1 /* 2 * Copyright(c) 2015-2018 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 #include <linux/delay.h> 49 #include "hfi.h" 50 #include "qp.h" 51 #include "trace.h" 52 53 #define SC(name) SEND_CTXT_##name 54 /* 55 * Send Context functions 56 */ 57 static void sc_wait_for_packet_egress(struct send_context *sc, int pause); 58 59 /* 60 * Set the CM reset bit and wait for it to clear. Use the provided 61 * sendctrl register. This routine has no locking. 62 */ 63 void __cm_reset(struct hfi1_devdata *dd, u64 sendctrl) 64 { 65 write_csr(dd, SEND_CTRL, sendctrl | SEND_CTRL_CM_RESET_SMASK); 66 while (1) { 67 udelay(1); 68 sendctrl = read_csr(dd, SEND_CTRL); 69 if ((sendctrl & SEND_CTRL_CM_RESET_SMASK) == 0) 70 break; 71 } 72 } 73 74 /* global control of PIO send */ 75 void pio_send_control(struct hfi1_devdata *dd, int op) 76 { 77 u64 reg, mask; 78 unsigned long flags; 79 int write = 1; /* write sendctrl back */ 80 int flush = 0; /* re-read sendctrl to make sure it is flushed */ 81 int i; 82 83 spin_lock_irqsave(&dd->sendctrl_lock, flags); 84 85 reg = read_csr(dd, SEND_CTRL); 86 switch (op) { 87 case PSC_GLOBAL_ENABLE: 88 reg |= SEND_CTRL_SEND_ENABLE_SMASK; 89 /* Fall through */ 90 case PSC_DATA_VL_ENABLE: 91 mask = 0; 92 for (i = 0; i < ARRAY_SIZE(dd->vld); i++) 93 if (!dd->vld[i].mtu) 94 mask |= BIT_ULL(i); 95 /* Disallow sending on VLs not enabled */ 96 mask = (mask & SEND_CTRL_UNSUPPORTED_VL_MASK) << 97 SEND_CTRL_UNSUPPORTED_VL_SHIFT; 98 reg = (reg & ~SEND_CTRL_UNSUPPORTED_VL_SMASK) | mask; 99 break; 100 case PSC_GLOBAL_DISABLE: 101 reg &= ~SEND_CTRL_SEND_ENABLE_SMASK; 102 break; 103 case PSC_GLOBAL_VLARB_ENABLE: 104 reg |= SEND_CTRL_VL_ARBITER_ENABLE_SMASK; 105 break; 106 case PSC_GLOBAL_VLARB_DISABLE: 107 reg &= ~SEND_CTRL_VL_ARBITER_ENABLE_SMASK; 108 break; 109 case PSC_CM_RESET: 110 __cm_reset(dd, reg); 111 write = 0; /* CSR already written (and flushed) */ 112 break; 113 case PSC_DATA_VL_DISABLE: 114 reg |= SEND_CTRL_UNSUPPORTED_VL_SMASK; 115 flush = 1; 116 break; 117 default: 118 dd_dev_err(dd, "%s: invalid control %d\n", __func__, op); 119 break; 120 } 121 122 if (write) { 123 write_csr(dd, SEND_CTRL, reg); 124 if (flush) 125 (void)read_csr(dd, SEND_CTRL); /* flush write */ 126 } 127 128 spin_unlock_irqrestore(&dd->sendctrl_lock, flags); 129 } 130 131 /* number of send context memory pools */ 132 #define NUM_SC_POOLS 2 133 134 /* Send Context Size (SCS) wildcards */ 135 #define SCS_POOL_0 -1 136 #define SCS_POOL_1 -2 137 138 /* Send Context Count (SCC) wildcards */ 139 #define SCC_PER_VL -1 140 #define SCC_PER_CPU -2 141 #define SCC_PER_KRCVQ -3 142 143 /* Send Context Size (SCS) constants */ 144 #define SCS_ACK_CREDITS 32 145 #define SCS_VL15_CREDITS 102 /* 3 pkts of 2048B data + 128B header */ 146 147 #define PIO_THRESHOLD_CEILING 4096 148 149 #define PIO_WAIT_BATCH_SIZE 5 150 151 /* default send context sizes */ 152 static struct sc_config_sizes sc_config_sizes[SC_MAX] = { 153 [SC_KERNEL] = { .size = SCS_POOL_0, /* even divide, pool 0 */ 154 .count = SCC_PER_VL }, /* one per NUMA */ 155 [SC_ACK] = { .size = SCS_ACK_CREDITS, 156 .count = SCC_PER_KRCVQ }, 157 [SC_USER] = { .size = SCS_POOL_0, /* even divide, pool 0 */ 158 .count = SCC_PER_CPU }, /* one per CPU */ 159 [SC_VL15] = { .size = SCS_VL15_CREDITS, 160 .count = 1 }, 161 162 }; 163 164 /* send context memory pool configuration */ 165 struct mem_pool_config { 166 int centipercent; /* % of memory, in 100ths of 1% */ 167 int absolute_blocks; /* absolute block count */ 168 }; 169 170 /* default memory pool configuration: 100% in pool 0 */ 171 static struct mem_pool_config sc_mem_pool_config[NUM_SC_POOLS] = { 172 /* centi%, abs blocks */ 173 { 10000, -1 }, /* pool 0 */ 174 { 0, -1 }, /* pool 1 */ 175 }; 176 177 /* memory pool information, used when calculating final sizes */ 178 struct mem_pool_info { 179 int centipercent; /* 180 * 100th of 1% of memory to use, -1 if blocks 181 * already set 182 */ 183 int count; /* count of contexts in the pool */ 184 int blocks; /* block size of the pool */ 185 int size; /* context size, in blocks */ 186 }; 187 188 /* 189 * Convert a pool wildcard to a valid pool index. The wildcards 190 * start at -1 and increase negatively. Map them as: 191 * -1 => 0 192 * -2 => 1 193 * etc. 194 * 195 * Return -1 on non-wildcard input, otherwise convert to a pool number. 196 */ 197 static int wildcard_to_pool(int wc) 198 { 199 if (wc >= 0) 200 return -1; /* non-wildcard */ 201 return -wc - 1; 202 } 203 204 static const char *sc_type_names[SC_MAX] = { 205 "kernel", 206 "ack", 207 "user", 208 "vl15" 209 }; 210 211 static const char *sc_type_name(int index) 212 { 213 if (index < 0 || index >= SC_MAX) 214 return "unknown"; 215 return sc_type_names[index]; 216 } 217 218 /* 219 * Read the send context memory pool configuration and send context 220 * size configuration. Replace any wildcards and come up with final 221 * counts and sizes for the send context types. 222 */ 223 int init_sc_pools_and_sizes(struct hfi1_devdata *dd) 224 { 225 struct mem_pool_info mem_pool_info[NUM_SC_POOLS] = { { 0 } }; 226 int total_blocks = (chip_pio_mem_size(dd) / PIO_BLOCK_SIZE) - 1; 227 int total_contexts = 0; 228 int fixed_blocks; 229 int pool_blocks; 230 int used_blocks; 231 int cp_total; /* centipercent total */ 232 int ab_total; /* absolute block total */ 233 int extra; 234 int i; 235 236 /* 237 * When SDMA is enabled, kernel context pio packet size is capped by 238 * "piothreshold". Reduce pio buffer allocation for kernel context by 239 * setting it to a fixed size. The allocation allows 3-deep buffering 240 * of the largest pio packets plus up to 128 bytes header, sufficient 241 * to maintain verbs performance. 242 * 243 * When SDMA is disabled, keep the default pooling allocation. 244 */ 245 if (HFI1_CAP_IS_KSET(SDMA)) { 246 u16 max_pkt_size = (piothreshold < PIO_THRESHOLD_CEILING) ? 247 piothreshold : PIO_THRESHOLD_CEILING; 248 sc_config_sizes[SC_KERNEL].size = 249 3 * (max_pkt_size + 128) / PIO_BLOCK_SIZE; 250 } 251 252 /* 253 * Step 0: 254 * - copy the centipercents/absolute sizes from the pool config 255 * - sanity check these values 256 * - add up centipercents, then later check for full value 257 * - add up absolute blocks, then later check for over-commit 258 */ 259 cp_total = 0; 260 ab_total = 0; 261 for (i = 0; i < NUM_SC_POOLS; i++) { 262 int cp = sc_mem_pool_config[i].centipercent; 263 int ab = sc_mem_pool_config[i].absolute_blocks; 264 265 /* 266 * A negative value is "unused" or "invalid". Both *can* 267 * be valid, but centipercent wins, so check that first 268 */ 269 if (cp >= 0) { /* centipercent valid */ 270 cp_total += cp; 271 } else if (ab >= 0) { /* absolute blocks valid */ 272 ab_total += ab; 273 } else { /* neither valid */ 274 dd_dev_err( 275 dd, 276 "Send context memory pool %d: both the block count and centipercent are invalid\n", 277 i); 278 return -EINVAL; 279 } 280 281 mem_pool_info[i].centipercent = cp; 282 mem_pool_info[i].blocks = ab; 283 } 284 285 /* do not use both % and absolute blocks for different pools */ 286 if (cp_total != 0 && ab_total != 0) { 287 dd_dev_err( 288 dd, 289 "All send context memory pools must be described as either centipercent or blocks, no mixing between pools\n"); 290 return -EINVAL; 291 } 292 293 /* if any percentages are present, they must add up to 100% x 100 */ 294 if (cp_total != 0 && cp_total != 10000) { 295 dd_dev_err( 296 dd, 297 "Send context memory pool centipercent is %d, expecting 10000\n", 298 cp_total); 299 return -EINVAL; 300 } 301 302 /* the absolute pool total cannot be more than the mem total */ 303 if (ab_total > total_blocks) { 304 dd_dev_err( 305 dd, 306 "Send context memory pool absolute block count %d is larger than the memory size %d\n", 307 ab_total, total_blocks); 308 return -EINVAL; 309 } 310 311 /* 312 * Step 2: 313 * - copy from the context size config 314 * - replace context type wildcard counts with real values 315 * - add up non-memory pool block sizes 316 * - add up memory pool user counts 317 */ 318 fixed_blocks = 0; 319 for (i = 0; i < SC_MAX; i++) { 320 int count = sc_config_sizes[i].count; 321 int size = sc_config_sizes[i].size; 322 int pool; 323 324 /* 325 * Sanity check count: Either a positive value or 326 * one of the expected wildcards is valid. The positive 327 * value is checked later when we compare against total 328 * memory available. 329 */ 330 if (i == SC_ACK) { 331 count = dd->n_krcv_queues; 332 } else if (i == SC_KERNEL) { 333 count = INIT_SC_PER_VL * num_vls; 334 } else if (count == SCC_PER_CPU) { 335 count = dd->num_rcv_contexts - dd->n_krcv_queues; 336 } else if (count < 0) { 337 dd_dev_err( 338 dd, 339 "%s send context invalid count wildcard %d\n", 340 sc_type_name(i), count); 341 return -EINVAL; 342 } 343 if (total_contexts + count > chip_send_contexts(dd)) 344 count = chip_send_contexts(dd) - total_contexts; 345 346 total_contexts += count; 347 348 /* 349 * Sanity check pool: The conversion will return a pool 350 * number or -1 if a fixed (non-negative) value. The fixed 351 * value is checked later when we compare against 352 * total memory available. 353 */ 354 pool = wildcard_to_pool(size); 355 if (pool == -1) { /* non-wildcard */ 356 fixed_blocks += size * count; 357 } else if (pool < NUM_SC_POOLS) { /* valid wildcard */ 358 mem_pool_info[pool].count += count; 359 } else { /* invalid wildcard */ 360 dd_dev_err( 361 dd, 362 "%s send context invalid pool wildcard %d\n", 363 sc_type_name(i), size); 364 return -EINVAL; 365 } 366 367 dd->sc_sizes[i].count = count; 368 dd->sc_sizes[i].size = size; 369 } 370 if (fixed_blocks > total_blocks) { 371 dd_dev_err( 372 dd, 373 "Send context fixed block count, %u, larger than total block count %u\n", 374 fixed_blocks, total_blocks); 375 return -EINVAL; 376 } 377 378 /* step 3: calculate the blocks in the pools, and pool context sizes */ 379 pool_blocks = total_blocks - fixed_blocks; 380 if (ab_total > pool_blocks) { 381 dd_dev_err( 382 dd, 383 "Send context fixed pool sizes, %u, larger than pool block count %u\n", 384 ab_total, pool_blocks); 385 return -EINVAL; 386 } 387 /* subtract off the fixed pool blocks */ 388 pool_blocks -= ab_total; 389 390 for (i = 0; i < NUM_SC_POOLS; i++) { 391 struct mem_pool_info *pi = &mem_pool_info[i]; 392 393 /* % beats absolute blocks */ 394 if (pi->centipercent >= 0) 395 pi->blocks = (pool_blocks * pi->centipercent) / 10000; 396 397 if (pi->blocks == 0 && pi->count != 0) { 398 dd_dev_err( 399 dd, 400 "Send context memory pool %d has %u contexts, but no blocks\n", 401 i, pi->count); 402 return -EINVAL; 403 } 404 if (pi->count == 0) { 405 /* warn about wasted blocks */ 406 if (pi->blocks != 0) 407 dd_dev_err( 408 dd, 409 "Send context memory pool %d has %u blocks, but zero contexts\n", 410 i, pi->blocks); 411 pi->size = 0; 412 } else { 413 pi->size = pi->blocks / pi->count; 414 } 415 } 416 417 /* step 4: fill in the context type sizes from the pool sizes */ 418 used_blocks = 0; 419 for (i = 0; i < SC_MAX; i++) { 420 if (dd->sc_sizes[i].size < 0) { 421 unsigned pool = wildcard_to_pool(dd->sc_sizes[i].size); 422 423 WARN_ON_ONCE(pool >= NUM_SC_POOLS); 424 dd->sc_sizes[i].size = mem_pool_info[pool].size; 425 } 426 /* make sure we are not larger than what is allowed by the HW */ 427 #define PIO_MAX_BLOCKS 1024 428 if (dd->sc_sizes[i].size > PIO_MAX_BLOCKS) 429 dd->sc_sizes[i].size = PIO_MAX_BLOCKS; 430 431 /* calculate our total usage */ 432 used_blocks += dd->sc_sizes[i].size * dd->sc_sizes[i].count; 433 } 434 extra = total_blocks - used_blocks; 435 if (extra != 0) 436 dd_dev_info(dd, "unused send context blocks: %d\n", extra); 437 438 return total_contexts; 439 } 440 441 int init_send_contexts(struct hfi1_devdata *dd) 442 { 443 u16 base; 444 int ret, i, j, context; 445 446 ret = init_credit_return(dd); 447 if (ret) 448 return ret; 449 450 dd->hw_to_sw = kmalloc_array(TXE_NUM_CONTEXTS, sizeof(u8), 451 GFP_KERNEL); 452 dd->send_contexts = kcalloc(dd->num_send_contexts, 453 sizeof(struct send_context_info), 454 GFP_KERNEL); 455 if (!dd->send_contexts || !dd->hw_to_sw) { 456 kfree(dd->hw_to_sw); 457 kfree(dd->send_contexts); 458 free_credit_return(dd); 459 return -ENOMEM; 460 } 461 462 /* hardware context map starts with invalid send context indices */ 463 for (i = 0; i < TXE_NUM_CONTEXTS; i++) 464 dd->hw_to_sw[i] = INVALID_SCI; 465 466 /* 467 * All send contexts have their credit sizes. Allocate credits 468 * for each context one after another from the global space. 469 */ 470 context = 0; 471 base = 1; 472 for (i = 0; i < SC_MAX; i++) { 473 struct sc_config_sizes *scs = &dd->sc_sizes[i]; 474 475 for (j = 0; j < scs->count; j++) { 476 struct send_context_info *sci = 477 &dd->send_contexts[context]; 478 sci->type = i; 479 sci->base = base; 480 sci->credits = scs->size; 481 482 context++; 483 base += scs->size; 484 } 485 } 486 487 return 0; 488 } 489 490 /* 491 * Allocate a software index and hardware context of the given type. 492 * 493 * Must be called with dd->sc_lock held. 494 */ 495 static int sc_hw_alloc(struct hfi1_devdata *dd, int type, u32 *sw_index, 496 u32 *hw_context) 497 { 498 struct send_context_info *sci; 499 u32 index; 500 u32 context; 501 502 for (index = 0, sci = &dd->send_contexts[0]; 503 index < dd->num_send_contexts; index++, sci++) { 504 if (sci->type == type && sci->allocated == 0) { 505 sci->allocated = 1; 506 /* use a 1:1 mapping, but make them non-equal */ 507 context = chip_send_contexts(dd) - index - 1; 508 dd->hw_to_sw[context] = index; 509 *sw_index = index; 510 *hw_context = context; 511 return 0; /* success */ 512 } 513 } 514 dd_dev_err(dd, "Unable to locate a free type %d send context\n", type); 515 return -ENOSPC; 516 } 517 518 /* 519 * Free the send context given by its software index. 520 * 521 * Must be called with dd->sc_lock held. 522 */ 523 static void sc_hw_free(struct hfi1_devdata *dd, u32 sw_index, u32 hw_context) 524 { 525 struct send_context_info *sci; 526 527 sci = &dd->send_contexts[sw_index]; 528 if (!sci->allocated) { 529 dd_dev_err(dd, "%s: sw_index %u not allocated? hw_context %u\n", 530 __func__, sw_index, hw_context); 531 } 532 sci->allocated = 0; 533 dd->hw_to_sw[hw_context] = INVALID_SCI; 534 } 535 536 /* return the base context of a context in a group */ 537 static inline u32 group_context(u32 context, u32 group) 538 { 539 return (context >> group) << group; 540 } 541 542 /* return the size of a group */ 543 static inline u32 group_size(u32 group) 544 { 545 return 1 << group; 546 } 547 548 /* 549 * Obtain the credit return addresses, kernel virtual and bus, for the 550 * given sc. 551 * 552 * To understand this routine: 553 * o va and dma are arrays of struct credit_return. One for each physical 554 * send context, per NUMA. 555 * o Each send context always looks in its relative location in a struct 556 * credit_return for its credit return. 557 * o Each send context in a group must have its return address CSR programmed 558 * with the same value. Use the address of the first send context in the 559 * group. 560 */ 561 static void cr_group_addresses(struct send_context *sc, dma_addr_t *dma) 562 { 563 u32 gc = group_context(sc->hw_context, sc->group); 564 u32 index = sc->hw_context & 0x7; 565 566 sc->hw_free = &sc->dd->cr_base[sc->node].va[gc].cr[index]; 567 *dma = (unsigned long) 568 &((struct credit_return *)sc->dd->cr_base[sc->node].dma)[gc]; 569 } 570 571 /* 572 * Work queue function triggered in error interrupt routine for 573 * kernel contexts. 574 */ 575 static void sc_halted(struct work_struct *work) 576 { 577 struct send_context *sc; 578 579 sc = container_of(work, struct send_context, halt_work); 580 sc_restart(sc); 581 } 582 583 /* 584 * Calculate PIO block threshold for this send context using the given MTU. 585 * Trigger a return when one MTU plus optional header of credits remain. 586 * 587 * Parameter mtu is in bytes. 588 * Parameter hdrqentsize is in DWORDs. 589 * 590 * Return value is what to write into the CSR: trigger return when 591 * unreturned credits pass this count. 592 */ 593 u32 sc_mtu_to_threshold(struct send_context *sc, u32 mtu, u32 hdrqentsize) 594 { 595 u32 release_credits; 596 u32 threshold; 597 598 /* add in the header size, then divide by the PIO block size */ 599 mtu += hdrqentsize << 2; 600 release_credits = DIV_ROUND_UP(mtu, PIO_BLOCK_SIZE); 601 602 /* check against this context's credits */ 603 if (sc->credits <= release_credits) 604 threshold = 1; 605 else 606 threshold = sc->credits - release_credits; 607 608 return threshold; 609 } 610 611 /* 612 * Calculate credit threshold in terms of percent of the allocated credits. 613 * Trigger when unreturned credits equal or exceed the percentage of the whole. 614 * 615 * Return value is what to write into the CSR: trigger return when 616 * unreturned credits pass this count. 617 */ 618 u32 sc_percent_to_threshold(struct send_context *sc, u32 percent) 619 { 620 return (sc->credits * percent) / 100; 621 } 622 623 /* 624 * Set the credit return threshold. 625 */ 626 void sc_set_cr_threshold(struct send_context *sc, u32 new_threshold) 627 { 628 unsigned long flags; 629 u32 old_threshold; 630 int force_return = 0; 631 632 spin_lock_irqsave(&sc->credit_ctrl_lock, flags); 633 634 old_threshold = (sc->credit_ctrl >> 635 SC(CREDIT_CTRL_THRESHOLD_SHIFT)) 636 & SC(CREDIT_CTRL_THRESHOLD_MASK); 637 638 if (new_threshold != old_threshold) { 639 sc->credit_ctrl = 640 (sc->credit_ctrl 641 & ~SC(CREDIT_CTRL_THRESHOLD_SMASK)) 642 | ((new_threshold 643 & SC(CREDIT_CTRL_THRESHOLD_MASK)) 644 << SC(CREDIT_CTRL_THRESHOLD_SHIFT)); 645 write_kctxt_csr(sc->dd, sc->hw_context, 646 SC(CREDIT_CTRL), sc->credit_ctrl); 647 648 /* force a credit return on change to avoid a possible stall */ 649 force_return = 1; 650 } 651 652 spin_unlock_irqrestore(&sc->credit_ctrl_lock, flags); 653 654 if (force_return) 655 sc_return_credits(sc); 656 } 657 658 /* 659 * set_pio_integrity 660 * 661 * Set the CHECK_ENABLE register for the send context 'sc'. 662 */ 663 void set_pio_integrity(struct send_context *sc) 664 { 665 struct hfi1_devdata *dd = sc->dd; 666 u32 hw_context = sc->hw_context; 667 int type = sc->type; 668 669 write_kctxt_csr(dd, hw_context, 670 SC(CHECK_ENABLE), 671 hfi1_pkt_default_send_ctxt_mask(dd, type)); 672 } 673 674 static u32 get_buffers_allocated(struct send_context *sc) 675 { 676 int cpu; 677 u32 ret = 0; 678 679 for_each_possible_cpu(cpu) 680 ret += *per_cpu_ptr(sc->buffers_allocated, cpu); 681 return ret; 682 } 683 684 static void reset_buffers_allocated(struct send_context *sc) 685 { 686 int cpu; 687 688 for_each_possible_cpu(cpu) 689 (*per_cpu_ptr(sc->buffers_allocated, cpu)) = 0; 690 } 691 692 /* 693 * Allocate a NUMA relative send context structure of the given type along 694 * with a HW context. 695 */ 696 struct send_context *sc_alloc(struct hfi1_devdata *dd, int type, 697 uint hdrqentsize, int numa) 698 { 699 struct send_context_info *sci; 700 struct send_context *sc = NULL; 701 dma_addr_t dma; 702 unsigned long flags; 703 u64 reg; 704 u32 thresh; 705 u32 sw_index; 706 u32 hw_context; 707 int ret; 708 u8 opval, opmask; 709 710 /* do not allocate while frozen */ 711 if (dd->flags & HFI1_FROZEN) 712 return NULL; 713 714 sc = kzalloc_node(sizeof(*sc), GFP_KERNEL, numa); 715 if (!sc) 716 return NULL; 717 718 sc->buffers_allocated = alloc_percpu(u32); 719 if (!sc->buffers_allocated) { 720 kfree(sc); 721 dd_dev_err(dd, 722 "Cannot allocate buffers_allocated per cpu counters\n" 723 ); 724 return NULL; 725 } 726 727 spin_lock_irqsave(&dd->sc_lock, flags); 728 ret = sc_hw_alloc(dd, type, &sw_index, &hw_context); 729 if (ret) { 730 spin_unlock_irqrestore(&dd->sc_lock, flags); 731 free_percpu(sc->buffers_allocated); 732 kfree(sc); 733 return NULL; 734 } 735 736 sci = &dd->send_contexts[sw_index]; 737 sci->sc = sc; 738 739 sc->dd = dd; 740 sc->node = numa; 741 sc->type = type; 742 spin_lock_init(&sc->alloc_lock); 743 spin_lock_init(&sc->release_lock); 744 spin_lock_init(&sc->credit_ctrl_lock); 745 seqlock_init(&sc->waitlock); 746 INIT_LIST_HEAD(&sc->piowait); 747 INIT_WORK(&sc->halt_work, sc_halted); 748 init_waitqueue_head(&sc->halt_wait); 749 750 /* grouping is always single context for now */ 751 sc->group = 0; 752 753 sc->sw_index = sw_index; 754 sc->hw_context = hw_context; 755 cr_group_addresses(sc, &dma); 756 sc->credits = sci->credits; 757 sc->size = sc->credits * PIO_BLOCK_SIZE; 758 759 /* PIO Send Memory Address details */ 760 #define PIO_ADDR_CONTEXT_MASK 0xfful 761 #define PIO_ADDR_CONTEXT_SHIFT 16 762 sc->base_addr = dd->piobase + ((hw_context & PIO_ADDR_CONTEXT_MASK) 763 << PIO_ADDR_CONTEXT_SHIFT); 764 765 /* set base and credits */ 766 reg = ((sci->credits & SC(CTRL_CTXT_DEPTH_MASK)) 767 << SC(CTRL_CTXT_DEPTH_SHIFT)) 768 | ((sci->base & SC(CTRL_CTXT_BASE_MASK)) 769 << SC(CTRL_CTXT_BASE_SHIFT)); 770 write_kctxt_csr(dd, hw_context, SC(CTRL), reg); 771 772 set_pio_integrity(sc); 773 774 /* unmask all errors */ 775 write_kctxt_csr(dd, hw_context, SC(ERR_MASK), (u64)-1); 776 777 /* set the default partition key */ 778 write_kctxt_csr(dd, hw_context, SC(CHECK_PARTITION_KEY), 779 (SC(CHECK_PARTITION_KEY_VALUE_MASK) & 780 DEFAULT_PKEY) << 781 SC(CHECK_PARTITION_KEY_VALUE_SHIFT)); 782 783 /* per context type checks */ 784 if (type == SC_USER) { 785 opval = USER_OPCODE_CHECK_VAL; 786 opmask = USER_OPCODE_CHECK_MASK; 787 } else { 788 opval = OPCODE_CHECK_VAL_DISABLED; 789 opmask = OPCODE_CHECK_MASK_DISABLED; 790 } 791 792 /* set the send context check opcode mask and value */ 793 write_kctxt_csr(dd, hw_context, SC(CHECK_OPCODE), 794 ((u64)opmask << SC(CHECK_OPCODE_MASK_SHIFT)) | 795 ((u64)opval << SC(CHECK_OPCODE_VALUE_SHIFT))); 796 797 /* set up credit return */ 798 reg = dma & SC(CREDIT_RETURN_ADDR_ADDRESS_SMASK); 799 write_kctxt_csr(dd, hw_context, SC(CREDIT_RETURN_ADDR), reg); 800 801 /* 802 * Calculate the initial credit return threshold. 803 * 804 * For Ack contexts, set a threshold for half the credits. 805 * For User contexts use the given percentage. This has been 806 * sanitized on driver start-up. 807 * For Kernel contexts, use the default MTU plus a header 808 * or half the credits, whichever is smaller. This should 809 * work for both the 3-deep buffering allocation and the 810 * pooling allocation. 811 */ 812 if (type == SC_ACK) { 813 thresh = sc_percent_to_threshold(sc, 50); 814 } else if (type == SC_USER) { 815 thresh = sc_percent_to_threshold(sc, 816 user_credit_return_threshold); 817 } else { /* kernel */ 818 thresh = min(sc_percent_to_threshold(sc, 50), 819 sc_mtu_to_threshold(sc, hfi1_max_mtu, 820 hdrqentsize)); 821 } 822 reg = thresh << SC(CREDIT_CTRL_THRESHOLD_SHIFT); 823 /* add in early return */ 824 if (type == SC_USER && HFI1_CAP_IS_USET(EARLY_CREDIT_RETURN)) 825 reg |= SC(CREDIT_CTRL_EARLY_RETURN_SMASK); 826 else if (HFI1_CAP_IS_KSET(EARLY_CREDIT_RETURN)) /* kernel, ack */ 827 reg |= SC(CREDIT_CTRL_EARLY_RETURN_SMASK); 828 829 /* set up write-through credit_ctrl */ 830 sc->credit_ctrl = reg; 831 write_kctxt_csr(dd, hw_context, SC(CREDIT_CTRL), reg); 832 833 /* User send contexts should not allow sending on VL15 */ 834 if (type == SC_USER) { 835 reg = 1ULL << 15; 836 write_kctxt_csr(dd, hw_context, SC(CHECK_VL), reg); 837 } 838 839 spin_unlock_irqrestore(&dd->sc_lock, flags); 840 841 /* 842 * Allocate shadow ring to track outstanding PIO buffers _after_ 843 * unlocking. We don't know the size until the lock is held and 844 * we can't allocate while the lock is held. No one is using 845 * the context yet, so allocate it now. 846 * 847 * User contexts do not get a shadow ring. 848 */ 849 if (type != SC_USER) { 850 /* 851 * Size the shadow ring 1 larger than the number of credits 852 * so head == tail can mean empty. 853 */ 854 sc->sr_size = sci->credits + 1; 855 sc->sr = kcalloc_node(sc->sr_size, 856 sizeof(union pio_shadow_ring), 857 GFP_KERNEL, numa); 858 if (!sc->sr) { 859 sc_free(sc); 860 return NULL; 861 } 862 } 863 864 hfi1_cdbg(PIO, 865 "Send context %u(%u) %s group %u credits %u credit_ctrl 0x%llx threshold %u\n", 866 sw_index, 867 hw_context, 868 sc_type_name(type), 869 sc->group, 870 sc->credits, 871 sc->credit_ctrl, 872 thresh); 873 874 return sc; 875 } 876 877 /* free a per-NUMA send context structure */ 878 void sc_free(struct send_context *sc) 879 { 880 struct hfi1_devdata *dd; 881 unsigned long flags; 882 u32 sw_index; 883 u32 hw_context; 884 885 if (!sc) 886 return; 887 888 sc->flags |= SCF_IN_FREE; /* ensure no restarts */ 889 dd = sc->dd; 890 if (!list_empty(&sc->piowait)) 891 dd_dev_err(dd, "piowait list not empty!\n"); 892 sw_index = sc->sw_index; 893 hw_context = sc->hw_context; 894 sc_disable(sc); /* make sure the HW is disabled */ 895 flush_work(&sc->halt_work); 896 897 spin_lock_irqsave(&dd->sc_lock, flags); 898 dd->send_contexts[sw_index].sc = NULL; 899 900 /* clear/disable all registers set in sc_alloc */ 901 write_kctxt_csr(dd, hw_context, SC(CTRL), 0); 902 write_kctxt_csr(dd, hw_context, SC(CHECK_ENABLE), 0); 903 write_kctxt_csr(dd, hw_context, SC(ERR_MASK), 0); 904 write_kctxt_csr(dd, hw_context, SC(CHECK_PARTITION_KEY), 0); 905 write_kctxt_csr(dd, hw_context, SC(CHECK_OPCODE), 0); 906 write_kctxt_csr(dd, hw_context, SC(CREDIT_RETURN_ADDR), 0); 907 write_kctxt_csr(dd, hw_context, SC(CREDIT_CTRL), 0); 908 909 /* release the index and context for re-use */ 910 sc_hw_free(dd, sw_index, hw_context); 911 spin_unlock_irqrestore(&dd->sc_lock, flags); 912 913 kfree(sc->sr); 914 free_percpu(sc->buffers_allocated); 915 kfree(sc); 916 } 917 918 /* disable the context */ 919 void sc_disable(struct send_context *sc) 920 { 921 u64 reg; 922 struct pio_buf *pbuf; 923 924 if (!sc) 925 return; 926 927 /* do all steps, even if already disabled */ 928 spin_lock_irq(&sc->alloc_lock); 929 reg = read_kctxt_csr(sc->dd, sc->hw_context, SC(CTRL)); 930 reg &= ~SC(CTRL_CTXT_ENABLE_SMASK); 931 sc->flags &= ~SCF_ENABLED; 932 sc_wait_for_packet_egress(sc, 1); 933 write_kctxt_csr(sc->dd, sc->hw_context, SC(CTRL), reg); 934 935 /* 936 * Flush any waiters. Once the context is disabled, 937 * credit return interrupts are stopped (although there 938 * could be one in-process when the context is disabled). 939 * Wait one microsecond for any lingering interrupts, then 940 * proceed with the flush. 941 */ 942 udelay(1); 943 spin_lock(&sc->release_lock); 944 if (sc->sr) { /* this context has a shadow ring */ 945 while (sc->sr_tail != sc->sr_head) { 946 pbuf = &sc->sr[sc->sr_tail].pbuf; 947 if (pbuf->cb) 948 (*pbuf->cb)(pbuf->arg, PRC_SC_DISABLE); 949 sc->sr_tail++; 950 if (sc->sr_tail >= sc->sr_size) 951 sc->sr_tail = 0; 952 } 953 } 954 spin_unlock(&sc->release_lock); 955 spin_unlock_irq(&sc->alloc_lock); 956 } 957 958 /* return SendEgressCtxtStatus.PacketOccupancy */ 959 static u64 packet_occupancy(u64 reg) 960 { 961 return (reg & 962 SEND_EGRESS_CTXT_STATUS_CTXT_EGRESS_PACKET_OCCUPANCY_SMASK) 963 >> SEND_EGRESS_CTXT_STATUS_CTXT_EGRESS_PACKET_OCCUPANCY_SHIFT; 964 } 965 966 /* is egress halted on the context? */ 967 static bool egress_halted(u64 reg) 968 { 969 return !!(reg & SEND_EGRESS_CTXT_STATUS_CTXT_EGRESS_HALT_STATUS_SMASK); 970 } 971 972 /* is the send context halted? */ 973 static bool is_sc_halted(struct hfi1_devdata *dd, u32 hw_context) 974 { 975 return !!(read_kctxt_csr(dd, hw_context, SC(STATUS)) & 976 SC(STATUS_CTXT_HALTED_SMASK)); 977 } 978 979 /** 980 * sc_wait_for_packet_egress 981 * @sc: valid send context 982 * @pause: wait for credit return 983 * 984 * Wait for packet egress, optionally pause for credit return 985 * 986 * Egress halt and Context halt are not necessarily the same thing, so 987 * check for both. 988 * 989 * NOTE: The context halt bit may not be set immediately. Because of this, 990 * it is necessary to check the SW SFC_HALTED bit (set in the IRQ) and the HW 991 * context bit to determine if the context is halted. 992 */ 993 static void sc_wait_for_packet_egress(struct send_context *sc, int pause) 994 { 995 struct hfi1_devdata *dd = sc->dd; 996 u64 reg = 0; 997 u64 reg_prev; 998 u32 loop = 0; 999 1000 while (1) { 1001 reg_prev = reg; 1002 reg = read_csr(dd, sc->hw_context * 8 + 1003 SEND_EGRESS_CTXT_STATUS); 1004 /* done if any halt bits, SW or HW are set */ 1005 if (sc->flags & SCF_HALTED || 1006 is_sc_halted(dd, sc->hw_context) || egress_halted(reg)) 1007 break; 1008 reg = packet_occupancy(reg); 1009 if (reg == 0) 1010 break; 1011 /* counter is reset if occupancy count changes */ 1012 if (reg != reg_prev) 1013 loop = 0; 1014 if (loop > 50000) { 1015 /* timed out - bounce the link */ 1016 dd_dev_err(dd, 1017 "%s: context %u(%u) timeout waiting for packets to egress, remaining count %u, bouncing link\n", 1018 __func__, sc->sw_index, 1019 sc->hw_context, (u32)reg); 1020 queue_work(dd->pport->link_wq, 1021 &dd->pport->link_bounce_work); 1022 break; 1023 } 1024 loop++; 1025 udelay(1); 1026 } 1027 1028 if (pause) 1029 /* Add additional delay to ensure chip returns all credits */ 1030 pause_for_credit_return(dd); 1031 } 1032 1033 void sc_wait(struct hfi1_devdata *dd) 1034 { 1035 int i; 1036 1037 for (i = 0; i < dd->num_send_contexts; i++) { 1038 struct send_context *sc = dd->send_contexts[i].sc; 1039 1040 if (!sc) 1041 continue; 1042 sc_wait_for_packet_egress(sc, 0); 1043 } 1044 } 1045 1046 /* 1047 * Restart a context after it has been halted due to error. 1048 * 1049 * If the first step fails - wait for the halt to be asserted, return early. 1050 * Otherwise complain about timeouts but keep going. 1051 * 1052 * It is expected that allocations (enabled flag bit) have been shut off 1053 * already (only applies to kernel contexts). 1054 */ 1055 int sc_restart(struct send_context *sc) 1056 { 1057 struct hfi1_devdata *dd = sc->dd; 1058 u64 reg; 1059 u32 loop; 1060 int count; 1061 1062 /* bounce off if not halted, or being free'd */ 1063 if (!(sc->flags & SCF_HALTED) || (sc->flags & SCF_IN_FREE)) 1064 return -EINVAL; 1065 1066 dd_dev_info(dd, "restarting send context %u(%u)\n", sc->sw_index, 1067 sc->hw_context); 1068 1069 /* 1070 * Step 1: Wait for the context to actually halt. 1071 * 1072 * The error interrupt is asynchronous to actually setting halt 1073 * on the context. 1074 */ 1075 loop = 0; 1076 while (1) { 1077 reg = read_kctxt_csr(dd, sc->hw_context, SC(STATUS)); 1078 if (reg & SC(STATUS_CTXT_HALTED_SMASK)) 1079 break; 1080 if (loop > 100) { 1081 dd_dev_err(dd, "%s: context %u(%u) not halting, skipping\n", 1082 __func__, sc->sw_index, sc->hw_context); 1083 return -ETIME; 1084 } 1085 loop++; 1086 udelay(1); 1087 } 1088 1089 /* 1090 * Step 2: Ensure no users are still trying to write to PIO. 1091 * 1092 * For kernel contexts, we have already turned off buffer allocation. 1093 * Now wait for the buffer count to go to zero. 1094 * 1095 * For user contexts, the user handling code has cut off write access 1096 * to the context's PIO pages before calling this routine and will 1097 * restore write access after this routine returns. 1098 */ 1099 if (sc->type != SC_USER) { 1100 /* kernel context */ 1101 loop = 0; 1102 while (1) { 1103 count = get_buffers_allocated(sc); 1104 if (count == 0) 1105 break; 1106 if (loop > 100) { 1107 dd_dev_err(dd, 1108 "%s: context %u(%u) timeout waiting for PIO buffers to zero, remaining %d\n", 1109 __func__, sc->sw_index, 1110 sc->hw_context, count); 1111 } 1112 loop++; 1113 udelay(1); 1114 } 1115 } 1116 1117 /* 1118 * Step 3: Wait for all packets to egress. 1119 * This is done while disabling the send context 1120 * 1121 * Step 4: Disable the context 1122 * 1123 * This is a superset of the halt. After the disable, the 1124 * errors can be cleared. 1125 */ 1126 sc_disable(sc); 1127 1128 /* 1129 * Step 5: Enable the context 1130 * 1131 * This enable will clear the halted flag and per-send context 1132 * error flags. 1133 */ 1134 return sc_enable(sc); 1135 } 1136 1137 /* 1138 * PIO freeze processing. To be called after the TXE block is fully frozen. 1139 * Go through all frozen send contexts and disable them. The contexts are 1140 * already stopped by the freeze. 1141 */ 1142 void pio_freeze(struct hfi1_devdata *dd) 1143 { 1144 struct send_context *sc; 1145 int i; 1146 1147 for (i = 0; i < dd->num_send_contexts; i++) { 1148 sc = dd->send_contexts[i].sc; 1149 /* 1150 * Don't disable unallocated, unfrozen, or user send contexts. 1151 * User send contexts will be disabled when the process 1152 * calls into the driver to reset its context. 1153 */ 1154 if (!sc || !(sc->flags & SCF_FROZEN) || sc->type == SC_USER) 1155 continue; 1156 1157 /* only need to disable, the context is already stopped */ 1158 sc_disable(sc); 1159 } 1160 } 1161 1162 /* 1163 * Unfreeze PIO for kernel send contexts. The precondition for calling this 1164 * is that all PIO send contexts have been disabled and the SPC freeze has 1165 * been cleared. Now perform the last step and re-enable each kernel context. 1166 * User (PSM) processing will occur when PSM calls into the kernel to 1167 * acknowledge the freeze. 1168 */ 1169 void pio_kernel_unfreeze(struct hfi1_devdata *dd) 1170 { 1171 struct send_context *sc; 1172 int i; 1173 1174 for (i = 0; i < dd->num_send_contexts; i++) { 1175 sc = dd->send_contexts[i].sc; 1176 if (!sc || !(sc->flags & SCF_FROZEN) || sc->type == SC_USER) 1177 continue; 1178 if (sc->flags & SCF_LINK_DOWN) 1179 continue; 1180 1181 sc_enable(sc); /* will clear the sc frozen flag */ 1182 } 1183 } 1184 1185 /** 1186 * pio_kernel_linkup() - Re-enable send contexts after linkup event 1187 * @dd: valid devive data 1188 * 1189 * When the link goes down, the freeze path is taken. However, a link down 1190 * event is different from a freeze because if the send context is re-enabled 1191 * whowever is sending data will start sending data again, which will hang 1192 * any QP that is sending data. 1193 * 1194 * The freeze path now looks at the type of event that occurs and takes this 1195 * path for link down event. 1196 */ 1197 void pio_kernel_linkup(struct hfi1_devdata *dd) 1198 { 1199 struct send_context *sc; 1200 int i; 1201 1202 for (i = 0; i < dd->num_send_contexts; i++) { 1203 sc = dd->send_contexts[i].sc; 1204 if (!sc || !(sc->flags & SCF_LINK_DOWN) || sc->type == SC_USER) 1205 continue; 1206 1207 sc_enable(sc); /* will clear the sc link down flag */ 1208 } 1209 } 1210 1211 /* 1212 * Wait for the SendPioInitCtxt.PioInitInProgress bit to clear. 1213 * Returns: 1214 * -ETIMEDOUT - if we wait too long 1215 * -EIO - if there was an error 1216 */ 1217 static int pio_init_wait_progress(struct hfi1_devdata *dd) 1218 { 1219 u64 reg; 1220 int max, count = 0; 1221 1222 /* max is the longest possible HW init time / delay */ 1223 max = (dd->icode == ICODE_FPGA_EMULATION) ? 120 : 5; 1224 while (1) { 1225 reg = read_csr(dd, SEND_PIO_INIT_CTXT); 1226 if (!(reg & SEND_PIO_INIT_CTXT_PIO_INIT_IN_PROGRESS_SMASK)) 1227 break; 1228 if (count >= max) 1229 return -ETIMEDOUT; 1230 udelay(5); 1231 count++; 1232 } 1233 1234 return reg & SEND_PIO_INIT_CTXT_PIO_INIT_ERR_SMASK ? -EIO : 0; 1235 } 1236 1237 /* 1238 * Reset all of the send contexts to their power-on state. Used 1239 * only during manual init - no lock against sc_enable needed. 1240 */ 1241 void pio_reset_all(struct hfi1_devdata *dd) 1242 { 1243 int ret; 1244 1245 /* make sure the init engine is not busy */ 1246 ret = pio_init_wait_progress(dd); 1247 /* ignore any timeout */ 1248 if (ret == -EIO) { 1249 /* clear the error */ 1250 write_csr(dd, SEND_PIO_ERR_CLEAR, 1251 SEND_PIO_ERR_CLEAR_PIO_INIT_SM_IN_ERR_SMASK); 1252 } 1253 1254 /* reset init all */ 1255 write_csr(dd, SEND_PIO_INIT_CTXT, 1256 SEND_PIO_INIT_CTXT_PIO_ALL_CTXT_INIT_SMASK); 1257 udelay(2); 1258 ret = pio_init_wait_progress(dd); 1259 if (ret < 0) { 1260 dd_dev_err(dd, 1261 "PIO send context init %s while initializing all PIO blocks\n", 1262 ret == -ETIMEDOUT ? "is stuck" : "had an error"); 1263 } 1264 } 1265 1266 /* enable the context */ 1267 int sc_enable(struct send_context *sc) 1268 { 1269 u64 sc_ctrl, reg, pio; 1270 struct hfi1_devdata *dd; 1271 unsigned long flags; 1272 int ret = 0; 1273 1274 if (!sc) 1275 return -EINVAL; 1276 dd = sc->dd; 1277 1278 /* 1279 * Obtain the allocator lock to guard against any allocation 1280 * attempts (which should not happen prior to context being 1281 * enabled). On the release/disable side we don't need to 1282 * worry about locking since the releaser will not do anything 1283 * if the context accounting values have not changed. 1284 */ 1285 spin_lock_irqsave(&sc->alloc_lock, flags); 1286 sc_ctrl = read_kctxt_csr(dd, sc->hw_context, SC(CTRL)); 1287 if ((sc_ctrl & SC(CTRL_CTXT_ENABLE_SMASK))) 1288 goto unlock; /* already enabled */ 1289 1290 /* IMPORTANT: only clear free and fill if transitioning 0 -> 1 */ 1291 1292 *sc->hw_free = 0; 1293 sc->free = 0; 1294 sc->alloc_free = 0; 1295 sc->fill = 0; 1296 sc->fill_wrap = 0; 1297 sc->sr_head = 0; 1298 sc->sr_tail = 0; 1299 sc->flags = 0; 1300 /* the alloc lock insures no fast path allocation */ 1301 reset_buffers_allocated(sc); 1302 1303 /* 1304 * Clear all per-context errors. Some of these will be set when 1305 * we are re-enabling after a context halt. Now that the context 1306 * is disabled, the halt will not clear until after the PIO init 1307 * engine runs below. 1308 */ 1309 reg = read_kctxt_csr(dd, sc->hw_context, SC(ERR_STATUS)); 1310 if (reg) 1311 write_kctxt_csr(dd, sc->hw_context, SC(ERR_CLEAR), reg); 1312 1313 /* 1314 * The HW PIO initialization engine can handle only one init 1315 * request at a time. Serialize access to each device's engine. 1316 */ 1317 spin_lock(&dd->sc_init_lock); 1318 /* 1319 * Since access to this code block is serialized and 1320 * each access waits for the initialization to complete 1321 * before releasing the lock, the PIO initialization engine 1322 * should not be in use, so we don't have to wait for the 1323 * InProgress bit to go down. 1324 */ 1325 pio = ((sc->hw_context & SEND_PIO_INIT_CTXT_PIO_CTXT_NUM_MASK) << 1326 SEND_PIO_INIT_CTXT_PIO_CTXT_NUM_SHIFT) | 1327 SEND_PIO_INIT_CTXT_PIO_SINGLE_CTXT_INIT_SMASK; 1328 write_csr(dd, SEND_PIO_INIT_CTXT, pio); 1329 /* 1330 * Wait until the engine is done. Give the chip the required time 1331 * so, hopefully, we read the register just once. 1332 */ 1333 udelay(2); 1334 ret = pio_init_wait_progress(dd); 1335 spin_unlock(&dd->sc_init_lock); 1336 if (ret) { 1337 dd_dev_err(dd, 1338 "sctxt%u(%u): Context not enabled due to init failure %d\n", 1339 sc->sw_index, sc->hw_context, ret); 1340 goto unlock; 1341 } 1342 1343 /* 1344 * All is well. Enable the context. 1345 */ 1346 sc_ctrl |= SC(CTRL_CTXT_ENABLE_SMASK); 1347 write_kctxt_csr(dd, sc->hw_context, SC(CTRL), sc_ctrl); 1348 /* 1349 * Read SendCtxtCtrl to force the write out and prevent a timing 1350 * hazard where a PIO write may reach the context before the enable. 1351 */ 1352 read_kctxt_csr(dd, sc->hw_context, SC(CTRL)); 1353 sc->flags |= SCF_ENABLED; 1354 1355 unlock: 1356 spin_unlock_irqrestore(&sc->alloc_lock, flags); 1357 1358 return ret; 1359 } 1360 1361 /* force a credit return on the context */ 1362 void sc_return_credits(struct send_context *sc) 1363 { 1364 if (!sc) 1365 return; 1366 1367 /* a 0->1 transition schedules a credit return */ 1368 write_kctxt_csr(sc->dd, sc->hw_context, SC(CREDIT_FORCE), 1369 SC(CREDIT_FORCE_FORCE_RETURN_SMASK)); 1370 /* 1371 * Ensure that the write is flushed and the credit return is 1372 * scheduled. We care more about the 0 -> 1 transition. 1373 */ 1374 read_kctxt_csr(sc->dd, sc->hw_context, SC(CREDIT_FORCE)); 1375 /* set back to 0 for next time */ 1376 write_kctxt_csr(sc->dd, sc->hw_context, SC(CREDIT_FORCE), 0); 1377 } 1378 1379 /* allow all in-flight packets to drain on the context */ 1380 void sc_flush(struct send_context *sc) 1381 { 1382 if (!sc) 1383 return; 1384 1385 sc_wait_for_packet_egress(sc, 1); 1386 } 1387 1388 /* drop all packets on the context, no waiting until they are sent */ 1389 void sc_drop(struct send_context *sc) 1390 { 1391 if (!sc) 1392 return; 1393 1394 dd_dev_info(sc->dd, "%s: context %u(%u) - not implemented\n", 1395 __func__, sc->sw_index, sc->hw_context); 1396 } 1397 1398 /* 1399 * Start the software reaction to a context halt or SPC freeze: 1400 * - mark the context as halted or frozen 1401 * - stop buffer allocations 1402 * 1403 * Called from the error interrupt. Other work is deferred until 1404 * out of the interrupt. 1405 */ 1406 void sc_stop(struct send_context *sc, int flag) 1407 { 1408 unsigned long flags; 1409 1410 /* stop buffer allocations */ 1411 spin_lock_irqsave(&sc->alloc_lock, flags); 1412 /* mark the context */ 1413 sc->flags |= flag; 1414 sc->flags &= ~SCF_ENABLED; 1415 spin_unlock_irqrestore(&sc->alloc_lock, flags); 1416 wake_up(&sc->halt_wait); 1417 } 1418 1419 #define BLOCK_DWORDS (PIO_BLOCK_SIZE / sizeof(u32)) 1420 #define dwords_to_blocks(x) DIV_ROUND_UP(x, BLOCK_DWORDS) 1421 1422 /* 1423 * The send context buffer "allocator". 1424 * 1425 * @sc: the PIO send context we are allocating from 1426 * @len: length of whole packet - including PBC - in dwords 1427 * @cb: optional callback to call when the buffer is finished sending 1428 * @arg: argument for cb 1429 * 1430 * Return a pointer to a PIO buffer if successful, NULL if not enough room. 1431 */ 1432 struct pio_buf *sc_buffer_alloc(struct send_context *sc, u32 dw_len, 1433 pio_release_cb cb, void *arg) 1434 { 1435 struct pio_buf *pbuf = NULL; 1436 unsigned long flags; 1437 unsigned long avail; 1438 unsigned long blocks = dwords_to_blocks(dw_len); 1439 u32 fill_wrap; 1440 int trycount = 0; 1441 u32 head, next; 1442 1443 spin_lock_irqsave(&sc->alloc_lock, flags); 1444 if (!(sc->flags & SCF_ENABLED)) { 1445 spin_unlock_irqrestore(&sc->alloc_lock, flags); 1446 goto done; 1447 } 1448 1449 retry: 1450 avail = (unsigned long)sc->credits - (sc->fill - sc->alloc_free); 1451 if (blocks > avail) { 1452 /* not enough room */ 1453 if (unlikely(trycount)) { /* already tried to get more room */ 1454 spin_unlock_irqrestore(&sc->alloc_lock, flags); 1455 goto done; 1456 } 1457 /* copy from receiver cache line and recalculate */ 1458 sc->alloc_free = READ_ONCE(sc->free); 1459 avail = 1460 (unsigned long)sc->credits - 1461 (sc->fill - sc->alloc_free); 1462 if (blocks > avail) { 1463 /* still no room, actively update */ 1464 sc_release_update(sc); 1465 sc->alloc_free = READ_ONCE(sc->free); 1466 trycount++; 1467 goto retry; 1468 } 1469 } 1470 1471 /* there is enough room */ 1472 1473 preempt_disable(); 1474 this_cpu_inc(*sc->buffers_allocated); 1475 1476 /* read this once */ 1477 head = sc->sr_head; 1478 1479 /* "allocate" the buffer */ 1480 sc->fill += blocks; 1481 fill_wrap = sc->fill_wrap; 1482 sc->fill_wrap += blocks; 1483 if (sc->fill_wrap >= sc->credits) 1484 sc->fill_wrap = sc->fill_wrap - sc->credits; 1485 1486 /* 1487 * Fill the parts that the releaser looks at before moving the head. 1488 * The only necessary piece is the sent_at field. The credits 1489 * we have just allocated cannot have been returned yet, so the 1490 * cb and arg will not be looked at for a "while". Put them 1491 * on this side of the memory barrier anyway. 1492 */ 1493 pbuf = &sc->sr[head].pbuf; 1494 pbuf->sent_at = sc->fill; 1495 pbuf->cb = cb; 1496 pbuf->arg = arg; 1497 pbuf->sc = sc; /* could be filled in at sc->sr init time */ 1498 /* make sure this is in memory before updating the head */ 1499 1500 /* calculate next head index, do not store */ 1501 next = head + 1; 1502 if (next >= sc->sr_size) 1503 next = 0; 1504 /* 1505 * update the head - must be last! - the releaser can look at fields 1506 * in pbuf once we move the head 1507 */ 1508 smp_wmb(); 1509 sc->sr_head = next; 1510 spin_unlock_irqrestore(&sc->alloc_lock, flags); 1511 1512 /* finish filling in the buffer outside the lock */ 1513 pbuf->start = sc->base_addr + fill_wrap * PIO_BLOCK_SIZE; 1514 pbuf->end = sc->base_addr + sc->size; 1515 pbuf->qw_written = 0; 1516 pbuf->carry_bytes = 0; 1517 pbuf->carry.val64 = 0; 1518 done: 1519 return pbuf; 1520 } 1521 1522 /* 1523 * There are at least two entities that can turn on credit return 1524 * interrupts and they can overlap. Avoid problems by implementing 1525 * a count scheme that is enforced by a lock. The lock is needed because 1526 * the count and CSR write must be paired. 1527 */ 1528 1529 /* 1530 * Start credit return interrupts. This is managed by a count. If already 1531 * on, just increment the count. 1532 */ 1533 void sc_add_credit_return_intr(struct send_context *sc) 1534 { 1535 unsigned long flags; 1536 1537 /* lock must surround both the count change and the CSR update */ 1538 spin_lock_irqsave(&sc->credit_ctrl_lock, flags); 1539 if (sc->credit_intr_count == 0) { 1540 sc->credit_ctrl |= SC(CREDIT_CTRL_CREDIT_INTR_SMASK); 1541 write_kctxt_csr(sc->dd, sc->hw_context, 1542 SC(CREDIT_CTRL), sc->credit_ctrl); 1543 } 1544 sc->credit_intr_count++; 1545 spin_unlock_irqrestore(&sc->credit_ctrl_lock, flags); 1546 } 1547 1548 /* 1549 * Stop credit return interrupts. This is managed by a count. Decrement the 1550 * count, if the last user, then turn the credit interrupts off. 1551 */ 1552 void sc_del_credit_return_intr(struct send_context *sc) 1553 { 1554 unsigned long flags; 1555 1556 WARN_ON(sc->credit_intr_count == 0); 1557 1558 /* lock must surround both the count change and the CSR update */ 1559 spin_lock_irqsave(&sc->credit_ctrl_lock, flags); 1560 sc->credit_intr_count--; 1561 if (sc->credit_intr_count == 0) { 1562 sc->credit_ctrl &= ~SC(CREDIT_CTRL_CREDIT_INTR_SMASK); 1563 write_kctxt_csr(sc->dd, sc->hw_context, 1564 SC(CREDIT_CTRL), sc->credit_ctrl); 1565 } 1566 spin_unlock_irqrestore(&sc->credit_ctrl_lock, flags); 1567 } 1568 1569 /* 1570 * The caller must be careful when calling this. All needint calls 1571 * must be paired with !needint. 1572 */ 1573 void hfi1_sc_wantpiobuf_intr(struct send_context *sc, u32 needint) 1574 { 1575 if (needint) 1576 sc_add_credit_return_intr(sc); 1577 else 1578 sc_del_credit_return_intr(sc); 1579 trace_hfi1_wantpiointr(sc, needint, sc->credit_ctrl); 1580 if (needint) { 1581 mmiowb(); 1582 sc_return_credits(sc); 1583 } 1584 } 1585 1586 /** 1587 * sc_piobufavail - callback when a PIO buffer is available 1588 * @sc: the send context 1589 * 1590 * This is called from the interrupt handler when a PIO buffer is 1591 * available after hfi1_verbs_send() returned an error that no buffers were 1592 * available. Disable the interrupt if there are no more QPs waiting. 1593 */ 1594 static void sc_piobufavail(struct send_context *sc) 1595 { 1596 struct hfi1_devdata *dd = sc->dd; 1597 struct list_head *list; 1598 struct rvt_qp *qps[PIO_WAIT_BATCH_SIZE]; 1599 struct rvt_qp *qp; 1600 struct hfi1_qp_priv *priv; 1601 unsigned long flags; 1602 uint i, n = 0, top_idx = 0; 1603 1604 if (dd->send_contexts[sc->sw_index].type != SC_KERNEL && 1605 dd->send_contexts[sc->sw_index].type != SC_VL15) 1606 return; 1607 list = &sc->piowait; 1608 /* 1609 * Note: checking that the piowait list is empty and clearing 1610 * the buffer available interrupt needs to be atomic or we 1611 * could end up with QPs on the wait list with the interrupt 1612 * disabled. 1613 */ 1614 write_seqlock_irqsave(&sc->waitlock, flags); 1615 while (!list_empty(list)) { 1616 struct iowait *wait; 1617 1618 if (n == ARRAY_SIZE(qps)) 1619 break; 1620 wait = list_first_entry(list, struct iowait, list); 1621 iowait_get_priority(wait); 1622 qp = iowait_to_qp(wait); 1623 priv = qp->priv; 1624 list_del_init(&priv->s_iowait.list); 1625 priv->s_iowait.lock = NULL; 1626 if (n) { 1627 priv = qps[top_idx]->priv; 1628 top_idx = iowait_priority_update_top(wait, 1629 &priv->s_iowait, 1630 n, top_idx); 1631 } 1632 1633 /* refcount held until actual wake up */ 1634 qps[n++] = qp; 1635 } 1636 /* 1637 * If there had been waiters and there are more 1638 * insure that we redo the force to avoid a potential hang. 1639 */ 1640 if (n) { 1641 hfi1_sc_wantpiobuf_intr(sc, 0); 1642 if (!list_empty(list)) 1643 hfi1_sc_wantpiobuf_intr(sc, 1); 1644 } 1645 write_sequnlock_irqrestore(&sc->waitlock, flags); 1646 1647 /* Wake up the top-priority one first */ 1648 if (n) 1649 hfi1_qp_wakeup(qps[top_idx], 1650 RVT_S_WAIT_PIO | HFI1_S_WAIT_PIO_DRAIN); 1651 for (i = 0; i < n; i++) 1652 if (i != top_idx) 1653 hfi1_qp_wakeup(qps[i], 1654 RVT_S_WAIT_PIO | HFI1_S_WAIT_PIO_DRAIN); 1655 } 1656 1657 /* translate a send credit update to a bit code of reasons */ 1658 static inline int fill_code(u64 hw_free) 1659 { 1660 int code = 0; 1661 1662 if (hw_free & CR_STATUS_SMASK) 1663 code |= PRC_STATUS_ERR; 1664 if (hw_free & CR_CREDIT_RETURN_DUE_TO_PBC_SMASK) 1665 code |= PRC_PBC; 1666 if (hw_free & CR_CREDIT_RETURN_DUE_TO_THRESHOLD_SMASK) 1667 code |= PRC_THRESHOLD; 1668 if (hw_free & CR_CREDIT_RETURN_DUE_TO_ERR_SMASK) 1669 code |= PRC_FILL_ERR; 1670 if (hw_free & CR_CREDIT_RETURN_DUE_TO_FORCE_SMASK) 1671 code |= PRC_SC_DISABLE; 1672 return code; 1673 } 1674 1675 /* use the jiffies compare to get the wrap right */ 1676 #define sent_before(a, b) time_before(a, b) /* a < b */ 1677 1678 /* 1679 * The send context buffer "releaser". 1680 */ 1681 void sc_release_update(struct send_context *sc) 1682 { 1683 struct pio_buf *pbuf; 1684 u64 hw_free; 1685 u32 head, tail; 1686 unsigned long old_free; 1687 unsigned long free; 1688 unsigned long extra; 1689 unsigned long flags; 1690 int code; 1691 1692 if (!sc) 1693 return; 1694 1695 spin_lock_irqsave(&sc->release_lock, flags); 1696 /* update free */ 1697 hw_free = le64_to_cpu(*sc->hw_free); /* volatile read */ 1698 old_free = sc->free; 1699 extra = (((hw_free & CR_COUNTER_SMASK) >> CR_COUNTER_SHIFT) 1700 - (old_free & CR_COUNTER_MASK)) 1701 & CR_COUNTER_MASK; 1702 free = old_free + extra; 1703 trace_hfi1_piofree(sc, extra); 1704 1705 /* call sent buffer callbacks */ 1706 code = -1; /* code not yet set */ 1707 head = READ_ONCE(sc->sr_head); /* snapshot the head */ 1708 tail = sc->sr_tail; 1709 while (head != tail) { 1710 pbuf = &sc->sr[tail].pbuf; 1711 1712 if (sent_before(free, pbuf->sent_at)) { 1713 /* not sent yet */ 1714 break; 1715 } 1716 if (pbuf->cb) { 1717 if (code < 0) /* fill in code on first user */ 1718 code = fill_code(hw_free); 1719 (*pbuf->cb)(pbuf->arg, code); 1720 } 1721 1722 tail++; 1723 if (tail >= sc->sr_size) 1724 tail = 0; 1725 } 1726 sc->sr_tail = tail; 1727 /* make sure tail is updated before free */ 1728 smp_wmb(); 1729 sc->free = free; 1730 spin_unlock_irqrestore(&sc->release_lock, flags); 1731 sc_piobufavail(sc); 1732 } 1733 1734 /* 1735 * Send context group releaser. Argument is the send context that caused 1736 * the interrupt. Called from the send context interrupt handler. 1737 * 1738 * Call release on all contexts in the group. 1739 * 1740 * This routine takes the sc_lock without an irqsave because it is only 1741 * called from an interrupt handler. Adjust if that changes. 1742 */ 1743 void sc_group_release_update(struct hfi1_devdata *dd, u32 hw_context) 1744 { 1745 struct send_context *sc; 1746 u32 sw_index; 1747 u32 gc, gc_end; 1748 1749 spin_lock(&dd->sc_lock); 1750 sw_index = dd->hw_to_sw[hw_context]; 1751 if (unlikely(sw_index >= dd->num_send_contexts)) { 1752 dd_dev_err(dd, "%s: invalid hw (%u) to sw (%u) mapping\n", 1753 __func__, hw_context, sw_index); 1754 goto done; 1755 } 1756 sc = dd->send_contexts[sw_index].sc; 1757 if (unlikely(!sc)) 1758 goto done; 1759 1760 gc = group_context(hw_context, sc->group); 1761 gc_end = gc + group_size(sc->group); 1762 for (; gc < gc_end; gc++) { 1763 sw_index = dd->hw_to_sw[gc]; 1764 if (unlikely(sw_index >= dd->num_send_contexts)) { 1765 dd_dev_err(dd, 1766 "%s: invalid hw (%u) to sw (%u) mapping\n", 1767 __func__, hw_context, sw_index); 1768 continue; 1769 } 1770 sc_release_update(dd->send_contexts[sw_index].sc); 1771 } 1772 done: 1773 spin_unlock(&dd->sc_lock); 1774 } 1775 1776 /* 1777 * pio_select_send_context_vl() - select send context 1778 * @dd: devdata 1779 * @selector: a spreading factor 1780 * @vl: this vl 1781 * 1782 * This function returns a send context based on the selector and a vl. 1783 * The mapping fields are protected by RCU 1784 */ 1785 struct send_context *pio_select_send_context_vl(struct hfi1_devdata *dd, 1786 u32 selector, u8 vl) 1787 { 1788 struct pio_vl_map *m; 1789 struct pio_map_elem *e; 1790 struct send_context *rval; 1791 1792 /* 1793 * NOTE This should only happen if SC->VL changed after the initial 1794 * checks on the QP/AH 1795 * Default will return VL0's send context below 1796 */ 1797 if (unlikely(vl >= num_vls)) { 1798 rval = NULL; 1799 goto done; 1800 } 1801 1802 rcu_read_lock(); 1803 m = rcu_dereference(dd->pio_map); 1804 if (unlikely(!m)) { 1805 rcu_read_unlock(); 1806 return dd->vld[0].sc; 1807 } 1808 e = m->map[vl & m->mask]; 1809 rval = e->ksc[selector & e->mask]; 1810 rcu_read_unlock(); 1811 1812 done: 1813 rval = !rval ? dd->vld[0].sc : rval; 1814 return rval; 1815 } 1816 1817 /* 1818 * pio_select_send_context_sc() - select send context 1819 * @dd: devdata 1820 * @selector: a spreading factor 1821 * @sc5: the 5 bit sc 1822 * 1823 * This function returns an send context based on the selector and an sc 1824 */ 1825 struct send_context *pio_select_send_context_sc(struct hfi1_devdata *dd, 1826 u32 selector, u8 sc5) 1827 { 1828 u8 vl = sc_to_vlt(dd, sc5); 1829 1830 return pio_select_send_context_vl(dd, selector, vl); 1831 } 1832 1833 /* 1834 * Free the indicated map struct 1835 */ 1836 static void pio_map_free(struct pio_vl_map *m) 1837 { 1838 int i; 1839 1840 for (i = 0; m && i < m->actual_vls; i++) 1841 kfree(m->map[i]); 1842 kfree(m); 1843 } 1844 1845 /* 1846 * Handle RCU callback 1847 */ 1848 static void pio_map_rcu_callback(struct rcu_head *list) 1849 { 1850 struct pio_vl_map *m = container_of(list, struct pio_vl_map, list); 1851 1852 pio_map_free(m); 1853 } 1854 1855 /* 1856 * Set credit return threshold for the kernel send context 1857 */ 1858 static void set_threshold(struct hfi1_devdata *dd, int scontext, int i) 1859 { 1860 u32 thres; 1861 1862 thres = min(sc_percent_to_threshold(dd->kernel_send_context[scontext], 1863 50), 1864 sc_mtu_to_threshold(dd->kernel_send_context[scontext], 1865 dd->vld[i].mtu, 1866 dd->rcd[0]->rcvhdrqentsize)); 1867 sc_set_cr_threshold(dd->kernel_send_context[scontext], thres); 1868 } 1869 1870 /* 1871 * pio_map_init - called when #vls change 1872 * @dd: hfi1_devdata 1873 * @port: port number 1874 * @num_vls: number of vls 1875 * @vl_scontexts: per vl send context mapping (optional) 1876 * 1877 * This routine changes the mapping based on the number of vls. 1878 * 1879 * vl_scontexts is used to specify a non-uniform vl/send context 1880 * loading. NULL implies auto computing the loading and giving each 1881 * VL an uniform distribution of send contexts per VL. 1882 * 1883 * The auto algorithm computers the sc_per_vl and the number of extra 1884 * send contexts. Any extra send contexts are added from the last VL 1885 * on down 1886 * 1887 * rcu locking is used here to control access to the mapping fields. 1888 * 1889 * If either the num_vls or num_send_contexts are non-power of 2, the 1890 * array sizes in the struct pio_vl_map and the struct pio_map_elem are 1891 * rounded up to the next highest power of 2 and the first entry is 1892 * reused in a round robin fashion. 1893 * 1894 * If an error occurs the map change is not done and the mapping is not 1895 * chaged. 1896 * 1897 */ 1898 int pio_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_scontexts) 1899 { 1900 int i, j; 1901 int extra, sc_per_vl; 1902 int scontext = 1; 1903 int num_kernel_send_contexts = 0; 1904 u8 lvl_scontexts[OPA_MAX_VLS]; 1905 struct pio_vl_map *oldmap, *newmap; 1906 1907 if (!vl_scontexts) { 1908 for (i = 0; i < dd->num_send_contexts; i++) 1909 if (dd->send_contexts[i].type == SC_KERNEL) 1910 num_kernel_send_contexts++; 1911 /* truncate divide */ 1912 sc_per_vl = num_kernel_send_contexts / num_vls; 1913 /* extras */ 1914 extra = num_kernel_send_contexts % num_vls; 1915 vl_scontexts = lvl_scontexts; 1916 /* add extras from last vl down */ 1917 for (i = num_vls - 1; i >= 0; i--, extra--) 1918 vl_scontexts[i] = sc_per_vl + (extra > 0 ? 1 : 0); 1919 } 1920 /* build new map */ 1921 newmap = kzalloc(sizeof(*newmap) + 1922 roundup_pow_of_two(num_vls) * 1923 sizeof(struct pio_map_elem *), 1924 GFP_KERNEL); 1925 if (!newmap) 1926 goto bail; 1927 newmap->actual_vls = num_vls; 1928 newmap->vls = roundup_pow_of_two(num_vls); 1929 newmap->mask = (1 << ilog2(newmap->vls)) - 1; 1930 for (i = 0; i < newmap->vls; i++) { 1931 /* save for wrap around */ 1932 int first_scontext = scontext; 1933 1934 if (i < newmap->actual_vls) { 1935 int sz = roundup_pow_of_two(vl_scontexts[i]); 1936 1937 /* only allocate once */ 1938 newmap->map[i] = kzalloc(sizeof(*newmap->map[i]) + 1939 sz * sizeof(struct 1940 send_context *), 1941 GFP_KERNEL); 1942 if (!newmap->map[i]) 1943 goto bail; 1944 newmap->map[i]->mask = (1 << ilog2(sz)) - 1; 1945 /* 1946 * assign send contexts and 1947 * adjust credit return threshold 1948 */ 1949 for (j = 0; j < sz; j++) { 1950 if (dd->kernel_send_context[scontext]) { 1951 newmap->map[i]->ksc[j] = 1952 dd->kernel_send_context[scontext]; 1953 set_threshold(dd, scontext, i); 1954 } 1955 if (++scontext >= first_scontext + 1956 vl_scontexts[i]) 1957 /* wrap back to first send context */ 1958 scontext = first_scontext; 1959 } 1960 } else { 1961 /* just re-use entry without allocating */ 1962 newmap->map[i] = newmap->map[i % num_vls]; 1963 } 1964 scontext = first_scontext + vl_scontexts[i]; 1965 } 1966 /* newmap in hand, save old map */ 1967 spin_lock_irq(&dd->pio_map_lock); 1968 oldmap = rcu_dereference_protected(dd->pio_map, 1969 lockdep_is_held(&dd->pio_map_lock)); 1970 1971 /* publish newmap */ 1972 rcu_assign_pointer(dd->pio_map, newmap); 1973 1974 spin_unlock_irq(&dd->pio_map_lock); 1975 /* success, free any old map after grace period */ 1976 if (oldmap) 1977 call_rcu(&oldmap->list, pio_map_rcu_callback); 1978 return 0; 1979 bail: 1980 /* free any partial allocation */ 1981 pio_map_free(newmap); 1982 return -ENOMEM; 1983 } 1984 1985 void free_pio_map(struct hfi1_devdata *dd) 1986 { 1987 /* Free PIO map if allocated */ 1988 if (rcu_access_pointer(dd->pio_map)) { 1989 spin_lock_irq(&dd->pio_map_lock); 1990 pio_map_free(rcu_access_pointer(dd->pio_map)); 1991 RCU_INIT_POINTER(dd->pio_map, NULL); 1992 spin_unlock_irq(&dd->pio_map_lock); 1993 synchronize_rcu(); 1994 } 1995 kfree(dd->kernel_send_context); 1996 dd->kernel_send_context = NULL; 1997 } 1998 1999 int init_pervl_scs(struct hfi1_devdata *dd) 2000 { 2001 int i; 2002 u64 mask, all_vl_mask = (u64)0x80ff; /* VLs 0-7, 15 */ 2003 u64 data_vls_mask = (u64)0x00ff; /* VLs 0-7 */ 2004 u32 ctxt; 2005 struct hfi1_pportdata *ppd = dd->pport; 2006 2007 dd->vld[15].sc = sc_alloc(dd, SC_VL15, 2008 dd->rcd[0]->rcvhdrqentsize, dd->node); 2009 if (!dd->vld[15].sc) 2010 return -ENOMEM; 2011 2012 hfi1_init_ctxt(dd->vld[15].sc); 2013 dd->vld[15].mtu = enum_to_mtu(OPA_MTU_2048); 2014 2015 dd->kernel_send_context = kcalloc_node(dd->num_send_contexts, 2016 sizeof(struct send_context *), 2017 GFP_KERNEL, dd->node); 2018 if (!dd->kernel_send_context) 2019 goto freesc15; 2020 2021 dd->kernel_send_context[0] = dd->vld[15].sc; 2022 2023 for (i = 0; i < num_vls; i++) { 2024 /* 2025 * Since this function does not deal with a specific 2026 * receive context but we need the RcvHdrQ entry size, 2027 * use the size from rcd[0]. It is guaranteed to be 2028 * valid at this point and will remain the same for all 2029 * receive contexts. 2030 */ 2031 dd->vld[i].sc = sc_alloc(dd, SC_KERNEL, 2032 dd->rcd[0]->rcvhdrqentsize, dd->node); 2033 if (!dd->vld[i].sc) 2034 goto nomem; 2035 dd->kernel_send_context[i + 1] = dd->vld[i].sc; 2036 hfi1_init_ctxt(dd->vld[i].sc); 2037 /* non VL15 start with the max MTU */ 2038 dd->vld[i].mtu = hfi1_max_mtu; 2039 } 2040 for (i = num_vls; i < INIT_SC_PER_VL * num_vls; i++) { 2041 dd->kernel_send_context[i + 1] = 2042 sc_alloc(dd, SC_KERNEL, dd->rcd[0]->rcvhdrqentsize, dd->node); 2043 if (!dd->kernel_send_context[i + 1]) 2044 goto nomem; 2045 hfi1_init_ctxt(dd->kernel_send_context[i + 1]); 2046 } 2047 2048 sc_enable(dd->vld[15].sc); 2049 ctxt = dd->vld[15].sc->hw_context; 2050 mask = all_vl_mask & ~(1LL << 15); 2051 write_kctxt_csr(dd, ctxt, SC(CHECK_VL), mask); 2052 dd_dev_info(dd, 2053 "Using send context %u(%u) for VL15\n", 2054 dd->vld[15].sc->sw_index, ctxt); 2055 2056 for (i = 0; i < num_vls; i++) { 2057 sc_enable(dd->vld[i].sc); 2058 ctxt = dd->vld[i].sc->hw_context; 2059 mask = all_vl_mask & ~(data_vls_mask); 2060 write_kctxt_csr(dd, ctxt, SC(CHECK_VL), mask); 2061 } 2062 for (i = num_vls; i < INIT_SC_PER_VL * num_vls; i++) { 2063 sc_enable(dd->kernel_send_context[i + 1]); 2064 ctxt = dd->kernel_send_context[i + 1]->hw_context; 2065 mask = all_vl_mask & ~(data_vls_mask); 2066 write_kctxt_csr(dd, ctxt, SC(CHECK_VL), mask); 2067 } 2068 2069 if (pio_map_init(dd, ppd->port - 1, num_vls, NULL)) 2070 goto nomem; 2071 return 0; 2072 2073 nomem: 2074 for (i = 0; i < num_vls; i++) { 2075 sc_free(dd->vld[i].sc); 2076 dd->vld[i].sc = NULL; 2077 } 2078 2079 for (i = num_vls; i < INIT_SC_PER_VL * num_vls; i++) 2080 sc_free(dd->kernel_send_context[i + 1]); 2081 2082 kfree(dd->kernel_send_context); 2083 dd->kernel_send_context = NULL; 2084 2085 freesc15: 2086 sc_free(dd->vld[15].sc); 2087 return -ENOMEM; 2088 } 2089 2090 int init_credit_return(struct hfi1_devdata *dd) 2091 { 2092 int ret; 2093 int i; 2094 2095 dd->cr_base = kcalloc( 2096 node_affinity.num_possible_nodes, 2097 sizeof(struct credit_return_base), 2098 GFP_KERNEL); 2099 if (!dd->cr_base) { 2100 ret = -ENOMEM; 2101 goto done; 2102 } 2103 for_each_node_with_cpus(i) { 2104 int bytes = TXE_NUM_CONTEXTS * sizeof(struct credit_return); 2105 2106 set_dev_node(&dd->pcidev->dev, i); 2107 dd->cr_base[i].va = dma_alloc_coherent(&dd->pcidev->dev, 2108 bytes, 2109 &dd->cr_base[i].dma, 2110 GFP_KERNEL); 2111 if (!dd->cr_base[i].va) { 2112 set_dev_node(&dd->pcidev->dev, dd->node); 2113 dd_dev_err(dd, 2114 "Unable to allocate credit return DMA range for NUMA %d\n", 2115 i); 2116 ret = -ENOMEM; 2117 goto done; 2118 } 2119 } 2120 set_dev_node(&dd->pcidev->dev, dd->node); 2121 2122 ret = 0; 2123 done: 2124 return ret; 2125 } 2126 2127 void free_credit_return(struct hfi1_devdata *dd) 2128 { 2129 int i; 2130 2131 if (!dd->cr_base) 2132 return; 2133 for (i = 0; i < node_affinity.num_possible_nodes; i++) { 2134 if (dd->cr_base[i].va) { 2135 dma_free_coherent(&dd->pcidev->dev, 2136 TXE_NUM_CONTEXTS * 2137 sizeof(struct credit_return), 2138 dd->cr_base[i].va, 2139 dd->cr_base[i].dma); 2140 } 2141 } 2142 kfree(dd->cr_base); 2143 dd->cr_base = NULL; 2144 } 2145 2146 void seqfile_dump_sci(struct seq_file *s, u32 i, 2147 struct send_context_info *sci) 2148 { 2149 struct send_context *sc = sci->sc; 2150 u64 reg; 2151 2152 seq_printf(s, "SCI %u: type %u base %u credits %u\n", 2153 i, sci->type, sci->base, sci->credits); 2154 seq_printf(s, " flags 0x%x sw_inx %u hw_ctxt %u grp %u\n", 2155 sc->flags, sc->sw_index, sc->hw_context, sc->group); 2156 seq_printf(s, " sr_size %u credits %u sr_head %u sr_tail %u\n", 2157 sc->sr_size, sc->credits, sc->sr_head, sc->sr_tail); 2158 seq_printf(s, " fill %lu free %lu fill_wrap %u alloc_free %lu\n", 2159 sc->fill, sc->free, sc->fill_wrap, sc->alloc_free); 2160 seq_printf(s, " credit_intr_count %u credit_ctrl 0x%llx\n", 2161 sc->credit_intr_count, sc->credit_ctrl); 2162 reg = read_kctxt_csr(sc->dd, sc->hw_context, SC(CREDIT_STATUS)); 2163 seq_printf(s, " *hw_free %llu CurrentFree %llu LastReturned %llu\n", 2164 (le64_to_cpu(*sc->hw_free) & CR_COUNTER_SMASK) >> 2165 CR_COUNTER_SHIFT, 2166 (reg >> SC(CREDIT_STATUS_CURRENT_FREE_COUNTER_SHIFT)) & 2167 SC(CREDIT_STATUS_CURRENT_FREE_COUNTER_MASK), 2168 reg & SC(CREDIT_STATUS_LAST_RETURNED_COUNTER_SMASK)); 2169 } 2170