xref: /openbmc/linux/drivers/infiniband/hw/hfi1/pio.c (revision 63f59b73e80a0f7431f6f91383fcc3f5fac49bb8)
1 /*
2  * Copyright(c) 2015-2018 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <linux/delay.h>
49 #include "hfi.h"
50 #include "qp.h"
51 #include "trace.h"
52 
53 #define SC(name) SEND_CTXT_##name
54 /*
55  * Send Context functions
56  */
57 static void sc_wait_for_packet_egress(struct send_context *sc, int pause);
58 
59 /*
60  * Set the CM reset bit and wait for it to clear.  Use the provided
61  * sendctrl register.  This routine has no locking.
62  */
63 void __cm_reset(struct hfi1_devdata *dd, u64 sendctrl)
64 {
65 	write_csr(dd, SEND_CTRL, sendctrl | SEND_CTRL_CM_RESET_SMASK);
66 	while (1) {
67 		udelay(1);
68 		sendctrl = read_csr(dd, SEND_CTRL);
69 		if ((sendctrl & SEND_CTRL_CM_RESET_SMASK) == 0)
70 			break;
71 	}
72 }
73 
74 /* defined in header release 48 and higher */
75 #ifndef SEND_CTRL_UNSUPPORTED_VL_SHIFT
76 #define SEND_CTRL_UNSUPPORTED_VL_SHIFT 3
77 #define SEND_CTRL_UNSUPPORTED_VL_MASK 0xffull
78 #define SEND_CTRL_UNSUPPORTED_VL_SMASK (SEND_CTRL_UNSUPPORTED_VL_MASK \
79 		<< SEND_CTRL_UNSUPPORTED_VL_SHIFT)
80 #endif
81 
82 /* global control of PIO send */
83 void pio_send_control(struct hfi1_devdata *dd, int op)
84 {
85 	u64 reg, mask;
86 	unsigned long flags;
87 	int write = 1;	/* write sendctrl back */
88 	int flush = 0;	/* re-read sendctrl to make sure it is flushed */
89 
90 	spin_lock_irqsave(&dd->sendctrl_lock, flags);
91 
92 	reg = read_csr(dd, SEND_CTRL);
93 	switch (op) {
94 	case PSC_GLOBAL_ENABLE:
95 		reg |= SEND_CTRL_SEND_ENABLE_SMASK;
96 	/* Fall through */
97 	case PSC_DATA_VL_ENABLE:
98 		/* Disallow sending on VLs not enabled */
99 		mask = (((~0ull) << num_vls) & SEND_CTRL_UNSUPPORTED_VL_MASK) <<
100 				SEND_CTRL_UNSUPPORTED_VL_SHIFT;
101 		reg = (reg & ~SEND_CTRL_UNSUPPORTED_VL_SMASK) | mask;
102 		break;
103 	case PSC_GLOBAL_DISABLE:
104 		reg &= ~SEND_CTRL_SEND_ENABLE_SMASK;
105 		break;
106 	case PSC_GLOBAL_VLARB_ENABLE:
107 		reg |= SEND_CTRL_VL_ARBITER_ENABLE_SMASK;
108 		break;
109 	case PSC_GLOBAL_VLARB_DISABLE:
110 		reg &= ~SEND_CTRL_VL_ARBITER_ENABLE_SMASK;
111 		break;
112 	case PSC_CM_RESET:
113 		__cm_reset(dd, reg);
114 		write = 0; /* CSR already written (and flushed) */
115 		break;
116 	case PSC_DATA_VL_DISABLE:
117 		reg |= SEND_CTRL_UNSUPPORTED_VL_SMASK;
118 		flush = 1;
119 		break;
120 	default:
121 		dd_dev_err(dd, "%s: invalid control %d\n", __func__, op);
122 		break;
123 	}
124 
125 	if (write) {
126 		write_csr(dd, SEND_CTRL, reg);
127 		if (flush)
128 			(void)read_csr(dd, SEND_CTRL); /* flush write */
129 	}
130 
131 	spin_unlock_irqrestore(&dd->sendctrl_lock, flags);
132 }
133 
134 /* number of send context memory pools */
135 #define NUM_SC_POOLS 2
136 
137 /* Send Context Size (SCS) wildcards */
138 #define SCS_POOL_0 -1
139 #define SCS_POOL_1 -2
140 
141 /* Send Context Count (SCC) wildcards */
142 #define SCC_PER_VL -1
143 #define SCC_PER_CPU  -2
144 #define SCC_PER_KRCVQ  -3
145 
146 /* Send Context Size (SCS) constants */
147 #define SCS_ACK_CREDITS  32
148 #define SCS_VL15_CREDITS 102	/* 3 pkts of 2048B data + 128B header */
149 
150 #define PIO_THRESHOLD_CEILING 4096
151 
152 #define PIO_WAIT_BATCH_SIZE 5
153 
154 /* default send context sizes */
155 static struct sc_config_sizes sc_config_sizes[SC_MAX] = {
156 	[SC_KERNEL] = { .size  = SCS_POOL_0,	/* even divide, pool 0 */
157 			.count = SCC_PER_VL },	/* one per NUMA */
158 	[SC_ACK]    = { .size  = SCS_ACK_CREDITS,
159 			.count = SCC_PER_KRCVQ },
160 	[SC_USER]   = { .size  = SCS_POOL_0,	/* even divide, pool 0 */
161 			.count = SCC_PER_CPU },	/* one per CPU */
162 	[SC_VL15]   = { .size  = SCS_VL15_CREDITS,
163 			.count = 1 },
164 
165 };
166 
167 /* send context memory pool configuration */
168 struct mem_pool_config {
169 	int centipercent;	/* % of memory, in 100ths of 1% */
170 	int absolute_blocks;	/* absolute block count */
171 };
172 
173 /* default memory pool configuration: 100% in pool 0 */
174 static struct mem_pool_config sc_mem_pool_config[NUM_SC_POOLS] = {
175 	/* centi%, abs blocks */
176 	{  10000,     -1 },		/* pool 0 */
177 	{      0,     -1 },		/* pool 1 */
178 };
179 
180 /* memory pool information, used when calculating final sizes */
181 struct mem_pool_info {
182 	int centipercent;	/*
183 				 * 100th of 1% of memory to use, -1 if blocks
184 				 * already set
185 				 */
186 	int count;		/* count of contexts in the pool */
187 	int blocks;		/* block size of the pool */
188 	int size;		/* context size, in blocks */
189 };
190 
191 /*
192  * Convert a pool wildcard to a valid pool index.  The wildcards
193  * start at -1 and increase negatively.  Map them as:
194  *	-1 => 0
195  *	-2 => 1
196  *	etc.
197  *
198  * Return -1 on non-wildcard input, otherwise convert to a pool number.
199  */
200 static int wildcard_to_pool(int wc)
201 {
202 	if (wc >= 0)
203 		return -1;	/* non-wildcard */
204 	return -wc - 1;
205 }
206 
207 static const char *sc_type_names[SC_MAX] = {
208 	"kernel",
209 	"ack",
210 	"user",
211 	"vl15"
212 };
213 
214 static const char *sc_type_name(int index)
215 {
216 	if (index < 0 || index >= SC_MAX)
217 		return "unknown";
218 	return sc_type_names[index];
219 }
220 
221 /*
222  * Read the send context memory pool configuration and send context
223  * size configuration.  Replace any wildcards and come up with final
224  * counts and sizes for the send context types.
225  */
226 int init_sc_pools_and_sizes(struct hfi1_devdata *dd)
227 {
228 	struct mem_pool_info mem_pool_info[NUM_SC_POOLS] = { { 0 } };
229 	int total_blocks = (chip_pio_mem_size(dd) / PIO_BLOCK_SIZE) - 1;
230 	int total_contexts = 0;
231 	int fixed_blocks;
232 	int pool_blocks;
233 	int used_blocks;
234 	int cp_total;		/* centipercent total */
235 	int ab_total;		/* absolute block total */
236 	int extra;
237 	int i;
238 
239 	/*
240 	 * When SDMA is enabled, kernel context pio packet size is capped by
241 	 * "piothreshold". Reduce pio buffer allocation for kernel context by
242 	 * setting it to a fixed size. The allocation allows 3-deep buffering
243 	 * of the largest pio packets plus up to 128 bytes header, sufficient
244 	 * to maintain verbs performance.
245 	 *
246 	 * When SDMA is disabled, keep the default pooling allocation.
247 	 */
248 	if (HFI1_CAP_IS_KSET(SDMA)) {
249 		u16 max_pkt_size = (piothreshold < PIO_THRESHOLD_CEILING) ?
250 					 piothreshold : PIO_THRESHOLD_CEILING;
251 		sc_config_sizes[SC_KERNEL].size =
252 			3 * (max_pkt_size + 128) / PIO_BLOCK_SIZE;
253 	}
254 
255 	/*
256 	 * Step 0:
257 	 *	- copy the centipercents/absolute sizes from the pool config
258 	 *	- sanity check these values
259 	 *	- add up centipercents, then later check for full value
260 	 *	- add up absolute blocks, then later check for over-commit
261 	 */
262 	cp_total = 0;
263 	ab_total = 0;
264 	for (i = 0; i < NUM_SC_POOLS; i++) {
265 		int cp = sc_mem_pool_config[i].centipercent;
266 		int ab = sc_mem_pool_config[i].absolute_blocks;
267 
268 		/*
269 		 * A negative value is "unused" or "invalid".  Both *can*
270 		 * be valid, but centipercent wins, so check that first
271 		 */
272 		if (cp >= 0) {			/* centipercent valid */
273 			cp_total += cp;
274 		} else if (ab >= 0) {		/* absolute blocks valid */
275 			ab_total += ab;
276 		} else {			/* neither valid */
277 			dd_dev_err(
278 				dd,
279 				"Send context memory pool %d: both the block count and centipercent are invalid\n",
280 				i);
281 			return -EINVAL;
282 		}
283 
284 		mem_pool_info[i].centipercent = cp;
285 		mem_pool_info[i].blocks = ab;
286 	}
287 
288 	/* do not use both % and absolute blocks for different pools */
289 	if (cp_total != 0 && ab_total != 0) {
290 		dd_dev_err(
291 			dd,
292 			"All send context memory pools must be described as either centipercent or blocks, no mixing between pools\n");
293 		return -EINVAL;
294 	}
295 
296 	/* if any percentages are present, they must add up to 100% x 100 */
297 	if (cp_total != 0 && cp_total != 10000) {
298 		dd_dev_err(
299 			dd,
300 			"Send context memory pool centipercent is %d, expecting 10000\n",
301 			cp_total);
302 		return -EINVAL;
303 	}
304 
305 	/* the absolute pool total cannot be more than the mem total */
306 	if (ab_total > total_blocks) {
307 		dd_dev_err(
308 			dd,
309 			"Send context memory pool absolute block count %d is larger than the memory size %d\n",
310 			ab_total, total_blocks);
311 		return -EINVAL;
312 	}
313 
314 	/*
315 	 * Step 2:
316 	 *	- copy from the context size config
317 	 *	- replace context type wildcard counts with real values
318 	 *	- add up non-memory pool block sizes
319 	 *	- add up memory pool user counts
320 	 */
321 	fixed_blocks = 0;
322 	for (i = 0; i < SC_MAX; i++) {
323 		int count = sc_config_sizes[i].count;
324 		int size = sc_config_sizes[i].size;
325 		int pool;
326 
327 		/*
328 		 * Sanity check count: Either a positive value or
329 		 * one of the expected wildcards is valid.  The positive
330 		 * value is checked later when we compare against total
331 		 * memory available.
332 		 */
333 		if (i == SC_ACK) {
334 			count = dd->n_krcv_queues;
335 		} else if (i == SC_KERNEL) {
336 			count = INIT_SC_PER_VL * num_vls;
337 		} else if (count == SCC_PER_CPU) {
338 			count = dd->num_rcv_contexts - dd->n_krcv_queues;
339 		} else if (count < 0) {
340 			dd_dev_err(
341 				dd,
342 				"%s send context invalid count wildcard %d\n",
343 				sc_type_name(i), count);
344 			return -EINVAL;
345 		}
346 		if (total_contexts + count > chip_send_contexts(dd))
347 			count = chip_send_contexts(dd) - total_contexts;
348 
349 		total_contexts += count;
350 
351 		/*
352 		 * Sanity check pool: The conversion will return a pool
353 		 * number or -1 if a fixed (non-negative) value.  The fixed
354 		 * value is checked later when we compare against
355 		 * total memory available.
356 		 */
357 		pool = wildcard_to_pool(size);
358 		if (pool == -1) {			/* non-wildcard */
359 			fixed_blocks += size * count;
360 		} else if (pool < NUM_SC_POOLS) {	/* valid wildcard */
361 			mem_pool_info[pool].count += count;
362 		} else {				/* invalid wildcard */
363 			dd_dev_err(
364 				dd,
365 				"%s send context invalid pool wildcard %d\n",
366 				sc_type_name(i), size);
367 			return -EINVAL;
368 		}
369 
370 		dd->sc_sizes[i].count = count;
371 		dd->sc_sizes[i].size = size;
372 	}
373 	if (fixed_blocks > total_blocks) {
374 		dd_dev_err(
375 			dd,
376 			"Send context fixed block count, %u, larger than total block count %u\n",
377 			fixed_blocks, total_blocks);
378 		return -EINVAL;
379 	}
380 
381 	/* step 3: calculate the blocks in the pools, and pool context sizes */
382 	pool_blocks = total_blocks - fixed_blocks;
383 	if (ab_total > pool_blocks) {
384 		dd_dev_err(
385 			dd,
386 			"Send context fixed pool sizes, %u, larger than pool block count %u\n",
387 			ab_total, pool_blocks);
388 		return -EINVAL;
389 	}
390 	/* subtract off the fixed pool blocks */
391 	pool_blocks -= ab_total;
392 
393 	for (i = 0; i < NUM_SC_POOLS; i++) {
394 		struct mem_pool_info *pi = &mem_pool_info[i];
395 
396 		/* % beats absolute blocks */
397 		if (pi->centipercent >= 0)
398 			pi->blocks = (pool_blocks * pi->centipercent) / 10000;
399 
400 		if (pi->blocks == 0 && pi->count != 0) {
401 			dd_dev_err(
402 				dd,
403 				"Send context memory pool %d has %u contexts, but no blocks\n",
404 				i, pi->count);
405 			return -EINVAL;
406 		}
407 		if (pi->count == 0) {
408 			/* warn about wasted blocks */
409 			if (pi->blocks != 0)
410 				dd_dev_err(
411 					dd,
412 					"Send context memory pool %d has %u blocks, but zero contexts\n",
413 					i, pi->blocks);
414 			pi->size = 0;
415 		} else {
416 			pi->size = pi->blocks / pi->count;
417 		}
418 	}
419 
420 	/* step 4: fill in the context type sizes from the pool sizes */
421 	used_blocks = 0;
422 	for (i = 0; i < SC_MAX; i++) {
423 		if (dd->sc_sizes[i].size < 0) {
424 			unsigned pool = wildcard_to_pool(dd->sc_sizes[i].size);
425 
426 			WARN_ON_ONCE(pool >= NUM_SC_POOLS);
427 			dd->sc_sizes[i].size = mem_pool_info[pool].size;
428 		}
429 		/* make sure we are not larger than what is allowed by the HW */
430 #define PIO_MAX_BLOCKS 1024
431 		if (dd->sc_sizes[i].size > PIO_MAX_BLOCKS)
432 			dd->sc_sizes[i].size = PIO_MAX_BLOCKS;
433 
434 		/* calculate our total usage */
435 		used_blocks += dd->sc_sizes[i].size * dd->sc_sizes[i].count;
436 	}
437 	extra = total_blocks - used_blocks;
438 	if (extra != 0)
439 		dd_dev_info(dd, "unused send context blocks: %d\n", extra);
440 
441 	return total_contexts;
442 }
443 
444 int init_send_contexts(struct hfi1_devdata *dd)
445 {
446 	u16 base;
447 	int ret, i, j, context;
448 
449 	ret = init_credit_return(dd);
450 	if (ret)
451 		return ret;
452 
453 	dd->hw_to_sw = kmalloc_array(TXE_NUM_CONTEXTS, sizeof(u8),
454 					GFP_KERNEL);
455 	dd->send_contexts = kcalloc(dd->num_send_contexts,
456 				    sizeof(struct send_context_info),
457 				    GFP_KERNEL);
458 	if (!dd->send_contexts || !dd->hw_to_sw) {
459 		kfree(dd->hw_to_sw);
460 		kfree(dd->send_contexts);
461 		free_credit_return(dd);
462 		return -ENOMEM;
463 	}
464 
465 	/* hardware context map starts with invalid send context indices */
466 	for (i = 0; i < TXE_NUM_CONTEXTS; i++)
467 		dd->hw_to_sw[i] = INVALID_SCI;
468 
469 	/*
470 	 * All send contexts have their credit sizes.  Allocate credits
471 	 * for each context one after another from the global space.
472 	 */
473 	context = 0;
474 	base = 1;
475 	for (i = 0; i < SC_MAX; i++) {
476 		struct sc_config_sizes *scs = &dd->sc_sizes[i];
477 
478 		for (j = 0; j < scs->count; j++) {
479 			struct send_context_info *sci =
480 						&dd->send_contexts[context];
481 			sci->type = i;
482 			sci->base = base;
483 			sci->credits = scs->size;
484 
485 			context++;
486 			base += scs->size;
487 		}
488 	}
489 
490 	return 0;
491 }
492 
493 /*
494  * Allocate a software index and hardware context of the given type.
495  *
496  * Must be called with dd->sc_lock held.
497  */
498 static int sc_hw_alloc(struct hfi1_devdata *dd, int type, u32 *sw_index,
499 		       u32 *hw_context)
500 {
501 	struct send_context_info *sci;
502 	u32 index;
503 	u32 context;
504 
505 	for (index = 0, sci = &dd->send_contexts[0];
506 			index < dd->num_send_contexts; index++, sci++) {
507 		if (sci->type == type && sci->allocated == 0) {
508 			sci->allocated = 1;
509 			/* use a 1:1 mapping, but make them non-equal */
510 			context = chip_send_contexts(dd) - index - 1;
511 			dd->hw_to_sw[context] = index;
512 			*sw_index = index;
513 			*hw_context = context;
514 			return 0; /* success */
515 		}
516 	}
517 	dd_dev_err(dd, "Unable to locate a free type %d send context\n", type);
518 	return -ENOSPC;
519 }
520 
521 /*
522  * Free the send context given by its software index.
523  *
524  * Must be called with dd->sc_lock held.
525  */
526 static void sc_hw_free(struct hfi1_devdata *dd, u32 sw_index, u32 hw_context)
527 {
528 	struct send_context_info *sci;
529 
530 	sci = &dd->send_contexts[sw_index];
531 	if (!sci->allocated) {
532 		dd_dev_err(dd, "%s: sw_index %u not allocated? hw_context %u\n",
533 			   __func__, sw_index, hw_context);
534 	}
535 	sci->allocated = 0;
536 	dd->hw_to_sw[hw_context] = INVALID_SCI;
537 }
538 
539 /* return the base context of a context in a group */
540 static inline u32 group_context(u32 context, u32 group)
541 {
542 	return (context >> group) << group;
543 }
544 
545 /* return the size of a group */
546 static inline u32 group_size(u32 group)
547 {
548 	return 1 << group;
549 }
550 
551 /*
552  * Obtain the credit return addresses, kernel virtual and bus, for the
553  * given sc.
554  *
555  * To understand this routine:
556  * o va and dma are arrays of struct credit_return.  One for each physical
557  *   send context, per NUMA.
558  * o Each send context always looks in its relative location in a struct
559  *   credit_return for its credit return.
560  * o Each send context in a group must have its return address CSR programmed
561  *   with the same value.  Use the address of the first send context in the
562  *   group.
563  */
564 static void cr_group_addresses(struct send_context *sc, dma_addr_t *dma)
565 {
566 	u32 gc = group_context(sc->hw_context, sc->group);
567 	u32 index = sc->hw_context & 0x7;
568 
569 	sc->hw_free = &sc->dd->cr_base[sc->node].va[gc].cr[index];
570 	*dma = (unsigned long)
571 	       &((struct credit_return *)sc->dd->cr_base[sc->node].dma)[gc];
572 }
573 
574 /*
575  * Work queue function triggered in error interrupt routine for
576  * kernel contexts.
577  */
578 static void sc_halted(struct work_struct *work)
579 {
580 	struct send_context *sc;
581 
582 	sc = container_of(work, struct send_context, halt_work);
583 	sc_restart(sc);
584 }
585 
586 /*
587  * Calculate PIO block threshold for this send context using the given MTU.
588  * Trigger a return when one MTU plus optional header of credits remain.
589  *
590  * Parameter mtu is in bytes.
591  * Parameter hdrqentsize is in DWORDs.
592  *
593  * Return value is what to write into the CSR: trigger return when
594  * unreturned credits pass this count.
595  */
596 u32 sc_mtu_to_threshold(struct send_context *sc, u32 mtu, u32 hdrqentsize)
597 {
598 	u32 release_credits;
599 	u32 threshold;
600 
601 	/* add in the header size, then divide by the PIO block size */
602 	mtu += hdrqentsize << 2;
603 	release_credits = DIV_ROUND_UP(mtu, PIO_BLOCK_SIZE);
604 
605 	/* check against this context's credits */
606 	if (sc->credits <= release_credits)
607 		threshold = 1;
608 	else
609 		threshold = sc->credits - release_credits;
610 
611 	return threshold;
612 }
613 
614 /*
615  * Calculate credit threshold in terms of percent of the allocated credits.
616  * Trigger when unreturned credits equal or exceed the percentage of the whole.
617  *
618  * Return value is what to write into the CSR: trigger return when
619  * unreturned credits pass this count.
620  */
621 u32 sc_percent_to_threshold(struct send_context *sc, u32 percent)
622 {
623 	return (sc->credits * percent) / 100;
624 }
625 
626 /*
627  * Set the credit return threshold.
628  */
629 void sc_set_cr_threshold(struct send_context *sc, u32 new_threshold)
630 {
631 	unsigned long flags;
632 	u32 old_threshold;
633 	int force_return = 0;
634 
635 	spin_lock_irqsave(&sc->credit_ctrl_lock, flags);
636 
637 	old_threshold = (sc->credit_ctrl >>
638 				SC(CREDIT_CTRL_THRESHOLD_SHIFT))
639 			 & SC(CREDIT_CTRL_THRESHOLD_MASK);
640 
641 	if (new_threshold != old_threshold) {
642 		sc->credit_ctrl =
643 			(sc->credit_ctrl
644 				& ~SC(CREDIT_CTRL_THRESHOLD_SMASK))
645 			| ((new_threshold
646 				& SC(CREDIT_CTRL_THRESHOLD_MASK))
647 			   << SC(CREDIT_CTRL_THRESHOLD_SHIFT));
648 		write_kctxt_csr(sc->dd, sc->hw_context,
649 				SC(CREDIT_CTRL), sc->credit_ctrl);
650 
651 		/* force a credit return on change to avoid a possible stall */
652 		force_return = 1;
653 	}
654 
655 	spin_unlock_irqrestore(&sc->credit_ctrl_lock, flags);
656 
657 	if (force_return)
658 		sc_return_credits(sc);
659 }
660 
661 /*
662  * set_pio_integrity
663  *
664  * Set the CHECK_ENABLE register for the send context 'sc'.
665  */
666 void set_pio_integrity(struct send_context *sc)
667 {
668 	struct hfi1_devdata *dd = sc->dd;
669 	u32 hw_context = sc->hw_context;
670 	int type = sc->type;
671 
672 	write_kctxt_csr(dd, hw_context,
673 			SC(CHECK_ENABLE),
674 			hfi1_pkt_default_send_ctxt_mask(dd, type));
675 }
676 
677 static u32 get_buffers_allocated(struct send_context *sc)
678 {
679 	int cpu;
680 	u32 ret = 0;
681 
682 	for_each_possible_cpu(cpu)
683 		ret += *per_cpu_ptr(sc->buffers_allocated, cpu);
684 	return ret;
685 }
686 
687 static void reset_buffers_allocated(struct send_context *sc)
688 {
689 	int cpu;
690 
691 	for_each_possible_cpu(cpu)
692 		(*per_cpu_ptr(sc->buffers_allocated, cpu)) = 0;
693 }
694 
695 /*
696  * Allocate a NUMA relative send context structure of the given type along
697  * with a HW context.
698  */
699 struct send_context *sc_alloc(struct hfi1_devdata *dd, int type,
700 			      uint hdrqentsize, int numa)
701 {
702 	struct send_context_info *sci;
703 	struct send_context *sc = NULL;
704 	dma_addr_t dma;
705 	unsigned long flags;
706 	u64 reg;
707 	u32 thresh;
708 	u32 sw_index;
709 	u32 hw_context;
710 	int ret;
711 	u8 opval, opmask;
712 
713 	/* do not allocate while frozen */
714 	if (dd->flags & HFI1_FROZEN)
715 		return NULL;
716 
717 	sc = kzalloc_node(sizeof(*sc), GFP_KERNEL, numa);
718 	if (!sc)
719 		return NULL;
720 
721 	sc->buffers_allocated = alloc_percpu(u32);
722 	if (!sc->buffers_allocated) {
723 		kfree(sc);
724 		dd_dev_err(dd,
725 			   "Cannot allocate buffers_allocated per cpu counters\n"
726 			  );
727 		return NULL;
728 	}
729 
730 	spin_lock_irqsave(&dd->sc_lock, flags);
731 	ret = sc_hw_alloc(dd, type, &sw_index, &hw_context);
732 	if (ret) {
733 		spin_unlock_irqrestore(&dd->sc_lock, flags);
734 		free_percpu(sc->buffers_allocated);
735 		kfree(sc);
736 		return NULL;
737 	}
738 
739 	sci = &dd->send_contexts[sw_index];
740 	sci->sc = sc;
741 
742 	sc->dd = dd;
743 	sc->node = numa;
744 	sc->type = type;
745 	spin_lock_init(&sc->alloc_lock);
746 	spin_lock_init(&sc->release_lock);
747 	spin_lock_init(&sc->credit_ctrl_lock);
748 	INIT_LIST_HEAD(&sc->piowait);
749 	INIT_WORK(&sc->halt_work, sc_halted);
750 	init_waitqueue_head(&sc->halt_wait);
751 
752 	/* grouping is always single context for now */
753 	sc->group = 0;
754 
755 	sc->sw_index = sw_index;
756 	sc->hw_context = hw_context;
757 	cr_group_addresses(sc, &dma);
758 	sc->credits = sci->credits;
759 	sc->size = sc->credits * PIO_BLOCK_SIZE;
760 
761 /* PIO Send Memory Address details */
762 #define PIO_ADDR_CONTEXT_MASK 0xfful
763 #define PIO_ADDR_CONTEXT_SHIFT 16
764 	sc->base_addr = dd->piobase + ((hw_context & PIO_ADDR_CONTEXT_MASK)
765 					<< PIO_ADDR_CONTEXT_SHIFT);
766 
767 	/* set base and credits */
768 	reg = ((sci->credits & SC(CTRL_CTXT_DEPTH_MASK))
769 					<< SC(CTRL_CTXT_DEPTH_SHIFT))
770 		| ((sci->base & SC(CTRL_CTXT_BASE_MASK))
771 					<< SC(CTRL_CTXT_BASE_SHIFT));
772 	write_kctxt_csr(dd, hw_context, SC(CTRL), reg);
773 
774 	set_pio_integrity(sc);
775 
776 	/* unmask all errors */
777 	write_kctxt_csr(dd, hw_context, SC(ERR_MASK), (u64)-1);
778 
779 	/* set the default partition key */
780 	write_kctxt_csr(dd, hw_context, SC(CHECK_PARTITION_KEY),
781 			(SC(CHECK_PARTITION_KEY_VALUE_MASK) &
782 			 DEFAULT_PKEY) <<
783 			SC(CHECK_PARTITION_KEY_VALUE_SHIFT));
784 
785 	/* per context type checks */
786 	if (type == SC_USER) {
787 		opval = USER_OPCODE_CHECK_VAL;
788 		opmask = USER_OPCODE_CHECK_MASK;
789 	} else {
790 		opval = OPCODE_CHECK_VAL_DISABLED;
791 		opmask = OPCODE_CHECK_MASK_DISABLED;
792 	}
793 
794 	/* set the send context check opcode mask and value */
795 	write_kctxt_csr(dd, hw_context, SC(CHECK_OPCODE),
796 			((u64)opmask << SC(CHECK_OPCODE_MASK_SHIFT)) |
797 			((u64)opval << SC(CHECK_OPCODE_VALUE_SHIFT)));
798 
799 	/* set up credit return */
800 	reg = dma & SC(CREDIT_RETURN_ADDR_ADDRESS_SMASK);
801 	write_kctxt_csr(dd, hw_context, SC(CREDIT_RETURN_ADDR), reg);
802 
803 	/*
804 	 * Calculate the initial credit return threshold.
805 	 *
806 	 * For Ack contexts, set a threshold for half the credits.
807 	 * For User contexts use the given percentage.  This has been
808 	 * sanitized on driver start-up.
809 	 * For Kernel contexts, use the default MTU plus a header
810 	 * or half the credits, whichever is smaller. This should
811 	 * work for both the 3-deep buffering allocation and the
812 	 * pooling allocation.
813 	 */
814 	if (type == SC_ACK) {
815 		thresh = sc_percent_to_threshold(sc, 50);
816 	} else if (type == SC_USER) {
817 		thresh = sc_percent_to_threshold(sc,
818 						 user_credit_return_threshold);
819 	} else { /* kernel */
820 		thresh = min(sc_percent_to_threshold(sc, 50),
821 			     sc_mtu_to_threshold(sc, hfi1_max_mtu,
822 						 hdrqentsize));
823 	}
824 	reg = thresh << SC(CREDIT_CTRL_THRESHOLD_SHIFT);
825 	/* add in early return */
826 	if (type == SC_USER && HFI1_CAP_IS_USET(EARLY_CREDIT_RETURN))
827 		reg |= SC(CREDIT_CTRL_EARLY_RETURN_SMASK);
828 	else if (HFI1_CAP_IS_KSET(EARLY_CREDIT_RETURN)) /* kernel, ack */
829 		reg |= SC(CREDIT_CTRL_EARLY_RETURN_SMASK);
830 
831 	/* set up write-through credit_ctrl */
832 	sc->credit_ctrl = reg;
833 	write_kctxt_csr(dd, hw_context, SC(CREDIT_CTRL), reg);
834 
835 	/* User send contexts should not allow sending on VL15 */
836 	if (type == SC_USER) {
837 		reg = 1ULL << 15;
838 		write_kctxt_csr(dd, hw_context, SC(CHECK_VL), reg);
839 	}
840 
841 	spin_unlock_irqrestore(&dd->sc_lock, flags);
842 
843 	/*
844 	 * Allocate shadow ring to track outstanding PIO buffers _after_
845 	 * unlocking.  We don't know the size until the lock is held and
846 	 * we can't allocate while the lock is held.  No one is using
847 	 * the context yet, so allocate it now.
848 	 *
849 	 * User contexts do not get a shadow ring.
850 	 */
851 	if (type != SC_USER) {
852 		/*
853 		 * Size the shadow ring 1 larger than the number of credits
854 		 * so head == tail can mean empty.
855 		 */
856 		sc->sr_size = sci->credits + 1;
857 		sc->sr = kcalloc_node(sc->sr_size,
858 				      sizeof(union pio_shadow_ring),
859 				      GFP_KERNEL, numa);
860 		if (!sc->sr) {
861 			sc_free(sc);
862 			return NULL;
863 		}
864 	}
865 
866 	hfi1_cdbg(PIO,
867 		  "Send context %u(%u) %s group %u credits %u credit_ctrl 0x%llx threshold %u\n",
868 		  sw_index,
869 		  hw_context,
870 		  sc_type_name(type),
871 		  sc->group,
872 		  sc->credits,
873 		  sc->credit_ctrl,
874 		  thresh);
875 
876 	return sc;
877 }
878 
879 /* free a per-NUMA send context structure */
880 void sc_free(struct send_context *sc)
881 {
882 	struct hfi1_devdata *dd;
883 	unsigned long flags;
884 	u32 sw_index;
885 	u32 hw_context;
886 
887 	if (!sc)
888 		return;
889 
890 	sc->flags |= SCF_IN_FREE;	/* ensure no restarts */
891 	dd = sc->dd;
892 	if (!list_empty(&sc->piowait))
893 		dd_dev_err(dd, "piowait list not empty!\n");
894 	sw_index = sc->sw_index;
895 	hw_context = sc->hw_context;
896 	sc_disable(sc);	/* make sure the HW is disabled */
897 	flush_work(&sc->halt_work);
898 
899 	spin_lock_irqsave(&dd->sc_lock, flags);
900 	dd->send_contexts[sw_index].sc = NULL;
901 
902 	/* clear/disable all registers set in sc_alloc */
903 	write_kctxt_csr(dd, hw_context, SC(CTRL), 0);
904 	write_kctxt_csr(dd, hw_context, SC(CHECK_ENABLE), 0);
905 	write_kctxt_csr(dd, hw_context, SC(ERR_MASK), 0);
906 	write_kctxt_csr(dd, hw_context, SC(CHECK_PARTITION_KEY), 0);
907 	write_kctxt_csr(dd, hw_context, SC(CHECK_OPCODE), 0);
908 	write_kctxt_csr(dd, hw_context, SC(CREDIT_RETURN_ADDR), 0);
909 	write_kctxt_csr(dd, hw_context, SC(CREDIT_CTRL), 0);
910 
911 	/* release the index and context for re-use */
912 	sc_hw_free(dd, sw_index, hw_context);
913 	spin_unlock_irqrestore(&dd->sc_lock, flags);
914 
915 	kfree(sc->sr);
916 	free_percpu(sc->buffers_allocated);
917 	kfree(sc);
918 }
919 
920 /* disable the context */
921 void sc_disable(struct send_context *sc)
922 {
923 	u64 reg;
924 	unsigned long flags;
925 	struct pio_buf *pbuf;
926 
927 	if (!sc)
928 		return;
929 
930 	/* do all steps, even if already disabled */
931 	spin_lock_irqsave(&sc->alloc_lock, flags);
932 	reg = read_kctxt_csr(sc->dd, sc->hw_context, SC(CTRL));
933 	reg &= ~SC(CTRL_CTXT_ENABLE_SMASK);
934 	sc->flags &= ~SCF_ENABLED;
935 	sc_wait_for_packet_egress(sc, 1);
936 	write_kctxt_csr(sc->dd, sc->hw_context, SC(CTRL), reg);
937 	spin_unlock_irqrestore(&sc->alloc_lock, flags);
938 
939 	/*
940 	 * Flush any waiters.  Once the context is disabled,
941 	 * credit return interrupts are stopped (although there
942 	 * could be one in-process when the context is disabled).
943 	 * Wait one microsecond for any lingering interrupts, then
944 	 * proceed with the flush.
945 	 */
946 	udelay(1);
947 	spin_lock_irqsave(&sc->release_lock, flags);
948 	if (sc->sr) {	/* this context has a shadow ring */
949 		while (sc->sr_tail != sc->sr_head) {
950 			pbuf = &sc->sr[sc->sr_tail].pbuf;
951 			if (pbuf->cb)
952 				(*pbuf->cb)(pbuf->arg, PRC_SC_DISABLE);
953 			sc->sr_tail++;
954 			if (sc->sr_tail >= sc->sr_size)
955 				sc->sr_tail = 0;
956 		}
957 	}
958 	spin_unlock_irqrestore(&sc->release_lock, flags);
959 }
960 
961 /* return SendEgressCtxtStatus.PacketOccupancy */
962 static u64 packet_occupancy(u64 reg)
963 {
964 	return (reg &
965 		SEND_EGRESS_CTXT_STATUS_CTXT_EGRESS_PACKET_OCCUPANCY_SMASK)
966 		>> SEND_EGRESS_CTXT_STATUS_CTXT_EGRESS_PACKET_OCCUPANCY_SHIFT;
967 }
968 
969 /* is egress halted on the context? */
970 static bool egress_halted(u64 reg)
971 {
972 	return !!(reg & SEND_EGRESS_CTXT_STATUS_CTXT_EGRESS_HALT_STATUS_SMASK);
973 }
974 
975 /* is the send context halted? */
976 static bool is_sc_halted(struct hfi1_devdata *dd, u32 hw_context)
977 {
978 	return !!(read_kctxt_csr(dd, hw_context, SC(STATUS)) &
979 		  SC(STATUS_CTXT_HALTED_SMASK));
980 }
981 
982 /**
983  * sc_wait_for_packet_egress
984  * @sc: valid send context
985  * @pause: wait for credit return
986  *
987  * Wait for packet egress, optionally pause for credit return
988  *
989  * Egress halt and Context halt are not necessarily the same thing, so
990  * check for both.
991  *
992  * NOTE: The context halt bit may not be set immediately.  Because of this,
993  * it is necessary to check the SW SFC_HALTED bit (set in the IRQ) and the HW
994  * context bit to determine if the context is halted.
995  */
996 static void sc_wait_for_packet_egress(struct send_context *sc, int pause)
997 {
998 	struct hfi1_devdata *dd = sc->dd;
999 	u64 reg = 0;
1000 	u64 reg_prev;
1001 	u32 loop = 0;
1002 
1003 	while (1) {
1004 		reg_prev = reg;
1005 		reg = read_csr(dd, sc->hw_context * 8 +
1006 			       SEND_EGRESS_CTXT_STATUS);
1007 		/* done if any halt bits, SW or HW are set */
1008 		if (sc->flags & SCF_HALTED ||
1009 		    is_sc_halted(dd, sc->hw_context) || egress_halted(reg))
1010 			break;
1011 		reg = packet_occupancy(reg);
1012 		if (reg == 0)
1013 			break;
1014 		/* counter is reset if occupancy count changes */
1015 		if (reg != reg_prev)
1016 			loop = 0;
1017 		if (loop > 50000) {
1018 			/* timed out - bounce the link */
1019 			dd_dev_err(dd,
1020 				   "%s: context %u(%u) timeout waiting for packets to egress, remaining count %u, bouncing link\n",
1021 				   __func__, sc->sw_index,
1022 				   sc->hw_context, (u32)reg);
1023 			queue_work(dd->pport->link_wq,
1024 				   &dd->pport->link_bounce_work);
1025 			break;
1026 		}
1027 		loop++;
1028 		udelay(1);
1029 	}
1030 
1031 	if (pause)
1032 		/* Add additional delay to ensure chip returns all credits */
1033 		pause_for_credit_return(dd);
1034 }
1035 
1036 void sc_wait(struct hfi1_devdata *dd)
1037 {
1038 	int i;
1039 
1040 	for (i = 0; i < dd->num_send_contexts; i++) {
1041 		struct send_context *sc = dd->send_contexts[i].sc;
1042 
1043 		if (!sc)
1044 			continue;
1045 		sc_wait_for_packet_egress(sc, 0);
1046 	}
1047 }
1048 
1049 /*
1050  * Restart a context after it has been halted due to error.
1051  *
1052  * If the first step fails - wait for the halt to be asserted, return early.
1053  * Otherwise complain about timeouts but keep going.
1054  *
1055  * It is expected that allocations (enabled flag bit) have been shut off
1056  * already (only applies to kernel contexts).
1057  */
1058 int sc_restart(struct send_context *sc)
1059 {
1060 	struct hfi1_devdata *dd = sc->dd;
1061 	u64 reg;
1062 	u32 loop;
1063 	int count;
1064 
1065 	/* bounce off if not halted, or being free'd */
1066 	if (!(sc->flags & SCF_HALTED) || (sc->flags & SCF_IN_FREE))
1067 		return -EINVAL;
1068 
1069 	dd_dev_info(dd, "restarting send context %u(%u)\n", sc->sw_index,
1070 		    sc->hw_context);
1071 
1072 	/*
1073 	 * Step 1: Wait for the context to actually halt.
1074 	 *
1075 	 * The error interrupt is asynchronous to actually setting halt
1076 	 * on the context.
1077 	 */
1078 	loop = 0;
1079 	while (1) {
1080 		reg = read_kctxt_csr(dd, sc->hw_context, SC(STATUS));
1081 		if (reg & SC(STATUS_CTXT_HALTED_SMASK))
1082 			break;
1083 		if (loop > 100) {
1084 			dd_dev_err(dd, "%s: context %u(%u) not halting, skipping\n",
1085 				   __func__, sc->sw_index, sc->hw_context);
1086 			return -ETIME;
1087 		}
1088 		loop++;
1089 		udelay(1);
1090 	}
1091 
1092 	/*
1093 	 * Step 2: Ensure no users are still trying to write to PIO.
1094 	 *
1095 	 * For kernel contexts, we have already turned off buffer allocation.
1096 	 * Now wait for the buffer count to go to zero.
1097 	 *
1098 	 * For user contexts, the user handling code has cut off write access
1099 	 * to the context's PIO pages before calling this routine and will
1100 	 * restore write access after this routine returns.
1101 	 */
1102 	if (sc->type != SC_USER) {
1103 		/* kernel context */
1104 		loop = 0;
1105 		while (1) {
1106 			count = get_buffers_allocated(sc);
1107 			if (count == 0)
1108 				break;
1109 			if (loop > 100) {
1110 				dd_dev_err(dd,
1111 					   "%s: context %u(%u) timeout waiting for PIO buffers to zero, remaining %d\n",
1112 					   __func__, sc->sw_index,
1113 					   sc->hw_context, count);
1114 			}
1115 			loop++;
1116 			udelay(1);
1117 		}
1118 	}
1119 
1120 	/*
1121 	 * Step 3: Wait for all packets to egress.
1122 	 * This is done while disabling the send context
1123 	 *
1124 	 * Step 4: Disable the context
1125 	 *
1126 	 * This is a superset of the halt.  After the disable, the
1127 	 * errors can be cleared.
1128 	 */
1129 	sc_disable(sc);
1130 
1131 	/*
1132 	 * Step 5: Enable the context
1133 	 *
1134 	 * This enable will clear the halted flag and per-send context
1135 	 * error flags.
1136 	 */
1137 	return sc_enable(sc);
1138 }
1139 
1140 /*
1141  * PIO freeze processing.  To be called after the TXE block is fully frozen.
1142  * Go through all frozen send contexts and disable them.  The contexts are
1143  * already stopped by the freeze.
1144  */
1145 void pio_freeze(struct hfi1_devdata *dd)
1146 {
1147 	struct send_context *sc;
1148 	int i;
1149 
1150 	for (i = 0; i < dd->num_send_contexts; i++) {
1151 		sc = dd->send_contexts[i].sc;
1152 		/*
1153 		 * Don't disable unallocated, unfrozen, or user send contexts.
1154 		 * User send contexts will be disabled when the process
1155 		 * calls into the driver to reset its context.
1156 		 */
1157 		if (!sc || !(sc->flags & SCF_FROZEN) || sc->type == SC_USER)
1158 			continue;
1159 
1160 		/* only need to disable, the context is already stopped */
1161 		sc_disable(sc);
1162 	}
1163 }
1164 
1165 /*
1166  * Unfreeze PIO for kernel send contexts.  The precondition for calling this
1167  * is that all PIO send contexts have been disabled and the SPC freeze has
1168  * been cleared.  Now perform the last step and re-enable each kernel context.
1169  * User (PSM) processing will occur when PSM calls into the kernel to
1170  * acknowledge the freeze.
1171  */
1172 void pio_kernel_unfreeze(struct hfi1_devdata *dd)
1173 {
1174 	struct send_context *sc;
1175 	int i;
1176 
1177 	for (i = 0; i < dd->num_send_contexts; i++) {
1178 		sc = dd->send_contexts[i].sc;
1179 		if (!sc || !(sc->flags & SCF_FROZEN) || sc->type == SC_USER)
1180 			continue;
1181 
1182 		sc_enable(sc);	/* will clear the sc frozen flag */
1183 	}
1184 }
1185 
1186 /*
1187  * Wait for the SendPioInitCtxt.PioInitInProgress bit to clear.
1188  * Returns:
1189  *	-ETIMEDOUT - if we wait too long
1190  *	-EIO	   - if there was an error
1191  */
1192 static int pio_init_wait_progress(struct hfi1_devdata *dd)
1193 {
1194 	u64 reg;
1195 	int max, count = 0;
1196 
1197 	/* max is the longest possible HW init time / delay */
1198 	max = (dd->icode == ICODE_FPGA_EMULATION) ? 120 : 5;
1199 	while (1) {
1200 		reg = read_csr(dd, SEND_PIO_INIT_CTXT);
1201 		if (!(reg & SEND_PIO_INIT_CTXT_PIO_INIT_IN_PROGRESS_SMASK))
1202 			break;
1203 		if (count >= max)
1204 			return -ETIMEDOUT;
1205 		udelay(5);
1206 		count++;
1207 	}
1208 
1209 	return reg & SEND_PIO_INIT_CTXT_PIO_INIT_ERR_SMASK ? -EIO : 0;
1210 }
1211 
1212 /*
1213  * Reset all of the send contexts to their power-on state.  Used
1214  * only during manual init - no lock against sc_enable needed.
1215  */
1216 void pio_reset_all(struct hfi1_devdata *dd)
1217 {
1218 	int ret;
1219 
1220 	/* make sure the init engine is not busy */
1221 	ret = pio_init_wait_progress(dd);
1222 	/* ignore any timeout */
1223 	if (ret == -EIO) {
1224 		/* clear the error */
1225 		write_csr(dd, SEND_PIO_ERR_CLEAR,
1226 			  SEND_PIO_ERR_CLEAR_PIO_INIT_SM_IN_ERR_SMASK);
1227 	}
1228 
1229 	/* reset init all */
1230 	write_csr(dd, SEND_PIO_INIT_CTXT,
1231 		  SEND_PIO_INIT_CTXT_PIO_ALL_CTXT_INIT_SMASK);
1232 	udelay(2);
1233 	ret = pio_init_wait_progress(dd);
1234 	if (ret < 0) {
1235 		dd_dev_err(dd,
1236 			   "PIO send context init %s while initializing all PIO blocks\n",
1237 			   ret == -ETIMEDOUT ? "is stuck" : "had an error");
1238 	}
1239 }
1240 
1241 /* enable the context */
1242 int sc_enable(struct send_context *sc)
1243 {
1244 	u64 sc_ctrl, reg, pio;
1245 	struct hfi1_devdata *dd;
1246 	unsigned long flags;
1247 	int ret = 0;
1248 
1249 	if (!sc)
1250 		return -EINVAL;
1251 	dd = sc->dd;
1252 
1253 	/*
1254 	 * Obtain the allocator lock to guard against any allocation
1255 	 * attempts (which should not happen prior to context being
1256 	 * enabled). On the release/disable side we don't need to
1257 	 * worry about locking since the releaser will not do anything
1258 	 * if the context accounting values have not changed.
1259 	 */
1260 	spin_lock_irqsave(&sc->alloc_lock, flags);
1261 	sc_ctrl = read_kctxt_csr(dd, sc->hw_context, SC(CTRL));
1262 	if ((sc_ctrl & SC(CTRL_CTXT_ENABLE_SMASK)))
1263 		goto unlock; /* already enabled */
1264 
1265 	/* IMPORTANT: only clear free and fill if transitioning 0 -> 1 */
1266 
1267 	*sc->hw_free = 0;
1268 	sc->free = 0;
1269 	sc->alloc_free = 0;
1270 	sc->fill = 0;
1271 	sc->fill_wrap = 0;
1272 	sc->sr_head = 0;
1273 	sc->sr_tail = 0;
1274 	sc->flags = 0;
1275 	/* the alloc lock insures no fast path allocation */
1276 	reset_buffers_allocated(sc);
1277 
1278 	/*
1279 	 * Clear all per-context errors.  Some of these will be set when
1280 	 * we are re-enabling after a context halt.  Now that the context
1281 	 * is disabled, the halt will not clear until after the PIO init
1282 	 * engine runs below.
1283 	 */
1284 	reg = read_kctxt_csr(dd, sc->hw_context, SC(ERR_STATUS));
1285 	if (reg)
1286 		write_kctxt_csr(dd, sc->hw_context, SC(ERR_CLEAR), reg);
1287 
1288 	/*
1289 	 * The HW PIO initialization engine can handle only one init
1290 	 * request at a time. Serialize access to each device's engine.
1291 	 */
1292 	spin_lock(&dd->sc_init_lock);
1293 	/*
1294 	 * Since access to this code block is serialized and
1295 	 * each access waits for the initialization to complete
1296 	 * before releasing the lock, the PIO initialization engine
1297 	 * should not be in use, so we don't have to wait for the
1298 	 * InProgress bit to go down.
1299 	 */
1300 	pio = ((sc->hw_context & SEND_PIO_INIT_CTXT_PIO_CTXT_NUM_MASK) <<
1301 	       SEND_PIO_INIT_CTXT_PIO_CTXT_NUM_SHIFT) |
1302 		SEND_PIO_INIT_CTXT_PIO_SINGLE_CTXT_INIT_SMASK;
1303 	write_csr(dd, SEND_PIO_INIT_CTXT, pio);
1304 	/*
1305 	 * Wait until the engine is done.  Give the chip the required time
1306 	 * so, hopefully, we read the register just once.
1307 	 */
1308 	udelay(2);
1309 	ret = pio_init_wait_progress(dd);
1310 	spin_unlock(&dd->sc_init_lock);
1311 	if (ret) {
1312 		dd_dev_err(dd,
1313 			   "sctxt%u(%u): Context not enabled due to init failure %d\n",
1314 			   sc->sw_index, sc->hw_context, ret);
1315 		goto unlock;
1316 	}
1317 
1318 	/*
1319 	 * All is well. Enable the context.
1320 	 */
1321 	sc_ctrl |= SC(CTRL_CTXT_ENABLE_SMASK);
1322 	write_kctxt_csr(dd, sc->hw_context, SC(CTRL), sc_ctrl);
1323 	/*
1324 	 * Read SendCtxtCtrl to force the write out and prevent a timing
1325 	 * hazard where a PIO write may reach the context before the enable.
1326 	 */
1327 	read_kctxt_csr(dd, sc->hw_context, SC(CTRL));
1328 	sc->flags |= SCF_ENABLED;
1329 
1330 unlock:
1331 	spin_unlock_irqrestore(&sc->alloc_lock, flags);
1332 
1333 	return ret;
1334 }
1335 
1336 /* force a credit return on the context */
1337 void sc_return_credits(struct send_context *sc)
1338 {
1339 	if (!sc)
1340 		return;
1341 
1342 	/* a 0->1 transition schedules a credit return */
1343 	write_kctxt_csr(sc->dd, sc->hw_context, SC(CREDIT_FORCE),
1344 			SC(CREDIT_FORCE_FORCE_RETURN_SMASK));
1345 	/*
1346 	 * Ensure that the write is flushed and the credit return is
1347 	 * scheduled. We care more about the 0 -> 1 transition.
1348 	 */
1349 	read_kctxt_csr(sc->dd, sc->hw_context, SC(CREDIT_FORCE));
1350 	/* set back to 0 for next time */
1351 	write_kctxt_csr(sc->dd, sc->hw_context, SC(CREDIT_FORCE), 0);
1352 }
1353 
1354 /* allow all in-flight packets to drain on the context */
1355 void sc_flush(struct send_context *sc)
1356 {
1357 	if (!sc)
1358 		return;
1359 
1360 	sc_wait_for_packet_egress(sc, 1);
1361 }
1362 
1363 /* drop all packets on the context, no waiting until they are sent */
1364 void sc_drop(struct send_context *sc)
1365 {
1366 	if (!sc)
1367 		return;
1368 
1369 	dd_dev_info(sc->dd, "%s: context %u(%u) - not implemented\n",
1370 		    __func__, sc->sw_index, sc->hw_context);
1371 }
1372 
1373 /*
1374  * Start the software reaction to a context halt or SPC freeze:
1375  *	- mark the context as halted or frozen
1376  *	- stop buffer allocations
1377  *
1378  * Called from the error interrupt.  Other work is deferred until
1379  * out of the interrupt.
1380  */
1381 void sc_stop(struct send_context *sc, int flag)
1382 {
1383 	unsigned long flags;
1384 
1385 	/* mark the context */
1386 	sc->flags |= flag;
1387 
1388 	/* stop buffer allocations */
1389 	spin_lock_irqsave(&sc->alloc_lock, flags);
1390 	sc->flags &= ~SCF_ENABLED;
1391 	spin_unlock_irqrestore(&sc->alloc_lock, flags);
1392 	wake_up(&sc->halt_wait);
1393 }
1394 
1395 #define BLOCK_DWORDS (PIO_BLOCK_SIZE / sizeof(u32))
1396 #define dwords_to_blocks(x) DIV_ROUND_UP(x, BLOCK_DWORDS)
1397 
1398 /*
1399  * The send context buffer "allocator".
1400  *
1401  * @sc: the PIO send context we are allocating from
1402  * @len: length of whole packet - including PBC - in dwords
1403  * @cb: optional callback to call when the buffer is finished sending
1404  * @arg: argument for cb
1405  *
1406  * Return a pointer to a PIO buffer if successful, NULL if not enough room.
1407  */
1408 struct pio_buf *sc_buffer_alloc(struct send_context *sc, u32 dw_len,
1409 				pio_release_cb cb, void *arg)
1410 {
1411 	struct pio_buf *pbuf = NULL;
1412 	unsigned long flags;
1413 	unsigned long avail;
1414 	unsigned long blocks = dwords_to_blocks(dw_len);
1415 	u32 fill_wrap;
1416 	int trycount = 0;
1417 	u32 head, next;
1418 
1419 	spin_lock_irqsave(&sc->alloc_lock, flags);
1420 	if (!(sc->flags & SCF_ENABLED)) {
1421 		spin_unlock_irqrestore(&sc->alloc_lock, flags);
1422 		goto done;
1423 	}
1424 
1425 retry:
1426 	avail = (unsigned long)sc->credits - (sc->fill - sc->alloc_free);
1427 	if (blocks > avail) {
1428 		/* not enough room */
1429 		if (unlikely(trycount))	{ /* already tried to get more room */
1430 			spin_unlock_irqrestore(&sc->alloc_lock, flags);
1431 			goto done;
1432 		}
1433 		/* copy from receiver cache line and recalculate */
1434 		sc->alloc_free = READ_ONCE(sc->free);
1435 		avail =
1436 			(unsigned long)sc->credits -
1437 			(sc->fill - sc->alloc_free);
1438 		if (blocks > avail) {
1439 			/* still no room, actively update */
1440 			sc_release_update(sc);
1441 			sc->alloc_free = READ_ONCE(sc->free);
1442 			trycount++;
1443 			goto retry;
1444 		}
1445 	}
1446 
1447 	/* there is enough room */
1448 
1449 	preempt_disable();
1450 	this_cpu_inc(*sc->buffers_allocated);
1451 
1452 	/* read this once */
1453 	head = sc->sr_head;
1454 
1455 	/* "allocate" the buffer */
1456 	sc->fill += blocks;
1457 	fill_wrap = sc->fill_wrap;
1458 	sc->fill_wrap += blocks;
1459 	if (sc->fill_wrap >= sc->credits)
1460 		sc->fill_wrap = sc->fill_wrap - sc->credits;
1461 
1462 	/*
1463 	 * Fill the parts that the releaser looks at before moving the head.
1464 	 * The only necessary piece is the sent_at field.  The credits
1465 	 * we have just allocated cannot have been returned yet, so the
1466 	 * cb and arg will not be looked at for a "while".  Put them
1467 	 * on this side of the memory barrier anyway.
1468 	 */
1469 	pbuf = &sc->sr[head].pbuf;
1470 	pbuf->sent_at = sc->fill;
1471 	pbuf->cb = cb;
1472 	pbuf->arg = arg;
1473 	pbuf->sc = sc;	/* could be filled in at sc->sr init time */
1474 	/* make sure this is in memory before updating the head */
1475 
1476 	/* calculate next head index, do not store */
1477 	next = head + 1;
1478 	if (next >= sc->sr_size)
1479 		next = 0;
1480 	/*
1481 	 * update the head - must be last! - the releaser can look at fields
1482 	 * in pbuf once we move the head
1483 	 */
1484 	smp_wmb();
1485 	sc->sr_head = next;
1486 	spin_unlock_irqrestore(&sc->alloc_lock, flags);
1487 
1488 	/* finish filling in the buffer outside the lock */
1489 	pbuf->start = sc->base_addr + fill_wrap * PIO_BLOCK_SIZE;
1490 	pbuf->end = sc->base_addr + sc->size;
1491 	pbuf->qw_written = 0;
1492 	pbuf->carry_bytes = 0;
1493 	pbuf->carry.val64 = 0;
1494 done:
1495 	return pbuf;
1496 }
1497 
1498 /*
1499  * There are at least two entities that can turn on credit return
1500  * interrupts and they can overlap.  Avoid problems by implementing
1501  * a count scheme that is enforced by a lock.  The lock is needed because
1502  * the count and CSR write must be paired.
1503  */
1504 
1505 /*
1506  * Start credit return interrupts.  This is managed by a count.  If already
1507  * on, just increment the count.
1508  */
1509 void sc_add_credit_return_intr(struct send_context *sc)
1510 {
1511 	unsigned long flags;
1512 
1513 	/* lock must surround both the count change and the CSR update */
1514 	spin_lock_irqsave(&sc->credit_ctrl_lock, flags);
1515 	if (sc->credit_intr_count == 0) {
1516 		sc->credit_ctrl |= SC(CREDIT_CTRL_CREDIT_INTR_SMASK);
1517 		write_kctxt_csr(sc->dd, sc->hw_context,
1518 				SC(CREDIT_CTRL), sc->credit_ctrl);
1519 	}
1520 	sc->credit_intr_count++;
1521 	spin_unlock_irqrestore(&sc->credit_ctrl_lock, flags);
1522 }
1523 
1524 /*
1525  * Stop credit return interrupts.  This is managed by a count.  Decrement the
1526  * count, if the last user, then turn the credit interrupts off.
1527  */
1528 void sc_del_credit_return_intr(struct send_context *sc)
1529 {
1530 	unsigned long flags;
1531 
1532 	WARN_ON(sc->credit_intr_count == 0);
1533 
1534 	/* lock must surround both the count change and the CSR update */
1535 	spin_lock_irqsave(&sc->credit_ctrl_lock, flags);
1536 	sc->credit_intr_count--;
1537 	if (sc->credit_intr_count == 0) {
1538 		sc->credit_ctrl &= ~SC(CREDIT_CTRL_CREDIT_INTR_SMASK);
1539 		write_kctxt_csr(sc->dd, sc->hw_context,
1540 				SC(CREDIT_CTRL), sc->credit_ctrl);
1541 	}
1542 	spin_unlock_irqrestore(&sc->credit_ctrl_lock, flags);
1543 }
1544 
1545 /*
1546  * The caller must be careful when calling this.  All needint calls
1547  * must be paired with !needint.
1548  */
1549 void hfi1_sc_wantpiobuf_intr(struct send_context *sc, u32 needint)
1550 {
1551 	if (needint)
1552 		sc_add_credit_return_intr(sc);
1553 	else
1554 		sc_del_credit_return_intr(sc);
1555 	trace_hfi1_wantpiointr(sc, needint, sc->credit_ctrl);
1556 	if (needint) {
1557 		mmiowb();
1558 		sc_return_credits(sc);
1559 	}
1560 }
1561 
1562 /**
1563  * sc_piobufavail - callback when a PIO buffer is available
1564  * @sc: the send context
1565  *
1566  * This is called from the interrupt handler when a PIO buffer is
1567  * available after hfi1_verbs_send() returned an error that no buffers were
1568  * available. Disable the interrupt if there are no more QPs waiting.
1569  */
1570 static void sc_piobufavail(struct send_context *sc)
1571 {
1572 	struct hfi1_devdata *dd = sc->dd;
1573 	struct hfi1_ibdev *dev = &dd->verbs_dev;
1574 	struct list_head *list;
1575 	struct rvt_qp *qps[PIO_WAIT_BATCH_SIZE];
1576 	struct rvt_qp *qp;
1577 	struct hfi1_qp_priv *priv;
1578 	unsigned long flags;
1579 	uint i, n = 0, max_idx = 0;
1580 	u8 max_starved_cnt = 0;
1581 
1582 	if (dd->send_contexts[sc->sw_index].type != SC_KERNEL &&
1583 	    dd->send_contexts[sc->sw_index].type != SC_VL15)
1584 		return;
1585 	list = &sc->piowait;
1586 	/*
1587 	 * Note: checking that the piowait list is empty and clearing
1588 	 * the buffer available interrupt needs to be atomic or we
1589 	 * could end up with QPs on the wait list with the interrupt
1590 	 * disabled.
1591 	 */
1592 	write_seqlock_irqsave(&dev->iowait_lock, flags);
1593 	while (!list_empty(list)) {
1594 		struct iowait *wait;
1595 
1596 		if (n == ARRAY_SIZE(qps))
1597 			break;
1598 		wait = list_first_entry(list, struct iowait, list);
1599 		qp = iowait_to_qp(wait);
1600 		priv = qp->priv;
1601 		list_del_init(&priv->s_iowait.list);
1602 		priv->s_iowait.lock = NULL;
1603 		iowait_starve_find_max(wait, &max_starved_cnt, n, &max_idx);
1604 		/* refcount held until actual wake up */
1605 		qps[n++] = qp;
1606 	}
1607 	/*
1608 	 * If there had been waiters and there are more
1609 	 * insure that we redo the force to avoid a potential hang.
1610 	 */
1611 	if (n) {
1612 		hfi1_sc_wantpiobuf_intr(sc, 0);
1613 		if (!list_empty(list))
1614 			hfi1_sc_wantpiobuf_intr(sc, 1);
1615 	}
1616 	write_sequnlock_irqrestore(&dev->iowait_lock, flags);
1617 
1618 	/* Wake up the most starved one first */
1619 	if (n)
1620 		hfi1_qp_wakeup(qps[max_idx],
1621 			       RVT_S_WAIT_PIO | HFI1_S_WAIT_PIO_DRAIN);
1622 	for (i = 0; i < n; i++)
1623 		if (i != max_idx)
1624 			hfi1_qp_wakeup(qps[i],
1625 				       RVT_S_WAIT_PIO | HFI1_S_WAIT_PIO_DRAIN);
1626 }
1627 
1628 /* translate a send credit update to a bit code of reasons */
1629 static inline int fill_code(u64 hw_free)
1630 {
1631 	int code = 0;
1632 
1633 	if (hw_free & CR_STATUS_SMASK)
1634 		code |= PRC_STATUS_ERR;
1635 	if (hw_free & CR_CREDIT_RETURN_DUE_TO_PBC_SMASK)
1636 		code |= PRC_PBC;
1637 	if (hw_free & CR_CREDIT_RETURN_DUE_TO_THRESHOLD_SMASK)
1638 		code |= PRC_THRESHOLD;
1639 	if (hw_free & CR_CREDIT_RETURN_DUE_TO_ERR_SMASK)
1640 		code |= PRC_FILL_ERR;
1641 	if (hw_free & CR_CREDIT_RETURN_DUE_TO_FORCE_SMASK)
1642 		code |= PRC_SC_DISABLE;
1643 	return code;
1644 }
1645 
1646 /* use the jiffies compare to get the wrap right */
1647 #define sent_before(a, b) time_before(a, b)	/* a < b */
1648 
1649 /*
1650  * The send context buffer "releaser".
1651  */
1652 void sc_release_update(struct send_context *sc)
1653 {
1654 	struct pio_buf *pbuf;
1655 	u64 hw_free;
1656 	u32 head, tail;
1657 	unsigned long old_free;
1658 	unsigned long free;
1659 	unsigned long extra;
1660 	unsigned long flags;
1661 	int code;
1662 
1663 	if (!sc)
1664 		return;
1665 
1666 	spin_lock_irqsave(&sc->release_lock, flags);
1667 	/* update free */
1668 	hw_free = le64_to_cpu(*sc->hw_free);		/* volatile read */
1669 	old_free = sc->free;
1670 	extra = (((hw_free & CR_COUNTER_SMASK) >> CR_COUNTER_SHIFT)
1671 			- (old_free & CR_COUNTER_MASK))
1672 				& CR_COUNTER_MASK;
1673 	free = old_free + extra;
1674 	trace_hfi1_piofree(sc, extra);
1675 
1676 	/* call sent buffer callbacks */
1677 	code = -1;				/* code not yet set */
1678 	head = READ_ONCE(sc->sr_head);	/* snapshot the head */
1679 	tail = sc->sr_tail;
1680 	while (head != tail) {
1681 		pbuf = &sc->sr[tail].pbuf;
1682 
1683 		if (sent_before(free, pbuf->sent_at)) {
1684 			/* not sent yet */
1685 			break;
1686 		}
1687 		if (pbuf->cb) {
1688 			if (code < 0) /* fill in code on first user */
1689 				code = fill_code(hw_free);
1690 			(*pbuf->cb)(pbuf->arg, code);
1691 		}
1692 
1693 		tail++;
1694 		if (tail >= sc->sr_size)
1695 			tail = 0;
1696 	}
1697 	sc->sr_tail = tail;
1698 	/* make sure tail is updated before free */
1699 	smp_wmb();
1700 	sc->free = free;
1701 	spin_unlock_irqrestore(&sc->release_lock, flags);
1702 	sc_piobufavail(sc);
1703 }
1704 
1705 /*
1706  * Send context group releaser.  Argument is the send context that caused
1707  * the interrupt.  Called from the send context interrupt handler.
1708  *
1709  * Call release on all contexts in the group.
1710  *
1711  * This routine takes the sc_lock without an irqsave because it is only
1712  * called from an interrupt handler.  Adjust if that changes.
1713  */
1714 void sc_group_release_update(struct hfi1_devdata *dd, u32 hw_context)
1715 {
1716 	struct send_context *sc;
1717 	u32 sw_index;
1718 	u32 gc, gc_end;
1719 
1720 	spin_lock(&dd->sc_lock);
1721 	sw_index = dd->hw_to_sw[hw_context];
1722 	if (unlikely(sw_index >= dd->num_send_contexts)) {
1723 		dd_dev_err(dd, "%s: invalid hw (%u) to sw (%u) mapping\n",
1724 			   __func__, hw_context, sw_index);
1725 		goto done;
1726 	}
1727 	sc = dd->send_contexts[sw_index].sc;
1728 	if (unlikely(!sc))
1729 		goto done;
1730 
1731 	gc = group_context(hw_context, sc->group);
1732 	gc_end = gc + group_size(sc->group);
1733 	for (; gc < gc_end; gc++) {
1734 		sw_index = dd->hw_to_sw[gc];
1735 		if (unlikely(sw_index >= dd->num_send_contexts)) {
1736 			dd_dev_err(dd,
1737 				   "%s: invalid hw (%u) to sw (%u) mapping\n",
1738 				   __func__, hw_context, sw_index);
1739 			continue;
1740 		}
1741 		sc_release_update(dd->send_contexts[sw_index].sc);
1742 	}
1743 done:
1744 	spin_unlock(&dd->sc_lock);
1745 }
1746 
1747 /*
1748  * pio_select_send_context_vl() - select send context
1749  * @dd: devdata
1750  * @selector: a spreading factor
1751  * @vl: this vl
1752  *
1753  * This function returns a send context based on the selector and a vl.
1754  * The mapping fields are protected by RCU
1755  */
1756 struct send_context *pio_select_send_context_vl(struct hfi1_devdata *dd,
1757 						u32 selector, u8 vl)
1758 {
1759 	struct pio_vl_map *m;
1760 	struct pio_map_elem *e;
1761 	struct send_context *rval;
1762 
1763 	/*
1764 	 * NOTE This should only happen if SC->VL changed after the initial
1765 	 * checks on the QP/AH
1766 	 * Default will return VL0's send context below
1767 	 */
1768 	if (unlikely(vl >= num_vls)) {
1769 		rval = NULL;
1770 		goto done;
1771 	}
1772 
1773 	rcu_read_lock();
1774 	m = rcu_dereference(dd->pio_map);
1775 	if (unlikely(!m)) {
1776 		rcu_read_unlock();
1777 		return dd->vld[0].sc;
1778 	}
1779 	e = m->map[vl & m->mask];
1780 	rval = e->ksc[selector & e->mask];
1781 	rcu_read_unlock();
1782 
1783 done:
1784 	rval = !rval ? dd->vld[0].sc : rval;
1785 	return rval;
1786 }
1787 
1788 /*
1789  * pio_select_send_context_sc() - select send context
1790  * @dd: devdata
1791  * @selector: a spreading factor
1792  * @sc5: the 5 bit sc
1793  *
1794  * This function returns an send context based on the selector and an sc
1795  */
1796 struct send_context *pio_select_send_context_sc(struct hfi1_devdata *dd,
1797 						u32 selector, u8 sc5)
1798 {
1799 	u8 vl = sc_to_vlt(dd, sc5);
1800 
1801 	return pio_select_send_context_vl(dd, selector, vl);
1802 }
1803 
1804 /*
1805  * Free the indicated map struct
1806  */
1807 static void pio_map_free(struct pio_vl_map *m)
1808 {
1809 	int i;
1810 
1811 	for (i = 0; m && i < m->actual_vls; i++)
1812 		kfree(m->map[i]);
1813 	kfree(m);
1814 }
1815 
1816 /*
1817  * Handle RCU callback
1818  */
1819 static void pio_map_rcu_callback(struct rcu_head *list)
1820 {
1821 	struct pio_vl_map *m = container_of(list, struct pio_vl_map, list);
1822 
1823 	pio_map_free(m);
1824 }
1825 
1826 /*
1827  * Set credit return threshold for the kernel send context
1828  */
1829 static void set_threshold(struct hfi1_devdata *dd, int scontext, int i)
1830 {
1831 	u32 thres;
1832 
1833 	thres = min(sc_percent_to_threshold(dd->kernel_send_context[scontext],
1834 					    50),
1835 		    sc_mtu_to_threshold(dd->kernel_send_context[scontext],
1836 					dd->vld[i].mtu,
1837 					dd->rcd[0]->rcvhdrqentsize));
1838 	sc_set_cr_threshold(dd->kernel_send_context[scontext], thres);
1839 }
1840 
1841 /*
1842  * pio_map_init - called when #vls change
1843  * @dd: hfi1_devdata
1844  * @port: port number
1845  * @num_vls: number of vls
1846  * @vl_scontexts: per vl send context mapping (optional)
1847  *
1848  * This routine changes the mapping based on the number of vls.
1849  *
1850  * vl_scontexts is used to specify a non-uniform vl/send context
1851  * loading. NULL implies auto computing the loading and giving each
1852  * VL an uniform distribution of send contexts per VL.
1853  *
1854  * The auto algorithm computers the sc_per_vl and the number of extra
1855  * send contexts. Any extra send contexts are added from the last VL
1856  * on down
1857  *
1858  * rcu locking is used here to control access to the mapping fields.
1859  *
1860  * If either the num_vls or num_send_contexts are non-power of 2, the
1861  * array sizes in the struct pio_vl_map and the struct pio_map_elem are
1862  * rounded up to the next highest power of 2 and the first entry is
1863  * reused in a round robin fashion.
1864  *
1865  * If an error occurs the map change is not done and the mapping is not
1866  * chaged.
1867  *
1868  */
1869 int pio_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_scontexts)
1870 {
1871 	int i, j;
1872 	int extra, sc_per_vl;
1873 	int scontext = 1;
1874 	int num_kernel_send_contexts = 0;
1875 	u8 lvl_scontexts[OPA_MAX_VLS];
1876 	struct pio_vl_map *oldmap, *newmap;
1877 
1878 	if (!vl_scontexts) {
1879 		for (i = 0; i < dd->num_send_contexts; i++)
1880 			if (dd->send_contexts[i].type == SC_KERNEL)
1881 				num_kernel_send_contexts++;
1882 		/* truncate divide */
1883 		sc_per_vl = num_kernel_send_contexts / num_vls;
1884 		/* extras */
1885 		extra = num_kernel_send_contexts % num_vls;
1886 		vl_scontexts = lvl_scontexts;
1887 		/* add extras from last vl down */
1888 		for (i = num_vls - 1; i >= 0; i--, extra--)
1889 			vl_scontexts[i] = sc_per_vl + (extra > 0 ? 1 : 0);
1890 	}
1891 	/* build new map */
1892 	newmap = kzalloc(sizeof(*newmap) +
1893 			 roundup_pow_of_two(num_vls) *
1894 			 sizeof(struct pio_map_elem *),
1895 			 GFP_KERNEL);
1896 	if (!newmap)
1897 		goto bail;
1898 	newmap->actual_vls = num_vls;
1899 	newmap->vls = roundup_pow_of_two(num_vls);
1900 	newmap->mask = (1 << ilog2(newmap->vls)) - 1;
1901 	for (i = 0; i < newmap->vls; i++) {
1902 		/* save for wrap around */
1903 		int first_scontext = scontext;
1904 
1905 		if (i < newmap->actual_vls) {
1906 			int sz = roundup_pow_of_two(vl_scontexts[i]);
1907 
1908 			/* only allocate once */
1909 			newmap->map[i] = kzalloc(sizeof(*newmap->map[i]) +
1910 						 sz * sizeof(struct
1911 							     send_context *),
1912 						 GFP_KERNEL);
1913 			if (!newmap->map[i])
1914 				goto bail;
1915 			newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
1916 			/*
1917 			 * assign send contexts and
1918 			 * adjust credit return threshold
1919 			 */
1920 			for (j = 0; j < sz; j++) {
1921 				if (dd->kernel_send_context[scontext]) {
1922 					newmap->map[i]->ksc[j] =
1923 					dd->kernel_send_context[scontext];
1924 					set_threshold(dd, scontext, i);
1925 				}
1926 				if (++scontext >= first_scontext +
1927 						  vl_scontexts[i])
1928 					/* wrap back to first send context */
1929 					scontext = first_scontext;
1930 			}
1931 		} else {
1932 			/* just re-use entry without allocating */
1933 			newmap->map[i] = newmap->map[i % num_vls];
1934 		}
1935 		scontext = first_scontext + vl_scontexts[i];
1936 	}
1937 	/* newmap in hand, save old map */
1938 	spin_lock_irq(&dd->pio_map_lock);
1939 	oldmap = rcu_dereference_protected(dd->pio_map,
1940 					   lockdep_is_held(&dd->pio_map_lock));
1941 
1942 	/* publish newmap */
1943 	rcu_assign_pointer(dd->pio_map, newmap);
1944 
1945 	spin_unlock_irq(&dd->pio_map_lock);
1946 	/* success, free any old map after grace period */
1947 	if (oldmap)
1948 		call_rcu(&oldmap->list, pio_map_rcu_callback);
1949 	return 0;
1950 bail:
1951 	/* free any partial allocation */
1952 	pio_map_free(newmap);
1953 	return -ENOMEM;
1954 }
1955 
1956 void free_pio_map(struct hfi1_devdata *dd)
1957 {
1958 	/* Free PIO map if allocated */
1959 	if (rcu_access_pointer(dd->pio_map)) {
1960 		spin_lock_irq(&dd->pio_map_lock);
1961 		pio_map_free(rcu_access_pointer(dd->pio_map));
1962 		RCU_INIT_POINTER(dd->pio_map, NULL);
1963 		spin_unlock_irq(&dd->pio_map_lock);
1964 		synchronize_rcu();
1965 	}
1966 	kfree(dd->kernel_send_context);
1967 	dd->kernel_send_context = NULL;
1968 }
1969 
1970 int init_pervl_scs(struct hfi1_devdata *dd)
1971 {
1972 	int i;
1973 	u64 mask, all_vl_mask = (u64)0x80ff; /* VLs 0-7, 15 */
1974 	u64 data_vls_mask = (u64)0x00ff; /* VLs 0-7 */
1975 	u32 ctxt;
1976 	struct hfi1_pportdata *ppd = dd->pport;
1977 
1978 	dd->vld[15].sc = sc_alloc(dd, SC_VL15,
1979 				  dd->rcd[0]->rcvhdrqentsize, dd->node);
1980 	if (!dd->vld[15].sc)
1981 		return -ENOMEM;
1982 
1983 	hfi1_init_ctxt(dd->vld[15].sc);
1984 	dd->vld[15].mtu = enum_to_mtu(OPA_MTU_2048);
1985 
1986 	dd->kernel_send_context = kcalloc_node(dd->num_send_contexts,
1987 					       sizeof(struct send_context *),
1988 					       GFP_KERNEL, dd->node);
1989 	if (!dd->kernel_send_context)
1990 		goto freesc15;
1991 
1992 	dd->kernel_send_context[0] = dd->vld[15].sc;
1993 
1994 	for (i = 0; i < num_vls; i++) {
1995 		/*
1996 		 * Since this function does not deal with a specific
1997 		 * receive context but we need the RcvHdrQ entry size,
1998 		 * use the size from rcd[0]. It is guaranteed to be
1999 		 * valid at this point and will remain the same for all
2000 		 * receive contexts.
2001 		 */
2002 		dd->vld[i].sc = sc_alloc(dd, SC_KERNEL,
2003 					 dd->rcd[0]->rcvhdrqentsize, dd->node);
2004 		if (!dd->vld[i].sc)
2005 			goto nomem;
2006 		dd->kernel_send_context[i + 1] = dd->vld[i].sc;
2007 		hfi1_init_ctxt(dd->vld[i].sc);
2008 		/* non VL15 start with the max MTU */
2009 		dd->vld[i].mtu = hfi1_max_mtu;
2010 	}
2011 	for (i = num_vls; i < INIT_SC_PER_VL * num_vls; i++) {
2012 		dd->kernel_send_context[i + 1] =
2013 		sc_alloc(dd, SC_KERNEL, dd->rcd[0]->rcvhdrqentsize, dd->node);
2014 		if (!dd->kernel_send_context[i + 1])
2015 			goto nomem;
2016 		hfi1_init_ctxt(dd->kernel_send_context[i + 1]);
2017 	}
2018 
2019 	sc_enable(dd->vld[15].sc);
2020 	ctxt = dd->vld[15].sc->hw_context;
2021 	mask = all_vl_mask & ~(1LL << 15);
2022 	write_kctxt_csr(dd, ctxt, SC(CHECK_VL), mask);
2023 	dd_dev_info(dd,
2024 		    "Using send context %u(%u) for VL15\n",
2025 		    dd->vld[15].sc->sw_index, ctxt);
2026 
2027 	for (i = 0; i < num_vls; i++) {
2028 		sc_enable(dd->vld[i].sc);
2029 		ctxt = dd->vld[i].sc->hw_context;
2030 		mask = all_vl_mask & ~(data_vls_mask);
2031 		write_kctxt_csr(dd, ctxt, SC(CHECK_VL), mask);
2032 	}
2033 	for (i = num_vls; i < INIT_SC_PER_VL * num_vls; i++) {
2034 		sc_enable(dd->kernel_send_context[i + 1]);
2035 		ctxt = dd->kernel_send_context[i + 1]->hw_context;
2036 		mask = all_vl_mask & ~(data_vls_mask);
2037 		write_kctxt_csr(dd, ctxt, SC(CHECK_VL), mask);
2038 	}
2039 
2040 	if (pio_map_init(dd, ppd->port - 1, num_vls, NULL))
2041 		goto nomem;
2042 	return 0;
2043 
2044 nomem:
2045 	for (i = 0; i < num_vls; i++) {
2046 		sc_free(dd->vld[i].sc);
2047 		dd->vld[i].sc = NULL;
2048 	}
2049 
2050 	for (i = num_vls; i < INIT_SC_PER_VL * num_vls; i++)
2051 		sc_free(dd->kernel_send_context[i + 1]);
2052 
2053 	kfree(dd->kernel_send_context);
2054 	dd->kernel_send_context = NULL;
2055 
2056 freesc15:
2057 	sc_free(dd->vld[15].sc);
2058 	return -ENOMEM;
2059 }
2060 
2061 int init_credit_return(struct hfi1_devdata *dd)
2062 {
2063 	int ret;
2064 	int i;
2065 
2066 	dd->cr_base = kcalloc(
2067 		node_affinity.num_possible_nodes,
2068 		sizeof(struct credit_return_base),
2069 		GFP_KERNEL);
2070 	if (!dd->cr_base) {
2071 		ret = -ENOMEM;
2072 		goto done;
2073 	}
2074 	for_each_node_with_cpus(i) {
2075 		int bytes = TXE_NUM_CONTEXTS * sizeof(struct credit_return);
2076 
2077 		set_dev_node(&dd->pcidev->dev, i);
2078 		dd->cr_base[i].va = dma_zalloc_coherent(
2079 					&dd->pcidev->dev,
2080 					bytes,
2081 					&dd->cr_base[i].dma,
2082 					GFP_KERNEL);
2083 		if (!dd->cr_base[i].va) {
2084 			set_dev_node(&dd->pcidev->dev, dd->node);
2085 			dd_dev_err(dd,
2086 				   "Unable to allocate credit return DMA range for NUMA %d\n",
2087 				   i);
2088 			ret = -ENOMEM;
2089 			goto done;
2090 		}
2091 	}
2092 	set_dev_node(&dd->pcidev->dev, dd->node);
2093 
2094 	ret = 0;
2095 done:
2096 	return ret;
2097 }
2098 
2099 void free_credit_return(struct hfi1_devdata *dd)
2100 {
2101 	int i;
2102 
2103 	if (!dd->cr_base)
2104 		return;
2105 	for (i = 0; i < node_affinity.num_possible_nodes; i++) {
2106 		if (dd->cr_base[i].va) {
2107 			dma_free_coherent(&dd->pcidev->dev,
2108 					  TXE_NUM_CONTEXTS *
2109 					  sizeof(struct credit_return),
2110 					  dd->cr_base[i].va,
2111 					  dd->cr_base[i].dma);
2112 		}
2113 	}
2114 	kfree(dd->cr_base);
2115 	dd->cr_base = NULL;
2116 }
2117