1 /* 2 * Copyright(c) 2015-2018 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 #include <linux/delay.h> 49 #include "hfi.h" 50 #include "qp.h" 51 #include "trace.h" 52 53 #define SC(name) SEND_CTXT_##name 54 /* 55 * Send Context functions 56 */ 57 static void sc_wait_for_packet_egress(struct send_context *sc, int pause); 58 59 /* 60 * Set the CM reset bit and wait for it to clear. Use the provided 61 * sendctrl register. This routine has no locking. 62 */ 63 void __cm_reset(struct hfi1_devdata *dd, u64 sendctrl) 64 { 65 write_csr(dd, SEND_CTRL, sendctrl | SEND_CTRL_CM_RESET_SMASK); 66 while (1) { 67 udelay(1); 68 sendctrl = read_csr(dd, SEND_CTRL); 69 if ((sendctrl & SEND_CTRL_CM_RESET_SMASK) == 0) 70 break; 71 } 72 } 73 74 /* global control of PIO send */ 75 void pio_send_control(struct hfi1_devdata *dd, int op) 76 { 77 u64 reg, mask; 78 unsigned long flags; 79 int write = 1; /* write sendctrl back */ 80 int flush = 0; /* re-read sendctrl to make sure it is flushed */ 81 int i; 82 83 spin_lock_irqsave(&dd->sendctrl_lock, flags); 84 85 reg = read_csr(dd, SEND_CTRL); 86 switch (op) { 87 case PSC_GLOBAL_ENABLE: 88 reg |= SEND_CTRL_SEND_ENABLE_SMASK; 89 /* Fall through */ 90 case PSC_DATA_VL_ENABLE: 91 mask = 0; 92 for (i = 0; i < ARRAY_SIZE(dd->vld); i++) 93 if (!dd->vld[i].mtu) 94 mask |= BIT_ULL(i); 95 /* Disallow sending on VLs not enabled */ 96 mask = (mask & SEND_CTRL_UNSUPPORTED_VL_MASK) << 97 SEND_CTRL_UNSUPPORTED_VL_SHIFT; 98 reg = (reg & ~SEND_CTRL_UNSUPPORTED_VL_SMASK) | mask; 99 break; 100 case PSC_GLOBAL_DISABLE: 101 reg &= ~SEND_CTRL_SEND_ENABLE_SMASK; 102 break; 103 case PSC_GLOBAL_VLARB_ENABLE: 104 reg |= SEND_CTRL_VL_ARBITER_ENABLE_SMASK; 105 break; 106 case PSC_GLOBAL_VLARB_DISABLE: 107 reg &= ~SEND_CTRL_VL_ARBITER_ENABLE_SMASK; 108 break; 109 case PSC_CM_RESET: 110 __cm_reset(dd, reg); 111 write = 0; /* CSR already written (and flushed) */ 112 break; 113 case PSC_DATA_VL_DISABLE: 114 reg |= SEND_CTRL_UNSUPPORTED_VL_SMASK; 115 flush = 1; 116 break; 117 default: 118 dd_dev_err(dd, "%s: invalid control %d\n", __func__, op); 119 break; 120 } 121 122 if (write) { 123 write_csr(dd, SEND_CTRL, reg); 124 if (flush) 125 (void)read_csr(dd, SEND_CTRL); /* flush write */ 126 } 127 128 spin_unlock_irqrestore(&dd->sendctrl_lock, flags); 129 } 130 131 /* number of send context memory pools */ 132 #define NUM_SC_POOLS 2 133 134 /* Send Context Size (SCS) wildcards */ 135 #define SCS_POOL_0 -1 136 #define SCS_POOL_1 -2 137 138 /* Send Context Count (SCC) wildcards */ 139 #define SCC_PER_VL -1 140 #define SCC_PER_CPU -2 141 #define SCC_PER_KRCVQ -3 142 143 /* Send Context Size (SCS) constants */ 144 #define SCS_ACK_CREDITS 32 145 #define SCS_VL15_CREDITS 102 /* 3 pkts of 2048B data + 128B header */ 146 147 #define PIO_THRESHOLD_CEILING 4096 148 149 #define PIO_WAIT_BATCH_SIZE 5 150 151 /* default send context sizes */ 152 static struct sc_config_sizes sc_config_sizes[SC_MAX] = { 153 [SC_KERNEL] = { .size = SCS_POOL_0, /* even divide, pool 0 */ 154 .count = SCC_PER_VL }, /* one per NUMA */ 155 [SC_ACK] = { .size = SCS_ACK_CREDITS, 156 .count = SCC_PER_KRCVQ }, 157 [SC_USER] = { .size = SCS_POOL_0, /* even divide, pool 0 */ 158 .count = SCC_PER_CPU }, /* one per CPU */ 159 [SC_VL15] = { .size = SCS_VL15_CREDITS, 160 .count = 1 }, 161 162 }; 163 164 /* send context memory pool configuration */ 165 struct mem_pool_config { 166 int centipercent; /* % of memory, in 100ths of 1% */ 167 int absolute_blocks; /* absolute block count */ 168 }; 169 170 /* default memory pool configuration: 100% in pool 0 */ 171 static struct mem_pool_config sc_mem_pool_config[NUM_SC_POOLS] = { 172 /* centi%, abs blocks */ 173 { 10000, -1 }, /* pool 0 */ 174 { 0, -1 }, /* pool 1 */ 175 }; 176 177 /* memory pool information, used when calculating final sizes */ 178 struct mem_pool_info { 179 int centipercent; /* 180 * 100th of 1% of memory to use, -1 if blocks 181 * already set 182 */ 183 int count; /* count of contexts in the pool */ 184 int blocks; /* block size of the pool */ 185 int size; /* context size, in blocks */ 186 }; 187 188 /* 189 * Convert a pool wildcard to a valid pool index. The wildcards 190 * start at -1 and increase negatively. Map them as: 191 * -1 => 0 192 * -2 => 1 193 * etc. 194 * 195 * Return -1 on non-wildcard input, otherwise convert to a pool number. 196 */ 197 static int wildcard_to_pool(int wc) 198 { 199 if (wc >= 0) 200 return -1; /* non-wildcard */ 201 return -wc - 1; 202 } 203 204 static const char *sc_type_names[SC_MAX] = { 205 "kernel", 206 "ack", 207 "user", 208 "vl15" 209 }; 210 211 static const char *sc_type_name(int index) 212 { 213 if (index < 0 || index >= SC_MAX) 214 return "unknown"; 215 return sc_type_names[index]; 216 } 217 218 /* 219 * Read the send context memory pool configuration and send context 220 * size configuration. Replace any wildcards and come up with final 221 * counts and sizes for the send context types. 222 */ 223 int init_sc_pools_and_sizes(struct hfi1_devdata *dd) 224 { 225 struct mem_pool_info mem_pool_info[NUM_SC_POOLS] = { { 0 } }; 226 int total_blocks = (chip_pio_mem_size(dd) / PIO_BLOCK_SIZE) - 1; 227 int total_contexts = 0; 228 int fixed_blocks; 229 int pool_blocks; 230 int used_blocks; 231 int cp_total; /* centipercent total */ 232 int ab_total; /* absolute block total */ 233 int extra; 234 int i; 235 236 /* 237 * When SDMA is enabled, kernel context pio packet size is capped by 238 * "piothreshold". Reduce pio buffer allocation for kernel context by 239 * setting it to a fixed size. The allocation allows 3-deep buffering 240 * of the largest pio packets plus up to 128 bytes header, sufficient 241 * to maintain verbs performance. 242 * 243 * When SDMA is disabled, keep the default pooling allocation. 244 */ 245 if (HFI1_CAP_IS_KSET(SDMA)) { 246 u16 max_pkt_size = (piothreshold < PIO_THRESHOLD_CEILING) ? 247 piothreshold : PIO_THRESHOLD_CEILING; 248 sc_config_sizes[SC_KERNEL].size = 249 3 * (max_pkt_size + 128) / PIO_BLOCK_SIZE; 250 } 251 252 /* 253 * Step 0: 254 * - copy the centipercents/absolute sizes from the pool config 255 * - sanity check these values 256 * - add up centipercents, then later check for full value 257 * - add up absolute blocks, then later check for over-commit 258 */ 259 cp_total = 0; 260 ab_total = 0; 261 for (i = 0; i < NUM_SC_POOLS; i++) { 262 int cp = sc_mem_pool_config[i].centipercent; 263 int ab = sc_mem_pool_config[i].absolute_blocks; 264 265 /* 266 * A negative value is "unused" or "invalid". Both *can* 267 * be valid, but centipercent wins, so check that first 268 */ 269 if (cp >= 0) { /* centipercent valid */ 270 cp_total += cp; 271 } else if (ab >= 0) { /* absolute blocks valid */ 272 ab_total += ab; 273 } else { /* neither valid */ 274 dd_dev_err( 275 dd, 276 "Send context memory pool %d: both the block count and centipercent are invalid\n", 277 i); 278 return -EINVAL; 279 } 280 281 mem_pool_info[i].centipercent = cp; 282 mem_pool_info[i].blocks = ab; 283 } 284 285 /* do not use both % and absolute blocks for different pools */ 286 if (cp_total != 0 && ab_total != 0) { 287 dd_dev_err( 288 dd, 289 "All send context memory pools must be described as either centipercent or blocks, no mixing between pools\n"); 290 return -EINVAL; 291 } 292 293 /* if any percentages are present, they must add up to 100% x 100 */ 294 if (cp_total != 0 && cp_total != 10000) { 295 dd_dev_err( 296 dd, 297 "Send context memory pool centipercent is %d, expecting 10000\n", 298 cp_total); 299 return -EINVAL; 300 } 301 302 /* the absolute pool total cannot be more than the mem total */ 303 if (ab_total > total_blocks) { 304 dd_dev_err( 305 dd, 306 "Send context memory pool absolute block count %d is larger than the memory size %d\n", 307 ab_total, total_blocks); 308 return -EINVAL; 309 } 310 311 /* 312 * Step 2: 313 * - copy from the context size config 314 * - replace context type wildcard counts with real values 315 * - add up non-memory pool block sizes 316 * - add up memory pool user counts 317 */ 318 fixed_blocks = 0; 319 for (i = 0; i < SC_MAX; i++) { 320 int count = sc_config_sizes[i].count; 321 int size = sc_config_sizes[i].size; 322 int pool; 323 324 /* 325 * Sanity check count: Either a positive value or 326 * one of the expected wildcards is valid. The positive 327 * value is checked later when we compare against total 328 * memory available. 329 */ 330 if (i == SC_ACK) { 331 count = dd->n_krcv_queues; 332 } else if (i == SC_KERNEL) { 333 count = INIT_SC_PER_VL * num_vls; 334 } else if (count == SCC_PER_CPU) { 335 count = dd->num_rcv_contexts - dd->n_krcv_queues; 336 } else if (count < 0) { 337 dd_dev_err( 338 dd, 339 "%s send context invalid count wildcard %d\n", 340 sc_type_name(i), count); 341 return -EINVAL; 342 } 343 if (total_contexts + count > chip_send_contexts(dd)) 344 count = chip_send_contexts(dd) - total_contexts; 345 346 total_contexts += count; 347 348 /* 349 * Sanity check pool: The conversion will return a pool 350 * number or -1 if a fixed (non-negative) value. The fixed 351 * value is checked later when we compare against 352 * total memory available. 353 */ 354 pool = wildcard_to_pool(size); 355 if (pool == -1) { /* non-wildcard */ 356 fixed_blocks += size * count; 357 } else if (pool < NUM_SC_POOLS) { /* valid wildcard */ 358 mem_pool_info[pool].count += count; 359 } else { /* invalid wildcard */ 360 dd_dev_err( 361 dd, 362 "%s send context invalid pool wildcard %d\n", 363 sc_type_name(i), size); 364 return -EINVAL; 365 } 366 367 dd->sc_sizes[i].count = count; 368 dd->sc_sizes[i].size = size; 369 } 370 if (fixed_blocks > total_blocks) { 371 dd_dev_err( 372 dd, 373 "Send context fixed block count, %u, larger than total block count %u\n", 374 fixed_blocks, total_blocks); 375 return -EINVAL; 376 } 377 378 /* step 3: calculate the blocks in the pools, and pool context sizes */ 379 pool_blocks = total_blocks - fixed_blocks; 380 if (ab_total > pool_blocks) { 381 dd_dev_err( 382 dd, 383 "Send context fixed pool sizes, %u, larger than pool block count %u\n", 384 ab_total, pool_blocks); 385 return -EINVAL; 386 } 387 /* subtract off the fixed pool blocks */ 388 pool_blocks -= ab_total; 389 390 for (i = 0; i < NUM_SC_POOLS; i++) { 391 struct mem_pool_info *pi = &mem_pool_info[i]; 392 393 /* % beats absolute blocks */ 394 if (pi->centipercent >= 0) 395 pi->blocks = (pool_blocks * pi->centipercent) / 10000; 396 397 if (pi->blocks == 0 && pi->count != 0) { 398 dd_dev_err( 399 dd, 400 "Send context memory pool %d has %u contexts, but no blocks\n", 401 i, pi->count); 402 return -EINVAL; 403 } 404 if (pi->count == 0) { 405 /* warn about wasted blocks */ 406 if (pi->blocks != 0) 407 dd_dev_err( 408 dd, 409 "Send context memory pool %d has %u blocks, but zero contexts\n", 410 i, pi->blocks); 411 pi->size = 0; 412 } else { 413 pi->size = pi->blocks / pi->count; 414 } 415 } 416 417 /* step 4: fill in the context type sizes from the pool sizes */ 418 used_blocks = 0; 419 for (i = 0; i < SC_MAX; i++) { 420 if (dd->sc_sizes[i].size < 0) { 421 unsigned pool = wildcard_to_pool(dd->sc_sizes[i].size); 422 423 WARN_ON_ONCE(pool >= NUM_SC_POOLS); 424 dd->sc_sizes[i].size = mem_pool_info[pool].size; 425 } 426 /* make sure we are not larger than what is allowed by the HW */ 427 #define PIO_MAX_BLOCKS 1024 428 if (dd->sc_sizes[i].size > PIO_MAX_BLOCKS) 429 dd->sc_sizes[i].size = PIO_MAX_BLOCKS; 430 431 /* calculate our total usage */ 432 used_blocks += dd->sc_sizes[i].size * dd->sc_sizes[i].count; 433 } 434 extra = total_blocks - used_blocks; 435 if (extra != 0) 436 dd_dev_info(dd, "unused send context blocks: %d\n", extra); 437 438 return total_contexts; 439 } 440 441 int init_send_contexts(struct hfi1_devdata *dd) 442 { 443 u16 base; 444 int ret, i, j, context; 445 446 ret = init_credit_return(dd); 447 if (ret) 448 return ret; 449 450 dd->hw_to_sw = kmalloc_array(TXE_NUM_CONTEXTS, sizeof(u8), 451 GFP_KERNEL); 452 dd->send_contexts = kcalloc(dd->num_send_contexts, 453 sizeof(struct send_context_info), 454 GFP_KERNEL); 455 if (!dd->send_contexts || !dd->hw_to_sw) { 456 kfree(dd->hw_to_sw); 457 kfree(dd->send_contexts); 458 free_credit_return(dd); 459 return -ENOMEM; 460 } 461 462 /* hardware context map starts with invalid send context indices */ 463 for (i = 0; i < TXE_NUM_CONTEXTS; i++) 464 dd->hw_to_sw[i] = INVALID_SCI; 465 466 /* 467 * All send contexts have their credit sizes. Allocate credits 468 * for each context one after another from the global space. 469 */ 470 context = 0; 471 base = 1; 472 for (i = 0; i < SC_MAX; i++) { 473 struct sc_config_sizes *scs = &dd->sc_sizes[i]; 474 475 for (j = 0; j < scs->count; j++) { 476 struct send_context_info *sci = 477 &dd->send_contexts[context]; 478 sci->type = i; 479 sci->base = base; 480 sci->credits = scs->size; 481 482 context++; 483 base += scs->size; 484 } 485 } 486 487 return 0; 488 } 489 490 /* 491 * Allocate a software index and hardware context of the given type. 492 * 493 * Must be called with dd->sc_lock held. 494 */ 495 static int sc_hw_alloc(struct hfi1_devdata *dd, int type, u32 *sw_index, 496 u32 *hw_context) 497 { 498 struct send_context_info *sci; 499 u32 index; 500 u32 context; 501 502 for (index = 0, sci = &dd->send_contexts[0]; 503 index < dd->num_send_contexts; index++, sci++) { 504 if (sci->type == type && sci->allocated == 0) { 505 sci->allocated = 1; 506 /* use a 1:1 mapping, but make them non-equal */ 507 context = chip_send_contexts(dd) - index - 1; 508 dd->hw_to_sw[context] = index; 509 *sw_index = index; 510 *hw_context = context; 511 return 0; /* success */ 512 } 513 } 514 dd_dev_err(dd, "Unable to locate a free type %d send context\n", type); 515 return -ENOSPC; 516 } 517 518 /* 519 * Free the send context given by its software index. 520 * 521 * Must be called with dd->sc_lock held. 522 */ 523 static void sc_hw_free(struct hfi1_devdata *dd, u32 sw_index, u32 hw_context) 524 { 525 struct send_context_info *sci; 526 527 sci = &dd->send_contexts[sw_index]; 528 if (!sci->allocated) { 529 dd_dev_err(dd, "%s: sw_index %u not allocated? hw_context %u\n", 530 __func__, sw_index, hw_context); 531 } 532 sci->allocated = 0; 533 dd->hw_to_sw[hw_context] = INVALID_SCI; 534 } 535 536 /* return the base context of a context in a group */ 537 static inline u32 group_context(u32 context, u32 group) 538 { 539 return (context >> group) << group; 540 } 541 542 /* return the size of a group */ 543 static inline u32 group_size(u32 group) 544 { 545 return 1 << group; 546 } 547 548 /* 549 * Obtain the credit return addresses, kernel virtual and bus, for the 550 * given sc. 551 * 552 * To understand this routine: 553 * o va and dma are arrays of struct credit_return. One for each physical 554 * send context, per NUMA. 555 * o Each send context always looks in its relative location in a struct 556 * credit_return for its credit return. 557 * o Each send context in a group must have its return address CSR programmed 558 * with the same value. Use the address of the first send context in the 559 * group. 560 */ 561 static void cr_group_addresses(struct send_context *sc, dma_addr_t *dma) 562 { 563 u32 gc = group_context(sc->hw_context, sc->group); 564 u32 index = sc->hw_context & 0x7; 565 566 sc->hw_free = &sc->dd->cr_base[sc->node].va[gc].cr[index]; 567 *dma = (unsigned long) 568 &((struct credit_return *)sc->dd->cr_base[sc->node].dma)[gc]; 569 } 570 571 /* 572 * Work queue function triggered in error interrupt routine for 573 * kernel contexts. 574 */ 575 static void sc_halted(struct work_struct *work) 576 { 577 struct send_context *sc; 578 579 sc = container_of(work, struct send_context, halt_work); 580 sc_restart(sc); 581 } 582 583 /* 584 * Calculate PIO block threshold for this send context using the given MTU. 585 * Trigger a return when one MTU plus optional header of credits remain. 586 * 587 * Parameter mtu is in bytes. 588 * Parameter hdrqentsize is in DWORDs. 589 * 590 * Return value is what to write into the CSR: trigger return when 591 * unreturned credits pass this count. 592 */ 593 u32 sc_mtu_to_threshold(struct send_context *sc, u32 mtu, u32 hdrqentsize) 594 { 595 u32 release_credits; 596 u32 threshold; 597 598 /* add in the header size, then divide by the PIO block size */ 599 mtu += hdrqentsize << 2; 600 release_credits = DIV_ROUND_UP(mtu, PIO_BLOCK_SIZE); 601 602 /* check against this context's credits */ 603 if (sc->credits <= release_credits) 604 threshold = 1; 605 else 606 threshold = sc->credits - release_credits; 607 608 return threshold; 609 } 610 611 /* 612 * Calculate credit threshold in terms of percent of the allocated credits. 613 * Trigger when unreturned credits equal or exceed the percentage of the whole. 614 * 615 * Return value is what to write into the CSR: trigger return when 616 * unreturned credits pass this count. 617 */ 618 u32 sc_percent_to_threshold(struct send_context *sc, u32 percent) 619 { 620 return (sc->credits * percent) / 100; 621 } 622 623 /* 624 * Set the credit return threshold. 625 */ 626 void sc_set_cr_threshold(struct send_context *sc, u32 new_threshold) 627 { 628 unsigned long flags; 629 u32 old_threshold; 630 int force_return = 0; 631 632 spin_lock_irqsave(&sc->credit_ctrl_lock, flags); 633 634 old_threshold = (sc->credit_ctrl >> 635 SC(CREDIT_CTRL_THRESHOLD_SHIFT)) 636 & SC(CREDIT_CTRL_THRESHOLD_MASK); 637 638 if (new_threshold != old_threshold) { 639 sc->credit_ctrl = 640 (sc->credit_ctrl 641 & ~SC(CREDIT_CTRL_THRESHOLD_SMASK)) 642 | ((new_threshold 643 & SC(CREDIT_CTRL_THRESHOLD_MASK)) 644 << SC(CREDIT_CTRL_THRESHOLD_SHIFT)); 645 write_kctxt_csr(sc->dd, sc->hw_context, 646 SC(CREDIT_CTRL), sc->credit_ctrl); 647 648 /* force a credit return on change to avoid a possible stall */ 649 force_return = 1; 650 } 651 652 spin_unlock_irqrestore(&sc->credit_ctrl_lock, flags); 653 654 if (force_return) 655 sc_return_credits(sc); 656 } 657 658 /* 659 * set_pio_integrity 660 * 661 * Set the CHECK_ENABLE register for the send context 'sc'. 662 */ 663 void set_pio_integrity(struct send_context *sc) 664 { 665 struct hfi1_devdata *dd = sc->dd; 666 u32 hw_context = sc->hw_context; 667 int type = sc->type; 668 669 write_kctxt_csr(dd, hw_context, 670 SC(CHECK_ENABLE), 671 hfi1_pkt_default_send_ctxt_mask(dd, type)); 672 } 673 674 static u32 get_buffers_allocated(struct send_context *sc) 675 { 676 int cpu; 677 u32 ret = 0; 678 679 for_each_possible_cpu(cpu) 680 ret += *per_cpu_ptr(sc->buffers_allocated, cpu); 681 return ret; 682 } 683 684 static void reset_buffers_allocated(struct send_context *sc) 685 { 686 int cpu; 687 688 for_each_possible_cpu(cpu) 689 (*per_cpu_ptr(sc->buffers_allocated, cpu)) = 0; 690 } 691 692 /* 693 * Allocate a NUMA relative send context structure of the given type along 694 * with a HW context. 695 */ 696 struct send_context *sc_alloc(struct hfi1_devdata *dd, int type, 697 uint hdrqentsize, int numa) 698 { 699 struct send_context_info *sci; 700 struct send_context *sc = NULL; 701 dma_addr_t dma; 702 unsigned long flags; 703 u64 reg; 704 u32 thresh; 705 u32 sw_index; 706 u32 hw_context; 707 int ret; 708 u8 opval, opmask; 709 710 /* do not allocate while frozen */ 711 if (dd->flags & HFI1_FROZEN) 712 return NULL; 713 714 sc = kzalloc_node(sizeof(*sc), GFP_KERNEL, numa); 715 if (!sc) 716 return NULL; 717 718 sc->buffers_allocated = alloc_percpu(u32); 719 if (!sc->buffers_allocated) { 720 kfree(sc); 721 dd_dev_err(dd, 722 "Cannot allocate buffers_allocated per cpu counters\n" 723 ); 724 return NULL; 725 } 726 727 spin_lock_irqsave(&dd->sc_lock, flags); 728 ret = sc_hw_alloc(dd, type, &sw_index, &hw_context); 729 if (ret) { 730 spin_unlock_irqrestore(&dd->sc_lock, flags); 731 free_percpu(sc->buffers_allocated); 732 kfree(sc); 733 return NULL; 734 } 735 736 sci = &dd->send_contexts[sw_index]; 737 sci->sc = sc; 738 739 sc->dd = dd; 740 sc->node = numa; 741 sc->type = type; 742 spin_lock_init(&sc->alloc_lock); 743 spin_lock_init(&sc->release_lock); 744 spin_lock_init(&sc->credit_ctrl_lock); 745 seqlock_init(&sc->waitlock); 746 INIT_LIST_HEAD(&sc->piowait); 747 INIT_WORK(&sc->halt_work, sc_halted); 748 init_waitqueue_head(&sc->halt_wait); 749 750 /* grouping is always single context for now */ 751 sc->group = 0; 752 753 sc->sw_index = sw_index; 754 sc->hw_context = hw_context; 755 cr_group_addresses(sc, &dma); 756 sc->credits = sci->credits; 757 sc->size = sc->credits * PIO_BLOCK_SIZE; 758 759 /* PIO Send Memory Address details */ 760 #define PIO_ADDR_CONTEXT_MASK 0xfful 761 #define PIO_ADDR_CONTEXT_SHIFT 16 762 sc->base_addr = dd->piobase + ((hw_context & PIO_ADDR_CONTEXT_MASK) 763 << PIO_ADDR_CONTEXT_SHIFT); 764 765 /* set base and credits */ 766 reg = ((sci->credits & SC(CTRL_CTXT_DEPTH_MASK)) 767 << SC(CTRL_CTXT_DEPTH_SHIFT)) 768 | ((sci->base & SC(CTRL_CTXT_BASE_MASK)) 769 << SC(CTRL_CTXT_BASE_SHIFT)); 770 write_kctxt_csr(dd, hw_context, SC(CTRL), reg); 771 772 set_pio_integrity(sc); 773 774 /* unmask all errors */ 775 write_kctxt_csr(dd, hw_context, SC(ERR_MASK), (u64)-1); 776 777 /* set the default partition key */ 778 write_kctxt_csr(dd, hw_context, SC(CHECK_PARTITION_KEY), 779 (SC(CHECK_PARTITION_KEY_VALUE_MASK) & 780 DEFAULT_PKEY) << 781 SC(CHECK_PARTITION_KEY_VALUE_SHIFT)); 782 783 /* per context type checks */ 784 if (type == SC_USER) { 785 opval = USER_OPCODE_CHECK_VAL; 786 opmask = USER_OPCODE_CHECK_MASK; 787 } else { 788 opval = OPCODE_CHECK_VAL_DISABLED; 789 opmask = OPCODE_CHECK_MASK_DISABLED; 790 } 791 792 /* set the send context check opcode mask and value */ 793 write_kctxt_csr(dd, hw_context, SC(CHECK_OPCODE), 794 ((u64)opmask << SC(CHECK_OPCODE_MASK_SHIFT)) | 795 ((u64)opval << SC(CHECK_OPCODE_VALUE_SHIFT))); 796 797 /* set up credit return */ 798 reg = dma & SC(CREDIT_RETURN_ADDR_ADDRESS_SMASK); 799 write_kctxt_csr(dd, hw_context, SC(CREDIT_RETURN_ADDR), reg); 800 801 /* 802 * Calculate the initial credit return threshold. 803 * 804 * For Ack contexts, set a threshold for half the credits. 805 * For User contexts use the given percentage. This has been 806 * sanitized on driver start-up. 807 * For Kernel contexts, use the default MTU plus a header 808 * or half the credits, whichever is smaller. This should 809 * work for both the 3-deep buffering allocation and the 810 * pooling allocation. 811 */ 812 if (type == SC_ACK) { 813 thresh = sc_percent_to_threshold(sc, 50); 814 } else if (type == SC_USER) { 815 thresh = sc_percent_to_threshold(sc, 816 user_credit_return_threshold); 817 } else { /* kernel */ 818 thresh = min(sc_percent_to_threshold(sc, 50), 819 sc_mtu_to_threshold(sc, hfi1_max_mtu, 820 hdrqentsize)); 821 } 822 reg = thresh << SC(CREDIT_CTRL_THRESHOLD_SHIFT); 823 /* add in early return */ 824 if (type == SC_USER && HFI1_CAP_IS_USET(EARLY_CREDIT_RETURN)) 825 reg |= SC(CREDIT_CTRL_EARLY_RETURN_SMASK); 826 else if (HFI1_CAP_IS_KSET(EARLY_CREDIT_RETURN)) /* kernel, ack */ 827 reg |= SC(CREDIT_CTRL_EARLY_RETURN_SMASK); 828 829 /* set up write-through credit_ctrl */ 830 sc->credit_ctrl = reg; 831 write_kctxt_csr(dd, hw_context, SC(CREDIT_CTRL), reg); 832 833 /* User send contexts should not allow sending on VL15 */ 834 if (type == SC_USER) { 835 reg = 1ULL << 15; 836 write_kctxt_csr(dd, hw_context, SC(CHECK_VL), reg); 837 } 838 839 spin_unlock_irqrestore(&dd->sc_lock, flags); 840 841 /* 842 * Allocate shadow ring to track outstanding PIO buffers _after_ 843 * unlocking. We don't know the size until the lock is held and 844 * we can't allocate while the lock is held. No one is using 845 * the context yet, so allocate it now. 846 * 847 * User contexts do not get a shadow ring. 848 */ 849 if (type != SC_USER) { 850 /* 851 * Size the shadow ring 1 larger than the number of credits 852 * so head == tail can mean empty. 853 */ 854 sc->sr_size = sci->credits + 1; 855 sc->sr = kcalloc_node(sc->sr_size, 856 sizeof(union pio_shadow_ring), 857 GFP_KERNEL, numa); 858 if (!sc->sr) { 859 sc_free(sc); 860 return NULL; 861 } 862 } 863 864 hfi1_cdbg(PIO, 865 "Send context %u(%u) %s group %u credits %u credit_ctrl 0x%llx threshold %u\n", 866 sw_index, 867 hw_context, 868 sc_type_name(type), 869 sc->group, 870 sc->credits, 871 sc->credit_ctrl, 872 thresh); 873 874 return sc; 875 } 876 877 /* free a per-NUMA send context structure */ 878 void sc_free(struct send_context *sc) 879 { 880 struct hfi1_devdata *dd; 881 unsigned long flags; 882 u32 sw_index; 883 u32 hw_context; 884 885 if (!sc) 886 return; 887 888 sc->flags |= SCF_IN_FREE; /* ensure no restarts */ 889 dd = sc->dd; 890 if (!list_empty(&sc->piowait)) 891 dd_dev_err(dd, "piowait list not empty!\n"); 892 sw_index = sc->sw_index; 893 hw_context = sc->hw_context; 894 sc_disable(sc); /* make sure the HW is disabled */ 895 flush_work(&sc->halt_work); 896 897 spin_lock_irqsave(&dd->sc_lock, flags); 898 dd->send_contexts[sw_index].sc = NULL; 899 900 /* clear/disable all registers set in sc_alloc */ 901 write_kctxt_csr(dd, hw_context, SC(CTRL), 0); 902 write_kctxt_csr(dd, hw_context, SC(CHECK_ENABLE), 0); 903 write_kctxt_csr(dd, hw_context, SC(ERR_MASK), 0); 904 write_kctxt_csr(dd, hw_context, SC(CHECK_PARTITION_KEY), 0); 905 write_kctxt_csr(dd, hw_context, SC(CHECK_OPCODE), 0); 906 write_kctxt_csr(dd, hw_context, SC(CREDIT_RETURN_ADDR), 0); 907 write_kctxt_csr(dd, hw_context, SC(CREDIT_CTRL), 0); 908 909 /* release the index and context for re-use */ 910 sc_hw_free(dd, sw_index, hw_context); 911 spin_unlock_irqrestore(&dd->sc_lock, flags); 912 913 kfree(sc->sr); 914 free_percpu(sc->buffers_allocated); 915 kfree(sc); 916 } 917 918 /* disable the context */ 919 void sc_disable(struct send_context *sc) 920 { 921 u64 reg; 922 struct pio_buf *pbuf; 923 924 if (!sc) 925 return; 926 927 /* do all steps, even if already disabled */ 928 spin_lock_irq(&sc->alloc_lock); 929 reg = read_kctxt_csr(sc->dd, sc->hw_context, SC(CTRL)); 930 reg &= ~SC(CTRL_CTXT_ENABLE_SMASK); 931 sc->flags &= ~SCF_ENABLED; 932 sc_wait_for_packet_egress(sc, 1); 933 write_kctxt_csr(sc->dd, sc->hw_context, SC(CTRL), reg); 934 935 /* 936 * Flush any waiters. Once the context is disabled, 937 * credit return interrupts are stopped (although there 938 * could be one in-process when the context is disabled). 939 * Wait one microsecond for any lingering interrupts, then 940 * proceed with the flush. 941 */ 942 udelay(1); 943 spin_lock(&sc->release_lock); 944 if (sc->sr) { /* this context has a shadow ring */ 945 while (sc->sr_tail != sc->sr_head) { 946 pbuf = &sc->sr[sc->sr_tail].pbuf; 947 if (pbuf->cb) 948 (*pbuf->cb)(pbuf->arg, PRC_SC_DISABLE); 949 sc->sr_tail++; 950 if (sc->sr_tail >= sc->sr_size) 951 sc->sr_tail = 0; 952 } 953 } 954 spin_unlock(&sc->release_lock); 955 956 write_seqlock(&sc->waitlock); 957 while (!list_empty(&sc->piowait)) { 958 struct iowait *wait; 959 struct rvt_qp *qp; 960 struct hfi1_qp_priv *priv; 961 962 wait = list_first_entry(&sc->piowait, struct iowait, list); 963 qp = iowait_to_qp(wait); 964 priv = qp->priv; 965 list_del_init(&priv->s_iowait.list); 966 priv->s_iowait.lock = NULL; 967 hfi1_qp_wakeup(qp, RVT_S_WAIT_PIO | HFI1_S_WAIT_PIO_DRAIN); 968 } 969 write_sequnlock(&sc->waitlock); 970 971 spin_unlock_irq(&sc->alloc_lock); 972 } 973 974 /* return SendEgressCtxtStatus.PacketOccupancy */ 975 static u64 packet_occupancy(u64 reg) 976 { 977 return (reg & 978 SEND_EGRESS_CTXT_STATUS_CTXT_EGRESS_PACKET_OCCUPANCY_SMASK) 979 >> SEND_EGRESS_CTXT_STATUS_CTXT_EGRESS_PACKET_OCCUPANCY_SHIFT; 980 } 981 982 /* is egress halted on the context? */ 983 static bool egress_halted(u64 reg) 984 { 985 return !!(reg & SEND_EGRESS_CTXT_STATUS_CTXT_EGRESS_HALT_STATUS_SMASK); 986 } 987 988 /* is the send context halted? */ 989 static bool is_sc_halted(struct hfi1_devdata *dd, u32 hw_context) 990 { 991 return !!(read_kctxt_csr(dd, hw_context, SC(STATUS)) & 992 SC(STATUS_CTXT_HALTED_SMASK)); 993 } 994 995 /** 996 * sc_wait_for_packet_egress 997 * @sc: valid send context 998 * @pause: wait for credit return 999 * 1000 * Wait for packet egress, optionally pause for credit return 1001 * 1002 * Egress halt and Context halt are not necessarily the same thing, so 1003 * check for both. 1004 * 1005 * NOTE: The context halt bit may not be set immediately. Because of this, 1006 * it is necessary to check the SW SFC_HALTED bit (set in the IRQ) and the HW 1007 * context bit to determine if the context is halted. 1008 */ 1009 static void sc_wait_for_packet_egress(struct send_context *sc, int pause) 1010 { 1011 struct hfi1_devdata *dd = sc->dd; 1012 u64 reg = 0; 1013 u64 reg_prev; 1014 u32 loop = 0; 1015 1016 while (1) { 1017 reg_prev = reg; 1018 reg = read_csr(dd, sc->hw_context * 8 + 1019 SEND_EGRESS_CTXT_STATUS); 1020 /* done if any halt bits, SW or HW are set */ 1021 if (sc->flags & SCF_HALTED || 1022 is_sc_halted(dd, sc->hw_context) || egress_halted(reg)) 1023 break; 1024 reg = packet_occupancy(reg); 1025 if (reg == 0) 1026 break; 1027 /* counter is reset if occupancy count changes */ 1028 if (reg != reg_prev) 1029 loop = 0; 1030 if (loop > 50000) { 1031 /* timed out - bounce the link */ 1032 dd_dev_err(dd, 1033 "%s: context %u(%u) timeout waiting for packets to egress, remaining count %u, bouncing link\n", 1034 __func__, sc->sw_index, 1035 sc->hw_context, (u32)reg); 1036 queue_work(dd->pport->link_wq, 1037 &dd->pport->link_bounce_work); 1038 break; 1039 } 1040 loop++; 1041 udelay(1); 1042 } 1043 1044 if (pause) 1045 /* Add additional delay to ensure chip returns all credits */ 1046 pause_for_credit_return(dd); 1047 } 1048 1049 void sc_wait(struct hfi1_devdata *dd) 1050 { 1051 int i; 1052 1053 for (i = 0; i < dd->num_send_contexts; i++) { 1054 struct send_context *sc = dd->send_contexts[i].sc; 1055 1056 if (!sc) 1057 continue; 1058 sc_wait_for_packet_egress(sc, 0); 1059 } 1060 } 1061 1062 /* 1063 * Restart a context after it has been halted due to error. 1064 * 1065 * If the first step fails - wait for the halt to be asserted, return early. 1066 * Otherwise complain about timeouts but keep going. 1067 * 1068 * It is expected that allocations (enabled flag bit) have been shut off 1069 * already (only applies to kernel contexts). 1070 */ 1071 int sc_restart(struct send_context *sc) 1072 { 1073 struct hfi1_devdata *dd = sc->dd; 1074 u64 reg; 1075 u32 loop; 1076 int count; 1077 1078 /* bounce off if not halted, or being free'd */ 1079 if (!(sc->flags & SCF_HALTED) || (sc->flags & SCF_IN_FREE)) 1080 return -EINVAL; 1081 1082 dd_dev_info(dd, "restarting send context %u(%u)\n", sc->sw_index, 1083 sc->hw_context); 1084 1085 /* 1086 * Step 1: Wait for the context to actually halt. 1087 * 1088 * The error interrupt is asynchronous to actually setting halt 1089 * on the context. 1090 */ 1091 loop = 0; 1092 while (1) { 1093 reg = read_kctxt_csr(dd, sc->hw_context, SC(STATUS)); 1094 if (reg & SC(STATUS_CTXT_HALTED_SMASK)) 1095 break; 1096 if (loop > 100) { 1097 dd_dev_err(dd, "%s: context %u(%u) not halting, skipping\n", 1098 __func__, sc->sw_index, sc->hw_context); 1099 return -ETIME; 1100 } 1101 loop++; 1102 udelay(1); 1103 } 1104 1105 /* 1106 * Step 2: Ensure no users are still trying to write to PIO. 1107 * 1108 * For kernel contexts, we have already turned off buffer allocation. 1109 * Now wait for the buffer count to go to zero. 1110 * 1111 * For user contexts, the user handling code has cut off write access 1112 * to the context's PIO pages before calling this routine and will 1113 * restore write access after this routine returns. 1114 */ 1115 if (sc->type != SC_USER) { 1116 /* kernel context */ 1117 loop = 0; 1118 while (1) { 1119 count = get_buffers_allocated(sc); 1120 if (count == 0) 1121 break; 1122 if (loop > 100) { 1123 dd_dev_err(dd, 1124 "%s: context %u(%u) timeout waiting for PIO buffers to zero, remaining %d\n", 1125 __func__, sc->sw_index, 1126 sc->hw_context, count); 1127 } 1128 loop++; 1129 udelay(1); 1130 } 1131 } 1132 1133 /* 1134 * Step 3: Wait for all packets to egress. 1135 * This is done while disabling the send context 1136 * 1137 * Step 4: Disable the context 1138 * 1139 * This is a superset of the halt. After the disable, the 1140 * errors can be cleared. 1141 */ 1142 sc_disable(sc); 1143 1144 /* 1145 * Step 5: Enable the context 1146 * 1147 * This enable will clear the halted flag and per-send context 1148 * error flags. 1149 */ 1150 return sc_enable(sc); 1151 } 1152 1153 /* 1154 * PIO freeze processing. To be called after the TXE block is fully frozen. 1155 * Go through all frozen send contexts and disable them. The contexts are 1156 * already stopped by the freeze. 1157 */ 1158 void pio_freeze(struct hfi1_devdata *dd) 1159 { 1160 struct send_context *sc; 1161 int i; 1162 1163 for (i = 0; i < dd->num_send_contexts; i++) { 1164 sc = dd->send_contexts[i].sc; 1165 /* 1166 * Don't disable unallocated, unfrozen, or user send contexts. 1167 * User send contexts will be disabled when the process 1168 * calls into the driver to reset its context. 1169 */ 1170 if (!sc || !(sc->flags & SCF_FROZEN) || sc->type == SC_USER) 1171 continue; 1172 1173 /* only need to disable, the context is already stopped */ 1174 sc_disable(sc); 1175 } 1176 } 1177 1178 /* 1179 * Unfreeze PIO for kernel send contexts. The precondition for calling this 1180 * is that all PIO send contexts have been disabled and the SPC freeze has 1181 * been cleared. Now perform the last step and re-enable each kernel context. 1182 * User (PSM) processing will occur when PSM calls into the kernel to 1183 * acknowledge the freeze. 1184 */ 1185 void pio_kernel_unfreeze(struct hfi1_devdata *dd) 1186 { 1187 struct send_context *sc; 1188 int i; 1189 1190 for (i = 0; i < dd->num_send_contexts; i++) { 1191 sc = dd->send_contexts[i].sc; 1192 if (!sc || !(sc->flags & SCF_FROZEN) || sc->type == SC_USER) 1193 continue; 1194 if (sc->flags & SCF_LINK_DOWN) 1195 continue; 1196 1197 sc_enable(sc); /* will clear the sc frozen flag */ 1198 } 1199 } 1200 1201 /** 1202 * pio_kernel_linkup() - Re-enable send contexts after linkup event 1203 * @dd: valid devive data 1204 * 1205 * When the link goes down, the freeze path is taken. However, a link down 1206 * event is different from a freeze because if the send context is re-enabled 1207 * whowever is sending data will start sending data again, which will hang 1208 * any QP that is sending data. 1209 * 1210 * The freeze path now looks at the type of event that occurs and takes this 1211 * path for link down event. 1212 */ 1213 void pio_kernel_linkup(struct hfi1_devdata *dd) 1214 { 1215 struct send_context *sc; 1216 int i; 1217 1218 for (i = 0; i < dd->num_send_contexts; i++) { 1219 sc = dd->send_contexts[i].sc; 1220 if (!sc || !(sc->flags & SCF_LINK_DOWN) || sc->type == SC_USER) 1221 continue; 1222 1223 sc_enable(sc); /* will clear the sc link down flag */ 1224 } 1225 } 1226 1227 /* 1228 * Wait for the SendPioInitCtxt.PioInitInProgress bit to clear. 1229 * Returns: 1230 * -ETIMEDOUT - if we wait too long 1231 * -EIO - if there was an error 1232 */ 1233 static int pio_init_wait_progress(struct hfi1_devdata *dd) 1234 { 1235 u64 reg; 1236 int max, count = 0; 1237 1238 /* max is the longest possible HW init time / delay */ 1239 max = (dd->icode == ICODE_FPGA_EMULATION) ? 120 : 5; 1240 while (1) { 1241 reg = read_csr(dd, SEND_PIO_INIT_CTXT); 1242 if (!(reg & SEND_PIO_INIT_CTXT_PIO_INIT_IN_PROGRESS_SMASK)) 1243 break; 1244 if (count >= max) 1245 return -ETIMEDOUT; 1246 udelay(5); 1247 count++; 1248 } 1249 1250 return reg & SEND_PIO_INIT_CTXT_PIO_INIT_ERR_SMASK ? -EIO : 0; 1251 } 1252 1253 /* 1254 * Reset all of the send contexts to their power-on state. Used 1255 * only during manual init - no lock against sc_enable needed. 1256 */ 1257 void pio_reset_all(struct hfi1_devdata *dd) 1258 { 1259 int ret; 1260 1261 /* make sure the init engine is not busy */ 1262 ret = pio_init_wait_progress(dd); 1263 /* ignore any timeout */ 1264 if (ret == -EIO) { 1265 /* clear the error */ 1266 write_csr(dd, SEND_PIO_ERR_CLEAR, 1267 SEND_PIO_ERR_CLEAR_PIO_INIT_SM_IN_ERR_SMASK); 1268 } 1269 1270 /* reset init all */ 1271 write_csr(dd, SEND_PIO_INIT_CTXT, 1272 SEND_PIO_INIT_CTXT_PIO_ALL_CTXT_INIT_SMASK); 1273 udelay(2); 1274 ret = pio_init_wait_progress(dd); 1275 if (ret < 0) { 1276 dd_dev_err(dd, 1277 "PIO send context init %s while initializing all PIO blocks\n", 1278 ret == -ETIMEDOUT ? "is stuck" : "had an error"); 1279 } 1280 } 1281 1282 /* enable the context */ 1283 int sc_enable(struct send_context *sc) 1284 { 1285 u64 sc_ctrl, reg, pio; 1286 struct hfi1_devdata *dd; 1287 unsigned long flags; 1288 int ret = 0; 1289 1290 if (!sc) 1291 return -EINVAL; 1292 dd = sc->dd; 1293 1294 /* 1295 * Obtain the allocator lock to guard against any allocation 1296 * attempts (which should not happen prior to context being 1297 * enabled). On the release/disable side we don't need to 1298 * worry about locking since the releaser will not do anything 1299 * if the context accounting values have not changed. 1300 */ 1301 spin_lock_irqsave(&sc->alloc_lock, flags); 1302 sc_ctrl = read_kctxt_csr(dd, sc->hw_context, SC(CTRL)); 1303 if ((sc_ctrl & SC(CTRL_CTXT_ENABLE_SMASK))) 1304 goto unlock; /* already enabled */ 1305 1306 /* IMPORTANT: only clear free and fill if transitioning 0 -> 1 */ 1307 1308 *sc->hw_free = 0; 1309 sc->free = 0; 1310 sc->alloc_free = 0; 1311 sc->fill = 0; 1312 sc->fill_wrap = 0; 1313 sc->sr_head = 0; 1314 sc->sr_tail = 0; 1315 sc->flags = 0; 1316 /* the alloc lock insures no fast path allocation */ 1317 reset_buffers_allocated(sc); 1318 1319 /* 1320 * Clear all per-context errors. Some of these will be set when 1321 * we are re-enabling after a context halt. Now that the context 1322 * is disabled, the halt will not clear until after the PIO init 1323 * engine runs below. 1324 */ 1325 reg = read_kctxt_csr(dd, sc->hw_context, SC(ERR_STATUS)); 1326 if (reg) 1327 write_kctxt_csr(dd, sc->hw_context, SC(ERR_CLEAR), reg); 1328 1329 /* 1330 * The HW PIO initialization engine can handle only one init 1331 * request at a time. Serialize access to each device's engine. 1332 */ 1333 spin_lock(&dd->sc_init_lock); 1334 /* 1335 * Since access to this code block is serialized and 1336 * each access waits for the initialization to complete 1337 * before releasing the lock, the PIO initialization engine 1338 * should not be in use, so we don't have to wait for the 1339 * InProgress bit to go down. 1340 */ 1341 pio = ((sc->hw_context & SEND_PIO_INIT_CTXT_PIO_CTXT_NUM_MASK) << 1342 SEND_PIO_INIT_CTXT_PIO_CTXT_NUM_SHIFT) | 1343 SEND_PIO_INIT_CTXT_PIO_SINGLE_CTXT_INIT_SMASK; 1344 write_csr(dd, SEND_PIO_INIT_CTXT, pio); 1345 /* 1346 * Wait until the engine is done. Give the chip the required time 1347 * so, hopefully, we read the register just once. 1348 */ 1349 udelay(2); 1350 ret = pio_init_wait_progress(dd); 1351 spin_unlock(&dd->sc_init_lock); 1352 if (ret) { 1353 dd_dev_err(dd, 1354 "sctxt%u(%u): Context not enabled due to init failure %d\n", 1355 sc->sw_index, sc->hw_context, ret); 1356 goto unlock; 1357 } 1358 1359 /* 1360 * All is well. Enable the context. 1361 */ 1362 sc_ctrl |= SC(CTRL_CTXT_ENABLE_SMASK); 1363 write_kctxt_csr(dd, sc->hw_context, SC(CTRL), sc_ctrl); 1364 /* 1365 * Read SendCtxtCtrl to force the write out and prevent a timing 1366 * hazard where a PIO write may reach the context before the enable. 1367 */ 1368 read_kctxt_csr(dd, sc->hw_context, SC(CTRL)); 1369 sc->flags |= SCF_ENABLED; 1370 1371 unlock: 1372 spin_unlock_irqrestore(&sc->alloc_lock, flags); 1373 1374 return ret; 1375 } 1376 1377 /* force a credit return on the context */ 1378 void sc_return_credits(struct send_context *sc) 1379 { 1380 if (!sc) 1381 return; 1382 1383 /* a 0->1 transition schedules a credit return */ 1384 write_kctxt_csr(sc->dd, sc->hw_context, SC(CREDIT_FORCE), 1385 SC(CREDIT_FORCE_FORCE_RETURN_SMASK)); 1386 /* 1387 * Ensure that the write is flushed and the credit return is 1388 * scheduled. We care more about the 0 -> 1 transition. 1389 */ 1390 read_kctxt_csr(sc->dd, sc->hw_context, SC(CREDIT_FORCE)); 1391 /* set back to 0 for next time */ 1392 write_kctxt_csr(sc->dd, sc->hw_context, SC(CREDIT_FORCE), 0); 1393 } 1394 1395 /* allow all in-flight packets to drain on the context */ 1396 void sc_flush(struct send_context *sc) 1397 { 1398 if (!sc) 1399 return; 1400 1401 sc_wait_for_packet_egress(sc, 1); 1402 } 1403 1404 /* drop all packets on the context, no waiting until they are sent */ 1405 void sc_drop(struct send_context *sc) 1406 { 1407 if (!sc) 1408 return; 1409 1410 dd_dev_info(sc->dd, "%s: context %u(%u) - not implemented\n", 1411 __func__, sc->sw_index, sc->hw_context); 1412 } 1413 1414 /* 1415 * Start the software reaction to a context halt or SPC freeze: 1416 * - mark the context as halted or frozen 1417 * - stop buffer allocations 1418 * 1419 * Called from the error interrupt. Other work is deferred until 1420 * out of the interrupt. 1421 */ 1422 void sc_stop(struct send_context *sc, int flag) 1423 { 1424 unsigned long flags; 1425 1426 /* stop buffer allocations */ 1427 spin_lock_irqsave(&sc->alloc_lock, flags); 1428 /* mark the context */ 1429 sc->flags |= flag; 1430 sc->flags &= ~SCF_ENABLED; 1431 spin_unlock_irqrestore(&sc->alloc_lock, flags); 1432 wake_up(&sc->halt_wait); 1433 } 1434 1435 #define BLOCK_DWORDS (PIO_BLOCK_SIZE / sizeof(u32)) 1436 #define dwords_to_blocks(x) DIV_ROUND_UP(x, BLOCK_DWORDS) 1437 1438 /* 1439 * The send context buffer "allocator". 1440 * 1441 * @sc: the PIO send context we are allocating from 1442 * @len: length of whole packet - including PBC - in dwords 1443 * @cb: optional callback to call when the buffer is finished sending 1444 * @arg: argument for cb 1445 * 1446 * Return a pointer to a PIO buffer, NULL if not enough room, -ECOMM 1447 * when link is down. 1448 */ 1449 struct pio_buf *sc_buffer_alloc(struct send_context *sc, u32 dw_len, 1450 pio_release_cb cb, void *arg) 1451 { 1452 struct pio_buf *pbuf = NULL; 1453 unsigned long flags; 1454 unsigned long avail; 1455 unsigned long blocks = dwords_to_blocks(dw_len); 1456 u32 fill_wrap; 1457 int trycount = 0; 1458 u32 head, next; 1459 1460 spin_lock_irqsave(&sc->alloc_lock, flags); 1461 if (!(sc->flags & SCF_ENABLED)) { 1462 spin_unlock_irqrestore(&sc->alloc_lock, flags); 1463 return ERR_PTR(-ECOMM); 1464 } 1465 1466 retry: 1467 avail = (unsigned long)sc->credits - (sc->fill - sc->alloc_free); 1468 if (blocks > avail) { 1469 /* not enough room */ 1470 if (unlikely(trycount)) { /* already tried to get more room */ 1471 spin_unlock_irqrestore(&sc->alloc_lock, flags); 1472 goto done; 1473 } 1474 /* copy from receiver cache line and recalculate */ 1475 sc->alloc_free = READ_ONCE(sc->free); 1476 avail = 1477 (unsigned long)sc->credits - 1478 (sc->fill - sc->alloc_free); 1479 if (blocks > avail) { 1480 /* still no room, actively update */ 1481 sc_release_update(sc); 1482 sc->alloc_free = READ_ONCE(sc->free); 1483 trycount++; 1484 goto retry; 1485 } 1486 } 1487 1488 /* there is enough room */ 1489 1490 preempt_disable(); 1491 this_cpu_inc(*sc->buffers_allocated); 1492 1493 /* read this once */ 1494 head = sc->sr_head; 1495 1496 /* "allocate" the buffer */ 1497 sc->fill += blocks; 1498 fill_wrap = sc->fill_wrap; 1499 sc->fill_wrap += blocks; 1500 if (sc->fill_wrap >= sc->credits) 1501 sc->fill_wrap = sc->fill_wrap - sc->credits; 1502 1503 /* 1504 * Fill the parts that the releaser looks at before moving the head. 1505 * The only necessary piece is the sent_at field. The credits 1506 * we have just allocated cannot have been returned yet, so the 1507 * cb and arg will not be looked at for a "while". Put them 1508 * on this side of the memory barrier anyway. 1509 */ 1510 pbuf = &sc->sr[head].pbuf; 1511 pbuf->sent_at = sc->fill; 1512 pbuf->cb = cb; 1513 pbuf->arg = arg; 1514 pbuf->sc = sc; /* could be filled in at sc->sr init time */ 1515 /* make sure this is in memory before updating the head */ 1516 1517 /* calculate next head index, do not store */ 1518 next = head + 1; 1519 if (next >= sc->sr_size) 1520 next = 0; 1521 /* 1522 * update the head - must be last! - the releaser can look at fields 1523 * in pbuf once we move the head 1524 */ 1525 smp_wmb(); 1526 sc->sr_head = next; 1527 spin_unlock_irqrestore(&sc->alloc_lock, flags); 1528 1529 /* finish filling in the buffer outside the lock */ 1530 pbuf->start = sc->base_addr + fill_wrap * PIO_BLOCK_SIZE; 1531 pbuf->end = sc->base_addr + sc->size; 1532 pbuf->qw_written = 0; 1533 pbuf->carry_bytes = 0; 1534 pbuf->carry.val64 = 0; 1535 done: 1536 return pbuf; 1537 } 1538 1539 /* 1540 * There are at least two entities that can turn on credit return 1541 * interrupts and they can overlap. Avoid problems by implementing 1542 * a count scheme that is enforced by a lock. The lock is needed because 1543 * the count and CSR write must be paired. 1544 */ 1545 1546 /* 1547 * Start credit return interrupts. This is managed by a count. If already 1548 * on, just increment the count. 1549 */ 1550 void sc_add_credit_return_intr(struct send_context *sc) 1551 { 1552 unsigned long flags; 1553 1554 /* lock must surround both the count change and the CSR update */ 1555 spin_lock_irqsave(&sc->credit_ctrl_lock, flags); 1556 if (sc->credit_intr_count == 0) { 1557 sc->credit_ctrl |= SC(CREDIT_CTRL_CREDIT_INTR_SMASK); 1558 write_kctxt_csr(sc->dd, sc->hw_context, 1559 SC(CREDIT_CTRL), sc->credit_ctrl); 1560 } 1561 sc->credit_intr_count++; 1562 spin_unlock_irqrestore(&sc->credit_ctrl_lock, flags); 1563 } 1564 1565 /* 1566 * Stop credit return interrupts. This is managed by a count. Decrement the 1567 * count, if the last user, then turn the credit interrupts off. 1568 */ 1569 void sc_del_credit_return_intr(struct send_context *sc) 1570 { 1571 unsigned long flags; 1572 1573 WARN_ON(sc->credit_intr_count == 0); 1574 1575 /* lock must surround both the count change and the CSR update */ 1576 spin_lock_irqsave(&sc->credit_ctrl_lock, flags); 1577 sc->credit_intr_count--; 1578 if (sc->credit_intr_count == 0) { 1579 sc->credit_ctrl &= ~SC(CREDIT_CTRL_CREDIT_INTR_SMASK); 1580 write_kctxt_csr(sc->dd, sc->hw_context, 1581 SC(CREDIT_CTRL), sc->credit_ctrl); 1582 } 1583 spin_unlock_irqrestore(&sc->credit_ctrl_lock, flags); 1584 } 1585 1586 /* 1587 * The caller must be careful when calling this. All needint calls 1588 * must be paired with !needint. 1589 */ 1590 void hfi1_sc_wantpiobuf_intr(struct send_context *sc, u32 needint) 1591 { 1592 if (needint) 1593 sc_add_credit_return_intr(sc); 1594 else 1595 sc_del_credit_return_intr(sc); 1596 trace_hfi1_wantpiointr(sc, needint, sc->credit_ctrl); 1597 if (needint) { 1598 sc_return_credits(sc); 1599 } 1600 } 1601 1602 /** 1603 * sc_piobufavail - callback when a PIO buffer is available 1604 * @sc: the send context 1605 * 1606 * This is called from the interrupt handler when a PIO buffer is 1607 * available after hfi1_verbs_send() returned an error that no buffers were 1608 * available. Disable the interrupt if there are no more QPs waiting. 1609 */ 1610 static void sc_piobufavail(struct send_context *sc) 1611 { 1612 struct hfi1_devdata *dd = sc->dd; 1613 struct list_head *list; 1614 struct rvt_qp *qps[PIO_WAIT_BATCH_SIZE]; 1615 struct rvt_qp *qp; 1616 struct hfi1_qp_priv *priv; 1617 unsigned long flags; 1618 uint i, n = 0, top_idx = 0; 1619 1620 if (dd->send_contexts[sc->sw_index].type != SC_KERNEL && 1621 dd->send_contexts[sc->sw_index].type != SC_VL15) 1622 return; 1623 list = &sc->piowait; 1624 /* 1625 * Note: checking that the piowait list is empty and clearing 1626 * the buffer available interrupt needs to be atomic or we 1627 * could end up with QPs on the wait list with the interrupt 1628 * disabled. 1629 */ 1630 write_seqlock_irqsave(&sc->waitlock, flags); 1631 while (!list_empty(list)) { 1632 struct iowait *wait; 1633 1634 if (n == ARRAY_SIZE(qps)) 1635 break; 1636 wait = list_first_entry(list, struct iowait, list); 1637 iowait_get_priority(wait); 1638 qp = iowait_to_qp(wait); 1639 priv = qp->priv; 1640 list_del_init(&priv->s_iowait.list); 1641 priv->s_iowait.lock = NULL; 1642 if (n) { 1643 priv = qps[top_idx]->priv; 1644 top_idx = iowait_priority_update_top(wait, 1645 &priv->s_iowait, 1646 n, top_idx); 1647 } 1648 1649 /* refcount held until actual wake up */ 1650 qps[n++] = qp; 1651 } 1652 /* 1653 * If there had been waiters and there are more 1654 * insure that we redo the force to avoid a potential hang. 1655 */ 1656 if (n) { 1657 hfi1_sc_wantpiobuf_intr(sc, 0); 1658 if (!list_empty(list)) 1659 hfi1_sc_wantpiobuf_intr(sc, 1); 1660 } 1661 write_sequnlock_irqrestore(&sc->waitlock, flags); 1662 1663 /* Wake up the top-priority one first */ 1664 if (n) 1665 hfi1_qp_wakeup(qps[top_idx], 1666 RVT_S_WAIT_PIO | HFI1_S_WAIT_PIO_DRAIN); 1667 for (i = 0; i < n; i++) 1668 if (i != top_idx) 1669 hfi1_qp_wakeup(qps[i], 1670 RVT_S_WAIT_PIO | HFI1_S_WAIT_PIO_DRAIN); 1671 } 1672 1673 /* translate a send credit update to a bit code of reasons */ 1674 static inline int fill_code(u64 hw_free) 1675 { 1676 int code = 0; 1677 1678 if (hw_free & CR_STATUS_SMASK) 1679 code |= PRC_STATUS_ERR; 1680 if (hw_free & CR_CREDIT_RETURN_DUE_TO_PBC_SMASK) 1681 code |= PRC_PBC; 1682 if (hw_free & CR_CREDIT_RETURN_DUE_TO_THRESHOLD_SMASK) 1683 code |= PRC_THRESHOLD; 1684 if (hw_free & CR_CREDIT_RETURN_DUE_TO_ERR_SMASK) 1685 code |= PRC_FILL_ERR; 1686 if (hw_free & CR_CREDIT_RETURN_DUE_TO_FORCE_SMASK) 1687 code |= PRC_SC_DISABLE; 1688 return code; 1689 } 1690 1691 /* use the jiffies compare to get the wrap right */ 1692 #define sent_before(a, b) time_before(a, b) /* a < b */ 1693 1694 /* 1695 * The send context buffer "releaser". 1696 */ 1697 void sc_release_update(struct send_context *sc) 1698 { 1699 struct pio_buf *pbuf; 1700 u64 hw_free; 1701 u32 head, tail; 1702 unsigned long old_free; 1703 unsigned long free; 1704 unsigned long extra; 1705 unsigned long flags; 1706 int code; 1707 1708 if (!sc) 1709 return; 1710 1711 spin_lock_irqsave(&sc->release_lock, flags); 1712 /* update free */ 1713 hw_free = le64_to_cpu(*sc->hw_free); /* volatile read */ 1714 old_free = sc->free; 1715 extra = (((hw_free & CR_COUNTER_SMASK) >> CR_COUNTER_SHIFT) 1716 - (old_free & CR_COUNTER_MASK)) 1717 & CR_COUNTER_MASK; 1718 free = old_free + extra; 1719 trace_hfi1_piofree(sc, extra); 1720 1721 /* call sent buffer callbacks */ 1722 code = -1; /* code not yet set */ 1723 head = READ_ONCE(sc->sr_head); /* snapshot the head */ 1724 tail = sc->sr_tail; 1725 while (head != tail) { 1726 pbuf = &sc->sr[tail].pbuf; 1727 1728 if (sent_before(free, pbuf->sent_at)) { 1729 /* not sent yet */ 1730 break; 1731 } 1732 if (pbuf->cb) { 1733 if (code < 0) /* fill in code on first user */ 1734 code = fill_code(hw_free); 1735 (*pbuf->cb)(pbuf->arg, code); 1736 } 1737 1738 tail++; 1739 if (tail >= sc->sr_size) 1740 tail = 0; 1741 } 1742 sc->sr_tail = tail; 1743 /* make sure tail is updated before free */ 1744 smp_wmb(); 1745 sc->free = free; 1746 spin_unlock_irqrestore(&sc->release_lock, flags); 1747 sc_piobufavail(sc); 1748 } 1749 1750 /* 1751 * Send context group releaser. Argument is the send context that caused 1752 * the interrupt. Called from the send context interrupt handler. 1753 * 1754 * Call release on all contexts in the group. 1755 * 1756 * This routine takes the sc_lock without an irqsave because it is only 1757 * called from an interrupt handler. Adjust if that changes. 1758 */ 1759 void sc_group_release_update(struct hfi1_devdata *dd, u32 hw_context) 1760 { 1761 struct send_context *sc; 1762 u32 sw_index; 1763 u32 gc, gc_end; 1764 1765 spin_lock(&dd->sc_lock); 1766 sw_index = dd->hw_to_sw[hw_context]; 1767 if (unlikely(sw_index >= dd->num_send_contexts)) { 1768 dd_dev_err(dd, "%s: invalid hw (%u) to sw (%u) mapping\n", 1769 __func__, hw_context, sw_index); 1770 goto done; 1771 } 1772 sc = dd->send_contexts[sw_index].sc; 1773 if (unlikely(!sc)) 1774 goto done; 1775 1776 gc = group_context(hw_context, sc->group); 1777 gc_end = gc + group_size(sc->group); 1778 for (; gc < gc_end; gc++) { 1779 sw_index = dd->hw_to_sw[gc]; 1780 if (unlikely(sw_index >= dd->num_send_contexts)) { 1781 dd_dev_err(dd, 1782 "%s: invalid hw (%u) to sw (%u) mapping\n", 1783 __func__, hw_context, sw_index); 1784 continue; 1785 } 1786 sc_release_update(dd->send_contexts[sw_index].sc); 1787 } 1788 done: 1789 spin_unlock(&dd->sc_lock); 1790 } 1791 1792 /* 1793 * pio_select_send_context_vl() - select send context 1794 * @dd: devdata 1795 * @selector: a spreading factor 1796 * @vl: this vl 1797 * 1798 * This function returns a send context based on the selector and a vl. 1799 * The mapping fields are protected by RCU 1800 */ 1801 struct send_context *pio_select_send_context_vl(struct hfi1_devdata *dd, 1802 u32 selector, u8 vl) 1803 { 1804 struct pio_vl_map *m; 1805 struct pio_map_elem *e; 1806 struct send_context *rval; 1807 1808 /* 1809 * NOTE This should only happen if SC->VL changed after the initial 1810 * checks on the QP/AH 1811 * Default will return VL0's send context below 1812 */ 1813 if (unlikely(vl >= num_vls)) { 1814 rval = NULL; 1815 goto done; 1816 } 1817 1818 rcu_read_lock(); 1819 m = rcu_dereference(dd->pio_map); 1820 if (unlikely(!m)) { 1821 rcu_read_unlock(); 1822 return dd->vld[0].sc; 1823 } 1824 e = m->map[vl & m->mask]; 1825 rval = e->ksc[selector & e->mask]; 1826 rcu_read_unlock(); 1827 1828 done: 1829 rval = !rval ? dd->vld[0].sc : rval; 1830 return rval; 1831 } 1832 1833 /* 1834 * pio_select_send_context_sc() - select send context 1835 * @dd: devdata 1836 * @selector: a spreading factor 1837 * @sc5: the 5 bit sc 1838 * 1839 * This function returns an send context based on the selector and an sc 1840 */ 1841 struct send_context *pio_select_send_context_sc(struct hfi1_devdata *dd, 1842 u32 selector, u8 sc5) 1843 { 1844 u8 vl = sc_to_vlt(dd, sc5); 1845 1846 return pio_select_send_context_vl(dd, selector, vl); 1847 } 1848 1849 /* 1850 * Free the indicated map struct 1851 */ 1852 static void pio_map_free(struct pio_vl_map *m) 1853 { 1854 int i; 1855 1856 for (i = 0; m && i < m->actual_vls; i++) 1857 kfree(m->map[i]); 1858 kfree(m); 1859 } 1860 1861 /* 1862 * Handle RCU callback 1863 */ 1864 static void pio_map_rcu_callback(struct rcu_head *list) 1865 { 1866 struct pio_vl_map *m = container_of(list, struct pio_vl_map, list); 1867 1868 pio_map_free(m); 1869 } 1870 1871 /* 1872 * Set credit return threshold for the kernel send context 1873 */ 1874 static void set_threshold(struct hfi1_devdata *dd, int scontext, int i) 1875 { 1876 u32 thres; 1877 1878 thres = min(sc_percent_to_threshold(dd->kernel_send_context[scontext], 1879 50), 1880 sc_mtu_to_threshold(dd->kernel_send_context[scontext], 1881 dd->vld[i].mtu, 1882 dd->rcd[0]->rcvhdrqentsize)); 1883 sc_set_cr_threshold(dd->kernel_send_context[scontext], thres); 1884 } 1885 1886 /* 1887 * pio_map_init - called when #vls change 1888 * @dd: hfi1_devdata 1889 * @port: port number 1890 * @num_vls: number of vls 1891 * @vl_scontexts: per vl send context mapping (optional) 1892 * 1893 * This routine changes the mapping based on the number of vls. 1894 * 1895 * vl_scontexts is used to specify a non-uniform vl/send context 1896 * loading. NULL implies auto computing the loading and giving each 1897 * VL an uniform distribution of send contexts per VL. 1898 * 1899 * The auto algorithm computers the sc_per_vl and the number of extra 1900 * send contexts. Any extra send contexts are added from the last VL 1901 * on down 1902 * 1903 * rcu locking is used here to control access to the mapping fields. 1904 * 1905 * If either the num_vls or num_send_contexts are non-power of 2, the 1906 * array sizes in the struct pio_vl_map and the struct pio_map_elem are 1907 * rounded up to the next highest power of 2 and the first entry is 1908 * reused in a round robin fashion. 1909 * 1910 * If an error occurs the map change is not done and the mapping is not 1911 * chaged. 1912 * 1913 */ 1914 int pio_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_scontexts) 1915 { 1916 int i, j; 1917 int extra, sc_per_vl; 1918 int scontext = 1; 1919 int num_kernel_send_contexts = 0; 1920 u8 lvl_scontexts[OPA_MAX_VLS]; 1921 struct pio_vl_map *oldmap, *newmap; 1922 1923 if (!vl_scontexts) { 1924 for (i = 0; i < dd->num_send_contexts; i++) 1925 if (dd->send_contexts[i].type == SC_KERNEL) 1926 num_kernel_send_contexts++; 1927 /* truncate divide */ 1928 sc_per_vl = num_kernel_send_contexts / num_vls; 1929 /* extras */ 1930 extra = num_kernel_send_contexts % num_vls; 1931 vl_scontexts = lvl_scontexts; 1932 /* add extras from last vl down */ 1933 for (i = num_vls - 1; i >= 0; i--, extra--) 1934 vl_scontexts[i] = sc_per_vl + (extra > 0 ? 1 : 0); 1935 } 1936 /* build new map */ 1937 newmap = kzalloc(sizeof(*newmap) + 1938 roundup_pow_of_two(num_vls) * 1939 sizeof(struct pio_map_elem *), 1940 GFP_KERNEL); 1941 if (!newmap) 1942 goto bail; 1943 newmap->actual_vls = num_vls; 1944 newmap->vls = roundup_pow_of_two(num_vls); 1945 newmap->mask = (1 << ilog2(newmap->vls)) - 1; 1946 for (i = 0; i < newmap->vls; i++) { 1947 /* save for wrap around */ 1948 int first_scontext = scontext; 1949 1950 if (i < newmap->actual_vls) { 1951 int sz = roundup_pow_of_two(vl_scontexts[i]); 1952 1953 /* only allocate once */ 1954 newmap->map[i] = kzalloc(sizeof(*newmap->map[i]) + 1955 sz * sizeof(struct 1956 send_context *), 1957 GFP_KERNEL); 1958 if (!newmap->map[i]) 1959 goto bail; 1960 newmap->map[i]->mask = (1 << ilog2(sz)) - 1; 1961 /* 1962 * assign send contexts and 1963 * adjust credit return threshold 1964 */ 1965 for (j = 0; j < sz; j++) { 1966 if (dd->kernel_send_context[scontext]) { 1967 newmap->map[i]->ksc[j] = 1968 dd->kernel_send_context[scontext]; 1969 set_threshold(dd, scontext, i); 1970 } 1971 if (++scontext >= first_scontext + 1972 vl_scontexts[i]) 1973 /* wrap back to first send context */ 1974 scontext = first_scontext; 1975 } 1976 } else { 1977 /* just re-use entry without allocating */ 1978 newmap->map[i] = newmap->map[i % num_vls]; 1979 } 1980 scontext = first_scontext + vl_scontexts[i]; 1981 } 1982 /* newmap in hand, save old map */ 1983 spin_lock_irq(&dd->pio_map_lock); 1984 oldmap = rcu_dereference_protected(dd->pio_map, 1985 lockdep_is_held(&dd->pio_map_lock)); 1986 1987 /* publish newmap */ 1988 rcu_assign_pointer(dd->pio_map, newmap); 1989 1990 spin_unlock_irq(&dd->pio_map_lock); 1991 /* success, free any old map after grace period */ 1992 if (oldmap) 1993 call_rcu(&oldmap->list, pio_map_rcu_callback); 1994 return 0; 1995 bail: 1996 /* free any partial allocation */ 1997 pio_map_free(newmap); 1998 return -ENOMEM; 1999 } 2000 2001 void free_pio_map(struct hfi1_devdata *dd) 2002 { 2003 /* Free PIO map if allocated */ 2004 if (rcu_access_pointer(dd->pio_map)) { 2005 spin_lock_irq(&dd->pio_map_lock); 2006 pio_map_free(rcu_access_pointer(dd->pio_map)); 2007 RCU_INIT_POINTER(dd->pio_map, NULL); 2008 spin_unlock_irq(&dd->pio_map_lock); 2009 synchronize_rcu(); 2010 } 2011 kfree(dd->kernel_send_context); 2012 dd->kernel_send_context = NULL; 2013 } 2014 2015 int init_pervl_scs(struct hfi1_devdata *dd) 2016 { 2017 int i; 2018 u64 mask, all_vl_mask = (u64)0x80ff; /* VLs 0-7, 15 */ 2019 u64 data_vls_mask = (u64)0x00ff; /* VLs 0-7 */ 2020 u32 ctxt; 2021 struct hfi1_pportdata *ppd = dd->pport; 2022 2023 dd->vld[15].sc = sc_alloc(dd, SC_VL15, 2024 dd->rcd[0]->rcvhdrqentsize, dd->node); 2025 if (!dd->vld[15].sc) 2026 return -ENOMEM; 2027 2028 hfi1_init_ctxt(dd->vld[15].sc); 2029 dd->vld[15].mtu = enum_to_mtu(OPA_MTU_2048); 2030 2031 dd->kernel_send_context = kcalloc_node(dd->num_send_contexts, 2032 sizeof(struct send_context *), 2033 GFP_KERNEL, dd->node); 2034 if (!dd->kernel_send_context) 2035 goto freesc15; 2036 2037 dd->kernel_send_context[0] = dd->vld[15].sc; 2038 2039 for (i = 0; i < num_vls; i++) { 2040 /* 2041 * Since this function does not deal with a specific 2042 * receive context but we need the RcvHdrQ entry size, 2043 * use the size from rcd[0]. It is guaranteed to be 2044 * valid at this point and will remain the same for all 2045 * receive contexts. 2046 */ 2047 dd->vld[i].sc = sc_alloc(dd, SC_KERNEL, 2048 dd->rcd[0]->rcvhdrqentsize, dd->node); 2049 if (!dd->vld[i].sc) 2050 goto nomem; 2051 dd->kernel_send_context[i + 1] = dd->vld[i].sc; 2052 hfi1_init_ctxt(dd->vld[i].sc); 2053 /* non VL15 start with the max MTU */ 2054 dd->vld[i].mtu = hfi1_max_mtu; 2055 } 2056 for (i = num_vls; i < INIT_SC_PER_VL * num_vls; i++) { 2057 dd->kernel_send_context[i + 1] = 2058 sc_alloc(dd, SC_KERNEL, dd->rcd[0]->rcvhdrqentsize, dd->node); 2059 if (!dd->kernel_send_context[i + 1]) 2060 goto nomem; 2061 hfi1_init_ctxt(dd->kernel_send_context[i + 1]); 2062 } 2063 2064 sc_enable(dd->vld[15].sc); 2065 ctxt = dd->vld[15].sc->hw_context; 2066 mask = all_vl_mask & ~(1LL << 15); 2067 write_kctxt_csr(dd, ctxt, SC(CHECK_VL), mask); 2068 dd_dev_info(dd, 2069 "Using send context %u(%u) for VL15\n", 2070 dd->vld[15].sc->sw_index, ctxt); 2071 2072 for (i = 0; i < num_vls; i++) { 2073 sc_enable(dd->vld[i].sc); 2074 ctxt = dd->vld[i].sc->hw_context; 2075 mask = all_vl_mask & ~(data_vls_mask); 2076 write_kctxt_csr(dd, ctxt, SC(CHECK_VL), mask); 2077 } 2078 for (i = num_vls; i < INIT_SC_PER_VL * num_vls; i++) { 2079 sc_enable(dd->kernel_send_context[i + 1]); 2080 ctxt = dd->kernel_send_context[i + 1]->hw_context; 2081 mask = all_vl_mask & ~(data_vls_mask); 2082 write_kctxt_csr(dd, ctxt, SC(CHECK_VL), mask); 2083 } 2084 2085 if (pio_map_init(dd, ppd->port - 1, num_vls, NULL)) 2086 goto nomem; 2087 return 0; 2088 2089 nomem: 2090 for (i = 0; i < num_vls; i++) { 2091 sc_free(dd->vld[i].sc); 2092 dd->vld[i].sc = NULL; 2093 } 2094 2095 for (i = num_vls; i < INIT_SC_PER_VL * num_vls; i++) 2096 sc_free(dd->kernel_send_context[i + 1]); 2097 2098 kfree(dd->kernel_send_context); 2099 dd->kernel_send_context = NULL; 2100 2101 freesc15: 2102 sc_free(dd->vld[15].sc); 2103 return -ENOMEM; 2104 } 2105 2106 int init_credit_return(struct hfi1_devdata *dd) 2107 { 2108 int ret; 2109 int i; 2110 2111 dd->cr_base = kcalloc( 2112 node_affinity.num_possible_nodes, 2113 sizeof(struct credit_return_base), 2114 GFP_KERNEL); 2115 if (!dd->cr_base) { 2116 ret = -ENOMEM; 2117 goto done; 2118 } 2119 for_each_node_with_cpus(i) { 2120 int bytes = TXE_NUM_CONTEXTS * sizeof(struct credit_return); 2121 2122 set_dev_node(&dd->pcidev->dev, i); 2123 dd->cr_base[i].va = dma_alloc_coherent(&dd->pcidev->dev, 2124 bytes, 2125 &dd->cr_base[i].dma, 2126 GFP_KERNEL); 2127 if (!dd->cr_base[i].va) { 2128 set_dev_node(&dd->pcidev->dev, dd->node); 2129 dd_dev_err(dd, 2130 "Unable to allocate credit return DMA range for NUMA %d\n", 2131 i); 2132 ret = -ENOMEM; 2133 goto done; 2134 } 2135 } 2136 set_dev_node(&dd->pcidev->dev, dd->node); 2137 2138 ret = 0; 2139 done: 2140 return ret; 2141 } 2142 2143 void free_credit_return(struct hfi1_devdata *dd) 2144 { 2145 int i; 2146 2147 if (!dd->cr_base) 2148 return; 2149 for (i = 0; i < node_affinity.num_possible_nodes; i++) { 2150 if (dd->cr_base[i].va) { 2151 dma_free_coherent(&dd->pcidev->dev, 2152 TXE_NUM_CONTEXTS * 2153 sizeof(struct credit_return), 2154 dd->cr_base[i].va, 2155 dd->cr_base[i].dma); 2156 } 2157 } 2158 kfree(dd->cr_base); 2159 dd->cr_base = NULL; 2160 } 2161 2162 void seqfile_dump_sci(struct seq_file *s, u32 i, 2163 struct send_context_info *sci) 2164 { 2165 struct send_context *sc = sci->sc; 2166 u64 reg; 2167 2168 seq_printf(s, "SCI %u: type %u base %u credits %u\n", 2169 i, sci->type, sci->base, sci->credits); 2170 seq_printf(s, " flags 0x%x sw_inx %u hw_ctxt %u grp %u\n", 2171 sc->flags, sc->sw_index, sc->hw_context, sc->group); 2172 seq_printf(s, " sr_size %u credits %u sr_head %u sr_tail %u\n", 2173 sc->sr_size, sc->credits, sc->sr_head, sc->sr_tail); 2174 seq_printf(s, " fill %lu free %lu fill_wrap %u alloc_free %lu\n", 2175 sc->fill, sc->free, sc->fill_wrap, sc->alloc_free); 2176 seq_printf(s, " credit_intr_count %u credit_ctrl 0x%llx\n", 2177 sc->credit_intr_count, sc->credit_ctrl); 2178 reg = read_kctxt_csr(sc->dd, sc->hw_context, SC(CREDIT_STATUS)); 2179 seq_printf(s, " *hw_free %llu CurrentFree %llu LastReturned %llu\n", 2180 (le64_to_cpu(*sc->hw_free) & CR_COUNTER_SMASK) >> 2181 CR_COUNTER_SHIFT, 2182 (reg >> SC(CREDIT_STATUS_CURRENT_FREE_COUNTER_SHIFT)) & 2183 SC(CREDIT_STATUS_CURRENT_FREE_COUNTER_MASK), 2184 reg & SC(CREDIT_STATUS_LAST_RETURNED_COUNTER_SMASK)); 2185 } 2186