1 #ifndef _HFI1_SDMA_H 2 #define _HFI1_SDMA_H 3 /* 4 * Copyright(c) 2015 - 2018 Intel Corporation. 5 * 6 * This file is provided under a dual BSD/GPLv2 license. When using or 7 * redistributing this file, you may do so under either license. 8 * 9 * GPL LICENSE SUMMARY 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of version 2 of the GNU General Public License as 13 * published by the Free Software Foundation. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * BSD LICENSE 21 * 22 * Redistribution and use in source and binary forms, with or without 23 * modification, are permitted provided that the following conditions 24 * are met: 25 * 26 * - Redistributions of source code must retain the above copyright 27 * notice, this list of conditions and the following disclaimer. 28 * - Redistributions in binary form must reproduce the above copyright 29 * notice, this list of conditions and the following disclaimer in 30 * the documentation and/or other materials provided with the 31 * distribution. 32 * - Neither the name of Intel Corporation nor the names of its 33 * contributors may be used to endorse or promote products derived 34 * from this software without specific prior written permission. 35 * 36 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 37 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 38 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 39 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 40 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 42 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 43 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 44 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 45 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 46 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 47 * 48 */ 49 50 #include <linux/types.h> 51 #include <linux/list.h> 52 #include <asm/byteorder.h> 53 #include <linux/workqueue.h> 54 #include <linux/rculist.h> 55 56 #include "hfi.h" 57 #include "verbs.h" 58 #include "sdma_txreq.h" 59 60 /* Hardware limit */ 61 #define MAX_DESC 64 62 /* Hardware limit for SDMA packet size */ 63 #define MAX_SDMA_PKT_SIZE ((16 * 1024) - 1) 64 65 #define SDMA_MAP_NONE 0 66 #define SDMA_MAP_SINGLE 1 67 #define SDMA_MAP_PAGE 2 68 69 #define SDMA_AHG_VALUE_MASK 0xffff 70 #define SDMA_AHG_VALUE_SHIFT 0 71 #define SDMA_AHG_INDEX_MASK 0xf 72 #define SDMA_AHG_INDEX_SHIFT 16 73 #define SDMA_AHG_FIELD_LEN_MASK 0xf 74 #define SDMA_AHG_FIELD_LEN_SHIFT 20 75 #define SDMA_AHG_FIELD_START_MASK 0x1f 76 #define SDMA_AHG_FIELD_START_SHIFT 24 77 #define SDMA_AHG_UPDATE_ENABLE_MASK 0x1 78 #define SDMA_AHG_UPDATE_ENABLE_SHIFT 31 79 80 /* AHG modes */ 81 82 /* 83 * Be aware the ordering and values 84 * for SDMA_AHG_APPLY_UPDATE[123] 85 * are assumed in generating a skip 86 * count in submit_tx() in sdma.c 87 */ 88 #define SDMA_AHG_NO_AHG 0 89 #define SDMA_AHG_COPY 1 90 #define SDMA_AHG_APPLY_UPDATE1 2 91 #define SDMA_AHG_APPLY_UPDATE2 3 92 #define SDMA_AHG_APPLY_UPDATE3 4 93 94 /* 95 * Bits defined in the send DMA descriptor. 96 */ 97 #define SDMA_DESC0_FIRST_DESC_FLAG BIT_ULL(63) 98 #define SDMA_DESC0_LAST_DESC_FLAG BIT_ULL(62) 99 #define SDMA_DESC0_BYTE_COUNT_SHIFT 48 100 #define SDMA_DESC0_BYTE_COUNT_WIDTH 14 101 #define SDMA_DESC0_BYTE_COUNT_MASK \ 102 ((1ULL << SDMA_DESC0_BYTE_COUNT_WIDTH) - 1) 103 #define SDMA_DESC0_BYTE_COUNT_SMASK \ 104 (SDMA_DESC0_BYTE_COUNT_MASK << SDMA_DESC0_BYTE_COUNT_SHIFT) 105 #define SDMA_DESC0_PHY_ADDR_SHIFT 0 106 #define SDMA_DESC0_PHY_ADDR_WIDTH 48 107 #define SDMA_DESC0_PHY_ADDR_MASK \ 108 ((1ULL << SDMA_DESC0_PHY_ADDR_WIDTH) - 1) 109 #define SDMA_DESC0_PHY_ADDR_SMASK \ 110 (SDMA_DESC0_PHY_ADDR_MASK << SDMA_DESC0_PHY_ADDR_SHIFT) 111 112 #define SDMA_DESC1_HEADER_UPDATE1_SHIFT 32 113 #define SDMA_DESC1_HEADER_UPDATE1_WIDTH 32 114 #define SDMA_DESC1_HEADER_UPDATE1_MASK \ 115 ((1ULL << SDMA_DESC1_HEADER_UPDATE1_WIDTH) - 1) 116 #define SDMA_DESC1_HEADER_UPDATE1_SMASK \ 117 (SDMA_DESC1_HEADER_UPDATE1_MASK << SDMA_DESC1_HEADER_UPDATE1_SHIFT) 118 #define SDMA_DESC1_HEADER_MODE_SHIFT 13 119 #define SDMA_DESC1_HEADER_MODE_WIDTH 3 120 #define SDMA_DESC1_HEADER_MODE_MASK \ 121 ((1ULL << SDMA_DESC1_HEADER_MODE_WIDTH) - 1) 122 #define SDMA_DESC1_HEADER_MODE_SMASK \ 123 (SDMA_DESC1_HEADER_MODE_MASK << SDMA_DESC1_HEADER_MODE_SHIFT) 124 #define SDMA_DESC1_HEADER_INDEX_SHIFT 8 125 #define SDMA_DESC1_HEADER_INDEX_WIDTH 5 126 #define SDMA_DESC1_HEADER_INDEX_MASK \ 127 ((1ULL << SDMA_DESC1_HEADER_INDEX_WIDTH) - 1) 128 #define SDMA_DESC1_HEADER_INDEX_SMASK \ 129 (SDMA_DESC1_HEADER_INDEX_MASK << SDMA_DESC1_HEADER_INDEX_SHIFT) 130 #define SDMA_DESC1_HEADER_DWS_SHIFT 4 131 #define SDMA_DESC1_HEADER_DWS_WIDTH 4 132 #define SDMA_DESC1_HEADER_DWS_MASK \ 133 ((1ULL << SDMA_DESC1_HEADER_DWS_WIDTH) - 1) 134 #define SDMA_DESC1_HEADER_DWS_SMASK \ 135 (SDMA_DESC1_HEADER_DWS_MASK << SDMA_DESC1_HEADER_DWS_SHIFT) 136 #define SDMA_DESC1_GENERATION_SHIFT 2 137 #define SDMA_DESC1_GENERATION_WIDTH 2 138 #define SDMA_DESC1_GENERATION_MASK \ 139 ((1ULL << SDMA_DESC1_GENERATION_WIDTH) - 1) 140 #define SDMA_DESC1_GENERATION_SMASK \ 141 (SDMA_DESC1_GENERATION_MASK << SDMA_DESC1_GENERATION_SHIFT) 142 #define SDMA_DESC1_INT_REQ_FLAG BIT_ULL(1) 143 #define SDMA_DESC1_HEAD_TO_HOST_FLAG BIT_ULL(0) 144 145 enum sdma_states { 146 sdma_state_s00_hw_down, 147 sdma_state_s10_hw_start_up_halt_wait, 148 sdma_state_s15_hw_start_up_clean_wait, 149 sdma_state_s20_idle, 150 sdma_state_s30_sw_clean_up_wait, 151 sdma_state_s40_hw_clean_up_wait, 152 sdma_state_s50_hw_halt_wait, 153 sdma_state_s60_idle_halt_wait, 154 sdma_state_s80_hw_freeze, 155 sdma_state_s82_freeze_sw_clean, 156 sdma_state_s99_running, 157 }; 158 159 enum sdma_events { 160 sdma_event_e00_go_hw_down, 161 sdma_event_e10_go_hw_start, 162 sdma_event_e15_hw_halt_done, 163 sdma_event_e25_hw_clean_up_done, 164 sdma_event_e30_go_running, 165 sdma_event_e40_sw_cleaned, 166 sdma_event_e50_hw_cleaned, 167 sdma_event_e60_hw_halted, 168 sdma_event_e70_go_idle, 169 sdma_event_e80_hw_freeze, 170 sdma_event_e81_hw_frozen, 171 sdma_event_e82_hw_unfreeze, 172 sdma_event_e85_link_down, 173 sdma_event_e90_sw_halted, 174 }; 175 176 struct sdma_set_state_action { 177 unsigned op_enable:1; 178 unsigned op_intenable:1; 179 unsigned op_halt:1; 180 unsigned op_cleanup:1; 181 unsigned go_s99_running_tofalse:1; 182 unsigned go_s99_running_totrue:1; 183 }; 184 185 struct sdma_state { 186 struct kref kref; 187 struct completion comp; 188 enum sdma_states current_state; 189 unsigned current_op; 190 unsigned go_s99_running; 191 /* debugging/development */ 192 enum sdma_states previous_state; 193 unsigned previous_op; 194 enum sdma_events last_event; 195 }; 196 197 /** 198 * DOC: sdma exported routines 199 * 200 * These sdma routines fit into three categories: 201 * - The SDMA API for building and submitting packets 202 * to the ring 203 * 204 * - Initialization and tear down routines to buildup 205 * and tear down SDMA 206 * 207 * - ISR entrances to handle interrupts, state changes 208 * and errors 209 */ 210 211 /** 212 * DOC: sdma PSM/verbs API 213 * 214 * The sdma API is designed to be used by both PSM 215 * and verbs to supply packets to the SDMA ring. 216 * 217 * The usage of the API is as follows: 218 * 219 * Embed a struct iowait in the QP or 220 * PQ. The iowait should be initialized with a 221 * call to iowait_init(). 222 * 223 * The user of the API should create an allocation method 224 * for their version of the txreq. slabs, pre-allocated lists, 225 * and dma pools can be used. Once the user's overload of 226 * the sdma_txreq has been allocated, the sdma_txreq member 227 * must be initialized with sdma_txinit() or sdma_txinit_ahg(). 228 * 229 * The txreq must be declared with the sdma_txreq first. 230 * 231 * The tx request, once initialized, is manipulated with calls to 232 * sdma_txadd_daddr(), sdma_txadd_page(), or sdma_txadd_kvaddr() 233 * for each disjoint memory location. It is the user's responsibility 234 * to understand the packet boundaries and page boundaries to do the 235 * appropriate number of sdma_txadd_* calls.. The user 236 * must be prepared to deal with failures from these routines due to 237 * either memory allocation or dma_mapping failures. 238 * 239 * The mapping specifics for each memory location are recorded 240 * in the tx. Memory locations added with sdma_txadd_page() 241 * and sdma_txadd_kvaddr() are automatically mapped when added 242 * to the tx and nmapped as part of the progress processing in the 243 * SDMA interrupt handling. 244 * 245 * sdma_txadd_daddr() is used to add an dma_addr_t memory to the 246 * tx. An example of a use case would be a pre-allocated 247 * set of headers allocated via dma_pool_alloc() or 248 * dma_alloc_coherent(). For these memory locations, it 249 * is the responsibility of the user to handle that unmapping. 250 * (This would usually be at an unload or job termination.) 251 * 252 * The routine sdma_send_txreq() is used to submit 253 * a tx to the ring after the appropriate number of 254 * sdma_txadd_* have been done. 255 * 256 * If it is desired to send a burst of sdma_txreqs, sdma_send_txlist() 257 * can be used to submit a list of packets. 258 * 259 * The user is free to use the link overhead in the struct sdma_txreq as 260 * long as the tx isn't in flight. 261 * 262 * The extreme degenerate case of the number of descriptors 263 * exceeding the ring size is automatically handled as 264 * memory locations are added. An overflow of the descriptor 265 * array that is part of the sdma_txreq is also automatically 266 * handled. 267 * 268 */ 269 270 /** 271 * DOC: Infrastructure calls 272 * 273 * sdma_init() is used to initialize data structures and 274 * CSRs for the desired number of SDMA engines. 275 * 276 * sdma_start() is used to kick the SDMA engines initialized 277 * with sdma_init(). Interrupts must be enabled at this 278 * point since aspects of the state machine are interrupt 279 * driven. 280 * 281 * sdma_engine_error() and sdma_engine_interrupt() are 282 * entrances for interrupts. 283 * 284 * sdma_map_init() is for the management of the mapping 285 * table when the number of vls is changed. 286 * 287 */ 288 289 /* 290 * struct hw_sdma_desc - raw 128 bit SDMA descriptor 291 * 292 * This is the raw descriptor in the SDMA ring 293 */ 294 struct hw_sdma_desc { 295 /* private: don't use directly */ 296 __le64 qw[2]; 297 }; 298 299 /** 300 * struct sdma_engine - Data pertaining to each SDMA engine. 301 * @dd: a back-pointer to the device data 302 * @ppd: per port back-pointer 303 * @imask: mask for irq manipulation 304 * @idle_mask: mask for determining if an interrupt is due to sdma_idle 305 * 306 * This structure has the state for each sdma_engine. 307 * 308 * Accessing to non public fields are not supported 309 * since the private members are subject to change. 310 */ 311 struct sdma_engine { 312 /* read mostly */ 313 struct hfi1_devdata *dd; 314 struct hfi1_pportdata *ppd; 315 /* private: */ 316 void __iomem *tail_csr; 317 u64 imask; /* clear interrupt mask */ 318 u64 idle_mask; 319 u64 progress_mask; 320 u64 int_mask; 321 /* private: */ 322 volatile __le64 *head_dma; /* DMA'ed by chip */ 323 /* private: */ 324 dma_addr_t head_phys; 325 /* private: */ 326 struct hw_sdma_desc *descq; 327 /* private: */ 328 unsigned descq_full_count; 329 struct sdma_txreq **tx_ring; 330 /* private: */ 331 dma_addr_t descq_phys; 332 /* private */ 333 u32 sdma_mask; 334 /* private */ 335 struct sdma_state state; 336 /* private */ 337 int cpu; 338 /* private: */ 339 u8 sdma_shift; 340 /* private: */ 341 u8 this_idx; /* zero relative engine */ 342 /* protect changes to senddmactrl shadow */ 343 spinlock_t senddmactrl_lock; 344 /* private: */ 345 u64 p_senddmactrl; /* shadow per-engine SendDmaCtrl */ 346 347 /* read/write using tail_lock */ 348 spinlock_t tail_lock ____cacheline_aligned_in_smp; 349 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER 350 /* private: */ 351 u64 tail_sn; 352 #endif 353 /* private: */ 354 u32 descq_tail; 355 /* private: */ 356 unsigned long ahg_bits; 357 /* private: */ 358 u16 desc_avail; 359 /* private: */ 360 u16 tx_tail; 361 /* private: */ 362 u16 descq_cnt; 363 364 /* read/write using head_lock */ 365 /* private: */ 366 seqlock_t head_lock ____cacheline_aligned_in_smp; 367 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER 368 /* private: */ 369 u64 head_sn; 370 #endif 371 /* private: */ 372 u32 descq_head; 373 /* private: */ 374 u16 tx_head; 375 /* private: */ 376 u64 last_status; 377 /* private */ 378 u64 err_cnt; 379 /* private */ 380 u64 sdma_int_cnt; 381 u64 idle_int_cnt; 382 u64 progress_int_cnt; 383 384 /* private: */ 385 seqlock_t waitlock; 386 struct list_head dmawait; 387 388 /* CONFIG SDMA for now, just blindly duplicate */ 389 /* private: */ 390 struct tasklet_struct sdma_hw_clean_up_task 391 ____cacheline_aligned_in_smp; 392 393 /* private: */ 394 struct tasklet_struct sdma_sw_clean_up_task 395 ____cacheline_aligned_in_smp; 396 /* private: */ 397 struct work_struct err_halt_worker; 398 /* private */ 399 struct timer_list err_progress_check_timer; 400 u32 progress_check_head; 401 /* private: */ 402 struct work_struct flush_worker; 403 /* protect flush list */ 404 spinlock_t flushlist_lock; 405 /* private: */ 406 struct list_head flushlist; 407 struct cpumask cpu_mask; 408 struct kobject kobj; 409 u32 msix_intr; 410 }; 411 412 int sdma_init(struct hfi1_devdata *dd, u8 port); 413 void sdma_start(struct hfi1_devdata *dd); 414 void sdma_exit(struct hfi1_devdata *dd); 415 void sdma_clean(struct hfi1_devdata *dd, size_t num_engines); 416 void sdma_all_running(struct hfi1_devdata *dd); 417 void sdma_all_idle(struct hfi1_devdata *dd); 418 void sdma_freeze_notify(struct hfi1_devdata *dd, int go_idle); 419 void sdma_freeze(struct hfi1_devdata *dd); 420 void sdma_unfreeze(struct hfi1_devdata *dd); 421 void sdma_wait(struct hfi1_devdata *dd); 422 423 /** 424 * sdma_empty() - idle engine test 425 * @engine: sdma engine 426 * 427 * Currently used by verbs as a latency optimization. 428 * 429 * Return: 430 * 1 - empty, 0 - non-empty 431 */ 432 static inline int sdma_empty(struct sdma_engine *sde) 433 { 434 return sde->descq_tail == sde->descq_head; 435 } 436 437 static inline u16 sdma_descq_freecnt(struct sdma_engine *sde) 438 { 439 return sde->descq_cnt - 440 (sde->descq_tail - 441 READ_ONCE(sde->descq_head)) - 1; 442 } 443 444 static inline u16 sdma_descq_inprocess(struct sdma_engine *sde) 445 { 446 return sde->descq_cnt - sdma_descq_freecnt(sde); 447 } 448 449 /* 450 * Either head_lock or tail lock required to see 451 * a steady state. 452 */ 453 static inline int __sdma_running(struct sdma_engine *engine) 454 { 455 return engine->state.current_state == sdma_state_s99_running; 456 } 457 458 /** 459 * sdma_running() - state suitability test 460 * @engine: sdma engine 461 * 462 * sdma_running probes the internal state to determine if it is suitable 463 * for submitting packets. 464 * 465 * Return: 466 * 1 - ok to submit, 0 - not ok to submit 467 * 468 */ 469 static inline int sdma_running(struct sdma_engine *engine) 470 { 471 unsigned long flags; 472 int ret; 473 474 spin_lock_irqsave(&engine->tail_lock, flags); 475 ret = __sdma_running(engine); 476 spin_unlock_irqrestore(&engine->tail_lock, flags); 477 return ret; 478 } 479 480 void _sdma_txreq_ahgadd( 481 struct sdma_txreq *tx, 482 u8 num_ahg, 483 u8 ahg_entry, 484 u32 *ahg, 485 u8 ahg_hlen); 486 487 /** 488 * sdma_txinit_ahg() - initialize an sdma_txreq struct with AHG 489 * @tx: tx request to initialize 490 * @flags: flags to key last descriptor additions 491 * @tlen: total packet length (pbc + headers + data) 492 * @ahg_entry: ahg entry to use (0 - 31) 493 * @num_ahg: ahg descriptor for first descriptor (0 - 9) 494 * @ahg: array of AHG descriptors (up to 9 entries) 495 * @ahg_hlen: number of bytes from ASIC entry to use 496 * @cb: callback 497 * 498 * The allocation of the sdma_txreq and it enclosing structure is user 499 * dependent. This routine must be called to initialize the user independent 500 * fields. 501 * 502 * The currently supported flags are SDMA_TXREQ_F_URGENT, 503 * SDMA_TXREQ_F_AHG_COPY, and SDMA_TXREQ_F_USE_AHG. 504 * 505 * SDMA_TXREQ_F_URGENT is used for latency sensitive situations where the 506 * completion is desired as soon as possible. 507 * 508 * SDMA_TXREQ_F_AHG_COPY causes the header in the first descriptor to be 509 * copied to chip entry. SDMA_TXREQ_F_USE_AHG causes the code to add in 510 * the AHG descriptors into the first 1 to 3 descriptors. 511 * 512 * Completions of submitted requests can be gotten on selected 513 * txreqs by giving a completion routine callback to sdma_txinit() or 514 * sdma_txinit_ahg(). The environment in which the callback runs 515 * can be from an ISR, a tasklet, or a thread, so no sleeping 516 * kernel routines can be used. Aspects of the sdma ring may 517 * be locked so care should be taken with locking. 518 * 519 * The callback pointer can be NULL to avoid any callback for the packet 520 * being submitted. The callback will be provided this tx, a status, and a flag. 521 * 522 * The status will be one of SDMA_TXREQ_S_OK, SDMA_TXREQ_S_SENDERROR, 523 * SDMA_TXREQ_S_ABORTED, or SDMA_TXREQ_S_SHUTDOWN. 524 * 525 * The flag, if the is the iowait had been used, indicates the iowait 526 * sdma_busy count has reached zero. 527 * 528 * user data portion of tlen should be precise. The sdma_txadd_* entrances 529 * will pad with a descriptor references 1 - 3 bytes when the number of bytes 530 * specified in tlen have been supplied to the sdma_txreq. 531 * 532 * ahg_hlen is used to determine the number of on-chip entry bytes to 533 * use as the header. This is for cases where the stored header is 534 * larger than the header to be used in a packet. This is typical 535 * for verbs where an RDMA_WRITE_FIRST is larger than the packet in 536 * and RDMA_WRITE_MIDDLE. 537 * 538 */ 539 static inline int sdma_txinit_ahg( 540 struct sdma_txreq *tx, 541 u16 flags, 542 u16 tlen, 543 u8 ahg_entry, 544 u8 num_ahg, 545 u32 *ahg, 546 u8 ahg_hlen, 547 void (*cb)(struct sdma_txreq *, int)) 548 { 549 if (tlen == 0) 550 return -ENODATA; 551 if (tlen > MAX_SDMA_PKT_SIZE) 552 return -EMSGSIZE; 553 tx->desc_limit = ARRAY_SIZE(tx->descs); 554 tx->descp = &tx->descs[0]; 555 INIT_LIST_HEAD(&tx->list); 556 tx->num_desc = 0; 557 tx->flags = flags; 558 tx->complete = cb; 559 tx->coalesce_buf = NULL; 560 tx->wait = NULL; 561 tx->packet_len = tlen; 562 tx->tlen = tx->packet_len; 563 tx->descs[0].qw[0] = SDMA_DESC0_FIRST_DESC_FLAG; 564 tx->descs[0].qw[1] = 0; 565 if (flags & SDMA_TXREQ_F_AHG_COPY) 566 tx->descs[0].qw[1] |= 567 (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK) 568 << SDMA_DESC1_HEADER_INDEX_SHIFT) | 569 (((u64)SDMA_AHG_COPY & SDMA_DESC1_HEADER_MODE_MASK) 570 << SDMA_DESC1_HEADER_MODE_SHIFT); 571 else if (flags & SDMA_TXREQ_F_USE_AHG && num_ahg) 572 _sdma_txreq_ahgadd(tx, num_ahg, ahg_entry, ahg, ahg_hlen); 573 return 0; 574 } 575 576 /** 577 * sdma_txinit() - initialize an sdma_txreq struct (no AHG) 578 * @tx: tx request to initialize 579 * @flags: flags to key last descriptor additions 580 * @tlen: total packet length (pbc + headers + data) 581 * @cb: callback pointer 582 * 583 * The allocation of the sdma_txreq and it enclosing structure is user 584 * dependent. This routine must be called to initialize the user 585 * independent fields. 586 * 587 * The currently supported flags is SDMA_TXREQ_F_URGENT. 588 * 589 * SDMA_TXREQ_F_URGENT is used for latency sensitive situations where the 590 * completion is desired as soon as possible. 591 * 592 * Completions of submitted requests can be gotten on selected 593 * txreqs by giving a completion routine callback to sdma_txinit() or 594 * sdma_txinit_ahg(). The environment in which the callback runs 595 * can be from an ISR, a tasklet, or a thread, so no sleeping 596 * kernel routines can be used. The head size of the sdma ring may 597 * be locked so care should be taken with locking. 598 * 599 * The callback pointer can be NULL to avoid any callback for the packet 600 * being submitted. 601 * 602 * The callback, if non-NULL, will be provided this tx and a status. The 603 * status will be one of SDMA_TXREQ_S_OK, SDMA_TXREQ_S_SENDERROR, 604 * SDMA_TXREQ_S_ABORTED, or SDMA_TXREQ_S_SHUTDOWN. 605 * 606 */ 607 static inline int sdma_txinit( 608 struct sdma_txreq *tx, 609 u16 flags, 610 u16 tlen, 611 void (*cb)(struct sdma_txreq *, int)) 612 { 613 return sdma_txinit_ahg(tx, flags, tlen, 0, 0, NULL, 0, cb); 614 } 615 616 /* helpers - don't use */ 617 static inline int sdma_mapping_type(struct sdma_desc *d) 618 { 619 return (d->qw[1] & SDMA_DESC1_GENERATION_SMASK) 620 >> SDMA_DESC1_GENERATION_SHIFT; 621 } 622 623 static inline size_t sdma_mapping_len(struct sdma_desc *d) 624 { 625 return (d->qw[0] & SDMA_DESC0_BYTE_COUNT_SMASK) 626 >> SDMA_DESC0_BYTE_COUNT_SHIFT; 627 } 628 629 static inline dma_addr_t sdma_mapping_addr(struct sdma_desc *d) 630 { 631 return (d->qw[0] & SDMA_DESC0_PHY_ADDR_SMASK) 632 >> SDMA_DESC0_PHY_ADDR_SHIFT; 633 } 634 635 static inline void make_tx_sdma_desc( 636 struct sdma_txreq *tx, 637 int type, 638 dma_addr_t addr, 639 size_t len) 640 { 641 struct sdma_desc *desc = &tx->descp[tx->num_desc]; 642 643 if (!tx->num_desc) { 644 /* qw[0] zero; qw[1] first, ahg mode already in from init */ 645 desc->qw[1] |= ((u64)type & SDMA_DESC1_GENERATION_MASK) 646 << SDMA_DESC1_GENERATION_SHIFT; 647 } else { 648 desc->qw[0] = 0; 649 desc->qw[1] = ((u64)type & SDMA_DESC1_GENERATION_MASK) 650 << SDMA_DESC1_GENERATION_SHIFT; 651 } 652 desc->qw[0] |= (((u64)addr & SDMA_DESC0_PHY_ADDR_MASK) 653 << SDMA_DESC0_PHY_ADDR_SHIFT) | 654 (((u64)len & SDMA_DESC0_BYTE_COUNT_MASK) 655 << SDMA_DESC0_BYTE_COUNT_SHIFT); 656 } 657 658 /* helper to extend txreq */ 659 int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx, 660 int type, void *kvaddr, struct page *page, 661 unsigned long offset, u16 len); 662 int _pad_sdma_tx_descs(struct hfi1_devdata *, struct sdma_txreq *); 663 void __sdma_txclean(struct hfi1_devdata *, struct sdma_txreq *); 664 665 static inline void sdma_txclean(struct hfi1_devdata *dd, struct sdma_txreq *tx) 666 { 667 if (tx->num_desc) 668 __sdma_txclean(dd, tx); 669 } 670 671 /* helpers used by public routines */ 672 static inline void _sdma_close_tx(struct hfi1_devdata *dd, 673 struct sdma_txreq *tx) 674 { 675 tx->descp[tx->num_desc].qw[0] |= 676 SDMA_DESC0_LAST_DESC_FLAG; 677 tx->descp[tx->num_desc].qw[1] |= 678 dd->default_desc1; 679 if (tx->flags & SDMA_TXREQ_F_URGENT) 680 tx->descp[tx->num_desc].qw[1] |= 681 (SDMA_DESC1_HEAD_TO_HOST_FLAG | 682 SDMA_DESC1_INT_REQ_FLAG); 683 } 684 685 static inline int _sdma_txadd_daddr( 686 struct hfi1_devdata *dd, 687 int type, 688 struct sdma_txreq *tx, 689 dma_addr_t addr, 690 u16 len) 691 { 692 int rval = 0; 693 694 make_tx_sdma_desc( 695 tx, 696 type, 697 addr, len); 698 WARN_ON(len > tx->tlen); 699 tx->tlen -= len; 700 /* special cases for last */ 701 if (!tx->tlen) { 702 if (tx->packet_len & (sizeof(u32) - 1)) { 703 rval = _pad_sdma_tx_descs(dd, tx); 704 if (rval) 705 return rval; 706 } else { 707 _sdma_close_tx(dd, tx); 708 } 709 } 710 tx->num_desc++; 711 return rval; 712 } 713 714 /** 715 * sdma_txadd_page() - add a page to the sdma_txreq 716 * @dd: the device to use for mapping 717 * @tx: tx request to which the page is added 718 * @page: page to map 719 * @offset: offset within the page 720 * @len: length in bytes 721 * 722 * This is used to add a page/offset/length descriptor. 723 * 724 * The mapping/unmapping of the page/offset/len is automatically handled. 725 * 726 * Return: 727 * 0 - success, -ENOSPC - mapping fail, -ENOMEM - couldn't 728 * extend/coalesce descriptor array 729 */ 730 static inline int sdma_txadd_page( 731 struct hfi1_devdata *dd, 732 struct sdma_txreq *tx, 733 struct page *page, 734 unsigned long offset, 735 u16 len) 736 { 737 dma_addr_t addr; 738 int rval; 739 740 if ((unlikely(tx->num_desc == tx->desc_limit))) { 741 rval = ext_coal_sdma_tx_descs(dd, tx, SDMA_MAP_PAGE, 742 NULL, page, offset, len); 743 if (rval <= 0) 744 return rval; 745 } 746 747 addr = dma_map_page( 748 &dd->pcidev->dev, 749 page, 750 offset, 751 len, 752 DMA_TO_DEVICE); 753 754 if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) { 755 __sdma_txclean(dd, tx); 756 return -ENOSPC; 757 } 758 759 return _sdma_txadd_daddr( 760 dd, SDMA_MAP_PAGE, tx, addr, len); 761 } 762 763 /** 764 * sdma_txadd_daddr() - add a dma address to the sdma_txreq 765 * @dd: the device to use for mapping 766 * @tx: sdma_txreq to which the page is added 767 * @addr: dma address mapped by caller 768 * @len: length in bytes 769 * 770 * This is used to add a descriptor for memory that is already dma mapped. 771 * 772 * In this case, there is no unmapping as part of the progress processing for 773 * this memory location. 774 * 775 * Return: 776 * 0 - success, -ENOMEM - couldn't extend descriptor array 777 */ 778 779 static inline int sdma_txadd_daddr( 780 struct hfi1_devdata *dd, 781 struct sdma_txreq *tx, 782 dma_addr_t addr, 783 u16 len) 784 { 785 int rval; 786 787 if ((unlikely(tx->num_desc == tx->desc_limit))) { 788 rval = ext_coal_sdma_tx_descs(dd, tx, SDMA_MAP_NONE, 789 NULL, NULL, 0, 0); 790 if (rval <= 0) 791 return rval; 792 } 793 794 return _sdma_txadd_daddr(dd, SDMA_MAP_NONE, tx, addr, len); 795 } 796 797 /** 798 * sdma_txadd_kvaddr() - add a kernel virtual address to sdma_txreq 799 * @dd: the device to use for mapping 800 * @tx: sdma_txreq to which the page is added 801 * @kvaddr: the kernel virtual address 802 * @len: length in bytes 803 * 804 * This is used to add a descriptor referenced by the indicated kvaddr and 805 * len. 806 * 807 * The mapping/unmapping of the kvaddr and len is automatically handled. 808 * 809 * Return: 810 * 0 - success, -ENOSPC - mapping fail, -ENOMEM - couldn't extend/coalesce 811 * descriptor array 812 */ 813 static inline int sdma_txadd_kvaddr( 814 struct hfi1_devdata *dd, 815 struct sdma_txreq *tx, 816 void *kvaddr, 817 u16 len) 818 { 819 dma_addr_t addr; 820 int rval; 821 822 if ((unlikely(tx->num_desc == tx->desc_limit))) { 823 rval = ext_coal_sdma_tx_descs(dd, tx, SDMA_MAP_SINGLE, 824 kvaddr, NULL, 0, len); 825 if (rval <= 0) 826 return rval; 827 } 828 829 addr = dma_map_single( 830 &dd->pcidev->dev, 831 kvaddr, 832 len, 833 DMA_TO_DEVICE); 834 835 if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) { 836 __sdma_txclean(dd, tx); 837 return -ENOSPC; 838 } 839 840 return _sdma_txadd_daddr( 841 dd, SDMA_MAP_SINGLE, tx, addr, len); 842 } 843 844 struct iowait_work; 845 846 int sdma_send_txreq(struct sdma_engine *sde, 847 struct iowait_work *wait, 848 struct sdma_txreq *tx, 849 bool pkts_sent); 850 int sdma_send_txlist(struct sdma_engine *sde, 851 struct iowait_work *wait, 852 struct list_head *tx_list, 853 u16 *count_out); 854 855 int sdma_ahg_alloc(struct sdma_engine *sde); 856 void sdma_ahg_free(struct sdma_engine *sde, int ahg_index); 857 858 /** 859 * sdma_build_ahg - build ahg descriptor 860 * @data 861 * @dwindex 862 * @startbit 863 * @bits 864 * 865 * Build and return a 32 bit descriptor. 866 */ 867 static inline u32 sdma_build_ahg_descriptor( 868 u16 data, 869 u8 dwindex, 870 u8 startbit, 871 u8 bits) 872 { 873 return (u32)(1UL << SDMA_AHG_UPDATE_ENABLE_SHIFT | 874 ((startbit & SDMA_AHG_FIELD_START_MASK) << 875 SDMA_AHG_FIELD_START_SHIFT) | 876 ((bits & SDMA_AHG_FIELD_LEN_MASK) << 877 SDMA_AHG_FIELD_LEN_SHIFT) | 878 ((dwindex & SDMA_AHG_INDEX_MASK) << 879 SDMA_AHG_INDEX_SHIFT) | 880 ((data & SDMA_AHG_VALUE_MASK) << 881 SDMA_AHG_VALUE_SHIFT)); 882 } 883 884 /** 885 * sdma_progress - use seq number of detect head progress 886 * @sde: sdma_engine to check 887 * @seq: base seq count 888 * @tx: txreq for which we need to check descriptor availability 889 * 890 * This is used in the appropriate spot in the sleep routine 891 * to check for potential ring progress. This routine gets the 892 * seqcount before queuing the iowait structure for progress. 893 * 894 * If the seqcount indicates that progress needs to be checked, 895 * re-submission is detected by checking whether the descriptor 896 * queue has enough descriptor for the txreq. 897 */ 898 static inline unsigned sdma_progress(struct sdma_engine *sde, unsigned seq, 899 struct sdma_txreq *tx) 900 { 901 if (read_seqretry(&sde->head_lock, seq)) { 902 sde->desc_avail = sdma_descq_freecnt(sde); 903 if (tx->num_desc > sde->desc_avail) 904 return 0; 905 return 1; 906 } 907 return 0; 908 } 909 910 /* for use by interrupt handling */ 911 void sdma_engine_error(struct sdma_engine *sde, u64 status); 912 void sdma_engine_interrupt(struct sdma_engine *sde, u64 status); 913 914 /* 915 * 916 * The diagram below details the relationship of the mapping structures 917 * 918 * Since the mapping now allows for non-uniform engines per vl, the 919 * number of engines for a vl is either the vl_engines[vl] or 920 * a computation based on num_sdma/num_vls: 921 * 922 * For example: 923 * nactual = vl_engines ? vl_engines[vl] : num_sdma/num_vls 924 * 925 * n = roundup to next highest power of 2 using nactual 926 * 927 * In the case where there are num_sdma/num_vls doesn't divide 928 * evenly, the extras are added from the last vl downward. 929 * 930 * For the case where n > nactual, the engines are assigned 931 * in a round robin fashion wrapping back to the first engine 932 * for a particular vl. 933 * 934 * dd->sdma_map 935 * | sdma_map_elem[0] 936 * | +--------------------+ 937 * v | mask | 938 * sdma_vl_map |--------------------| 939 * +--------------------------+ | sde[0] -> eng 1 | 940 * | list (RCU) | |--------------------| 941 * |--------------------------| ->| sde[1] -> eng 2 | 942 * | mask | --/ |--------------------| 943 * |--------------------------| -/ | * | 944 * | actual_vls (max 8) | -/ |--------------------| 945 * |--------------------------| --/ | sde[n-1] -> eng n | 946 * | vls (max 8) | -/ +--------------------+ 947 * |--------------------------| --/ 948 * | map[0] |-/ 949 * |--------------------------| +---------------------+ 950 * | map[1] |--- | mask | 951 * |--------------------------| \---- |---------------------| 952 * | * | \-- | sde[0] -> eng 1+n | 953 * | * | \---- |---------------------| 954 * | * | \->| sde[1] -> eng 2+n | 955 * |--------------------------| |---------------------| 956 * | map[vls - 1] |- | * | 957 * +--------------------------+ \- |---------------------| 958 * \- | sde[m-1] -> eng m+n | 959 * \ +---------------------+ 960 * \- 961 * \ 962 * \- +----------------------+ 963 * \- | mask | 964 * \ |----------------------| 965 * \- | sde[0] -> eng 1+m+n | 966 * \- |----------------------| 967 * >| sde[1] -> eng 2+m+n | 968 * |----------------------| 969 * | * | 970 * |----------------------| 971 * | sde[o-1] -> eng o+m+n| 972 * +----------------------+ 973 * 974 */ 975 976 /** 977 * struct sdma_map_elem - mapping for a vl 978 * @mask - selector mask 979 * @sde - array of engines for this vl 980 * 981 * The mask is used to "mod" the selector 982 * to produce index into the trailing 983 * array of sdes. 984 */ 985 struct sdma_map_elem { 986 u32 mask; 987 struct sdma_engine *sde[]; 988 }; 989 990 /** 991 * struct sdma_map_el - mapping for a vl 992 * @engine_to_vl - map of an engine to a vl 993 * @list - rcu head for free callback 994 * @mask - vl mask to "mod" the vl to produce an index to map array 995 * @actual_vls - number of vls 996 * @vls - number of vls rounded to next power of 2 997 * @map - array of sdma_map_elem entries 998 * 999 * This is the parent mapping structure. The trailing 1000 * members of the struct point to sdma_map_elem entries, which 1001 * in turn point to an array of sde's for that vl. 1002 */ 1003 struct sdma_vl_map { 1004 s8 engine_to_vl[TXE_NUM_SDMA_ENGINES]; 1005 struct rcu_head list; 1006 u32 mask; 1007 u8 actual_vls; 1008 u8 vls; 1009 struct sdma_map_elem *map[]; 1010 }; 1011 1012 int sdma_map_init( 1013 struct hfi1_devdata *dd, 1014 u8 port, 1015 u8 num_vls, 1016 u8 *vl_engines); 1017 1018 /* slow path */ 1019 void _sdma_engine_progress_schedule(struct sdma_engine *sde); 1020 1021 /** 1022 * sdma_engine_progress_schedule() - schedule progress on engine 1023 * @sde: sdma_engine to schedule progress 1024 * 1025 * This is the fast path. 1026 * 1027 */ 1028 static inline void sdma_engine_progress_schedule( 1029 struct sdma_engine *sde) 1030 { 1031 if (!sde || sdma_descq_inprocess(sde) < (sde->descq_cnt / 8)) 1032 return; 1033 _sdma_engine_progress_schedule(sde); 1034 } 1035 1036 struct sdma_engine *sdma_select_engine_sc( 1037 struct hfi1_devdata *dd, 1038 u32 selector, 1039 u8 sc5); 1040 1041 struct sdma_engine *sdma_select_engine_vl( 1042 struct hfi1_devdata *dd, 1043 u32 selector, 1044 u8 vl); 1045 1046 struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd, 1047 u32 selector, u8 vl); 1048 ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf); 1049 ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf, 1050 size_t count); 1051 int sdma_engine_get_vl(struct sdma_engine *sde); 1052 void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *); 1053 void sdma_seqfile_dump_cpu_list(struct seq_file *s, struct hfi1_devdata *dd, 1054 unsigned long cpuid); 1055 1056 #ifdef CONFIG_SDMA_VERBOSITY 1057 void sdma_dumpstate(struct sdma_engine *); 1058 #endif 1059 static inline char *slashstrip(char *s) 1060 { 1061 char *r = s; 1062 1063 while (*s) 1064 if (*s++ == '/') 1065 r = s; 1066 return r; 1067 } 1068 1069 u16 sdma_get_descq_cnt(void); 1070 1071 extern uint mod_num_sdma; 1072 1073 void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid); 1074 1075 #endif 1076