1 /* 2 * Copyright(c) 2015 - 2018 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 #include <linux/pci.h> 49 #include <linux/netdevice.h> 50 #include <linux/vmalloc.h> 51 #include <linux/delay.h> 52 #include <linux/xarray.h> 53 #include <linux/module.h> 54 #include <linux/printk.h> 55 #include <linux/hrtimer.h> 56 #include <linux/bitmap.h> 57 #include <linux/numa.h> 58 #include <rdma/rdma_vt.h> 59 60 #include "hfi.h" 61 #include "device.h" 62 #include "common.h" 63 #include "trace.h" 64 #include "mad.h" 65 #include "sdma.h" 66 #include "debugfs.h" 67 #include "verbs.h" 68 #include "aspm.h" 69 #include "affinity.h" 70 #include "vnic.h" 71 #include "exp_rcv.h" 72 73 #undef pr_fmt 74 #define pr_fmt(fmt) DRIVER_NAME ": " fmt 75 76 /* 77 * min buffers we want to have per context, after driver 78 */ 79 #define HFI1_MIN_USER_CTXT_BUFCNT 7 80 81 #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */ 82 #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */ 83 84 #define NUM_IB_PORTS 1 85 86 /* 87 * Number of user receive contexts we are configured to use (to allow for more 88 * pio buffers per ctxt, etc.) Zero means use one user context per CPU. 89 */ 90 int num_user_contexts = -1; 91 module_param_named(num_user_contexts, num_user_contexts, int, 0444); 92 MODULE_PARM_DESC( 93 num_user_contexts, "Set max number of user contexts to use (default: -1 will use the real (non-HT) CPU count)"); 94 95 uint krcvqs[RXE_NUM_DATA_VL]; 96 int krcvqsset; 97 module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO); 98 MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL"); 99 100 /* computed based on above array */ 101 unsigned long n_krcvqs; 102 103 static unsigned hfi1_rcvarr_split = 25; 104 module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO); 105 MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers"); 106 107 static uint eager_buffer_size = (8 << 20); /* 8MB */ 108 module_param(eager_buffer_size, uint, S_IRUGO); 109 MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 8MB"); 110 111 static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */ 112 module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO); 113 MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)"); 114 115 static uint hfi1_hdrq_entsize = 32; 116 module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, 0444); 117 MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B, 32 - 128B (default)"); 118 119 unsigned int user_credit_return_threshold = 33; /* default is 33% */ 120 module_param(user_credit_return_threshold, uint, S_IRUGO); 121 MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)"); 122 123 DEFINE_XARRAY_FLAGS(hfi1_dev_table, XA_FLAGS_ALLOC | XA_FLAGS_LOCK_IRQ); 124 125 static int hfi1_create_kctxt(struct hfi1_devdata *dd, 126 struct hfi1_pportdata *ppd) 127 { 128 struct hfi1_ctxtdata *rcd; 129 int ret; 130 131 /* Control context has to be always 0 */ 132 BUILD_BUG_ON(HFI1_CTRL_CTXT != 0); 133 134 ret = hfi1_create_ctxtdata(ppd, dd->node, &rcd); 135 if (ret < 0) { 136 dd_dev_err(dd, "Kernel receive context allocation failed\n"); 137 return ret; 138 } 139 140 /* 141 * Set up the kernel context flags here and now because they use 142 * default values for all receive side memories. User contexts will 143 * be handled as they are created. 144 */ 145 rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) | 146 HFI1_CAP_KGET(NODROP_RHQ_FULL) | 147 HFI1_CAP_KGET(NODROP_EGR_FULL) | 148 HFI1_CAP_KGET(DMA_RTAIL); 149 150 /* Control context must use DMA_RTAIL */ 151 if (rcd->ctxt == HFI1_CTRL_CTXT) 152 rcd->flags |= HFI1_CAP_DMA_RTAIL; 153 rcd->fast_handler = get_dma_rtail_setting(rcd) ? 154 handle_receive_interrupt_dma_rtail : 155 handle_receive_interrupt_nodma_rtail; 156 rcd->slow_handler = handle_receive_interrupt; 157 158 hfi1_set_seq_cnt(rcd, 1); 159 160 rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node); 161 if (!rcd->sc) { 162 dd_dev_err(dd, "Kernel send context allocation failed\n"); 163 return -ENOMEM; 164 } 165 hfi1_init_ctxt(rcd->sc); 166 167 return 0; 168 } 169 170 /* 171 * Create the receive context array and one or more kernel contexts 172 */ 173 int hfi1_create_kctxts(struct hfi1_devdata *dd) 174 { 175 u16 i; 176 int ret; 177 178 dd->rcd = kcalloc_node(dd->num_rcv_contexts, sizeof(*dd->rcd), 179 GFP_KERNEL, dd->node); 180 if (!dd->rcd) 181 return -ENOMEM; 182 183 for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) { 184 ret = hfi1_create_kctxt(dd, dd->pport); 185 if (ret) 186 goto bail; 187 } 188 189 return 0; 190 bail: 191 for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) 192 hfi1_free_ctxt(dd->rcd[i]); 193 194 /* All the contexts should be freed, free the array */ 195 kfree(dd->rcd); 196 dd->rcd = NULL; 197 return ret; 198 } 199 200 /* 201 * Helper routines for the receive context reference count (rcd and uctxt). 202 */ 203 static void hfi1_rcd_init(struct hfi1_ctxtdata *rcd) 204 { 205 kref_init(&rcd->kref); 206 } 207 208 /** 209 * hfi1_rcd_free - When reference is zero clean up. 210 * @kref: pointer to an initialized rcd data structure 211 * 212 */ 213 static void hfi1_rcd_free(struct kref *kref) 214 { 215 unsigned long flags; 216 struct hfi1_ctxtdata *rcd = 217 container_of(kref, struct hfi1_ctxtdata, kref); 218 219 spin_lock_irqsave(&rcd->dd->uctxt_lock, flags); 220 rcd->dd->rcd[rcd->ctxt] = NULL; 221 spin_unlock_irqrestore(&rcd->dd->uctxt_lock, flags); 222 223 hfi1_free_ctxtdata(rcd->dd, rcd); 224 225 kfree(rcd); 226 } 227 228 /** 229 * hfi1_rcd_put - decrement reference for rcd 230 * @rcd: pointer to an initialized rcd data structure 231 * 232 * Use this to put a reference after the init. 233 */ 234 int hfi1_rcd_put(struct hfi1_ctxtdata *rcd) 235 { 236 if (rcd) 237 return kref_put(&rcd->kref, hfi1_rcd_free); 238 239 return 0; 240 } 241 242 /** 243 * hfi1_rcd_get - increment reference for rcd 244 * @rcd: pointer to an initialized rcd data structure 245 * 246 * Use this to get a reference after the init. 247 * 248 * Return : reflect kref_get_unless_zero(), which returns non-zero on 249 * increment, otherwise 0. 250 */ 251 int hfi1_rcd_get(struct hfi1_ctxtdata *rcd) 252 { 253 return kref_get_unless_zero(&rcd->kref); 254 } 255 256 /** 257 * allocate_rcd_index - allocate an rcd index from the rcd array 258 * @dd: pointer to a valid devdata structure 259 * @rcd: rcd data structure to assign 260 * @index: pointer to index that is allocated 261 * 262 * Find an empty index in the rcd array, and assign the given rcd to it. 263 * If the array is full, we are EBUSY. 264 * 265 */ 266 static int allocate_rcd_index(struct hfi1_devdata *dd, 267 struct hfi1_ctxtdata *rcd, u16 *index) 268 { 269 unsigned long flags; 270 u16 ctxt; 271 272 spin_lock_irqsave(&dd->uctxt_lock, flags); 273 for (ctxt = 0; ctxt < dd->num_rcv_contexts; ctxt++) 274 if (!dd->rcd[ctxt]) 275 break; 276 277 if (ctxt < dd->num_rcv_contexts) { 278 rcd->ctxt = ctxt; 279 dd->rcd[ctxt] = rcd; 280 hfi1_rcd_init(rcd); 281 } 282 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 283 284 if (ctxt >= dd->num_rcv_contexts) 285 return -EBUSY; 286 287 *index = ctxt; 288 289 return 0; 290 } 291 292 /** 293 * hfi1_rcd_get_by_index_safe - validate the ctxt index before accessing the 294 * array 295 * @dd: pointer to a valid devdata structure 296 * @ctxt: the index of an possilbe rcd 297 * 298 * This is a wrapper for hfi1_rcd_get_by_index() to validate that the given 299 * ctxt index is valid. 300 * 301 * The caller is responsible for making the _put(). 302 * 303 */ 304 struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd, 305 u16 ctxt) 306 { 307 if (ctxt < dd->num_rcv_contexts) 308 return hfi1_rcd_get_by_index(dd, ctxt); 309 310 return NULL; 311 } 312 313 /** 314 * hfi1_rcd_get_by_index 315 * @dd: pointer to a valid devdata structure 316 * @ctxt: the index of an possilbe rcd 317 * 318 * We need to protect access to the rcd array. If access is needed to 319 * one or more index, get the protecting spinlock and then increment the 320 * kref. 321 * 322 * The caller is responsible for making the _put(). 323 * 324 */ 325 struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt) 326 { 327 unsigned long flags; 328 struct hfi1_ctxtdata *rcd = NULL; 329 330 spin_lock_irqsave(&dd->uctxt_lock, flags); 331 if (dd->rcd[ctxt]) { 332 rcd = dd->rcd[ctxt]; 333 if (!hfi1_rcd_get(rcd)) 334 rcd = NULL; 335 } 336 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 337 338 return rcd; 339 } 340 341 /* 342 * Common code for user and kernel context create and setup. 343 * NOTE: the initial kref is done here (hf1_rcd_init()). 344 */ 345 int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa, 346 struct hfi1_ctxtdata **context) 347 { 348 struct hfi1_devdata *dd = ppd->dd; 349 struct hfi1_ctxtdata *rcd; 350 unsigned kctxt_ngroups = 0; 351 u32 base; 352 353 if (dd->rcv_entries.nctxt_extra > 354 dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt) 355 kctxt_ngroups = (dd->rcv_entries.nctxt_extra - 356 (dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt)); 357 rcd = kzalloc_node(sizeof(*rcd), GFP_KERNEL, numa); 358 if (rcd) { 359 u32 rcvtids, max_entries; 360 u16 ctxt; 361 int ret; 362 363 ret = allocate_rcd_index(dd, rcd, &ctxt); 364 if (ret) { 365 *context = NULL; 366 kfree(rcd); 367 return ret; 368 } 369 370 INIT_LIST_HEAD(&rcd->qp_wait_list); 371 hfi1_exp_tid_group_init(rcd); 372 rcd->ppd = ppd; 373 rcd->dd = dd; 374 rcd->numa_id = numa; 375 rcd->rcv_array_groups = dd->rcv_entries.ngroups; 376 rcd->rhf_rcv_function_map = normal_rhf_rcv_functions; 377 378 mutex_init(&rcd->exp_mutex); 379 spin_lock_init(&rcd->exp_lock); 380 INIT_LIST_HEAD(&rcd->flow_queue.queue_head); 381 INIT_LIST_HEAD(&rcd->rarr_queue.queue_head); 382 383 hfi1_cdbg(PROC, "setting up context %u\n", rcd->ctxt); 384 385 /* 386 * Calculate the context's RcvArray entry starting point. 387 * We do this here because we have to take into account all 388 * the RcvArray entries that previous context would have 389 * taken and we have to account for any extra groups assigned 390 * to the static (kernel) or dynamic (vnic/user) contexts. 391 */ 392 if (ctxt < dd->first_dyn_alloc_ctxt) { 393 if (ctxt < kctxt_ngroups) { 394 base = ctxt * (dd->rcv_entries.ngroups + 1); 395 rcd->rcv_array_groups++; 396 } else { 397 base = kctxt_ngroups + 398 (ctxt * dd->rcv_entries.ngroups); 399 } 400 } else { 401 u16 ct = ctxt - dd->first_dyn_alloc_ctxt; 402 403 base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) + 404 kctxt_ngroups); 405 if (ct < dd->rcv_entries.nctxt_extra) { 406 base += ct * (dd->rcv_entries.ngroups + 1); 407 rcd->rcv_array_groups++; 408 } else { 409 base += dd->rcv_entries.nctxt_extra + 410 (ct * dd->rcv_entries.ngroups); 411 } 412 } 413 rcd->eager_base = base * dd->rcv_entries.group_size; 414 415 rcd->rcvhdrq_cnt = rcvhdrcnt; 416 rcd->rcvhdrqentsize = hfi1_hdrq_entsize; 417 rcd->rhf_offset = 418 rcd->rcvhdrqentsize - sizeof(u64) / sizeof(u32); 419 /* 420 * Simple Eager buffer allocation: we have already pre-allocated 421 * the number of RcvArray entry groups. Each ctxtdata structure 422 * holds the number of groups for that context. 423 * 424 * To follow CSR requirements and maintain cacheline alignment, 425 * make sure all sizes and bases are multiples of group_size. 426 * 427 * The expected entry count is what is left after assigning 428 * eager. 429 */ 430 max_entries = rcd->rcv_array_groups * 431 dd->rcv_entries.group_size; 432 rcvtids = ((max_entries * hfi1_rcvarr_split) / 100); 433 rcd->egrbufs.count = round_down(rcvtids, 434 dd->rcv_entries.group_size); 435 if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) { 436 dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n", 437 rcd->ctxt); 438 rcd->egrbufs.count = MAX_EAGER_ENTRIES; 439 } 440 hfi1_cdbg(PROC, 441 "ctxt%u: max Eager buffer RcvArray entries: %u\n", 442 rcd->ctxt, rcd->egrbufs.count); 443 444 /* 445 * Allocate array that will hold the eager buffer accounting 446 * data. 447 * This will allocate the maximum possible buffer count based 448 * on the value of the RcvArray split parameter. 449 * The resulting value will be rounded down to the closest 450 * multiple of dd->rcv_entries.group_size. 451 */ 452 rcd->egrbufs.buffers = 453 kcalloc_node(rcd->egrbufs.count, 454 sizeof(*rcd->egrbufs.buffers), 455 GFP_KERNEL, numa); 456 if (!rcd->egrbufs.buffers) 457 goto bail; 458 rcd->egrbufs.rcvtids = 459 kcalloc_node(rcd->egrbufs.count, 460 sizeof(*rcd->egrbufs.rcvtids), 461 GFP_KERNEL, numa); 462 if (!rcd->egrbufs.rcvtids) 463 goto bail; 464 rcd->egrbufs.size = eager_buffer_size; 465 /* 466 * The size of the buffers programmed into the RcvArray 467 * entries needs to be big enough to handle the highest 468 * MTU supported. 469 */ 470 if (rcd->egrbufs.size < hfi1_max_mtu) { 471 rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu); 472 hfi1_cdbg(PROC, 473 "ctxt%u: eager bufs size too small. Adjusting to %u\n", 474 rcd->ctxt, rcd->egrbufs.size); 475 } 476 rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE; 477 478 /* Applicable only for statically created kernel contexts */ 479 if (ctxt < dd->first_dyn_alloc_ctxt) { 480 rcd->opstats = kzalloc_node(sizeof(*rcd->opstats), 481 GFP_KERNEL, numa); 482 if (!rcd->opstats) 483 goto bail; 484 485 /* Initialize TID flow generations for the context */ 486 hfi1_kern_init_ctxt_generations(rcd); 487 } 488 489 *context = rcd; 490 return 0; 491 } 492 493 bail: 494 *context = NULL; 495 hfi1_free_ctxt(rcd); 496 return -ENOMEM; 497 } 498 499 /** 500 * hfi1_free_ctxt 501 * @rcd: pointer to an initialized rcd data structure 502 * 503 * This wrapper is the free function that matches hfi1_create_ctxtdata(). 504 * When a context is done being used (kernel or user), this function is called 505 * for the "final" put to match the kref init from hf1i_create_ctxtdata(). 506 * Other users of the context do a get/put sequence to make sure that the 507 * structure isn't removed while in use. 508 */ 509 void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd) 510 { 511 hfi1_rcd_put(rcd); 512 } 513 514 /* 515 * Select the largest ccti value over all SLs to determine the intra- 516 * packet gap for the link. 517 * 518 * called with cca_timer_lock held (to protect access to cca_timer 519 * array), and rcu_read_lock() (to protect access to cc_state). 520 */ 521 void set_link_ipg(struct hfi1_pportdata *ppd) 522 { 523 struct hfi1_devdata *dd = ppd->dd; 524 struct cc_state *cc_state; 525 int i; 526 u16 cce, ccti_limit, max_ccti = 0; 527 u16 shift, mult; 528 u64 src; 529 u32 current_egress_rate; /* Mbits /sec */ 530 u32 max_pkt_time; 531 /* 532 * max_pkt_time is the maximum packet egress time in units 533 * of the fabric clock period 1/(805 MHz). 534 */ 535 536 cc_state = get_cc_state(ppd); 537 538 if (!cc_state) 539 /* 540 * This should _never_ happen - rcu_read_lock() is held, 541 * and set_link_ipg() should not be called if cc_state 542 * is NULL. 543 */ 544 return; 545 546 for (i = 0; i < OPA_MAX_SLS; i++) { 547 u16 ccti = ppd->cca_timer[i].ccti; 548 549 if (ccti > max_ccti) 550 max_ccti = ccti; 551 } 552 553 ccti_limit = cc_state->cct.ccti_limit; 554 if (max_ccti > ccti_limit) 555 max_ccti = ccti_limit; 556 557 cce = cc_state->cct.entries[max_ccti].entry; 558 shift = (cce & 0xc000) >> 14; 559 mult = (cce & 0x3fff); 560 561 current_egress_rate = active_egress_rate(ppd); 562 563 max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate); 564 565 src = (max_pkt_time >> shift) * mult; 566 567 src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK; 568 src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT; 569 570 write_csr(dd, SEND_STATIC_RATE_CONTROL, src); 571 } 572 573 static enum hrtimer_restart cca_timer_fn(struct hrtimer *t) 574 { 575 struct cca_timer *cca_timer; 576 struct hfi1_pportdata *ppd; 577 int sl; 578 u16 ccti_timer, ccti_min; 579 struct cc_state *cc_state; 580 unsigned long flags; 581 enum hrtimer_restart ret = HRTIMER_NORESTART; 582 583 cca_timer = container_of(t, struct cca_timer, hrtimer); 584 ppd = cca_timer->ppd; 585 sl = cca_timer->sl; 586 587 rcu_read_lock(); 588 589 cc_state = get_cc_state(ppd); 590 591 if (!cc_state) { 592 rcu_read_unlock(); 593 return HRTIMER_NORESTART; 594 } 595 596 /* 597 * 1) decrement ccti for SL 598 * 2) calculate IPG for link (set_link_ipg()) 599 * 3) restart timer, unless ccti is at min value 600 */ 601 602 ccti_min = cc_state->cong_setting.entries[sl].ccti_min; 603 ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer; 604 605 spin_lock_irqsave(&ppd->cca_timer_lock, flags); 606 607 if (cca_timer->ccti > ccti_min) { 608 cca_timer->ccti--; 609 set_link_ipg(ppd); 610 } 611 612 if (cca_timer->ccti > ccti_min) { 613 unsigned long nsec = 1024 * ccti_timer; 614 /* ccti_timer is in units of 1.024 usec */ 615 hrtimer_forward_now(t, ns_to_ktime(nsec)); 616 ret = HRTIMER_RESTART; 617 } 618 619 spin_unlock_irqrestore(&ppd->cca_timer_lock, flags); 620 rcu_read_unlock(); 621 return ret; 622 } 623 624 /* 625 * Common code for initializing the physical port structure. 626 */ 627 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd, 628 struct hfi1_devdata *dd, u8 hw_pidx, u8 port) 629 { 630 int i; 631 uint default_pkey_idx; 632 struct cc_state *cc_state; 633 634 ppd->dd = dd; 635 ppd->hw_pidx = hw_pidx; 636 ppd->port = port; /* IB port number, not index */ 637 ppd->prev_link_width = LINK_WIDTH_DEFAULT; 638 /* 639 * There are C_VL_COUNT number of PortVLXmitWait counters. 640 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter. 641 */ 642 for (i = 0; i < C_VL_COUNT + 1; i++) { 643 ppd->port_vl_xmit_wait_last[i] = 0; 644 ppd->vl_xmit_flit_cnt[i] = 0; 645 } 646 647 default_pkey_idx = 1; 648 649 ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY; 650 ppd->part_enforce |= HFI1_PART_ENFORCE_IN; 651 652 if (loopback) { 653 dd_dev_err(dd, "Faking data partition 0x8001 in idx %u\n", 654 !default_pkey_idx); 655 ppd->pkeys[!default_pkey_idx] = 0x8001; 656 } 657 658 INIT_WORK(&ppd->link_vc_work, handle_verify_cap); 659 INIT_WORK(&ppd->link_up_work, handle_link_up); 660 INIT_WORK(&ppd->link_down_work, handle_link_down); 661 INIT_WORK(&ppd->freeze_work, handle_freeze); 662 INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade); 663 INIT_WORK(&ppd->sma_message_work, handle_sma_message); 664 INIT_WORK(&ppd->link_bounce_work, handle_link_bounce); 665 INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link); 666 INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work); 667 INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event); 668 669 mutex_init(&ppd->hls_lock); 670 spin_lock_init(&ppd->qsfp_info.qsfp_lock); 671 672 ppd->qsfp_info.ppd = ppd; 673 ppd->sm_trap_qp = 0x0; 674 ppd->sa_qp = 0x1; 675 676 ppd->hfi1_wq = NULL; 677 678 spin_lock_init(&ppd->cca_timer_lock); 679 680 for (i = 0; i < OPA_MAX_SLS; i++) { 681 hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC, 682 HRTIMER_MODE_REL); 683 ppd->cca_timer[i].ppd = ppd; 684 ppd->cca_timer[i].sl = i; 685 ppd->cca_timer[i].ccti = 0; 686 ppd->cca_timer[i].hrtimer.function = cca_timer_fn; 687 } 688 689 ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT; 690 691 spin_lock_init(&ppd->cc_state_lock); 692 spin_lock_init(&ppd->cc_log_lock); 693 cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL); 694 RCU_INIT_POINTER(ppd->cc_state, cc_state); 695 if (!cc_state) 696 goto bail; 697 return; 698 699 bail: 700 dd_dev_err(dd, "Congestion Control Agent disabled for port %d\n", port); 701 } 702 703 /* 704 * Do initialization for device that is only needed on 705 * first detect, not on resets. 706 */ 707 static int loadtime_init(struct hfi1_devdata *dd) 708 { 709 return 0; 710 } 711 712 /** 713 * init_after_reset - re-initialize after a reset 714 * @dd: the hfi1_ib device 715 * 716 * sanity check at least some of the values after reset, and 717 * ensure no receive or transmit (explicitly, in case reset 718 * failed 719 */ 720 static int init_after_reset(struct hfi1_devdata *dd) 721 { 722 int i; 723 struct hfi1_ctxtdata *rcd; 724 /* 725 * Ensure chip does no sends or receives, tail updates, or 726 * pioavail updates while we re-initialize. This is mostly 727 * for the driver data structures, not chip registers. 728 */ 729 for (i = 0; i < dd->num_rcv_contexts; i++) { 730 rcd = hfi1_rcd_get_by_index(dd, i); 731 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS | 732 HFI1_RCVCTRL_INTRAVAIL_DIS | 733 HFI1_RCVCTRL_TAILUPD_DIS, rcd); 734 hfi1_rcd_put(rcd); 735 } 736 pio_send_control(dd, PSC_GLOBAL_DISABLE); 737 for (i = 0; i < dd->num_send_contexts; i++) 738 sc_disable(dd->send_contexts[i].sc); 739 740 return 0; 741 } 742 743 static void enable_chip(struct hfi1_devdata *dd) 744 { 745 struct hfi1_ctxtdata *rcd; 746 u32 rcvmask; 747 u16 i; 748 749 /* enable PIO send */ 750 pio_send_control(dd, PSC_GLOBAL_ENABLE); 751 752 /* 753 * Enable kernel ctxts' receive and receive interrupt. 754 * Other ctxts done as user opens and initializes them. 755 */ 756 for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) { 757 rcd = hfi1_rcd_get_by_index(dd, i); 758 if (!rcd) 759 continue; 760 rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB; 761 rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ? 762 HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS; 763 if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) 764 rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB; 765 if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_RHQ_FULL)) 766 rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB; 767 if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_EGR_FULL)) 768 rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB; 769 if (HFI1_CAP_IS_KSET(TID_RDMA)) 770 rcvmask |= HFI1_RCVCTRL_TIDFLOW_ENB; 771 hfi1_rcvctrl(dd, rcvmask, rcd); 772 sc_enable(rcd->sc); 773 hfi1_rcd_put(rcd); 774 } 775 } 776 777 /** 778 * create_workqueues - create per port workqueues 779 * @dd: the hfi1_ib device 780 */ 781 static int create_workqueues(struct hfi1_devdata *dd) 782 { 783 int pidx; 784 struct hfi1_pportdata *ppd; 785 786 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 787 ppd = dd->pport + pidx; 788 if (!ppd->hfi1_wq) { 789 ppd->hfi1_wq = 790 alloc_workqueue( 791 "hfi%d_%d", 792 WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE | 793 WQ_MEM_RECLAIM, 794 HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES, 795 dd->unit, pidx); 796 if (!ppd->hfi1_wq) 797 goto wq_error; 798 } 799 if (!ppd->link_wq) { 800 /* 801 * Make the link workqueue single-threaded to enforce 802 * serialization. 803 */ 804 ppd->link_wq = 805 alloc_workqueue( 806 "hfi_link_%d_%d", 807 WQ_SYSFS | WQ_MEM_RECLAIM | WQ_UNBOUND, 808 1, /* max_active */ 809 dd->unit, pidx); 810 if (!ppd->link_wq) 811 goto wq_error; 812 } 813 } 814 return 0; 815 wq_error: 816 pr_err("alloc_workqueue failed for port %d\n", pidx + 1); 817 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 818 ppd = dd->pport + pidx; 819 if (ppd->hfi1_wq) { 820 destroy_workqueue(ppd->hfi1_wq); 821 ppd->hfi1_wq = NULL; 822 } 823 if (ppd->link_wq) { 824 destroy_workqueue(ppd->link_wq); 825 ppd->link_wq = NULL; 826 } 827 } 828 return -ENOMEM; 829 } 830 831 /** 832 * enable_general_intr() - Enable the IRQs that will be handled by the 833 * general interrupt handler. 834 * @dd: valid devdata 835 * 836 */ 837 static void enable_general_intr(struct hfi1_devdata *dd) 838 { 839 set_intr_bits(dd, CCE_ERR_INT, MISC_ERR_INT, true); 840 set_intr_bits(dd, PIO_ERR_INT, TXE_ERR_INT, true); 841 set_intr_bits(dd, IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END, true); 842 set_intr_bits(dd, PBC_INT, GPIO_ASSERT_INT, true); 843 set_intr_bits(dd, TCRIT_INT, TCRIT_INT, true); 844 set_intr_bits(dd, IS_DC_START, IS_DC_END, true); 845 set_intr_bits(dd, IS_SENDCREDIT_START, IS_SENDCREDIT_END, true); 846 } 847 848 /** 849 * hfi1_init - do the actual initialization sequence on the chip 850 * @dd: the hfi1_ib device 851 * @reinit: re-initializing, so don't allocate new memory 852 * 853 * Do the actual initialization sequence on the chip. This is done 854 * both from the init routine called from the PCI infrastructure, and 855 * when we reset the chip, or detect that it was reset internally, 856 * or it's administratively re-enabled. 857 * 858 * Memory allocation here and in called routines is only done in 859 * the first case (reinit == 0). We have to be careful, because even 860 * without memory allocation, we need to re-write all the chip registers 861 * TIDs, etc. after the reset or enable has completed. 862 */ 863 int hfi1_init(struct hfi1_devdata *dd, int reinit) 864 { 865 int ret = 0, pidx, lastfail = 0; 866 unsigned long len; 867 u16 i; 868 struct hfi1_ctxtdata *rcd; 869 struct hfi1_pportdata *ppd; 870 871 /* Set up send low level handlers */ 872 dd->process_pio_send = hfi1_verbs_send_pio; 873 dd->process_dma_send = hfi1_verbs_send_dma; 874 dd->pio_inline_send = pio_copy; 875 dd->process_vnic_dma_send = hfi1_vnic_send_dma; 876 877 if (is_ax(dd)) { 878 atomic_set(&dd->drop_packet, DROP_PACKET_ON); 879 dd->do_drop = true; 880 } else { 881 atomic_set(&dd->drop_packet, DROP_PACKET_OFF); 882 dd->do_drop = false; 883 } 884 885 /* make sure the link is not "up" */ 886 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 887 ppd = dd->pport + pidx; 888 ppd->linkup = 0; 889 } 890 891 if (reinit) 892 ret = init_after_reset(dd); 893 else 894 ret = loadtime_init(dd); 895 if (ret) 896 goto done; 897 898 /* allocate dummy tail memory for all receive contexts */ 899 dd->rcvhdrtail_dummy_kvaddr = dma_alloc_coherent(&dd->pcidev->dev, 900 sizeof(u64), 901 &dd->rcvhdrtail_dummy_dma, 902 GFP_KERNEL); 903 904 if (!dd->rcvhdrtail_dummy_kvaddr) { 905 dd_dev_err(dd, "cannot allocate dummy tail memory\n"); 906 ret = -ENOMEM; 907 goto done; 908 } 909 910 /* dd->rcd can be NULL if early initialization failed */ 911 for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) { 912 /* 913 * Set up the (kernel) rcvhdr queue and egr TIDs. If doing 914 * re-init, the simplest way to handle this is to free 915 * existing, and re-allocate. 916 * Need to re-create rest of ctxt 0 ctxtdata as well. 917 */ 918 rcd = hfi1_rcd_get_by_index(dd, i); 919 if (!rcd) 920 continue; 921 922 rcd->do_interrupt = &handle_receive_interrupt; 923 924 lastfail = hfi1_create_rcvhdrq(dd, rcd); 925 if (!lastfail) 926 lastfail = hfi1_setup_eagerbufs(rcd); 927 if (!lastfail) 928 lastfail = hfi1_kern_exp_rcv_init(rcd, reinit); 929 if (lastfail) { 930 dd_dev_err(dd, 931 "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n"); 932 ret = lastfail; 933 } 934 /* enable IRQ */ 935 hfi1_rcd_put(rcd); 936 } 937 938 /* Allocate enough memory for user event notification. */ 939 len = PAGE_ALIGN(chip_rcv_contexts(dd) * HFI1_MAX_SHARED_CTXTS * 940 sizeof(*dd->events)); 941 dd->events = vmalloc_user(len); 942 if (!dd->events) 943 dd_dev_err(dd, "Failed to allocate user events page\n"); 944 /* 945 * Allocate a page for device and port status. 946 * Page will be shared amongst all user processes. 947 */ 948 dd->status = vmalloc_user(PAGE_SIZE); 949 if (!dd->status) 950 dd_dev_err(dd, "Failed to allocate dev status page\n"); 951 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 952 ppd = dd->pport + pidx; 953 if (dd->status) 954 /* Currently, we only have one port */ 955 ppd->statusp = &dd->status->port; 956 957 set_mtu(ppd); 958 } 959 960 /* enable chip even if we have an error, so we can debug cause */ 961 enable_chip(dd); 962 963 done: 964 /* 965 * Set status even if port serdes is not initialized 966 * so that diags will work. 967 */ 968 if (dd->status) 969 dd->status->dev |= HFI1_STATUS_CHIP_PRESENT | 970 HFI1_STATUS_INITTED; 971 if (!ret) { 972 /* enable all interrupts from the chip */ 973 enable_general_intr(dd); 974 init_qsfp_int(dd); 975 976 /* chip is OK for user apps; mark it as initialized */ 977 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 978 ppd = dd->pport + pidx; 979 980 /* 981 * start the serdes - must be after interrupts are 982 * enabled so we are notified when the link goes up 983 */ 984 lastfail = bringup_serdes(ppd); 985 if (lastfail) 986 dd_dev_info(dd, 987 "Failed to bring up port %u\n", 988 ppd->port); 989 990 /* 991 * Set status even if port serdes is not initialized 992 * so that diags will work. 993 */ 994 if (ppd->statusp) 995 *ppd->statusp |= HFI1_STATUS_CHIP_PRESENT | 996 HFI1_STATUS_INITTED; 997 if (!ppd->link_speed_enabled) 998 continue; 999 } 1000 } 1001 1002 /* if ret is non-zero, we probably should do some cleanup here... */ 1003 return ret; 1004 } 1005 1006 struct hfi1_devdata *hfi1_lookup(int unit) 1007 { 1008 return xa_load(&hfi1_dev_table, unit); 1009 } 1010 1011 /* 1012 * Stop the timers during unit shutdown, or after an error late 1013 * in initialization. 1014 */ 1015 static void stop_timers(struct hfi1_devdata *dd) 1016 { 1017 struct hfi1_pportdata *ppd; 1018 int pidx; 1019 1020 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1021 ppd = dd->pport + pidx; 1022 if (ppd->led_override_timer.function) { 1023 del_timer_sync(&ppd->led_override_timer); 1024 atomic_set(&ppd->led_override_timer_active, 0); 1025 } 1026 } 1027 } 1028 1029 /** 1030 * shutdown_device - shut down a device 1031 * @dd: the hfi1_ib device 1032 * 1033 * This is called to make the device quiet when we are about to 1034 * unload the driver, and also when the device is administratively 1035 * disabled. It does not free any data structures. 1036 * Everything it does has to be setup again by hfi1_init(dd, 1) 1037 */ 1038 static void shutdown_device(struct hfi1_devdata *dd) 1039 { 1040 struct hfi1_pportdata *ppd; 1041 struct hfi1_ctxtdata *rcd; 1042 unsigned pidx; 1043 int i; 1044 1045 if (dd->flags & HFI1_SHUTDOWN) 1046 return; 1047 dd->flags |= HFI1_SHUTDOWN; 1048 1049 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1050 ppd = dd->pport + pidx; 1051 1052 ppd->linkup = 0; 1053 if (ppd->statusp) 1054 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF | 1055 HFI1_STATUS_IB_READY); 1056 } 1057 dd->flags &= ~HFI1_INITTED; 1058 1059 /* mask and clean up interrupts */ 1060 set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, false); 1061 msix_clean_up_interrupts(dd); 1062 1063 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1064 ppd = dd->pport + pidx; 1065 for (i = 0; i < dd->num_rcv_contexts; i++) { 1066 rcd = hfi1_rcd_get_by_index(dd, i); 1067 hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS | 1068 HFI1_RCVCTRL_CTXT_DIS | 1069 HFI1_RCVCTRL_INTRAVAIL_DIS | 1070 HFI1_RCVCTRL_PKEY_DIS | 1071 HFI1_RCVCTRL_ONE_PKT_EGR_DIS, rcd); 1072 hfi1_rcd_put(rcd); 1073 } 1074 /* 1075 * Gracefully stop all sends allowing any in progress to 1076 * trickle out first. 1077 */ 1078 for (i = 0; i < dd->num_send_contexts; i++) 1079 sc_flush(dd->send_contexts[i].sc); 1080 } 1081 1082 /* 1083 * Enough for anything that's going to trickle out to have actually 1084 * done so. 1085 */ 1086 udelay(20); 1087 1088 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1089 ppd = dd->pport + pidx; 1090 1091 /* disable all contexts */ 1092 for (i = 0; i < dd->num_send_contexts; i++) 1093 sc_disable(dd->send_contexts[i].sc); 1094 /* disable the send device */ 1095 pio_send_control(dd, PSC_GLOBAL_DISABLE); 1096 1097 shutdown_led_override(ppd); 1098 1099 /* 1100 * Clear SerdesEnable. 1101 * We can't count on interrupts since we are stopping. 1102 */ 1103 hfi1_quiet_serdes(ppd); 1104 1105 if (ppd->hfi1_wq) { 1106 destroy_workqueue(ppd->hfi1_wq); 1107 ppd->hfi1_wq = NULL; 1108 } 1109 if (ppd->link_wq) { 1110 destroy_workqueue(ppd->link_wq); 1111 ppd->link_wq = NULL; 1112 } 1113 } 1114 sdma_exit(dd); 1115 } 1116 1117 /** 1118 * hfi1_free_ctxtdata - free a context's allocated data 1119 * @dd: the hfi1_ib device 1120 * @rcd: the ctxtdata structure 1121 * 1122 * free up any allocated data for a context 1123 * It should never change any chip state, or global driver state. 1124 */ 1125 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd) 1126 { 1127 u32 e; 1128 1129 if (!rcd) 1130 return; 1131 1132 if (rcd->rcvhdrq) { 1133 dma_free_coherent(&dd->pcidev->dev, rcvhdrq_size(rcd), 1134 rcd->rcvhdrq, rcd->rcvhdrq_dma); 1135 rcd->rcvhdrq = NULL; 1136 if (hfi1_rcvhdrtail_kvaddr(rcd)) { 1137 dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE, 1138 (void *)hfi1_rcvhdrtail_kvaddr(rcd), 1139 rcd->rcvhdrqtailaddr_dma); 1140 rcd->rcvhdrtail_kvaddr = NULL; 1141 } 1142 } 1143 1144 /* all the RcvArray entries should have been cleared by now */ 1145 kfree(rcd->egrbufs.rcvtids); 1146 rcd->egrbufs.rcvtids = NULL; 1147 1148 for (e = 0; e < rcd->egrbufs.alloced; e++) { 1149 if (rcd->egrbufs.buffers[e].dma) 1150 dma_free_coherent(&dd->pcidev->dev, 1151 rcd->egrbufs.buffers[e].len, 1152 rcd->egrbufs.buffers[e].addr, 1153 rcd->egrbufs.buffers[e].dma); 1154 } 1155 kfree(rcd->egrbufs.buffers); 1156 rcd->egrbufs.alloced = 0; 1157 rcd->egrbufs.buffers = NULL; 1158 1159 sc_free(rcd->sc); 1160 rcd->sc = NULL; 1161 1162 vfree(rcd->subctxt_uregbase); 1163 vfree(rcd->subctxt_rcvegrbuf); 1164 vfree(rcd->subctxt_rcvhdr_base); 1165 kfree(rcd->opstats); 1166 1167 rcd->subctxt_uregbase = NULL; 1168 rcd->subctxt_rcvegrbuf = NULL; 1169 rcd->subctxt_rcvhdr_base = NULL; 1170 rcd->opstats = NULL; 1171 } 1172 1173 /* 1174 * Release our hold on the shared asic data. If we are the last one, 1175 * return the structure to be finalized outside the lock. Must be 1176 * holding hfi1_dev_table lock. 1177 */ 1178 static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd) 1179 { 1180 struct hfi1_asic_data *ad; 1181 int other; 1182 1183 if (!dd->asic_data) 1184 return NULL; 1185 dd->asic_data->dds[dd->hfi1_id] = NULL; 1186 other = dd->hfi1_id ? 0 : 1; 1187 ad = dd->asic_data; 1188 dd->asic_data = NULL; 1189 /* return NULL if the other dd still has a link */ 1190 return ad->dds[other] ? NULL : ad; 1191 } 1192 1193 static void finalize_asic_data(struct hfi1_devdata *dd, 1194 struct hfi1_asic_data *ad) 1195 { 1196 clean_up_i2c(dd, ad); 1197 kfree(ad); 1198 } 1199 1200 /** 1201 * hfi1_clean_devdata - cleans up per-unit data structure 1202 * @dd: pointer to a valid devdata structure 1203 * 1204 * It cleans up all data structures set up by 1205 * by hfi1_alloc_devdata(). 1206 */ 1207 static void hfi1_clean_devdata(struct hfi1_devdata *dd) 1208 { 1209 struct hfi1_asic_data *ad; 1210 unsigned long flags; 1211 1212 xa_lock_irqsave(&hfi1_dev_table, flags); 1213 __xa_erase(&hfi1_dev_table, dd->unit); 1214 ad = release_asic_data(dd); 1215 xa_unlock_irqrestore(&hfi1_dev_table, flags); 1216 1217 finalize_asic_data(dd, ad); 1218 free_platform_config(dd); 1219 rcu_barrier(); /* wait for rcu callbacks to complete */ 1220 free_percpu(dd->int_counter); 1221 free_percpu(dd->rcv_limit); 1222 free_percpu(dd->send_schedule); 1223 free_percpu(dd->tx_opstats); 1224 dd->int_counter = NULL; 1225 dd->rcv_limit = NULL; 1226 dd->send_schedule = NULL; 1227 dd->tx_opstats = NULL; 1228 kfree(dd->comp_vect); 1229 dd->comp_vect = NULL; 1230 sdma_clean(dd, dd->num_sdma); 1231 rvt_dealloc_device(&dd->verbs_dev.rdi); 1232 } 1233 1234 static void __hfi1_free_devdata(struct kobject *kobj) 1235 { 1236 struct hfi1_devdata *dd = 1237 container_of(kobj, struct hfi1_devdata, kobj); 1238 1239 hfi1_clean_devdata(dd); 1240 } 1241 1242 static struct kobj_type hfi1_devdata_type = { 1243 .release = __hfi1_free_devdata, 1244 }; 1245 1246 void hfi1_free_devdata(struct hfi1_devdata *dd) 1247 { 1248 kobject_put(&dd->kobj); 1249 } 1250 1251 /** 1252 * hfi1_alloc_devdata - Allocate our primary per-unit data structure. 1253 * @pdev: Valid PCI device 1254 * @extra: How many bytes to alloc past the default 1255 * 1256 * Must be done via verbs allocator, because the verbs cleanup process 1257 * both does cleanup and free of the data structure. 1258 * "extra" is for chip-specific data. 1259 */ 1260 static struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev, 1261 size_t extra) 1262 { 1263 struct hfi1_devdata *dd; 1264 int ret, nports; 1265 1266 /* extra is * number of ports */ 1267 nports = extra / sizeof(struct hfi1_pportdata); 1268 1269 dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra, 1270 nports); 1271 if (!dd) 1272 return ERR_PTR(-ENOMEM); 1273 dd->num_pports = nports; 1274 dd->pport = (struct hfi1_pportdata *)(dd + 1); 1275 dd->pcidev = pdev; 1276 pci_set_drvdata(pdev, dd); 1277 dd->node = NUMA_NO_NODE; 1278 1279 ret = xa_alloc_irq(&hfi1_dev_table, &dd->unit, dd, xa_limit_32b, 1280 GFP_KERNEL); 1281 if (ret < 0) { 1282 dev_err(&pdev->dev, 1283 "Could not allocate unit ID: error %d\n", -ret); 1284 goto bail; 1285 } 1286 rvt_set_ibdev_name(&dd->verbs_dev.rdi, "%s_%d", class_name(), dd->unit); 1287 1288 /* 1289 * Initialize all locks for the device. This needs to be as early as 1290 * possible so locks are usable. 1291 */ 1292 spin_lock_init(&dd->sc_lock); 1293 spin_lock_init(&dd->sendctrl_lock); 1294 spin_lock_init(&dd->rcvctrl_lock); 1295 spin_lock_init(&dd->uctxt_lock); 1296 spin_lock_init(&dd->hfi1_diag_trans_lock); 1297 spin_lock_init(&dd->sc_init_lock); 1298 spin_lock_init(&dd->dc8051_memlock); 1299 seqlock_init(&dd->sc2vl_lock); 1300 spin_lock_init(&dd->sde_map_lock); 1301 spin_lock_init(&dd->pio_map_lock); 1302 mutex_init(&dd->dc8051_lock); 1303 init_waitqueue_head(&dd->event_queue); 1304 spin_lock_init(&dd->irq_src_lock); 1305 1306 dd->int_counter = alloc_percpu(u64); 1307 if (!dd->int_counter) { 1308 ret = -ENOMEM; 1309 goto bail; 1310 } 1311 1312 dd->rcv_limit = alloc_percpu(u64); 1313 if (!dd->rcv_limit) { 1314 ret = -ENOMEM; 1315 goto bail; 1316 } 1317 1318 dd->send_schedule = alloc_percpu(u64); 1319 if (!dd->send_schedule) { 1320 ret = -ENOMEM; 1321 goto bail; 1322 } 1323 1324 dd->tx_opstats = alloc_percpu(struct hfi1_opcode_stats_perctx); 1325 if (!dd->tx_opstats) { 1326 ret = -ENOMEM; 1327 goto bail; 1328 } 1329 1330 dd->comp_vect = kzalloc(sizeof(*dd->comp_vect), GFP_KERNEL); 1331 if (!dd->comp_vect) { 1332 ret = -ENOMEM; 1333 goto bail; 1334 } 1335 1336 kobject_init(&dd->kobj, &hfi1_devdata_type); 1337 return dd; 1338 1339 bail: 1340 hfi1_clean_devdata(dd); 1341 return ERR_PTR(ret); 1342 } 1343 1344 /* 1345 * Called from freeze mode handlers, and from PCI error 1346 * reporting code. Should be paranoid about state of 1347 * system and data structures. 1348 */ 1349 void hfi1_disable_after_error(struct hfi1_devdata *dd) 1350 { 1351 if (dd->flags & HFI1_INITTED) { 1352 u32 pidx; 1353 1354 dd->flags &= ~HFI1_INITTED; 1355 if (dd->pport) 1356 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1357 struct hfi1_pportdata *ppd; 1358 1359 ppd = dd->pport + pidx; 1360 if (dd->flags & HFI1_PRESENT) 1361 set_link_state(ppd, HLS_DN_DISABLE); 1362 1363 if (ppd->statusp) 1364 *ppd->statusp &= ~HFI1_STATUS_IB_READY; 1365 } 1366 } 1367 1368 /* 1369 * Mark as having had an error for driver, and also 1370 * for /sys and status word mapped to user programs. 1371 * This marks unit as not usable, until reset. 1372 */ 1373 if (dd->status) 1374 dd->status->dev |= HFI1_STATUS_HWERROR; 1375 } 1376 1377 static void remove_one(struct pci_dev *); 1378 static int init_one(struct pci_dev *, const struct pci_device_id *); 1379 static void shutdown_one(struct pci_dev *); 1380 1381 #define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: " 1382 #define PFX DRIVER_NAME ": " 1383 1384 const struct pci_device_id hfi1_pci_tbl[] = { 1385 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) }, 1386 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) }, 1387 { 0, } 1388 }; 1389 1390 MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl); 1391 1392 static struct pci_driver hfi1_pci_driver = { 1393 .name = DRIVER_NAME, 1394 .probe = init_one, 1395 .remove = remove_one, 1396 .shutdown = shutdown_one, 1397 .id_table = hfi1_pci_tbl, 1398 .err_handler = &hfi1_pci_err_handler, 1399 }; 1400 1401 static void __init compute_krcvqs(void) 1402 { 1403 int i; 1404 1405 for (i = 0; i < krcvqsset; i++) 1406 n_krcvqs += krcvqs[i]; 1407 } 1408 1409 /* 1410 * Do all the generic driver unit- and chip-independent memory 1411 * allocation and initialization. 1412 */ 1413 static int __init hfi1_mod_init(void) 1414 { 1415 int ret; 1416 1417 ret = dev_init(); 1418 if (ret) 1419 goto bail; 1420 1421 ret = node_affinity_init(); 1422 if (ret) 1423 goto bail; 1424 1425 /* validate max MTU before any devices start */ 1426 if (!valid_opa_max_mtu(hfi1_max_mtu)) { 1427 pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n", 1428 hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU); 1429 hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU; 1430 } 1431 /* valid CUs run from 1-128 in powers of 2 */ 1432 if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu)) 1433 hfi1_cu = 1; 1434 /* valid credit return threshold is 0-100, variable is unsigned */ 1435 if (user_credit_return_threshold > 100) 1436 user_credit_return_threshold = 100; 1437 1438 compute_krcvqs(); 1439 /* 1440 * sanitize receive interrupt count, time must wait until after 1441 * the hardware type is known 1442 */ 1443 if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK) 1444 rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK; 1445 /* reject invalid combinations */ 1446 if (rcv_intr_count == 0 && rcv_intr_timeout == 0) { 1447 pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n"); 1448 rcv_intr_count = 1; 1449 } 1450 if (rcv_intr_count > 1 && rcv_intr_timeout == 0) { 1451 /* 1452 * Avoid indefinite packet delivery by requiring a timeout 1453 * if count is > 1. 1454 */ 1455 pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n"); 1456 rcv_intr_timeout = 1; 1457 } 1458 if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) { 1459 /* 1460 * The dynamic algorithm expects a non-zero timeout 1461 * and a count > 1. 1462 */ 1463 pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n"); 1464 rcv_intr_dynamic = 0; 1465 } 1466 1467 /* sanitize link CRC options */ 1468 link_crc_mask &= SUPPORTED_CRCS; 1469 1470 ret = opfn_init(); 1471 if (ret < 0) { 1472 pr_err("Failed to allocate opfn_wq"); 1473 goto bail_dev; 1474 } 1475 1476 /* 1477 * These must be called before the driver is registered with 1478 * the PCI subsystem. 1479 */ 1480 hfi1_dbg_init(); 1481 ret = pci_register_driver(&hfi1_pci_driver); 1482 if (ret < 0) { 1483 pr_err("Unable to register driver: error %d\n", -ret); 1484 goto bail_dev; 1485 } 1486 goto bail; /* all OK */ 1487 1488 bail_dev: 1489 hfi1_dbg_exit(); 1490 dev_cleanup(); 1491 bail: 1492 return ret; 1493 } 1494 1495 module_init(hfi1_mod_init); 1496 1497 /* 1498 * Do the non-unit driver cleanup, memory free, etc. at unload. 1499 */ 1500 static void __exit hfi1_mod_cleanup(void) 1501 { 1502 pci_unregister_driver(&hfi1_pci_driver); 1503 opfn_exit(); 1504 node_affinity_destroy_all(); 1505 hfi1_dbg_exit(); 1506 1507 WARN_ON(!xa_empty(&hfi1_dev_table)); 1508 dispose_firmware(); /* asymmetric with obtain_firmware() */ 1509 dev_cleanup(); 1510 } 1511 1512 module_exit(hfi1_mod_cleanup); 1513 1514 /* this can only be called after a successful initialization */ 1515 static void cleanup_device_data(struct hfi1_devdata *dd) 1516 { 1517 int ctxt; 1518 int pidx; 1519 1520 /* users can't do anything more with chip */ 1521 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1522 struct hfi1_pportdata *ppd = &dd->pport[pidx]; 1523 struct cc_state *cc_state; 1524 int i; 1525 1526 if (ppd->statusp) 1527 *ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT; 1528 1529 for (i = 0; i < OPA_MAX_SLS; i++) 1530 hrtimer_cancel(&ppd->cca_timer[i].hrtimer); 1531 1532 spin_lock(&ppd->cc_state_lock); 1533 cc_state = get_cc_state_protected(ppd); 1534 RCU_INIT_POINTER(ppd->cc_state, NULL); 1535 spin_unlock(&ppd->cc_state_lock); 1536 1537 if (cc_state) 1538 kfree_rcu(cc_state, rcu); 1539 } 1540 1541 free_credit_return(dd); 1542 1543 if (dd->rcvhdrtail_dummy_kvaddr) { 1544 dma_free_coherent(&dd->pcidev->dev, sizeof(u64), 1545 (void *)dd->rcvhdrtail_dummy_kvaddr, 1546 dd->rcvhdrtail_dummy_dma); 1547 dd->rcvhdrtail_dummy_kvaddr = NULL; 1548 } 1549 1550 /* 1551 * Free any resources still in use (usually just kernel contexts) 1552 * at unload; we do for ctxtcnt, because that's what we allocate. 1553 */ 1554 for (ctxt = 0; dd->rcd && ctxt < dd->num_rcv_contexts; ctxt++) { 1555 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt]; 1556 1557 if (rcd) { 1558 hfi1_free_ctxt_rcv_groups(rcd); 1559 hfi1_free_ctxt(rcd); 1560 } 1561 } 1562 1563 kfree(dd->rcd); 1564 dd->rcd = NULL; 1565 1566 free_pio_map(dd); 1567 /* must follow rcv context free - need to remove rcv's hooks */ 1568 for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++) 1569 sc_free(dd->send_contexts[ctxt].sc); 1570 dd->num_send_contexts = 0; 1571 kfree(dd->send_contexts); 1572 dd->send_contexts = NULL; 1573 kfree(dd->hw_to_sw); 1574 dd->hw_to_sw = NULL; 1575 kfree(dd->boardname); 1576 vfree(dd->events); 1577 vfree(dd->status); 1578 } 1579 1580 /* 1581 * Clean up on unit shutdown, or error during unit load after 1582 * successful initialization. 1583 */ 1584 static void postinit_cleanup(struct hfi1_devdata *dd) 1585 { 1586 hfi1_start_cleanup(dd); 1587 hfi1_comp_vectors_clean_up(dd); 1588 hfi1_dev_affinity_clean_up(dd); 1589 1590 hfi1_pcie_ddcleanup(dd); 1591 hfi1_pcie_cleanup(dd->pcidev); 1592 1593 cleanup_device_data(dd); 1594 1595 hfi1_free_devdata(dd); 1596 } 1597 1598 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 1599 { 1600 int ret = 0, j, pidx, initfail; 1601 struct hfi1_devdata *dd; 1602 struct hfi1_pportdata *ppd; 1603 1604 /* First, lock the non-writable module parameters */ 1605 HFI1_CAP_LOCK(); 1606 1607 /* Validate dev ids */ 1608 if (!(ent->device == PCI_DEVICE_ID_INTEL0 || 1609 ent->device == PCI_DEVICE_ID_INTEL1)) { 1610 dev_err(&pdev->dev, "Failing on unknown Intel deviceid 0x%x\n", 1611 ent->device); 1612 ret = -ENODEV; 1613 goto bail; 1614 } 1615 1616 /* Allocate the dd so we can get to work */ 1617 dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS * 1618 sizeof(struct hfi1_pportdata)); 1619 if (IS_ERR(dd)) { 1620 ret = PTR_ERR(dd); 1621 goto bail; 1622 } 1623 1624 /* Validate some global module parameters */ 1625 ret = hfi1_validate_rcvhdrcnt(dd, rcvhdrcnt); 1626 if (ret) 1627 goto bail; 1628 1629 /* use the encoding function as a sanitization check */ 1630 if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) { 1631 dd_dev_err(dd, "Invalid HdrQ Entry size %u\n", 1632 hfi1_hdrq_entsize); 1633 ret = -EINVAL; 1634 goto bail; 1635 } 1636 1637 /* The receive eager buffer size must be set before the receive 1638 * contexts are created. 1639 * 1640 * Set the eager buffer size. Validate that it falls in a range 1641 * allowed by the hardware - all powers of 2 between the min and 1642 * max. The maximum valid MTU is within the eager buffer range 1643 * so we do not need to cap the max_mtu by an eager buffer size 1644 * setting. 1645 */ 1646 if (eager_buffer_size) { 1647 if (!is_power_of_2(eager_buffer_size)) 1648 eager_buffer_size = 1649 roundup_pow_of_two(eager_buffer_size); 1650 eager_buffer_size = 1651 clamp_val(eager_buffer_size, 1652 MIN_EAGER_BUFFER * 8, 1653 MAX_EAGER_BUFFER_TOTAL); 1654 dd_dev_info(dd, "Eager buffer size %u\n", 1655 eager_buffer_size); 1656 } else { 1657 dd_dev_err(dd, "Invalid Eager buffer size of 0\n"); 1658 ret = -EINVAL; 1659 goto bail; 1660 } 1661 1662 /* restrict value of hfi1_rcvarr_split */ 1663 hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100); 1664 1665 ret = hfi1_pcie_init(dd); 1666 if (ret) 1667 goto bail; 1668 1669 /* 1670 * Do device-specific initialization, function table setup, dd 1671 * allocation, etc. 1672 */ 1673 ret = hfi1_init_dd(dd); 1674 if (ret) 1675 goto clean_bail; /* error already printed */ 1676 1677 ret = create_workqueues(dd); 1678 if (ret) 1679 goto clean_bail; 1680 1681 /* do the generic initialization */ 1682 initfail = hfi1_init(dd, 0); 1683 1684 /* setup vnic */ 1685 hfi1_vnic_setup(dd); 1686 1687 ret = hfi1_register_ib_device(dd); 1688 1689 /* 1690 * Now ready for use. this should be cleared whenever we 1691 * detect a reset, or initiate one. If earlier failure, 1692 * we still create devices, so diags, etc. can be used 1693 * to determine cause of problem. 1694 */ 1695 if (!initfail && !ret) { 1696 dd->flags |= HFI1_INITTED; 1697 /* create debufs files after init and ib register */ 1698 hfi1_dbg_ibdev_init(&dd->verbs_dev); 1699 } 1700 1701 j = hfi1_device_create(dd); 1702 if (j) 1703 dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j); 1704 1705 if (initfail || ret) { 1706 msix_clean_up_interrupts(dd); 1707 stop_timers(dd); 1708 flush_workqueue(ib_wq); 1709 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1710 hfi1_quiet_serdes(dd->pport + pidx); 1711 ppd = dd->pport + pidx; 1712 if (ppd->hfi1_wq) { 1713 destroy_workqueue(ppd->hfi1_wq); 1714 ppd->hfi1_wq = NULL; 1715 } 1716 if (ppd->link_wq) { 1717 destroy_workqueue(ppd->link_wq); 1718 ppd->link_wq = NULL; 1719 } 1720 } 1721 if (!j) 1722 hfi1_device_remove(dd); 1723 if (!ret) 1724 hfi1_unregister_ib_device(dd); 1725 hfi1_vnic_cleanup(dd); 1726 postinit_cleanup(dd); 1727 if (initfail) 1728 ret = initfail; 1729 goto bail; /* everything already cleaned */ 1730 } 1731 1732 sdma_start(dd); 1733 1734 return 0; 1735 1736 clean_bail: 1737 hfi1_pcie_cleanup(pdev); 1738 bail: 1739 return ret; 1740 } 1741 1742 static void wait_for_clients(struct hfi1_devdata *dd) 1743 { 1744 /* 1745 * Remove the device init value and complete the device if there is 1746 * no clients or wait for active clients to finish. 1747 */ 1748 if (atomic_dec_and_test(&dd->user_refcount)) 1749 complete(&dd->user_comp); 1750 1751 wait_for_completion(&dd->user_comp); 1752 } 1753 1754 static void remove_one(struct pci_dev *pdev) 1755 { 1756 struct hfi1_devdata *dd = pci_get_drvdata(pdev); 1757 1758 /* close debugfs files before ib unregister */ 1759 hfi1_dbg_ibdev_exit(&dd->verbs_dev); 1760 1761 /* remove the /dev hfi1 interface */ 1762 hfi1_device_remove(dd); 1763 1764 /* wait for existing user space clients to finish */ 1765 wait_for_clients(dd); 1766 1767 /* unregister from IB core */ 1768 hfi1_unregister_ib_device(dd); 1769 1770 /* cleanup vnic */ 1771 hfi1_vnic_cleanup(dd); 1772 1773 /* 1774 * Disable the IB link, disable interrupts on the device, 1775 * clear dma engines, etc. 1776 */ 1777 shutdown_device(dd); 1778 1779 stop_timers(dd); 1780 1781 /* wait until all of our (qsfp) queue_work() calls complete */ 1782 flush_workqueue(ib_wq); 1783 1784 postinit_cleanup(dd); 1785 } 1786 1787 static void shutdown_one(struct pci_dev *pdev) 1788 { 1789 struct hfi1_devdata *dd = pci_get_drvdata(pdev); 1790 1791 shutdown_device(dd); 1792 } 1793 1794 /** 1795 * hfi1_create_rcvhdrq - create a receive header queue 1796 * @dd: the hfi1_ib device 1797 * @rcd: the context data 1798 * 1799 * This must be contiguous memory (from an i/o perspective), and must be 1800 * DMA'able (which means for some systems, it will go through an IOMMU, 1801 * or be forced into a low address range). 1802 */ 1803 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd) 1804 { 1805 unsigned amt; 1806 1807 if (!rcd->rcvhdrq) { 1808 gfp_t gfp_flags; 1809 1810 amt = rcvhdrq_size(rcd); 1811 1812 if (rcd->ctxt < dd->first_dyn_alloc_ctxt || rcd->is_vnic) 1813 gfp_flags = GFP_KERNEL; 1814 else 1815 gfp_flags = GFP_USER; 1816 rcd->rcvhdrq = dma_alloc_coherent(&dd->pcidev->dev, amt, 1817 &rcd->rcvhdrq_dma, 1818 gfp_flags | __GFP_COMP); 1819 1820 if (!rcd->rcvhdrq) { 1821 dd_dev_err(dd, 1822 "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n", 1823 amt, rcd->ctxt); 1824 goto bail; 1825 } 1826 1827 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) || 1828 HFI1_CAP_UGET_MASK(rcd->flags, DMA_RTAIL)) { 1829 rcd->rcvhdrtail_kvaddr = dma_alloc_coherent(&dd->pcidev->dev, 1830 PAGE_SIZE, 1831 &rcd->rcvhdrqtailaddr_dma, 1832 gfp_flags); 1833 if (!rcd->rcvhdrtail_kvaddr) 1834 goto bail_free; 1835 } 1836 } 1837 1838 set_hdrq_regs(rcd->dd, rcd->ctxt, rcd->rcvhdrqentsize, 1839 rcd->rcvhdrq_cnt); 1840 1841 return 0; 1842 1843 bail_free: 1844 dd_dev_err(dd, 1845 "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n", 1846 rcd->ctxt); 1847 dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq, 1848 rcd->rcvhdrq_dma); 1849 rcd->rcvhdrq = NULL; 1850 bail: 1851 return -ENOMEM; 1852 } 1853 1854 /** 1855 * allocate eager buffers, both kernel and user contexts. 1856 * @rcd: the context we are setting up. 1857 * 1858 * Allocate the eager TID buffers and program them into hip. 1859 * They are no longer completely contiguous, we do multiple allocation 1860 * calls. Otherwise we get the OOM code involved, by asking for too 1861 * much per call, with disastrous results on some kernels. 1862 */ 1863 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd) 1864 { 1865 struct hfi1_devdata *dd = rcd->dd; 1866 u32 max_entries, egrtop, alloced_bytes = 0; 1867 gfp_t gfp_flags; 1868 u16 order, idx = 0; 1869 int ret = 0; 1870 u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu); 1871 1872 /* 1873 * GFP_USER, but without GFP_FS, so buffer cache can be 1874 * coalesced (we hope); otherwise, even at order 4, 1875 * heavy filesystem activity makes these fail, and we can 1876 * use compound pages. 1877 */ 1878 gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP; 1879 1880 /* 1881 * The minimum size of the eager buffers is a groups of MTU-sized 1882 * buffers. 1883 * The global eager_buffer_size parameter is checked against the 1884 * theoretical lower limit of the value. Here, we check against the 1885 * MTU. 1886 */ 1887 if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size)) 1888 rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size; 1889 /* 1890 * If using one-pkt-per-egr-buffer, lower the eager buffer 1891 * size to the max MTU (page-aligned). 1892 */ 1893 if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) 1894 rcd->egrbufs.rcvtid_size = round_mtu; 1895 1896 /* 1897 * Eager buffers sizes of 1MB or less require smaller TID sizes 1898 * to satisfy the "multiple of 8 RcvArray entries" requirement. 1899 */ 1900 if (rcd->egrbufs.size <= (1 << 20)) 1901 rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu, 1902 rounddown_pow_of_two(rcd->egrbufs.size / 8)); 1903 1904 while (alloced_bytes < rcd->egrbufs.size && 1905 rcd->egrbufs.alloced < rcd->egrbufs.count) { 1906 rcd->egrbufs.buffers[idx].addr = 1907 dma_alloc_coherent(&dd->pcidev->dev, 1908 rcd->egrbufs.rcvtid_size, 1909 &rcd->egrbufs.buffers[idx].dma, 1910 gfp_flags); 1911 if (rcd->egrbufs.buffers[idx].addr) { 1912 rcd->egrbufs.buffers[idx].len = 1913 rcd->egrbufs.rcvtid_size; 1914 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr = 1915 rcd->egrbufs.buffers[idx].addr; 1916 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma = 1917 rcd->egrbufs.buffers[idx].dma; 1918 rcd->egrbufs.alloced++; 1919 alloced_bytes += rcd->egrbufs.rcvtid_size; 1920 idx++; 1921 } else { 1922 u32 new_size, i, j; 1923 u64 offset = 0; 1924 1925 /* 1926 * Fail the eager buffer allocation if: 1927 * - we are already using the lowest acceptable size 1928 * - we are using one-pkt-per-egr-buffer (this implies 1929 * that we are accepting only one size) 1930 */ 1931 if (rcd->egrbufs.rcvtid_size == round_mtu || 1932 !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) { 1933 dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n", 1934 rcd->ctxt); 1935 ret = -ENOMEM; 1936 goto bail_rcvegrbuf_phys; 1937 } 1938 1939 new_size = rcd->egrbufs.rcvtid_size / 2; 1940 1941 /* 1942 * If the first attempt to allocate memory failed, don't 1943 * fail everything but continue with the next lower 1944 * size. 1945 */ 1946 if (idx == 0) { 1947 rcd->egrbufs.rcvtid_size = new_size; 1948 continue; 1949 } 1950 1951 /* 1952 * Re-partition already allocated buffers to a smaller 1953 * size. 1954 */ 1955 rcd->egrbufs.alloced = 0; 1956 for (i = 0, j = 0, offset = 0; j < idx; i++) { 1957 if (i >= rcd->egrbufs.count) 1958 break; 1959 rcd->egrbufs.rcvtids[i].dma = 1960 rcd->egrbufs.buffers[j].dma + offset; 1961 rcd->egrbufs.rcvtids[i].addr = 1962 rcd->egrbufs.buffers[j].addr + offset; 1963 rcd->egrbufs.alloced++; 1964 if ((rcd->egrbufs.buffers[j].dma + offset + 1965 new_size) == 1966 (rcd->egrbufs.buffers[j].dma + 1967 rcd->egrbufs.buffers[j].len)) { 1968 j++; 1969 offset = 0; 1970 } else { 1971 offset += new_size; 1972 } 1973 } 1974 rcd->egrbufs.rcvtid_size = new_size; 1975 } 1976 } 1977 rcd->egrbufs.numbufs = idx; 1978 rcd->egrbufs.size = alloced_bytes; 1979 1980 hfi1_cdbg(PROC, 1981 "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %uKB\n", 1982 rcd->ctxt, rcd->egrbufs.alloced, 1983 rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024); 1984 1985 /* 1986 * Set the contexts rcv array head update threshold to the closest 1987 * power of 2 (so we can use a mask instead of modulo) below half 1988 * the allocated entries. 1989 */ 1990 rcd->egrbufs.threshold = 1991 rounddown_pow_of_two(rcd->egrbufs.alloced / 2); 1992 /* 1993 * Compute the expected RcvArray entry base. This is done after 1994 * allocating the eager buffers in order to maximize the 1995 * expected RcvArray entries for the context. 1996 */ 1997 max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size; 1998 egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size); 1999 rcd->expected_count = max_entries - egrtop; 2000 if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2) 2001 rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2; 2002 2003 rcd->expected_base = rcd->eager_base + egrtop; 2004 hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n", 2005 rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count, 2006 rcd->eager_base, rcd->expected_base); 2007 2008 if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) { 2009 hfi1_cdbg(PROC, 2010 "ctxt%u: current Eager buffer size is invalid %u\n", 2011 rcd->ctxt, rcd->egrbufs.rcvtid_size); 2012 ret = -EINVAL; 2013 goto bail_rcvegrbuf_phys; 2014 } 2015 2016 for (idx = 0; idx < rcd->egrbufs.alloced; idx++) { 2017 hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER, 2018 rcd->egrbufs.rcvtids[idx].dma, order); 2019 cond_resched(); 2020 } 2021 2022 return 0; 2023 2024 bail_rcvegrbuf_phys: 2025 for (idx = 0; idx < rcd->egrbufs.alloced && 2026 rcd->egrbufs.buffers[idx].addr; 2027 idx++) { 2028 dma_free_coherent(&dd->pcidev->dev, 2029 rcd->egrbufs.buffers[idx].len, 2030 rcd->egrbufs.buffers[idx].addr, 2031 rcd->egrbufs.buffers[idx].dma); 2032 rcd->egrbufs.buffers[idx].addr = NULL; 2033 rcd->egrbufs.buffers[idx].dma = 0; 2034 rcd->egrbufs.buffers[idx].len = 0; 2035 } 2036 2037 return ret; 2038 } 2039