xref: /openbmc/linux/drivers/infiniband/hw/hfi1/init.c (revision de167752a889d19b9bb018f8eecbc1ebbfe07b2f)
1 /*
2  * Copyright(c) 2015 - 2018 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <linux/pci.h>
49 #include <linux/netdevice.h>
50 #include <linux/vmalloc.h>
51 #include <linux/delay.h>
52 #include <linux/idr.h>
53 #include <linux/module.h>
54 #include <linux/printk.h>
55 #include <linux/hrtimer.h>
56 #include <linux/bitmap.h>
57 #include <rdma/rdma_vt.h>
58 
59 #include "hfi.h"
60 #include "device.h"
61 #include "common.h"
62 #include "trace.h"
63 #include "mad.h"
64 #include "sdma.h"
65 #include "debugfs.h"
66 #include "verbs.h"
67 #include "aspm.h"
68 #include "affinity.h"
69 #include "vnic.h"
70 #include "exp_rcv.h"
71 
72 #undef pr_fmt
73 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
74 
75 #define HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES 5
76 /*
77  * min buffers we want to have per context, after driver
78  */
79 #define HFI1_MIN_USER_CTXT_BUFCNT 7
80 
81 #define HFI1_MIN_HDRQ_EGRBUF_CNT 2
82 #define HFI1_MAX_HDRQ_EGRBUF_CNT 16352
83 #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
84 #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */
85 
86 /*
87  * Number of user receive contexts we are configured to use (to allow for more
88  * pio buffers per ctxt, etc.)  Zero means use one user context per CPU.
89  */
90 int num_user_contexts = -1;
91 module_param_named(num_user_contexts, num_user_contexts, int, 0444);
92 MODULE_PARM_DESC(
93 	num_user_contexts, "Set max number of user contexts to use (default: -1 will use the real (non-HT) CPU count)");
94 
95 uint krcvqs[RXE_NUM_DATA_VL];
96 int krcvqsset;
97 module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO);
98 MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL");
99 
100 /* computed based on above array */
101 unsigned long n_krcvqs;
102 
103 static unsigned hfi1_rcvarr_split = 25;
104 module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
105 MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");
106 
107 static uint eager_buffer_size = (8 << 20); /* 8MB */
108 module_param(eager_buffer_size, uint, S_IRUGO);
109 MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 8MB");
110 
111 static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
112 module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
113 MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");
114 
115 static uint hfi1_hdrq_entsize = 32;
116 module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, 0444);
117 MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B, 32 - 128B (default)");
118 
119 unsigned int user_credit_return_threshold = 33;	/* default is 33% */
120 module_param(user_credit_return_threshold, uint, S_IRUGO);
121 MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");
122 
123 static inline u64 encode_rcv_header_entry_size(u16 size);
124 
125 static struct idr hfi1_unit_table;
126 
127 static int hfi1_create_kctxt(struct hfi1_devdata *dd,
128 			     struct hfi1_pportdata *ppd)
129 {
130 	struct hfi1_ctxtdata *rcd;
131 	int ret;
132 
133 	/* Control context has to be always 0 */
134 	BUILD_BUG_ON(HFI1_CTRL_CTXT != 0);
135 
136 	ret = hfi1_create_ctxtdata(ppd, dd->node, &rcd);
137 	if (ret < 0) {
138 		dd_dev_err(dd, "Kernel receive context allocation failed\n");
139 		return ret;
140 	}
141 
142 	/*
143 	 * Set up the kernel context flags here and now because they use
144 	 * default values for all receive side memories.  User contexts will
145 	 * be handled as they are created.
146 	 */
147 	rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
148 		HFI1_CAP_KGET(NODROP_RHQ_FULL) |
149 		HFI1_CAP_KGET(NODROP_EGR_FULL) |
150 		HFI1_CAP_KGET(DMA_RTAIL);
151 
152 	/* Control context must use DMA_RTAIL */
153 	if (rcd->ctxt == HFI1_CTRL_CTXT)
154 		rcd->flags |= HFI1_CAP_DMA_RTAIL;
155 	rcd->seq_cnt = 1;
156 
157 	rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node);
158 	if (!rcd->sc) {
159 		dd_dev_err(dd, "Kernel send context allocation failed\n");
160 		return -ENOMEM;
161 	}
162 	hfi1_init_ctxt(rcd->sc);
163 
164 	return 0;
165 }
166 
167 /*
168  * Create the receive context array and one or more kernel contexts
169  */
170 int hfi1_create_kctxts(struct hfi1_devdata *dd)
171 {
172 	u16 i;
173 	int ret;
174 
175 	dd->rcd = kcalloc_node(dd->num_rcv_contexts, sizeof(*dd->rcd),
176 			       GFP_KERNEL, dd->node);
177 	if (!dd->rcd)
178 		return -ENOMEM;
179 
180 	for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
181 		ret = hfi1_create_kctxt(dd, dd->pport);
182 		if (ret)
183 			goto bail;
184 	}
185 
186 	return 0;
187 bail:
188 	for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i)
189 		hfi1_free_ctxt(dd->rcd[i]);
190 
191 	/* All the contexts should be freed, free the array */
192 	kfree(dd->rcd);
193 	dd->rcd = NULL;
194 	return ret;
195 }
196 
197 /*
198  * Helper routines for the receive context reference count (rcd and uctxt).
199  */
200 static void hfi1_rcd_init(struct hfi1_ctxtdata *rcd)
201 {
202 	kref_init(&rcd->kref);
203 }
204 
205 /**
206  * hfi1_rcd_free - When reference is zero clean up.
207  * @kref: pointer to an initialized rcd data structure
208  *
209  */
210 static void hfi1_rcd_free(struct kref *kref)
211 {
212 	unsigned long flags;
213 	struct hfi1_ctxtdata *rcd =
214 		container_of(kref, struct hfi1_ctxtdata, kref);
215 
216 	hfi1_free_ctxtdata(rcd->dd, rcd);
217 
218 	spin_lock_irqsave(&rcd->dd->uctxt_lock, flags);
219 	rcd->dd->rcd[rcd->ctxt] = NULL;
220 	spin_unlock_irqrestore(&rcd->dd->uctxt_lock, flags);
221 
222 	kfree(rcd);
223 }
224 
225 /**
226  * hfi1_rcd_put - decrement reference for rcd
227  * @rcd: pointer to an initialized rcd data structure
228  *
229  * Use this to put a reference after the init.
230  */
231 int hfi1_rcd_put(struct hfi1_ctxtdata *rcd)
232 {
233 	if (rcd)
234 		return kref_put(&rcd->kref, hfi1_rcd_free);
235 
236 	return 0;
237 }
238 
239 /**
240  * hfi1_rcd_get - increment reference for rcd
241  * @rcd: pointer to an initialized rcd data structure
242  *
243  * Use this to get a reference after the init.
244  */
245 void hfi1_rcd_get(struct hfi1_ctxtdata *rcd)
246 {
247 	kref_get(&rcd->kref);
248 }
249 
250 /**
251  * allocate_rcd_index - allocate an rcd index from the rcd array
252  * @dd: pointer to a valid devdata structure
253  * @rcd: rcd data structure to assign
254  * @index: pointer to index that is allocated
255  *
256  * Find an empty index in the rcd array, and assign the given rcd to it.
257  * If the array is full, we are EBUSY.
258  *
259  */
260 static int allocate_rcd_index(struct hfi1_devdata *dd,
261 			      struct hfi1_ctxtdata *rcd, u16 *index)
262 {
263 	unsigned long flags;
264 	u16 ctxt;
265 
266 	spin_lock_irqsave(&dd->uctxt_lock, flags);
267 	for (ctxt = 0; ctxt < dd->num_rcv_contexts; ctxt++)
268 		if (!dd->rcd[ctxt])
269 			break;
270 
271 	if (ctxt < dd->num_rcv_contexts) {
272 		rcd->ctxt = ctxt;
273 		dd->rcd[ctxt] = rcd;
274 		hfi1_rcd_init(rcd);
275 	}
276 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
277 
278 	if (ctxt >= dd->num_rcv_contexts)
279 		return -EBUSY;
280 
281 	*index = ctxt;
282 
283 	return 0;
284 }
285 
286 /**
287  * hfi1_rcd_get_by_index_safe - validate the ctxt index before accessing the
288  * array
289  * @dd: pointer to a valid devdata structure
290  * @ctxt: the index of an possilbe rcd
291  *
292  * This is a wrapper for hfi1_rcd_get_by_index() to validate that the given
293  * ctxt index is valid.
294  *
295  * The caller is responsible for making the _put().
296  *
297  */
298 struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd,
299 						 u16 ctxt)
300 {
301 	if (ctxt < dd->num_rcv_contexts)
302 		return hfi1_rcd_get_by_index(dd, ctxt);
303 
304 	return NULL;
305 }
306 
307 /**
308  * hfi1_rcd_get_by_index
309  * @dd: pointer to a valid devdata structure
310  * @ctxt: the index of an possilbe rcd
311  *
312  * We need to protect access to the rcd array.  If access is needed to
313  * one or more index, get the protecting spinlock and then increment the
314  * kref.
315  *
316  * The caller is responsible for making the _put().
317  *
318  */
319 struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt)
320 {
321 	unsigned long flags;
322 	struct hfi1_ctxtdata *rcd = NULL;
323 
324 	spin_lock_irqsave(&dd->uctxt_lock, flags);
325 	if (dd->rcd[ctxt]) {
326 		rcd = dd->rcd[ctxt];
327 		hfi1_rcd_get(rcd);
328 	}
329 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
330 
331 	return rcd;
332 }
333 
334 /*
335  * Common code for user and kernel context create and setup.
336  * NOTE: the initial kref is done here (hf1_rcd_init()).
337  */
338 int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa,
339 			 struct hfi1_ctxtdata **context)
340 {
341 	struct hfi1_devdata *dd = ppd->dd;
342 	struct hfi1_ctxtdata *rcd;
343 	unsigned kctxt_ngroups = 0;
344 	u32 base;
345 
346 	if (dd->rcv_entries.nctxt_extra >
347 	    dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt)
348 		kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
349 			 (dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt));
350 	rcd = kzalloc_node(sizeof(*rcd), GFP_KERNEL, numa);
351 	if (rcd) {
352 		u32 rcvtids, max_entries;
353 		u16 ctxt;
354 		int ret;
355 
356 		ret = allocate_rcd_index(dd, rcd, &ctxt);
357 		if (ret) {
358 			*context = NULL;
359 			kfree(rcd);
360 			return ret;
361 		}
362 
363 		INIT_LIST_HEAD(&rcd->qp_wait_list);
364 		hfi1_exp_tid_group_init(rcd);
365 		rcd->ppd = ppd;
366 		rcd->dd = dd;
367 		__set_bit(0, rcd->in_use_ctxts);
368 		rcd->numa_id = numa;
369 		rcd->rcv_array_groups = dd->rcv_entries.ngroups;
370 
371 		mutex_init(&rcd->exp_mutex);
372 
373 		hfi1_cdbg(PROC, "setting up context %u\n", rcd->ctxt);
374 
375 		/*
376 		 * Calculate the context's RcvArray entry starting point.
377 		 * We do this here because we have to take into account all
378 		 * the RcvArray entries that previous context would have
379 		 * taken and we have to account for any extra groups assigned
380 		 * to the static (kernel) or dynamic (vnic/user) contexts.
381 		 */
382 		if (ctxt < dd->first_dyn_alloc_ctxt) {
383 			if (ctxt < kctxt_ngroups) {
384 				base = ctxt * (dd->rcv_entries.ngroups + 1);
385 				rcd->rcv_array_groups++;
386 			} else {
387 				base = kctxt_ngroups +
388 					(ctxt * dd->rcv_entries.ngroups);
389 			}
390 		} else {
391 			u16 ct = ctxt - dd->first_dyn_alloc_ctxt;
392 
393 			base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
394 				kctxt_ngroups);
395 			if (ct < dd->rcv_entries.nctxt_extra) {
396 				base += ct * (dd->rcv_entries.ngroups + 1);
397 				rcd->rcv_array_groups++;
398 			} else {
399 				base += dd->rcv_entries.nctxt_extra +
400 					(ct * dd->rcv_entries.ngroups);
401 			}
402 		}
403 		rcd->eager_base = base * dd->rcv_entries.group_size;
404 
405 		rcd->rcvhdrq_cnt = rcvhdrcnt;
406 		rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
407 		/*
408 		 * Simple Eager buffer allocation: we have already pre-allocated
409 		 * the number of RcvArray entry groups. Each ctxtdata structure
410 		 * holds the number of groups for that context.
411 		 *
412 		 * To follow CSR requirements and maintain cacheline alignment,
413 		 * make sure all sizes and bases are multiples of group_size.
414 		 *
415 		 * The expected entry count is what is left after assigning
416 		 * eager.
417 		 */
418 		max_entries = rcd->rcv_array_groups *
419 			dd->rcv_entries.group_size;
420 		rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
421 		rcd->egrbufs.count = round_down(rcvtids,
422 						dd->rcv_entries.group_size);
423 		if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
424 			dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
425 				   rcd->ctxt);
426 			rcd->egrbufs.count = MAX_EAGER_ENTRIES;
427 		}
428 		hfi1_cdbg(PROC,
429 			  "ctxt%u: max Eager buffer RcvArray entries: %u\n",
430 			  rcd->ctxt, rcd->egrbufs.count);
431 
432 		/*
433 		 * Allocate array that will hold the eager buffer accounting
434 		 * data.
435 		 * This will allocate the maximum possible buffer count based
436 		 * on the value of the RcvArray split parameter.
437 		 * The resulting value will be rounded down to the closest
438 		 * multiple of dd->rcv_entries.group_size.
439 		 */
440 		rcd->egrbufs.buffers =
441 			kcalloc_node(rcd->egrbufs.count,
442 				     sizeof(*rcd->egrbufs.buffers),
443 				     GFP_KERNEL, numa);
444 		if (!rcd->egrbufs.buffers)
445 			goto bail;
446 		rcd->egrbufs.rcvtids =
447 			kcalloc_node(rcd->egrbufs.count,
448 				     sizeof(*rcd->egrbufs.rcvtids),
449 				     GFP_KERNEL, numa);
450 		if (!rcd->egrbufs.rcvtids)
451 			goto bail;
452 		rcd->egrbufs.size = eager_buffer_size;
453 		/*
454 		 * The size of the buffers programmed into the RcvArray
455 		 * entries needs to be big enough to handle the highest
456 		 * MTU supported.
457 		 */
458 		if (rcd->egrbufs.size < hfi1_max_mtu) {
459 			rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu);
460 			hfi1_cdbg(PROC,
461 				  "ctxt%u: eager bufs size too small. Adjusting to %zu\n",
462 				    rcd->ctxt, rcd->egrbufs.size);
463 		}
464 		rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;
465 
466 		/* Applicable only for statically created kernel contexts */
467 		if (ctxt < dd->first_dyn_alloc_ctxt) {
468 			rcd->opstats = kzalloc_node(sizeof(*rcd->opstats),
469 						    GFP_KERNEL, numa);
470 			if (!rcd->opstats)
471 				goto bail;
472 		}
473 
474 		*context = rcd;
475 		return 0;
476 	}
477 
478 bail:
479 	*context = NULL;
480 	hfi1_free_ctxt(rcd);
481 	return -ENOMEM;
482 }
483 
484 /**
485  * hfi1_free_ctxt
486  * @rcd: pointer to an initialized rcd data structure
487  *
488  * This wrapper is the free function that matches hfi1_create_ctxtdata().
489  * When a context is done being used (kernel or user), this function is called
490  * for the "final" put to match the kref init from hf1i_create_ctxtdata().
491  * Other users of the context do a get/put sequence to make sure that the
492  * structure isn't removed while in use.
493  */
494 void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd)
495 {
496 	hfi1_rcd_put(rcd);
497 }
498 
499 /*
500  * Convert a receive header entry size that to the encoding used in the CSR.
501  *
502  * Return a zero if the given size is invalid.
503  */
504 static inline u64 encode_rcv_header_entry_size(u16 size)
505 {
506 	/* there are only 3 valid receive header entry sizes */
507 	if (size == 2)
508 		return 1;
509 	if (size == 16)
510 		return 2;
511 	else if (size == 32)
512 		return 4;
513 	return 0; /* invalid */
514 }
515 
516 /*
517  * Select the largest ccti value over all SLs to determine the intra-
518  * packet gap for the link.
519  *
520  * called with cca_timer_lock held (to protect access to cca_timer
521  * array), and rcu_read_lock() (to protect access to cc_state).
522  */
523 void set_link_ipg(struct hfi1_pportdata *ppd)
524 {
525 	struct hfi1_devdata *dd = ppd->dd;
526 	struct cc_state *cc_state;
527 	int i;
528 	u16 cce, ccti_limit, max_ccti = 0;
529 	u16 shift, mult;
530 	u64 src;
531 	u32 current_egress_rate; /* Mbits /sec */
532 	u32 max_pkt_time;
533 	/*
534 	 * max_pkt_time is the maximum packet egress time in units
535 	 * of the fabric clock period 1/(805 MHz).
536 	 */
537 
538 	cc_state = get_cc_state(ppd);
539 
540 	if (!cc_state)
541 		/*
542 		 * This should _never_ happen - rcu_read_lock() is held,
543 		 * and set_link_ipg() should not be called if cc_state
544 		 * is NULL.
545 		 */
546 		return;
547 
548 	for (i = 0; i < OPA_MAX_SLS; i++) {
549 		u16 ccti = ppd->cca_timer[i].ccti;
550 
551 		if (ccti > max_ccti)
552 			max_ccti = ccti;
553 	}
554 
555 	ccti_limit = cc_state->cct.ccti_limit;
556 	if (max_ccti > ccti_limit)
557 		max_ccti = ccti_limit;
558 
559 	cce = cc_state->cct.entries[max_ccti].entry;
560 	shift = (cce & 0xc000) >> 14;
561 	mult = (cce & 0x3fff);
562 
563 	current_egress_rate = active_egress_rate(ppd);
564 
565 	max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate);
566 
567 	src = (max_pkt_time >> shift) * mult;
568 
569 	src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
570 	src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;
571 
572 	write_csr(dd, SEND_STATIC_RATE_CONTROL, src);
573 }
574 
575 static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
576 {
577 	struct cca_timer *cca_timer;
578 	struct hfi1_pportdata *ppd;
579 	int sl;
580 	u16 ccti_timer, ccti_min;
581 	struct cc_state *cc_state;
582 	unsigned long flags;
583 	enum hrtimer_restart ret = HRTIMER_NORESTART;
584 
585 	cca_timer = container_of(t, struct cca_timer, hrtimer);
586 	ppd = cca_timer->ppd;
587 	sl = cca_timer->sl;
588 
589 	rcu_read_lock();
590 
591 	cc_state = get_cc_state(ppd);
592 
593 	if (!cc_state) {
594 		rcu_read_unlock();
595 		return HRTIMER_NORESTART;
596 	}
597 
598 	/*
599 	 * 1) decrement ccti for SL
600 	 * 2) calculate IPG for link (set_link_ipg())
601 	 * 3) restart timer, unless ccti is at min value
602 	 */
603 
604 	ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
605 	ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
606 
607 	spin_lock_irqsave(&ppd->cca_timer_lock, flags);
608 
609 	if (cca_timer->ccti > ccti_min) {
610 		cca_timer->ccti--;
611 		set_link_ipg(ppd);
612 	}
613 
614 	if (cca_timer->ccti > ccti_min) {
615 		unsigned long nsec = 1024 * ccti_timer;
616 		/* ccti_timer is in units of 1.024 usec */
617 		hrtimer_forward_now(t, ns_to_ktime(nsec));
618 		ret = HRTIMER_RESTART;
619 	}
620 
621 	spin_unlock_irqrestore(&ppd->cca_timer_lock, flags);
622 	rcu_read_unlock();
623 	return ret;
624 }
625 
626 /*
627  * Common code for initializing the physical port structure.
628  */
629 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
630 			 struct hfi1_devdata *dd, u8 hw_pidx, u8 port)
631 {
632 	int i;
633 	uint default_pkey_idx;
634 	struct cc_state *cc_state;
635 
636 	ppd->dd = dd;
637 	ppd->hw_pidx = hw_pidx;
638 	ppd->port = port; /* IB port number, not index */
639 	ppd->prev_link_width = LINK_WIDTH_DEFAULT;
640 	/*
641 	 * There are C_VL_COUNT number of PortVLXmitWait counters.
642 	 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
643 	 */
644 	for (i = 0; i < C_VL_COUNT + 1; i++) {
645 		ppd->port_vl_xmit_wait_last[i] = 0;
646 		ppd->vl_xmit_flit_cnt[i] = 0;
647 	}
648 
649 	default_pkey_idx = 1;
650 
651 	ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
652 	ppd->part_enforce |= HFI1_PART_ENFORCE_IN;
653 
654 	if (loopback) {
655 		hfi1_early_err(&pdev->dev,
656 			       "Faking data partition 0x8001 in idx %u\n",
657 			       !default_pkey_idx);
658 		ppd->pkeys[!default_pkey_idx] = 0x8001;
659 	}
660 
661 	INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
662 	INIT_WORK(&ppd->link_up_work, handle_link_up);
663 	INIT_WORK(&ppd->link_down_work, handle_link_down);
664 	INIT_WORK(&ppd->freeze_work, handle_freeze);
665 	INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
666 	INIT_WORK(&ppd->sma_message_work, handle_sma_message);
667 	INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
668 	INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link);
669 	INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work);
670 	INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event);
671 
672 	mutex_init(&ppd->hls_lock);
673 	spin_lock_init(&ppd->qsfp_info.qsfp_lock);
674 
675 	ppd->qsfp_info.ppd = ppd;
676 	ppd->sm_trap_qp = 0x0;
677 	ppd->sa_qp = 0x1;
678 
679 	ppd->hfi1_wq = NULL;
680 
681 	spin_lock_init(&ppd->cca_timer_lock);
682 
683 	for (i = 0; i < OPA_MAX_SLS; i++) {
684 		hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
685 			     HRTIMER_MODE_REL);
686 		ppd->cca_timer[i].ppd = ppd;
687 		ppd->cca_timer[i].sl = i;
688 		ppd->cca_timer[i].ccti = 0;
689 		ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
690 	}
691 
692 	ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;
693 
694 	spin_lock_init(&ppd->cc_state_lock);
695 	spin_lock_init(&ppd->cc_log_lock);
696 	cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL);
697 	RCU_INIT_POINTER(ppd->cc_state, cc_state);
698 	if (!cc_state)
699 		goto bail;
700 	return;
701 
702 bail:
703 
704 	hfi1_early_err(&pdev->dev,
705 		       "Congestion Control Agent disabled for port %d\n", port);
706 }
707 
708 /*
709  * Do initialization for device that is only needed on
710  * first detect, not on resets.
711  */
712 static int loadtime_init(struct hfi1_devdata *dd)
713 {
714 	return 0;
715 }
716 
717 /**
718  * init_after_reset - re-initialize after a reset
719  * @dd: the hfi1_ib device
720  *
721  * sanity check at least some of the values after reset, and
722  * ensure no receive or transmit (explicitly, in case reset
723  * failed
724  */
725 static int init_after_reset(struct hfi1_devdata *dd)
726 {
727 	int i;
728 	struct hfi1_ctxtdata *rcd;
729 	/*
730 	 * Ensure chip does no sends or receives, tail updates, or
731 	 * pioavail updates while we re-initialize.  This is mostly
732 	 * for the driver data structures, not chip registers.
733 	 */
734 	for (i = 0; i < dd->num_rcv_contexts; i++) {
735 		rcd = hfi1_rcd_get_by_index(dd, i);
736 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
737 			     HFI1_RCVCTRL_INTRAVAIL_DIS |
738 			     HFI1_RCVCTRL_TAILUPD_DIS, rcd);
739 		hfi1_rcd_put(rcd);
740 	}
741 	pio_send_control(dd, PSC_GLOBAL_DISABLE);
742 	for (i = 0; i < dd->num_send_contexts; i++)
743 		sc_disable(dd->send_contexts[i].sc);
744 
745 	return 0;
746 }
747 
748 static void enable_chip(struct hfi1_devdata *dd)
749 {
750 	struct hfi1_ctxtdata *rcd;
751 	u32 rcvmask;
752 	u16 i;
753 
754 	/* enable PIO send */
755 	pio_send_control(dd, PSC_GLOBAL_ENABLE);
756 
757 	/*
758 	 * Enable kernel ctxts' receive and receive interrupt.
759 	 * Other ctxts done as user opens and initializes them.
760 	 */
761 	for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
762 		rcd = hfi1_rcd_get_by_index(dd, i);
763 		if (!rcd)
764 			continue;
765 		rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
766 		rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
767 			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
768 		if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
769 			rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
770 		if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_RHQ_FULL))
771 			rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
772 		if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_EGR_FULL))
773 			rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
774 		hfi1_rcvctrl(dd, rcvmask, rcd);
775 		sc_enable(rcd->sc);
776 		hfi1_rcd_put(rcd);
777 	}
778 }
779 
780 /**
781  * create_workqueues - create per port workqueues
782  * @dd: the hfi1_ib device
783  */
784 static int create_workqueues(struct hfi1_devdata *dd)
785 {
786 	int pidx;
787 	struct hfi1_pportdata *ppd;
788 
789 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
790 		ppd = dd->pport + pidx;
791 		if (!ppd->hfi1_wq) {
792 			ppd->hfi1_wq =
793 				alloc_workqueue(
794 				    "hfi%d_%d",
795 				    WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE,
796 				    HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES,
797 				    dd->unit, pidx);
798 			if (!ppd->hfi1_wq)
799 				goto wq_error;
800 		}
801 		if (!ppd->link_wq) {
802 			/*
803 			 * Make the link workqueue single-threaded to enforce
804 			 * serialization.
805 			 */
806 			ppd->link_wq =
807 				alloc_workqueue(
808 				    "hfi_link_%d_%d",
809 				    WQ_SYSFS | WQ_MEM_RECLAIM | WQ_UNBOUND,
810 				    1, /* max_active */
811 				    dd->unit, pidx);
812 			if (!ppd->link_wq)
813 				goto wq_error;
814 		}
815 	}
816 	return 0;
817 wq_error:
818 	pr_err("alloc_workqueue failed for port %d\n", pidx + 1);
819 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
820 		ppd = dd->pport + pidx;
821 		if (ppd->hfi1_wq) {
822 			destroy_workqueue(ppd->hfi1_wq);
823 			ppd->hfi1_wq = NULL;
824 		}
825 		if (ppd->link_wq) {
826 			destroy_workqueue(ppd->link_wq);
827 			ppd->link_wq = NULL;
828 		}
829 	}
830 	return -ENOMEM;
831 }
832 
833 /**
834  * hfi1_init - do the actual initialization sequence on the chip
835  * @dd: the hfi1_ib device
836  * @reinit: re-initializing, so don't allocate new memory
837  *
838  * Do the actual initialization sequence on the chip.  This is done
839  * both from the init routine called from the PCI infrastructure, and
840  * when we reset the chip, or detect that it was reset internally,
841  * or it's administratively re-enabled.
842  *
843  * Memory allocation here and in called routines is only done in
844  * the first case (reinit == 0).  We have to be careful, because even
845  * without memory allocation, we need to re-write all the chip registers
846  * TIDs, etc. after the reset or enable has completed.
847  */
848 int hfi1_init(struct hfi1_devdata *dd, int reinit)
849 {
850 	int ret = 0, pidx, lastfail = 0;
851 	unsigned long len;
852 	u16 i;
853 	struct hfi1_ctxtdata *rcd;
854 	struct hfi1_pportdata *ppd;
855 
856 	/* Set up recv low level handlers */
857 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EXPECTED] =
858 						kdeth_process_expected;
859 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EAGER] =
860 						kdeth_process_eager;
861 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_IB] = process_receive_ib;
862 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_ERROR] =
863 						process_receive_error;
864 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_BYPASS] =
865 						process_receive_bypass;
866 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID5] =
867 						process_receive_invalid;
868 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID6] =
869 						process_receive_invalid;
870 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID7] =
871 						process_receive_invalid;
872 	dd->rhf_rcv_function_map = dd->normal_rhf_rcv_functions;
873 
874 	/* Set up send low level handlers */
875 	dd->process_pio_send = hfi1_verbs_send_pio;
876 	dd->process_dma_send = hfi1_verbs_send_dma;
877 	dd->pio_inline_send = pio_copy;
878 	dd->process_vnic_dma_send = hfi1_vnic_send_dma;
879 
880 	if (is_ax(dd)) {
881 		atomic_set(&dd->drop_packet, DROP_PACKET_ON);
882 		dd->do_drop = 1;
883 	} else {
884 		atomic_set(&dd->drop_packet, DROP_PACKET_OFF);
885 		dd->do_drop = 0;
886 	}
887 
888 	/* make sure the link is not "up" */
889 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
890 		ppd = dd->pport + pidx;
891 		ppd->linkup = 0;
892 	}
893 
894 	if (reinit)
895 		ret = init_after_reset(dd);
896 	else
897 		ret = loadtime_init(dd);
898 	if (ret)
899 		goto done;
900 
901 	/* allocate dummy tail memory for all receive contexts */
902 	dd->rcvhdrtail_dummy_kvaddr = dma_zalloc_coherent(
903 		&dd->pcidev->dev, sizeof(u64),
904 		&dd->rcvhdrtail_dummy_dma,
905 		GFP_KERNEL);
906 
907 	if (!dd->rcvhdrtail_dummy_kvaddr) {
908 		dd_dev_err(dd, "cannot allocate dummy tail memory\n");
909 		ret = -ENOMEM;
910 		goto done;
911 	}
912 
913 	/* dd->rcd can be NULL if early initialization failed */
914 	for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) {
915 		/*
916 		 * Set up the (kernel) rcvhdr queue and egr TIDs.  If doing
917 		 * re-init, the simplest way to handle this is to free
918 		 * existing, and re-allocate.
919 		 * Need to re-create rest of ctxt 0 ctxtdata as well.
920 		 */
921 		rcd = hfi1_rcd_get_by_index(dd, i);
922 		if (!rcd)
923 			continue;
924 
925 		rcd->do_interrupt = &handle_receive_interrupt;
926 
927 		lastfail = hfi1_create_rcvhdrq(dd, rcd);
928 		if (!lastfail)
929 			lastfail = hfi1_setup_eagerbufs(rcd);
930 		if (lastfail) {
931 			dd_dev_err(dd,
932 				   "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
933 			ret = lastfail;
934 		}
935 		hfi1_rcd_put(rcd);
936 	}
937 
938 	/* Allocate enough memory for user event notification. */
939 	len = PAGE_ALIGN(dd->chip_rcv_contexts * HFI1_MAX_SHARED_CTXTS *
940 			 sizeof(*dd->events));
941 	dd->events = vmalloc_user(len);
942 	if (!dd->events)
943 		dd_dev_err(dd, "Failed to allocate user events page\n");
944 	/*
945 	 * Allocate a page for device and port status.
946 	 * Page will be shared amongst all user processes.
947 	 */
948 	dd->status = vmalloc_user(PAGE_SIZE);
949 	if (!dd->status)
950 		dd_dev_err(dd, "Failed to allocate dev status page\n");
951 	else
952 		dd->freezelen = PAGE_SIZE - (sizeof(*dd->status) -
953 					     sizeof(dd->status->freezemsg));
954 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
955 		ppd = dd->pport + pidx;
956 		if (dd->status)
957 			/* Currently, we only have one port */
958 			ppd->statusp = &dd->status->port;
959 
960 		set_mtu(ppd);
961 	}
962 
963 	/* enable chip even if we have an error, so we can debug cause */
964 	enable_chip(dd);
965 
966 done:
967 	/*
968 	 * Set status even if port serdes is not initialized
969 	 * so that diags will work.
970 	 */
971 	if (dd->status)
972 		dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
973 			HFI1_STATUS_INITTED;
974 	if (!ret) {
975 		/* enable all interrupts from the chip */
976 		set_intr_state(dd, 1);
977 
978 		/* chip is OK for user apps; mark it as initialized */
979 		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
980 			ppd = dd->pport + pidx;
981 
982 			/*
983 			 * start the serdes - must be after interrupts are
984 			 * enabled so we are notified when the link goes up
985 			 */
986 			lastfail = bringup_serdes(ppd);
987 			if (lastfail)
988 				dd_dev_info(dd,
989 					    "Failed to bring up port %u\n",
990 					    ppd->port);
991 
992 			/*
993 			 * Set status even if port serdes is not initialized
994 			 * so that diags will work.
995 			 */
996 			if (ppd->statusp)
997 				*ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
998 							HFI1_STATUS_INITTED;
999 			if (!ppd->link_speed_enabled)
1000 				continue;
1001 		}
1002 	}
1003 
1004 	/* if ret is non-zero, we probably should do some cleanup here... */
1005 	return ret;
1006 }
1007 
1008 static inline struct hfi1_devdata *__hfi1_lookup(int unit)
1009 {
1010 	return idr_find(&hfi1_unit_table, unit);
1011 }
1012 
1013 struct hfi1_devdata *hfi1_lookup(int unit)
1014 {
1015 	struct hfi1_devdata *dd;
1016 	unsigned long flags;
1017 
1018 	spin_lock_irqsave(&hfi1_devs_lock, flags);
1019 	dd = __hfi1_lookup(unit);
1020 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1021 
1022 	return dd;
1023 }
1024 
1025 /*
1026  * Stop the timers during unit shutdown, or after an error late
1027  * in initialization.
1028  */
1029 static void stop_timers(struct hfi1_devdata *dd)
1030 {
1031 	struct hfi1_pportdata *ppd;
1032 	int pidx;
1033 
1034 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1035 		ppd = dd->pport + pidx;
1036 		if (ppd->led_override_timer.function) {
1037 			del_timer_sync(&ppd->led_override_timer);
1038 			atomic_set(&ppd->led_override_timer_active, 0);
1039 		}
1040 	}
1041 }
1042 
1043 /**
1044  * shutdown_device - shut down a device
1045  * @dd: the hfi1_ib device
1046  *
1047  * This is called to make the device quiet when we are about to
1048  * unload the driver, and also when the device is administratively
1049  * disabled.   It does not free any data structures.
1050  * Everything it does has to be setup again by hfi1_init(dd, 1)
1051  */
1052 static void shutdown_device(struct hfi1_devdata *dd)
1053 {
1054 	struct hfi1_pportdata *ppd;
1055 	struct hfi1_ctxtdata *rcd;
1056 	unsigned pidx;
1057 	int i;
1058 
1059 	if (dd->flags & HFI1_SHUTDOWN)
1060 		return;
1061 	dd->flags |= HFI1_SHUTDOWN;
1062 
1063 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1064 		ppd = dd->pport + pidx;
1065 
1066 		ppd->linkup = 0;
1067 		if (ppd->statusp)
1068 			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
1069 					   HFI1_STATUS_IB_READY);
1070 	}
1071 	dd->flags &= ~HFI1_INITTED;
1072 
1073 	/* mask and clean up interrupts, but not errors */
1074 	set_intr_state(dd, 0);
1075 	hfi1_clean_up_interrupts(dd);
1076 
1077 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1078 		ppd = dd->pport + pidx;
1079 		for (i = 0; i < dd->num_rcv_contexts; i++) {
1080 			rcd = hfi1_rcd_get_by_index(dd, i);
1081 			hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
1082 				     HFI1_RCVCTRL_CTXT_DIS |
1083 				     HFI1_RCVCTRL_INTRAVAIL_DIS |
1084 				     HFI1_RCVCTRL_PKEY_DIS |
1085 				     HFI1_RCVCTRL_ONE_PKT_EGR_DIS, rcd);
1086 			hfi1_rcd_put(rcd);
1087 		}
1088 		/*
1089 		 * Gracefully stop all sends allowing any in progress to
1090 		 * trickle out first.
1091 		 */
1092 		for (i = 0; i < dd->num_send_contexts; i++)
1093 			sc_flush(dd->send_contexts[i].sc);
1094 	}
1095 
1096 	/*
1097 	 * Enough for anything that's going to trickle out to have actually
1098 	 * done so.
1099 	 */
1100 	udelay(20);
1101 
1102 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1103 		ppd = dd->pport + pidx;
1104 
1105 		/* disable all contexts */
1106 		for (i = 0; i < dd->num_send_contexts; i++)
1107 			sc_disable(dd->send_contexts[i].sc);
1108 		/* disable the send device */
1109 		pio_send_control(dd, PSC_GLOBAL_DISABLE);
1110 
1111 		shutdown_led_override(ppd);
1112 
1113 		/*
1114 		 * Clear SerdesEnable.
1115 		 * We can't count on interrupts since we are stopping.
1116 		 */
1117 		hfi1_quiet_serdes(ppd);
1118 
1119 		if (ppd->hfi1_wq) {
1120 			destroy_workqueue(ppd->hfi1_wq);
1121 			ppd->hfi1_wq = NULL;
1122 		}
1123 		if (ppd->link_wq) {
1124 			destroy_workqueue(ppd->link_wq);
1125 			ppd->link_wq = NULL;
1126 		}
1127 	}
1128 	sdma_exit(dd);
1129 }
1130 
1131 /**
1132  * hfi1_free_ctxtdata - free a context's allocated data
1133  * @dd: the hfi1_ib device
1134  * @rcd: the ctxtdata structure
1135  *
1136  * free up any allocated data for a context
1137  * It should never change any chip state, or global driver state.
1138  */
1139 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1140 {
1141 	u32 e;
1142 
1143 	if (!rcd)
1144 		return;
1145 
1146 	if (rcd->rcvhdrq) {
1147 		dma_free_coherent(&dd->pcidev->dev, rcd->rcvhdrq_size,
1148 				  rcd->rcvhdrq, rcd->rcvhdrq_dma);
1149 		rcd->rcvhdrq = NULL;
1150 		if (rcd->rcvhdrtail_kvaddr) {
1151 			dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
1152 					  (void *)rcd->rcvhdrtail_kvaddr,
1153 					  rcd->rcvhdrqtailaddr_dma);
1154 			rcd->rcvhdrtail_kvaddr = NULL;
1155 		}
1156 	}
1157 
1158 	/* all the RcvArray entries should have been cleared by now */
1159 	kfree(rcd->egrbufs.rcvtids);
1160 	rcd->egrbufs.rcvtids = NULL;
1161 
1162 	for (e = 0; e < rcd->egrbufs.alloced; e++) {
1163 		if (rcd->egrbufs.buffers[e].dma)
1164 			dma_free_coherent(&dd->pcidev->dev,
1165 					  rcd->egrbufs.buffers[e].len,
1166 					  rcd->egrbufs.buffers[e].addr,
1167 					  rcd->egrbufs.buffers[e].dma);
1168 	}
1169 	kfree(rcd->egrbufs.buffers);
1170 	rcd->egrbufs.alloced = 0;
1171 	rcd->egrbufs.buffers = NULL;
1172 
1173 	sc_free(rcd->sc);
1174 	rcd->sc = NULL;
1175 
1176 	vfree(rcd->subctxt_uregbase);
1177 	vfree(rcd->subctxt_rcvegrbuf);
1178 	vfree(rcd->subctxt_rcvhdr_base);
1179 	kfree(rcd->opstats);
1180 
1181 	rcd->subctxt_uregbase = NULL;
1182 	rcd->subctxt_rcvegrbuf = NULL;
1183 	rcd->subctxt_rcvhdr_base = NULL;
1184 	rcd->opstats = NULL;
1185 }
1186 
1187 /*
1188  * Release our hold on the shared asic data.  If we are the last one,
1189  * return the structure to be finalized outside the lock.  Must be
1190  * holding hfi1_devs_lock.
1191  */
1192 static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd)
1193 {
1194 	struct hfi1_asic_data *ad;
1195 	int other;
1196 
1197 	if (!dd->asic_data)
1198 		return NULL;
1199 	dd->asic_data->dds[dd->hfi1_id] = NULL;
1200 	other = dd->hfi1_id ? 0 : 1;
1201 	ad = dd->asic_data;
1202 	dd->asic_data = NULL;
1203 	/* return NULL if the other dd still has a link */
1204 	return ad->dds[other] ? NULL : ad;
1205 }
1206 
1207 static void finalize_asic_data(struct hfi1_devdata *dd,
1208 			       struct hfi1_asic_data *ad)
1209 {
1210 	clean_up_i2c(dd, ad);
1211 	kfree(ad);
1212 }
1213 
1214 /**
1215  * hfi1_clean_devdata - cleans up per-unit data structure
1216  * @dd: pointer to a valid devdata structure
1217  *
1218  * It cleans up all data structures set up by
1219  * by hfi1_alloc_devdata().
1220  */
1221 static void hfi1_clean_devdata(struct hfi1_devdata *dd)
1222 {
1223 	struct hfi1_asic_data *ad;
1224 	unsigned long flags;
1225 
1226 	spin_lock_irqsave(&hfi1_devs_lock, flags);
1227 	if (!list_empty(&dd->list)) {
1228 		idr_remove(&hfi1_unit_table, dd->unit);
1229 		list_del_init(&dd->list);
1230 	}
1231 	ad = release_asic_data(dd);
1232 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1233 
1234 	finalize_asic_data(dd, ad);
1235 	free_platform_config(dd);
1236 	rcu_barrier(); /* wait for rcu callbacks to complete */
1237 	free_percpu(dd->int_counter);
1238 	free_percpu(dd->rcv_limit);
1239 	free_percpu(dd->send_schedule);
1240 	free_percpu(dd->tx_opstats);
1241 	dd->int_counter   = NULL;
1242 	dd->rcv_limit     = NULL;
1243 	dd->send_schedule = NULL;
1244 	dd->tx_opstats    = NULL;
1245 	kfree(dd->comp_vect);
1246 	dd->comp_vect = NULL;
1247 	sdma_clean(dd, dd->num_sdma);
1248 	rvt_dealloc_device(&dd->verbs_dev.rdi);
1249 }
1250 
1251 static void __hfi1_free_devdata(struct kobject *kobj)
1252 {
1253 	struct hfi1_devdata *dd =
1254 		container_of(kobj, struct hfi1_devdata, kobj);
1255 
1256 	hfi1_clean_devdata(dd);
1257 }
1258 
1259 static struct kobj_type hfi1_devdata_type = {
1260 	.release = __hfi1_free_devdata,
1261 };
1262 
1263 void hfi1_free_devdata(struct hfi1_devdata *dd)
1264 {
1265 	kobject_put(&dd->kobj);
1266 }
1267 
1268 /*
1269  * Allocate our primary per-unit data structure.  Must be done via verbs
1270  * allocator, because the verbs cleanup process both does cleanup and
1271  * free of the data structure.
1272  * "extra" is for chip-specific data.
1273  *
1274  * Use the idr mechanism to get a unit number for this unit.
1275  */
1276 struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev, size_t extra)
1277 {
1278 	unsigned long flags;
1279 	struct hfi1_devdata *dd;
1280 	int ret, nports;
1281 
1282 	/* extra is * number of ports */
1283 	nports = extra / sizeof(struct hfi1_pportdata);
1284 
1285 	dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra,
1286 						     nports);
1287 	if (!dd)
1288 		return ERR_PTR(-ENOMEM);
1289 	dd->num_pports = nports;
1290 	dd->pport = (struct hfi1_pportdata *)(dd + 1);
1291 	dd->pcidev = pdev;
1292 	pci_set_drvdata(pdev, dd);
1293 
1294 	INIT_LIST_HEAD(&dd->list);
1295 	idr_preload(GFP_KERNEL);
1296 	spin_lock_irqsave(&hfi1_devs_lock, flags);
1297 
1298 	ret = idr_alloc(&hfi1_unit_table, dd, 0, 0, GFP_NOWAIT);
1299 	if (ret >= 0) {
1300 		dd->unit = ret;
1301 		list_add(&dd->list, &hfi1_dev_list);
1302 	}
1303 	dd->node = -1;
1304 
1305 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1306 	idr_preload_end();
1307 
1308 	if (ret < 0) {
1309 		hfi1_early_err(&pdev->dev,
1310 			       "Could not allocate unit ID: error %d\n", -ret);
1311 		goto bail;
1312 	}
1313 	rvt_set_ibdev_name(&dd->verbs_dev.rdi, "%s_%d", class_name(), dd->unit);
1314 
1315 	/*
1316 	 * Initialize all locks for the device. This needs to be as early as
1317 	 * possible so locks are usable.
1318 	 */
1319 	spin_lock_init(&dd->sc_lock);
1320 	spin_lock_init(&dd->sendctrl_lock);
1321 	spin_lock_init(&dd->rcvctrl_lock);
1322 	spin_lock_init(&dd->uctxt_lock);
1323 	spin_lock_init(&dd->hfi1_diag_trans_lock);
1324 	spin_lock_init(&dd->sc_init_lock);
1325 	spin_lock_init(&dd->dc8051_memlock);
1326 	seqlock_init(&dd->sc2vl_lock);
1327 	spin_lock_init(&dd->sde_map_lock);
1328 	spin_lock_init(&dd->pio_map_lock);
1329 	mutex_init(&dd->dc8051_lock);
1330 	init_waitqueue_head(&dd->event_queue);
1331 
1332 	dd->int_counter = alloc_percpu(u64);
1333 	if (!dd->int_counter) {
1334 		ret = -ENOMEM;
1335 		goto bail;
1336 	}
1337 
1338 	dd->rcv_limit = alloc_percpu(u64);
1339 	if (!dd->rcv_limit) {
1340 		ret = -ENOMEM;
1341 		goto bail;
1342 	}
1343 
1344 	dd->send_schedule = alloc_percpu(u64);
1345 	if (!dd->send_schedule) {
1346 		ret = -ENOMEM;
1347 		goto bail;
1348 	}
1349 
1350 	dd->tx_opstats = alloc_percpu(struct hfi1_opcode_stats_perctx);
1351 	if (!dd->tx_opstats) {
1352 		ret = -ENOMEM;
1353 		goto bail;
1354 	}
1355 
1356 	dd->comp_vect = kzalloc(sizeof(*dd->comp_vect), GFP_KERNEL);
1357 	if (!dd->comp_vect) {
1358 		ret = -ENOMEM;
1359 		goto bail;
1360 	}
1361 
1362 	kobject_init(&dd->kobj, &hfi1_devdata_type);
1363 	return dd;
1364 
1365 bail:
1366 	hfi1_clean_devdata(dd);
1367 	return ERR_PTR(ret);
1368 }
1369 
1370 /*
1371  * Called from freeze mode handlers, and from PCI error
1372  * reporting code.  Should be paranoid about state of
1373  * system and data structures.
1374  */
1375 void hfi1_disable_after_error(struct hfi1_devdata *dd)
1376 {
1377 	if (dd->flags & HFI1_INITTED) {
1378 		u32 pidx;
1379 
1380 		dd->flags &= ~HFI1_INITTED;
1381 		if (dd->pport)
1382 			for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1383 				struct hfi1_pportdata *ppd;
1384 
1385 				ppd = dd->pport + pidx;
1386 				if (dd->flags & HFI1_PRESENT)
1387 					set_link_state(ppd, HLS_DN_DISABLE);
1388 
1389 				if (ppd->statusp)
1390 					*ppd->statusp &= ~HFI1_STATUS_IB_READY;
1391 			}
1392 	}
1393 
1394 	/*
1395 	 * Mark as having had an error for driver, and also
1396 	 * for /sys and status word mapped to user programs.
1397 	 * This marks unit as not usable, until reset.
1398 	 */
1399 	if (dd->status)
1400 		dd->status->dev |= HFI1_STATUS_HWERROR;
1401 }
1402 
1403 static void remove_one(struct pci_dev *);
1404 static int init_one(struct pci_dev *, const struct pci_device_id *);
1405 static void shutdown_one(struct pci_dev *);
1406 
1407 #define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: "
1408 #define PFX DRIVER_NAME ": "
1409 
1410 const struct pci_device_id hfi1_pci_tbl[] = {
1411 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
1412 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
1413 	{ 0, }
1414 };
1415 
1416 MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);
1417 
1418 static struct pci_driver hfi1_pci_driver = {
1419 	.name = DRIVER_NAME,
1420 	.probe = init_one,
1421 	.remove = remove_one,
1422 	.shutdown = shutdown_one,
1423 	.id_table = hfi1_pci_tbl,
1424 	.err_handler = &hfi1_pci_err_handler,
1425 };
1426 
1427 static void __init compute_krcvqs(void)
1428 {
1429 	int i;
1430 
1431 	for (i = 0; i < krcvqsset; i++)
1432 		n_krcvqs += krcvqs[i];
1433 }
1434 
1435 /*
1436  * Do all the generic driver unit- and chip-independent memory
1437  * allocation and initialization.
1438  */
1439 static int __init hfi1_mod_init(void)
1440 {
1441 	int ret;
1442 
1443 	ret = dev_init();
1444 	if (ret)
1445 		goto bail;
1446 
1447 	ret = node_affinity_init();
1448 	if (ret)
1449 		goto bail;
1450 
1451 	/* validate max MTU before any devices start */
1452 	if (!valid_opa_max_mtu(hfi1_max_mtu)) {
1453 		pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
1454 		       hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
1455 		hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
1456 	}
1457 	/* valid CUs run from 1-128 in powers of 2 */
1458 	if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu))
1459 		hfi1_cu = 1;
1460 	/* valid credit return threshold is 0-100, variable is unsigned */
1461 	if (user_credit_return_threshold > 100)
1462 		user_credit_return_threshold = 100;
1463 
1464 	compute_krcvqs();
1465 	/*
1466 	 * sanitize receive interrupt count, time must wait until after
1467 	 * the hardware type is known
1468 	 */
1469 	if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
1470 		rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
1471 	/* reject invalid combinations */
1472 	if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
1473 		pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
1474 		rcv_intr_count = 1;
1475 	}
1476 	if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
1477 		/*
1478 		 * Avoid indefinite packet delivery by requiring a timeout
1479 		 * if count is > 1.
1480 		 */
1481 		pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
1482 		rcv_intr_timeout = 1;
1483 	}
1484 	if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
1485 		/*
1486 		 * The dynamic algorithm expects a non-zero timeout
1487 		 * and a count > 1.
1488 		 */
1489 		pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
1490 		rcv_intr_dynamic = 0;
1491 	}
1492 
1493 	/* sanitize link CRC options */
1494 	link_crc_mask &= SUPPORTED_CRCS;
1495 
1496 	/*
1497 	 * These must be called before the driver is registered with
1498 	 * the PCI subsystem.
1499 	 */
1500 	idr_init(&hfi1_unit_table);
1501 
1502 	hfi1_dbg_init();
1503 	ret = hfi1_wss_init();
1504 	if (ret < 0)
1505 		goto bail_wss;
1506 	ret = pci_register_driver(&hfi1_pci_driver);
1507 	if (ret < 0) {
1508 		pr_err("Unable to register driver: error %d\n", -ret);
1509 		goto bail_dev;
1510 	}
1511 	goto bail; /* all OK */
1512 
1513 bail_dev:
1514 	hfi1_wss_exit();
1515 bail_wss:
1516 	hfi1_dbg_exit();
1517 	idr_destroy(&hfi1_unit_table);
1518 	dev_cleanup();
1519 bail:
1520 	return ret;
1521 }
1522 
1523 module_init(hfi1_mod_init);
1524 
1525 /*
1526  * Do the non-unit driver cleanup, memory free, etc. at unload.
1527  */
1528 static void __exit hfi1_mod_cleanup(void)
1529 {
1530 	pci_unregister_driver(&hfi1_pci_driver);
1531 	node_affinity_destroy_all();
1532 	hfi1_wss_exit();
1533 	hfi1_dbg_exit();
1534 
1535 	idr_destroy(&hfi1_unit_table);
1536 	dispose_firmware();	/* asymmetric with obtain_firmware() */
1537 	dev_cleanup();
1538 }
1539 
1540 module_exit(hfi1_mod_cleanup);
1541 
1542 /* this can only be called after a successful initialization */
1543 static void cleanup_device_data(struct hfi1_devdata *dd)
1544 {
1545 	int ctxt;
1546 	int pidx;
1547 
1548 	/* users can't do anything more with chip */
1549 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1550 		struct hfi1_pportdata *ppd = &dd->pport[pidx];
1551 		struct cc_state *cc_state;
1552 		int i;
1553 
1554 		if (ppd->statusp)
1555 			*ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;
1556 
1557 		for (i = 0; i < OPA_MAX_SLS; i++)
1558 			hrtimer_cancel(&ppd->cca_timer[i].hrtimer);
1559 
1560 		spin_lock(&ppd->cc_state_lock);
1561 		cc_state = get_cc_state_protected(ppd);
1562 		RCU_INIT_POINTER(ppd->cc_state, NULL);
1563 		spin_unlock(&ppd->cc_state_lock);
1564 
1565 		if (cc_state)
1566 			kfree_rcu(cc_state, rcu);
1567 	}
1568 
1569 	free_credit_return(dd);
1570 
1571 	if (dd->rcvhdrtail_dummy_kvaddr) {
1572 		dma_free_coherent(&dd->pcidev->dev, sizeof(u64),
1573 				  (void *)dd->rcvhdrtail_dummy_kvaddr,
1574 				  dd->rcvhdrtail_dummy_dma);
1575 		dd->rcvhdrtail_dummy_kvaddr = NULL;
1576 	}
1577 
1578 	/*
1579 	 * Free any resources still in use (usually just kernel contexts)
1580 	 * at unload; we do for ctxtcnt, because that's what we allocate.
1581 	 */
1582 	for (ctxt = 0; dd->rcd && ctxt < dd->num_rcv_contexts; ctxt++) {
1583 		struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
1584 
1585 		if (rcd) {
1586 			hfi1_clear_tids(rcd);
1587 			hfi1_free_ctxt(rcd);
1588 		}
1589 	}
1590 
1591 	kfree(dd->rcd);
1592 	dd->rcd = NULL;
1593 
1594 	free_pio_map(dd);
1595 	/* must follow rcv context free - need to remove rcv's hooks */
1596 	for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
1597 		sc_free(dd->send_contexts[ctxt].sc);
1598 	dd->num_send_contexts = 0;
1599 	kfree(dd->send_contexts);
1600 	dd->send_contexts = NULL;
1601 	kfree(dd->hw_to_sw);
1602 	dd->hw_to_sw = NULL;
1603 	kfree(dd->boardname);
1604 	vfree(dd->events);
1605 	vfree(dd->status);
1606 }
1607 
1608 /*
1609  * Clean up on unit shutdown, or error during unit load after
1610  * successful initialization.
1611  */
1612 static void postinit_cleanup(struct hfi1_devdata *dd)
1613 {
1614 	hfi1_start_cleanup(dd);
1615 	hfi1_comp_vectors_clean_up(dd);
1616 	hfi1_dev_affinity_clean_up(dd);
1617 
1618 	hfi1_pcie_ddcleanup(dd);
1619 	hfi1_pcie_cleanup(dd->pcidev);
1620 
1621 	cleanup_device_data(dd);
1622 
1623 	hfi1_free_devdata(dd);
1624 }
1625 
1626 static int init_validate_rcvhdrcnt(struct device *dev, uint thecnt)
1627 {
1628 	if (thecnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) {
1629 		hfi1_early_err(dev, "Receive header queue count too small\n");
1630 		return -EINVAL;
1631 	}
1632 
1633 	if (thecnt > HFI1_MAX_HDRQ_EGRBUF_CNT) {
1634 		hfi1_early_err(dev,
1635 			       "Receive header queue count cannot be greater than %u\n",
1636 			       HFI1_MAX_HDRQ_EGRBUF_CNT);
1637 		return -EINVAL;
1638 	}
1639 
1640 	if (thecnt % HDRQ_INCREMENT) {
1641 		hfi1_early_err(dev, "Receive header queue count %d must be divisible by %lu\n",
1642 			       thecnt, HDRQ_INCREMENT);
1643 		return -EINVAL;
1644 	}
1645 
1646 	return 0;
1647 }
1648 
1649 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1650 {
1651 	int ret = 0, j, pidx, initfail;
1652 	struct hfi1_devdata *dd;
1653 	struct hfi1_pportdata *ppd;
1654 
1655 	/* First, lock the non-writable module parameters */
1656 	HFI1_CAP_LOCK();
1657 
1658 	/* Validate dev ids */
1659 	if (!(ent->device == PCI_DEVICE_ID_INTEL0 ||
1660 	      ent->device == PCI_DEVICE_ID_INTEL1)) {
1661 		hfi1_early_err(&pdev->dev,
1662 			       "Failing on unknown Intel deviceid 0x%x\n",
1663 			       ent->device);
1664 		ret = -ENODEV;
1665 		goto bail;
1666 	}
1667 
1668 	/* Validate some global module parameters */
1669 	ret = init_validate_rcvhdrcnt(&pdev->dev, rcvhdrcnt);
1670 	if (ret)
1671 		goto bail;
1672 
1673 	/* use the encoding function as a sanitization check */
1674 	if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) {
1675 		hfi1_early_err(&pdev->dev, "Invalid HdrQ Entry size %u\n",
1676 			       hfi1_hdrq_entsize);
1677 		ret = -EINVAL;
1678 		goto bail;
1679 	}
1680 
1681 	/* The receive eager buffer size must be set before the receive
1682 	 * contexts are created.
1683 	 *
1684 	 * Set the eager buffer size.  Validate that it falls in a range
1685 	 * allowed by the hardware - all powers of 2 between the min and
1686 	 * max.  The maximum valid MTU is within the eager buffer range
1687 	 * so we do not need to cap the max_mtu by an eager buffer size
1688 	 * setting.
1689 	 */
1690 	if (eager_buffer_size) {
1691 		if (!is_power_of_2(eager_buffer_size))
1692 			eager_buffer_size =
1693 				roundup_pow_of_two(eager_buffer_size);
1694 		eager_buffer_size =
1695 			clamp_val(eager_buffer_size,
1696 				  MIN_EAGER_BUFFER * 8,
1697 				  MAX_EAGER_BUFFER_TOTAL);
1698 		hfi1_early_info(&pdev->dev, "Eager buffer size %u\n",
1699 				eager_buffer_size);
1700 	} else {
1701 		hfi1_early_err(&pdev->dev, "Invalid Eager buffer size of 0\n");
1702 		ret = -EINVAL;
1703 		goto bail;
1704 	}
1705 
1706 	/* restrict value of hfi1_rcvarr_split */
1707 	hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);
1708 
1709 	ret = hfi1_pcie_init(pdev, ent);
1710 	if (ret)
1711 		goto bail;
1712 
1713 	/*
1714 	 * Do device-specific initialization, function table setup, dd
1715 	 * allocation, etc.
1716 	 */
1717 	dd = hfi1_init_dd(pdev, ent);
1718 
1719 	if (IS_ERR(dd)) {
1720 		ret = PTR_ERR(dd);
1721 		goto clean_bail; /* error already printed */
1722 	}
1723 
1724 	ret = create_workqueues(dd);
1725 	if (ret)
1726 		goto clean_bail;
1727 
1728 	/* do the generic initialization */
1729 	initfail = hfi1_init(dd, 0);
1730 
1731 	/* setup vnic */
1732 	hfi1_vnic_setup(dd);
1733 
1734 	ret = hfi1_register_ib_device(dd);
1735 
1736 	/*
1737 	 * Now ready for use.  this should be cleared whenever we
1738 	 * detect a reset, or initiate one.  If earlier failure,
1739 	 * we still create devices, so diags, etc. can be used
1740 	 * to determine cause of problem.
1741 	 */
1742 	if (!initfail && !ret) {
1743 		dd->flags |= HFI1_INITTED;
1744 		/* create debufs files after init and ib register */
1745 		hfi1_dbg_ibdev_init(&dd->verbs_dev);
1746 	}
1747 
1748 	j = hfi1_device_create(dd);
1749 	if (j)
1750 		dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
1751 
1752 	if (initfail || ret) {
1753 		hfi1_clean_up_interrupts(dd);
1754 		stop_timers(dd);
1755 		flush_workqueue(ib_wq);
1756 		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1757 			hfi1_quiet_serdes(dd->pport + pidx);
1758 			ppd = dd->pport + pidx;
1759 			if (ppd->hfi1_wq) {
1760 				destroy_workqueue(ppd->hfi1_wq);
1761 				ppd->hfi1_wq = NULL;
1762 			}
1763 			if (ppd->link_wq) {
1764 				destroy_workqueue(ppd->link_wq);
1765 				ppd->link_wq = NULL;
1766 			}
1767 		}
1768 		if (!j)
1769 			hfi1_device_remove(dd);
1770 		if (!ret)
1771 			hfi1_unregister_ib_device(dd);
1772 		hfi1_vnic_cleanup(dd);
1773 		postinit_cleanup(dd);
1774 		if (initfail)
1775 			ret = initfail;
1776 		goto bail;	/* everything already cleaned */
1777 	}
1778 
1779 	sdma_start(dd);
1780 
1781 	return 0;
1782 
1783 clean_bail:
1784 	hfi1_pcie_cleanup(pdev);
1785 bail:
1786 	return ret;
1787 }
1788 
1789 static void wait_for_clients(struct hfi1_devdata *dd)
1790 {
1791 	/*
1792 	 * Remove the device init value and complete the device if there is
1793 	 * no clients or wait for active clients to finish.
1794 	 */
1795 	if (atomic_dec_and_test(&dd->user_refcount))
1796 		complete(&dd->user_comp);
1797 
1798 	wait_for_completion(&dd->user_comp);
1799 }
1800 
1801 static void remove_one(struct pci_dev *pdev)
1802 {
1803 	struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1804 
1805 	/* close debugfs files before ib unregister */
1806 	hfi1_dbg_ibdev_exit(&dd->verbs_dev);
1807 
1808 	/* remove the /dev hfi1 interface */
1809 	hfi1_device_remove(dd);
1810 
1811 	/* wait for existing user space clients to finish */
1812 	wait_for_clients(dd);
1813 
1814 	/* unregister from IB core */
1815 	hfi1_unregister_ib_device(dd);
1816 
1817 	/* cleanup vnic */
1818 	hfi1_vnic_cleanup(dd);
1819 
1820 	/*
1821 	 * Disable the IB link, disable interrupts on the device,
1822 	 * clear dma engines, etc.
1823 	 */
1824 	shutdown_device(dd);
1825 
1826 	stop_timers(dd);
1827 
1828 	/* wait until all of our (qsfp) queue_work() calls complete */
1829 	flush_workqueue(ib_wq);
1830 
1831 	postinit_cleanup(dd);
1832 }
1833 
1834 static void shutdown_one(struct pci_dev *pdev)
1835 {
1836 	struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1837 
1838 	shutdown_device(dd);
1839 }
1840 
1841 /**
1842  * hfi1_create_rcvhdrq - create a receive header queue
1843  * @dd: the hfi1_ib device
1844  * @rcd: the context data
1845  *
1846  * This must be contiguous memory (from an i/o perspective), and must be
1847  * DMA'able (which means for some systems, it will go through an IOMMU,
1848  * or be forced into a low address range).
1849  */
1850 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1851 {
1852 	unsigned amt;
1853 	u64 reg;
1854 
1855 	if (!rcd->rcvhdrq) {
1856 		gfp_t gfp_flags;
1857 
1858 		/*
1859 		 * rcvhdrqentsize is in DWs, so we have to convert to bytes
1860 		 * (* sizeof(u32)).
1861 		 */
1862 		amt = PAGE_ALIGN(rcd->rcvhdrq_cnt * rcd->rcvhdrqentsize *
1863 				 sizeof(u32));
1864 
1865 		if (rcd->ctxt < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
1866 			gfp_flags = GFP_KERNEL;
1867 		else
1868 			gfp_flags = GFP_USER;
1869 		rcd->rcvhdrq = dma_zalloc_coherent(
1870 			&dd->pcidev->dev, amt, &rcd->rcvhdrq_dma,
1871 			gfp_flags | __GFP_COMP);
1872 
1873 		if (!rcd->rcvhdrq) {
1874 			dd_dev_err(dd,
1875 				   "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
1876 				   amt, rcd->ctxt);
1877 			goto bail;
1878 		}
1879 
1880 		if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ||
1881 		    HFI1_CAP_UGET_MASK(rcd->flags, DMA_RTAIL)) {
1882 			rcd->rcvhdrtail_kvaddr = dma_zalloc_coherent(
1883 				&dd->pcidev->dev, PAGE_SIZE,
1884 				&rcd->rcvhdrqtailaddr_dma, gfp_flags);
1885 			if (!rcd->rcvhdrtail_kvaddr)
1886 				goto bail_free;
1887 		}
1888 
1889 		rcd->rcvhdrq_size = amt;
1890 	}
1891 	/*
1892 	 * These values are per-context:
1893 	 *	RcvHdrCnt
1894 	 *	RcvHdrEntSize
1895 	 *	RcvHdrSize
1896 	 */
1897 	reg = ((u64)(rcd->rcvhdrq_cnt >> HDRQ_SIZE_SHIFT)
1898 			& RCV_HDR_CNT_CNT_MASK)
1899 		<< RCV_HDR_CNT_CNT_SHIFT;
1900 	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_CNT, reg);
1901 	reg = (encode_rcv_header_entry_size(rcd->rcvhdrqentsize)
1902 			& RCV_HDR_ENT_SIZE_ENT_SIZE_MASK)
1903 		<< RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT;
1904 	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_ENT_SIZE, reg);
1905 	reg = (dd->rcvhdrsize & RCV_HDR_SIZE_HDR_SIZE_MASK)
1906 		<< RCV_HDR_SIZE_HDR_SIZE_SHIFT;
1907 	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_SIZE, reg);
1908 
1909 	/*
1910 	 * Program dummy tail address for every receive context
1911 	 * before enabling any receive context
1912 	 */
1913 	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_TAIL_ADDR,
1914 			dd->rcvhdrtail_dummy_dma);
1915 
1916 	return 0;
1917 
1918 bail_free:
1919 	dd_dev_err(dd,
1920 		   "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
1921 		   rcd->ctxt);
1922 	dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
1923 			  rcd->rcvhdrq_dma);
1924 	rcd->rcvhdrq = NULL;
1925 bail:
1926 	return -ENOMEM;
1927 }
1928 
1929 /**
1930  * allocate eager buffers, both kernel and user contexts.
1931  * @rcd: the context we are setting up.
1932  *
1933  * Allocate the eager TID buffers and program them into hip.
1934  * They are no longer completely contiguous, we do multiple allocation
1935  * calls.  Otherwise we get the OOM code involved, by asking for too
1936  * much per call, with disastrous results on some kernels.
1937  */
1938 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
1939 {
1940 	struct hfi1_devdata *dd = rcd->dd;
1941 	u32 max_entries, egrtop, alloced_bytes = 0, idx = 0;
1942 	gfp_t gfp_flags;
1943 	u16 order;
1944 	int ret = 0;
1945 	u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);
1946 
1947 	/*
1948 	 * GFP_USER, but without GFP_FS, so buffer cache can be
1949 	 * coalesced (we hope); otherwise, even at order 4,
1950 	 * heavy filesystem activity makes these fail, and we can
1951 	 * use compound pages.
1952 	 */
1953 	gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP;
1954 
1955 	/*
1956 	 * The minimum size of the eager buffers is a groups of MTU-sized
1957 	 * buffers.
1958 	 * The global eager_buffer_size parameter is checked against the
1959 	 * theoretical lower limit of the value. Here, we check against the
1960 	 * MTU.
1961 	 */
1962 	if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
1963 		rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
1964 	/*
1965 	 * If using one-pkt-per-egr-buffer, lower the eager buffer
1966 	 * size to the max MTU (page-aligned).
1967 	 */
1968 	if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
1969 		rcd->egrbufs.rcvtid_size = round_mtu;
1970 
1971 	/*
1972 	 * Eager buffers sizes of 1MB or less require smaller TID sizes
1973 	 * to satisfy the "multiple of 8 RcvArray entries" requirement.
1974 	 */
1975 	if (rcd->egrbufs.size <= (1 << 20))
1976 		rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
1977 			rounddown_pow_of_two(rcd->egrbufs.size / 8));
1978 
1979 	while (alloced_bytes < rcd->egrbufs.size &&
1980 	       rcd->egrbufs.alloced < rcd->egrbufs.count) {
1981 		rcd->egrbufs.buffers[idx].addr =
1982 			dma_zalloc_coherent(&dd->pcidev->dev,
1983 					    rcd->egrbufs.rcvtid_size,
1984 					    &rcd->egrbufs.buffers[idx].dma,
1985 					    gfp_flags);
1986 		if (rcd->egrbufs.buffers[idx].addr) {
1987 			rcd->egrbufs.buffers[idx].len =
1988 				rcd->egrbufs.rcvtid_size;
1989 			rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
1990 				rcd->egrbufs.buffers[idx].addr;
1991 			rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma =
1992 				rcd->egrbufs.buffers[idx].dma;
1993 			rcd->egrbufs.alloced++;
1994 			alloced_bytes += rcd->egrbufs.rcvtid_size;
1995 			idx++;
1996 		} else {
1997 			u32 new_size, i, j;
1998 			u64 offset = 0;
1999 
2000 			/*
2001 			 * Fail the eager buffer allocation if:
2002 			 *   - we are already using the lowest acceptable size
2003 			 *   - we are using one-pkt-per-egr-buffer (this implies
2004 			 *     that we are accepting only one size)
2005 			 */
2006 			if (rcd->egrbufs.rcvtid_size == round_mtu ||
2007 			    !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
2008 				dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
2009 					   rcd->ctxt);
2010 				ret = -ENOMEM;
2011 				goto bail_rcvegrbuf_phys;
2012 			}
2013 
2014 			new_size = rcd->egrbufs.rcvtid_size / 2;
2015 
2016 			/*
2017 			 * If the first attempt to allocate memory failed, don't
2018 			 * fail everything but continue with the next lower
2019 			 * size.
2020 			 */
2021 			if (idx == 0) {
2022 				rcd->egrbufs.rcvtid_size = new_size;
2023 				continue;
2024 			}
2025 
2026 			/*
2027 			 * Re-partition already allocated buffers to a smaller
2028 			 * size.
2029 			 */
2030 			rcd->egrbufs.alloced = 0;
2031 			for (i = 0, j = 0, offset = 0; j < idx; i++) {
2032 				if (i >= rcd->egrbufs.count)
2033 					break;
2034 				rcd->egrbufs.rcvtids[i].dma =
2035 					rcd->egrbufs.buffers[j].dma + offset;
2036 				rcd->egrbufs.rcvtids[i].addr =
2037 					rcd->egrbufs.buffers[j].addr + offset;
2038 				rcd->egrbufs.alloced++;
2039 				if ((rcd->egrbufs.buffers[j].dma + offset +
2040 				     new_size) ==
2041 				    (rcd->egrbufs.buffers[j].dma +
2042 				     rcd->egrbufs.buffers[j].len)) {
2043 					j++;
2044 					offset = 0;
2045 				} else {
2046 					offset += new_size;
2047 				}
2048 			}
2049 			rcd->egrbufs.rcvtid_size = new_size;
2050 		}
2051 	}
2052 	rcd->egrbufs.numbufs = idx;
2053 	rcd->egrbufs.size = alloced_bytes;
2054 
2055 	hfi1_cdbg(PROC,
2056 		  "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %zuKB\n",
2057 		  rcd->ctxt, rcd->egrbufs.alloced,
2058 		  rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024);
2059 
2060 	/*
2061 	 * Set the contexts rcv array head update threshold to the closest
2062 	 * power of 2 (so we can use a mask instead of modulo) below half
2063 	 * the allocated entries.
2064 	 */
2065 	rcd->egrbufs.threshold =
2066 		rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
2067 	/*
2068 	 * Compute the expected RcvArray entry base. This is done after
2069 	 * allocating the eager buffers in order to maximize the
2070 	 * expected RcvArray entries for the context.
2071 	 */
2072 	max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
2073 	egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
2074 	rcd->expected_count = max_entries - egrtop;
2075 	if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
2076 		rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;
2077 
2078 	rcd->expected_base = rcd->eager_base + egrtop;
2079 	hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n",
2080 		  rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
2081 		  rcd->eager_base, rcd->expected_base);
2082 
2083 	if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) {
2084 		hfi1_cdbg(PROC,
2085 			  "ctxt%u: current Eager buffer size is invalid %u\n",
2086 			  rcd->ctxt, rcd->egrbufs.rcvtid_size);
2087 		ret = -EINVAL;
2088 		goto bail_rcvegrbuf_phys;
2089 	}
2090 
2091 	for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
2092 		hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER,
2093 			     rcd->egrbufs.rcvtids[idx].dma, order);
2094 		cond_resched();
2095 	}
2096 
2097 	return 0;
2098 
2099 bail_rcvegrbuf_phys:
2100 	for (idx = 0; idx < rcd->egrbufs.alloced &&
2101 	     rcd->egrbufs.buffers[idx].addr;
2102 	     idx++) {
2103 		dma_free_coherent(&dd->pcidev->dev,
2104 				  rcd->egrbufs.buffers[idx].len,
2105 				  rcd->egrbufs.buffers[idx].addr,
2106 				  rcd->egrbufs.buffers[idx].dma);
2107 		rcd->egrbufs.buffers[idx].addr = NULL;
2108 		rcd->egrbufs.buffers[idx].dma = 0;
2109 		rcd->egrbufs.buffers[idx].len = 0;
2110 	}
2111 
2112 	return ret;
2113 }
2114