xref: /openbmc/linux/drivers/infiniband/hw/hfi1/init.c (revision faffb083)
1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
2 /*
3  * Copyright(c) 2015 - 2020 Intel Corporation.
4  * Copyright(c) 2021 Cornelis Networks.
5  */
6 
7 #include <linux/pci.h>
8 #include <linux/netdevice.h>
9 #include <linux/vmalloc.h>
10 #include <linux/delay.h>
11 #include <linux/xarray.h>
12 #include <linux/module.h>
13 #include <linux/printk.h>
14 #include <linux/hrtimer.h>
15 #include <linux/bitmap.h>
16 #include <linux/numa.h>
17 #include <rdma/rdma_vt.h>
18 
19 #include "hfi.h"
20 #include "device.h"
21 #include "common.h"
22 #include "trace.h"
23 #include "mad.h"
24 #include "sdma.h"
25 #include "debugfs.h"
26 #include "verbs.h"
27 #include "aspm.h"
28 #include "affinity.h"
29 #include "vnic.h"
30 #include "exp_rcv.h"
31 #include "netdev.h"
32 
33 #undef pr_fmt
34 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
35 
36 /*
37  * min buffers we want to have per context, after driver
38  */
39 #define HFI1_MIN_USER_CTXT_BUFCNT 7
40 
41 #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
42 #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */
43 
44 #define NUM_IB_PORTS 1
45 
46 /*
47  * Number of user receive contexts we are configured to use (to allow for more
48  * pio buffers per ctxt, etc.)  Zero means use one user context per CPU.
49  */
50 int num_user_contexts = -1;
51 module_param_named(num_user_contexts, num_user_contexts, int, 0444);
52 MODULE_PARM_DESC(
53 	num_user_contexts, "Set max number of user contexts to use (default: -1 will use the real (non-HT) CPU count)");
54 
55 uint krcvqs[RXE_NUM_DATA_VL];
56 int krcvqsset;
57 module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO);
58 MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL");
59 
60 /* computed based on above array */
61 unsigned long n_krcvqs;
62 
63 static unsigned hfi1_rcvarr_split = 25;
64 module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
65 MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");
66 
67 static uint eager_buffer_size = (8 << 20); /* 8MB */
68 module_param(eager_buffer_size, uint, S_IRUGO);
69 MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 8MB");
70 
71 static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
72 module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
73 MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");
74 
75 static uint hfi1_hdrq_entsize = 32;
76 module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, 0444);
77 MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B, 32 - 128B (default)");
78 
79 unsigned int user_credit_return_threshold = 33;	/* default is 33% */
80 module_param(user_credit_return_threshold, uint, S_IRUGO);
81 MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");
82 
83 DEFINE_XARRAY_FLAGS(hfi1_dev_table, XA_FLAGS_ALLOC | XA_FLAGS_LOCK_IRQ);
84 
85 static int hfi1_create_kctxt(struct hfi1_devdata *dd,
86 			     struct hfi1_pportdata *ppd)
87 {
88 	struct hfi1_ctxtdata *rcd;
89 	int ret;
90 
91 	/* Control context has to be always 0 */
92 	BUILD_BUG_ON(HFI1_CTRL_CTXT != 0);
93 
94 	ret = hfi1_create_ctxtdata(ppd, dd->node, &rcd);
95 	if (ret < 0) {
96 		dd_dev_err(dd, "Kernel receive context allocation failed\n");
97 		return ret;
98 	}
99 
100 	/*
101 	 * Set up the kernel context flags here and now because they use
102 	 * default values for all receive side memories.  User contexts will
103 	 * be handled as they are created.
104 	 */
105 	rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
106 		HFI1_CAP_KGET(NODROP_RHQ_FULL) |
107 		HFI1_CAP_KGET(NODROP_EGR_FULL) |
108 		HFI1_CAP_KGET(DMA_RTAIL);
109 
110 	/* Control context must use DMA_RTAIL */
111 	if (rcd->ctxt == HFI1_CTRL_CTXT)
112 		rcd->flags |= HFI1_CAP_DMA_RTAIL;
113 	rcd->fast_handler = get_dma_rtail_setting(rcd) ?
114 				handle_receive_interrupt_dma_rtail :
115 				handle_receive_interrupt_nodma_rtail;
116 
117 	hfi1_set_seq_cnt(rcd, 1);
118 
119 	rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node);
120 	if (!rcd->sc) {
121 		dd_dev_err(dd, "Kernel send context allocation failed\n");
122 		return -ENOMEM;
123 	}
124 	hfi1_init_ctxt(rcd->sc);
125 
126 	return 0;
127 }
128 
129 /*
130  * Create the receive context array and one or more kernel contexts
131  */
132 int hfi1_create_kctxts(struct hfi1_devdata *dd)
133 {
134 	u16 i;
135 	int ret;
136 
137 	dd->rcd = kcalloc_node(dd->num_rcv_contexts, sizeof(*dd->rcd),
138 			       GFP_KERNEL, dd->node);
139 	if (!dd->rcd)
140 		return -ENOMEM;
141 
142 	for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
143 		ret = hfi1_create_kctxt(dd, dd->pport);
144 		if (ret)
145 			goto bail;
146 	}
147 
148 	return 0;
149 bail:
150 	for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i)
151 		hfi1_free_ctxt(dd->rcd[i]);
152 
153 	/* All the contexts should be freed, free the array */
154 	kfree(dd->rcd);
155 	dd->rcd = NULL;
156 	return ret;
157 }
158 
159 /*
160  * Helper routines for the receive context reference count (rcd and uctxt).
161  */
162 static void hfi1_rcd_init(struct hfi1_ctxtdata *rcd)
163 {
164 	kref_init(&rcd->kref);
165 }
166 
167 /**
168  * hfi1_rcd_free - When reference is zero clean up.
169  * @kref: pointer to an initialized rcd data structure
170  *
171  */
172 static void hfi1_rcd_free(struct kref *kref)
173 {
174 	unsigned long flags;
175 	struct hfi1_ctxtdata *rcd =
176 		container_of(kref, struct hfi1_ctxtdata, kref);
177 
178 	spin_lock_irqsave(&rcd->dd->uctxt_lock, flags);
179 	rcd->dd->rcd[rcd->ctxt] = NULL;
180 	spin_unlock_irqrestore(&rcd->dd->uctxt_lock, flags);
181 
182 	hfi1_free_ctxtdata(rcd->dd, rcd);
183 
184 	kfree(rcd);
185 }
186 
187 /**
188  * hfi1_rcd_put - decrement reference for rcd
189  * @rcd: pointer to an initialized rcd data structure
190  *
191  * Use this to put a reference after the init.
192  */
193 int hfi1_rcd_put(struct hfi1_ctxtdata *rcd)
194 {
195 	if (rcd)
196 		return kref_put(&rcd->kref, hfi1_rcd_free);
197 
198 	return 0;
199 }
200 
201 /**
202  * hfi1_rcd_get - increment reference for rcd
203  * @rcd: pointer to an initialized rcd data structure
204  *
205  * Use this to get a reference after the init.
206  *
207  * Return : reflect kref_get_unless_zero(), which returns non-zero on
208  * increment, otherwise 0.
209  */
210 int hfi1_rcd_get(struct hfi1_ctxtdata *rcd)
211 {
212 	return kref_get_unless_zero(&rcd->kref);
213 }
214 
215 /**
216  * allocate_rcd_index - allocate an rcd index from the rcd array
217  * @dd: pointer to a valid devdata structure
218  * @rcd: rcd data structure to assign
219  * @index: pointer to index that is allocated
220  *
221  * Find an empty index in the rcd array, and assign the given rcd to it.
222  * If the array is full, we are EBUSY.
223  *
224  */
225 static int allocate_rcd_index(struct hfi1_devdata *dd,
226 			      struct hfi1_ctxtdata *rcd, u16 *index)
227 {
228 	unsigned long flags;
229 	u16 ctxt;
230 
231 	spin_lock_irqsave(&dd->uctxt_lock, flags);
232 	for (ctxt = 0; ctxt < dd->num_rcv_contexts; ctxt++)
233 		if (!dd->rcd[ctxt])
234 			break;
235 
236 	if (ctxt < dd->num_rcv_contexts) {
237 		rcd->ctxt = ctxt;
238 		dd->rcd[ctxt] = rcd;
239 		hfi1_rcd_init(rcd);
240 	}
241 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
242 
243 	if (ctxt >= dd->num_rcv_contexts)
244 		return -EBUSY;
245 
246 	*index = ctxt;
247 
248 	return 0;
249 }
250 
251 /**
252  * hfi1_rcd_get_by_index_safe - validate the ctxt index before accessing the
253  * array
254  * @dd: pointer to a valid devdata structure
255  * @ctxt: the index of an possilbe rcd
256  *
257  * This is a wrapper for hfi1_rcd_get_by_index() to validate that the given
258  * ctxt index is valid.
259  *
260  * The caller is responsible for making the _put().
261  *
262  */
263 struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd,
264 						 u16 ctxt)
265 {
266 	if (ctxt < dd->num_rcv_contexts)
267 		return hfi1_rcd_get_by_index(dd, ctxt);
268 
269 	return NULL;
270 }
271 
272 /**
273  * hfi1_rcd_get_by_index - get by index
274  * @dd: pointer to a valid devdata structure
275  * @ctxt: the index of an possilbe rcd
276  *
277  * We need to protect access to the rcd array.  If access is needed to
278  * one or more index, get the protecting spinlock and then increment the
279  * kref.
280  *
281  * The caller is responsible for making the _put().
282  *
283  */
284 struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt)
285 {
286 	unsigned long flags;
287 	struct hfi1_ctxtdata *rcd = NULL;
288 
289 	spin_lock_irqsave(&dd->uctxt_lock, flags);
290 	if (dd->rcd[ctxt]) {
291 		rcd = dd->rcd[ctxt];
292 		if (!hfi1_rcd_get(rcd))
293 			rcd = NULL;
294 	}
295 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
296 
297 	return rcd;
298 }
299 
300 /*
301  * Common code for user and kernel context create and setup.
302  * NOTE: the initial kref is done here (hf1_rcd_init()).
303  */
304 int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa,
305 			 struct hfi1_ctxtdata **context)
306 {
307 	struct hfi1_devdata *dd = ppd->dd;
308 	struct hfi1_ctxtdata *rcd;
309 	unsigned kctxt_ngroups = 0;
310 	u32 base;
311 
312 	if (dd->rcv_entries.nctxt_extra >
313 	    dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt)
314 		kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
315 			 (dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt));
316 	rcd = kzalloc_node(sizeof(*rcd), GFP_KERNEL, numa);
317 	if (rcd) {
318 		u32 rcvtids, max_entries;
319 		u16 ctxt;
320 		int ret;
321 
322 		ret = allocate_rcd_index(dd, rcd, &ctxt);
323 		if (ret) {
324 			*context = NULL;
325 			kfree(rcd);
326 			return ret;
327 		}
328 
329 		INIT_LIST_HEAD(&rcd->qp_wait_list);
330 		hfi1_exp_tid_group_init(rcd);
331 		rcd->ppd = ppd;
332 		rcd->dd = dd;
333 		rcd->numa_id = numa;
334 		rcd->rcv_array_groups = dd->rcv_entries.ngroups;
335 		rcd->rhf_rcv_function_map = normal_rhf_rcv_functions;
336 		rcd->slow_handler = handle_receive_interrupt;
337 		rcd->do_interrupt = rcd->slow_handler;
338 		rcd->msix_intr = CCE_NUM_MSIX_VECTORS;
339 
340 		mutex_init(&rcd->exp_mutex);
341 		spin_lock_init(&rcd->exp_lock);
342 		INIT_LIST_HEAD(&rcd->flow_queue.queue_head);
343 		INIT_LIST_HEAD(&rcd->rarr_queue.queue_head);
344 
345 		hfi1_cdbg(PROC, "setting up context %u\n", rcd->ctxt);
346 
347 		/*
348 		 * Calculate the context's RcvArray entry starting point.
349 		 * We do this here because we have to take into account all
350 		 * the RcvArray entries that previous context would have
351 		 * taken and we have to account for any extra groups assigned
352 		 * to the static (kernel) or dynamic (vnic/user) contexts.
353 		 */
354 		if (ctxt < dd->first_dyn_alloc_ctxt) {
355 			if (ctxt < kctxt_ngroups) {
356 				base = ctxt * (dd->rcv_entries.ngroups + 1);
357 				rcd->rcv_array_groups++;
358 			} else {
359 				base = kctxt_ngroups +
360 					(ctxt * dd->rcv_entries.ngroups);
361 			}
362 		} else {
363 			u16 ct = ctxt - dd->first_dyn_alloc_ctxt;
364 
365 			base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
366 				kctxt_ngroups);
367 			if (ct < dd->rcv_entries.nctxt_extra) {
368 				base += ct * (dd->rcv_entries.ngroups + 1);
369 				rcd->rcv_array_groups++;
370 			} else {
371 				base += dd->rcv_entries.nctxt_extra +
372 					(ct * dd->rcv_entries.ngroups);
373 			}
374 		}
375 		rcd->eager_base = base * dd->rcv_entries.group_size;
376 
377 		rcd->rcvhdrq_cnt = rcvhdrcnt;
378 		rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
379 		rcd->rhf_offset =
380 			rcd->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
381 		/*
382 		 * Simple Eager buffer allocation: we have already pre-allocated
383 		 * the number of RcvArray entry groups. Each ctxtdata structure
384 		 * holds the number of groups for that context.
385 		 *
386 		 * To follow CSR requirements and maintain cacheline alignment,
387 		 * make sure all sizes and bases are multiples of group_size.
388 		 *
389 		 * The expected entry count is what is left after assigning
390 		 * eager.
391 		 */
392 		max_entries = rcd->rcv_array_groups *
393 			dd->rcv_entries.group_size;
394 		rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
395 		rcd->egrbufs.count = round_down(rcvtids,
396 						dd->rcv_entries.group_size);
397 		if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
398 			dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
399 				   rcd->ctxt);
400 			rcd->egrbufs.count = MAX_EAGER_ENTRIES;
401 		}
402 		hfi1_cdbg(PROC,
403 			  "ctxt%u: max Eager buffer RcvArray entries: %u\n",
404 			  rcd->ctxt, rcd->egrbufs.count);
405 
406 		/*
407 		 * Allocate array that will hold the eager buffer accounting
408 		 * data.
409 		 * This will allocate the maximum possible buffer count based
410 		 * on the value of the RcvArray split parameter.
411 		 * The resulting value will be rounded down to the closest
412 		 * multiple of dd->rcv_entries.group_size.
413 		 */
414 		rcd->egrbufs.buffers =
415 			kcalloc_node(rcd->egrbufs.count,
416 				     sizeof(*rcd->egrbufs.buffers),
417 				     GFP_KERNEL, numa);
418 		if (!rcd->egrbufs.buffers)
419 			goto bail;
420 		rcd->egrbufs.rcvtids =
421 			kcalloc_node(rcd->egrbufs.count,
422 				     sizeof(*rcd->egrbufs.rcvtids),
423 				     GFP_KERNEL, numa);
424 		if (!rcd->egrbufs.rcvtids)
425 			goto bail;
426 		rcd->egrbufs.size = eager_buffer_size;
427 		/*
428 		 * The size of the buffers programmed into the RcvArray
429 		 * entries needs to be big enough to handle the highest
430 		 * MTU supported.
431 		 */
432 		if (rcd->egrbufs.size < hfi1_max_mtu) {
433 			rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu);
434 			hfi1_cdbg(PROC,
435 				  "ctxt%u: eager bufs size too small. Adjusting to %u\n",
436 				    rcd->ctxt, rcd->egrbufs.size);
437 		}
438 		rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;
439 
440 		/* Applicable only for statically created kernel contexts */
441 		if (ctxt < dd->first_dyn_alloc_ctxt) {
442 			rcd->opstats = kzalloc_node(sizeof(*rcd->opstats),
443 						    GFP_KERNEL, numa);
444 			if (!rcd->opstats)
445 				goto bail;
446 
447 			/* Initialize TID flow generations for the context */
448 			hfi1_kern_init_ctxt_generations(rcd);
449 		}
450 
451 		*context = rcd;
452 		return 0;
453 	}
454 
455 bail:
456 	*context = NULL;
457 	hfi1_free_ctxt(rcd);
458 	return -ENOMEM;
459 }
460 
461 /**
462  * hfi1_free_ctxt - free context
463  * @rcd: pointer to an initialized rcd data structure
464  *
465  * This wrapper is the free function that matches hfi1_create_ctxtdata().
466  * When a context is done being used (kernel or user), this function is called
467  * for the "final" put to match the kref init from hf1i_create_ctxtdata().
468  * Other users of the context do a get/put sequence to make sure that the
469  * structure isn't removed while in use.
470  */
471 void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd)
472 {
473 	hfi1_rcd_put(rcd);
474 }
475 
476 /*
477  * Select the largest ccti value over all SLs to determine the intra-
478  * packet gap for the link.
479  *
480  * called with cca_timer_lock held (to protect access to cca_timer
481  * array), and rcu_read_lock() (to protect access to cc_state).
482  */
483 void set_link_ipg(struct hfi1_pportdata *ppd)
484 {
485 	struct hfi1_devdata *dd = ppd->dd;
486 	struct cc_state *cc_state;
487 	int i;
488 	u16 cce, ccti_limit, max_ccti = 0;
489 	u16 shift, mult;
490 	u64 src;
491 	u32 current_egress_rate; /* Mbits /sec */
492 	u64 max_pkt_time;
493 	/*
494 	 * max_pkt_time is the maximum packet egress time in units
495 	 * of the fabric clock period 1/(805 MHz).
496 	 */
497 
498 	cc_state = get_cc_state(ppd);
499 
500 	if (!cc_state)
501 		/*
502 		 * This should _never_ happen - rcu_read_lock() is held,
503 		 * and set_link_ipg() should not be called if cc_state
504 		 * is NULL.
505 		 */
506 		return;
507 
508 	for (i = 0; i < OPA_MAX_SLS; i++) {
509 		u16 ccti = ppd->cca_timer[i].ccti;
510 
511 		if (ccti > max_ccti)
512 			max_ccti = ccti;
513 	}
514 
515 	ccti_limit = cc_state->cct.ccti_limit;
516 	if (max_ccti > ccti_limit)
517 		max_ccti = ccti_limit;
518 
519 	cce = cc_state->cct.entries[max_ccti].entry;
520 	shift = (cce & 0xc000) >> 14;
521 	mult = (cce & 0x3fff);
522 
523 	current_egress_rate = active_egress_rate(ppd);
524 
525 	max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate);
526 
527 	src = (max_pkt_time >> shift) * mult;
528 
529 	src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
530 	src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;
531 
532 	write_csr(dd, SEND_STATIC_RATE_CONTROL, src);
533 }
534 
535 static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
536 {
537 	struct cca_timer *cca_timer;
538 	struct hfi1_pportdata *ppd;
539 	int sl;
540 	u16 ccti_timer, ccti_min;
541 	struct cc_state *cc_state;
542 	unsigned long flags;
543 	enum hrtimer_restart ret = HRTIMER_NORESTART;
544 
545 	cca_timer = container_of(t, struct cca_timer, hrtimer);
546 	ppd = cca_timer->ppd;
547 	sl = cca_timer->sl;
548 
549 	rcu_read_lock();
550 
551 	cc_state = get_cc_state(ppd);
552 
553 	if (!cc_state) {
554 		rcu_read_unlock();
555 		return HRTIMER_NORESTART;
556 	}
557 
558 	/*
559 	 * 1) decrement ccti for SL
560 	 * 2) calculate IPG for link (set_link_ipg())
561 	 * 3) restart timer, unless ccti is at min value
562 	 */
563 
564 	ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
565 	ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
566 
567 	spin_lock_irqsave(&ppd->cca_timer_lock, flags);
568 
569 	if (cca_timer->ccti > ccti_min) {
570 		cca_timer->ccti--;
571 		set_link_ipg(ppd);
572 	}
573 
574 	if (cca_timer->ccti > ccti_min) {
575 		unsigned long nsec = 1024 * ccti_timer;
576 		/* ccti_timer is in units of 1.024 usec */
577 		hrtimer_forward_now(t, ns_to_ktime(nsec));
578 		ret = HRTIMER_RESTART;
579 	}
580 
581 	spin_unlock_irqrestore(&ppd->cca_timer_lock, flags);
582 	rcu_read_unlock();
583 	return ret;
584 }
585 
586 /*
587  * Common code for initializing the physical port structure.
588  */
589 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
590 			 struct hfi1_devdata *dd, u8 hw_pidx, u32 port)
591 {
592 	int i;
593 	uint default_pkey_idx;
594 	struct cc_state *cc_state;
595 
596 	ppd->dd = dd;
597 	ppd->hw_pidx = hw_pidx;
598 	ppd->port = port; /* IB port number, not index */
599 	ppd->prev_link_width = LINK_WIDTH_DEFAULT;
600 	/*
601 	 * There are C_VL_COUNT number of PortVLXmitWait counters.
602 	 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
603 	 */
604 	for (i = 0; i < C_VL_COUNT + 1; i++) {
605 		ppd->port_vl_xmit_wait_last[i] = 0;
606 		ppd->vl_xmit_flit_cnt[i] = 0;
607 	}
608 
609 	default_pkey_idx = 1;
610 
611 	ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
612 	ppd->part_enforce |= HFI1_PART_ENFORCE_IN;
613 	ppd->pkeys[0] = 0x8001;
614 
615 	INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
616 	INIT_WORK(&ppd->link_up_work, handle_link_up);
617 	INIT_WORK(&ppd->link_down_work, handle_link_down);
618 	INIT_WORK(&ppd->freeze_work, handle_freeze);
619 	INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
620 	INIT_WORK(&ppd->sma_message_work, handle_sma_message);
621 	INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
622 	INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link);
623 	INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work);
624 	INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event);
625 
626 	mutex_init(&ppd->hls_lock);
627 	spin_lock_init(&ppd->qsfp_info.qsfp_lock);
628 
629 	ppd->qsfp_info.ppd = ppd;
630 	ppd->sm_trap_qp = 0x0;
631 	ppd->sa_qp = 0x1;
632 
633 	ppd->hfi1_wq = NULL;
634 
635 	spin_lock_init(&ppd->cca_timer_lock);
636 
637 	for (i = 0; i < OPA_MAX_SLS; i++) {
638 		hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
639 			     HRTIMER_MODE_REL);
640 		ppd->cca_timer[i].ppd = ppd;
641 		ppd->cca_timer[i].sl = i;
642 		ppd->cca_timer[i].ccti = 0;
643 		ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
644 	}
645 
646 	ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;
647 
648 	spin_lock_init(&ppd->cc_state_lock);
649 	spin_lock_init(&ppd->cc_log_lock);
650 	cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL);
651 	RCU_INIT_POINTER(ppd->cc_state, cc_state);
652 	if (!cc_state)
653 		goto bail;
654 	return;
655 
656 bail:
657 	dd_dev_err(dd, "Congestion Control Agent disabled for port %d\n", port);
658 }
659 
660 /*
661  * Do initialization for device that is only needed on
662  * first detect, not on resets.
663  */
664 static int loadtime_init(struct hfi1_devdata *dd)
665 {
666 	return 0;
667 }
668 
669 /**
670  * init_after_reset - re-initialize after a reset
671  * @dd: the hfi1_ib device
672  *
673  * sanity check at least some of the values after reset, and
674  * ensure no receive or transmit (explicitly, in case reset
675  * failed
676  */
677 static int init_after_reset(struct hfi1_devdata *dd)
678 {
679 	int i;
680 	struct hfi1_ctxtdata *rcd;
681 	/*
682 	 * Ensure chip does no sends or receives, tail updates, or
683 	 * pioavail updates while we re-initialize.  This is mostly
684 	 * for the driver data structures, not chip registers.
685 	 */
686 	for (i = 0; i < dd->num_rcv_contexts; i++) {
687 		rcd = hfi1_rcd_get_by_index(dd, i);
688 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
689 			     HFI1_RCVCTRL_INTRAVAIL_DIS |
690 			     HFI1_RCVCTRL_TAILUPD_DIS, rcd);
691 		hfi1_rcd_put(rcd);
692 	}
693 	pio_send_control(dd, PSC_GLOBAL_DISABLE);
694 	for (i = 0; i < dd->num_send_contexts; i++)
695 		sc_disable(dd->send_contexts[i].sc);
696 
697 	return 0;
698 }
699 
700 static void enable_chip(struct hfi1_devdata *dd)
701 {
702 	struct hfi1_ctxtdata *rcd;
703 	u32 rcvmask;
704 	u16 i;
705 
706 	/* enable PIO send */
707 	pio_send_control(dd, PSC_GLOBAL_ENABLE);
708 
709 	/*
710 	 * Enable kernel ctxts' receive and receive interrupt.
711 	 * Other ctxts done as user opens and initializes them.
712 	 */
713 	for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
714 		rcd = hfi1_rcd_get_by_index(dd, i);
715 		if (!rcd)
716 			continue;
717 		rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
718 		rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
719 			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
720 		if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
721 			rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
722 		if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_RHQ_FULL))
723 			rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
724 		if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_EGR_FULL))
725 			rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
726 		if (HFI1_CAP_IS_KSET(TID_RDMA))
727 			rcvmask |= HFI1_RCVCTRL_TIDFLOW_ENB;
728 		hfi1_rcvctrl(dd, rcvmask, rcd);
729 		sc_enable(rcd->sc);
730 		hfi1_rcd_put(rcd);
731 	}
732 }
733 
734 /**
735  * create_workqueues - create per port workqueues
736  * @dd: the hfi1_ib device
737  */
738 static int create_workqueues(struct hfi1_devdata *dd)
739 {
740 	int pidx;
741 	struct hfi1_pportdata *ppd;
742 
743 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
744 		ppd = dd->pport + pidx;
745 		if (!ppd->hfi1_wq) {
746 			ppd->hfi1_wq =
747 				alloc_workqueue(
748 				    "hfi%d_%d",
749 				    WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE |
750 				    WQ_MEM_RECLAIM,
751 				    HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES,
752 				    dd->unit, pidx);
753 			if (!ppd->hfi1_wq)
754 				goto wq_error;
755 		}
756 		if (!ppd->link_wq) {
757 			/*
758 			 * Make the link workqueue single-threaded to enforce
759 			 * serialization.
760 			 */
761 			ppd->link_wq =
762 				alloc_workqueue(
763 				    "hfi_link_%d_%d",
764 				    WQ_SYSFS | WQ_MEM_RECLAIM | WQ_UNBOUND,
765 				    1, /* max_active */
766 				    dd->unit, pidx);
767 			if (!ppd->link_wq)
768 				goto wq_error;
769 		}
770 	}
771 	return 0;
772 wq_error:
773 	pr_err("alloc_workqueue failed for port %d\n", pidx + 1);
774 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
775 		ppd = dd->pport + pidx;
776 		if (ppd->hfi1_wq) {
777 			destroy_workqueue(ppd->hfi1_wq);
778 			ppd->hfi1_wq = NULL;
779 		}
780 		if (ppd->link_wq) {
781 			destroy_workqueue(ppd->link_wq);
782 			ppd->link_wq = NULL;
783 		}
784 	}
785 	return -ENOMEM;
786 }
787 
788 /**
789  * destroy_workqueues - destroy per port workqueues
790  * @dd: the hfi1_ib device
791  */
792 static void destroy_workqueues(struct hfi1_devdata *dd)
793 {
794 	int pidx;
795 	struct hfi1_pportdata *ppd;
796 
797 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
798 		ppd = dd->pport + pidx;
799 
800 		if (ppd->hfi1_wq) {
801 			destroy_workqueue(ppd->hfi1_wq);
802 			ppd->hfi1_wq = NULL;
803 		}
804 		if (ppd->link_wq) {
805 			destroy_workqueue(ppd->link_wq);
806 			ppd->link_wq = NULL;
807 		}
808 	}
809 }
810 
811 /**
812  * enable_general_intr() - Enable the IRQs that will be handled by the
813  * general interrupt handler.
814  * @dd: valid devdata
815  *
816  */
817 static void enable_general_intr(struct hfi1_devdata *dd)
818 {
819 	set_intr_bits(dd, CCE_ERR_INT, MISC_ERR_INT, true);
820 	set_intr_bits(dd, PIO_ERR_INT, TXE_ERR_INT, true);
821 	set_intr_bits(dd, IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END, true);
822 	set_intr_bits(dd, PBC_INT, GPIO_ASSERT_INT, true);
823 	set_intr_bits(dd, TCRIT_INT, TCRIT_INT, true);
824 	set_intr_bits(dd, IS_DC_START, IS_DC_END, true);
825 	set_intr_bits(dd, IS_SENDCREDIT_START, IS_SENDCREDIT_END, true);
826 }
827 
828 /**
829  * hfi1_init - do the actual initialization sequence on the chip
830  * @dd: the hfi1_ib device
831  * @reinit: re-initializing, so don't allocate new memory
832  *
833  * Do the actual initialization sequence on the chip.  This is done
834  * both from the init routine called from the PCI infrastructure, and
835  * when we reset the chip, or detect that it was reset internally,
836  * or it's administratively re-enabled.
837  *
838  * Memory allocation here and in called routines is only done in
839  * the first case (reinit == 0).  We have to be careful, because even
840  * without memory allocation, we need to re-write all the chip registers
841  * TIDs, etc. after the reset or enable has completed.
842  */
843 int hfi1_init(struct hfi1_devdata *dd, int reinit)
844 {
845 	int ret = 0, pidx, lastfail = 0;
846 	unsigned long len;
847 	u16 i;
848 	struct hfi1_ctxtdata *rcd;
849 	struct hfi1_pportdata *ppd;
850 
851 	/* Set up send low level handlers */
852 	dd->process_pio_send = hfi1_verbs_send_pio;
853 	dd->process_dma_send = hfi1_verbs_send_dma;
854 	dd->pio_inline_send = pio_copy;
855 	dd->process_vnic_dma_send = hfi1_vnic_send_dma;
856 
857 	if (is_ax(dd)) {
858 		atomic_set(&dd->drop_packet, DROP_PACKET_ON);
859 		dd->do_drop = true;
860 	} else {
861 		atomic_set(&dd->drop_packet, DROP_PACKET_OFF);
862 		dd->do_drop = false;
863 	}
864 
865 	/* make sure the link is not "up" */
866 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
867 		ppd = dd->pport + pidx;
868 		ppd->linkup = 0;
869 	}
870 
871 	if (reinit)
872 		ret = init_after_reset(dd);
873 	else
874 		ret = loadtime_init(dd);
875 	if (ret)
876 		goto done;
877 
878 	/* dd->rcd can be NULL if early initialization failed */
879 	for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) {
880 		/*
881 		 * Set up the (kernel) rcvhdr queue and egr TIDs.  If doing
882 		 * re-init, the simplest way to handle this is to free
883 		 * existing, and re-allocate.
884 		 * Need to re-create rest of ctxt 0 ctxtdata as well.
885 		 */
886 		rcd = hfi1_rcd_get_by_index(dd, i);
887 		if (!rcd)
888 			continue;
889 
890 		lastfail = hfi1_create_rcvhdrq(dd, rcd);
891 		if (!lastfail)
892 			lastfail = hfi1_setup_eagerbufs(rcd);
893 		if (!lastfail)
894 			lastfail = hfi1_kern_exp_rcv_init(rcd, reinit);
895 		if (lastfail) {
896 			dd_dev_err(dd,
897 				   "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
898 			ret = lastfail;
899 		}
900 		/* enable IRQ */
901 		hfi1_rcd_put(rcd);
902 	}
903 
904 	/* Allocate enough memory for user event notification. */
905 	len = PAGE_ALIGN(chip_rcv_contexts(dd) * HFI1_MAX_SHARED_CTXTS *
906 			 sizeof(*dd->events));
907 	dd->events = vmalloc_user(len);
908 	if (!dd->events)
909 		dd_dev_err(dd, "Failed to allocate user events page\n");
910 	/*
911 	 * Allocate a page for device and port status.
912 	 * Page will be shared amongst all user processes.
913 	 */
914 	dd->status = vmalloc_user(PAGE_SIZE);
915 	if (!dd->status)
916 		dd_dev_err(dd, "Failed to allocate dev status page\n");
917 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
918 		ppd = dd->pport + pidx;
919 		if (dd->status)
920 			/* Currently, we only have one port */
921 			ppd->statusp = &dd->status->port;
922 
923 		set_mtu(ppd);
924 	}
925 
926 	/* enable chip even if we have an error, so we can debug cause */
927 	enable_chip(dd);
928 
929 done:
930 	/*
931 	 * Set status even if port serdes is not initialized
932 	 * so that diags will work.
933 	 */
934 	if (dd->status)
935 		dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
936 			HFI1_STATUS_INITTED;
937 	if (!ret) {
938 		/* enable all interrupts from the chip */
939 		enable_general_intr(dd);
940 		init_qsfp_int(dd);
941 
942 		/* chip is OK for user apps; mark it as initialized */
943 		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
944 			ppd = dd->pport + pidx;
945 
946 			/*
947 			 * start the serdes - must be after interrupts are
948 			 * enabled so we are notified when the link goes up
949 			 */
950 			lastfail = bringup_serdes(ppd);
951 			if (lastfail)
952 				dd_dev_info(dd,
953 					    "Failed to bring up port %u\n",
954 					    ppd->port);
955 
956 			/*
957 			 * Set status even if port serdes is not initialized
958 			 * so that diags will work.
959 			 */
960 			if (ppd->statusp)
961 				*ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
962 							HFI1_STATUS_INITTED;
963 			if (!ppd->link_speed_enabled)
964 				continue;
965 		}
966 	}
967 
968 	/* if ret is non-zero, we probably should do some cleanup here... */
969 	return ret;
970 }
971 
972 struct hfi1_devdata *hfi1_lookup(int unit)
973 {
974 	return xa_load(&hfi1_dev_table, unit);
975 }
976 
977 /*
978  * Stop the timers during unit shutdown, or after an error late
979  * in initialization.
980  */
981 static void stop_timers(struct hfi1_devdata *dd)
982 {
983 	struct hfi1_pportdata *ppd;
984 	int pidx;
985 
986 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
987 		ppd = dd->pport + pidx;
988 		if (ppd->led_override_timer.function) {
989 			del_timer_sync(&ppd->led_override_timer);
990 			atomic_set(&ppd->led_override_timer_active, 0);
991 		}
992 	}
993 }
994 
995 /**
996  * shutdown_device - shut down a device
997  * @dd: the hfi1_ib device
998  *
999  * This is called to make the device quiet when we are about to
1000  * unload the driver, and also when the device is administratively
1001  * disabled.   It does not free any data structures.
1002  * Everything it does has to be setup again by hfi1_init(dd, 1)
1003  */
1004 static void shutdown_device(struct hfi1_devdata *dd)
1005 {
1006 	struct hfi1_pportdata *ppd;
1007 	struct hfi1_ctxtdata *rcd;
1008 	unsigned pidx;
1009 	int i;
1010 
1011 	if (dd->flags & HFI1_SHUTDOWN)
1012 		return;
1013 	dd->flags |= HFI1_SHUTDOWN;
1014 
1015 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1016 		ppd = dd->pport + pidx;
1017 
1018 		ppd->linkup = 0;
1019 		if (ppd->statusp)
1020 			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
1021 					   HFI1_STATUS_IB_READY);
1022 	}
1023 	dd->flags &= ~HFI1_INITTED;
1024 
1025 	/* mask and clean up interrupts */
1026 	set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, false);
1027 	msix_clean_up_interrupts(dd);
1028 
1029 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1030 		ppd = dd->pport + pidx;
1031 		for (i = 0; i < dd->num_rcv_contexts; i++) {
1032 			rcd = hfi1_rcd_get_by_index(dd, i);
1033 			hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
1034 				     HFI1_RCVCTRL_CTXT_DIS |
1035 				     HFI1_RCVCTRL_INTRAVAIL_DIS |
1036 				     HFI1_RCVCTRL_PKEY_DIS |
1037 				     HFI1_RCVCTRL_ONE_PKT_EGR_DIS, rcd);
1038 			hfi1_rcd_put(rcd);
1039 		}
1040 		/*
1041 		 * Gracefully stop all sends allowing any in progress to
1042 		 * trickle out first.
1043 		 */
1044 		for (i = 0; i < dd->num_send_contexts; i++)
1045 			sc_flush(dd->send_contexts[i].sc);
1046 	}
1047 
1048 	/*
1049 	 * Enough for anything that's going to trickle out to have actually
1050 	 * done so.
1051 	 */
1052 	udelay(20);
1053 
1054 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1055 		ppd = dd->pport + pidx;
1056 
1057 		/* disable all contexts */
1058 		for (i = 0; i < dd->num_send_contexts; i++)
1059 			sc_disable(dd->send_contexts[i].sc);
1060 		/* disable the send device */
1061 		pio_send_control(dd, PSC_GLOBAL_DISABLE);
1062 
1063 		shutdown_led_override(ppd);
1064 
1065 		/*
1066 		 * Clear SerdesEnable.
1067 		 * We can't count on interrupts since we are stopping.
1068 		 */
1069 		hfi1_quiet_serdes(ppd);
1070 		if (ppd->hfi1_wq)
1071 			flush_workqueue(ppd->hfi1_wq);
1072 		if (ppd->link_wq)
1073 			flush_workqueue(ppd->link_wq);
1074 	}
1075 	sdma_exit(dd);
1076 }
1077 
1078 /**
1079  * hfi1_free_ctxtdata - free a context's allocated data
1080  * @dd: the hfi1_ib device
1081  * @rcd: the ctxtdata structure
1082  *
1083  * free up any allocated data for a context
1084  * It should never change any chip state, or global driver state.
1085  */
1086 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1087 {
1088 	u32 e;
1089 
1090 	if (!rcd)
1091 		return;
1092 
1093 	if (rcd->rcvhdrq) {
1094 		dma_free_coherent(&dd->pcidev->dev, rcvhdrq_size(rcd),
1095 				  rcd->rcvhdrq, rcd->rcvhdrq_dma);
1096 		rcd->rcvhdrq = NULL;
1097 		if (hfi1_rcvhdrtail_kvaddr(rcd)) {
1098 			dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
1099 					  (void *)hfi1_rcvhdrtail_kvaddr(rcd),
1100 					  rcd->rcvhdrqtailaddr_dma);
1101 			rcd->rcvhdrtail_kvaddr = NULL;
1102 		}
1103 	}
1104 
1105 	/* all the RcvArray entries should have been cleared by now */
1106 	kfree(rcd->egrbufs.rcvtids);
1107 	rcd->egrbufs.rcvtids = NULL;
1108 
1109 	for (e = 0; e < rcd->egrbufs.alloced; e++) {
1110 		if (rcd->egrbufs.buffers[e].addr)
1111 			dma_free_coherent(&dd->pcidev->dev,
1112 					  rcd->egrbufs.buffers[e].len,
1113 					  rcd->egrbufs.buffers[e].addr,
1114 					  rcd->egrbufs.buffers[e].dma);
1115 	}
1116 	kfree(rcd->egrbufs.buffers);
1117 	rcd->egrbufs.alloced = 0;
1118 	rcd->egrbufs.buffers = NULL;
1119 
1120 	sc_free(rcd->sc);
1121 	rcd->sc = NULL;
1122 
1123 	vfree(rcd->subctxt_uregbase);
1124 	vfree(rcd->subctxt_rcvegrbuf);
1125 	vfree(rcd->subctxt_rcvhdr_base);
1126 	kfree(rcd->opstats);
1127 
1128 	rcd->subctxt_uregbase = NULL;
1129 	rcd->subctxt_rcvegrbuf = NULL;
1130 	rcd->subctxt_rcvhdr_base = NULL;
1131 	rcd->opstats = NULL;
1132 }
1133 
1134 /*
1135  * Release our hold on the shared asic data.  If we are the last one,
1136  * return the structure to be finalized outside the lock.  Must be
1137  * holding hfi1_dev_table lock.
1138  */
1139 static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd)
1140 {
1141 	struct hfi1_asic_data *ad;
1142 	int other;
1143 
1144 	if (!dd->asic_data)
1145 		return NULL;
1146 	dd->asic_data->dds[dd->hfi1_id] = NULL;
1147 	other = dd->hfi1_id ? 0 : 1;
1148 	ad = dd->asic_data;
1149 	dd->asic_data = NULL;
1150 	/* return NULL if the other dd still has a link */
1151 	return ad->dds[other] ? NULL : ad;
1152 }
1153 
1154 static void finalize_asic_data(struct hfi1_devdata *dd,
1155 			       struct hfi1_asic_data *ad)
1156 {
1157 	clean_up_i2c(dd, ad);
1158 	kfree(ad);
1159 }
1160 
1161 /**
1162  * hfi1_free_devdata - cleans up and frees per-unit data structure
1163  * @dd: pointer to a valid devdata structure
1164  *
1165  * It cleans up and frees all data structures set up by
1166  * by hfi1_alloc_devdata().
1167  */
1168 void hfi1_free_devdata(struct hfi1_devdata *dd)
1169 {
1170 	struct hfi1_asic_data *ad;
1171 	unsigned long flags;
1172 
1173 	xa_lock_irqsave(&hfi1_dev_table, flags);
1174 	__xa_erase(&hfi1_dev_table, dd->unit);
1175 	ad = release_asic_data(dd);
1176 	xa_unlock_irqrestore(&hfi1_dev_table, flags);
1177 
1178 	finalize_asic_data(dd, ad);
1179 	free_platform_config(dd);
1180 	rcu_barrier(); /* wait for rcu callbacks to complete */
1181 	free_percpu(dd->int_counter);
1182 	free_percpu(dd->rcv_limit);
1183 	free_percpu(dd->send_schedule);
1184 	free_percpu(dd->tx_opstats);
1185 	dd->int_counter   = NULL;
1186 	dd->rcv_limit     = NULL;
1187 	dd->send_schedule = NULL;
1188 	dd->tx_opstats    = NULL;
1189 	kfree(dd->comp_vect);
1190 	dd->comp_vect = NULL;
1191 	if (dd->rcvhdrtail_dummy_kvaddr)
1192 		dma_free_coherent(&dd->pcidev->dev, sizeof(u64),
1193 				  (void *)dd->rcvhdrtail_dummy_kvaddr,
1194 				  dd->rcvhdrtail_dummy_dma);
1195 	dd->rcvhdrtail_dummy_kvaddr = NULL;
1196 	sdma_clean(dd, dd->num_sdma);
1197 	rvt_dealloc_device(&dd->verbs_dev.rdi);
1198 }
1199 
1200 /**
1201  * hfi1_alloc_devdata - Allocate our primary per-unit data structure.
1202  * @pdev: Valid PCI device
1203  * @extra: How many bytes to alloc past the default
1204  *
1205  * Must be done via verbs allocator, because the verbs cleanup process
1206  * both does cleanup and free of the data structure.
1207  * "extra" is for chip-specific data.
1208  */
1209 static struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev,
1210 					       size_t extra)
1211 {
1212 	struct hfi1_devdata *dd;
1213 	int ret, nports;
1214 
1215 	/* extra is * number of ports */
1216 	nports = extra / sizeof(struct hfi1_pportdata);
1217 
1218 	dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra,
1219 						     nports);
1220 	if (!dd)
1221 		return ERR_PTR(-ENOMEM);
1222 	dd->num_pports = nports;
1223 	dd->pport = (struct hfi1_pportdata *)(dd + 1);
1224 	dd->pcidev = pdev;
1225 	pci_set_drvdata(pdev, dd);
1226 
1227 	ret = xa_alloc_irq(&hfi1_dev_table, &dd->unit, dd, xa_limit_32b,
1228 			GFP_KERNEL);
1229 	if (ret < 0) {
1230 		dev_err(&pdev->dev,
1231 			"Could not allocate unit ID: error %d\n", -ret);
1232 		goto bail;
1233 	}
1234 	rvt_set_ibdev_name(&dd->verbs_dev.rdi, "%s_%d", class_name(), dd->unit);
1235 	/*
1236 	 * If the BIOS does not have the NUMA node information set, select
1237 	 * NUMA 0 so we get consistent performance.
1238 	 */
1239 	dd->node = pcibus_to_node(pdev->bus);
1240 	if (dd->node == NUMA_NO_NODE) {
1241 		dd_dev_err(dd, "Invalid PCI NUMA node. Performance may be affected\n");
1242 		dd->node = 0;
1243 	}
1244 
1245 	/*
1246 	 * Initialize all locks for the device. This needs to be as early as
1247 	 * possible so locks are usable.
1248 	 */
1249 	spin_lock_init(&dd->sc_lock);
1250 	spin_lock_init(&dd->sendctrl_lock);
1251 	spin_lock_init(&dd->rcvctrl_lock);
1252 	spin_lock_init(&dd->uctxt_lock);
1253 	spin_lock_init(&dd->hfi1_diag_trans_lock);
1254 	spin_lock_init(&dd->sc_init_lock);
1255 	spin_lock_init(&dd->dc8051_memlock);
1256 	seqlock_init(&dd->sc2vl_lock);
1257 	spin_lock_init(&dd->sde_map_lock);
1258 	spin_lock_init(&dd->pio_map_lock);
1259 	mutex_init(&dd->dc8051_lock);
1260 	init_waitqueue_head(&dd->event_queue);
1261 	spin_lock_init(&dd->irq_src_lock);
1262 
1263 	dd->int_counter = alloc_percpu(u64);
1264 	if (!dd->int_counter) {
1265 		ret = -ENOMEM;
1266 		goto bail;
1267 	}
1268 
1269 	dd->rcv_limit = alloc_percpu(u64);
1270 	if (!dd->rcv_limit) {
1271 		ret = -ENOMEM;
1272 		goto bail;
1273 	}
1274 
1275 	dd->send_schedule = alloc_percpu(u64);
1276 	if (!dd->send_schedule) {
1277 		ret = -ENOMEM;
1278 		goto bail;
1279 	}
1280 
1281 	dd->tx_opstats = alloc_percpu(struct hfi1_opcode_stats_perctx);
1282 	if (!dd->tx_opstats) {
1283 		ret = -ENOMEM;
1284 		goto bail;
1285 	}
1286 
1287 	dd->comp_vect = kzalloc(sizeof(*dd->comp_vect), GFP_KERNEL);
1288 	if (!dd->comp_vect) {
1289 		ret = -ENOMEM;
1290 		goto bail;
1291 	}
1292 
1293 	/* allocate dummy tail memory for all receive contexts */
1294 	dd->rcvhdrtail_dummy_kvaddr =
1295 		dma_alloc_coherent(&dd->pcidev->dev, sizeof(u64),
1296 				   &dd->rcvhdrtail_dummy_dma, GFP_KERNEL);
1297 	if (!dd->rcvhdrtail_dummy_kvaddr) {
1298 		ret = -ENOMEM;
1299 		goto bail;
1300 	}
1301 
1302 	atomic_set(&dd->ipoib_rsm_usr_num, 0);
1303 	return dd;
1304 
1305 bail:
1306 	hfi1_free_devdata(dd);
1307 	return ERR_PTR(ret);
1308 }
1309 
1310 /*
1311  * Called from freeze mode handlers, and from PCI error
1312  * reporting code.  Should be paranoid about state of
1313  * system and data structures.
1314  */
1315 void hfi1_disable_after_error(struct hfi1_devdata *dd)
1316 {
1317 	if (dd->flags & HFI1_INITTED) {
1318 		u32 pidx;
1319 
1320 		dd->flags &= ~HFI1_INITTED;
1321 		if (dd->pport)
1322 			for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1323 				struct hfi1_pportdata *ppd;
1324 
1325 				ppd = dd->pport + pidx;
1326 				if (dd->flags & HFI1_PRESENT)
1327 					set_link_state(ppd, HLS_DN_DISABLE);
1328 
1329 				if (ppd->statusp)
1330 					*ppd->statusp &= ~HFI1_STATUS_IB_READY;
1331 			}
1332 	}
1333 
1334 	/*
1335 	 * Mark as having had an error for driver, and also
1336 	 * for /sys and status word mapped to user programs.
1337 	 * This marks unit as not usable, until reset.
1338 	 */
1339 	if (dd->status)
1340 		dd->status->dev |= HFI1_STATUS_HWERROR;
1341 }
1342 
1343 static void remove_one(struct pci_dev *);
1344 static int init_one(struct pci_dev *, const struct pci_device_id *);
1345 static void shutdown_one(struct pci_dev *);
1346 
1347 #define DRIVER_LOAD_MSG "Cornelis " DRIVER_NAME " loaded: "
1348 #define PFX DRIVER_NAME ": "
1349 
1350 const struct pci_device_id hfi1_pci_tbl[] = {
1351 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
1352 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
1353 	{ 0, }
1354 };
1355 
1356 MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);
1357 
1358 static struct pci_driver hfi1_pci_driver = {
1359 	.name = DRIVER_NAME,
1360 	.probe = init_one,
1361 	.remove = remove_one,
1362 	.shutdown = shutdown_one,
1363 	.id_table = hfi1_pci_tbl,
1364 	.err_handler = &hfi1_pci_err_handler,
1365 };
1366 
1367 static void __init compute_krcvqs(void)
1368 {
1369 	int i;
1370 
1371 	for (i = 0; i < krcvqsset; i++)
1372 		n_krcvqs += krcvqs[i];
1373 }
1374 
1375 /*
1376  * Do all the generic driver unit- and chip-independent memory
1377  * allocation and initialization.
1378  */
1379 static int __init hfi1_mod_init(void)
1380 {
1381 	int ret;
1382 
1383 	ret = dev_init();
1384 	if (ret)
1385 		goto bail;
1386 
1387 	ret = node_affinity_init();
1388 	if (ret)
1389 		goto bail;
1390 
1391 	/* validate max MTU before any devices start */
1392 	if (!valid_opa_max_mtu(hfi1_max_mtu)) {
1393 		pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
1394 		       hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
1395 		hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
1396 	}
1397 	/* valid CUs run from 1-128 in powers of 2 */
1398 	if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu))
1399 		hfi1_cu = 1;
1400 	/* valid credit return threshold is 0-100, variable is unsigned */
1401 	if (user_credit_return_threshold > 100)
1402 		user_credit_return_threshold = 100;
1403 
1404 	compute_krcvqs();
1405 	/*
1406 	 * sanitize receive interrupt count, time must wait until after
1407 	 * the hardware type is known
1408 	 */
1409 	if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
1410 		rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
1411 	/* reject invalid combinations */
1412 	if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
1413 		pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
1414 		rcv_intr_count = 1;
1415 	}
1416 	if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
1417 		/*
1418 		 * Avoid indefinite packet delivery by requiring a timeout
1419 		 * if count is > 1.
1420 		 */
1421 		pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
1422 		rcv_intr_timeout = 1;
1423 	}
1424 	if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
1425 		/*
1426 		 * The dynamic algorithm expects a non-zero timeout
1427 		 * and a count > 1.
1428 		 */
1429 		pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
1430 		rcv_intr_dynamic = 0;
1431 	}
1432 
1433 	/* sanitize link CRC options */
1434 	link_crc_mask &= SUPPORTED_CRCS;
1435 
1436 	ret = opfn_init();
1437 	if (ret < 0) {
1438 		pr_err("Failed to allocate opfn_wq");
1439 		goto bail_dev;
1440 	}
1441 
1442 	/*
1443 	 * These must be called before the driver is registered with
1444 	 * the PCI subsystem.
1445 	 */
1446 	hfi1_dbg_init();
1447 	ret = pci_register_driver(&hfi1_pci_driver);
1448 	if (ret < 0) {
1449 		pr_err("Unable to register driver: error %d\n", -ret);
1450 		goto bail_dev;
1451 	}
1452 	goto bail; /* all OK */
1453 
1454 bail_dev:
1455 	hfi1_dbg_exit();
1456 	dev_cleanup();
1457 bail:
1458 	return ret;
1459 }
1460 
1461 module_init(hfi1_mod_init);
1462 
1463 /*
1464  * Do the non-unit driver cleanup, memory free, etc. at unload.
1465  */
1466 static void __exit hfi1_mod_cleanup(void)
1467 {
1468 	pci_unregister_driver(&hfi1_pci_driver);
1469 	opfn_exit();
1470 	node_affinity_destroy_all();
1471 	hfi1_dbg_exit();
1472 
1473 	WARN_ON(!xa_empty(&hfi1_dev_table));
1474 	dispose_firmware();	/* asymmetric with obtain_firmware() */
1475 	dev_cleanup();
1476 }
1477 
1478 module_exit(hfi1_mod_cleanup);
1479 
1480 /* this can only be called after a successful initialization */
1481 static void cleanup_device_data(struct hfi1_devdata *dd)
1482 {
1483 	int ctxt;
1484 	int pidx;
1485 
1486 	/* users can't do anything more with chip */
1487 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1488 		struct hfi1_pportdata *ppd = &dd->pport[pidx];
1489 		struct cc_state *cc_state;
1490 		int i;
1491 
1492 		if (ppd->statusp)
1493 			*ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;
1494 
1495 		for (i = 0; i < OPA_MAX_SLS; i++)
1496 			hrtimer_cancel(&ppd->cca_timer[i].hrtimer);
1497 
1498 		spin_lock(&ppd->cc_state_lock);
1499 		cc_state = get_cc_state_protected(ppd);
1500 		RCU_INIT_POINTER(ppd->cc_state, NULL);
1501 		spin_unlock(&ppd->cc_state_lock);
1502 
1503 		if (cc_state)
1504 			kfree_rcu(cc_state, rcu);
1505 	}
1506 
1507 	free_credit_return(dd);
1508 
1509 	/*
1510 	 * Free any resources still in use (usually just kernel contexts)
1511 	 * at unload; we do for ctxtcnt, because that's what we allocate.
1512 	 */
1513 	for (ctxt = 0; dd->rcd && ctxt < dd->num_rcv_contexts; ctxt++) {
1514 		struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
1515 
1516 		if (rcd) {
1517 			hfi1_free_ctxt_rcv_groups(rcd);
1518 			hfi1_free_ctxt(rcd);
1519 		}
1520 	}
1521 
1522 	kfree(dd->rcd);
1523 	dd->rcd = NULL;
1524 
1525 	free_pio_map(dd);
1526 	/* must follow rcv context free - need to remove rcv's hooks */
1527 	for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
1528 		sc_free(dd->send_contexts[ctxt].sc);
1529 	dd->num_send_contexts = 0;
1530 	kfree(dd->send_contexts);
1531 	dd->send_contexts = NULL;
1532 	kfree(dd->hw_to_sw);
1533 	dd->hw_to_sw = NULL;
1534 	kfree(dd->boardname);
1535 	vfree(dd->events);
1536 	vfree(dd->status);
1537 }
1538 
1539 /*
1540  * Clean up on unit shutdown, or error during unit load after
1541  * successful initialization.
1542  */
1543 static void postinit_cleanup(struct hfi1_devdata *dd)
1544 {
1545 	hfi1_start_cleanup(dd);
1546 	hfi1_comp_vectors_clean_up(dd);
1547 	hfi1_dev_affinity_clean_up(dd);
1548 
1549 	hfi1_pcie_ddcleanup(dd);
1550 	hfi1_pcie_cleanup(dd->pcidev);
1551 
1552 	cleanup_device_data(dd);
1553 
1554 	hfi1_free_devdata(dd);
1555 }
1556 
1557 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1558 {
1559 	int ret = 0, j, pidx, initfail;
1560 	struct hfi1_devdata *dd;
1561 	struct hfi1_pportdata *ppd;
1562 
1563 	/* First, lock the non-writable module parameters */
1564 	HFI1_CAP_LOCK();
1565 
1566 	/* Validate dev ids */
1567 	if (!(ent->device == PCI_DEVICE_ID_INTEL0 ||
1568 	      ent->device == PCI_DEVICE_ID_INTEL1)) {
1569 		dev_err(&pdev->dev, "Failing on unknown Intel deviceid 0x%x\n",
1570 			ent->device);
1571 		ret = -ENODEV;
1572 		goto bail;
1573 	}
1574 
1575 	/* Allocate the dd so we can get to work */
1576 	dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
1577 				sizeof(struct hfi1_pportdata));
1578 	if (IS_ERR(dd)) {
1579 		ret = PTR_ERR(dd);
1580 		goto bail;
1581 	}
1582 
1583 	/* Validate some global module parameters */
1584 	ret = hfi1_validate_rcvhdrcnt(dd, rcvhdrcnt);
1585 	if (ret)
1586 		goto bail;
1587 
1588 	/* use the encoding function as a sanitization check */
1589 	if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) {
1590 		dd_dev_err(dd, "Invalid HdrQ Entry size %u\n",
1591 			   hfi1_hdrq_entsize);
1592 		ret = -EINVAL;
1593 		goto bail;
1594 	}
1595 
1596 	/* The receive eager buffer size must be set before the receive
1597 	 * contexts are created.
1598 	 *
1599 	 * Set the eager buffer size.  Validate that it falls in a range
1600 	 * allowed by the hardware - all powers of 2 between the min and
1601 	 * max.  The maximum valid MTU is within the eager buffer range
1602 	 * so we do not need to cap the max_mtu by an eager buffer size
1603 	 * setting.
1604 	 */
1605 	if (eager_buffer_size) {
1606 		if (!is_power_of_2(eager_buffer_size))
1607 			eager_buffer_size =
1608 				roundup_pow_of_two(eager_buffer_size);
1609 		eager_buffer_size =
1610 			clamp_val(eager_buffer_size,
1611 				  MIN_EAGER_BUFFER * 8,
1612 				  MAX_EAGER_BUFFER_TOTAL);
1613 		dd_dev_info(dd, "Eager buffer size %u\n",
1614 			    eager_buffer_size);
1615 	} else {
1616 		dd_dev_err(dd, "Invalid Eager buffer size of 0\n");
1617 		ret = -EINVAL;
1618 		goto bail;
1619 	}
1620 
1621 	/* restrict value of hfi1_rcvarr_split */
1622 	hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);
1623 
1624 	ret = hfi1_pcie_init(dd);
1625 	if (ret)
1626 		goto bail;
1627 
1628 	/*
1629 	 * Do device-specific initialization, function table setup, dd
1630 	 * allocation, etc.
1631 	 */
1632 	ret = hfi1_init_dd(dd);
1633 	if (ret)
1634 		goto clean_bail; /* error already printed */
1635 
1636 	ret = create_workqueues(dd);
1637 	if (ret)
1638 		goto clean_bail;
1639 
1640 	/* do the generic initialization */
1641 	initfail = hfi1_init(dd, 0);
1642 
1643 	ret = hfi1_register_ib_device(dd);
1644 
1645 	/*
1646 	 * Now ready for use.  this should be cleared whenever we
1647 	 * detect a reset, or initiate one.  If earlier failure,
1648 	 * we still create devices, so diags, etc. can be used
1649 	 * to determine cause of problem.
1650 	 */
1651 	if (!initfail && !ret) {
1652 		dd->flags |= HFI1_INITTED;
1653 		/* create debufs files after init and ib register */
1654 		hfi1_dbg_ibdev_init(&dd->verbs_dev);
1655 	}
1656 
1657 	j = hfi1_device_create(dd);
1658 	if (j)
1659 		dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
1660 
1661 	if (initfail || ret) {
1662 		msix_clean_up_interrupts(dd);
1663 		stop_timers(dd);
1664 		flush_workqueue(ib_wq);
1665 		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1666 			hfi1_quiet_serdes(dd->pport + pidx);
1667 			ppd = dd->pport + pidx;
1668 			if (ppd->hfi1_wq) {
1669 				destroy_workqueue(ppd->hfi1_wq);
1670 				ppd->hfi1_wq = NULL;
1671 			}
1672 			if (ppd->link_wq) {
1673 				destroy_workqueue(ppd->link_wq);
1674 				ppd->link_wq = NULL;
1675 			}
1676 		}
1677 		if (!j)
1678 			hfi1_device_remove(dd);
1679 		if (!ret)
1680 			hfi1_unregister_ib_device(dd);
1681 		postinit_cleanup(dd);
1682 		if (initfail)
1683 			ret = initfail;
1684 		goto bail;	/* everything already cleaned */
1685 	}
1686 
1687 	sdma_start(dd);
1688 
1689 	return 0;
1690 
1691 clean_bail:
1692 	hfi1_pcie_cleanup(pdev);
1693 bail:
1694 	return ret;
1695 }
1696 
1697 static void wait_for_clients(struct hfi1_devdata *dd)
1698 {
1699 	/*
1700 	 * Remove the device init value and complete the device if there is
1701 	 * no clients or wait for active clients to finish.
1702 	 */
1703 	if (refcount_dec_and_test(&dd->user_refcount))
1704 		complete(&dd->user_comp);
1705 
1706 	wait_for_completion(&dd->user_comp);
1707 }
1708 
1709 static void remove_one(struct pci_dev *pdev)
1710 {
1711 	struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1712 
1713 	/* close debugfs files before ib unregister */
1714 	hfi1_dbg_ibdev_exit(&dd->verbs_dev);
1715 
1716 	/* remove the /dev hfi1 interface */
1717 	hfi1_device_remove(dd);
1718 
1719 	/* wait for existing user space clients to finish */
1720 	wait_for_clients(dd);
1721 
1722 	/* unregister from IB core */
1723 	hfi1_unregister_ib_device(dd);
1724 
1725 	/* free netdev data */
1726 	hfi1_free_rx(dd);
1727 
1728 	/*
1729 	 * Disable the IB link, disable interrupts on the device,
1730 	 * clear dma engines, etc.
1731 	 */
1732 	shutdown_device(dd);
1733 	destroy_workqueues(dd);
1734 
1735 	stop_timers(dd);
1736 
1737 	/* wait until all of our (qsfp) queue_work() calls complete */
1738 	flush_workqueue(ib_wq);
1739 
1740 	postinit_cleanup(dd);
1741 }
1742 
1743 static void shutdown_one(struct pci_dev *pdev)
1744 {
1745 	struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1746 
1747 	shutdown_device(dd);
1748 }
1749 
1750 /**
1751  * hfi1_create_rcvhdrq - create a receive header queue
1752  * @dd: the hfi1_ib device
1753  * @rcd: the context data
1754  *
1755  * This must be contiguous memory (from an i/o perspective), and must be
1756  * DMA'able (which means for some systems, it will go through an IOMMU,
1757  * or be forced into a low address range).
1758  */
1759 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1760 {
1761 	unsigned amt;
1762 
1763 	if (!rcd->rcvhdrq) {
1764 		amt = rcvhdrq_size(rcd);
1765 
1766 		rcd->rcvhdrq = dma_alloc_coherent(&dd->pcidev->dev, amt,
1767 						  &rcd->rcvhdrq_dma,
1768 						  GFP_KERNEL);
1769 
1770 		if (!rcd->rcvhdrq) {
1771 			dd_dev_err(dd,
1772 				   "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
1773 				   amt, rcd->ctxt);
1774 			goto bail;
1775 		}
1776 
1777 		if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ||
1778 		    HFI1_CAP_UGET_MASK(rcd->flags, DMA_RTAIL)) {
1779 			rcd->rcvhdrtail_kvaddr = dma_alloc_coherent(&dd->pcidev->dev,
1780 								    PAGE_SIZE,
1781 								    &rcd->rcvhdrqtailaddr_dma,
1782 								    GFP_KERNEL);
1783 			if (!rcd->rcvhdrtail_kvaddr)
1784 				goto bail_free;
1785 		}
1786 	}
1787 
1788 	set_hdrq_regs(rcd->dd, rcd->ctxt, rcd->rcvhdrqentsize,
1789 		      rcd->rcvhdrq_cnt);
1790 
1791 	return 0;
1792 
1793 bail_free:
1794 	dd_dev_err(dd,
1795 		   "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
1796 		   rcd->ctxt);
1797 	dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
1798 			  rcd->rcvhdrq_dma);
1799 	rcd->rcvhdrq = NULL;
1800 bail:
1801 	return -ENOMEM;
1802 }
1803 
1804 /**
1805  * hfi1_setup_eagerbufs - llocate eager buffers, both kernel and user
1806  * contexts.
1807  * @rcd: the context we are setting up.
1808  *
1809  * Allocate the eager TID buffers and program them into hip.
1810  * They are no longer completely contiguous, we do multiple allocation
1811  * calls.  Otherwise we get the OOM code involved, by asking for too
1812  * much per call, with disastrous results on some kernels.
1813  */
1814 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
1815 {
1816 	struct hfi1_devdata *dd = rcd->dd;
1817 	u32 max_entries, egrtop, alloced_bytes = 0;
1818 	u16 order, idx = 0;
1819 	int ret = 0;
1820 	u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);
1821 
1822 	/*
1823 	 * The minimum size of the eager buffers is a groups of MTU-sized
1824 	 * buffers.
1825 	 * The global eager_buffer_size parameter is checked against the
1826 	 * theoretical lower limit of the value. Here, we check against the
1827 	 * MTU.
1828 	 */
1829 	if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
1830 		rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
1831 	/*
1832 	 * If using one-pkt-per-egr-buffer, lower the eager buffer
1833 	 * size to the max MTU (page-aligned).
1834 	 */
1835 	if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
1836 		rcd->egrbufs.rcvtid_size = round_mtu;
1837 
1838 	/*
1839 	 * Eager buffers sizes of 1MB or less require smaller TID sizes
1840 	 * to satisfy the "multiple of 8 RcvArray entries" requirement.
1841 	 */
1842 	if (rcd->egrbufs.size <= (1 << 20))
1843 		rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
1844 			rounddown_pow_of_two(rcd->egrbufs.size / 8));
1845 
1846 	while (alloced_bytes < rcd->egrbufs.size &&
1847 	       rcd->egrbufs.alloced < rcd->egrbufs.count) {
1848 		rcd->egrbufs.buffers[idx].addr =
1849 			dma_alloc_coherent(&dd->pcidev->dev,
1850 					   rcd->egrbufs.rcvtid_size,
1851 					   &rcd->egrbufs.buffers[idx].dma,
1852 					   GFP_KERNEL);
1853 		if (rcd->egrbufs.buffers[idx].addr) {
1854 			rcd->egrbufs.buffers[idx].len =
1855 				rcd->egrbufs.rcvtid_size;
1856 			rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
1857 				rcd->egrbufs.buffers[idx].addr;
1858 			rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma =
1859 				rcd->egrbufs.buffers[idx].dma;
1860 			rcd->egrbufs.alloced++;
1861 			alloced_bytes += rcd->egrbufs.rcvtid_size;
1862 			idx++;
1863 		} else {
1864 			u32 new_size, i, j;
1865 			u64 offset = 0;
1866 
1867 			/*
1868 			 * Fail the eager buffer allocation if:
1869 			 *   - we are already using the lowest acceptable size
1870 			 *   - we are using one-pkt-per-egr-buffer (this implies
1871 			 *     that we are accepting only one size)
1872 			 */
1873 			if (rcd->egrbufs.rcvtid_size == round_mtu ||
1874 			    !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
1875 				dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
1876 					   rcd->ctxt);
1877 				ret = -ENOMEM;
1878 				goto bail_rcvegrbuf_phys;
1879 			}
1880 
1881 			new_size = rcd->egrbufs.rcvtid_size / 2;
1882 
1883 			/*
1884 			 * If the first attempt to allocate memory failed, don't
1885 			 * fail everything but continue with the next lower
1886 			 * size.
1887 			 */
1888 			if (idx == 0) {
1889 				rcd->egrbufs.rcvtid_size = new_size;
1890 				continue;
1891 			}
1892 
1893 			/*
1894 			 * Re-partition already allocated buffers to a smaller
1895 			 * size.
1896 			 */
1897 			rcd->egrbufs.alloced = 0;
1898 			for (i = 0, j = 0, offset = 0; j < idx; i++) {
1899 				if (i >= rcd->egrbufs.count)
1900 					break;
1901 				rcd->egrbufs.rcvtids[i].dma =
1902 					rcd->egrbufs.buffers[j].dma + offset;
1903 				rcd->egrbufs.rcvtids[i].addr =
1904 					rcd->egrbufs.buffers[j].addr + offset;
1905 				rcd->egrbufs.alloced++;
1906 				if ((rcd->egrbufs.buffers[j].dma + offset +
1907 				     new_size) ==
1908 				    (rcd->egrbufs.buffers[j].dma +
1909 				     rcd->egrbufs.buffers[j].len)) {
1910 					j++;
1911 					offset = 0;
1912 				} else {
1913 					offset += new_size;
1914 				}
1915 			}
1916 			rcd->egrbufs.rcvtid_size = new_size;
1917 		}
1918 	}
1919 	rcd->egrbufs.numbufs = idx;
1920 	rcd->egrbufs.size = alloced_bytes;
1921 
1922 	hfi1_cdbg(PROC,
1923 		  "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %uKB\n",
1924 		  rcd->ctxt, rcd->egrbufs.alloced,
1925 		  rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024);
1926 
1927 	/*
1928 	 * Set the contexts rcv array head update threshold to the closest
1929 	 * power of 2 (so we can use a mask instead of modulo) below half
1930 	 * the allocated entries.
1931 	 */
1932 	rcd->egrbufs.threshold =
1933 		rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
1934 	/*
1935 	 * Compute the expected RcvArray entry base. This is done after
1936 	 * allocating the eager buffers in order to maximize the
1937 	 * expected RcvArray entries for the context.
1938 	 */
1939 	max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
1940 	egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
1941 	rcd->expected_count = max_entries - egrtop;
1942 	if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
1943 		rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;
1944 
1945 	rcd->expected_base = rcd->eager_base + egrtop;
1946 	hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n",
1947 		  rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
1948 		  rcd->eager_base, rcd->expected_base);
1949 
1950 	if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) {
1951 		hfi1_cdbg(PROC,
1952 			  "ctxt%u: current Eager buffer size is invalid %u\n",
1953 			  rcd->ctxt, rcd->egrbufs.rcvtid_size);
1954 		ret = -EINVAL;
1955 		goto bail_rcvegrbuf_phys;
1956 	}
1957 
1958 	for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
1959 		hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER,
1960 			     rcd->egrbufs.rcvtids[idx].dma, order);
1961 		cond_resched();
1962 	}
1963 
1964 	return 0;
1965 
1966 bail_rcvegrbuf_phys:
1967 	for (idx = 0; idx < rcd->egrbufs.alloced &&
1968 	     rcd->egrbufs.buffers[idx].addr;
1969 	     idx++) {
1970 		dma_free_coherent(&dd->pcidev->dev,
1971 				  rcd->egrbufs.buffers[idx].len,
1972 				  rcd->egrbufs.buffers[idx].addr,
1973 				  rcd->egrbufs.buffers[idx].dma);
1974 		rcd->egrbufs.buffers[idx].addr = NULL;
1975 		rcd->egrbufs.buffers[idx].dma = 0;
1976 		rcd->egrbufs.buffers[idx].len = 0;
1977 	}
1978 
1979 	return ret;
1980 }
1981