1 /* 2 * Copyright(c) 2015 - 2018 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 #include <linux/err.h> 49 #include <linux/vmalloc.h> 50 #include <linux/hash.h> 51 #include <linux/module.h> 52 #include <linux/seq_file.h> 53 #include <rdma/rdma_vt.h> 54 #include <rdma/rdmavt_qp.h> 55 #include <rdma/ib_verbs.h> 56 57 #include "hfi.h" 58 #include "qp.h" 59 #include "trace.h" 60 #include "verbs_txreq.h" 61 62 unsigned int hfi1_qp_table_size = 256; 63 module_param_named(qp_table_size, hfi1_qp_table_size, uint, S_IRUGO); 64 MODULE_PARM_DESC(qp_table_size, "QP table size"); 65 66 static void flush_tx_list(struct rvt_qp *qp); 67 static int iowait_sleep( 68 struct sdma_engine *sde, 69 struct iowait *wait, 70 struct sdma_txreq *stx, 71 unsigned int seq, 72 bool pkts_sent); 73 static void iowait_wakeup(struct iowait *wait, int reason); 74 static void iowait_sdma_drained(struct iowait *wait); 75 static void qp_pio_drain(struct rvt_qp *qp); 76 77 const struct rvt_operation_params hfi1_post_parms[RVT_OPERATION_MAX] = { 78 [IB_WR_RDMA_WRITE] = { 79 .length = sizeof(struct ib_rdma_wr), 80 .qpt_support = BIT(IB_QPT_UC) | BIT(IB_QPT_RC), 81 }, 82 83 [IB_WR_RDMA_READ] = { 84 .length = sizeof(struct ib_rdma_wr), 85 .qpt_support = BIT(IB_QPT_RC), 86 .flags = RVT_OPERATION_ATOMIC, 87 }, 88 89 [IB_WR_ATOMIC_CMP_AND_SWP] = { 90 .length = sizeof(struct ib_atomic_wr), 91 .qpt_support = BIT(IB_QPT_RC), 92 .flags = RVT_OPERATION_ATOMIC | RVT_OPERATION_ATOMIC_SGE, 93 }, 94 95 [IB_WR_ATOMIC_FETCH_AND_ADD] = { 96 .length = sizeof(struct ib_atomic_wr), 97 .qpt_support = BIT(IB_QPT_RC), 98 .flags = RVT_OPERATION_ATOMIC | RVT_OPERATION_ATOMIC_SGE, 99 }, 100 101 [IB_WR_RDMA_WRITE_WITH_IMM] = { 102 .length = sizeof(struct ib_rdma_wr), 103 .qpt_support = BIT(IB_QPT_UC) | BIT(IB_QPT_RC), 104 }, 105 106 [IB_WR_SEND] = { 107 .length = sizeof(struct ib_send_wr), 108 .qpt_support = BIT(IB_QPT_UD) | BIT(IB_QPT_SMI) | BIT(IB_QPT_GSI) | 109 BIT(IB_QPT_UC) | BIT(IB_QPT_RC), 110 }, 111 112 [IB_WR_SEND_WITH_IMM] = { 113 .length = sizeof(struct ib_send_wr), 114 .qpt_support = BIT(IB_QPT_UD) | BIT(IB_QPT_SMI) | BIT(IB_QPT_GSI) | 115 BIT(IB_QPT_UC) | BIT(IB_QPT_RC), 116 }, 117 118 [IB_WR_REG_MR] = { 119 .length = sizeof(struct ib_reg_wr), 120 .qpt_support = BIT(IB_QPT_UC) | BIT(IB_QPT_RC), 121 .flags = RVT_OPERATION_LOCAL, 122 }, 123 124 [IB_WR_LOCAL_INV] = { 125 .length = sizeof(struct ib_send_wr), 126 .qpt_support = BIT(IB_QPT_UC) | BIT(IB_QPT_RC), 127 .flags = RVT_OPERATION_LOCAL, 128 }, 129 130 [IB_WR_SEND_WITH_INV] = { 131 .length = sizeof(struct ib_send_wr), 132 .qpt_support = BIT(IB_QPT_RC), 133 }, 134 135 }; 136 137 static void flush_tx_list(struct rvt_qp *qp) 138 { 139 struct hfi1_qp_priv *priv = qp->priv; 140 141 while (!list_empty(&priv->s_iowait.tx_head)) { 142 struct sdma_txreq *tx; 143 144 tx = list_first_entry( 145 &priv->s_iowait.tx_head, 146 struct sdma_txreq, 147 list); 148 list_del_init(&tx->list); 149 hfi1_put_txreq( 150 container_of(tx, struct verbs_txreq, txreq)); 151 } 152 } 153 154 static void flush_iowait(struct rvt_qp *qp) 155 { 156 struct hfi1_qp_priv *priv = qp->priv; 157 unsigned long flags; 158 seqlock_t *lock = priv->s_iowait.lock; 159 160 if (!lock) 161 return; 162 write_seqlock_irqsave(lock, flags); 163 if (!list_empty(&priv->s_iowait.list)) { 164 list_del_init(&priv->s_iowait.list); 165 priv->s_iowait.lock = NULL; 166 rvt_put_qp(qp); 167 } 168 write_sequnlock_irqrestore(lock, flags); 169 } 170 171 static inline int opa_mtu_enum_to_int(int mtu) 172 { 173 switch (mtu) { 174 case OPA_MTU_8192: return 8192; 175 case OPA_MTU_10240: return 10240; 176 default: return -1; 177 } 178 } 179 180 /** 181 * This function is what we would push to the core layer if we wanted to be a 182 * "first class citizen". Instead we hide this here and rely on Verbs ULPs 183 * to blindly pass the MTU enum value from the PathRecord to us. 184 */ 185 static inline int verbs_mtu_enum_to_int(struct ib_device *dev, enum ib_mtu mtu) 186 { 187 int val; 188 189 /* Constraining 10KB packets to 8KB packets */ 190 if (mtu == (enum ib_mtu)OPA_MTU_10240) 191 mtu = OPA_MTU_8192; 192 val = opa_mtu_enum_to_int((int)mtu); 193 if (val > 0) 194 return val; 195 return ib_mtu_enum_to_int(mtu); 196 } 197 198 int hfi1_check_modify_qp(struct rvt_qp *qp, struct ib_qp_attr *attr, 199 int attr_mask, struct ib_udata *udata) 200 { 201 struct ib_qp *ibqp = &qp->ibqp; 202 struct hfi1_ibdev *dev = to_idev(ibqp->device); 203 struct hfi1_devdata *dd = dd_from_dev(dev); 204 u8 sc; 205 206 if (attr_mask & IB_QP_AV) { 207 sc = ah_to_sc(ibqp->device, &attr->ah_attr); 208 if (sc == 0xf) 209 return -EINVAL; 210 211 if (!qp_to_sdma_engine(qp, sc) && 212 dd->flags & HFI1_HAS_SEND_DMA) 213 return -EINVAL; 214 215 if (!qp_to_send_context(qp, sc)) 216 return -EINVAL; 217 } 218 219 if (attr_mask & IB_QP_ALT_PATH) { 220 sc = ah_to_sc(ibqp->device, &attr->alt_ah_attr); 221 if (sc == 0xf) 222 return -EINVAL; 223 224 if (!qp_to_sdma_engine(qp, sc) && 225 dd->flags & HFI1_HAS_SEND_DMA) 226 return -EINVAL; 227 228 if (!qp_to_send_context(qp, sc)) 229 return -EINVAL; 230 } 231 232 return 0; 233 } 234 235 /* 236 * qp_set_16b - Set the hdr_type based on whether the slid or the 237 * dlid in the connection is extended. Only applicable for RC and UC 238 * QPs. UD QPs determine this on the fly from the ah in the wqe 239 */ 240 static inline void qp_set_16b(struct rvt_qp *qp) 241 { 242 struct hfi1_pportdata *ppd; 243 struct hfi1_ibport *ibp; 244 struct hfi1_qp_priv *priv = qp->priv; 245 246 /* Update ah_attr to account for extended LIDs */ 247 hfi1_update_ah_attr(qp->ibqp.device, &qp->remote_ah_attr); 248 249 /* Create 32 bit LIDs */ 250 hfi1_make_opa_lid(&qp->remote_ah_attr); 251 252 if (!(rdma_ah_get_ah_flags(&qp->remote_ah_attr) & IB_AH_GRH)) 253 return; 254 255 ibp = to_iport(qp->ibqp.device, qp->port_num); 256 ppd = ppd_from_ibp(ibp); 257 priv->hdr_type = hfi1_get_hdr_type(ppd->lid, &qp->remote_ah_attr); 258 } 259 260 void hfi1_modify_qp(struct rvt_qp *qp, struct ib_qp_attr *attr, 261 int attr_mask, struct ib_udata *udata) 262 { 263 struct ib_qp *ibqp = &qp->ibqp; 264 struct hfi1_qp_priv *priv = qp->priv; 265 266 if (attr_mask & IB_QP_AV) { 267 priv->s_sc = ah_to_sc(ibqp->device, &qp->remote_ah_attr); 268 priv->s_sde = qp_to_sdma_engine(qp, priv->s_sc); 269 priv->s_sendcontext = qp_to_send_context(qp, priv->s_sc); 270 qp_set_16b(qp); 271 } 272 273 if (attr_mask & IB_QP_PATH_MIG_STATE && 274 attr->path_mig_state == IB_MIG_MIGRATED && 275 qp->s_mig_state == IB_MIG_ARMED) { 276 qp->s_flags |= HFI1_S_AHG_CLEAR; 277 priv->s_sc = ah_to_sc(ibqp->device, &qp->remote_ah_attr); 278 priv->s_sde = qp_to_sdma_engine(qp, priv->s_sc); 279 priv->s_sendcontext = qp_to_send_context(qp, priv->s_sc); 280 qp_set_16b(qp); 281 } 282 } 283 284 /** 285 * hfi1_check_send_wqe - validate wqe 286 * @qp - The qp 287 * @wqe - The built wqe 288 * 289 * validate wqe. This is called 290 * prior to inserting the wqe into 291 * the ring but after the wqe has been 292 * setup. 293 * 294 * Returns 0 on success, -EINVAL on failure 295 * 296 */ 297 int hfi1_check_send_wqe(struct rvt_qp *qp, 298 struct rvt_swqe *wqe) 299 { 300 struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num); 301 struct rvt_ah *ah; 302 303 switch (qp->ibqp.qp_type) { 304 case IB_QPT_RC: 305 case IB_QPT_UC: 306 if (wqe->length > 0x80000000U) 307 return -EINVAL; 308 break; 309 case IB_QPT_SMI: 310 ah = ibah_to_rvtah(wqe->ud_wr.ah); 311 if (wqe->length > (1 << ah->log_pmtu)) 312 return -EINVAL; 313 break; 314 case IB_QPT_GSI: 315 case IB_QPT_UD: 316 ah = ibah_to_rvtah(wqe->ud_wr.ah); 317 if (wqe->length > (1 << ah->log_pmtu)) 318 return -EINVAL; 319 if (ibp->sl_to_sc[rdma_ah_get_sl(&ah->attr)] == 0xf) 320 return -EINVAL; 321 default: 322 break; 323 } 324 return wqe->length <= piothreshold; 325 } 326 327 /** 328 * _hfi1_schedule_send - schedule progress 329 * @qp: the QP 330 * 331 * This schedules qp progress w/o regard to the s_flags. 332 * 333 * It is only used in the post send, which doesn't hold 334 * the s_lock. 335 */ 336 void _hfi1_schedule_send(struct rvt_qp *qp) 337 { 338 struct hfi1_qp_priv *priv = qp->priv; 339 struct hfi1_ibport *ibp = 340 to_iport(qp->ibqp.device, qp->port_num); 341 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 342 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device); 343 344 iowait_schedule(&priv->s_iowait, ppd->hfi1_wq, 345 priv->s_sde ? 346 priv->s_sde->cpu : 347 cpumask_first(cpumask_of_node(dd->node))); 348 } 349 350 static void qp_pio_drain(struct rvt_qp *qp) 351 { 352 struct hfi1_ibdev *dev; 353 struct hfi1_qp_priv *priv = qp->priv; 354 355 if (!priv->s_sendcontext) 356 return; 357 dev = to_idev(qp->ibqp.device); 358 while (iowait_pio_pending(&priv->s_iowait)) { 359 write_seqlock_irq(&dev->iowait_lock); 360 hfi1_sc_wantpiobuf_intr(priv->s_sendcontext, 1); 361 write_sequnlock_irq(&dev->iowait_lock); 362 iowait_pio_drain(&priv->s_iowait); 363 write_seqlock_irq(&dev->iowait_lock); 364 hfi1_sc_wantpiobuf_intr(priv->s_sendcontext, 0); 365 write_sequnlock_irq(&dev->iowait_lock); 366 } 367 } 368 369 /** 370 * hfi1_schedule_send - schedule progress 371 * @qp: the QP 372 * 373 * This schedules qp progress and caller should hold 374 * the s_lock. 375 */ 376 void hfi1_schedule_send(struct rvt_qp *qp) 377 { 378 lockdep_assert_held(&qp->s_lock); 379 if (hfi1_send_ok(qp)) 380 _hfi1_schedule_send(qp); 381 } 382 383 void hfi1_qp_wakeup(struct rvt_qp *qp, u32 flag) 384 { 385 unsigned long flags; 386 387 spin_lock_irqsave(&qp->s_lock, flags); 388 if (qp->s_flags & flag) { 389 qp->s_flags &= ~flag; 390 trace_hfi1_qpwakeup(qp, flag); 391 hfi1_schedule_send(qp); 392 } 393 spin_unlock_irqrestore(&qp->s_lock, flags); 394 /* Notify hfi1_destroy_qp() if it is waiting. */ 395 rvt_put_qp(qp); 396 } 397 398 static int iowait_sleep( 399 struct sdma_engine *sde, 400 struct iowait *wait, 401 struct sdma_txreq *stx, 402 uint seq, 403 bool pkts_sent) 404 { 405 struct verbs_txreq *tx = container_of(stx, struct verbs_txreq, txreq); 406 struct rvt_qp *qp; 407 struct hfi1_qp_priv *priv; 408 unsigned long flags; 409 int ret = 0; 410 struct hfi1_ibdev *dev; 411 412 qp = tx->qp; 413 priv = qp->priv; 414 415 spin_lock_irqsave(&qp->s_lock, flags); 416 if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) { 417 /* 418 * If we couldn't queue the DMA request, save the info 419 * and try again later rather than destroying the 420 * buffer and undoing the side effects of the copy. 421 */ 422 /* Make a common routine? */ 423 dev = &sde->dd->verbs_dev; 424 list_add_tail(&stx->list, &wait->tx_head); 425 write_seqlock(&dev->iowait_lock); 426 if (sdma_progress(sde, seq, stx)) 427 goto eagain; 428 if (list_empty(&priv->s_iowait.list)) { 429 struct hfi1_ibport *ibp = 430 to_iport(qp->ibqp.device, qp->port_num); 431 432 ibp->rvp.n_dmawait++; 433 qp->s_flags |= RVT_S_WAIT_DMA_DESC; 434 iowait_queue(pkts_sent, &priv->s_iowait, 435 &sde->dmawait); 436 priv->s_iowait.lock = &dev->iowait_lock; 437 trace_hfi1_qpsleep(qp, RVT_S_WAIT_DMA_DESC); 438 rvt_get_qp(qp); 439 } 440 write_sequnlock(&dev->iowait_lock); 441 qp->s_flags &= ~RVT_S_BUSY; 442 spin_unlock_irqrestore(&qp->s_lock, flags); 443 ret = -EBUSY; 444 } else { 445 spin_unlock_irqrestore(&qp->s_lock, flags); 446 hfi1_put_txreq(tx); 447 } 448 return ret; 449 eagain: 450 write_sequnlock(&dev->iowait_lock); 451 spin_unlock_irqrestore(&qp->s_lock, flags); 452 list_del_init(&stx->list); 453 return -EAGAIN; 454 } 455 456 static void iowait_wakeup(struct iowait *wait, int reason) 457 { 458 struct rvt_qp *qp = iowait_to_qp(wait); 459 460 WARN_ON(reason != SDMA_AVAIL_REASON); 461 hfi1_qp_wakeup(qp, RVT_S_WAIT_DMA_DESC); 462 } 463 464 static void iowait_sdma_drained(struct iowait *wait) 465 { 466 struct rvt_qp *qp = iowait_to_qp(wait); 467 unsigned long flags; 468 469 /* 470 * This happens when the send engine notes 471 * a QP in the error state and cannot 472 * do the flush work until that QP's 473 * sdma work has finished. 474 */ 475 spin_lock_irqsave(&qp->s_lock, flags); 476 if (qp->s_flags & RVT_S_WAIT_DMA) { 477 qp->s_flags &= ~RVT_S_WAIT_DMA; 478 hfi1_schedule_send(qp); 479 } 480 spin_unlock_irqrestore(&qp->s_lock, flags); 481 } 482 483 /** 484 * qp_to_sdma_engine - map a qp to a send engine 485 * @qp: the QP 486 * @sc5: the 5 bit sc 487 * 488 * Return: 489 * A send engine for the qp or NULL for SMI type qp. 490 */ 491 struct sdma_engine *qp_to_sdma_engine(struct rvt_qp *qp, u8 sc5) 492 { 493 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device); 494 struct sdma_engine *sde; 495 496 if (!(dd->flags & HFI1_HAS_SEND_DMA)) 497 return NULL; 498 switch (qp->ibqp.qp_type) { 499 case IB_QPT_SMI: 500 return NULL; 501 default: 502 break; 503 } 504 sde = sdma_select_engine_sc(dd, qp->ibqp.qp_num >> dd->qos_shift, sc5); 505 return sde; 506 } 507 508 /* 509 * qp_to_send_context - map a qp to a send context 510 * @qp: the QP 511 * @sc5: the 5 bit sc 512 * 513 * Return: 514 * A send context for the qp 515 */ 516 struct send_context *qp_to_send_context(struct rvt_qp *qp, u8 sc5) 517 { 518 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device); 519 520 switch (qp->ibqp.qp_type) { 521 case IB_QPT_SMI: 522 /* SMA packets to VL15 */ 523 return dd->vld[15].sc; 524 default: 525 break; 526 } 527 528 return pio_select_send_context_sc(dd, qp->ibqp.qp_num >> dd->qos_shift, 529 sc5); 530 } 531 532 static const char * const qp_type_str[] = { 533 "SMI", "GSI", "RC", "UC", "UD", 534 }; 535 536 static int qp_idle(struct rvt_qp *qp) 537 { 538 return 539 qp->s_last == qp->s_acked && 540 qp->s_acked == qp->s_cur && 541 qp->s_cur == qp->s_tail && 542 qp->s_tail == qp->s_head; 543 } 544 545 /** 546 * qp_iter_print - print the qp information to seq_file 547 * @s: the seq_file to emit the qp information on 548 * @iter: the iterator for the qp hash list 549 */ 550 void qp_iter_print(struct seq_file *s, struct rvt_qp_iter *iter) 551 { 552 struct rvt_swqe *wqe; 553 struct rvt_qp *qp = iter->qp; 554 struct hfi1_qp_priv *priv = qp->priv; 555 struct sdma_engine *sde; 556 struct send_context *send_context; 557 struct rvt_ack_entry *e = NULL; 558 struct rvt_srq *srq = qp->ibqp.srq ? 559 ibsrq_to_rvtsrq(qp->ibqp.srq) : NULL; 560 561 sde = qp_to_sdma_engine(qp, priv->s_sc); 562 wqe = rvt_get_swqe_ptr(qp, qp->s_last); 563 send_context = qp_to_send_context(qp, priv->s_sc); 564 if (qp->s_ack_queue) 565 e = &qp->s_ack_queue[qp->s_tail_ack_queue]; 566 seq_printf(s, 567 "N %d %s QP %x R %u %s %u %u f=%x %u %u %u %u %u %u SPSN %x %x %x %x %x RPSN %x S(%u %u %u %u %u %u %u) R(%u %u %u) RQP %x LID %x SL %u MTU %u %u %u %u %u SDE %p,%u SC %p,%u SCQ %u %u PID %d OS %x %x E %x %x %x RNR %d %s %d\n", 568 iter->n, 569 qp_idle(qp) ? "I" : "B", 570 qp->ibqp.qp_num, 571 atomic_read(&qp->refcount), 572 qp_type_str[qp->ibqp.qp_type], 573 qp->state, 574 wqe ? wqe->wr.opcode : 0, 575 qp->s_flags, 576 iowait_sdma_pending(&priv->s_iowait), 577 iowait_pio_pending(&priv->s_iowait), 578 !list_empty(&priv->s_iowait.list), 579 qp->timeout, 580 wqe ? wqe->ssn : 0, 581 qp->s_lsn, 582 qp->s_last_psn, 583 qp->s_psn, qp->s_next_psn, 584 qp->s_sending_psn, qp->s_sending_hpsn, 585 qp->r_psn, 586 qp->s_last, qp->s_acked, qp->s_cur, 587 qp->s_tail, qp->s_head, qp->s_size, 588 qp->s_avail, 589 /* ack_queue ring pointers, size */ 590 qp->s_tail_ack_queue, qp->r_head_ack_queue, 591 rvt_max_atomic(&to_idev(qp->ibqp.device)->rdi), 592 /* remote QP info */ 593 qp->remote_qpn, 594 rdma_ah_get_dlid(&qp->remote_ah_attr), 595 rdma_ah_get_sl(&qp->remote_ah_attr), 596 qp->pmtu, 597 qp->s_retry, 598 qp->s_retry_cnt, 599 qp->s_rnr_retry_cnt, 600 qp->s_rnr_retry, 601 sde, 602 sde ? sde->this_idx : 0, 603 send_context, 604 send_context ? send_context->sw_index : 0, 605 ibcq_to_rvtcq(qp->ibqp.send_cq)->queue->head, 606 ibcq_to_rvtcq(qp->ibqp.send_cq)->queue->tail, 607 qp->pid, 608 qp->s_state, 609 qp->s_ack_state, 610 /* ack queue information */ 611 e ? e->opcode : 0, 612 e ? e->psn : 0, 613 e ? e->lpsn : 0, 614 qp->r_min_rnr_timer, 615 srq ? "SRQ" : "RQ", 616 srq ? srq->rq.size : qp->r_rq.size 617 ); 618 } 619 620 void *qp_priv_alloc(struct rvt_dev_info *rdi, struct rvt_qp *qp) 621 { 622 struct hfi1_qp_priv *priv; 623 624 priv = kzalloc_node(sizeof(*priv), GFP_KERNEL, rdi->dparms.node); 625 if (!priv) 626 return ERR_PTR(-ENOMEM); 627 628 priv->owner = qp; 629 630 priv->s_ahg = kzalloc_node(sizeof(*priv->s_ahg), GFP_KERNEL, 631 rdi->dparms.node); 632 if (!priv->s_ahg) { 633 kfree(priv); 634 return ERR_PTR(-ENOMEM); 635 } 636 iowait_init( 637 &priv->s_iowait, 638 1, 639 _hfi1_do_send, 640 iowait_sleep, 641 iowait_wakeup, 642 iowait_sdma_drained); 643 return priv; 644 } 645 646 void qp_priv_free(struct rvt_dev_info *rdi, struct rvt_qp *qp) 647 { 648 struct hfi1_qp_priv *priv = qp->priv; 649 650 kfree(priv->s_ahg); 651 kfree(priv); 652 } 653 654 unsigned free_all_qps(struct rvt_dev_info *rdi) 655 { 656 struct hfi1_ibdev *verbs_dev = container_of(rdi, 657 struct hfi1_ibdev, 658 rdi); 659 struct hfi1_devdata *dd = container_of(verbs_dev, 660 struct hfi1_devdata, 661 verbs_dev); 662 int n; 663 unsigned qp_inuse = 0; 664 665 for (n = 0; n < dd->num_pports; n++) { 666 struct hfi1_ibport *ibp = &dd->pport[n].ibport_data; 667 668 rcu_read_lock(); 669 if (rcu_dereference(ibp->rvp.qp[0])) 670 qp_inuse++; 671 if (rcu_dereference(ibp->rvp.qp[1])) 672 qp_inuse++; 673 rcu_read_unlock(); 674 } 675 676 return qp_inuse; 677 } 678 679 void flush_qp_waiters(struct rvt_qp *qp) 680 { 681 lockdep_assert_held(&qp->s_lock); 682 flush_iowait(qp); 683 } 684 685 void stop_send_queue(struct rvt_qp *qp) 686 { 687 struct hfi1_qp_priv *priv = qp->priv; 688 689 cancel_work_sync(&priv->s_iowait.iowork); 690 } 691 692 void quiesce_qp(struct rvt_qp *qp) 693 { 694 struct hfi1_qp_priv *priv = qp->priv; 695 696 iowait_sdma_drain(&priv->s_iowait); 697 qp_pio_drain(qp); 698 flush_tx_list(qp); 699 } 700 701 void notify_qp_reset(struct rvt_qp *qp) 702 { 703 qp->r_adefered = 0; 704 clear_ahg(qp); 705 } 706 707 /* 708 * Switch to alternate path. 709 * The QP s_lock should be held and interrupts disabled. 710 */ 711 void hfi1_migrate_qp(struct rvt_qp *qp) 712 { 713 struct hfi1_qp_priv *priv = qp->priv; 714 struct ib_event ev; 715 716 qp->s_mig_state = IB_MIG_MIGRATED; 717 qp->remote_ah_attr = qp->alt_ah_attr; 718 qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr); 719 qp->s_pkey_index = qp->s_alt_pkey_index; 720 qp->s_flags |= HFI1_S_AHG_CLEAR; 721 priv->s_sc = ah_to_sc(qp->ibqp.device, &qp->remote_ah_attr); 722 priv->s_sde = qp_to_sdma_engine(qp, priv->s_sc); 723 qp_set_16b(qp); 724 725 ev.device = qp->ibqp.device; 726 ev.element.qp = &qp->ibqp; 727 ev.event = IB_EVENT_PATH_MIG; 728 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 729 } 730 731 int mtu_to_path_mtu(u32 mtu) 732 { 733 return mtu_to_enum(mtu, OPA_MTU_8192); 734 } 735 736 u32 mtu_from_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, u32 pmtu) 737 { 738 u32 mtu; 739 struct hfi1_ibdev *verbs_dev = container_of(rdi, 740 struct hfi1_ibdev, 741 rdi); 742 struct hfi1_devdata *dd = container_of(verbs_dev, 743 struct hfi1_devdata, 744 verbs_dev); 745 struct hfi1_ibport *ibp; 746 u8 sc, vl; 747 748 ibp = &dd->pport[qp->port_num - 1].ibport_data; 749 sc = ibp->sl_to_sc[rdma_ah_get_sl(&qp->remote_ah_attr)]; 750 vl = sc_to_vlt(dd, sc); 751 752 mtu = verbs_mtu_enum_to_int(qp->ibqp.device, pmtu); 753 if (vl < PER_VL_SEND_CONTEXTS) 754 mtu = min_t(u32, mtu, dd->vld[vl].mtu); 755 return mtu; 756 } 757 758 int get_pmtu_from_attr(struct rvt_dev_info *rdi, struct rvt_qp *qp, 759 struct ib_qp_attr *attr) 760 { 761 int mtu, pidx = qp->port_num - 1; 762 struct hfi1_ibdev *verbs_dev = container_of(rdi, 763 struct hfi1_ibdev, 764 rdi); 765 struct hfi1_devdata *dd = container_of(verbs_dev, 766 struct hfi1_devdata, 767 verbs_dev); 768 mtu = verbs_mtu_enum_to_int(qp->ibqp.device, attr->path_mtu); 769 if (mtu == -1) 770 return -1; /* values less than 0 are error */ 771 772 if (mtu > dd->pport[pidx].ibmtu) 773 return mtu_to_enum(dd->pport[pidx].ibmtu, IB_MTU_2048); 774 else 775 return attr->path_mtu; 776 } 777 778 void notify_error_qp(struct rvt_qp *qp) 779 { 780 struct hfi1_qp_priv *priv = qp->priv; 781 seqlock_t *lock = priv->s_iowait.lock; 782 783 if (lock) { 784 write_seqlock(lock); 785 if (!list_empty(&priv->s_iowait.list) && 786 !(qp->s_flags & RVT_S_BUSY)) { 787 qp->s_flags &= ~RVT_S_ANY_WAIT_IO; 788 list_del_init(&priv->s_iowait.list); 789 priv->s_iowait.lock = NULL; 790 rvt_put_qp(qp); 791 } 792 write_sequnlock(lock); 793 } 794 795 if (!(qp->s_flags & RVT_S_BUSY)) { 796 if (qp->s_rdma_mr) { 797 rvt_put_mr(qp->s_rdma_mr); 798 qp->s_rdma_mr = NULL; 799 } 800 flush_tx_list(qp); 801 } 802 } 803 804 /** 805 * hfi1_qp_iter_cb - callback for iterator 806 * @qp - the qp 807 * @v - the sl in low bits of v 808 * 809 * This is called from the iterator callback to work 810 * on an individual qp. 811 */ 812 static void hfi1_qp_iter_cb(struct rvt_qp *qp, u64 v) 813 { 814 int lastwqe; 815 struct ib_event ev; 816 struct hfi1_ibport *ibp = 817 to_iport(qp->ibqp.device, qp->port_num); 818 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 819 u8 sl = (u8)v; 820 821 if (qp->port_num != ppd->port || 822 (qp->ibqp.qp_type != IB_QPT_UC && 823 qp->ibqp.qp_type != IB_QPT_RC) || 824 rdma_ah_get_sl(&qp->remote_ah_attr) != sl || 825 !(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK)) 826 return; 827 828 spin_lock_irq(&qp->r_lock); 829 spin_lock(&qp->s_hlock); 830 spin_lock(&qp->s_lock); 831 lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR); 832 spin_unlock(&qp->s_lock); 833 spin_unlock(&qp->s_hlock); 834 spin_unlock_irq(&qp->r_lock); 835 if (lastwqe) { 836 ev.device = qp->ibqp.device; 837 ev.element.qp = &qp->ibqp; 838 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 839 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 840 } 841 } 842 843 /** 844 * hfi1_error_port_qps - put a port's RC/UC qps into error state 845 * @ibp: the ibport. 846 * @sl: the service level. 847 * 848 * This function places all RC/UC qps with a given service level into error 849 * state. It is generally called to force upper lay apps to abandon stale qps 850 * after an sl->sc mapping change. 851 */ 852 void hfi1_error_port_qps(struct hfi1_ibport *ibp, u8 sl) 853 { 854 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 855 struct hfi1_ibdev *dev = &ppd->dd->verbs_dev; 856 857 rvt_qp_iter(&dev->rdi, sl, hfi1_qp_iter_cb); 858 } 859