
3365 	}
3366 
3367 	if (do_tid_rdma) {
3368 		if (hfi1_kern_exp_rcv_alloc_flows(&priv->tid_req, GFP_ATOMIC))
3369 			goto exit;
3370 		wqe->wr.opcode = new_opcode;
3371 		priv->tid_req.seg_len =
3372 			min_t(u32, remote->max_len, wqe->length);
3373 		priv->tid_req.total_segs =
3374 			DIV_ROUND_UP(wqe->length, priv->tid_req.seg_len);
3375 		/* Compute the last PSN of the request */
3376 		wqe->lpsn = wqe->psn;
3377 		if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
3378 			priv->tid_req.n_flows = remote->max_read;
3379 			qpriv->tid_r_reqs++;
3380 			wqe->lpsn += rvt_div_round_up_mtu(qp, wqe->length) - 1;
3381 		} else {
3382 			wqe->lpsn += priv->tid_req.total_segs - 1;
3383 			atomic_inc(&qpriv->n_requests);
3384 		}
3385 
3386 		priv->tid_req.cur_seg = 0;
3387 		priv->tid_req.comp_seg = 0;
3388 		priv->tid_req.ack_seg = 0;
3389 		priv->tid_req.state = TID_REQUEST_INACTIVE;
3390 		/*
3391 		 * Reset acked_tail.
3392 		 * TID RDMA READ does not have ACKs so it does not
3393 		 * update the pointer. We have to reset it so TID RDMA
3394 		 * WRITE does not get confused.
3395 		 */
3396 		priv->tid_req.acked_tail = priv->tid_req.setup_head;
3397 		trace_hfi1_tid_req_setup_tid_wqe(qp, 1, wqe->wr.opcode,
3398 						 wqe->psn, wqe->lpsn,
3399 						 &priv->tid_req);
3400 	}
3401 exit:
3402 	rcu_read_unlock();
3403 }
3404 
3405 /* TID RDMA WRITE functions */
3406 
3407 u32 hfi1_build_tid_rdma_write_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
3408 				  struct ib_other_headers *ohdr,
3409 				  u32 *bth1, u32 *bth2, u32 *len)
3410 {
3411 	struct hfi1_qp_priv *qpriv = qp->priv;
3412 	struct tid_rdma_request *req = wqe_to_tid_req(wqe);
3413 	struct tid_rdma_params *remote;
3414 
3415 	rcu_read_lock();
3416 	remote = rcu_dereference(qpriv->tid_rdma.remote);
3417 	/*
3418 	 * Set the number of flow to be used based on negotiated
3419 	 * parameters.
3420 	 */
3421 	req->n_flows = remote->max_write;
3422 	req->state = TID_REQUEST_ACTIVE;
3423 
3424 	KDETH_RESET(ohdr->u.tid_rdma.w_req.kdeth0, KVER, 0x1);
3425 	KDETH_RESET(ohdr->u.tid_rdma.w_req.kdeth1, JKEY, remote->jkey);
3426 	ohdr->u.tid_rdma.w_req.reth.vaddr =
3427 		cpu_to_be64(wqe->rdma_wr.remote_addr + (wqe->length - *len));
3428 	ohdr->u.tid_rdma.w_req.reth.rkey =
3429 		cpu_to_be32(wqe->rdma_wr.rkey);
3430 	ohdr->u.tid_rdma.w_req.reth.length = cpu_to_be32(*len);
3431 	ohdr->u.tid_rdma.w_req.verbs_qp = cpu_to_be32(qp->remote_qpn);
3432 	*bth1 &= ~RVT_QPN_MASK;
3433 	*bth1 |= remote->qp;
3434 	qp->s_state = TID_OP(WRITE_REQ);
3435 	qp->s_flags |= HFI1_S_WAIT_TID_RESP;
3436 	*bth2 |= IB_BTH_REQ_ACK;
3437 	*len = 0;
3438 
3439 	rcu_read_unlock();
3440 	return sizeof(ohdr->u.tid_rdma.w_req) / sizeof(u32);
3441 }
3442 
3443 void hfi1_compute_tid_rdma_flow_wt(void)
3444 {
3445 	/*
3446 	 * Heuristic for computing the RNR timeout when waiting on the flow
3447 	 * queue. Rather than a computationaly expensive exact estimate of when
3448 	 * a flow will be available, we assume that if a QP is at position N in
3449 	 * the flow queue it has to wait approximately (N + 1) * (number of
3450 	 * segments between two sync points), assuming PMTU of 4K. The rationale
3451 	 * for this is that flows are released and recycled at each sync point.
3452 	 */
3453 	tid_rdma_flow_wt = MAX_TID_FLOW_PSN * enum_to_mtu(OPA_MTU_4096) /
3454 		TID_RDMA_MAX_SEGMENT_SIZE;
3455 }
3456 
3457 static u32 position_in_queue(struct hfi1_qp_priv *qpriv,
3458 			     struct tid_queue *queue)
3459 {
3460 	return qpriv->tid_enqueue - queue->dequeue;
3461 }
3462 
3463 /*
3464  * @qp: points to rvt_qp context.
3465  * @to_seg: desired RNR timeout in segments.
3466  * Return: index of the next highest timeout in the ib_hfi1_rnr_table[]
3467  */
3468 static u32 hfi1_compute_tid_rnr_timeout(struct rvt_qp *qp, u32 to_seg)
3469 {
3470 	struct hfi1_qp_priv *qpriv = qp->priv;
3471 	u64 timeout;
3472 	u32 bytes_per_us;
3473 	u8 i;
3474 
3475 	bytes_per_us = active_egress_rate(qpriv->rcd->ppd) / 8;
3476 	timeout = (to_seg * TID_RDMA_MAX_SEGMENT_SIZE) / bytes_per_us;
3477 	/*
3478 	 * Find the next highest value in the RNR table to the required
3479 	 * timeout. This gives the responder some padding.
3480 	 */
3481 	for (i = 1; i <= IB_AETH_CREDIT_MASK; i++)
3482 		if (rvt_rnr_tbl_to_usec(i) >= timeout)
3483 			return i;
3484 	return 0;
3485 }
3486 
3487 /**
3488  * Central place for resource allocation at TID write responder,
3489  * is called from write_req and write_data interrupt handlers as
3490  * well as the send thread when a queued QP is scheduled for
3491  * resource allocation.
3492  *
3493  * Iterates over (a) segments of a request and then (b) queued requests
3494  * themselves to allocate resources for up to local->max_write
3495  * segments across multiple requests. Stop allocating when we
3496  * hit a sync point, resume allocating after data packets at
3497  * sync point have been received.
3498  *
3499  * Resource allocation and sending of responses is decoupled. The
3500  * request/segment which are being allocated and sent are as follows.
3501  * Resources are allocated for:
3502  *     [request: qpriv->r_tid_alloc, segment: req->alloc_seg]
3503  * The send thread sends:
3504  *     [request: qp->s_tail_ack_queue, segment:req->cur_seg]
3505  */
3506 static void hfi1_tid_write_alloc_resources(struct rvt_qp *qp, bool intr_ctx)
3507 {
3508 	struct tid_rdma_request *req;
3509 	struct hfi1_qp_priv *qpriv = qp->priv;
3510 	struct hfi1_ctxtdata *rcd = qpriv->rcd;
3511 	struct tid_rdma_params *local = &qpriv->tid_rdma.local;
3512 	struct rvt_ack_entry *e;
3513 	u32 npkts, to_seg;
3514 	bool last;
3515 	int ret = 0;
3516 
3517 	lockdep_assert_held(&qp->s_lock);
3518 
3519 	while (1) {
3520 		trace_hfi1_rsp_tid_write_alloc_res(qp, 0);
3521 		trace_hfi1_tid_write_rsp_alloc_res(qp);
3522 		/*
3523 		 * Don't allocate more segments if a RNR NAK has already been
3524 		 * scheduled to avoid messing up qp->r_psn: the RNR NAK will
3525 		 * be sent only when all allocated segments have been sent.
3526 		 * However, if more segments are allocated before that, TID RDMA
3527 		 * WRITE RESP packets will be sent out for these new segments
3528 		 * before the RNR NAK packet. When the requester receives the
3529 		 * RNR NAK packet, it will restart with qp->s_last_psn + 1,
3530 		 * which does not match qp->r_psn and will be dropped.
3531 		 * Consequently, the requester will exhaust its retries and
3532 		 * put the qp into error state.
3533 		 */
3534 		if (qpriv->rnr_nak_state == TID_RNR_NAK_SEND)
3535 			break;
3536 
3537 		/* No requests left to process */
3538 		if (qpriv->r_tid_alloc == qpriv->r_tid_head) {
3539 			/* If all data has been received, clear the flow */
3540 			if (qpriv->flow_state.index < RXE_NUM_TID_FLOWS &&
3541 			    !qpriv->alloc_w_segs) {
3542 				hfi1_kern_clear_hw_flow(rcd, qp);
3543 				qpriv->s_flags &= ~HFI1_R_TID_SW_PSN;
3544 			}
3545 			break;
3546 		}
3547 
3548 		e = &qp->s_ack_queue[qpriv->r_tid_alloc];
3549 		if (e->opcode != TID_OP(WRITE_REQ))
3550 			goto next_req;
3551 		req = ack_to_tid_req(e);
3552 		trace_hfi1_tid_req_write_alloc_res(qp, 0, e->opcode, e->psn,
3553 						   e->lpsn, req);
3554 		/* Finished allocating for all segments of this request */
3555 		if (req->alloc_seg >= req->total_segs)
3556 			goto next_req;
3557 
3558 		/* Can allocate only a maximum of local->max_write for a QP */
3559 		if (qpriv->alloc_w_segs >= local->max_write)
3560 			break;
3561 
3562 		/* Don't allocate at a sync point with data packets pending */
3563 		if (qpriv->sync_pt && qpriv->alloc_w_segs)
3564 			break;
3565 
3566 		/* All data received at the sync point, continue */
3567 		if (qpriv->sync_pt && !qpriv->alloc_w_segs) {
3568 			hfi1_kern_clear_hw_flow(rcd, qp);
3569 			qpriv->sync_pt = false;
3570 			qpriv->s_flags &= ~HFI1_R_TID_SW_PSN;
3571 		}
3572 
3573 		/* Allocate flow if we don't have one */
3574 		if (qpriv->flow_state.index >= RXE_NUM_TID_FLOWS) {
3575 			ret = hfi1_kern_setup_hw_flow(qpriv->rcd, qp);
3576 			if (ret) {
3577 				to_seg = tid_rdma_flow_wt *
3578 					position_in_queue(qpriv,
3579 							  &rcd->flow_queue);
3580 				break;
3581 			}
3582 		}
3583 
3584 		npkts = rvt_div_round_up_mtu(qp, req->seg_len);
3585 
3586 		/*
3587 		 * We are at a sync point if we run out of KDETH PSN space.
3588 		 * Last PSN of every generation is reserved for RESYNC.
3589 		 */
3590 		if (qpriv->flow_state.psn + npkts > MAX_TID_FLOW_PSN - 1) {
3591 			qpriv->sync_pt = true;
3592 			break;
3593 		}
3594 
3595 		/*
3596 		 * If overtaking req->acked_tail, send an RNR NAK. Because the
3597 		 * QP is not queued in this case, and the issue can only be
3598 		 * caused due a delay in scheduling the second leg which we
3599 		 * cannot estimate, we use a rather arbitrary RNR timeout of
3600 		 * (MAX_FLOWS / 2) segments
3601 		 */
3602 		if (!CIRC_SPACE(req->setup_head, req->acked_tail,
3603 				MAX_FLOWS)) {
3604 			ret = -EAGAIN;
3605 			to_seg = MAX_FLOWS >> 1;
3606 			qpriv->s_flags |= RVT_S_ACK_PENDING;
3607 			hfi1_schedule_tid_send(qp);
3608 			break;
3609 		}
3610 
3611 		/* Try to allocate rcv array / TID entries */
3612 		ret = hfi1_kern_exp_rcv_setup(req, &req->ss, &last);
3613 		if (ret == -EAGAIN)
3614 			to_seg = position_in_queue(qpriv, &rcd->rarr_queue);
3615 		if (ret)
3616 			break;
3617 
3618 		qpriv->alloc_w_segs++;
3619 		req->alloc_seg++;
3620 		continue;
3621 next_req:
3622 		/* Begin processing the next request */
3623 		if (++qpriv->r_tid_alloc >
3624 		    rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
3625 			qpriv->r_tid_alloc = 0;
3626 	}
3627 
3628 	/*
3629 	 * Schedule an RNR NAK to be sent if (a) flow or rcv array allocation
3630 	 * has failed (b) we are called from the rcv handler interrupt context
3631 	 * (c) an RNR NAK has not already been scheduled
3632 	 */
3633 	if (ret == -EAGAIN && intr_ctx && !qp->r_nak_state)
3634 		goto send_rnr_nak;
3635 
3636 	return;
3637 
3638 send_rnr_nak:
3639 	lockdep_assert_held(&qp->r_lock);
3640 
3641 	/* Set r_nak_state to prevent unrelated events from generating NAK's */
3642 	qp->r_nak_state = hfi1_compute_tid_rnr_timeout(qp, to_seg) | IB_RNR_NAK;
3643 
3644 	/* Pull back r_psn to the segment being RNR NAK'd */
3645 	qp->r_psn = e->psn + req->alloc_seg;
3646 	qp->r_ack_psn = qp->r_psn;
3647 	/*
3648 	 * Pull back r_head_ack_queue to the ack entry following the request
3649 	 * being RNR NAK'd. This allows resources to be allocated to the request
3650 	 * if the queued QP is scheduled.
3651 	 */
3652 	qp->r_head_ack_queue = qpriv->r_tid_alloc + 1;
3653 	if (qp->r_head_ack_queue > rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
3654 		qp->r_head_ack_queue = 0;
3655 	qpriv->r_tid_head = qp->r_head_ack_queue;
3656 	/*
3657 	 * These send side fields are used in make_rc_ack(). They are set in
3658 	 * hfi1_send_rc_ack() but must be set here before dropping qp->s_lock
3659 	 * for consistency
3660 	 */
3661 	qp->s_nak_state = qp->r_nak_state;
3662 	qp->s_ack_psn = qp->r_ack_psn;
3663 	/*
3664 	 * Clear the ACK PENDING flag to prevent unwanted ACK because we
3665 	 * have modified qp->s_ack_psn here.
3666 	 */
3667 	qp->s_flags &= ~(RVT_S_ACK_PENDING);
3668 
3669 	trace_hfi1_rsp_tid_write_alloc_res(qp, qp->r_psn);
3670 	/*
3671 	 * qpriv->rnr_nak_state is used to determine when the scheduled RNR NAK
3672 	 * has actually been sent. qp->s_flags RVT_S_ACK_PENDING bit cannot be
3673 	 * used for this because qp->s_lock is dropped before calling
3674 	 * hfi1_send_rc_ack() leading to inconsistency between the receive
3675 	 * interrupt handlers and the send thread in make_rc_ack()
3676 	 */
3677 	qpriv->rnr_nak_state = TID_RNR_NAK_SEND;
3678 
3679 	/*
3680 	 * Schedule RNR NAK to be sent. RNR NAK's are scheduled from the receive
3681 	 * interrupt handlers but will be sent from the send engine behind any
3682 	 * previous responses that may have been scheduled
3683 	 */
3684 	rc_defered_ack(rcd, qp);
3685 }
3686 
3687 void hfi1_rc_rcv_tid_rdma_write_req(struct hfi1_packet *packet)
3688 {
3689 	/* HANDLER FOR TID RDMA WRITE REQUEST packet (Responder side)*/
3690 
3691 	/*
3692 	 * 1. Verify TID RDMA WRITE REQ as per IB_OPCODE_RC_RDMA_WRITE_FIRST
3693 	 *    (see hfi1_rc_rcv())
3694 	 *     - Don't allow 0-length requests.
3695 	 * 2. Put TID RDMA WRITE REQ into the response queueu (s_ack_queue)
3696 	 *     - Setup struct tid_rdma_req with request info
3697 	 *     - Prepare struct tid_rdma_flow array?
3698 	 * 3. Set the qp->s_ack_state as state diagram in design doc.
3699 	 * 4. Set RVT_S_RESP_PENDING in s_flags.
3700 	 * 5. Kick the send engine (hfi1_schedule_send())
3701 	 */
3702 	struct hfi1_ctxtdata *rcd = packet->rcd;
3703 	struct rvt_qp *qp = packet->qp;
3704 	struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
3705 	struct ib_other_headers *ohdr = packet->ohdr;
3706 	struct rvt_ack_entry *e;
3707 	unsigned long flags;
3708 	struct ib_reth *reth;
3709 	struct hfi1_qp_priv *qpriv = qp->priv;
3710 	struct tid_rdma_request *req;
3711 	u32 bth0, psn, len, rkey, num_segs;
3712 	bool fecn;
3713 	u8 next;
3714 	u64 vaddr;
3715 	int diff;
3716 
3717 	bth0 = be32_to_cpu(ohdr->bth[0]);
3718 	if (hfi1_ruc_check_hdr(ibp, packet))
3719 		return;
3720 
3721 	fecn = process_ecn(qp, packet);
3722 	psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
3723 	trace_hfi1_rsp_rcv_tid_write_req(qp, psn);
3724 
3725 	if (qp->state == IB_QPS_RTR && !(qp->r_flags & RVT_R_COMM_EST))
3726 		rvt_comm_est(qp);
3727 
3728 	if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3729 		goto nack_inv;
3730 
3731 	reth = &ohdr->u.tid_rdma.w_req.reth;
3732 	vaddr = be64_to_cpu(reth->vaddr);
3733 	len = be32_to_cpu(reth->length);
3734 
3735 	num_segs = DIV_ROUND_UP(len, qpriv->tid_rdma.local.max_len);
3736 	diff = delta_psn(psn, qp->r_psn);
3737 	if (unlikely(diff)) {
3738 		tid_rdma_rcv_err(packet, ohdr, qp, psn, diff, fecn);
3739 		return;
3740 	}
3741 
3742 	/*
3743 	 * The resent request which was previously RNR NAK'd is inserted at the
3744 	 * location of the original request, which is one entry behind
3745 	 * r_head_ack_queue
3746 	 */
3747 	if (qpriv->rnr_nak_state)
3748 		qp->r_head_ack_queue = qp->r_head_ack_queue ?
3749 			qp->r_head_ack_queue - 1 :
3750 			rvt_size_atomic(ib_to_rvt(qp->ibqp.device));
3751 
3752 	/* We've verified the request, insert it into the ack queue. */
3753 	next = qp->r_head_ack_queue + 1;
3754 	if (next > rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
3755 		next = 0;
3756 	spin_lock_irqsave(&qp->s_lock, flags);
3757 	if (unlikely(next == qp->s_acked_ack_queue)) {
3758 		if (!qp->s_ack_queue[next].sent)
3759 			goto nack_inv_unlock;
3760 		update_ack_queue(qp, next);
3761 	}
3762 	e = &qp->s_ack_queue[qp->r_head_ack_queue];
3763 	req = ack_to_tid_req(e);
3764 
3765 	/* Bring previously RNR NAK'd request back to life */
3766 	if (qpriv->rnr_nak_state) {
3767 		qp->r_nak_state = 0;
3768 		qp->s_nak_state = 0;
3769 		qpriv->rnr_nak_state = TID_RNR_NAK_INIT;
3770 		qp->r_psn = e->lpsn + 1;
3771 		req->state = TID_REQUEST_INIT;
3772 		goto update_head;
3773 	}
3774 
3775 	release_rdma_sge_mr(e);
3776 
3777 	/* The length needs to be in multiples of PAGE_SIZE */
3778 	if (!len || len & ~PAGE_MASK)
3779 		goto nack_inv_unlock;
3780 
3781 	rkey = be32_to_cpu(reth->rkey);
3782 	qp->r_len = len;
3783 
3784 	if (e->opcode == TID_OP(WRITE_REQ) &&
3785 	    (req->setup_head != req->clear_tail ||
3786 	     req->clear_tail != req->acked_tail))
3787 		goto nack_inv_unlock;
3788 
3789 	if (unlikely(!rvt_rkey_ok(qp, &e->rdma_sge, qp->r_len, vaddr,
3790 				  rkey, IB_ACCESS_REMOTE_WRITE)))
3791 		goto nack_acc;
3792 
3793 	qp->r_psn += num_segs - 1;
3794 
3795 	e->opcode = (bth0 >> 24) & 0xff;
3796 	e->psn = psn;
3797 	e->lpsn = qp->r_psn;
3798 	e->sent = 0;
3799 
3800 	req->n_flows = min_t(u16, num_segs, qpriv->tid_rdma.local.max_write);
3801 	req->state = TID_REQUEST_INIT;
3802 	req->cur_seg = 0;
3803 	req->comp_seg = 0;
3804 	req->ack_seg = 0;
3805 	req->alloc_seg = 0;
3806 	req->isge = 0;
3807 	req->seg_len = qpriv->tid_rdma.local.max_len;
3808 	req->total_len = len;
3809 	req->total_segs = num_segs;
3810 	req->r_flow_psn = e->psn;
3811 	req->ss.sge = e->rdma_sge;
3812 	req->ss.num_sge = 1;
3813 
3814 	req->flow_idx = req->setup_head;
3815 	req->clear_tail = req->setup_head;
3816 	req->acked_tail = req->setup_head;
3817 
3818 	qp->r_state = e->opcode;
3819 	qp->r_nak_state = 0;
3820 	/*
3821 	 * We need to increment the MSN here instead of when we
3822 	 * finish sending the result since a duplicate request would
3823 	 * increment it more than once.
3824 	 */
3825 	qp->r_msn++;
3826 	qp->r_psn++;
3827 
3828 	trace_hfi1_tid_req_rcv_write_req(qp, 0, e->opcode, e->psn, e->lpsn,
3829 					 req);
3830 
3831 	if (qpriv->r_tid_tail == HFI1_QP_WQE_INVALID) {
3832 		qpriv->r_tid_tail = qp->r_head_ack_queue;
3833 	} else if (qpriv->r_tid_tail == qpriv->r_tid_head) {
3834 		struct tid_rdma_request *ptr;
3835 
3836 		e = &qp->s_ack_queue[qpriv->r_tid_tail];
3837 		ptr = ack_to_tid_req(e);
3838 
3839 		if (e->opcode != TID_OP(WRITE_REQ) ||
3840 		    ptr->comp_seg == ptr->total_segs) {
3841 			if (qpriv->r_tid_tail == qpriv->r_tid_ack)
3842 				qpriv->r_tid_ack = qp->r_head_ack_queue;
3843 			qpriv->r_tid_tail = qp->r_head_ack_queue;
3844 		}
3845 	}
3846 update_head:
3847 	qp->r_head_ack_queue = next;
3848 	qpriv->r_tid_head = qp->r_head_ack_queue;
3849 
3850 	hfi1_tid_write_alloc_resources(qp, true);
3851 	trace_hfi1_tid_write_rsp_rcv_req(qp);
3852 
3853 	/* Schedule the send tasklet. */
3854 	qp->s_flags |= RVT_S_RESP_PENDING;
3855 	if (fecn)
3856 		qp->s_flags |= RVT_S_ECN;
3857 	hfi1_schedule_send(qp);
3858 
3859 	spin_unlock_irqrestore(&qp->s_lock, flags);
3860 	return;
3861 
3862 nack_inv_unlock:
3863 	spin_unlock_irqrestore(&qp->s_lock, flags);
3864 nack_inv:
3865 	rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR);
3866 	qp->r_nak_state = IB_NAK_INVALID_REQUEST;
3867 	qp->r_ack_psn = qp->r_psn;
3868 	/* Queue NAK for later */
3869 	rc_defered_ack(rcd, qp);
3870 	return;
3871 nack_acc:
3872 	spin_unlock_irqrestore(&qp->s_lock, flags);
3873 	rvt_rc_error(qp, IB_WC_LOC_PROT_ERR);
3874 	qp->r_nak_state = IB_NAK_REMOTE_ACCESS_ERROR;
3875 	qp->r_ack_psn = qp->r_psn;
3876 }
3877 
3878 u32 hfi1_build_tid_rdma_write_resp(struct rvt_qp *qp, struct rvt_ack_entry *e,
3879 				   struct ib_other_headers *ohdr, u32 *bth1,
3880 				   u32 bth2, u32 *len,
3881 				   struct rvt_sge_state **ss)
3882 {
3883 	struct hfi1_ack_priv *epriv = e->priv;
3884 	struct tid_rdma_request *req = &epriv->tid_req;
3885 	struct hfi1_qp_priv *qpriv = qp->priv;
3886 	struct tid_rdma_flow *flow = NULL;
3887 	u32 resp_len = 0, hdwords = 0;
3888 	void *resp_addr = NULL;
3889 	struct tid_rdma_params *remote;
3890 
3891 	trace_hfi1_tid_req_build_write_resp(qp, 0, e->opcode, e->psn, e->lpsn,
3892 					    req);
3893 	trace_hfi1_tid_write_rsp_build_resp(qp);
3894 	trace_hfi1_rsp_build_tid_write_resp(qp, bth2);
3895 	flow = &req->flows[req->flow_idx];
3896 	switch (req->state) {
3897 	default:
3898 		/*
3899 		 * Try to allocate resources here in case QP was queued and was
3900 		 * later scheduled when resources became available
3901 		 */
3902 		hfi1_tid_write_alloc_resources(qp, false);
3903 
3904 		/* We've already sent everything which is ready */
3905 		if (req->cur_seg >= req->alloc_seg)
3906 			goto done;
3907 
3908 		/*
3909 		 * Resources can be assigned but responses cannot be sent in
3910 		 * rnr_nak state, till the resent request is received
3911 		 */
3912 		if (qpriv->rnr_nak_state == TID_RNR_NAK_SENT)
3913 			goto done;
3914 
3915 		req->state = TID_REQUEST_ACTIVE;
3916 		trace_hfi1_tid_flow_build_write_resp(qp, req->flow_idx, flow);
3917 		req->flow_idx = CIRC_NEXT(req->flow_idx, MAX_FLOWS);
3918 		hfi1_add_tid_reap_timer(qp);
3919 		break;
3920 
3921 	case TID_REQUEST_RESEND_ACTIVE:
3922 	case TID_REQUEST_RESEND:
3923 		trace_hfi1_tid_flow_build_write_resp(qp, req->flow_idx, flow);
3924 		req->flow_idx = CIRC_NEXT(req->flow_idx, MAX_FLOWS);
3925 		if (!CIRC_CNT(req->setup_head, req->flow_idx, MAX_FLOWS))
3926 			req->state = TID_REQUEST_ACTIVE;
3927 
3928 		hfi1_mod_tid_reap_timer(qp);
3929 		break;
3930 	}
3931 	flow->flow_state.resp_ib_psn = bth2;
3932 	resp_addr = (void *)flow->tid_entry;
3933 	resp_len = sizeof(*flow->tid_entry) * flow->tidcnt;
3934 	req->cur_seg++;
3935 
3936 	memset(&ohdr->u.tid_rdma.w_rsp, 0, sizeof(ohdr->u.tid_rdma.w_rsp));
3937 	epriv->ss.sge.vaddr = resp_addr;
3938 	epriv->ss.sge.sge_length = resp_len;
3939 	epriv->ss.sge.length = epriv->ss.sge.sge_length;
3940 	/*
3941 	 * We can safely zero these out. Since the first SGE covers the
3942 	 * entire packet, nothing else should even look at the MR.
3943 	 */
3944 	epriv->ss.sge.mr = NULL;
3945 	epriv->ss.sge.m = 0;
3946 	epriv->ss.sge.n = 0;
3947 
3948 	epriv->ss.sg_list = NULL;
3949 	epriv->ss.total_len = epriv->ss.sge.sge_length;
3950 	epriv->ss.num_sge = 1;
3951 
3952 	*ss = &epriv->ss;
3953 	*len = epriv->ss.total_len;
3954 
3955 	/* Construct the TID RDMA WRITE RESP packet header */
3956 	rcu_read_lock();
3957 	remote = rcu_dereference(qpriv->tid_rdma.remote);
3958 
3959 	KDETH_RESET(ohdr->u.tid_rdma.w_rsp.kdeth0, KVER, 0x1);
3960 	KDETH_RESET(ohdr->u.tid_rdma.w_rsp.kdeth1, JKEY, remote->jkey);
3961 	ohdr->u.tid_rdma.w_rsp.aeth = rvt_compute_aeth(qp);
3962 	ohdr->u.tid_rdma.w_rsp.tid_flow_psn =
3963 		cpu_to_be32((flow->flow_state.generation <<
3964 			     HFI1_KDETH_BTH_SEQ_SHIFT) |
3965 			    (flow->flow_state.spsn &
3966 			     HFI1_KDETH_BTH_SEQ_MASK));
3967 	ohdr->u.tid_rdma.w_rsp.tid_flow_qp =
3968 		cpu_to_be32(qpriv->tid_rdma.local.qp |
3969 			    ((flow->idx & TID_RDMA_DESTQP_FLOW_MASK) <<
3970 			     TID_RDMA_DESTQP_FLOW_SHIFT) |
3971 			    qpriv->rcd->ctxt);
3972 	ohdr->u.tid_rdma.w_rsp.verbs_qp = cpu_to_be32(qp->remote_qpn);
3973 	*bth1 = remote->qp;
3974 	rcu_read_unlock();
3975 	hdwords = sizeof(ohdr->u.tid_rdma.w_rsp) / sizeof(u32);
3976 	qpriv->pending_tid_w_segs++;
3977 done:
3978 	return hdwords;
3979 }
3980 
3981 static void hfi1_add_tid_reap_timer(struct rvt_qp *qp)
3982 {
3983 	struct hfi1_qp_priv *qpriv = qp->priv;
3984 
3985 	lockdep_assert_held(&qp->s_lock);
3986 	if (!(qpriv->s_flags & HFI1_R_TID_RSC_TIMER)) {
3987 		qpriv->s_flags |= HFI1_R_TID_RSC_TIMER;
3988 		qpriv->s_tid_timer.expires = jiffies +
3989 			qpriv->tid_timer_timeout_jiffies;
3990 		add_timer(&qpriv->s_tid_timer);
3991 	}
3992 }
3993 
3994 static void hfi1_mod_tid_reap_timer(struct rvt_qp *qp)
3995 {
3996 	struct hfi1_qp_priv *qpriv = qp->priv;
3997 
3998 	lockdep_assert_held(&qp->s_lock);
3999 	qpriv->s_flags |= HFI1_R_TID_RSC_TIMER;
4000 	mod_timer(&qpriv->s_tid_timer, jiffies +
4001 		  qpriv->tid_timer_timeout_jiffies);
4002 }
4003 
4004 static int hfi1_stop_tid_reap_timer(struct rvt_qp *qp)
4005 {
4006 	struct hfi1_qp_priv *qpriv = qp->priv;
4007 	int rval = 0;
4008 
4009 	lockdep_assert_held(&qp->s_lock);
4010 	if (qpriv->s_flags & HFI1_R_TID_RSC_TIMER) {
4011 		rval = del_timer(&qpriv->s_tid_timer);
4012 		qpriv->s_flags &= ~HFI1_R_TID_RSC_TIMER;
4013 	}
4014 	return rval;
4015 }
4016 
4017 void hfi1_del_tid_reap_timer(struct rvt_qp *qp)
4018 {
4019 	struct hfi1_qp_priv *qpriv = qp->priv;
4020 
4021 	del_timer_sync(&qpriv->s_tid_timer);
4022 	qpriv->s_flags &= ~HFI1_R_TID_RSC_TIMER;
4023 }
4024 
4025 static void hfi1_tid_timeout(struct timer_list *t)
4026 {
4027 	struct hfi1_qp_priv *qpriv = from_timer(qpriv, t, s_tid_timer);
4028 	struct rvt_qp *qp = qpriv->owner;
4029 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
4030 	unsigned long flags;
4031 	u32 i;
4032 
4033 	spin_lock_irqsave(&qp->r_lock, flags);
4034 	spin_lock(&qp->s_lock);
4035 	if (qpriv->s_flags & HFI1_R_TID_RSC_TIMER) {
4036 		dd_dev_warn(dd_from_ibdev(qp->ibqp.device), "[QP%u] %s %d\n",
4037 			    qp->ibqp.qp_num, __func__, __LINE__);
4038 		trace_hfi1_msg_tid_timeout(/* msg */
4039 			qp, "resource timeout = ",
4040 			(u64)qpriv->tid_timer_timeout_jiffies);
4041 		hfi1_stop_tid_reap_timer(qp);
4042 		/*
4043 		 * Go though the entire ack queue and clear any outstanding
4044 		 * HW flow and RcvArray resources.
4045 		 */
4046 		hfi1_kern_clear_hw_flow(qpriv->rcd, qp);
4047 		for (i = 0; i < rvt_max_atomic(rdi); i++) {
4048 			struct tid_rdma_request *req =
4049 				ack_to_tid_req(&qp->s_ack_queue[i]);
4050 
4051 			hfi1_kern_exp_rcv_clear_all(req);
4052 		}
4053 		spin_unlock(&qp->s_lock);
4054 		if (qp->ibqp.event_handler) {
4055 			struct ib_event ev;
4056 
4057 			ev.device = qp->ibqp.device;
4058 			ev.element.qp = &qp->ibqp;
4059 			ev.event = IB_EVENT_QP_FATAL;
4060 			qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
4061 		}
4062 		rvt_rc_error(qp, IB_WC_RESP_TIMEOUT_ERR);
4063 		goto unlock_r_lock;
4064 	}
4065 	spin_unlock(&qp->s_lock);
4066 unlock_r_lock:
4067 	spin_unlock_irqrestore(&qp->r_lock, flags);
4068 }
4069 
4070 void hfi1_rc_rcv_tid_rdma_write_resp(struct hfi1_packet *packet)
4071 {
4072 	/* HANDLER FOR TID RDMA WRITE RESPONSE packet (Requestor side */
4073 
4074 	/*
4075 	 * 1. Find matching SWQE
4076 	 * 2. Check that TIDENTRY array has enough space for a complete
4077 	 *    segment. If not, put QP in error state.
4078 	 * 3. Save response data in struct tid_rdma_req and struct tid_rdma_flow
4079 	 * 4. Remove HFI1_S_WAIT_TID_RESP from s_flags.
4080 	 * 5. Set qp->s_state
4081 	 * 6. Kick the send engine (hfi1_schedule_send())
4082 	 */
4083 	struct ib_other_headers *ohdr = packet->ohdr;
4084 	struct rvt_qp *qp = packet->qp;
4085 	struct hfi1_qp_priv *qpriv = qp->priv;
4086 	struct hfi1_ctxtdata *rcd = packet->rcd;
4087 	struct rvt_swqe *wqe;
4088 	struct tid_rdma_request *req;
4089 	struct tid_rdma_flow *flow;
4090 	enum ib_wc_status status;
4091 	u32 opcode, aeth, psn, flow_psn, i, tidlen = 0, pktlen;
4092 	bool fecn;
4093 	unsigned long flags;
4094 
4095 	fecn = process_ecn(qp, packet);
4096 	psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4097 	aeth = be32_to_cpu(ohdr->u.tid_rdma.w_rsp.aeth);
4098 	opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;
4099 
4100 	spin_lock_irqsave(&qp->s_lock, flags);
4101 
4102 	/* Ignore invalid responses */
4103 	if (cmp_psn(psn, qp->s_next_psn) >= 0)
4104 		goto ack_done;
4105 
4106 	/* Ignore duplicate responses. */
4107 	if (unlikely(cmp_psn(psn, qp->s_last_psn) <= 0))
4108 		goto ack_done;
4109 
4110 	if (unlikely(qp->s_acked == qp->s_tail))
4111 		goto ack_done;
4112 
4113 	/*
4114 	 * If we are waiting for a particular packet sequence number
4115 	 * due to a request being resent, check for it. Otherwise,
4116 	 * ensure that we haven't missed anything.
4117 	 */
4118 	if (qp->r_flags & RVT_R_RDMAR_SEQ) {
4119 		if (cmp_psn(psn, qp->s_last_psn + 1) != 0)
4120 			goto ack_done;
4121 		qp->r_flags &= ~RVT_R_RDMAR_SEQ;
4122 	}
4123 
4124 	wqe = rvt_get_swqe_ptr(qp, qpriv->s_tid_cur);
4125 	if (unlikely(wqe->wr.opcode != IB_WR_TID_RDMA_WRITE))
4126 		goto ack_op_err;
4127 
4128 	req = wqe_to_tid_req(wqe);
4129 	/*
4130 	 * If we've lost ACKs and our acked_tail pointer is too far
4131 	 * behind, don't overwrite segments. Just drop the packet and
4132 	 * let the reliability protocol take care of it.
4133 	 */
4134 	if (!CIRC_SPACE(req->setup_head, req->acked_tail, MAX_FLOWS))
4135 		goto ack_done;
4136 
4137 	/*
4138 	 * The call to do_rc_ack() should be last in the chain of
4139 	 * packet checks because it will end up updating the QP state.
4140 	 * Therefore, anything that would prevent the packet from
4141 	 * being accepted as a successful response should be prior
4142 	 * to it.
4143 	 */
4144 	if (!do_rc_ack(qp, aeth, psn, opcode, 0, rcd))
4145 		goto ack_done;
4146 
4147 	trace_hfi1_ack(qp, psn);
4148 
4149 	flow = &req->flows[req->setup_head];
4150 	flow->pkt = 0;
4151 	flow->tid_idx = 0;
4152 	flow->tid_offset = 0;
4153 	flow->sent = 0;
4154 	flow->resync_npkts = 0;
4155 	flow->tid_qpn = be32_to_cpu(ohdr->u.tid_rdma.w_rsp.tid_flow_qp);
4156 	flow->idx = (flow->tid_qpn >> TID_RDMA_DESTQP_FLOW_SHIFT) &
4157 		TID_RDMA_DESTQP_FLOW_MASK;
4158 	flow_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.w_rsp.tid_flow_psn));
4159 	flow->flow_state.generation = flow_psn >> HFI1_KDETH_BTH_SEQ_SHIFT;
4160 	flow->flow_state.spsn = flow_psn & HFI1_KDETH_BTH_SEQ_MASK;
4161 	flow->flow_state.resp_ib_psn = psn;
4162 	flow->length = min_t(u32, req->seg_len,
4163 			     (wqe->length - (req->comp_seg * req->seg_len)));
4164 
4165 	flow->npkts = rvt_div_round_up_mtu(qp, flow->length);
4166 	flow->flow_state.lpsn = flow->flow_state.spsn +
4167 		flow->npkts - 1;
4168 	/* payload length = packet length - (header length + ICRC length) */
4169 	pktlen = packet->tlen - (packet->hlen + 4);
4170 	if (pktlen > sizeof(flow->tid_entry)) {
4171 		status = IB_WC_LOC_LEN_ERR;
4172 		goto ack_err;
4173 	}
4174 	memcpy(flow->tid_entry, packet->ebuf, pktlen);
4175 	flow->tidcnt = pktlen / sizeof(*flow->tid_entry);
4176 	trace_hfi1_tid_flow_rcv_write_resp(qp, req->setup_head, flow);
4177 
4178 	req->comp_seg++;
4179 	trace_hfi1_tid_write_sender_rcv_resp(qp, 0);
4180 	/*
4181 	 * Walk the TID_ENTRY list to make sure we have enough space for a
4182 	 * complete segment.
4183 	 */
4184 	for (i = 0; i < flow->tidcnt; i++) {
4185 		trace_hfi1_tid_entry_rcv_write_resp(/* entry */
4186 			qp, i, flow->tid_entry[i]);
4187 		if (!EXP_TID_GET(flow->tid_entry[i], LEN)) {
4188 			status = IB_WC_LOC_LEN_ERR;
4189 			goto ack_err;
4190 		}
4191 		tidlen += EXP_TID_GET(flow->tid_entry[i], LEN);
4192 	}
4193 	if (tidlen * PAGE_SIZE < flow->length) {
4194 		status = IB_WC_LOC_LEN_ERR;
4195 		goto ack_err;
4196 	}
4197 
4198 	trace_hfi1_tid_req_rcv_write_resp(qp, 0, wqe->wr.opcode, wqe->psn,
4199 					  wqe->lpsn, req);
4200 	/*
4201 	 * If this is the first response for this request, set the initial
4202 	 * flow index to the current flow.
4203 	 */
4204 	if (!cmp_psn(psn, wqe->psn)) {
4205 		req->r_last_acked = mask_psn(wqe->psn - 1);
4206 		/* Set acked flow index to head index */
4207 		req->acked_tail = req->setup_head;
4208 	}
4209 
4210 	/* advance circular buffer head */
4211 	req->setup_head = CIRC_NEXT(req->setup_head, MAX_FLOWS);
4212 	req->state = TID_REQUEST_ACTIVE;
4213 
4214 	/*
4215 	 * If all responses for this TID RDMA WRITE request have been received
4216 	 * advance the pointer to the next one.
4217 	 * Since TID RDMA requests could be mixed in with regular IB requests,
4218 	 * they might not appear sequentially in the queue. Therefore, the
4219 	 * next request needs to be "found".
4220 	 */
4221 	if (qpriv->s_tid_cur != qpriv->s_tid_head &&
4222 	    req->comp_seg == req->total_segs) {
4223 		for (i = qpriv->s_tid_cur + 1; ; i++) {
4224 			if (i == qp->s_size)
4225 				i = 0;
4226 			wqe = rvt_get_swqe_ptr(qp, i);
4227 			if (i == qpriv->s_tid_head)
4228 				break;
4229 			if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE)
4230 				break;
4231 		}
4232 		qpriv->s_tid_cur = i;
4233 	}
4234 	qp->s_flags &= ~HFI1_S_WAIT_TID_RESP;
4235 	hfi1_schedule_tid_send(qp);
4236 	goto ack_done;
4237 
4238 ack_op_err:
4239 	status = IB_WC_LOC_QP_OP_ERR;
4240 ack_err:
4241 	rvt_error_qp(qp, status);
4242 ack_done:
4243 	if (fecn)
4244 		qp->s_flags |= RVT_S_ECN;
4245 	spin_unlock_irqrestore(&qp->s_lock, flags);
4246 }
4247 
4248 bool hfi1_build_tid_rdma_packet(struct rvt_swqe *wqe,
4249 				struct ib_other_headers *ohdr,
4250 				u32 *bth1, u32 *bth2, u32 *len)
4251 {
4252 	struct tid_rdma_request *req = wqe_to_tid_req(wqe);
4253 	struct tid_rdma_flow *flow = &req->flows[req->clear_tail];
4254 	struct tid_rdma_params *remote;
4255 	struct rvt_qp *qp = req->qp;
4256 	struct hfi1_qp_priv *qpriv = qp->priv;
4257 	u32 tidentry = flow->tid_entry[flow->tid_idx];
4258 	u32 tidlen = EXP_TID_GET(tidentry, LEN) << PAGE_SHIFT;
4259 	struct tid_rdma_write_data *wd = &ohdr->u.tid_rdma.w_data;
4260 	u32 next_offset, om = KDETH_OM_LARGE;
4261 	bool last_pkt;
4262 
4263 	if (!tidlen) {
4264 		hfi1_trdma_send_complete(qp, wqe, IB_WC_REM_INV_RD_REQ_ERR);
4265 		rvt_error_qp(qp, IB_WC_REM_INV_RD_REQ_ERR);
4266 	}
4267 
4268 	*len = min_t(u32, qp->pmtu, tidlen - flow->tid_offset);
4269 	flow->sent += *len;
4270 	next_offset = flow->tid_offset + *len;
4271 	last_pkt = (flow->tid_idx == (flow->tidcnt - 1) &&
4272 		    next_offset >= tidlen) || (flow->sent >= flow->length);
4273 	trace_hfi1_tid_entry_build_write_data(qp, flow->tid_idx, tidentry);
4274 	trace_hfi1_tid_flow_build_write_data(qp, req->clear_tail, flow);
4275 
4276 	rcu_read_lock();
4277 	remote = rcu_dereference(qpriv->tid_rdma.remote);
4278 	KDETH_RESET(wd->kdeth0, KVER, 0x1);
4279 	KDETH_SET(wd->kdeth0, SH, !last_pkt);
4280 	KDETH_SET(wd->kdeth0, INTR, !!(!last_pkt && remote->urg));
4281 	KDETH_SET(wd->kdeth0, TIDCTRL, EXP_TID_GET(tidentry, CTRL));
4282 	KDETH_SET(wd->kdeth0, TID, EXP_TID_GET(tidentry, IDX));
4283 	KDETH_SET(wd->kdeth0, OM, om == KDETH_OM_LARGE);
4284 	KDETH_SET(wd->kdeth0, OFFSET, flow->tid_offset / om);
4285 	KDETH_RESET(wd->kdeth1, JKEY, remote->jkey);
4286 	wd->verbs_qp = cpu_to_be32(qp->remote_qpn);
4287 	rcu_read_unlock();
4288 
4289 	*bth1 = flow->tid_qpn;
4290 	*bth2 = mask_psn(((flow->flow_state.spsn + flow->pkt++) &
4291 			 HFI1_KDETH_BTH_SEQ_MASK) |
4292 			 (flow->flow_state.generation <<
4293 			  HFI1_KDETH_BTH_SEQ_SHIFT));
4294 	if (last_pkt) {
4295 		/* PSNs are zero-based, so +1 to count number of packets */
4296 		if (flow->flow_state.lpsn + 1 +
4297 		    rvt_div_round_up_mtu(qp, req->seg_len) >
4298 		    MAX_TID_FLOW_PSN)
4299 			req->state = TID_REQUEST_SYNC;
4300 		*bth2 |= IB_BTH_REQ_ACK;
4301 	}
4302 
4303 	if (next_offset >= tidlen) {
4304 		flow->tid_offset = 0;
4305 		flow->tid_idx++;
4306 	} else {
4307 		flow->tid_offset = next_offset;
4308 	}
4309 	return last_pkt;
4310 }
4311 
4312 void hfi1_rc_rcv_tid_rdma_write_data(struct hfi1_packet *packet)
4313 {
4314 	struct rvt_qp *qp = packet->qp;
4315 	struct hfi1_qp_priv *priv = qp->priv;
4316 	struct hfi1_ctxtdata *rcd = priv->rcd;
4317 	struct ib_other_headers *ohdr = packet->ohdr;
4318 	struct rvt_ack_entry *e;
4319 	struct tid_rdma_request *req;
4320 	struct tid_rdma_flow *flow;
4321 	struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
4322 	unsigned long flags;
4323 	u32 psn, next;
4324 	u8 opcode;
4325 	bool fecn;
4326 
4327 	fecn = process_ecn(qp, packet);
4328 	psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4329 	opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;
4330 
4331 	/*
4332 	 * All error handling should be done by now. If we are here, the packet
4333 	 * is either good or been accepted by the error handler.
4334 	 */
4335 	spin_lock_irqsave(&qp->s_lock, flags);
4336 	e = &qp->s_ack_queue[priv->r_tid_tail];
4337 	req = ack_to_tid_req(e);
4338 	flow = &req->flows[req->clear_tail];
4339 	if (cmp_psn(psn, full_flow_psn(flow, flow->flow_state.lpsn))) {
4340 		update_r_next_psn_fecn(packet, priv, rcd, flow, fecn);
4341 
4342 		if (cmp_psn(psn, flow->flow_state.r_next_psn))
4343 			goto send_nak;
4344 
4345 		flow->flow_state.r_next_psn = mask_psn(psn + 1);
4346 		/*
4347 		 * Copy the payload to destination buffer if this packet is
4348 		 * delivered as an eager packet due to RSM rule and FECN.
4349 		 * The RSM rule selects FECN bit in BTH and SH bit in
4350 		 * KDETH header and therefore will not match the last
4351 		 * packet of each segment that has SH bit cleared.
4352 		 */
4353 		if (fecn && packet->etype == RHF_RCV_TYPE_EAGER) {
4354 			struct rvt_sge_state ss;
4355 			u32 len;
4356 			u32 tlen = packet->tlen;
4357 			u16 hdrsize = packet->hlen;
4358 			u8 pad = packet->pad;
4359 			u8 extra_bytes = pad + packet->extra_byte +
4360 				(SIZE_OF_CRC << 2);
4361 			u32 pmtu = qp->pmtu;
4362 
4363 			if (unlikely(tlen != (hdrsize + pmtu + extra_bytes)))
4364 				goto send_nak;
4365 			len = req->comp_seg * req->seg_len;
4366 			len += delta_psn(psn,
4367 				full_flow_psn(flow, flow->flow_state.spsn)) *
4368 				pmtu;
4369 			if (unlikely(req->total_len - len < pmtu))
4370 				goto send_nak;
4371 
4372 			/*
4373 			 * The e->rdma_sge field is set when TID RDMA WRITE REQ
4374 			 * is first received and is never modified thereafter.
4375 			 */
4376 			ss.sge = e->rdma_sge;
4377 			ss.sg_list = NULL;
4378 			ss.num_sge = 1;
4379 			ss.total_len = req->total_len;
4380 			rvt_skip_sge(&ss, len, false);
4381 			rvt_copy_sge(qp, &ss, packet->payload, pmtu, false,
4382 				     false);
4383 			/* Raise the sw sequence check flag for next packet */
4384 			priv->r_next_psn_kdeth = mask_psn(psn + 1);
4385 			priv->s_flags |= HFI1_R_TID_SW_PSN;
4386 		}
4387 		goto exit;
4388 	}
4389 	flow->flow_state.r_next_psn = mask_psn(psn + 1);
4390 	hfi1_kern_exp_rcv_clear(req);
4391 	priv->alloc_w_segs--;
4392 	rcd->flows[flow->idx].psn = psn & HFI1_KDETH_BTH_SEQ_MASK;
4393 	req->comp_seg++;
4394 	priv->s_nak_state = 0;
4395 
4396 	/*
4397 	 * Release the flow if one of the following conditions has been met:
4398 	 *  - The request has reached a sync point AND all outstanding
4399 	 *    segments have been completed, or
4400 	 *  - The entire request is complete and there are no more requests
4401 	 *    (of any kind) in the queue.
4402 	 */
4403 	trace_hfi1_rsp_rcv_tid_write_data(qp, psn);
4404 	trace_hfi1_tid_req_rcv_write_data(qp, 0, e->opcode, e->psn, e->lpsn,
4405 					  req);
4406 	trace_hfi1_tid_write_rsp_rcv_data(qp);
4407 	if (priv->r_tid_ack == HFI1_QP_WQE_INVALID)
4408 		priv->r_tid_ack = priv->r_tid_tail;
4409 
4410 	if (opcode == TID_OP(WRITE_DATA_LAST)) {
4411 		release_rdma_sge_mr(e);
4412 		for (next = priv->r_tid_tail + 1; ; next++) {
4413 			if (next > rvt_size_atomic(&dev->rdi))
4414 				next = 0;
4415 			if (next == priv->r_tid_head)
4416 				break;
4417 			e = &qp->s_ack_queue[next];
4418 			if (e->opcode == TID_OP(WRITE_REQ))
4419 				break;
4420 		}
4421 		priv->r_tid_tail = next;
4422 		if (++qp->s_acked_ack_queue > rvt_size_atomic(&dev->rdi))
4423 			qp->s_acked_ack_queue = 0;
4424 	}
4425 
4426 	hfi1_tid_write_alloc_resources(qp, true);
4427 
4428 	/*
4429 	 * If we need to generate more responses, schedule the
4430 	 * send engine.
4431 	 */
4432 	if (req->cur_seg < req->total_segs ||
4433 	    qp->s_tail_ack_queue != qp->r_head_ack_queue) {
4434 		qp->s_flags |= RVT_S_RESP_PENDING;
4435 		hfi1_schedule_send(qp);
4436 	}
4437 
4438 	priv->pending_tid_w_segs--;
4439 	if (priv->s_flags & HFI1_R_TID_RSC_TIMER) {
4440 		if (priv->pending_tid_w_segs)
4441 			hfi1_mod_tid_reap_timer(req->qp);
4442 		else
4443 			hfi1_stop_tid_reap_timer(req->qp);
4444 	}
4445 
4446 done:
4447 	priv->s_flags |= RVT_S_ACK_PENDING;
4448 	hfi1_schedule_tid_send(qp);
4449 exit:
4450 	priv->r_next_psn_kdeth = flow->flow_state.r_next_psn;
4451 	if (fecn)
4452 		qp->s_flags |= RVT_S_ECN;
4453 	spin_unlock_irqrestore(&qp->s_lock, flags);
4454 	return;
4455 
4456 send_nak:
4457 	if (!priv->s_nak_state) {
4458 		priv->s_nak_state = IB_NAK_PSN_ERROR;
4459 		priv->s_nak_psn = flow->flow_state.r_next_psn;
4460 		priv->s_flags |= RVT_S_ACK_PENDING;
4461 		if (priv->r_tid_ack == HFI1_QP_WQE_INVALID)
4462 			priv->r_tid_ack = priv->r_tid_tail;
4463 		hfi1_schedule_tid_send(qp);
4464 	}
4465 	goto done;
4466 }
4467 
4468 static bool hfi1_tid_rdma_is_resync_psn(u32 psn)
4469 {
4470 	return (bool)((psn & HFI1_KDETH_BTH_SEQ_MASK) ==
4471 		      HFI1_KDETH_BTH_SEQ_MASK);
4472 }
4473 
4474 u32 hfi1_build_tid_rdma_write_ack(struct rvt_qp *qp, struct rvt_ack_entry *e,
4475 				  struct ib_other_headers *ohdr, u16 iflow,
4476 				  u32 *bth1, u32 *bth2)
4477 {
4478 	struct hfi1_qp_priv *qpriv = qp->priv;
4479 	struct tid_flow_state *fs = &qpriv->flow_state;
4480 	struct tid_rdma_request *req = ack_to_tid_req(e);
4481 	struct tid_rdma_flow *flow = &req->flows[iflow];
4482 	struct tid_rdma_params *remote;
4483 
4484 	rcu_read_lock();
4485 	remote = rcu_dereference(qpriv->tid_rdma.remote);
4486 	KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth1, JKEY, remote->jkey);
4487 	ohdr->u.tid_rdma.ack.verbs_qp = cpu_to_be32(qp->remote_qpn);
4488 	*bth1 = remote->qp;
4489 	rcu_read_unlock();
4490 
4491 	if (qpriv->resync) {
4492 		*bth2 = mask_psn((fs->generation <<
4493 				  HFI1_KDETH_BTH_SEQ_SHIFT) - 1);
4494 		ohdr->u.tid_rdma.ack.aeth = rvt_compute_aeth(qp);
4495 	} else if (qpriv->s_nak_state) {
4496 		*bth2 = mask_psn(qpriv->s_nak_psn);
4497 		ohdr->u.tid_rdma.ack.aeth =
4498 			cpu_to_be32((qp->r_msn & IB_MSN_MASK) |
4499 				    (qpriv->s_nak_state <<
4500 				     IB_AETH_CREDIT_SHIFT));
4501 	} else {
4502 		*bth2 = full_flow_psn(flow, flow->flow_state.lpsn);
4503 		ohdr->u.tid_rdma.ack.aeth = rvt_compute_aeth(qp);
4504 	}
4505 	KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth0, KVER, 0x1);
4506 	ohdr->u.tid_rdma.ack.tid_flow_qp =
4507 		cpu_to_be32(qpriv->tid_rdma.local.qp |
4508 			    ((flow->idx & TID_RDMA_DESTQP_FLOW_MASK) <<
4509 			     TID_RDMA_DESTQP_FLOW_SHIFT) |
4510 			    qpriv->rcd->ctxt);
4511 
4512 	ohdr->u.tid_rdma.ack.tid_flow_psn = 0;
4513 	ohdr->u.tid_rdma.ack.verbs_psn =
4514 		cpu_to_be32(flow->flow_state.resp_ib_psn);
4515 
4516 	if (qpriv->resync) {
4517 		/*
4518 		 * If the PSN before the current expect KDETH PSN is the
4519 		 * RESYNC PSN, then we never received a good TID RDMA WRITE
4520 		 * DATA packet after a previous RESYNC.
4521 		 * In this case, the next expected KDETH PSN stays the same.
4522 		 */
4523 		if (hfi1_tid_rdma_is_resync_psn(qpriv->r_next_psn_kdeth - 1)) {
4524 			ohdr->u.tid_rdma.ack.tid_flow_psn =
4525 				cpu_to_be32(qpriv->r_next_psn_kdeth_save);
4526 		} else {
4527 			/*
4528 			 * Because the KDETH PSNs jump during a RESYNC, it's
4529 			 * not possible to infer (or compute) the previous value
4530 			 * of r_next_psn_kdeth in the case of back-to-back
4531 			 * RESYNC packets. Therefore, we save it.
4532 			 */
4533 			qpriv->r_next_psn_kdeth_save =
4534 				qpriv->r_next_psn_kdeth - 1;
4535 			ohdr->u.tid_rdma.ack.tid_flow_psn =
4536 				cpu_to_be32(qpriv->r_next_psn_kdeth_save);
4537 			qpriv->r_next_psn_kdeth = mask_psn(*bth2 + 1);
4538 		}
4539 		qpriv->resync = false;
4540 	}
4541 
4542 	return sizeof(ohdr->u.tid_rdma.ack) / sizeof(u32);
4543 }
4544 
4545 void hfi1_rc_rcv_tid_rdma_ack(struct hfi1_packet *packet)
4546 {
4547 	struct ib_other_headers *ohdr = packet->ohdr;
4548 	struct rvt_qp *qp = packet->qp;
4549 	struct hfi1_qp_priv *qpriv = qp->priv;
4550 	struct rvt_swqe *wqe;
4551 	struct tid_rdma_request *req;
4552 	struct tid_rdma_flow *flow;
4553 	u32 aeth, psn, req_psn, ack_psn, fspsn, resync_psn, ack_kpsn;
4554 	unsigned long flags;
4555 	u16 fidx;
4556 
4557 	trace_hfi1_tid_write_sender_rcv_tid_ack(qp, 0);
4558 	process_ecn(qp, packet);
4559 	psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4560 	aeth = be32_to_cpu(ohdr->u.tid_rdma.ack.aeth);
4561 	req_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.ack.verbs_psn));
4562 	resync_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.ack.tid_flow_psn));
4563 
4564 	spin_lock_irqsave(&qp->s_lock, flags);
4565 	trace_hfi1_rcv_tid_ack(qp, aeth, psn, req_psn, resync_psn);
4566 
4567 	/* If we are waiting for an ACK to RESYNC, drop any other packets */
4568 	if ((qp->s_flags & HFI1_S_WAIT_HALT) &&
4569 	    cmp_psn(psn, qpriv->s_resync_psn))
4570 		goto ack_op_err;
4571 
4572 	ack_psn = req_psn;
4573 	if (hfi1_tid_rdma_is_resync_psn(psn))
4574 		ack_kpsn = resync_psn;
4575 	else
4576 		ack_kpsn = psn;
4577 	if (aeth >> 29) {
4578 		ack_psn--;
4579 		ack_kpsn--;
4580 	}
4581 
4582 	wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
4583 
4584 	if (wqe->wr.opcode != IB_WR_TID_RDMA_WRITE)
4585 		goto ack_op_err;
4586 
4587 	req = wqe_to_tid_req(wqe);
4588 	trace_hfi1_tid_req_rcv_tid_ack(qp, 0, wqe->wr.opcode, wqe->psn,
4589 				       wqe->lpsn, req);
4590 	flow = &req->flows[req->acked_tail];
4591 	trace_hfi1_tid_flow_rcv_tid_ack(qp, req->acked_tail, flow);
4592 
4593 	/* Drop stale ACK/NAK */
4594 	if (cmp_psn(psn, full_flow_psn(flow, flow->flow_state.spsn)) < 0)
4595 		goto ack_op_err;
4596 
4597 	while (cmp_psn(ack_kpsn,
4598 		       full_flow_psn(flow, flow->flow_state.lpsn)) >= 0 &&
4599 	       req->ack_seg < req->cur_seg) {
4600 		req->ack_seg++;
4601 		/* advance acked segment pointer */
4602 		req->acked_tail = CIRC_NEXT(req->acked_tail, MAX_FLOWS);
4603 		req->r_last_acked = flow->flow_state.resp_ib_psn;
4604 		trace_hfi1_tid_req_rcv_tid_ack(qp, 0, wqe->wr.opcode, wqe->psn,
4605 					       wqe->lpsn, req);
4606 		if (req->ack_seg == req->total_segs) {
4607 			req->state = TID_REQUEST_COMPLETE;
4608 			wqe = do_rc_completion(qp, wqe,
4609 					       to_iport(qp->ibqp.device,
4610 							qp->port_num));
4611 			trace_hfi1_sender_rcv_tid_ack(qp);
4612 			atomic_dec(&qpriv->n_tid_requests);
4613 			if (qp->s_acked == qp->s_tail)
4614 				break;
4615 			if (wqe->wr.opcode != IB_WR_TID_RDMA_WRITE)
4616 				break;
4617 			req = wqe_to_tid_req(wqe);
4618 		}
4619 		flow = &req->flows[req->acked_tail];
4620 		trace_hfi1_tid_flow_rcv_tid_ack(qp, req->acked_tail, flow);
4621 	}
4622 
4623 	trace_hfi1_tid_req_rcv_tid_ack(qp, 0, wqe->wr.opcode, wqe->psn,
4624 				       wqe->lpsn, req);
4625 	switch (aeth >> 29) {
4626 	case 0:         /* ACK */
4627 		if (qpriv->s_flags & RVT_S_WAIT_ACK)
4628 			qpriv->s_flags &= ~RVT_S_WAIT_ACK;
4629 		if (!hfi1_tid_rdma_is_resync_psn(psn)) {
4630 			/* Check if there is any pending TID ACK */
4631 			if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE &&
4632 			    req->ack_seg < req->cur_seg)
4633 				hfi1_mod_tid_retry_timer(qp);
4634 			else
4635 				hfi1_stop_tid_retry_timer(qp);
4636 			hfi1_schedule_send(qp);
4637 		} else {
4638 			u32 spsn, fpsn, last_acked, generation;
4639 			struct tid_rdma_request *rptr;
4640 
4641 			/* ACK(RESYNC) */
4642 			hfi1_stop_tid_retry_timer(qp);
4643 			/* Allow new requests (see hfi1_make_tid_rdma_pkt) */
4644 			qp->s_flags &= ~HFI1_S_WAIT_HALT;
4645 			/*
4646 			 * Clear RVT_S_SEND_ONE flag in case that the TID RDMA
4647 			 * ACK is received after the TID retry timer is fired
4648 			 * again. In this case, do not send any more TID
4649 			 * RESYNC request or wait for any more TID ACK packet.
4650 			 */
4651 			qpriv->s_flags &= ~RVT_S_SEND_ONE;
4652 			hfi1_schedule_send(qp);
4653 
4654 			if ((qp->s_acked == qpriv->s_tid_tail &&
4655 			     req->ack_seg == req->total_segs) ||
4656 			    qp->s_acked == qp->s_tail) {
4657 				qpriv->s_state = TID_OP(WRITE_DATA_LAST);
4658 				goto done;
4659 			}
4660 
4661 			if (req->ack_seg == req->comp_seg) {
4662 				qpriv->s_state = TID_OP(WRITE_DATA);
4663 				goto done;
4664 			}
4665 
4666 			/*
4667 			 * The PSN to start with is the next PSN after the
4668 			 * RESYNC PSN.
4669 			 */
4670 			psn = mask_psn(psn + 1);
4671 			generation = psn >> HFI1_KDETH_BTH_SEQ_SHIFT;
4672 			spsn = 0;
4673 
4674 			/*
4675 			 * Update to the correct WQE when we get an ACK(RESYNC)
4676 			 * in the middle of a request.
4677 			 */
4678 			if (delta_psn(ack_psn, wqe->lpsn))
4679 				wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
4680 			req = wqe_to_tid_req(wqe);
4681 			flow = &req->flows[req->acked_tail];
4682 			/*
4683 			 * RESYNC re-numbers the PSN ranges of all remaining
4684 			 * segments. Also, PSN's start from 0 in the middle of a
4685 			 * segment and the first segment size is less than the
4686 			 * default number of packets. flow->resync_npkts is used
4687 			 * to track the number of packets from the start of the
4688 			 * real segment to the point of 0 PSN after the RESYNC
4689 			 * in order to later correctly rewind the SGE.
4690 			 */
4691 			fpsn = full_flow_psn(flow, flow->flow_state.spsn);
4692 			req->r_ack_psn = psn;
4693 			flow->resync_npkts +=
4694 				delta_psn(mask_psn(resync_psn + 1), fpsn);
4695 			/*
4696 			 * Renumber all packet sequence number ranges
4697 			 * based on the new generation.
4698 			 */
4699 			last_acked = qp->s_acked;
4700 			rptr = req;
4701 			while (1) {
4702 				/* start from last acked segment */
4703 				for (fidx = rptr->acked_tail;
4704 				     CIRC_CNT(rptr->setup_head, fidx,
4705 					      MAX_FLOWS);
4706 				     fidx = CIRC_NEXT(fidx, MAX_FLOWS)) {
4707 					u32 lpsn;
4708 					u32 gen;
4709 
4710 					flow = &rptr->flows[fidx];
4711 					gen = flow->flow_state.generation;
4712 					if (WARN_ON(gen == generation &&
4713 						    flow->flow_state.spsn !=
4714 						     spsn))
4715 						continue;
4716 					lpsn = flow->flow_state.lpsn;
4717 					lpsn = full_flow_psn(flow, lpsn);
4718 					flow->npkts =
4719 						delta_psn(lpsn,
4720 							  mask_psn(resync_psn)
4721 							  );
4722 					flow->flow_state.generation =
4723 						generation;
4724 					flow->flow_state.spsn = spsn;
4725 					flow->flow_state.lpsn =
4726 						flow->flow_state.spsn +
4727 						flow->npkts - 1;
4728 					flow->pkt = 0;
4729 					spsn += flow->npkts;
4730 					resync_psn += flow->npkts;
4731 					trace_hfi1_tid_flow_rcv_tid_ack(qp,
4732 									fidx,
4733 									flow);
4734 				}
4735 				if (++last_acked == qpriv->s_tid_cur + 1)
4736 					break;
4737 				if (last_acked == qp->s_size)
4738 					last_acked = 0;
4739 				wqe = rvt_get_swqe_ptr(qp, last_acked);
4740 				rptr = wqe_to_tid_req(wqe);
4741 			}
4742 			req->cur_seg = req->ack_seg;
4743 			qpriv->s_tid_tail = qp->s_acked;
4744 			qpriv->s_state = TID_OP(WRITE_REQ);
4745 			hfi1_schedule_tid_send(qp);
4746 		}
4747 done:
4748 		qpriv->s_retry = qp->s_retry_cnt;
4749 		break;
4750 
4751 	case 3:         /* NAK */
4752 		hfi1_stop_tid_retry_timer(qp);
4753 		switch ((aeth >> IB_AETH_CREDIT_SHIFT) &
4754 			IB_AETH_CREDIT_MASK) {
4755 		case 0: /* PSN sequence error */
4756 			flow = &req->flows[req->acked_tail];
4757 			fspsn = full_flow_psn(flow, flow->flow_state.spsn);
4758 			trace_hfi1_tid_flow_rcv_tid_ack(qp, req->acked_tail,
4759 							flow);
4760 			req->r_ack_psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4761 			req->cur_seg = req->ack_seg;
4762 			qpriv->s_tid_tail = qp->s_acked;
4763 			qpriv->s_state = TID_OP(WRITE_REQ);
4764 			qpriv->s_retry = qp->s_retry_cnt;
4765 			hfi1_schedule_tid_send(qp);
4766 			break;
4767 
4768 		default:
4769 			break;
4770 		}
4771 		break;
4772 
4773 	default:
4774 		break;
4775 	}
4776 
4777 ack_op_err:
4778 	spin_unlock_irqrestore(&qp->s_lock, flags);
4779 }
4780 
4781 void hfi1_add_tid_retry_timer(struct rvt_qp *qp)
4782 {
4783 	struct hfi1_qp_priv *priv = qp->priv;
4784 	struct ib_qp *ibqp = &qp->ibqp;
4785 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
4786 
4787 	lockdep_assert_held(&qp->s_lock);
4788 	if (!(priv->s_flags & HFI1_S_TID_RETRY_TIMER)) {
4789 		priv->s_flags |= HFI1_S_TID_RETRY_TIMER;
4790 		priv->s_tid_retry_timer.expires = jiffies +
4791 			priv->tid_retry_timeout_jiffies + rdi->busy_jiffies;
4792 		add_timer(&priv->s_tid_retry_timer);
4793 	}
4794 }
4795 
4796 static void hfi1_mod_tid_retry_timer(struct rvt_qp *qp)
4797 {
4798 	struct hfi1_qp_priv *priv = qp->priv;
4799 	struct ib_qp *ibqp = &qp->ibqp;
4800 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
4801 
4802 	lockdep_assert_held(&qp->s_lock);
4803 	priv->s_flags |= HFI1_S_TID_RETRY_TIMER;
4804 	mod_timer(&priv->s_tid_retry_timer, jiffies +
4805 		  priv->tid_retry_timeout_jiffies + rdi->busy_jiffies);
4806 }
4807 
4808 static int hfi1_stop_tid_retry_timer(struct rvt_qp *qp)
4809 {
4810 	struct hfi1_qp_priv *priv = qp->priv;
4811 	int rval = 0;
4812 
4813 	lockdep_assert_held(&qp->s_lock);
4814 	if (priv->s_flags & HFI1_S_TID_RETRY_TIMER) {
4815 		rval = del_timer(&priv->s_tid_retry_timer);
4816 		priv->s_flags &= ~HFI1_S_TID_RETRY_TIMER;
4817 	}
4818 	return rval;
4819 }
4820 
4821 void hfi1_del_tid_retry_timer(struct rvt_qp *qp)
4822 {
4823 	struct hfi1_qp_priv *priv = qp->priv;
4824 
4825 	del_timer_sync(&priv->s_tid_retry_timer);
4826 	priv->s_flags &= ~HFI1_S_TID_RETRY_TIMER;
4827 }
4828 
4829 static void hfi1_tid_retry_timeout(struct timer_list *t)
4830 {
4831 	struct hfi1_qp_priv *priv = from_timer(priv, t, s_tid_retry_timer);
4832 	struct rvt_qp *qp = priv->owner;
4833 	struct rvt_swqe *wqe;
4834 	unsigned long flags;
4835 	struct tid_rdma_request *req;
4836 
4837 	spin_lock_irqsave(&qp->r_lock, flags);
4838 	spin_lock(&qp->s_lock);
4839 	trace_hfi1_tid_write_sender_retry_timeout(qp, 0);
4840 	if (priv->s_flags & HFI1_S_TID_RETRY_TIMER) {
4841 		hfi1_stop_tid_retry_timer(qp);
4842 		if (!priv->s_retry) {
4843 			trace_hfi1_msg_tid_retry_timeout(/* msg */
4844 				qp,
4845 				"Exhausted retries. Tid retry timeout = ",
4846 				(u64)priv->tid_retry_timeout_jiffies);
4847 
4848 			wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
4849 			hfi1_trdma_send_complete(qp, wqe, IB_WC_RETRY_EXC_ERR);
4850 			rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
4851 		} else {
4852 			wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
4853 			req = wqe_to_tid_req(wqe);
4854 			trace_hfi1_tid_req_tid_retry_timeout(/* req */
4855 			   qp, 0, wqe->wr.opcode, wqe->psn, wqe->lpsn, req);
4856 
4857 			priv->s_flags &= ~RVT_S_WAIT_ACK;
4858 			/* Only send one packet (the RESYNC) */
4859 			priv->s_flags |= RVT_S_SEND_ONE;
4860 			/*
4861 			 * No additional request shall be made by this QP until
4862 			 * the RESYNC has been complete.
4863 			 */
4864 			qp->s_flags |= HFI1_S_WAIT_HALT;
4865 			priv->s_state = TID_OP(RESYNC);
4866 			priv->s_retry--;
4867 			hfi1_schedule_tid_send(qp);
4868 		}
4869 	}
4870 	spin_unlock(&qp->s_lock);
4871 	spin_unlock_irqrestore(&qp->r_lock, flags);
4872 }
4873 
4874 u32 hfi1_build_tid_rdma_resync(struct rvt_qp *qp, struct rvt_swqe *wqe,
4875 			       struct ib_other_headers *ohdr, u32 *bth1,
4876 			       u32 *bth2, u16 fidx)
4877 {
4878 	struct hfi1_qp_priv *qpriv = qp->priv;
4879 	struct tid_rdma_params *remote;
4880 	struct tid_rdma_request *req = wqe_to_tid_req(wqe);
4881 	struct tid_rdma_flow *flow = &req->flows[fidx];
4882 	u32 generation;
4883 
4884 	rcu_read_lock();
4885 	remote = rcu_dereference(qpriv->tid_rdma.remote);
4886 	KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth1, JKEY, remote->jkey);
4887 	ohdr->u.tid_rdma.ack.verbs_qp = cpu_to_be32(qp->remote_qpn);
4888 	*bth1 = remote->qp;
4889 	rcu_read_unlock();
4890 
4891 	generation = kern_flow_generation_next(flow->flow_state.generation);
4892 	*bth2 = mask_psn((generation << HFI1_KDETH_BTH_SEQ_SHIFT) - 1);
4893 	qpriv->s_resync_psn = *bth2;
4894 	*bth2 |= IB_BTH_REQ_ACK;
4895 	KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth0, KVER, 0x1);
4896 
4897 	return sizeof(ohdr->u.tid_rdma.resync) / sizeof(u32);
4898 }
4899 
4900 void hfi1_rc_rcv_tid_rdma_resync(struct hfi1_packet *packet)
4901 {
4902 	struct ib_other_headers *ohdr = packet->ohdr;
4903 	struct rvt_qp *qp = packet->qp;
4904 	struct hfi1_qp_priv *qpriv = qp->priv;
4905 	struct hfi1_ctxtdata *rcd = qpriv->rcd;
4906 	struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
4907 	struct rvt_ack_entry *e;
4908 	struct tid_rdma_request *req;
4909 	struct tid_rdma_flow *flow;
4910 	struct tid_flow_state *fs = &qpriv->flow_state;
4911 	u32 psn, generation, idx, gen_next;
4912 	bool fecn;
4913 	unsigned long flags;
4914 
4915 	fecn = process_ecn(qp, packet);
4916 	psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4917 
4918 	generation = mask_psn(psn + 1) >> HFI1_KDETH_BTH_SEQ_SHIFT;
4919 	spin_lock_irqsave(&qp->s_lock, flags);
4920 
4921 	gen_next = (fs->generation == KERN_GENERATION_RESERVED) ?
4922 		generation : kern_flow_generation_next(fs->generation);
4923 	/*
4924 	 * RESYNC packet contains the "next" generation and can only be
4925 	 * from the current or previous generations
4926 	 */
4927 	if (generation != mask_generation(gen_next - 1) &&
4928 	    generation != gen_next)
4929 		goto bail;
4930 	/* Already processing a resync */
4931 	if (qpriv->resync)
4932 		goto bail;
4933 
4934 	spin_lock(&rcd->exp_lock);
4935 	if (fs->index >= RXE_NUM_TID_FLOWS) {
4936 		/*
4937 		 * If we don't have a flow, save the generation so it can be
4938 		 * applied when a new flow is allocated
4939 		 */
4940 		fs->generation = generation;
4941 	} else {
4942 		/* Reprogram the QP flow with new generation */
4943 		rcd->flows[fs->index].generation = generation;
4944 		fs->generation = kern_setup_hw_flow(rcd, fs->index);
4945 	}
4946 	fs->psn = 0;
4947 	/*
4948 	 * Disable SW PSN checking since a RESYNC is equivalent to a
4949 	 * sync point and the flow has/will be reprogrammed
4950 	 */
4951 	qpriv->s_flags &= ~HFI1_R_TID_SW_PSN;
4952 	trace_hfi1_tid_write_rsp_rcv_resync(qp);
4953 
4954 	/*
4955 	 * Reset all TID flow information with the new generation.
4956 	 * This is done for all requests and segments after the
4957 	 * last received segment
4958 	 */
4959 	for (idx = qpriv->r_tid_tail; ; idx++) {
4960 		u16 flow_idx;
4961 
4962 		if (idx > rvt_size_atomic(&dev->rdi))
4963 			idx = 0;
4964 		e = &qp->s_ack_queue[idx];
4965 		if (e->opcode == TID_OP(WRITE_REQ)) {
4966 			req = ack_to_tid_req(e);
4967 			trace_hfi1_tid_req_rcv_resync(qp, 0, e->opcode, e->psn,
4968 						      e->lpsn, req);
4969 
4970 			/* start from last unacked segment */
4971 			for (flow_idx = req->clear_tail;
4972 			     CIRC_CNT(req->setup_head, flow_idx,
4973 				      MAX_FLOWS);
4974 			     flow_idx = CIRC_NEXT(flow_idx, MAX_FLOWS)) {
4975 				u32 lpsn;
4976 				u32 next;
4977 
4978 				flow = &req->flows[flow_idx];
4979 				lpsn = full_flow_psn(flow,
4980 						     flow->flow_state.lpsn);
4981 				next = flow->flow_state.r_next_psn;
4982 				flow->npkts = delta_psn(lpsn, next - 1);
4983 				flow->flow_state.generation = fs->generation;
4984 				flow->flow_state.spsn = fs->psn;
4985 				flow->flow_state.lpsn =
4986 					flow->flow_state.spsn + flow->npkts - 1;
4987 				flow->flow_state.r_next_psn =
4988 					full_flow_psn(flow,
4989 						      flow->flow_state.spsn);
4990 				fs->psn += flow->npkts;
4991 				trace_hfi1_tid_flow_rcv_resync(qp, flow_idx,
4992 							       flow);
4993 			}
4994 		}
4995 		if (idx == qp->s_tail_ack_queue)
4996 			break;
4997 	}
4998 
4999 	spin_unlock(&rcd->exp_lock);
5000 	qpriv->resync = true;
5001 	/* RESYNC request always gets a TID RDMA ACK. */
5002 	qpriv->s_nak_state = 0;
5003 	qpriv->s_flags |= RVT_S_ACK_PENDING;
5004 	hfi1_schedule_tid_send(qp);
5005 bail:
5006 	if (fecn)
5007 		qp->s_flags |= RVT_S_ECN;
5008 	spin_unlock_irqrestore(&qp->s_lock, flags);
5009 }
5010 
5011 /*
5012  * Call this function when the last TID RDMA WRITE DATA packet for a request
5013  * is built.
5014  */
5015 static void update_tid_tail(struct rvt_qp *qp)
5016 	__must_hold(&qp->s_lock)
5017 {
5018 	struct hfi1_qp_priv *priv = qp->priv;
5019 	u32 i;
5020 	struct rvt_swqe *wqe;
5021 
5022 	lockdep_assert_held(&qp->s_lock);
5023 	/* Can't move beyond s_tid_cur */
5024 	if (priv->s_tid_tail == priv->s_tid_cur)
5025 		return;
5026 	for (i = priv->s_tid_tail + 1; ; i++) {
5027 		if (i == qp->s_size)
5028 			i = 0;
5029 
5030 		if (i == priv->s_tid_cur)
5031 			break;
5032 		wqe = rvt_get_swqe_ptr(qp, i);
5033 		if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE)
5034 			break;
5035 	}
5036 	priv->s_tid_tail = i;
5037 	priv->s_state = TID_OP(WRITE_RESP);
5038 }
5039 
5040 int hfi1_make_tid_rdma_pkt(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
5041 	__must_hold(&qp->s_lock)
5042 {
5043 	struct hfi1_qp_priv *priv = qp->priv;
5044 	struct rvt_swqe *wqe;
5045 	u32 bth1 = 0, bth2 = 0, hwords = 5, len, middle = 0;
5046 	struct ib_other_headers *ohdr;
5047 	struct rvt_sge_state *ss = &qp->s_sge;
5048 	struct rvt_ack_entry *e = &qp->s_ack_queue[qp->s_tail_ack_queue];
5049 	struct tid_rdma_request *req = ack_to_tid_req(e);
5050 	bool last = false;
5051 	u8 opcode = TID_OP(WRITE_DATA);
5052 
5053 	lockdep_assert_held(&qp->s_lock);
5054 	trace_hfi1_tid_write_sender_make_tid_pkt(qp, 0);
5055 	/*
5056 	 * Prioritize the sending of the requests and responses over the
5057 	 * sending of the TID RDMA data packets.
5058 	 */
5059 	if (((atomic_read(&priv->n_tid_requests) < HFI1_TID_RDMA_WRITE_CNT) &&
5060 	     atomic_read(&priv->n_requests) &&
5061 	     !(qp->s_flags & (RVT_S_BUSY | RVT_S_WAIT_ACK |
5062 			     HFI1_S_ANY_WAIT_IO))) ||
5063 	    (e->opcode == TID_OP(WRITE_REQ) && req->cur_seg < req->alloc_seg &&
5064 	     !(qp->s_flags & (RVT_S_BUSY | HFI1_S_ANY_WAIT_IO)))) {
5065 		struct iowait_work *iowork;
5066 
5067 		iowork = iowait_get_ib_work(&priv->s_iowait);
5068 		ps->s_txreq = get_waiting_verbs_txreq(iowork);
5069 		if (ps->s_txreq || hfi1_make_rc_req(qp, ps)) {
5070 			priv->s_flags |= HFI1_S_TID_BUSY_SET;
5071 			return 1;
5072 		}
5073 	}
5074 
5075 	ps->s_txreq = get_txreq(ps->dev, qp);
5076 	if (!ps->s_txreq)
5077 		goto bail_no_tx;
5078 
5079 	ohdr = &ps->s_txreq->phdr.hdr.ibh.u.oth;
5080 
5081 	if ((priv->s_flags & RVT_S_ACK_PENDING) &&
5082 	    make_tid_rdma_ack(qp, ohdr, ps))
5083 		return 1;
5084 
5085 	/*
5086 	 * Bail out if we can't send data.
5087 	 * Be reminded that this check must been done after the call to
5088 	 * make_tid_rdma_ack() because the responding QP could be in
5089 	 * RTR state where it can send TID RDMA ACK, not TID RDMA WRITE DATA.
5090 	 */
5091 	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_SEND_OK))
5092 		goto bail;
5093 
5094 	if (priv->s_flags & RVT_S_WAIT_ACK)
5095 		goto bail;
5096 
5097 	/* Check whether there is anything to do. */
5098 	if (priv->s_tid_tail == HFI1_QP_WQE_INVALID)
5099 		goto bail;
5100 	wqe = rvt_get_swqe_ptr(qp, priv->s_tid_tail);
5101 	req = wqe_to_tid_req(wqe);
5102 	trace_hfi1_tid_req_make_tid_pkt(qp, 0, wqe->wr.opcode, wqe->psn,
5103 					wqe->lpsn, req);
5104 	switch (priv->s_state) {
5105 	case TID_OP(WRITE_REQ):
5106 	case TID_OP(WRITE_RESP):
5107 		priv->tid_ss.sge = wqe->sg_list[0];
5108 		priv->tid_ss.sg_list = wqe->sg_list + 1;
5109 		priv->tid_ss.num_sge = wqe->wr.num_sge;
5110 		priv->tid_ss.total_len = wqe->length;
5111 
5112 		if (priv->s_state == TID_OP(WRITE_REQ))
5113 			hfi1_tid_rdma_restart_req(qp, wqe, &bth2);
5114 		priv->s_state = TID_OP(WRITE_DATA);
5115 		/* fall through */
5116 
5117 	case TID_OP(WRITE_DATA):
5118 		/*
5119 		 * 1. Check whether TID RDMA WRITE RESP available.
5120 		 * 2. If no:
5121 		 *    2.1 If have more segments and no TID RDMA WRITE RESP,
5122 		 *        set HFI1_S_WAIT_TID_RESP
5123 		 *    2.2 Return indicating no progress made.
5124 		 * 3. If yes:
5125 		 *    3.1 Build TID RDMA WRITE DATA packet.
5126 		 *    3.2 If last packet in segment:
5127 		 *        3.2.1 Change KDETH header bits
5128 		 *        3.2.2 Advance RESP pointers.
5129 		 *    3.3 Return indicating progress made.
5130 		 */
5131 		trace_hfi1_sender_make_tid_pkt(qp);
5132 		trace_hfi1_tid_write_sender_make_tid_pkt(qp, 0);
5133 		wqe = rvt_get_swqe_ptr(qp, priv->s_tid_tail);
5134 		req = wqe_to_tid_req(wqe);
5135 		len = wqe->length;
5136 
5137 		if (!req->comp_seg || req->cur_seg == req->comp_seg)
5138 			goto bail;
5139 
5140 		trace_hfi1_tid_req_make_tid_pkt(qp, 0, wqe->wr.opcode,
5141 						wqe->psn, wqe->lpsn, req);
5142 		last = hfi1_build_tid_rdma_packet(wqe, ohdr, &bth1, &bth2,
5143 						  &len);
5144 
5145 		if (last) {
5146 			/* move pointer to next flow */
5147 			req->clear_tail = CIRC_NEXT(req->clear_tail,
5148 						    MAX_FLOWS);
5149 			if (++req->cur_seg < req->total_segs) {
5150 				if (!CIRC_CNT(req->setup_head, req->clear_tail,
5151 					      MAX_FLOWS))
5152 					qp->s_flags |= HFI1_S_WAIT_TID_RESP;
5153 			} else {
5154 				priv->s_state = TID_OP(WRITE_DATA_LAST);
5155 				opcode = TID_OP(WRITE_DATA_LAST);
5156 
5157 				/* Advance the s_tid_tail now */
5158 				update_tid_tail(qp);
5159 			}
5160 		}
5161 		hwords += sizeof(ohdr->u.tid_rdma.w_data) / sizeof(u32);
5162 		ss = &priv->tid_ss;
5163 		break;
5164 
5165 	case TID_OP(RESYNC):
5166 		trace_hfi1_sender_make_tid_pkt(qp);
5167 		/* Use generation from the most recently received response */
5168 		wqe = rvt_get_swqe_ptr(qp, priv->s_tid_cur);
5169 		req = wqe_to_tid_req(wqe);
5170 		/* If no responses for this WQE look at the previous one */
5171 		if (!req->comp_seg) {
5172 			wqe = rvt_get_swqe_ptr(qp,
5173 					       (!priv->s_tid_cur ? qp->s_size :
5174 						priv->s_tid_cur) - 1);
5175 			req = wqe_to_tid_req(wqe);
5176 		}
5177 		hwords += hfi1_build_tid_rdma_resync(qp, wqe, ohdr, &bth1,
5178 						     &bth2,
5179 						     CIRC_PREV(req->setup_head,
5180 							       MAX_FLOWS));
5181 		ss = NULL;
5182 		len = 0;
5183 		opcode = TID_OP(RESYNC);
5184 		break;
5185 
5186 	default:
5187 		goto bail;
5188 	}
5189 	if (priv->s_flags & RVT_S_SEND_ONE) {
5190 		priv->s_flags &= ~RVT_S_SEND_ONE;
5191 		priv->s_flags |= RVT_S_WAIT_ACK;
5192 		bth2 |= IB_BTH_REQ_ACK;
5193 	}
5194 	qp->s_len -= len;
5195 	ps->s_txreq->hdr_dwords = hwords;
5196 	ps->s_txreq->sde = priv->s_sde;
5197 	ps->s_txreq->ss = ss;
5198 	ps->s_txreq->s_cur_size = len;
5199 	hfi1_make_ruc_header(qp, ohdr, (opcode << 24), bth1, bth2,
5200 			     middle, ps);
5201 	return 1;
5202 bail:
5203 	hfi1_put_txreq(ps->s_txreq);
5204 bail_no_tx:
5205 	ps->s_txreq = NULL;
5206 	priv->s_flags &= ~RVT_S_BUSY;
5207 	/*
5208 	 * If we didn't get a txreq, the QP will be woken up later to try
5209 	 * again, set the flags to the the wake up which work item to wake
5210 	 * up.
5211 	 * (A better algorithm should be found to do this and generalize the
5212 	 * sleep/wakeup flags.)
5213 	 */
5214 	iowait_set_flag(&priv->s_iowait, IOWAIT_PENDING_TID);
5215 	return 0;
5216 }
5217 
5218 static int make_tid_rdma_ack(struct rvt_qp *qp,
5219 			     struct ib_other_headers *ohdr,
5220 			     struct hfi1_pkt_state *ps)
5221 {
5222 	struct rvt_ack_entry *e;
5223 	struct hfi1_qp_priv *qpriv = qp->priv;
5224 	struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
5225 	u32 hwords, next;
5226 	u32 len = 0;
5227 	u32 bth1 = 0, bth2 = 0;
5228 	int middle = 0;
5229 	u16 flow;
5230 	struct tid_rdma_request *req, *nreq;
5231 
5232 	trace_hfi1_tid_write_rsp_make_tid_ack(qp);
5233 	/* Don't send an ACK if we aren't supposed to. */
5234 	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK))
5235 		goto bail;
5236 
5237 	/* header size in 32-bit words LRH+BTH = (8+12)/4. */
5238 	hwords = 5;
5239 
5240 	e = &qp->s_ack_queue[qpriv->r_tid_ack];
5241 	req = ack_to_tid_req(e);
5242 	/*
5243 	 * In the RESYNC case, we are exactly one segment past the
5244 	 * previously sent ack or at the previously sent NAK. So to send
5245 	 * the resync ack, we go back one segment (which might be part of
5246 	 * the previous request) and let the do-while loop execute again.
5247 	 * The advantage of executing the do-while loop is that any data
5248 	 * received after the previous ack is automatically acked in the
5249 	 * RESYNC ack. It turns out that for the do-while loop we only need
5250 	 * to pull back qpriv->r_tid_ack, not the segment
5251 	 * indices/counters. The scheme works even if the previous request
5252 	 * was not a TID WRITE request.
5253 	 */
5254 	if (qpriv->resync) {
5255 		if (!req->ack_seg || req->ack_seg == req->total_segs)
5256 			qpriv->r_tid_ack = !qpriv->r_tid_ack ?
5257 				rvt_size_atomic(&dev->rdi) :
5258 				qpriv->r_tid_ack - 1;
5259 		e = &qp->s_ack_queue[qpriv->r_tid_ack];
5260 		req = ack_to_tid_req(e);
5261 	}
5262 
5263 	trace_hfi1_rsp_make_tid_ack(qp, e->psn);
5264 	trace_hfi1_tid_req_make_tid_ack(qp, 0, e->opcode, e->psn, e->lpsn,
5265 					req);
5266 	/*
5267 	 * If we've sent all the ACKs that we can, we are done
5268 	 * until we get more segments...
5269 	 */
5270 	if (!qpriv->s_nak_state && !qpriv->resync &&
5271 	    req->ack_seg == req->comp_seg)
5272 		goto bail;
5273 
5274 	do {
5275 		/*
5276 		 * To deal with coalesced ACKs, the acked_tail pointer
5277 		 * into the flow array is used. The distance between it
5278 		 * and the clear_tail is the number of flows that are
5279 		 * being ACK'ed.
5280 		 */
5281 		req->ack_seg +=
5282 			/* Get up-to-date value */
5283 			CIRC_CNT(req->clear_tail, req->acked_tail,
5284 				 MAX_FLOWS);
5285 		/* Advance acked index */
5286 		req->acked_tail = req->clear_tail;
5287 
5288 		/*
5289 		 * req->clear_tail points to the segment currently being
5290 		 * received. So, when sending an ACK, the previous
5291 		 * segment is being ACK'ed.
5292 		 */
5293 		flow = CIRC_PREV(req->acked_tail, MAX_FLOWS);
5294 		if (req->ack_seg != req->total_segs)
5295 			break;
5296 		req->state = TID_REQUEST_COMPLETE;
5297 
5298 		next = qpriv->r_tid_ack + 1;
5299 		if (next > rvt_size_atomic(&dev->rdi))
5300 			next = 0;
5301 		qpriv->r_tid_ack = next;
5302 		if (qp->s_ack_queue[next].opcode != TID_OP(WRITE_REQ))
5303 			break;
5304 		nreq = ack_to_tid_req(&qp->s_ack_queue[next]);
5305 		if (!nreq->comp_seg || nreq->ack_seg == nreq->comp_seg)
5306 			break;
5307 
5308 		/* Move to the next ack entry now */
5309 		e = &qp->s_ack_queue[qpriv->r_tid_ack];
5310 		req = ack_to_tid_req(e);
5311 	} while (1);
5312 
5313 	/*
5314 	 * At this point qpriv->r_tid_ack == qpriv->r_tid_tail but e and
5315 	 * req could be pointing at the previous ack queue entry
5316 	 */
5317 	if (qpriv->s_nak_state ||
5318 	    (qpriv->resync &&
5319 	     !hfi1_tid_rdma_is_resync_psn(qpriv->r_next_psn_kdeth - 1) &&
5320 	     (cmp_psn(qpriv->r_next_psn_kdeth - 1,
5321 		      full_flow_psn(&req->flows[flow],
5322 				    req->flows[flow].flow_state.lpsn)) > 0))) {
5323 		/*
5324 		 * A NAK will implicitly acknowledge all previous TID RDMA
5325 		 * requests. Therefore, we NAK with the req->acked_tail
5326 		 * segment for the request at qpriv->r_tid_ack (same at
5327 		 * this point as the req->clear_tail segment for the
5328 		 * qpriv->r_tid_tail request)
5329 		 */
5330 		e = &qp->s_ack_queue[qpriv->r_tid_ack];
5331 		req = ack_to_tid_req(e);
5332 		flow = req->acked_tail;
5333 	} else if (req->ack_seg == req->total_segs &&
5334 		   qpriv->s_flags & HFI1_R_TID_WAIT_INTERLCK)
5335 		qpriv->s_flags &= ~HFI1_R_TID_WAIT_INTERLCK;
5336 
5337 	trace_hfi1_tid_write_rsp_make_tid_ack(qp);
5338 	trace_hfi1_tid_req_make_tid_ack(qp, 0, e->opcode, e->psn, e->lpsn,
5339 					req);
5340 	hwords += hfi1_build_tid_rdma_write_ack(qp, e, ohdr, flow, &bth1,
5341 						&bth2);
5342 	len = 0;
5343 	qpriv->s_flags &= ~RVT_S_ACK_PENDING;
5344 	ps->s_txreq->hdr_dwords = hwords;
5345 	ps->s_txreq->sde = qpriv->s_sde;
5346 	ps->s_txreq->s_cur_size = len;
5347 	ps->s_txreq->ss = NULL;
5348 	hfi1_make_ruc_header(qp, ohdr, (TID_OP(ACK) << 24), bth1, bth2, middle,
5349 			     ps);
5350 	ps->s_txreq->txreq.flags |= SDMA_TXREQ_F_VIP;
5351 	return 1;
5352 bail:
5353 	/*
5354 	 * Ensure s_rdma_ack_cnt changes are committed prior to resetting
5355 	 * RVT_S_RESP_PENDING
5356 	 */
5357 	smp_wmb();
5358 	qpriv->s_flags &= ~RVT_S_ACK_PENDING;
5359 	return 0;
5360 }
5361 
5362 static int hfi1_send_tid_ok(struct rvt_qp *qp)
5363 {
5364 	struct hfi1_qp_priv *priv = qp->priv;
5365 
5366 	return !(priv->s_flags & RVT_S_BUSY ||
5367 		 qp->s_flags & HFI1_S_ANY_WAIT_IO) &&
5368 		(verbs_txreq_queued(iowait_get_tid_work(&priv->s_iowait)) ||
5369 		 (priv->s_flags & RVT_S_RESP_PENDING) ||
5370 		 !(qp->s_flags & HFI1_S_ANY_TID_WAIT_SEND));
5371 }
5372 
5373 void _hfi1_do_tid_send(struct work_struct *work)
5374 {
5375 	struct iowait_work *w = container_of(work, struct iowait_work, iowork);
5376 	struct rvt_qp *qp = iowait_to_qp(w->iow);
5377 
5378 	hfi1_do_tid_send(qp);
5379 }
5380 
5381 static void hfi1_do_tid_send(struct rvt_qp *qp)
5382 {
5383 	struct hfi1_pkt_state ps;
5384 	struct hfi1_qp_priv *priv = qp->priv;
5385 
5386 	ps.dev = to_idev(qp->ibqp.device);
5387 	ps.ibp = to_iport(qp->ibqp.device, qp->port_num);
5388 	ps.ppd = ppd_from_ibp(ps.ibp);
5389 	ps.wait = iowait_get_tid_work(&priv->s_iowait);
5390 	ps.in_thread = false;
5391 	ps.timeout_int = qp->timeout_jiffies / 8;
5392 
5393 	trace_hfi1_rc_do_tid_send(qp, false);
5394 	spin_lock_irqsave(&qp->s_lock, ps.flags);
5395 
5396 	/* Return if we are already busy processing a work request. */
5397 	if (!hfi1_send_tid_ok(qp)) {
5398 		if (qp->s_flags & HFI1_S_ANY_WAIT_IO)
5399 			iowait_set_flag(&priv->s_iowait, IOWAIT_PENDING_TID);
5400 		spin_unlock_irqrestore(&qp->s_lock, ps.flags);
5401 		return;
5402 	}
5403 
5404 	priv->s_flags |= RVT_S_BUSY;
5405 
5406 	ps.timeout = jiffies + ps.timeout_int;
5407 	ps.cpu = priv->s_sde ? priv->s_sde->cpu :
5408 		cpumask_first(cpumask_of_node(ps.ppd->dd->node));
5409 	ps.pkts_sent = false;
5410 
5411 	/* insure a pre-built packet is handled  */
5412 	ps.s_txreq = get_waiting_verbs_txreq(ps.wait);
5413 	do {
5414 		/* Check for a constructed packet to be sent. */
5415 		if (ps.s_txreq) {
5416 			if (priv->s_flags & HFI1_S_TID_BUSY_SET) {
5417 				qp->s_flags |= RVT_S_BUSY;
5418 				ps.wait = iowait_get_ib_work(&priv->s_iowait);
5419 			}
5420 			spin_unlock_irqrestore(&qp->s_lock, ps.flags);
5421 
5422 			/*
5423 			 * If the packet cannot be sent now, return and
5424 			 * the send tasklet will be woken up later.
5425 			 */
5426 			if (hfi1_verbs_send(qp, &ps))
5427 				return;
5428 
5429 			/* allow other tasks to run */
5430 			if (hfi1_schedule_send_yield(qp, &ps, true))
5431 				return;
5432 
5433 			spin_lock_irqsave(&qp->s_lock, ps.flags);
5434 			if (priv->s_flags & HFI1_S_TID_BUSY_SET) {
5435 				qp->s_flags &= ~RVT_S_BUSY;
5436 				priv->s_flags &= ~HFI1_S_TID_BUSY_SET;
5437 				ps.wait = iowait_get_tid_work(&priv->s_iowait);
5438 				if (iowait_flag_set(&priv->s_iowait,
5439 						    IOWAIT_PENDING_IB))
5440 					hfi1_schedule_send(qp);
5441 			}
5442 		}
5443 	} while (hfi1_make_tid_rdma_pkt(qp, &ps));
5444 	iowait_starve_clear(ps.pkts_sent, &priv->s_iowait);
5445 	spin_unlock_irqrestore(&qp->s_lock, ps.flags);
5446 }
5447 
5448 static bool _hfi1_schedule_tid_send(struct rvt_qp *qp)
5449 {
5450 	struct hfi1_qp_priv *priv = qp->priv;
5451 	struct hfi1_ibport *ibp =
5452 		to_iport(qp->ibqp.device, qp->port_num);
5453 	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
5454 	struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
5455 
5456 	return iowait_tid_schedule(&priv->s_iowait, ppd->hfi1_wq,
5457 				   priv->s_sde ?
5458 				   priv->s_sde->cpu :
5459 				   cpumask_first(cpumask_of_node(dd->node)));
5460 }
5461 
5462 /**
5463  * hfi1_schedule_tid_send - schedule progress on TID RDMA state machine
5464  * @qp: the QP
5465  *
5466  * This schedules qp progress on the TID RDMA state machine. Caller
5467  * should hold the s_lock.
5468  * Unlike hfi1_schedule_send(), this cannot use hfi1_send_ok() because
5469  * the two state machines can step on each other with respect to the
5470  * RVT_S_BUSY flag.
5471  * Therefore, a modified test is used.
5472  * @return true if the second leg is scheduled;
5473  *  false if the second leg is not scheduled.
5474  */
5475 bool hfi1_schedule_tid_send(struct rvt_qp *qp)
5476 {
5477 	lockdep_assert_held(&qp->s_lock);
5478 	if (hfi1_send_tid_ok(qp)) {
5479 		/*
5480 		 * The following call returns true if the qp is not on the
5481 		 * queue and false if the qp is already on the queue before
5482 		 * this call. Either way, the qp will be on the queue when the
5483 		 * call returns.
5484 		 */
5485 		_hfi1_schedule_tid_send(qp);
5486 		return true;
5487 	}
5488 	if (qp->s_flags & HFI1_S_ANY_WAIT_IO)
5489 		iowait_set_flag(&((struct hfi1_qp_priv *)qp->priv)->s_iowait,
5490 				IOWAIT_PENDING_TID);
5491 	return false;
5492 }
5493 
5494 bool hfi1_tid_rdma_ack_interlock(struct rvt_qp *qp, struct rvt_ack_entry *e)
5495 {
5496 	struct rvt_ack_entry *prev;
5497 	struct tid_rdma_request *req;
5498 	struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
5499 	struct hfi1_qp_priv *priv = qp->priv;
5500 	u32 s_prev;
5501 
5502 	s_prev = qp->s_tail_ack_queue == 0 ? rvt_size_atomic(&dev->rdi) :
5503 		(qp->s_tail_ack_queue - 1);
5504 	prev = &qp->s_ack_queue[s_prev];
5505 
5506 	if ((e->opcode == TID_OP(READ_REQ) ||
5507 	     e->opcode == OP(RDMA_READ_REQUEST)) &&
5508 	    prev->opcode == TID_OP(WRITE_REQ)) {
5509 		req = ack_to_tid_req(prev);
5510 		if (req->ack_seg != req->total_segs) {
5511 			priv->s_flags |= HFI1_R_TID_WAIT_INTERLCK;
5512 			return true;
5513 		}
5514 	}
5515 	return false;
5516 }
5517 
5518 static u32 read_r_next_psn(struct hfi1_devdata *dd, u8 ctxt, u8 fidx)
5519 {
5520 	u64 reg;
5521 
5522 	/*
5523 	 * The only sane way to get the amount of
5524 	 * progress is to read the HW flow state.
5525 	 */
5526 	reg = read_uctxt_csr(dd, ctxt, RCV_TID_FLOW_TABLE + (8 * fidx));
5527 	return mask_psn(reg);
5528 }
5529 
5530 static void tid_rdma_rcv_err(struct hfi1_packet *packet,
5531 			     struct ib_other_headers *ohdr,
5532 			     struct rvt_qp *qp, u32 psn, int diff, bool fecn)
5533 {
5534 	unsigned long flags;
5535 
5536 	tid_rdma_rcv_error(packet, ohdr, qp, psn, diff);
5537 	if (fecn) {
5538 		spin_lock_irqsave(&qp->s_lock, flags);
5539 		qp->s_flags |= RVT_S_ECN;
5540 		spin_unlock_irqrestore(&qp->s_lock, flags);
5541 	}
5542 }
5543 
5544 static void update_r_next_psn_fecn(struct hfi1_packet *packet,
5545 				   struct hfi1_qp_priv *priv,
5546 				   struct hfi1_ctxtdata *rcd,
5547 				   struct tid_rdma_flow *flow,
5548 				   bool fecn)
5549 {
5550 	/*
5551 	 * If a start/middle packet is delivered here due to
5552 	 * RSM rule and FECN, we need to update the r_next_psn.
5553 	 */
5554 	if (fecn && packet->etype == RHF_RCV_TYPE_EAGER &&
5555 	    !(priv->s_flags & HFI1_R_TID_SW_PSN)) {
5556 		struct hfi1_devdata *dd = rcd->dd;
5557 
5558 		flow->flow_state.r_next_psn =
5559 			read_r_next_psn(dd, rcd->ctxt, flow->idx);
5560 	}
5561 }
5562