xref: /openbmc/linux/drivers/infiniband/hw/hfi1/qp.c (revision 8ec90bfd)
1 /*
2  * Copyright(c) 2015 - 2020 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <linux/err.h>
49 #include <linux/vmalloc.h>
50 #include <linux/hash.h>
51 #include <linux/module.h>
52 #include <linux/seq_file.h>
53 #include <rdma/rdma_vt.h>
54 #include <rdma/rdmavt_qp.h>
55 #include <rdma/ib_verbs.h>
56 
57 #include "hfi.h"
58 #include "qp.h"
59 #include "trace.h"
60 #include "verbs_txreq.h"
61 
62 unsigned int hfi1_qp_table_size = 256;
63 module_param_named(qp_table_size, hfi1_qp_table_size, uint, S_IRUGO);
64 MODULE_PARM_DESC(qp_table_size, "QP table size");
65 
66 static void flush_tx_list(struct rvt_qp *qp);
67 static int iowait_sleep(
68 	struct sdma_engine *sde,
69 	struct iowait_work *wait,
70 	struct sdma_txreq *stx,
71 	unsigned int seq,
72 	bool pkts_sent);
73 static void iowait_wakeup(struct iowait *wait, int reason);
74 static void iowait_sdma_drained(struct iowait *wait);
75 static void qp_pio_drain(struct rvt_qp *qp);
76 
77 const struct rvt_operation_params hfi1_post_parms[RVT_OPERATION_MAX] = {
78 [IB_WR_RDMA_WRITE] = {
79 	.length = sizeof(struct ib_rdma_wr),
80 	.qpt_support = BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
81 },
82 
83 [IB_WR_RDMA_READ] = {
84 	.length = sizeof(struct ib_rdma_wr),
85 	.qpt_support = BIT(IB_QPT_RC),
86 	.flags = RVT_OPERATION_ATOMIC,
87 },
88 
89 [IB_WR_ATOMIC_CMP_AND_SWP] = {
90 	.length = sizeof(struct ib_atomic_wr),
91 	.qpt_support = BIT(IB_QPT_RC),
92 	.flags = RVT_OPERATION_ATOMIC | RVT_OPERATION_ATOMIC_SGE,
93 },
94 
95 [IB_WR_ATOMIC_FETCH_AND_ADD] = {
96 	.length = sizeof(struct ib_atomic_wr),
97 	.qpt_support = BIT(IB_QPT_RC),
98 	.flags = RVT_OPERATION_ATOMIC | RVT_OPERATION_ATOMIC_SGE,
99 },
100 
101 [IB_WR_RDMA_WRITE_WITH_IMM] = {
102 	.length = sizeof(struct ib_rdma_wr),
103 	.qpt_support = BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
104 },
105 
106 [IB_WR_SEND] = {
107 	.length = sizeof(struct ib_send_wr),
108 	.qpt_support = BIT(IB_QPT_UD) | BIT(IB_QPT_SMI) | BIT(IB_QPT_GSI) |
109 		       BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
110 },
111 
112 [IB_WR_SEND_WITH_IMM] = {
113 	.length = sizeof(struct ib_send_wr),
114 	.qpt_support = BIT(IB_QPT_UD) | BIT(IB_QPT_SMI) | BIT(IB_QPT_GSI) |
115 		       BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
116 },
117 
118 [IB_WR_REG_MR] = {
119 	.length = sizeof(struct ib_reg_wr),
120 	.qpt_support = BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
121 	.flags = RVT_OPERATION_LOCAL,
122 },
123 
124 [IB_WR_LOCAL_INV] = {
125 	.length = sizeof(struct ib_send_wr),
126 	.qpt_support = BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
127 	.flags = RVT_OPERATION_LOCAL,
128 },
129 
130 [IB_WR_SEND_WITH_INV] = {
131 	.length = sizeof(struct ib_send_wr),
132 	.qpt_support = BIT(IB_QPT_RC),
133 },
134 
135 [IB_WR_OPFN] = {
136 	.length = sizeof(struct ib_atomic_wr),
137 	.qpt_support = BIT(IB_QPT_RC),
138 	.flags = RVT_OPERATION_USE_RESERVE,
139 },
140 
141 [IB_WR_TID_RDMA_WRITE] = {
142 	.length = sizeof(struct ib_rdma_wr),
143 	.qpt_support = BIT(IB_QPT_RC),
144 	.flags = RVT_OPERATION_IGN_RNR_CNT,
145 },
146 
147 };
148 
149 static void flush_list_head(struct list_head *l)
150 {
151 	while (!list_empty(l)) {
152 		struct sdma_txreq *tx;
153 
154 		tx = list_first_entry(
155 			l,
156 			struct sdma_txreq,
157 			list);
158 		list_del_init(&tx->list);
159 		hfi1_put_txreq(
160 			container_of(tx, struct verbs_txreq, txreq));
161 	}
162 }
163 
164 static void flush_tx_list(struct rvt_qp *qp)
165 {
166 	struct hfi1_qp_priv *priv = qp->priv;
167 
168 	flush_list_head(&iowait_get_ib_work(&priv->s_iowait)->tx_head);
169 	flush_list_head(&iowait_get_tid_work(&priv->s_iowait)->tx_head);
170 }
171 
172 static void flush_iowait(struct rvt_qp *qp)
173 {
174 	struct hfi1_qp_priv *priv = qp->priv;
175 	unsigned long flags;
176 	seqlock_t *lock = priv->s_iowait.lock;
177 
178 	if (!lock)
179 		return;
180 	write_seqlock_irqsave(lock, flags);
181 	if (!list_empty(&priv->s_iowait.list)) {
182 		list_del_init(&priv->s_iowait.list);
183 		priv->s_iowait.lock = NULL;
184 		rvt_put_qp(qp);
185 	}
186 	write_sequnlock_irqrestore(lock, flags);
187 }
188 
189 /**
190  * This function is what we would push to the core layer if we wanted to be a
191  * "first class citizen".  Instead we hide this here and rely on Verbs ULPs
192  * to blindly pass the MTU enum value from the PathRecord to us.
193  */
194 static inline int verbs_mtu_enum_to_int(struct ib_device *dev, enum ib_mtu mtu)
195 {
196 	/* Constraining 10KB packets to 8KB packets */
197 	if (mtu == (enum ib_mtu)OPA_MTU_10240)
198 		mtu = (enum ib_mtu)OPA_MTU_8192;
199 	return opa_mtu_enum_to_int((enum opa_mtu)mtu);
200 }
201 
202 int hfi1_check_modify_qp(struct rvt_qp *qp, struct ib_qp_attr *attr,
203 			 int attr_mask, struct ib_udata *udata)
204 {
205 	struct ib_qp *ibqp = &qp->ibqp;
206 	struct hfi1_ibdev *dev = to_idev(ibqp->device);
207 	struct hfi1_devdata *dd = dd_from_dev(dev);
208 	u8 sc;
209 
210 	if (attr_mask & IB_QP_AV) {
211 		sc = ah_to_sc(ibqp->device, &attr->ah_attr);
212 		if (sc == 0xf)
213 			return -EINVAL;
214 
215 		if (!qp_to_sdma_engine(qp, sc) &&
216 		    dd->flags & HFI1_HAS_SEND_DMA)
217 			return -EINVAL;
218 
219 		if (!qp_to_send_context(qp, sc))
220 			return -EINVAL;
221 	}
222 
223 	if (attr_mask & IB_QP_ALT_PATH) {
224 		sc = ah_to_sc(ibqp->device, &attr->alt_ah_attr);
225 		if (sc == 0xf)
226 			return -EINVAL;
227 
228 		if (!qp_to_sdma_engine(qp, sc) &&
229 		    dd->flags & HFI1_HAS_SEND_DMA)
230 			return -EINVAL;
231 
232 		if (!qp_to_send_context(qp, sc))
233 			return -EINVAL;
234 	}
235 
236 	return 0;
237 }
238 
239 /*
240  * qp_set_16b - Set the hdr_type based on whether the slid or the
241  * dlid in the connection is extended. Only applicable for RC and UC
242  * QPs. UD QPs determine this on the fly from the ah in the wqe
243  */
244 static inline void qp_set_16b(struct rvt_qp *qp)
245 {
246 	struct hfi1_pportdata *ppd;
247 	struct hfi1_ibport *ibp;
248 	struct hfi1_qp_priv *priv = qp->priv;
249 
250 	/* Update ah_attr to account for extended LIDs */
251 	hfi1_update_ah_attr(qp->ibqp.device, &qp->remote_ah_attr);
252 
253 	/* Create 32 bit LIDs */
254 	hfi1_make_opa_lid(&qp->remote_ah_attr);
255 
256 	if (!(rdma_ah_get_ah_flags(&qp->remote_ah_attr) & IB_AH_GRH))
257 		return;
258 
259 	ibp = to_iport(qp->ibqp.device, qp->port_num);
260 	ppd = ppd_from_ibp(ibp);
261 	priv->hdr_type = hfi1_get_hdr_type(ppd->lid, &qp->remote_ah_attr);
262 }
263 
264 void hfi1_modify_qp(struct rvt_qp *qp, struct ib_qp_attr *attr,
265 		    int attr_mask, struct ib_udata *udata)
266 {
267 	struct ib_qp *ibqp = &qp->ibqp;
268 	struct hfi1_qp_priv *priv = qp->priv;
269 
270 	if (attr_mask & IB_QP_AV) {
271 		priv->s_sc = ah_to_sc(ibqp->device, &qp->remote_ah_attr);
272 		priv->s_sde = qp_to_sdma_engine(qp, priv->s_sc);
273 		priv->s_sendcontext = qp_to_send_context(qp, priv->s_sc);
274 		qp_set_16b(qp);
275 	}
276 
277 	if (attr_mask & IB_QP_PATH_MIG_STATE &&
278 	    attr->path_mig_state == IB_MIG_MIGRATED &&
279 	    qp->s_mig_state == IB_MIG_ARMED) {
280 		qp->s_flags |= HFI1_S_AHG_CLEAR;
281 		priv->s_sc = ah_to_sc(ibqp->device, &qp->remote_ah_attr);
282 		priv->s_sde = qp_to_sdma_engine(qp, priv->s_sc);
283 		priv->s_sendcontext = qp_to_send_context(qp, priv->s_sc);
284 		qp_set_16b(qp);
285 	}
286 
287 	opfn_qp_init(qp, attr, attr_mask);
288 }
289 
290 /**
291  * hfi1_setup_wqe - set up the wqe
292  * @qp - The qp
293  * @wqe - The built wqe
294  * @call_send - Determine if the send should be posted or scheduled.
295  *
296  * Perform setup of the wqe.  This is called
297  * prior to inserting the wqe into the ring but after
298  * the wqe has been setup by RDMAVT. This function
299  * allows the driver the opportunity to perform
300  * validation and additional setup of the wqe.
301  *
302  * Returns 0 on success, -EINVAL on failure
303  *
304  */
305 int hfi1_setup_wqe(struct rvt_qp *qp, struct rvt_swqe *wqe, bool *call_send)
306 {
307 	struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
308 	struct rvt_ah *ah;
309 	struct hfi1_pportdata *ppd;
310 	struct hfi1_devdata *dd;
311 
312 	switch (qp->ibqp.qp_type) {
313 	case IB_QPT_RC:
314 		hfi1_setup_tid_rdma_wqe(qp, wqe);
315 		fallthrough;
316 	case IB_QPT_UC:
317 		if (wqe->length > 0x80000000U)
318 			return -EINVAL;
319 		if (wqe->length > qp->pmtu)
320 			*call_send = false;
321 		break;
322 	case IB_QPT_SMI:
323 		/*
324 		 * SM packets should exclusively use VL15 and their SL is
325 		 * ignored (IBTA v1.3, Section 3.5.8.2). Therefore, when ah
326 		 * is created, SL is 0 in most cases and as a result some
327 		 * fields (vl and pmtu) in ah may not be set correctly,
328 		 * depending on the SL2SC and SC2VL tables at the time.
329 		 */
330 		ppd = ppd_from_ibp(ibp);
331 		dd = dd_from_ppd(ppd);
332 		if (wqe->length > dd->vld[15].mtu)
333 			return -EINVAL;
334 		break;
335 	case IB_QPT_GSI:
336 	case IB_QPT_UD:
337 		ah = rvt_get_swqe_ah(wqe);
338 		if (wqe->length > (1 << ah->log_pmtu))
339 			return -EINVAL;
340 		if (ibp->sl_to_sc[rdma_ah_get_sl(&ah->attr)] == 0xf)
341 			return -EINVAL;
342 	default:
343 		break;
344 	}
345 
346 	/*
347 	 * System latency between send and schedule is large enough that
348 	 * forcing call_send to true for piothreshold packets is necessary.
349 	 */
350 	if (wqe->length <= piothreshold)
351 		*call_send = true;
352 	return 0;
353 }
354 
355 /**
356  * _hfi1_schedule_send - schedule progress
357  * @qp: the QP
358  *
359  * This schedules qp progress w/o regard to the s_flags.
360  *
361  * It is only used in the post send, which doesn't hold
362  * the s_lock.
363  */
364 bool _hfi1_schedule_send(struct rvt_qp *qp)
365 {
366 	struct hfi1_qp_priv *priv = qp->priv;
367 	struct hfi1_ibport *ibp =
368 		to_iport(qp->ibqp.device, qp->port_num);
369 	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
370 	struct hfi1_devdata *dd = ppd->dd;
371 
372 	if (dd->flags & HFI1_SHUTDOWN)
373 		return true;
374 
375 	return iowait_schedule(&priv->s_iowait, ppd->hfi1_wq,
376 			       priv->s_sde ?
377 			       priv->s_sde->cpu :
378 			       cpumask_first(cpumask_of_node(dd->node)));
379 }
380 
381 static void qp_pio_drain(struct rvt_qp *qp)
382 {
383 	struct hfi1_qp_priv *priv = qp->priv;
384 
385 	if (!priv->s_sendcontext)
386 		return;
387 	while (iowait_pio_pending(&priv->s_iowait)) {
388 		write_seqlock_irq(&priv->s_sendcontext->waitlock);
389 		hfi1_sc_wantpiobuf_intr(priv->s_sendcontext, 1);
390 		write_sequnlock_irq(&priv->s_sendcontext->waitlock);
391 		iowait_pio_drain(&priv->s_iowait);
392 		write_seqlock_irq(&priv->s_sendcontext->waitlock);
393 		hfi1_sc_wantpiobuf_intr(priv->s_sendcontext, 0);
394 		write_sequnlock_irq(&priv->s_sendcontext->waitlock);
395 	}
396 }
397 
398 /**
399  * hfi1_schedule_send - schedule progress
400  * @qp: the QP
401  *
402  * This schedules qp progress and caller should hold
403  * the s_lock.
404  * @return true if the first leg is scheduled;
405  * false if the first leg is not scheduled.
406  */
407 bool hfi1_schedule_send(struct rvt_qp *qp)
408 {
409 	lockdep_assert_held(&qp->s_lock);
410 	if (hfi1_send_ok(qp)) {
411 		_hfi1_schedule_send(qp);
412 		return true;
413 	}
414 	if (qp->s_flags & HFI1_S_ANY_WAIT_IO)
415 		iowait_set_flag(&((struct hfi1_qp_priv *)qp->priv)->s_iowait,
416 				IOWAIT_PENDING_IB);
417 	return false;
418 }
419 
420 static void hfi1_qp_schedule(struct rvt_qp *qp)
421 {
422 	struct hfi1_qp_priv *priv = qp->priv;
423 	bool ret;
424 
425 	if (iowait_flag_set(&priv->s_iowait, IOWAIT_PENDING_IB)) {
426 		ret = hfi1_schedule_send(qp);
427 		if (ret)
428 			iowait_clear_flag(&priv->s_iowait, IOWAIT_PENDING_IB);
429 	}
430 	if (iowait_flag_set(&priv->s_iowait, IOWAIT_PENDING_TID)) {
431 		ret = hfi1_schedule_tid_send(qp);
432 		if (ret)
433 			iowait_clear_flag(&priv->s_iowait, IOWAIT_PENDING_TID);
434 	}
435 }
436 
437 void hfi1_qp_wakeup(struct rvt_qp *qp, u32 flag)
438 {
439 	unsigned long flags;
440 
441 	spin_lock_irqsave(&qp->s_lock, flags);
442 	if (qp->s_flags & flag) {
443 		qp->s_flags &= ~flag;
444 		trace_hfi1_qpwakeup(qp, flag);
445 		hfi1_qp_schedule(qp);
446 	}
447 	spin_unlock_irqrestore(&qp->s_lock, flags);
448 	/* Notify hfi1_destroy_qp() if it is waiting. */
449 	rvt_put_qp(qp);
450 }
451 
452 void hfi1_qp_unbusy(struct rvt_qp *qp, struct iowait_work *wait)
453 {
454 	struct hfi1_qp_priv *priv = qp->priv;
455 
456 	if (iowait_set_work_flag(wait) == IOWAIT_IB_SE) {
457 		qp->s_flags &= ~RVT_S_BUSY;
458 		/*
459 		 * If we are sending a first-leg packet from the second leg,
460 		 * we need to clear the busy flag from priv->s_flags to
461 		 * avoid a race condition when the qp wakes up before
462 		 * the call to hfi1_verbs_send() returns to the second
463 		 * leg. In that case, the second leg will terminate without
464 		 * being re-scheduled, resulting in failure to send TID RDMA
465 		 * WRITE DATA and TID RDMA ACK packets.
466 		 */
467 		if (priv->s_flags & HFI1_S_TID_BUSY_SET) {
468 			priv->s_flags &= ~(HFI1_S_TID_BUSY_SET |
469 					   RVT_S_BUSY);
470 			iowait_set_flag(&priv->s_iowait, IOWAIT_PENDING_TID);
471 		}
472 	} else {
473 		priv->s_flags &= ~RVT_S_BUSY;
474 	}
475 }
476 
477 static int iowait_sleep(
478 	struct sdma_engine *sde,
479 	struct iowait_work *wait,
480 	struct sdma_txreq *stx,
481 	uint seq,
482 	bool pkts_sent)
483 {
484 	struct verbs_txreq *tx = container_of(stx, struct verbs_txreq, txreq);
485 	struct rvt_qp *qp;
486 	struct hfi1_qp_priv *priv;
487 	unsigned long flags;
488 	int ret = 0;
489 
490 	qp = tx->qp;
491 	priv = qp->priv;
492 
493 	spin_lock_irqsave(&qp->s_lock, flags);
494 	if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
495 		/*
496 		 * If we couldn't queue the DMA request, save the info
497 		 * and try again later rather than destroying the
498 		 * buffer and undoing the side effects of the copy.
499 		 */
500 		/* Make a common routine? */
501 		list_add_tail(&stx->list, &wait->tx_head);
502 		write_seqlock(&sde->waitlock);
503 		if (sdma_progress(sde, seq, stx))
504 			goto eagain;
505 		if (list_empty(&priv->s_iowait.list)) {
506 			struct hfi1_ibport *ibp =
507 				to_iport(qp->ibqp.device, qp->port_num);
508 
509 			ibp->rvp.n_dmawait++;
510 			qp->s_flags |= RVT_S_WAIT_DMA_DESC;
511 			iowait_get_priority(&priv->s_iowait);
512 			iowait_queue(pkts_sent, &priv->s_iowait,
513 				     &sde->dmawait);
514 			priv->s_iowait.lock = &sde->waitlock;
515 			trace_hfi1_qpsleep(qp, RVT_S_WAIT_DMA_DESC);
516 			rvt_get_qp(qp);
517 		}
518 		write_sequnlock(&sde->waitlock);
519 		hfi1_qp_unbusy(qp, wait);
520 		spin_unlock_irqrestore(&qp->s_lock, flags);
521 		ret = -EBUSY;
522 	} else {
523 		spin_unlock_irqrestore(&qp->s_lock, flags);
524 		hfi1_put_txreq(tx);
525 	}
526 	return ret;
527 eagain:
528 	write_sequnlock(&sde->waitlock);
529 	spin_unlock_irqrestore(&qp->s_lock, flags);
530 	list_del_init(&stx->list);
531 	return -EAGAIN;
532 }
533 
534 static void iowait_wakeup(struct iowait *wait, int reason)
535 {
536 	struct rvt_qp *qp = iowait_to_qp(wait);
537 
538 	WARN_ON(reason != SDMA_AVAIL_REASON);
539 	hfi1_qp_wakeup(qp, RVT_S_WAIT_DMA_DESC);
540 }
541 
542 static void iowait_sdma_drained(struct iowait *wait)
543 {
544 	struct rvt_qp *qp = iowait_to_qp(wait);
545 	unsigned long flags;
546 
547 	/*
548 	 * This happens when the send engine notes
549 	 * a QP in the error state and cannot
550 	 * do the flush work until that QP's
551 	 * sdma work has finished.
552 	 */
553 	spin_lock_irqsave(&qp->s_lock, flags);
554 	if (qp->s_flags & RVT_S_WAIT_DMA) {
555 		qp->s_flags &= ~RVT_S_WAIT_DMA;
556 		hfi1_schedule_send(qp);
557 	}
558 	spin_unlock_irqrestore(&qp->s_lock, flags);
559 }
560 
561 static void hfi1_init_priority(struct iowait *w)
562 {
563 	struct rvt_qp *qp = iowait_to_qp(w);
564 	struct hfi1_qp_priv *priv = qp->priv;
565 
566 	if (qp->s_flags & RVT_S_ACK_PENDING)
567 		w->priority++;
568 	if (priv->s_flags & RVT_S_ACK_PENDING)
569 		w->priority++;
570 }
571 
572 /**
573  * qp_to_sdma_engine - map a qp to a send engine
574  * @qp: the QP
575  * @sc5: the 5 bit sc
576  *
577  * Return:
578  * A send engine for the qp or NULL for SMI type qp.
579  */
580 struct sdma_engine *qp_to_sdma_engine(struct rvt_qp *qp, u8 sc5)
581 {
582 	struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
583 	struct sdma_engine *sde;
584 
585 	if (!(dd->flags & HFI1_HAS_SEND_DMA))
586 		return NULL;
587 	switch (qp->ibqp.qp_type) {
588 	case IB_QPT_SMI:
589 		return NULL;
590 	default:
591 		break;
592 	}
593 	sde = sdma_select_engine_sc(dd, qp->ibqp.qp_num >> dd->qos_shift, sc5);
594 	return sde;
595 }
596 
597 /*
598  * qp_to_send_context - map a qp to a send context
599  * @qp: the QP
600  * @sc5: the 5 bit sc
601  *
602  * Return:
603  * A send context for the qp
604  */
605 struct send_context *qp_to_send_context(struct rvt_qp *qp, u8 sc5)
606 {
607 	struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
608 
609 	switch (qp->ibqp.qp_type) {
610 	case IB_QPT_SMI:
611 		/* SMA packets to VL15 */
612 		return dd->vld[15].sc;
613 	default:
614 		break;
615 	}
616 
617 	return pio_select_send_context_sc(dd, qp->ibqp.qp_num >> dd->qos_shift,
618 					  sc5);
619 }
620 
621 static const char * const qp_type_str[] = {
622 	"SMI", "GSI", "RC", "UC", "UD",
623 };
624 
625 static int qp_idle(struct rvt_qp *qp)
626 {
627 	return
628 		qp->s_last == qp->s_acked &&
629 		qp->s_acked == qp->s_cur &&
630 		qp->s_cur == qp->s_tail &&
631 		qp->s_tail == qp->s_head;
632 }
633 
634 /**
635  * qp_iter_print - print the qp information to seq_file
636  * @s: the seq_file to emit the qp information on
637  * @iter: the iterator for the qp hash list
638  */
639 void qp_iter_print(struct seq_file *s, struct rvt_qp_iter *iter)
640 {
641 	struct rvt_swqe *wqe;
642 	struct rvt_qp *qp = iter->qp;
643 	struct hfi1_qp_priv *priv = qp->priv;
644 	struct sdma_engine *sde;
645 	struct send_context *send_context;
646 	struct rvt_ack_entry *e = NULL;
647 	struct rvt_srq *srq = qp->ibqp.srq ?
648 		ibsrq_to_rvtsrq(qp->ibqp.srq) : NULL;
649 
650 	sde = qp_to_sdma_engine(qp, priv->s_sc);
651 	wqe = rvt_get_swqe_ptr(qp, qp->s_last);
652 	send_context = qp_to_send_context(qp, priv->s_sc);
653 	if (qp->s_ack_queue)
654 		e = &qp->s_ack_queue[qp->s_tail_ack_queue];
655 	seq_printf(s,
656 		   "N %d %s QP %x R %u %s %u %u f=%x %u %u %u %u %u %u SPSN %x %x %x %x %x RPSN %x S(%u %u %u %u %u %u %u) R(%u %u %u) RQP %x LID %x SL %u MTU %u %u %u %u %u SDE %p,%u SC %p,%u SCQ %u %u PID %d OS %x %x E %x %x %x RNR %d %s %d\n",
657 		   iter->n,
658 		   qp_idle(qp) ? "I" : "B",
659 		   qp->ibqp.qp_num,
660 		   atomic_read(&qp->refcount),
661 		   qp_type_str[qp->ibqp.qp_type],
662 		   qp->state,
663 		   wqe ? wqe->wr.opcode : 0,
664 		   qp->s_flags,
665 		   iowait_sdma_pending(&priv->s_iowait),
666 		   iowait_pio_pending(&priv->s_iowait),
667 		   !list_empty(&priv->s_iowait.list),
668 		   qp->timeout,
669 		   wqe ? wqe->ssn : 0,
670 		   qp->s_lsn,
671 		   qp->s_last_psn,
672 		   qp->s_psn, qp->s_next_psn,
673 		   qp->s_sending_psn, qp->s_sending_hpsn,
674 		   qp->r_psn,
675 		   qp->s_last, qp->s_acked, qp->s_cur,
676 		   qp->s_tail, qp->s_head, qp->s_size,
677 		   qp->s_avail,
678 		   /* ack_queue ring pointers, size */
679 		   qp->s_tail_ack_queue, qp->r_head_ack_queue,
680 		   rvt_max_atomic(&to_idev(qp->ibqp.device)->rdi),
681 		   /* remote QP info  */
682 		   qp->remote_qpn,
683 		   rdma_ah_get_dlid(&qp->remote_ah_attr),
684 		   rdma_ah_get_sl(&qp->remote_ah_attr),
685 		   qp->pmtu,
686 		   qp->s_retry,
687 		   qp->s_retry_cnt,
688 		   qp->s_rnr_retry_cnt,
689 		   qp->s_rnr_retry,
690 		   sde,
691 		   sde ? sde->this_idx : 0,
692 		   send_context,
693 		   send_context ? send_context->sw_index : 0,
694 		   ib_cq_head(qp->ibqp.send_cq),
695 		   ib_cq_tail(qp->ibqp.send_cq),
696 		   qp->pid,
697 		   qp->s_state,
698 		   qp->s_ack_state,
699 		   /* ack queue information */
700 		   e ? e->opcode : 0,
701 		   e ? e->psn : 0,
702 		   e ? e->lpsn : 0,
703 		   qp->r_min_rnr_timer,
704 		   srq ? "SRQ" : "RQ",
705 		   srq ? srq->rq.size : qp->r_rq.size
706 		);
707 }
708 
709 void *qp_priv_alloc(struct rvt_dev_info *rdi, struct rvt_qp *qp)
710 {
711 	struct hfi1_qp_priv *priv;
712 
713 	priv = kzalloc_node(sizeof(*priv), GFP_KERNEL, rdi->dparms.node);
714 	if (!priv)
715 		return ERR_PTR(-ENOMEM);
716 
717 	priv->owner = qp;
718 
719 	priv->s_ahg = kzalloc_node(sizeof(*priv->s_ahg), GFP_KERNEL,
720 				   rdi->dparms.node);
721 	if (!priv->s_ahg) {
722 		kfree(priv);
723 		return ERR_PTR(-ENOMEM);
724 	}
725 	iowait_init(
726 		&priv->s_iowait,
727 		1,
728 		_hfi1_do_send,
729 		_hfi1_do_tid_send,
730 		iowait_sleep,
731 		iowait_wakeup,
732 		iowait_sdma_drained,
733 		hfi1_init_priority);
734 	/* Init to a value to start the running average correctly */
735 	priv->s_running_pkt_size = piothreshold / 2;
736 	return priv;
737 }
738 
739 void qp_priv_free(struct rvt_dev_info *rdi, struct rvt_qp *qp)
740 {
741 	struct hfi1_qp_priv *priv = qp->priv;
742 
743 	hfi1_qp_priv_tid_free(rdi, qp);
744 	kfree(priv->s_ahg);
745 	kfree(priv);
746 }
747 
748 unsigned free_all_qps(struct rvt_dev_info *rdi)
749 {
750 	struct hfi1_ibdev *verbs_dev = container_of(rdi,
751 						    struct hfi1_ibdev,
752 						    rdi);
753 	struct hfi1_devdata *dd = container_of(verbs_dev,
754 					       struct hfi1_devdata,
755 					       verbs_dev);
756 	int n;
757 	unsigned qp_inuse = 0;
758 
759 	for (n = 0; n < dd->num_pports; n++) {
760 		struct hfi1_ibport *ibp = &dd->pport[n].ibport_data;
761 
762 		rcu_read_lock();
763 		if (rcu_dereference(ibp->rvp.qp[0]))
764 			qp_inuse++;
765 		if (rcu_dereference(ibp->rvp.qp[1]))
766 			qp_inuse++;
767 		rcu_read_unlock();
768 	}
769 
770 	return qp_inuse;
771 }
772 
773 void flush_qp_waiters(struct rvt_qp *qp)
774 {
775 	lockdep_assert_held(&qp->s_lock);
776 	flush_iowait(qp);
777 	hfi1_tid_rdma_flush_wait(qp);
778 }
779 
780 void stop_send_queue(struct rvt_qp *qp)
781 {
782 	struct hfi1_qp_priv *priv = qp->priv;
783 
784 	iowait_cancel_work(&priv->s_iowait);
785 	if (cancel_work_sync(&priv->tid_rdma.trigger_work))
786 		rvt_put_qp(qp);
787 }
788 
789 void quiesce_qp(struct rvt_qp *qp)
790 {
791 	struct hfi1_qp_priv *priv = qp->priv;
792 
793 	hfi1_del_tid_reap_timer(qp);
794 	hfi1_del_tid_retry_timer(qp);
795 	iowait_sdma_drain(&priv->s_iowait);
796 	qp_pio_drain(qp);
797 	flush_tx_list(qp);
798 }
799 
800 void notify_qp_reset(struct rvt_qp *qp)
801 {
802 	hfi1_qp_kern_exp_rcv_clear_all(qp);
803 	qp->r_adefered = 0;
804 	clear_ahg(qp);
805 
806 	/* Clear any OPFN state */
807 	if (qp->ibqp.qp_type == IB_QPT_RC)
808 		opfn_conn_error(qp);
809 }
810 
811 /*
812  * Switch to alternate path.
813  * The QP s_lock should be held and interrupts disabled.
814  */
815 void hfi1_migrate_qp(struct rvt_qp *qp)
816 {
817 	struct hfi1_qp_priv *priv = qp->priv;
818 	struct ib_event ev;
819 
820 	qp->s_mig_state = IB_MIG_MIGRATED;
821 	qp->remote_ah_attr = qp->alt_ah_attr;
822 	qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr);
823 	qp->s_pkey_index = qp->s_alt_pkey_index;
824 	qp->s_flags |= HFI1_S_AHG_CLEAR;
825 	priv->s_sc = ah_to_sc(qp->ibqp.device, &qp->remote_ah_attr);
826 	priv->s_sde = qp_to_sdma_engine(qp, priv->s_sc);
827 	qp_set_16b(qp);
828 
829 	ev.device = qp->ibqp.device;
830 	ev.element.qp = &qp->ibqp;
831 	ev.event = IB_EVENT_PATH_MIG;
832 	qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
833 }
834 
835 int mtu_to_path_mtu(u32 mtu)
836 {
837 	return mtu_to_enum(mtu, OPA_MTU_8192);
838 }
839 
840 u32 mtu_from_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, u32 pmtu)
841 {
842 	u32 mtu;
843 	struct hfi1_ibdev *verbs_dev = container_of(rdi,
844 						    struct hfi1_ibdev,
845 						    rdi);
846 	struct hfi1_devdata *dd = container_of(verbs_dev,
847 					       struct hfi1_devdata,
848 					       verbs_dev);
849 	struct hfi1_ibport *ibp;
850 	u8 sc, vl;
851 
852 	ibp = &dd->pport[qp->port_num - 1].ibport_data;
853 	sc = ibp->sl_to_sc[rdma_ah_get_sl(&qp->remote_ah_attr)];
854 	vl = sc_to_vlt(dd, sc);
855 
856 	mtu = verbs_mtu_enum_to_int(qp->ibqp.device, pmtu);
857 	if (vl < PER_VL_SEND_CONTEXTS)
858 		mtu = min_t(u32, mtu, dd->vld[vl].mtu);
859 	return mtu;
860 }
861 
862 int get_pmtu_from_attr(struct rvt_dev_info *rdi, struct rvt_qp *qp,
863 		       struct ib_qp_attr *attr)
864 {
865 	int mtu, pidx = qp->port_num - 1;
866 	struct hfi1_ibdev *verbs_dev = container_of(rdi,
867 						    struct hfi1_ibdev,
868 						    rdi);
869 	struct hfi1_devdata *dd = container_of(verbs_dev,
870 					       struct hfi1_devdata,
871 					       verbs_dev);
872 	mtu = verbs_mtu_enum_to_int(qp->ibqp.device, attr->path_mtu);
873 	if (mtu == -1)
874 		return -1; /* values less than 0 are error */
875 
876 	if (mtu > dd->pport[pidx].ibmtu)
877 		return mtu_to_enum(dd->pport[pidx].ibmtu, IB_MTU_2048);
878 	else
879 		return attr->path_mtu;
880 }
881 
882 void notify_error_qp(struct rvt_qp *qp)
883 {
884 	struct hfi1_qp_priv *priv = qp->priv;
885 	seqlock_t *lock = priv->s_iowait.lock;
886 
887 	if (lock) {
888 		write_seqlock(lock);
889 		if (!list_empty(&priv->s_iowait.list) &&
890 		    !(qp->s_flags & RVT_S_BUSY) &&
891 		    !(priv->s_flags & RVT_S_BUSY)) {
892 			qp->s_flags &= ~HFI1_S_ANY_WAIT_IO;
893 			iowait_clear_flag(&priv->s_iowait, IOWAIT_PENDING_IB);
894 			iowait_clear_flag(&priv->s_iowait, IOWAIT_PENDING_TID);
895 			list_del_init(&priv->s_iowait.list);
896 			priv->s_iowait.lock = NULL;
897 			rvt_put_qp(qp);
898 		}
899 		write_sequnlock(lock);
900 	}
901 
902 	if (!(qp->s_flags & RVT_S_BUSY) && !(priv->s_flags & RVT_S_BUSY)) {
903 		qp->s_hdrwords = 0;
904 		if (qp->s_rdma_mr) {
905 			rvt_put_mr(qp->s_rdma_mr);
906 			qp->s_rdma_mr = NULL;
907 		}
908 		flush_tx_list(qp);
909 	}
910 }
911 
912 /**
913  * hfi1_qp_iter_cb - callback for iterator
914  * @qp - the qp
915  * @v - the sl in low bits of v
916  *
917  * This is called from the iterator callback to work
918  * on an individual qp.
919  */
920 static void hfi1_qp_iter_cb(struct rvt_qp *qp, u64 v)
921 {
922 	int lastwqe;
923 	struct ib_event ev;
924 	struct hfi1_ibport *ibp =
925 		to_iport(qp->ibqp.device, qp->port_num);
926 	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
927 	u8 sl = (u8)v;
928 
929 	if (qp->port_num != ppd->port ||
930 	    (qp->ibqp.qp_type != IB_QPT_UC &&
931 	     qp->ibqp.qp_type != IB_QPT_RC) ||
932 	    rdma_ah_get_sl(&qp->remote_ah_attr) != sl ||
933 	    !(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))
934 		return;
935 
936 	spin_lock_irq(&qp->r_lock);
937 	spin_lock(&qp->s_hlock);
938 	spin_lock(&qp->s_lock);
939 	lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
940 	spin_unlock(&qp->s_lock);
941 	spin_unlock(&qp->s_hlock);
942 	spin_unlock_irq(&qp->r_lock);
943 	if (lastwqe) {
944 		ev.device = qp->ibqp.device;
945 		ev.element.qp = &qp->ibqp;
946 		ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
947 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
948 	}
949 }
950 
951 /**
952  * hfi1_error_port_qps - put a port's RC/UC qps into error state
953  * @ibp: the ibport.
954  * @sl: the service level.
955  *
956  * This function places all RC/UC qps with a given service level into error
957  * state. It is generally called to force upper lay apps to abandon stale qps
958  * after an sl->sc mapping change.
959  */
960 void hfi1_error_port_qps(struct hfi1_ibport *ibp, u8 sl)
961 {
962 	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
963 	struct hfi1_ibdev *dev = &ppd->dd->verbs_dev;
964 
965 	rvt_qp_iter(&dev->rdi, sl, hfi1_qp_iter_cb);
966 }
967