xref: /openbmc/linux/drivers/infiniband/hw/hfi1/init.c (revision f220d3eb)
1 /*
2  * Copyright(c) 2015 - 2018 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <linux/pci.h>
49 #include <linux/netdevice.h>
50 #include <linux/vmalloc.h>
51 #include <linux/delay.h>
52 #include <linux/idr.h>
53 #include <linux/module.h>
54 #include <linux/printk.h>
55 #include <linux/hrtimer.h>
56 #include <linux/bitmap.h>
57 #include <rdma/rdma_vt.h>
58 
59 #include "hfi.h"
60 #include "device.h"
61 #include "common.h"
62 #include "trace.h"
63 #include "mad.h"
64 #include "sdma.h"
65 #include "debugfs.h"
66 #include "verbs.h"
67 #include "aspm.h"
68 #include "affinity.h"
69 #include "vnic.h"
70 #include "exp_rcv.h"
71 
72 #undef pr_fmt
73 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
74 
75 #define HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES 5
76 /*
77  * min buffers we want to have per context, after driver
78  */
79 #define HFI1_MIN_USER_CTXT_BUFCNT 7
80 
81 #define HFI1_MIN_HDRQ_EGRBUF_CNT 2
82 #define HFI1_MAX_HDRQ_EGRBUF_CNT 16352
83 #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
84 #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */
85 
86 /*
87  * Number of user receive contexts we are configured to use (to allow for more
88  * pio buffers per ctxt, etc.)  Zero means use one user context per CPU.
89  */
90 int num_user_contexts = -1;
91 module_param_named(num_user_contexts, num_user_contexts, int, 0444);
92 MODULE_PARM_DESC(
93 	num_user_contexts, "Set max number of user contexts to use (default: -1 will use the real (non-HT) CPU count)");
94 
95 uint krcvqs[RXE_NUM_DATA_VL];
96 int krcvqsset;
97 module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO);
98 MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL");
99 
100 /* computed based on above array */
101 unsigned long n_krcvqs;
102 
103 static unsigned hfi1_rcvarr_split = 25;
104 module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
105 MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");
106 
107 static uint eager_buffer_size = (8 << 20); /* 8MB */
108 module_param(eager_buffer_size, uint, S_IRUGO);
109 MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 8MB");
110 
111 static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
112 module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
113 MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");
114 
115 static uint hfi1_hdrq_entsize = 32;
116 module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, 0444);
117 MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B, 32 - 128B (default)");
118 
119 unsigned int user_credit_return_threshold = 33;	/* default is 33% */
120 module_param(user_credit_return_threshold, uint, S_IRUGO);
121 MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");
122 
123 static inline u64 encode_rcv_header_entry_size(u16 size);
124 
125 static struct idr hfi1_unit_table;
126 
127 static int hfi1_create_kctxt(struct hfi1_devdata *dd,
128 			     struct hfi1_pportdata *ppd)
129 {
130 	struct hfi1_ctxtdata *rcd;
131 	int ret;
132 
133 	/* Control context has to be always 0 */
134 	BUILD_BUG_ON(HFI1_CTRL_CTXT != 0);
135 
136 	ret = hfi1_create_ctxtdata(ppd, dd->node, &rcd);
137 	if (ret < 0) {
138 		dd_dev_err(dd, "Kernel receive context allocation failed\n");
139 		return ret;
140 	}
141 
142 	/*
143 	 * Set up the kernel context flags here and now because they use
144 	 * default values for all receive side memories.  User contexts will
145 	 * be handled as they are created.
146 	 */
147 	rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
148 		HFI1_CAP_KGET(NODROP_RHQ_FULL) |
149 		HFI1_CAP_KGET(NODROP_EGR_FULL) |
150 		HFI1_CAP_KGET(DMA_RTAIL);
151 
152 	/* Control context must use DMA_RTAIL */
153 	if (rcd->ctxt == HFI1_CTRL_CTXT)
154 		rcd->flags |= HFI1_CAP_DMA_RTAIL;
155 	rcd->seq_cnt = 1;
156 
157 	rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node);
158 	if (!rcd->sc) {
159 		dd_dev_err(dd, "Kernel send context allocation failed\n");
160 		return -ENOMEM;
161 	}
162 	hfi1_init_ctxt(rcd->sc);
163 
164 	return 0;
165 }
166 
167 /*
168  * Create the receive context array and one or more kernel contexts
169  */
170 int hfi1_create_kctxts(struct hfi1_devdata *dd)
171 {
172 	u16 i;
173 	int ret;
174 
175 	dd->rcd = kcalloc_node(dd->num_rcv_contexts, sizeof(*dd->rcd),
176 			       GFP_KERNEL, dd->node);
177 	if (!dd->rcd)
178 		return -ENOMEM;
179 
180 	for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
181 		ret = hfi1_create_kctxt(dd, dd->pport);
182 		if (ret)
183 			goto bail;
184 	}
185 
186 	return 0;
187 bail:
188 	for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i)
189 		hfi1_free_ctxt(dd->rcd[i]);
190 
191 	/* All the contexts should be freed, free the array */
192 	kfree(dd->rcd);
193 	dd->rcd = NULL;
194 	return ret;
195 }
196 
197 /*
198  * Helper routines for the receive context reference count (rcd and uctxt).
199  */
200 static void hfi1_rcd_init(struct hfi1_ctxtdata *rcd)
201 {
202 	kref_init(&rcd->kref);
203 }
204 
205 /**
206  * hfi1_rcd_free - When reference is zero clean up.
207  * @kref: pointer to an initialized rcd data structure
208  *
209  */
210 static void hfi1_rcd_free(struct kref *kref)
211 {
212 	unsigned long flags;
213 	struct hfi1_ctxtdata *rcd =
214 		container_of(kref, struct hfi1_ctxtdata, kref);
215 
216 	hfi1_free_ctxtdata(rcd->dd, rcd);
217 
218 	spin_lock_irqsave(&rcd->dd->uctxt_lock, flags);
219 	rcd->dd->rcd[rcd->ctxt] = NULL;
220 	spin_unlock_irqrestore(&rcd->dd->uctxt_lock, flags);
221 
222 	kfree(rcd);
223 }
224 
225 /**
226  * hfi1_rcd_put - decrement reference for rcd
227  * @rcd: pointer to an initialized rcd data structure
228  *
229  * Use this to put a reference after the init.
230  */
231 int hfi1_rcd_put(struct hfi1_ctxtdata *rcd)
232 {
233 	if (rcd)
234 		return kref_put(&rcd->kref, hfi1_rcd_free);
235 
236 	return 0;
237 }
238 
239 /**
240  * hfi1_rcd_get - increment reference for rcd
241  * @rcd: pointer to an initialized rcd data structure
242  *
243  * Use this to get a reference after the init.
244  */
245 void hfi1_rcd_get(struct hfi1_ctxtdata *rcd)
246 {
247 	kref_get(&rcd->kref);
248 }
249 
250 /**
251  * allocate_rcd_index - allocate an rcd index from the rcd array
252  * @dd: pointer to a valid devdata structure
253  * @rcd: rcd data structure to assign
254  * @index: pointer to index that is allocated
255  *
256  * Find an empty index in the rcd array, and assign the given rcd to it.
257  * If the array is full, we are EBUSY.
258  *
259  */
260 static int allocate_rcd_index(struct hfi1_devdata *dd,
261 			      struct hfi1_ctxtdata *rcd, u16 *index)
262 {
263 	unsigned long flags;
264 	u16 ctxt;
265 
266 	spin_lock_irqsave(&dd->uctxt_lock, flags);
267 	for (ctxt = 0; ctxt < dd->num_rcv_contexts; ctxt++)
268 		if (!dd->rcd[ctxt])
269 			break;
270 
271 	if (ctxt < dd->num_rcv_contexts) {
272 		rcd->ctxt = ctxt;
273 		dd->rcd[ctxt] = rcd;
274 		hfi1_rcd_init(rcd);
275 	}
276 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
277 
278 	if (ctxt >= dd->num_rcv_contexts)
279 		return -EBUSY;
280 
281 	*index = ctxt;
282 
283 	return 0;
284 }
285 
286 /**
287  * hfi1_rcd_get_by_index_safe - validate the ctxt index before accessing the
288  * array
289  * @dd: pointer to a valid devdata structure
290  * @ctxt: the index of an possilbe rcd
291  *
292  * This is a wrapper for hfi1_rcd_get_by_index() to validate that the given
293  * ctxt index is valid.
294  *
295  * The caller is responsible for making the _put().
296  *
297  */
298 struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd,
299 						 u16 ctxt)
300 {
301 	if (ctxt < dd->num_rcv_contexts)
302 		return hfi1_rcd_get_by_index(dd, ctxt);
303 
304 	return NULL;
305 }
306 
307 /**
308  * hfi1_rcd_get_by_index
309  * @dd: pointer to a valid devdata structure
310  * @ctxt: the index of an possilbe rcd
311  *
312  * We need to protect access to the rcd array.  If access is needed to
313  * one or more index, get the protecting spinlock and then increment the
314  * kref.
315  *
316  * The caller is responsible for making the _put().
317  *
318  */
319 struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt)
320 {
321 	unsigned long flags;
322 	struct hfi1_ctxtdata *rcd = NULL;
323 
324 	spin_lock_irqsave(&dd->uctxt_lock, flags);
325 	if (dd->rcd[ctxt]) {
326 		rcd = dd->rcd[ctxt];
327 		hfi1_rcd_get(rcd);
328 	}
329 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
330 
331 	return rcd;
332 }
333 
334 /*
335  * Common code for user and kernel context create and setup.
336  * NOTE: the initial kref is done here (hf1_rcd_init()).
337  */
338 int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa,
339 			 struct hfi1_ctxtdata **context)
340 {
341 	struct hfi1_devdata *dd = ppd->dd;
342 	struct hfi1_ctxtdata *rcd;
343 	unsigned kctxt_ngroups = 0;
344 	u32 base;
345 
346 	if (dd->rcv_entries.nctxt_extra >
347 	    dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt)
348 		kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
349 			 (dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt));
350 	rcd = kzalloc_node(sizeof(*rcd), GFP_KERNEL, numa);
351 	if (rcd) {
352 		u32 rcvtids, max_entries;
353 		u16 ctxt;
354 		int ret;
355 
356 		ret = allocate_rcd_index(dd, rcd, &ctxt);
357 		if (ret) {
358 			*context = NULL;
359 			kfree(rcd);
360 			return ret;
361 		}
362 
363 		INIT_LIST_HEAD(&rcd->qp_wait_list);
364 		hfi1_exp_tid_group_init(rcd);
365 		rcd->ppd = ppd;
366 		rcd->dd = dd;
367 		rcd->numa_id = numa;
368 		rcd->rcv_array_groups = dd->rcv_entries.ngroups;
369 		rcd->rhf_rcv_function_map = normal_rhf_rcv_functions;
370 
371 		mutex_init(&rcd->exp_mutex);
372 
373 		hfi1_cdbg(PROC, "setting up context %u\n", rcd->ctxt);
374 
375 		/*
376 		 * Calculate the context's RcvArray entry starting point.
377 		 * We do this here because we have to take into account all
378 		 * the RcvArray entries that previous context would have
379 		 * taken and we have to account for any extra groups assigned
380 		 * to the static (kernel) or dynamic (vnic/user) contexts.
381 		 */
382 		if (ctxt < dd->first_dyn_alloc_ctxt) {
383 			if (ctxt < kctxt_ngroups) {
384 				base = ctxt * (dd->rcv_entries.ngroups + 1);
385 				rcd->rcv_array_groups++;
386 			} else {
387 				base = kctxt_ngroups +
388 					(ctxt * dd->rcv_entries.ngroups);
389 			}
390 		} else {
391 			u16 ct = ctxt - dd->first_dyn_alloc_ctxt;
392 
393 			base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
394 				kctxt_ngroups);
395 			if (ct < dd->rcv_entries.nctxt_extra) {
396 				base += ct * (dd->rcv_entries.ngroups + 1);
397 				rcd->rcv_array_groups++;
398 			} else {
399 				base += dd->rcv_entries.nctxt_extra +
400 					(ct * dd->rcv_entries.ngroups);
401 			}
402 		}
403 		rcd->eager_base = base * dd->rcv_entries.group_size;
404 
405 		rcd->rcvhdrq_cnt = rcvhdrcnt;
406 		rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
407 		rcd->rhf_offset =
408 			rcd->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
409 		/*
410 		 * Simple Eager buffer allocation: we have already pre-allocated
411 		 * the number of RcvArray entry groups. Each ctxtdata structure
412 		 * holds the number of groups for that context.
413 		 *
414 		 * To follow CSR requirements and maintain cacheline alignment,
415 		 * make sure all sizes and bases are multiples of group_size.
416 		 *
417 		 * The expected entry count is what is left after assigning
418 		 * eager.
419 		 */
420 		max_entries = rcd->rcv_array_groups *
421 			dd->rcv_entries.group_size;
422 		rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
423 		rcd->egrbufs.count = round_down(rcvtids,
424 						dd->rcv_entries.group_size);
425 		if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
426 			dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
427 				   rcd->ctxt);
428 			rcd->egrbufs.count = MAX_EAGER_ENTRIES;
429 		}
430 		hfi1_cdbg(PROC,
431 			  "ctxt%u: max Eager buffer RcvArray entries: %u\n",
432 			  rcd->ctxt, rcd->egrbufs.count);
433 
434 		/*
435 		 * Allocate array that will hold the eager buffer accounting
436 		 * data.
437 		 * This will allocate the maximum possible buffer count based
438 		 * on the value of the RcvArray split parameter.
439 		 * The resulting value will be rounded down to the closest
440 		 * multiple of dd->rcv_entries.group_size.
441 		 */
442 		rcd->egrbufs.buffers =
443 			kcalloc_node(rcd->egrbufs.count,
444 				     sizeof(*rcd->egrbufs.buffers),
445 				     GFP_KERNEL, numa);
446 		if (!rcd->egrbufs.buffers)
447 			goto bail;
448 		rcd->egrbufs.rcvtids =
449 			kcalloc_node(rcd->egrbufs.count,
450 				     sizeof(*rcd->egrbufs.rcvtids),
451 				     GFP_KERNEL, numa);
452 		if (!rcd->egrbufs.rcvtids)
453 			goto bail;
454 		rcd->egrbufs.size = eager_buffer_size;
455 		/*
456 		 * The size of the buffers programmed into the RcvArray
457 		 * entries needs to be big enough to handle the highest
458 		 * MTU supported.
459 		 */
460 		if (rcd->egrbufs.size < hfi1_max_mtu) {
461 			rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu);
462 			hfi1_cdbg(PROC,
463 				  "ctxt%u: eager bufs size too small. Adjusting to %zu\n",
464 				    rcd->ctxt, rcd->egrbufs.size);
465 		}
466 		rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;
467 
468 		/* Applicable only for statically created kernel contexts */
469 		if (ctxt < dd->first_dyn_alloc_ctxt) {
470 			rcd->opstats = kzalloc_node(sizeof(*rcd->opstats),
471 						    GFP_KERNEL, numa);
472 			if (!rcd->opstats)
473 				goto bail;
474 		}
475 
476 		*context = rcd;
477 		return 0;
478 	}
479 
480 bail:
481 	*context = NULL;
482 	hfi1_free_ctxt(rcd);
483 	return -ENOMEM;
484 }
485 
486 /**
487  * hfi1_free_ctxt
488  * @rcd: pointer to an initialized rcd data structure
489  *
490  * This wrapper is the free function that matches hfi1_create_ctxtdata().
491  * When a context is done being used (kernel or user), this function is called
492  * for the "final" put to match the kref init from hf1i_create_ctxtdata().
493  * Other users of the context do a get/put sequence to make sure that the
494  * structure isn't removed while in use.
495  */
496 void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd)
497 {
498 	hfi1_rcd_put(rcd);
499 }
500 
501 /*
502  * Convert a receive header entry size that to the encoding used in the CSR.
503  *
504  * Return a zero if the given size is invalid.
505  */
506 static inline u64 encode_rcv_header_entry_size(u16 size)
507 {
508 	/* there are only 3 valid receive header entry sizes */
509 	if (size == 2)
510 		return 1;
511 	if (size == 16)
512 		return 2;
513 	else if (size == 32)
514 		return 4;
515 	return 0; /* invalid */
516 }
517 
518 /*
519  * Select the largest ccti value over all SLs to determine the intra-
520  * packet gap for the link.
521  *
522  * called with cca_timer_lock held (to protect access to cca_timer
523  * array), and rcu_read_lock() (to protect access to cc_state).
524  */
525 void set_link_ipg(struct hfi1_pportdata *ppd)
526 {
527 	struct hfi1_devdata *dd = ppd->dd;
528 	struct cc_state *cc_state;
529 	int i;
530 	u16 cce, ccti_limit, max_ccti = 0;
531 	u16 shift, mult;
532 	u64 src;
533 	u32 current_egress_rate; /* Mbits /sec */
534 	u32 max_pkt_time;
535 	/*
536 	 * max_pkt_time is the maximum packet egress time in units
537 	 * of the fabric clock period 1/(805 MHz).
538 	 */
539 
540 	cc_state = get_cc_state(ppd);
541 
542 	if (!cc_state)
543 		/*
544 		 * This should _never_ happen - rcu_read_lock() is held,
545 		 * and set_link_ipg() should not be called if cc_state
546 		 * is NULL.
547 		 */
548 		return;
549 
550 	for (i = 0; i < OPA_MAX_SLS; i++) {
551 		u16 ccti = ppd->cca_timer[i].ccti;
552 
553 		if (ccti > max_ccti)
554 			max_ccti = ccti;
555 	}
556 
557 	ccti_limit = cc_state->cct.ccti_limit;
558 	if (max_ccti > ccti_limit)
559 		max_ccti = ccti_limit;
560 
561 	cce = cc_state->cct.entries[max_ccti].entry;
562 	shift = (cce & 0xc000) >> 14;
563 	mult = (cce & 0x3fff);
564 
565 	current_egress_rate = active_egress_rate(ppd);
566 
567 	max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate);
568 
569 	src = (max_pkt_time >> shift) * mult;
570 
571 	src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
572 	src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;
573 
574 	write_csr(dd, SEND_STATIC_RATE_CONTROL, src);
575 }
576 
577 static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
578 {
579 	struct cca_timer *cca_timer;
580 	struct hfi1_pportdata *ppd;
581 	int sl;
582 	u16 ccti_timer, ccti_min;
583 	struct cc_state *cc_state;
584 	unsigned long flags;
585 	enum hrtimer_restart ret = HRTIMER_NORESTART;
586 
587 	cca_timer = container_of(t, struct cca_timer, hrtimer);
588 	ppd = cca_timer->ppd;
589 	sl = cca_timer->sl;
590 
591 	rcu_read_lock();
592 
593 	cc_state = get_cc_state(ppd);
594 
595 	if (!cc_state) {
596 		rcu_read_unlock();
597 		return HRTIMER_NORESTART;
598 	}
599 
600 	/*
601 	 * 1) decrement ccti for SL
602 	 * 2) calculate IPG for link (set_link_ipg())
603 	 * 3) restart timer, unless ccti is at min value
604 	 */
605 
606 	ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
607 	ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
608 
609 	spin_lock_irqsave(&ppd->cca_timer_lock, flags);
610 
611 	if (cca_timer->ccti > ccti_min) {
612 		cca_timer->ccti--;
613 		set_link_ipg(ppd);
614 	}
615 
616 	if (cca_timer->ccti > ccti_min) {
617 		unsigned long nsec = 1024 * ccti_timer;
618 		/* ccti_timer is in units of 1.024 usec */
619 		hrtimer_forward_now(t, ns_to_ktime(nsec));
620 		ret = HRTIMER_RESTART;
621 	}
622 
623 	spin_unlock_irqrestore(&ppd->cca_timer_lock, flags);
624 	rcu_read_unlock();
625 	return ret;
626 }
627 
628 /*
629  * Common code for initializing the physical port structure.
630  */
631 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
632 			 struct hfi1_devdata *dd, u8 hw_pidx, u8 port)
633 {
634 	int i;
635 	uint default_pkey_idx;
636 	struct cc_state *cc_state;
637 
638 	ppd->dd = dd;
639 	ppd->hw_pidx = hw_pidx;
640 	ppd->port = port; /* IB port number, not index */
641 	ppd->prev_link_width = LINK_WIDTH_DEFAULT;
642 	/*
643 	 * There are C_VL_COUNT number of PortVLXmitWait counters.
644 	 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
645 	 */
646 	for (i = 0; i < C_VL_COUNT + 1; i++) {
647 		ppd->port_vl_xmit_wait_last[i] = 0;
648 		ppd->vl_xmit_flit_cnt[i] = 0;
649 	}
650 
651 	default_pkey_idx = 1;
652 
653 	ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
654 	ppd->part_enforce |= HFI1_PART_ENFORCE_IN;
655 
656 	if (loopback) {
657 		hfi1_early_err(&pdev->dev,
658 			       "Faking data partition 0x8001 in idx %u\n",
659 			       !default_pkey_idx);
660 		ppd->pkeys[!default_pkey_idx] = 0x8001;
661 	}
662 
663 	INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
664 	INIT_WORK(&ppd->link_up_work, handle_link_up);
665 	INIT_WORK(&ppd->link_down_work, handle_link_down);
666 	INIT_WORK(&ppd->freeze_work, handle_freeze);
667 	INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
668 	INIT_WORK(&ppd->sma_message_work, handle_sma_message);
669 	INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
670 	INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link);
671 	INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work);
672 	INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event);
673 
674 	mutex_init(&ppd->hls_lock);
675 	spin_lock_init(&ppd->qsfp_info.qsfp_lock);
676 
677 	ppd->qsfp_info.ppd = ppd;
678 	ppd->sm_trap_qp = 0x0;
679 	ppd->sa_qp = 0x1;
680 
681 	ppd->hfi1_wq = NULL;
682 
683 	spin_lock_init(&ppd->cca_timer_lock);
684 
685 	for (i = 0; i < OPA_MAX_SLS; i++) {
686 		hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
687 			     HRTIMER_MODE_REL);
688 		ppd->cca_timer[i].ppd = ppd;
689 		ppd->cca_timer[i].sl = i;
690 		ppd->cca_timer[i].ccti = 0;
691 		ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
692 	}
693 
694 	ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;
695 
696 	spin_lock_init(&ppd->cc_state_lock);
697 	spin_lock_init(&ppd->cc_log_lock);
698 	cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL);
699 	RCU_INIT_POINTER(ppd->cc_state, cc_state);
700 	if (!cc_state)
701 		goto bail;
702 	return;
703 
704 bail:
705 
706 	hfi1_early_err(&pdev->dev,
707 		       "Congestion Control Agent disabled for port %d\n", port);
708 }
709 
710 /*
711  * Do initialization for device that is only needed on
712  * first detect, not on resets.
713  */
714 static int loadtime_init(struct hfi1_devdata *dd)
715 {
716 	return 0;
717 }
718 
719 /**
720  * init_after_reset - re-initialize after a reset
721  * @dd: the hfi1_ib device
722  *
723  * sanity check at least some of the values after reset, and
724  * ensure no receive or transmit (explicitly, in case reset
725  * failed
726  */
727 static int init_after_reset(struct hfi1_devdata *dd)
728 {
729 	int i;
730 	struct hfi1_ctxtdata *rcd;
731 	/*
732 	 * Ensure chip does no sends or receives, tail updates, or
733 	 * pioavail updates while we re-initialize.  This is mostly
734 	 * for the driver data structures, not chip registers.
735 	 */
736 	for (i = 0; i < dd->num_rcv_contexts; i++) {
737 		rcd = hfi1_rcd_get_by_index(dd, i);
738 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
739 			     HFI1_RCVCTRL_INTRAVAIL_DIS |
740 			     HFI1_RCVCTRL_TAILUPD_DIS, rcd);
741 		hfi1_rcd_put(rcd);
742 	}
743 	pio_send_control(dd, PSC_GLOBAL_DISABLE);
744 	for (i = 0; i < dd->num_send_contexts; i++)
745 		sc_disable(dd->send_contexts[i].sc);
746 
747 	return 0;
748 }
749 
750 static void enable_chip(struct hfi1_devdata *dd)
751 {
752 	struct hfi1_ctxtdata *rcd;
753 	u32 rcvmask;
754 	u16 i;
755 
756 	/* enable PIO send */
757 	pio_send_control(dd, PSC_GLOBAL_ENABLE);
758 
759 	/*
760 	 * Enable kernel ctxts' receive and receive interrupt.
761 	 * Other ctxts done as user opens and initializes them.
762 	 */
763 	for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
764 		rcd = hfi1_rcd_get_by_index(dd, i);
765 		if (!rcd)
766 			continue;
767 		rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
768 		rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
769 			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
770 		if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
771 			rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
772 		if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_RHQ_FULL))
773 			rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
774 		if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_EGR_FULL))
775 			rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
776 		hfi1_rcvctrl(dd, rcvmask, rcd);
777 		sc_enable(rcd->sc);
778 		hfi1_rcd_put(rcd);
779 	}
780 }
781 
782 /**
783  * create_workqueues - create per port workqueues
784  * @dd: the hfi1_ib device
785  */
786 static int create_workqueues(struct hfi1_devdata *dd)
787 {
788 	int pidx;
789 	struct hfi1_pportdata *ppd;
790 
791 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
792 		ppd = dd->pport + pidx;
793 		if (!ppd->hfi1_wq) {
794 			ppd->hfi1_wq =
795 				alloc_workqueue(
796 				    "hfi%d_%d",
797 				    WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE,
798 				    HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES,
799 				    dd->unit, pidx);
800 			if (!ppd->hfi1_wq)
801 				goto wq_error;
802 		}
803 		if (!ppd->link_wq) {
804 			/*
805 			 * Make the link workqueue single-threaded to enforce
806 			 * serialization.
807 			 */
808 			ppd->link_wq =
809 				alloc_workqueue(
810 				    "hfi_link_%d_%d",
811 				    WQ_SYSFS | WQ_MEM_RECLAIM | WQ_UNBOUND,
812 				    1, /* max_active */
813 				    dd->unit, pidx);
814 			if (!ppd->link_wq)
815 				goto wq_error;
816 		}
817 	}
818 	return 0;
819 wq_error:
820 	pr_err("alloc_workqueue failed for port %d\n", pidx + 1);
821 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
822 		ppd = dd->pport + pidx;
823 		if (ppd->hfi1_wq) {
824 			destroy_workqueue(ppd->hfi1_wq);
825 			ppd->hfi1_wq = NULL;
826 		}
827 		if (ppd->link_wq) {
828 			destroy_workqueue(ppd->link_wq);
829 			ppd->link_wq = NULL;
830 		}
831 	}
832 	return -ENOMEM;
833 }
834 
835 /**
836  * hfi1_init - do the actual initialization sequence on the chip
837  * @dd: the hfi1_ib device
838  * @reinit: re-initializing, so don't allocate new memory
839  *
840  * Do the actual initialization sequence on the chip.  This is done
841  * both from the init routine called from the PCI infrastructure, and
842  * when we reset the chip, or detect that it was reset internally,
843  * or it's administratively re-enabled.
844  *
845  * Memory allocation here and in called routines is only done in
846  * the first case (reinit == 0).  We have to be careful, because even
847  * without memory allocation, we need to re-write all the chip registers
848  * TIDs, etc. after the reset or enable has completed.
849  */
850 int hfi1_init(struct hfi1_devdata *dd, int reinit)
851 {
852 	int ret = 0, pidx, lastfail = 0;
853 	unsigned long len;
854 	u16 i;
855 	struct hfi1_ctxtdata *rcd;
856 	struct hfi1_pportdata *ppd;
857 
858 	/* Set up send low level handlers */
859 	dd->process_pio_send = hfi1_verbs_send_pio;
860 	dd->process_dma_send = hfi1_verbs_send_dma;
861 	dd->pio_inline_send = pio_copy;
862 	dd->process_vnic_dma_send = hfi1_vnic_send_dma;
863 
864 	if (is_ax(dd)) {
865 		atomic_set(&dd->drop_packet, DROP_PACKET_ON);
866 		dd->do_drop = 1;
867 	} else {
868 		atomic_set(&dd->drop_packet, DROP_PACKET_OFF);
869 		dd->do_drop = 0;
870 	}
871 
872 	/* make sure the link is not "up" */
873 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
874 		ppd = dd->pport + pidx;
875 		ppd->linkup = 0;
876 	}
877 
878 	if (reinit)
879 		ret = init_after_reset(dd);
880 	else
881 		ret = loadtime_init(dd);
882 	if (ret)
883 		goto done;
884 
885 	/* allocate dummy tail memory for all receive contexts */
886 	dd->rcvhdrtail_dummy_kvaddr = dma_zalloc_coherent(
887 		&dd->pcidev->dev, sizeof(u64),
888 		&dd->rcvhdrtail_dummy_dma,
889 		GFP_KERNEL);
890 
891 	if (!dd->rcvhdrtail_dummy_kvaddr) {
892 		dd_dev_err(dd, "cannot allocate dummy tail memory\n");
893 		ret = -ENOMEM;
894 		goto done;
895 	}
896 
897 	/* dd->rcd can be NULL if early initialization failed */
898 	for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) {
899 		/*
900 		 * Set up the (kernel) rcvhdr queue and egr TIDs.  If doing
901 		 * re-init, the simplest way to handle this is to free
902 		 * existing, and re-allocate.
903 		 * Need to re-create rest of ctxt 0 ctxtdata as well.
904 		 */
905 		rcd = hfi1_rcd_get_by_index(dd, i);
906 		if (!rcd)
907 			continue;
908 
909 		rcd->do_interrupt = &handle_receive_interrupt;
910 
911 		lastfail = hfi1_create_rcvhdrq(dd, rcd);
912 		if (!lastfail)
913 			lastfail = hfi1_setup_eagerbufs(rcd);
914 		if (lastfail) {
915 			dd_dev_err(dd,
916 				   "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
917 			ret = lastfail;
918 		}
919 		hfi1_rcd_put(rcd);
920 	}
921 
922 	/* Allocate enough memory for user event notification. */
923 	len = PAGE_ALIGN(chip_rcv_contexts(dd) * HFI1_MAX_SHARED_CTXTS *
924 			 sizeof(*dd->events));
925 	dd->events = vmalloc_user(len);
926 	if (!dd->events)
927 		dd_dev_err(dd, "Failed to allocate user events page\n");
928 	/*
929 	 * Allocate a page for device and port status.
930 	 * Page will be shared amongst all user processes.
931 	 */
932 	dd->status = vmalloc_user(PAGE_SIZE);
933 	if (!dd->status)
934 		dd_dev_err(dd, "Failed to allocate dev status page\n");
935 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
936 		ppd = dd->pport + pidx;
937 		if (dd->status)
938 			/* Currently, we only have one port */
939 			ppd->statusp = &dd->status->port;
940 
941 		set_mtu(ppd);
942 	}
943 
944 	/* enable chip even if we have an error, so we can debug cause */
945 	enable_chip(dd);
946 
947 done:
948 	/*
949 	 * Set status even if port serdes is not initialized
950 	 * so that diags will work.
951 	 */
952 	if (dd->status)
953 		dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
954 			HFI1_STATUS_INITTED;
955 	if (!ret) {
956 		/* enable all interrupts from the chip */
957 		set_intr_state(dd, 1);
958 
959 		/* chip is OK for user apps; mark it as initialized */
960 		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
961 			ppd = dd->pport + pidx;
962 
963 			/*
964 			 * start the serdes - must be after interrupts are
965 			 * enabled so we are notified when the link goes up
966 			 */
967 			lastfail = bringup_serdes(ppd);
968 			if (lastfail)
969 				dd_dev_info(dd,
970 					    "Failed to bring up port %u\n",
971 					    ppd->port);
972 
973 			/*
974 			 * Set status even if port serdes is not initialized
975 			 * so that diags will work.
976 			 */
977 			if (ppd->statusp)
978 				*ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
979 							HFI1_STATUS_INITTED;
980 			if (!ppd->link_speed_enabled)
981 				continue;
982 		}
983 	}
984 
985 	/* if ret is non-zero, we probably should do some cleanup here... */
986 	return ret;
987 }
988 
989 static inline struct hfi1_devdata *__hfi1_lookup(int unit)
990 {
991 	return idr_find(&hfi1_unit_table, unit);
992 }
993 
994 struct hfi1_devdata *hfi1_lookup(int unit)
995 {
996 	struct hfi1_devdata *dd;
997 	unsigned long flags;
998 
999 	spin_lock_irqsave(&hfi1_devs_lock, flags);
1000 	dd = __hfi1_lookup(unit);
1001 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1002 
1003 	return dd;
1004 }
1005 
1006 /*
1007  * Stop the timers during unit shutdown, or after an error late
1008  * in initialization.
1009  */
1010 static void stop_timers(struct hfi1_devdata *dd)
1011 {
1012 	struct hfi1_pportdata *ppd;
1013 	int pidx;
1014 
1015 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1016 		ppd = dd->pport + pidx;
1017 		if (ppd->led_override_timer.function) {
1018 			del_timer_sync(&ppd->led_override_timer);
1019 			atomic_set(&ppd->led_override_timer_active, 0);
1020 		}
1021 	}
1022 }
1023 
1024 /**
1025  * shutdown_device - shut down a device
1026  * @dd: the hfi1_ib device
1027  *
1028  * This is called to make the device quiet when we are about to
1029  * unload the driver, and also when the device is administratively
1030  * disabled.   It does not free any data structures.
1031  * Everything it does has to be setup again by hfi1_init(dd, 1)
1032  */
1033 static void shutdown_device(struct hfi1_devdata *dd)
1034 {
1035 	struct hfi1_pportdata *ppd;
1036 	struct hfi1_ctxtdata *rcd;
1037 	unsigned pidx;
1038 	int i;
1039 
1040 	if (dd->flags & HFI1_SHUTDOWN)
1041 		return;
1042 	dd->flags |= HFI1_SHUTDOWN;
1043 
1044 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1045 		ppd = dd->pport + pidx;
1046 
1047 		ppd->linkup = 0;
1048 		if (ppd->statusp)
1049 			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
1050 					   HFI1_STATUS_IB_READY);
1051 	}
1052 	dd->flags &= ~HFI1_INITTED;
1053 
1054 	/* mask and clean up interrupts, but not errors */
1055 	set_intr_state(dd, 0);
1056 	hfi1_clean_up_interrupts(dd);
1057 
1058 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1059 		ppd = dd->pport + pidx;
1060 		for (i = 0; i < dd->num_rcv_contexts; i++) {
1061 			rcd = hfi1_rcd_get_by_index(dd, i);
1062 			hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
1063 				     HFI1_RCVCTRL_CTXT_DIS |
1064 				     HFI1_RCVCTRL_INTRAVAIL_DIS |
1065 				     HFI1_RCVCTRL_PKEY_DIS |
1066 				     HFI1_RCVCTRL_ONE_PKT_EGR_DIS, rcd);
1067 			hfi1_rcd_put(rcd);
1068 		}
1069 		/*
1070 		 * Gracefully stop all sends allowing any in progress to
1071 		 * trickle out first.
1072 		 */
1073 		for (i = 0; i < dd->num_send_contexts; i++)
1074 			sc_flush(dd->send_contexts[i].sc);
1075 	}
1076 
1077 	/*
1078 	 * Enough for anything that's going to trickle out to have actually
1079 	 * done so.
1080 	 */
1081 	udelay(20);
1082 
1083 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1084 		ppd = dd->pport + pidx;
1085 
1086 		/* disable all contexts */
1087 		for (i = 0; i < dd->num_send_contexts; i++)
1088 			sc_disable(dd->send_contexts[i].sc);
1089 		/* disable the send device */
1090 		pio_send_control(dd, PSC_GLOBAL_DISABLE);
1091 
1092 		shutdown_led_override(ppd);
1093 
1094 		/*
1095 		 * Clear SerdesEnable.
1096 		 * We can't count on interrupts since we are stopping.
1097 		 */
1098 		hfi1_quiet_serdes(ppd);
1099 
1100 		if (ppd->hfi1_wq) {
1101 			destroy_workqueue(ppd->hfi1_wq);
1102 			ppd->hfi1_wq = NULL;
1103 		}
1104 		if (ppd->link_wq) {
1105 			destroy_workqueue(ppd->link_wq);
1106 			ppd->link_wq = NULL;
1107 		}
1108 	}
1109 	sdma_exit(dd);
1110 }
1111 
1112 /**
1113  * hfi1_free_ctxtdata - free a context's allocated data
1114  * @dd: the hfi1_ib device
1115  * @rcd: the ctxtdata structure
1116  *
1117  * free up any allocated data for a context
1118  * It should never change any chip state, or global driver state.
1119  */
1120 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1121 {
1122 	u32 e;
1123 
1124 	if (!rcd)
1125 		return;
1126 
1127 	if (rcd->rcvhdrq) {
1128 		dma_free_coherent(&dd->pcidev->dev, rcvhdrq_size(rcd),
1129 				  rcd->rcvhdrq, rcd->rcvhdrq_dma);
1130 		rcd->rcvhdrq = NULL;
1131 		if (rcd->rcvhdrtail_kvaddr) {
1132 			dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
1133 					  (void *)rcd->rcvhdrtail_kvaddr,
1134 					  rcd->rcvhdrqtailaddr_dma);
1135 			rcd->rcvhdrtail_kvaddr = NULL;
1136 		}
1137 	}
1138 
1139 	/* all the RcvArray entries should have been cleared by now */
1140 	kfree(rcd->egrbufs.rcvtids);
1141 	rcd->egrbufs.rcvtids = NULL;
1142 
1143 	for (e = 0; e < rcd->egrbufs.alloced; e++) {
1144 		if (rcd->egrbufs.buffers[e].dma)
1145 			dma_free_coherent(&dd->pcidev->dev,
1146 					  rcd->egrbufs.buffers[e].len,
1147 					  rcd->egrbufs.buffers[e].addr,
1148 					  rcd->egrbufs.buffers[e].dma);
1149 	}
1150 	kfree(rcd->egrbufs.buffers);
1151 	rcd->egrbufs.alloced = 0;
1152 	rcd->egrbufs.buffers = NULL;
1153 
1154 	sc_free(rcd->sc);
1155 	rcd->sc = NULL;
1156 
1157 	vfree(rcd->subctxt_uregbase);
1158 	vfree(rcd->subctxt_rcvegrbuf);
1159 	vfree(rcd->subctxt_rcvhdr_base);
1160 	kfree(rcd->opstats);
1161 
1162 	rcd->subctxt_uregbase = NULL;
1163 	rcd->subctxt_rcvegrbuf = NULL;
1164 	rcd->subctxt_rcvhdr_base = NULL;
1165 	rcd->opstats = NULL;
1166 }
1167 
1168 /*
1169  * Release our hold on the shared asic data.  If we are the last one,
1170  * return the structure to be finalized outside the lock.  Must be
1171  * holding hfi1_devs_lock.
1172  */
1173 static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd)
1174 {
1175 	struct hfi1_asic_data *ad;
1176 	int other;
1177 
1178 	if (!dd->asic_data)
1179 		return NULL;
1180 	dd->asic_data->dds[dd->hfi1_id] = NULL;
1181 	other = dd->hfi1_id ? 0 : 1;
1182 	ad = dd->asic_data;
1183 	dd->asic_data = NULL;
1184 	/* return NULL if the other dd still has a link */
1185 	return ad->dds[other] ? NULL : ad;
1186 }
1187 
1188 static void finalize_asic_data(struct hfi1_devdata *dd,
1189 			       struct hfi1_asic_data *ad)
1190 {
1191 	clean_up_i2c(dd, ad);
1192 	kfree(ad);
1193 }
1194 
1195 /**
1196  * hfi1_clean_devdata - cleans up per-unit data structure
1197  * @dd: pointer to a valid devdata structure
1198  *
1199  * It cleans up all data structures set up by
1200  * by hfi1_alloc_devdata().
1201  */
1202 static void hfi1_clean_devdata(struct hfi1_devdata *dd)
1203 {
1204 	struct hfi1_asic_data *ad;
1205 	unsigned long flags;
1206 
1207 	spin_lock_irqsave(&hfi1_devs_lock, flags);
1208 	if (!list_empty(&dd->list)) {
1209 		idr_remove(&hfi1_unit_table, dd->unit);
1210 		list_del_init(&dd->list);
1211 	}
1212 	ad = release_asic_data(dd);
1213 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1214 
1215 	finalize_asic_data(dd, ad);
1216 	free_platform_config(dd);
1217 	rcu_barrier(); /* wait for rcu callbacks to complete */
1218 	free_percpu(dd->int_counter);
1219 	free_percpu(dd->rcv_limit);
1220 	free_percpu(dd->send_schedule);
1221 	free_percpu(dd->tx_opstats);
1222 	dd->int_counter   = NULL;
1223 	dd->rcv_limit     = NULL;
1224 	dd->send_schedule = NULL;
1225 	dd->tx_opstats    = NULL;
1226 	kfree(dd->comp_vect);
1227 	dd->comp_vect = NULL;
1228 	sdma_clean(dd, dd->num_sdma);
1229 	rvt_dealloc_device(&dd->verbs_dev.rdi);
1230 }
1231 
1232 static void __hfi1_free_devdata(struct kobject *kobj)
1233 {
1234 	struct hfi1_devdata *dd =
1235 		container_of(kobj, struct hfi1_devdata, kobj);
1236 
1237 	hfi1_clean_devdata(dd);
1238 }
1239 
1240 static struct kobj_type hfi1_devdata_type = {
1241 	.release = __hfi1_free_devdata,
1242 };
1243 
1244 void hfi1_free_devdata(struct hfi1_devdata *dd)
1245 {
1246 	kobject_put(&dd->kobj);
1247 }
1248 
1249 /*
1250  * Allocate our primary per-unit data structure.  Must be done via verbs
1251  * allocator, because the verbs cleanup process both does cleanup and
1252  * free of the data structure.
1253  * "extra" is for chip-specific data.
1254  *
1255  * Use the idr mechanism to get a unit number for this unit.
1256  */
1257 struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev, size_t extra)
1258 {
1259 	unsigned long flags;
1260 	struct hfi1_devdata *dd;
1261 	int ret, nports;
1262 
1263 	/* extra is * number of ports */
1264 	nports = extra / sizeof(struct hfi1_pportdata);
1265 
1266 	dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra,
1267 						     nports);
1268 	if (!dd)
1269 		return ERR_PTR(-ENOMEM);
1270 	dd->num_pports = nports;
1271 	dd->pport = (struct hfi1_pportdata *)(dd + 1);
1272 	dd->pcidev = pdev;
1273 	pci_set_drvdata(pdev, dd);
1274 
1275 	INIT_LIST_HEAD(&dd->list);
1276 	idr_preload(GFP_KERNEL);
1277 	spin_lock_irqsave(&hfi1_devs_lock, flags);
1278 
1279 	ret = idr_alloc(&hfi1_unit_table, dd, 0, 0, GFP_NOWAIT);
1280 	if (ret >= 0) {
1281 		dd->unit = ret;
1282 		list_add(&dd->list, &hfi1_dev_list);
1283 	}
1284 	dd->node = -1;
1285 
1286 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1287 	idr_preload_end();
1288 
1289 	if (ret < 0) {
1290 		hfi1_early_err(&pdev->dev,
1291 			       "Could not allocate unit ID: error %d\n", -ret);
1292 		goto bail;
1293 	}
1294 	rvt_set_ibdev_name(&dd->verbs_dev.rdi, "%s_%d", class_name(), dd->unit);
1295 
1296 	/*
1297 	 * Initialize all locks for the device. This needs to be as early as
1298 	 * possible so locks are usable.
1299 	 */
1300 	spin_lock_init(&dd->sc_lock);
1301 	spin_lock_init(&dd->sendctrl_lock);
1302 	spin_lock_init(&dd->rcvctrl_lock);
1303 	spin_lock_init(&dd->uctxt_lock);
1304 	spin_lock_init(&dd->hfi1_diag_trans_lock);
1305 	spin_lock_init(&dd->sc_init_lock);
1306 	spin_lock_init(&dd->dc8051_memlock);
1307 	seqlock_init(&dd->sc2vl_lock);
1308 	spin_lock_init(&dd->sde_map_lock);
1309 	spin_lock_init(&dd->pio_map_lock);
1310 	mutex_init(&dd->dc8051_lock);
1311 	init_waitqueue_head(&dd->event_queue);
1312 
1313 	dd->int_counter = alloc_percpu(u64);
1314 	if (!dd->int_counter) {
1315 		ret = -ENOMEM;
1316 		goto bail;
1317 	}
1318 
1319 	dd->rcv_limit = alloc_percpu(u64);
1320 	if (!dd->rcv_limit) {
1321 		ret = -ENOMEM;
1322 		goto bail;
1323 	}
1324 
1325 	dd->send_schedule = alloc_percpu(u64);
1326 	if (!dd->send_schedule) {
1327 		ret = -ENOMEM;
1328 		goto bail;
1329 	}
1330 
1331 	dd->tx_opstats = alloc_percpu(struct hfi1_opcode_stats_perctx);
1332 	if (!dd->tx_opstats) {
1333 		ret = -ENOMEM;
1334 		goto bail;
1335 	}
1336 
1337 	dd->comp_vect = kzalloc(sizeof(*dd->comp_vect), GFP_KERNEL);
1338 	if (!dd->comp_vect) {
1339 		ret = -ENOMEM;
1340 		goto bail;
1341 	}
1342 
1343 	kobject_init(&dd->kobj, &hfi1_devdata_type);
1344 	return dd;
1345 
1346 bail:
1347 	hfi1_clean_devdata(dd);
1348 	return ERR_PTR(ret);
1349 }
1350 
1351 /*
1352  * Called from freeze mode handlers, and from PCI error
1353  * reporting code.  Should be paranoid about state of
1354  * system and data structures.
1355  */
1356 void hfi1_disable_after_error(struct hfi1_devdata *dd)
1357 {
1358 	if (dd->flags & HFI1_INITTED) {
1359 		u32 pidx;
1360 
1361 		dd->flags &= ~HFI1_INITTED;
1362 		if (dd->pport)
1363 			for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1364 				struct hfi1_pportdata *ppd;
1365 
1366 				ppd = dd->pport + pidx;
1367 				if (dd->flags & HFI1_PRESENT)
1368 					set_link_state(ppd, HLS_DN_DISABLE);
1369 
1370 				if (ppd->statusp)
1371 					*ppd->statusp &= ~HFI1_STATUS_IB_READY;
1372 			}
1373 	}
1374 
1375 	/*
1376 	 * Mark as having had an error for driver, and also
1377 	 * for /sys and status word mapped to user programs.
1378 	 * This marks unit as not usable, until reset.
1379 	 */
1380 	if (dd->status)
1381 		dd->status->dev |= HFI1_STATUS_HWERROR;
1382 }
1383 
1384 static void remove_one(struct pci_dev *);
1385 static int init_one(struct pci_dev *, const struct pci_device_id *);
1386 static void shutdown_one(struct pci_dev *);
1387 
1388 #define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: "
1389 #define PFX DRIVER_NAME ": "
1390 
1391 const struct pci_device_id hfi1_pci_tbl[] = {
1392 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
1393 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
1394 	{ 0, }
1395 };
1396 
1397 MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);
1398 
1399 static struct pci_driver hfi1_pci_driver = {
1400 	.name = DRIVER_NAME,
1401 	.probe = init_one,
1402 	.remove = remove_one,
1403 	.shutdown = shutdown_one,
1404 	.id_table = hfi1_pci_tbl,
1405 	.err_handler = &hfi1_pci_err_handler,
1406 };
1407 
1408 static void __init compute_krcvqs(void)
1409 {
1410 	int i;
1411 
1412 	for (i = 0; i < krcvqsset; i++)
1413 		n_krcvqs += krcvqs[i];
1414 }
1415 
1416 /*
1417  * Do all the generic driver unit- and chip-independent memory
1418  * allocation and initialization.
1419  */
1420 static int __init hfi1_mod_init(void)
1421 {
1422 	int ret;
1423 
1424 	ret = dev_init();
1425 	if (ret)
1426 		goto bail;
1427 
1428 	ret = node_affinity_init();
1429 	if (ret)
1430 		goto bail;
1431 
1432 	/* validate max MTU before any devices start */
1433 	if (!valid_opa_max_mtu(hfi1_max_mtu)) {
1434 		pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
1435 		       hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
1436 		hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
1437 	}
1438 	/* valid CUs run from 1-128 in powers of 2 */
1439 	if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu))
1440 		hfi1_cu = 1;
1441 	/* valid credit return threshold is 0-100, variable is unsigned */
1442 	if (user_credit_return_threshold > 100)
1443 		user_credit_return_threshold = 100;
1444 
1445 	compute_krcvqs();
1446 	/*
1447 	 * sanitize receive interrupt count, time must wait until after
1448 	 * the hardware type is known
1449 	 */
1450 	if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
1451 		rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
1452 	/* reject invalid combinations */
1453 	if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
1454 		pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
1455 		rcv_intr_count = 1;
1456 	}
1457 	if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
1458 		/*
1459 		 * Avoid indefinite packet delivery by requiring a timeout
1460 		 * if count is > 1.
1461 		 */
1462 		pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
1463 		rcv_intr_timeout = 1;
1464 	}
1465 	if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
1466 		/*
1467 		 * The dynamic algorithm expects a non-zero timeout
1468 		 * and a count > 1.
1469 		 */
1470 		pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
1471 		rcv_intr_dynamic = 0;
1472 	}
1473 
1474 	/* sanitize link CRC options */
1475 	link_crc_mask &= SUPPORTED_CRCS;
1476 
1477 	/*
1478 	 * These must be called before the driver is registered with
1479 	 * the PCI subsystem.
1480 	 */
1481 	idr_init(&hfi1_unit_table);
1482 
1483 	hfi1_dbg_init();
1484 	ret = hfi1_wss_init();
1485 	if (ret < 0)
1486 		goto bail_wss;
1487 	ret = pci_register_driver(&hfi1_pci_driver);
1488 	if (ret < 0) {
1489 		pr_err("Unable to register driver: error %d\n", -ret);
1490 		goto bail_dev;
1491 	}
1492 	goto bail; /* all OK */
1493 
1494 bail_dev:
1495 	hfi1_wss_exit();
1496 bail_wss:
1497 	hfi1_dbg_exit();
1498 	idr_destroy(&hfi1_unit_table);
1499 	dev_cleanup();
1500 bail:
1501 	return ret;
1502 }
1503 
1504 module_init(hfi1_mod_init);
1505 
1506 /*
1507  * Do the non-unit driver cleanup, memory free, etc. at unload.
1508  */
1509 static void __exit hfi1_mod_cleanup(void)
1510 {
1511 	pci_unregister_driver(&hfi1_pci_driver);
1512 	node_affinity_destroy_all();
1513 	hfi1_wss_exit();
1514 	hfi1_dbg_exit();
1515 
1516 	idr_destroy(&hfi1_unit_table);
1517 	dispose_firmware();	/* asymmetric with obtain_firmware() */
1518 	dev_cleanup();
1519 }
1520 
1521 module_exit(hfi1_mod_cleanup);
1522 
1523 /* this can only be called after a successful initialization */
1524 static void cleanup_device_data(struct hfi1_devdata *dd)
1525 {
1526 	int ctxt;
1527 	int pidx;
1528 
1529 	/* users can't do anything more with chip */
1530 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1531 		struct hfi1_pportdata *ppd = &dd->pport[pidx];
1532 		struct cc_state *cc_state;
1533 		int i;
1534 
1535 		if (ppd->statusp)
1536 			*ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;
1537 
1538 		for (i = 0; i < OPA_MAX_SLS; i++)
1539 			hrtimer_cancel(&ppd->cca_timer[i].hrtimer);
1540 
1541 		spin_lock(&ppd->cc_state_lock);
1542 		cc_state = get_cc_state_protected(ppd);
1543 		RCU_INIT_POINTER(ppd->cc_state, NULL);
1544 		spin_unlock(&ppd->cc_state_lock);
1545 
1546 		if (cc_state)
1547 			kfree_rcu(cc_state, rcu);
1548 	}
1549 
1550 	free_credit_return(dd);
1551 
1552 	if (dd->rcvhdrtail_dummy_kvaddr) {
1553 		dma_free_coherent(&dd->pcidev->dev, sizeof(u64),
1554 				  (void *)dd->rcvhdrtail_dummy_kvaddr,
1555 				  dd->rcvhdrtail_dummy_dma);
1556 		dd->rcvhdrtail_dummy_kvaddr = NULL;
1557 	}
1558 
1559 	/*
1560 	 * Free any resources still in use (usually just kernel contexts)
1561 	 * at unload; we do for ctxtcnt, because that's what we allocate.
1562 	 */
1563 	for (ctxt = 0; dd->rcd && ctxt < dd->num_rcv_contexts; ctxt++) {
1564 		struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
1565 
1566 		if (rcd) {
1567 			hfi1_clear_tids(rcd);
1568 			hfi1_free_ctxt(rcd);
1569 		}
1570 	}
1571 
1572 	kfree(dd->rcd);
1573 	dd->rcd = NULL;
1574 
1575 	free_pio_map(dd);
1576 	/* must follow rcv context free - need to remove rcv's hooks */
1577 	for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
1578 		sc_free(dd->send_contexts[ctxt].sc);
1579 	dd->num_send_contexts = 0;
1580 	kfree(dd->send_contexts);
1581 	dd->send_contexts = NULL;
1582 	kfree(dd->hw_to_sw);
1583 	dd->hw_to_sw = NULL;
1584 	kfree(dd->boardname);
1585 	vfree(dd->events);
1586 	vfree(dd->status);
1587 }
1588 
1589 /*
1590  * Clean up on unit shutdown, or error during unit load after
1591  * successful initialization.
1592  */
1593 static void postinit_cleanup(struct hfi1_devdata *dd)
1594 {
1595 	hfi1_start_cleanup(dd);
1596 	hfi1_comp_vectors_clean_up(dd);
1597 	hfi1_dev_affinity_clean_up(dd);
1598 
1599 	hfi1_pcie_ddcleanup(dd);
1600 	hfi1_pcie_cleanup(dd->pcidev);
1601 
1602 	cleanup_device_data(dd);
1603 
1604 	hfi1_free_devdata(dd);
1605 }
1606 
1607 static int init_validate_rcvhdrcnt(struct device *dev, uint thecnt)
1608 {
1609 	if (thecnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) {
1610 		hfi1_early_err(dev, "Receive header queue count too small\n");
1611 		return -EINVAL;
1612 	}
1613 
1614 	if (thecnt > HFI1_MAX_HDRQ_EGRBUF_CNT) {
1615 		hfi1_early_err(dev,
1616 			       "Receive header queue count cannot be greater than %u\n",
1617 			       HFI1_MAX_HDRQ_EGRBUF_CNT);
1618 		return -EINVAL;
1619 	}
1620 
1621 	if (thecnt % HDRQ_INCREMENT) {
1622 		hfi1_early_err(dev, "Receive header queue count %d must be divisible by %lu\n",
1623 			       thecnt, HDRQ_INCREMENT);
1624 		return -EINVAL;
1625 	}
1626 
1627 	return 0;
1628 }
1629 
1630 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1631 {
1632 	int ret = 0, j, pidx, initfail;
1633 	struct hfi1_devdata *dd;
1634 	struct hfi1_pportdata *ppd;
1635 
1636 	/* First, lock the non-writable module parameters */
1637 	HFI1_CAP_LOCK();
1638 
1639 	/* Validate dev ids */
1640 	if (!(ent->device == PCI_DEVICE_ID_INTEL0 ||
1641 	      ent->device == PCI_DEVICE_ID_INTEL1)) {
1642 		hfi1_early_err(&pdev->dev,
1643 			       "Failing on unknown Intel deviceid 0x%x\n",
1644 			       ent->device);
1645 		ret = -ENODEV;
1646 		goto bail;
1647 	}
1648 
1649 	/* Validate some global module parameters */
1650 	ret = init_validate_rcvhdrcnt(&pdev->dev, rcvhdrcnt);
1651 	if (ret)
1652 		goto bail;
1653 
1654 	/* use the encoding function as a sanitization check */
1655 	if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) {
1656 		hfi1_early_err(&pdev->dev, "Invalid HdrQ Entry size %u\n",
1657 			       hfi1_hdrq_entsize);
1658 		ret = -EINVAL;
1659 		goto bail;
1660 	}
1661 
1662 	/* The receive eager buffer size must be set before the receive
1663 	 * contexts are created.
1664 	 *
1665 	 * Set the eager buffer size.  Validate that it falls in a range
1666 	 * allowed by the hardware - all powers of 2 between the min and
1667 	 * max.  The maximum valid MTU is within the eager buffer range
1668 	 * so we do not need to cap the max_mtu by an eager buffer size
1669 	 * setting.
1670 	 */
1671 	if (eager_buffer_size) {
1672 		if (!is_power_of_2(eager_buffer_size))
1673 			eager_buffer_size =
1674 				roundup_pow_of_two(eager_buffer_size);
1675 		eager_buffer_size =
1676 			clamp_val(eager_buffer_size,
1677 				  MIN_EAGER_BUFFER * 8,
1678 				  MAX_EAGER_BUFFER_TOTAL);
1679 		hfi1_early_info(&pdev->dev, "Eager buffer size %u\n",
1680 				eager_buffer_size);
1681 	} else {
1682 		hfi1_early_err(&pdev->dev, "Invalid Eager buffer size of 0\n");
1683 		ret = -EINVAL;
1684 		goto bail;
1685 	}
1686 
1687 	/* restrict value of hfi1_rcvarr_split */
1688 	hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);
1689 
1690 	ret = hfi1_pcie_init(pdev, ent);
1691 	if (ret)
1692 		goto bail;
1693 
1694 	/*
1695 	 * Do device-specific initialization, function table setup, dd
1696 	 * allocation, etc.
1697 	 */
1698 	dd = hfi1_init_dd(pdev, ent);
1699 
1700 	if (IS_ERR(dd)) {
1701 		ret = PTR_ERR(dd);
1702 		goto clean_bail; /* error already printed */
1703 	}
1704 
1705 	ret = create_workqueues(dd);
1706 	if (ret)
1707 		goto clean_bail;
1708 
1709 	/* do the generic initialization */
1710 	initfail = hfi1_init(dd, 0);
1711 
1712 	/* setup vnic */
1713 	hfi1_vnic_setup(dd);
1714 
1715 	ret = hfi1_register_ib_device(dd);
1716 
1717 	/*
1718 	 * Now ready for use.  this should be cleared whenever we
1719 	 * detect a reset, or initiate one.  If earlier failure,
1720 	 * we still create devices, so diags, etc. can be used
1721 	 * to determine cause of problem.
1722 	 */
1723 	if (!initfail && !ret) {
1724 		dd->flags |= HFI1_INITTED;
1725 		/* create debufs files after init and ib register */
1726 		hfi1_dbg_ibdev_init(&dd->verbs_dev);
1727 	}
1728 
1729 	j = hfi1_device_create(dd);
1730 	if (j)
1731 		dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
1732 
1733 	if (initfail || ret) {
1734 		hfi1_clean_up_interrupts(dd);
1735 		stop_timers(dd);
1736 		flush_workqueue(ib_wq);
1737 		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1738 			hfi1_quiet_serdes(dd->pport + pidx);
1739 			ppd = dd->pport + pidx;
1740 			if (ppd->hfi1_wq) {
1741 				destroy_workqueue(ppd->hfi1_wq);
1742 				ppd->hfi1_wq = NULL;
1743 			}
1744 			if (ppd->link_wq) {
1745 				destroy_workqueue(ppd->link_wq);
1746 				ppd->link_wq = NULL;
1747 			}
1748 		}
1749 		if (!j)
1750 			hfi1_device_remove(dd);
1751 		if (!ret)
1752 			hfi1_unregister_ib_device(dd);
1753 		hfi1_vnic_cleanup(dd);
1754 		postinit_cleanup(dd);
1755 		if (initfail)
1756 			ret = initfail;
1757 		goto bail;	/* everything already cleaned */
1758 	}
1759 
1760 	sdma_start(dd);
1761 
1762 	return 0;
1763 
1764 clean_bail:
1765 	hfi1_pcie_cleanup(pdev);
1766 bail:
1767 	return ret;
1768 }
1769 
1770 static void wait_for_clients(struct hfi1_devdata *dd)
1771 {
1772 	/*
1773 	 * Remove the device init value and complete the device if there is
1774 	 * no clients or wait for active clients to finish.
1775 	 */
1776 	if (atomic_dec_and_test(&dd->user_refcount))
1777 		complete(&dd->user_comp);
1778 
1779 	wait_for_completion(&dd->user_comp);
1780 }
1781 
1782 static void remove_one(struct pci_dev *pdev)
1783 {
1784 	struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1785 
1786 	/* close debugfs files before ib unregister */
1787 	hfi1_dbg_ibdev_exit(&dd->verbs_dev);
1788 
1789 	/* remove the /dev hfi1 interface */
1790 	hfi1_device_remove(dd);
1791 
1792 	/* wait for existing user space clients to finish */
1793 	wait_for_clients(dd);
1794 
1795 	/* unregister from IB core */
1796 	hfi1_unregister_ib_device(dd);
1797 
1798 	/* cleanup vnic */
1799 	hfi1_vnic_cleanup(dd);
1800 
1801 	/*
1802 	 * Disable the IB link, disable interrupts on the device,
1803 	 * clear dma engines, etc.
1804 	 */
1805 	shutdown_device(dd);
1806 
1807 	stop_timers(dd);
1808 
1809 	/* wait until all of our (qsfp) queue_work() calls complete */
1810 	flush_workqueue(ib_wq);
1811 
1812 	postinit_cleanup(dd);
1813 }
1814 
1815 static void shutdown_one(struct pci_dev *pdev)
1816 {
1817 	struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1818 
1819 	shutdown_device(dd);
1820 }
1821 
1822 /**
1823  * hfi1_create_rcvhdrq - create a receive header queue
1824  * @dd: the hfi1_ib device
1825  * @rcd: the context data
1826  *
1827  * This must be contiguous memory (from an i/o perspective), and must be
1828  * DMA'able (which means for some systems, it will go through an IOMMU,
1829  * or be forced into a low address range).
1830  */
1831 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1832 {
1833 	unsigned amt;
1834 	u64 reg;
1835 
1836 	if (!rcd->rcvhdrq) {
1837 		gfp_t gfp_flags;
1838 
1839 		amt = rcvhdrq_size(rcd);
1840 
1841 		if (rcd->ctxt < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
1842 			gfp_flags = GFP_KERNEL;
1843 		else
1844 			gfp_flags = GFP_USER;
1845 		rcd->rcvhdrq = dma_zalloc_coherent(
1846 			&dd->pcidev->dev, amt, &rcd->rcvhdrq_dma,
1847 			gfp_flags | __GFP_COMP);
1848 
1849 		if (!rcd->rcvhdrq) {
1850 			dd_dev_err(dd,
1851 				   "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
1852 				   amt, rcd->ctxt);
1853 			goto bail;
1854 		}
1855 
1856 		if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ||
1857 		    HFI1_CAP_UGET_MASK(rcd->flags, DMA_RTAIL)) {
1858 			rcd->rcvhdrtail_kvaddr = dma_zalloc_coherent(
1859 				&dd->pcidev->dev, PAGE_SIZE,
1860 				&rcd->rcvhdrqtailaddr_dma, gfp_flags);
1861 			if (!rcd->rcvhdrtail_kvaddr)
1862 				goto bail_free;
1863 		}
1864 	}
1865 	/*
1866 	 * These values are per-context:
1867 	 *	RcvHdrCnt
1868 	 *	RcvHdrEntSize
1869 	 *	RcvHdrSize
1870 	 */
1871 	reg = ((u64)(rcd->rcvhdrq_cnt >> HDRQ_SIZE_SHIFT)
1872 			& RCV_HDR_CNT_CNT_MASK)
1873 		<< RCV_HDR_CNT_CNT_SHIFT;
1874 	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_CNT, reg);
1875 	reg = (encode_rcv_header_entry_size(rcd->rcvhdrqentsize)
1876 			& RCV_HDR_ENT_SIZE_ENT_SIZE_MASK)
1877 		<< RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT;
1878 	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_ENT_SIZE, reg);
1879 	reg = ((u64)DEFAULT_RCVHDRSIZE & RCV_HDR_SIZE_HDR_SIZE_MASK)
1880 		<< RCV_HDR_SIZE_HDR_SIZE_SHIFT;
1881 	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_SIZE, reg);
1882 
1883 	/*
1884 	 * Program dummy tail address for every receive context
1885 	 * before enabling any receive context
1886 	 */
1887 	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_TAIL_ADDR,
1888 			dd->rcvhdrtail_dummy_dma);
1889 
1890 	return 0;
1891 
1892 bail_free:
1893 	dd_dev_err(dd,
1894 		   "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
1895 		   rcd->ctxt);
1896 	dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
1897 			  rcd->rcvhdrq_dma);
1898 	rcd->rcvhdrq = NULL;
1899 bail:
1900 	return -ENOMEM;
1901 }
1902 
1903 /**
1904  * allocate eager buffers, both kernel and user contexts.
1905  * @rcd: the context we are setting up.
1906  *
1907  * Allocate the eager TID buffers and program them into hip.
1908  * They are no longer completely contiguous, we do multiple allocation
1909  * calls.  Otherwise we get the OOM code involved, by asking for too
1910  * much per call, with disastrous results on some kernels.
1911  */
1912 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
1913 {
1914 	struct hfi1_devdata *dd = rcd->dd;
1915 	u32 max_entries, egrtop, alloced_bytes = 0;
1916 	gfp_t gfp_flags;
1917 	u16 order, idx = 0;
1918 	int ret = 0;
1919 	u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);
1920 
1921 	/*
1922 	 * GFP_USER, but without GFP_FS, so buffer cache can be
1923 	 * coalesced (we hope); otherwise, even at order 4,
1924 	 * heavy filesystem activity makes these fail, and we can
1925 	 * use compound pages.
1926 	 */
1927 	gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP;
1928 
1929 	/*
1930 	 * The minimum size of the eager buffers is a groups of MTU-sized
1931 	 * buffers.
1932 	 * The global eager_buffer_size parameter is checked against the
1933 	 * theoretical lower limit of the value. Here, we check against the
1934 	 * MTU.
1935 	 */
1936 	if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
1937 		rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
1938 	/*
1939 	 * If using one-pkt-per-egr-buffer, lower the eager buffer
1940 	 * size to the max MTU (page-aligned).
1941 	 */
1942 	if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
1943 		rcd->egrbufs.rcvtid_size = round_mtu;
1944 
1945 	/*
1946 	 * Eager buffers sizes of 1MB or less require smaller TID sizes
1947 	 * to satisfy the "multiple of 8 RcvArray entries" requirement.
1948 	 */
1949 	if (rcd->egrbufs.size <= (1 << 20))
1950 		rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
1951 			rounddown_pow_of_two(rcd->egrbufs.size / 8));
1952 
1953 	while (alloced_bytes < rcd->egrbufs.size &&
1954 	       rcd->egrbufs.alloced < rcd->egrbufs.count) {
1955 		rcd->egrbufs.buffers[idx].addr =
1956 			dma_zalloc_coherent(&dd->pcidev->dev,
1957 					    rcd->egrbufs.rcvtid_size,
1958 					    &rcd->egrbufs.buffers[idx].dma,
1959 					    gfp_flags);
1960 		if (rcd->egrbufs.buffers[idx].addr) {
1961 			rcd->egrbufs.buffers[idx].len =
1962 				rcd->egrbufs.rcvtid_size;
1963 			rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
1964 				rcd->egrbufs.buffers[idx].addr;
1965 			rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma =
1966 				rcd->egrbufs.buffers[idx].dma;
1967 			rcd->egrbufs.alloced++;
1968 			alloced_bytes += rcd->egrbufs.rcvtid_size;
1969 			idx++;
1970 		} else {
1971 			u32 new_size, i, j;
1972 			u64 offset = 0;
1973 
1974 			/*
1975 			 * Fail the eager buffer allocation if:
1976 			 *   - we are already using the lowest acceptable size
1977 			 *   - we are using one-pkt-per-egr-buffer (this implies
1978 			 *     that we are accepting only one size)
1979 			 */
1980 			if (rcd->egrbufs.rcvtid_size == round_mtu ||
1981 			    !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
1982 				dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
1983 					   rcd->ctxt);
1984 				ret = -ENOMEM;
1985 				goto bail_rcvegrbuf_phys;
1986 			}
1987 
1988 			new_size = rcd->egrbufs.rcvtid_size / 2;
1989 
1990 			/*
1991 			 * If the first attempt to allocate memory failed, don't
1992 			 * fail everything but continue with the next lower
1993 			 * size.
1994 			 */
1995 			if (idx == 0) {
1996 				rcd->egrbufs.rcvtid_size = new_size;
1997 				continue;
1998 			}
1999 
2000 			/*
2001 			 * Re-partition already allocated buffers to a smaller
2002 			 * size.
2003 			 */
2004 			rcd->egrbufs.alloced = 0;
2005 			for (i = 0, j = 0, offset = 0; j < idx; i++) {
2006 				if (i >= rcd->egrbufs.count)
2007 					break;
2008 				rcd->egrbufs.rcvtids[i].dma =
2009 					rcd->egrbufs.buffers[j].dma + offset;
2010 				rcd->egrbufs.rcvtids[i].addr =
2011 					rcd->egrbufs.buffers[j].addr + offset;
2012 				rcd->egrbufs.alloced++;
2013 				if ((rcd->egrbufs.buffers[j].dma + offset +
2014 				     new_size) ==
2015 				    (rcd->egrbufs.buffers[j].dma +
2016 				     rcd->egrbufs.buffers[j].len)) {
2017 					j++;
2018 					offset = 0;
2019 				} else {
2020 					offset += new_size;
2021 				}
2022 			}
2023 			rcd->egrbufs.rcvtid_size = new_size;
2024 		}
2025 	}
2026 	rcd->egrbufs.numbufs = idx;
2027 	rcd->egrbufs.size = alloced_bytes;
2028 
2029 	hfi1_cdbg(PROC,
2030 		  "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %zuKB\n",
2031 		  rcd->ctxt, rcd->egrbufs.alloced,
2032 		  rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024);
2033 
2034 	/*
2035 	 * Set the contexts rcv array head update threshold to the closest
2036 	 * power of 2 (so we can use a mask instead of modulo) below half
2037 	 * the allocated entries.
2038 	 */
2039 	rcd->egrbufs.threshold =
2040 		rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
2041 	/*
2042 	 * Compute the expected RcvArray entry base. This is done after
2043 	 * allocating the eager buffers in order to maximize the
2044 	 * expected RcvArray entries for the context.
2045 	 */
2046 	max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
2047 	egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
2048 	rcd->expected_count = max_entries - egrtop;
2049 	if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
2050 		rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;
2051 
2052 	rcd->expected_base = rcd->eager_base + egrtop;
2053 	hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n",
2054 		  rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
2055 		  rcd->eager_base, rcd->expected_base);
2056 
2057 	if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) {
2058 		hfi1_cdbg(PROC,
2059 			  "ctxt%u: current Eager buffer size is invalid %u\n",
2060 			  rcd->ctxt, rcd->egrbufs.rcvtid_size);
2061 		ret = -EINVAL;
2062 		goto bail_rcvegrbuf_phys;
2063 	}
2064 
2065 	for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
2066 		hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER,
2067 			     rcd->egrbufs.rcvtids[idx].dma, order);
2068 		cond_resched();
2069 	}
2070 
2071 	return 0;
2072 
2073 bail_rcvegrbuf_phys:
2074 	for (idx = 0; idx < rcd->egrbufs.alloced &&
2075 	     rcd->egrbufs.buffers[idx].addr;
2076 	     idx++) {
2077 		dma_free_coherent(&dd->pcidev->dev,
2078 				  rcd->egrbufs.buffers[idx].len,
2079 				  rcd->egrbufs.buffers[idx].addr,
2080 				  rcd->egrbufs.buffers[idx].dma);
2081 		rcd->egrbufs.buffers[idx].addr = NULL;
2082 		rcd->egrbufs.buffers[idx].dma = 0;
2083 		rcd->egrbufs.buffers[idx].len = 0;
2084 	}
2085 
2086 	return ret;
2087 }
2088