xref: /openbmc/linux/drivers/infiniband/hw/hfi1/init.c (revision c4a11bf4)
1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
2 /*
3  * Copyright(c) 2015 - 2020 Intel Corporation.
4  * Copyright(c) 2021 Cornelis Networks.
5  */
6 
7 #include <linux/pci.h>
8 #include <linux/netdevice.h>
9 #include <linux/vmalloc.h>
10 #include <linux/delay.h>
11 #include <linux/xarray.h>
12 #include <linux/module.h>
13 #include <linux/printk.h>
14 #include <linux/hrtimer.h>
15 #include <linux/bitmap.h>
16 #include <linux/numa.h>
17 #include <rdma/rdma_vt.h>
18 
19 #include "hfi.h"
20 #include "device.h"
21 #include "common.h"
22 #include "trace.h"
23 #include "mad.h"
24 #include "sdma.h"
25 #include "debugfs.h"
26 #include "verbs.h"
27 #include "aspm.h"
28 #include "affinity.h"
29 #include "vnic.h"
30 #include "exp_rcv.h"
31 #include "netdev.h"
32 
33 #undef pr_fmt
34 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
35 
36 /*
37  * min buffers we want to have per context, after driver
38  */
39 #define HFI1_MIN_USER_CTXT_BUFCNT 7
40 
41 #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
42 #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */
43 
44 #define NUM_IB_PORTS 1
45 
46 /*
47  * Number of user receive contexts we are configured to use (to allow for more
48  * pio buffers per ctxt, etc.)  Zero means use one user context per CPU.
49  */
50 int num_user_contexts = -1;
51 module_param_named(num_user_contexts, num_user_contexts, int, 0444);
52 MODULE_PARM_DESC(
53 	num_user_contexts, "Set max number of user contexts to use (default: -1 will use the real (non-HT) CPU count)");
54 
55 uint krcvqs[RXE_NUM_DATA_VL];
56 int krcvqsset;
57 module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO);
58 MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL");
59 
60 /* computed based on above array */
61 unsigned long n_krcvqs;
62 
63 static unsigned hfi1_rcvarr_split = 25;
64 module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
65 MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");
66 
67 static uint eager_buffer_size = (8 << 20); /* 8MB */
68 module_param(eager_buffer_size, uint, S_IRUGO);
69 MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 8MB");
70 
71 static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
72 module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
73 MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");
74 
75 static uint hfi1_hdrq_entsize = 32;
76 module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, 0444);
77 MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B, 32 - 128B (default)");
78 
79 unsigned int user_credit_return_threshold = 33;	/* default is 33% */
80 module_param(user_credit_return_threshold, uint, S_IRUGO);
81 MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");
82 
83 DEFINE_XARRAY_FLAGS(hfi1_dev_table, XA_FLAGS_ALLOC | XA_FLAGS_LOCK_IRQ);
84 
85 static int hfi1_create_kctxt(struct hfi1_devdata *dd,
86 			     struct hfi1_pportdata *ppd)
87 {
88 	struct hfi1_ctxtdata *rcd;
89 	int ret;
90 
91 	/* Control context has to be always 0 */
92 	BUILD_BUG_ON(HFI1_CTRL_CTXT != 0);
93 
94 	ret = hfi1_create_ctxtdata(ppd, dd->node, &rcd);
95 	if (ret < 0) {
96 		dd_dev_err(dd, "Kernel receive context allocation failed\n");
97 		return ret;
98 	}
99 
100 	/*
101 	 * Set up the kernel context flags here and now because they use
102 	 * default values for all receive side memories.  User contexts will
103 	 * be handled as they are created.
104 	 */
105 	rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
106 		HFI1_CAP_KGET(NODROP_RHQ_FULL) |
107 		HFI1_CAP_KGET(NODROP_EGR_FULL) |
108 		HFI1_CAP_KGET(DMA_RTAIL);
109 
110 	/* Control context must use DMA_RTAIL */
111 	if (rcd->ctxt == HFI1_CTRL_CTXT)
112 		rcd->flags |= HFI1_CAP_DMA_RTAIL;
113 	rcd->fast_handler = get_dma_rtail_setting(rcd) ?
114 				handle_receive_interrupt_dma_rtail :
115 				handle_receive_interrupt_nodma_rtail;
116 	rcd->slow_handler = handle_receive_interrupt;
117 
118 	hfi1_set_seq_cnt(rcd, 1);
119 
120 	rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node);
121 	if (!rcd->sc) {
122 		dd_dev_err(dd, "Kernel send context allocation failed\n");
123 		return -ENOMEM;
124 	}
125 	hfi1_init_ctxt(rcd->sc);
126 
127 	return 0;
128 }
129 
130 /*
131  * Create the receive context array and one or more kernel contexts
132  */
133 int hfi1_create_kctxts(struct hfi1_devdata *dd)
134 {
135 	u16 i;
136 	int ret;
137 
138 	dd->rcd = kcalloc_node(dd->num_rcv_contexts, sizeof(*dd->rcd),
139 			       GFP_KERNEL, dd->node);
140 	if (!dd->rcd)
141 		return -ENOMEM;
142 
143 	for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
144 		ret = hfi1_create_kctxt(dd, dd->pport);
145 		if (ret)
146 			goto bail;
147 	}
148 
149 	return 0;
150 bail:
151 	for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i)
152 		hfi1_free_ctxt(dd->rcd[i]);
153 
154 	/* All the contexts should be freed, free the array */
155 	kfree(dd->rcd);
156 	dd->rcd = NULL;
157 	return ret;
158 }
159 
160 /*
161  * Helper routines for the receive context reference count (rcd and uctxt).
162  */
163 static void hfi1_rcd_init(struct hfi1_ctxtdata *rcd)
164 {
165 	kref_init(&rcd->kref);
166 }
167 
168 /**
169  * hfi1_rcd_free - When reference is zero clean up.
170  * @kref: pointer to an initialized rcd data structure
171  *
172  */
173 static void hfi1_rcd_free(struct kref *kref)
174 {
175 	unsigned long flags;
176 	struct hfi1_ctxtdata *rcd =
177 		container_of(kref, struct hfi1_ctxtdata, kref);
178 
179 	spin_lock_irqsave(&rcd->dd->uctxt_lock, flags);
180 	rcd->dd->rcd[rcd->ctxt] = NULL;
181 	spin_unlock_irqrestore(&rcd->dd->uctxt_lock, flags);
182 
183 	hfi1_free_ctxtdata(rcd->dd, rcd);
184 
185 	kfree(rcd);
186 }
187 
188 /**
189  * hfi1_rcd_put - decrement reference for rcd
190  * @rcd: pointer to an initialized rcd data structure
191  *
192  * Use this to put a reference after the init.
193  */
194 int hfi1_rcd_put(struct hfi1_ctxtdata *rcd)
195 {
196 	if (rcd)
197 		return kref_put(&rcd->kref, hfi1_rcd_free);
198 
199 	return 0;
200 }
201 
202 /**
203  * hfi1_rcd_get - increment reference for rcd
204  * @rcd: pointer to an initialized rcd data structure
205  *
206  * Use this to get a reference after the init.
207  *
208  * Return : reflect kref_get_unless_zero(), which returns non-zero on
209  * increment, otherwise 0.
210  */
211 int hfi1_rcd_get(struct hfi1_ctxtdata *rcd)
212 {
213 	return kref_get_unless_zero(&rcd->kref);
214 }
215 
216 /**
217  * allocate_rcd_index - allocate an rcd index from the rcd array
218  * @dd: pointer to a valid devdata structure
219  * @rcd: rcd data structure to assign
220  * @index: pointer to index that is allocated
221  *
222  * Find an empty index in the rcd array, and assign the given rcd to it.
223  * If the array is full, we are EBUSY.
224  *
225  */
226 static int allocate_rcd_index(struct hfi1_devdata *dd,
227 			      struct hfi1_ctxtdata *rcd, u16 *index)
228 {
229 	unsigned long flags;
230 	u16 ctxt;
231 
232 	spin_lock_irqsave(&dd->uctxt_lock, flags);
233 	for (ctxt = 0; ctxt < dd->num_rcv_contexts; ctxt++)
234 		if (!dd->rcd[ctxt])
235 			break;
236 
237 	if (ctxt < dd->num_rcv_contexts) {
238 		rcd->ctxt = ctxt;
239 		dd->rcd[ctxt] = rcd;
240 		hfi1_rcd_init(rcd);
241 	}
242 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
243 
244 	if (ctxt >= dd->num_rcv_contexts)
245 		return -EBUSY;
246 
247 	*index = ctxt;
248 
249 	return 0;
250 }
251 
252 /**
253  * hfi1_rcd_get_by_index_safe - validate the ctxt index before accessing the
254  * array
255  * @dd: pointer to a valid devdata structure
256  * @ctxt: the index of an possilbe rcd
257  *
258  * This is a wrapper for hfi1_rcd_get_by_index() to validate that the given
259  * ctxt index is valid.
260  *
261  * The caller is responsible for making the _put().
262  *
263  */
264 struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd,
265 						 u16 ctxt)
266 {
267 	if (ctxt < dd->num_rcv_contexts)
268 		return hfi1_rcd_get_by_index(dd, ctxt);
269 
270 	return NULL;
271 }
272 
273 /**
274  * hfi1_rcd_get_by_index - get by index
275  * @dd: pointer to a valid devdata structure
276  * @ctxt: the index of an possilbe rcd
277  *
278  * We need to protect access to the rcd array.  If access is needed to
279  * one or more index, get the protecting spinlock and then increment the
280  * kref.
281  *
282  * The caller is responsible for making the _put().
283  *
284  */
285 struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt)
286 {
287 	unsigned long flags;
288 	struct hfi1_ctxtdata *rcd = NULL;
289 
290 	spin_lock_irqsave(&dd->uctxt_lock, flags);
291 	if (dd->rcd[ctxt]) {
292 		rcd = dd->rcd[ctxt];
293 		if (!hfi1_rcd_get(rcd))
294 			rcd = NULL;
295 	}
296 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
297 
298 	return rcd;
299 }
300 
301 /*
302  * Common code for user and kernel context create and setup.
303  * NOTE: the initial kref is done here (hf1_rcd_init()).
304  */
305 int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa,
306 			 struct hfi1_ctxtdata **context)
307 {
308 	struct hfi1_devdata *dd = ppd->dd;
309 	struct hfi1_ctxtdata *rcd;
310 	unsigned kctxt_ngroups = 0;
311 	u32 base;
312 
313 	if (dd->rcv_entries.nctxt_extra >
314 	    dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt)
315 		kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
316 			 (dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt));
317 	rcd = kzalloc_node(sizeof(*rcd), GFP_KERNEL, numa);
318 	if (rcd) {
319 		u32 rcvtids, max_entries;
320 		u16 ctxt;
321 		int ret;
322 
323 		ret = allocate_rcd_index(dd, rcd, &ctxt);
324 		if (ret) {
325 			*context = NULL;
326 			kfree(rcd);
327 			return ret;
328 		}
329 
330 		INIT_LIST_HEAD(&rcd->qp_wait_list);
331 		hfi1_exp_tid_group_init(rcd);
332 		rcd->ppd = ppd;
333 		rcd->dd = dd;
334 		rcd->numa_id = numa;
335 		rcd->rcv_array_groups = dd->rcv_entries.ngroups;
336 		rcd->rhf_rcv_function_map = normal_rhf_rcv_functions;
337 		rcd->msix_intr = CCE_NUM_MSIX_VECTORS;
338 
339 		mutex_init(&rcd->exp_mutex);
340 		spin_lock_init(&rcd->exp_lock);
341 		INIT_LIST_HEAD(&rcd->flow_queue.queue_head);
342 		INIT_LIST_HEAD(&rcd->rarr_queue.queue_head);
343 
344 		hfi1_cdbg(PROC, "setting up context %u\n", rcd->ctxt);
345 
346 		/*
347 		 * Calculate the context's RcvArray entry starting point.
348 		 * We do this here because we have to take into account all
349 		 * the RcvArray entries that previous context would have
350 		 * taken and we have to account for any extra groups assigned
351 		 * to the static (kernel) or dynamic (vnic/user) contexts.
352 		 */
353 		if (ctxt < dd->first_dyn_alloc_ctxt) {
354 			if (ctxt < kctxt_ngroups) {
355 				base = ctxt * (dd->rcv_entries.ngroups + 1);
356 				rcd->rcv_array_groups++;
357 			} else {
358 				base = kctxt_ngroups +
359 					(ctxt * dd->rcv_entries.ngroups);
360 			}
361 		} else {
362 			u16 ct = ctxt - dd->first_dyn_alloc_ctxt;
363 
364 			base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
365 				kctxt_ngroups);
366 			if (ct < dd->rcv_entries.nctxt_extra) {
367 				base += ct * (dd->rcv_entries.ngroups + 1);
368 				rcd->rcv_array_groups++;
369 			} else {
370 				base += dd->rcv_entries.nctxt_extra +
371 					(ct * dd->rcv_entries.ngroups);
372 			}
373 		}
374 		rcd->eager_base = base * dd->rcv_entries.group_size;
375 
376 		rcd->rcvhdrq_cnt = rcvhdrcnt;
377 		rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
378 		rcd->rhf_offset =
379 			rcd->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
380 		/*
381 		 * Simple Eager buffer allocation: we have already pre-allocated
382 		 * the number of RcvArray entry groups. Each ctxtdata structure
383 		 * holds the number of groups for that context.
384 		 *
385 		 * To follow CSR requirements and maintain cacheline alignment,
386 		 * make sure all sizes and bases are multiples of group_size.
387 		 *
388 		 * The expected entry count is what is left after assigning
389 		 * eager.
390 		 */
391 		max_entries = rcd->rcv_array_groups *
392 			dd->rcv_entries.group_size;
393 		rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
394 		rcd->egrbufs.count = round_down(rcvtids,
395 						dd->rcv_entries.group_size);
396 		if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
397 			dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
398 				   rcd->ctxt);
399 			rcd->egrbufs.count = MAX_EAGER_ENTRIES;
400 		}
401 		hfi1_cdbg(PROC,
402 			  "ctxt%u: max Eager buffer RcvArray entries: %u\n",
403 			  rcd->ctxt, rcd->egrbufs.count);
404 
405 		/*
406 		 * Allocate array that will hold the eager buffer accounting
407 		 * data.
408 		 * This will allocate the maximum possible buffer count based
409 		 * on the value of the RcvArray split parameter.
410 		 * The resulting value will be rounded down to the closest
411 		 * multiple of dd->rcv_entries.group_size.
412 		 */
413 		rcd->egrbufs.buffers =
414 			kcalloc_node(rcd->egrbufs.count,
415 				     sizeof(*rcd->egrbufs.buffers),
416 				     GFP_KERNEL, numa);
417 		if (!rcd->egrbufs.buffers)
418 			goto bail;
419 		rcd->egrbufs.rcvtids =
420 			kcalloc_node(rcd->egrbufs.count,
421 				     sizeof(*rcd->egrbufs.rcvtids),
422 				     GFP_KERNEL, numa);
423 		if (!rcd->egrbufs.rcvtids)
424 			goto bail;
425 		rcd->egrbufs.size = eager_buffer_size;
426 		/*
427 		 * The size of the buffers programmed into the RcvArray
428 		 * entries needs to be big enough to handle the highest
429 		 * MTU supported.
430 		 */
431 		if (rcd->egrbufs.size < hfi1_max_mtu) {
432 			rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu);
433 			hfi1_cdbg(PROC,
434 				  "ctxt%u: eager bufs size too small. Adjusting to %u\n",
435 				    rcd->ctxt, rcd->egrbufs.size);
436 		}
437 		rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;
438 
439 		/* Applicable only for statically created kernel contexts */
440 		if (ctxt < dd->first_dyn_alloc_ctxt) {
441 			rcd->opstats = kzalloc_node(sizeof(*rcd->opstats),
442 						    GFP_KERNEL, numa);
443 			if (!rcd->opstats)
444 				goto bail;
445 
446 			/* Initialize TID flow generations for the context */
447 			hfi1_kern_init_ctxt_generations(rcd);
448 		}
449 
450 		*context = rcd;
451 		return 0;
452 	}
453 
454 bail:
455 	*context = NULL;
456 	hfi1_free_ctxt(rcd);
457 	return -ENOMEM;
458 }
459 
460 /**
461  * hfi1_free_ctxt - free context
462  * @rcd: pointer to an initialized rcd data structure
463  *
464  * This wrapper is the free function that matches hfi1_create_ctxtdata().
465  * When a context is done being used (kernel or user), this function is called
466  * for the "final" put to match the kref init from hf1i_create_ctxtdata().
467  * Other users of the context do a get/put sequence to make sure that the
468  * structure isn't removed while in use.
469  */
470 void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd)
471 {
472 	hfi1_rcd_put(rcd);
473 }
474 
475 /*
476  * Select the largest ccti value over all SLs to determine the intra-
477  * packet gap for the link.
478  *
479  * called with cca_timer_lock held (to protect access to cca_timer
480  * array), and rcu_read_lock() (to protect access to cc_state).
481  */
482 void set_link_ipg(struct hfi1_pportdata *ppd)
483 {
484 	struct hfi1_devdata *dd = ppd->dd;
485 	struct cc_state *cc_state;
486 	int i;
487 	u16 cce, ccti_limit, max_ccti = 0;
488 	u16 shift, mult;
489 	u64 src;
490 	u32 current_egress_rate; /* Mbits /sec */
491 	u32 max_pkt_time;
492 	/*
493 	 * max_pkt_time is the maximum packet egress time in units
494 	 * of the fabric clock period 1/(805 MHz).
495 	 */
496 
497 	cc_state = get_cc_state(ppd);
498 
499 	if (!cc_state)
500 		/*
501 		 * This should _never_ happen - rcu_read_lock() is held,
502 		 * and set_link_ipg() should not be called if cc_state
503 		 * is NULL.
504 		 */
505 		return;
506 
507 	for (i = 0; i < OPA_MAX_SLS; i++) {
508 		u16 ccti = ppd->cca_timer[i].ccti;
509 
510 		if (ccti > max_ccti)
511 			max_ccti = ccti;
512 	}
513 
514 	ccti_limit = cc_state->cct.ccti_limit;
515 	if (max_ccti > ccti_limit)
516 		max_ccti = ccti_limit;
517 
518 	cce = cc_state->cct.entries[max_ccti].entry;
519 	shift = (cce & 0xc000) >> 14;
520 	mult = (cce & 0x3fff);
521 
522 	current_egress_rate = active_egress_rate(ppd);
523 
524 	max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate);
525 
526 	src = (max_pkt_time >> shift) * mult;
527 
528 	src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
529 	src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;
530 
531 	write_csr(dd, SEND_STATIC_RATE_CONTROL, src);
532 }
533 
534 static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
535 {
536 	struct cca_timer *cca_timer;
537 	struct hfi1_pportdata *ppd;
538 	int sl;
539 	u16 ccti_timer, ccti_min;
540 	struct cc_state *cc_state;
541 	unsigned long flags;
542 	enum hrtimer_restart ret = HRTIMER_NORESTART;
543 
544 	cca_timer = container_of(t, struct cca_timer, hrtimer);
545 	ppd = cca_timer->ppd;
546 	sl = cca_timer->sl;
547 
548 	rcu_read_lock();
549 
550 	cc_state = get_cc_state(ppd);
551 
552 	if (!cc_state) {
553 		rcu_read_unlock();
554 		return HRTIMER_NORESTART;
555 	}
556 
557 	/*
558 	 * 1) decrement ccti for SL
559 	 * 2) calculate IPG for link (set_link_ipg())
560 	 * 3) restart timer, unless ccti is at min value
561 	 */
562 
563 	ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
564 	ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
565 
566 	spin_lock_irqsave(&ppd->cca_timer_lock, flags);
567 
568 	if (cca_timer->ccti > ccti_min) {
569 		cca_timer->ccti--;
570 		set_link_ipg(ppd);
571 	}
572 
573 	if (cca_timer->ccti > ccti_min) {
574 		unsigned long nsec = 1024 * ccti_timer;
575 		/* ccti_timer is in units of 1.024 usec */
576 		hrtimer_forward_now(t, ns_to_ktime(nsec));
577 		ret = HRTIMER_RESTART;
578 	}
579 
580 	spin_unlock_irqrestore(&ppd->cca_timer_lock, flags);
581 	rcu_read_unlock();
582 	return ret;
583 }
584 
585 /*
586  * Common code for initializing the physical port structure.
587  */
588 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
589 			 struct hfi1_devdata *dd, u8 hw_pidx, u32 port)
590 {
591 	int i;
592 	uint default_pkey_idx;
593 	struct cc_state *cc_state;
594 
595 	ppd->dd = dd;
596 	ppd->hw_pidx = hw_pidx;
597 	ppd->port = port; /* IB port number, not index */
598 	ppd->prev_link_width = LINK_WIDTH_DEFAULT;
599 	/*
600 	 * There are C_VL_COUNT number of PortVLXmitWait counters.
601 	 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
602 	 */
603 	for (i = 0; i < C_VL_COUNT + 1; i++) {
604 		ppd->port_vl_xmit_wait_last[i] = 0;
605 		ppd->vl_xmit_flit_cnt[i] = 0;
606 	}
607 
608 	default_pkey_idx = 1;
609 
610 	ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
611 	ppd->part_enforce |= HFI1_PART_ENFORCE_IN;
612 	ppd->pkeys[0] = 0x8001;
613 
614 	INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
615 	INIT_WORK(&ppd->link_up_work, handle_link_up);
616 	INIT_WORK(&ppd->link_down_work, handle_link_down);
617 	INIT_WORK(&ppd->freeze_work, handle_freeze);
618 	INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
619 	INIT_WORK(&ppd->sma_message_work, handle_sma_message);
620 	INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
621 	INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link);
622 	INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work);
623 	INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event);
624 
625 	mutex_init(&ppd->hls_lock);
626 	spin_lock_init(&ppd->qsfp_info.qsfp_lock);
627 
628 	ppd->qsfp_info.ppd = ppd;
629 	ppd->sm_trap_qp = 0x0;
630 	ppd->sa_qp = 0x1;
631 
632 	ppd->hfi1_wq = NULL;
633 
634 	spin_lock_init(&ppd->cca_timer_lock);
635 
636 	for (i = 0; i < OPA_MAX_SLS; i++) {
637 		hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
638 			     HRTIMER_MODE_REL);
639 		ppd->cca_timer[i].ppd = ppd;
640 		ppd->cca_timer[i].sl = i;
641 		ppd->cca_timer[i].ccti = 0;
642 		ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
643 	}
644 
645 	ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;
646 
647 	spin_lock_init(&ppd->cc_state_lock);
648 	spin_lock_init(&ppd->cc_log_lock);
649 	cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL);
650 	RCU_INIT_POINTER(ppd->cc_state, cc_state);
651 	if (!cc_state)
652 		goto bail;
653 	return;
654 
655 bail:
656 	dd_dev_err(dd, "Congestion Control Agent disabled for port %d\n", port);
657 }
658 
659 /*
660  * Do initialization for device that is only needed on
661  * first detect, not on resets.
662  */
663 static int loadtime_init(struct hfi1_devdata *dd)
664 {
665 	return 0;
666 }
667 
668 /**
669  * init_after_reset - re-initialize after a reset
670  * @dd: the hfi1_ib device
671  *
672  * sanity check at least some of the values after reset, and
673  * ensure no receive or transmit (explicitly, in case reset
674  * failed
675  */
676 static int init_after_reset(struct hfi1_devdata *dd)
677 {
678 	int i;
679 	struct hfi1_ctxtdata *rcd;
680 	/*
681 	 * Ensure chip does no sends or receives, tail updates, or
682 	 * pioavail updates while we re-initialize.  This is mostly
683 	 * for the driver data structures, not chip registers.
684 	 */
685 	for (i = 0; i < dd->num_rcv_contexts; i++) {
686 		rcd = hfi1_rcd_get_by_index(dd, i);
687 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
688 			     HFI1_RCVCTRL_INTRAVAIL_DIS |
689 			     HFI1_RCVCTRL_TAILUPD_DIS, rcd);
690 		hfi1_rcd_put(rcd);
691 	}
692 	pio_send_control(dd, PSC_GLOBAL_DISABLE);
693 	for (i = 0; i < dd->num_send_contexts; i++)
694 		sc_disable(dd->send_contexts[i].sc);
695 
696 	return 0;
697 }
698 
699 static void enable_chip(struct hfi1_devdata *dd)
700 {
701 	struct hfi1_ctxtdata *rcd;
702 	u32 rcvmask;
703 	u16 i;
704 
705 	/* enable PIO send */
706 	pio_send_control(dd, PSC_GLOBAL_ENABLE);
707 
708 	/*
709 	 * Enable kernel ctxts' receive and receive interrupt.
710 	 * Other ctxts done as user opens and initializes them.
711 	 */
712 	for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
713 		rcd = hfi1_rcd_get_by_index(dd, i);
714 		if (!rcd)
715 			continue;
716 		rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
717 		rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
718 			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
719 		if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
720 			rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
721 		if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_RHQ_FULL))
722 			rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
723 		if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_EGR_FULL))
724 			rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
725 		if (HFI1_CAP_IS_KSET(TID_RDMA))
726 			rcvmask |= HFI1_RCVCTRL_TIDFLOW_ENB;
727 		hfi1_rcvctrl(dd, rcvmask, rcd);
728 		sc_enable(rcd->sc);
729 		hfi1_rcd_put(rcd);
730 	}
731 }
732 
733 /**
734  * create_workqueues - create per port workqueues
735  * @dd: the hfi1_ib device
736  */
737 static int create_workqueues(struct hfi1_devdata *dd)
738 {
739 	int pidx;
740 	struct hfi1_pportdata *ppd;
741 
742 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
743 		ppd = dd->pport + pidx;
744 		if (!ppd->hfi1_wq) {
745 			ppd->hfi1_wq =
746 				alloc_workqueue(
747 				    "hfi%d_%d",
748 				    WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE |
749 				    WQ_MEM_RECLAIM,
750 				    HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES,
751 				    dd->unit, pidx);
752 			if (!ppd->hfi1_wq)
753 				goto wq_error;
754 		}
755 		if (!ppd->link_wq) {
756 			/*
757 			 * Make the link workqueue single-threaded to enforce
758 			 * serialization.
759 			 */
760 			ppd->link_wq =
761 				alloc_workqueue(
762 				    "hfi_link_%d_%d",
763 				    WQ_SYSFS | WQ_MEM_RECLAIM | WQ_UNBOUND,
764 				    1, /* max_active */
765 				    dd->unit, pidx);
766 			if (!ppd->link_wq)
767 				goto wq_error;
768 		}
769 	}
770 	return 0;
771 wq_error:
772 	pr_err("alloc_workqueue failed for port %d\n", pidx + 1);
773 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
774 		ppd = dd->pport + pidx;
775 		if (ppd->hfi1_wq) {
776 			destroy_workqueue(ppd->hfi1_wq);
777 			ppd->hfi1_wq = NULL;
778 		}
779 		if (ppd->link_wq) {
780 			destroy_workqueue(ppd->link_wq);
781 			ppd->link_wq = NULL;
782 		}
783 	}
784 	return -ENOMEM;
785 }
786 
787 /**
788  * destroy_workqueues - destroy per port workqueues
789  * @dd: the hfi1_ib device
790  */
791 static void destroy_workqueues(struct hfi1_devdata *dd)
792 {
793 	int pidx;
794 	struct hfi1_pportdata *ppd;
795 
796 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
797 		ppd = dd->pport + pidx;
798 
799 		if (ppd->hfi1_wq) {
800 			destroy_workqueue(ppd->hfi1_wq);
801 			ppd->hfi1_wq = NULL;
802 		}
803 		if (ppd->link_wq) {
804 			destroy_workqueue(ppd->link_wq);
805 			ppd->link_wq = NULL;
806 		}
807 	}
808 }
809 
810 /**
811  * enable_general_intr() - Enable the IRQs that will be handled by the
812  * general interrupt handler.
813  * @dd: valid devdata
814  *
815  */
816 static void enable_general_intr(struct hfi1_devdata *dd)
817 {
818 	set_intr_bits(dd, CCE_ERR_INT, MISC_ERR_INT, true);
819 	set_intr_bits(dd, PIO_ERR_INT, TXE_ERR_INT, true);
820 	set_intr_bits(dd, IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END, true);
821 	set_intr_bits(dd, PBC_INT, GPIO_ASSERT_INT, true);
822 	set_intr_bits(dd, TCRIT_INT, TCRIT_INT, true);
823 	set_intr_bits(dd, IS_DC_START, IS_DC_END, true);
824 	set_intr_bits(dd, IS_SENDCREDIT_START, IS_SENDCREDIT_END, true);
825 }
826 
827 /**
828  * hfi1_init - do the actual initialization sequence on the chip
829  * @dd: the hfi1_ib device
830  * @reinit: re-initializing, so don't allocate new memory
831  *
832  * Do the actual initialization sequence on the chip.  This is done
833  * both from the init routine called from the PCI infrastructure, and
834  * when we reset the chip, or detect that it was reset internally,
835  * or it's administratively re-enabled.
836  *
837  * Memory allocation here and in called routines is only done in
838  * the first case (reinit == 0).  We have to be careful, because even
839  * without memory allocation, we need to re-write all the chip registers
840  * TIDs, etc. after the reset or enable has completed.
841  */
842 int hfi1_init(struct hfi1_devdata *dd, int reinit)
843 {
844 	int ret = 0, pidx, lastfail = 0;
845 	unsigned long len;
846 	u16 i;
847 	struct hfi1_ctxtdata *rcd;
848 	struct hfi1_pportdata *ppd;
849 
850 	/* Set up send low level handlers */
851 	dd->process_pio_send = hfi1_verbs_send_pio;
852 	dd->process_dma_send = hfi1_verbs_send_dma;
853 	dd->pio_inline_send = pio_copy;
854 	dd->process_vnic_dma_send = hfi1_vnic_send_dma;
855 
856 	if (is_ax(dd)) {
857 		atomic_set(&dd->drop_packet, DROP_PACKET_ON);
858 		dd->do_drop = true;
859 	} else {
860 		atomic_set(&dd->drop_packet, DROP_PACKET_OFF);
861 		dd->do_drop = false;
862 	}
863 
864 	/* make sure the link is not "up" */
865 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
866 		ppd = dd->pport + pidx;
867 		ppd->linkup = 0;
868 	}
869 
870 	if (reinit)
871 		ret = init_after_reset(dd);
872 	else
873 		ret = loadtime_init(dd);
874 	if (ret)
875 		goto done;
876 
877 	/* allocate dummy tail memory for all receive contexts */
878 	dd->rcvhdrtail_dummy_kvaddr = dma_alloc_coherent(&dd->pcidev->dev,
879 							 sizeof(u64),
880 							 &dd->rcvhdrtail_dummy_dma,
881 							 GFP_KERNEL);
882 
883 	if (!dd->rcvhdrtail_dummy_kvaddr) {
884 		dd_dev_err(dd, "cannot allocate dummy tail memory\n");
885 		ret = -ENOMEM;
886 		goto done;
887 	}
888 
889 	/* dd->rcd can be NULL if early initialization failed */
890 	for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) {
891 		/*
892 		 * Set up the (kernel) rcvhdr queue and egr TIDs.  If doing
893 		 * re-init, the simplest way to handle this is to free
894 		 * existing, and re-allocate.
895 		 * Need to re-create rest of ctxt 0 ctxtdata as well.
896 		 */
897 		rcd = hfi1_rcd_get_by_index(dd, i);
898 		if (!rcd)
899 			continue;
900 
901 		rcd->do_interrupt = &handle_receive_interrupt;
902 
903 		lastfail = hfi1_create_rcvhdrq(dd, rcd);
904 		if (!lastfail)
905 			lastfail = hfi1_setup_eagerbufs(rcd);
906 		if (!lastfail)
907 			lastfail = hfi1_kern_exp_rcv_init(rcd, reinit);
908 		if (lastfail) {
909 			dd_dev_err(dd,
910 				   "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
911 			ret = lastfail;
912 		}
913 		/* enable IRQ */
914 		hfi1_rcd_put(rcd);
915 	}
916 
917 	/* Allocate enough memory for user event notification. */
918 	len = PAGE_ALIGN(chip_rcv_contexts(dd) * HFI1_MAX_SHARED_CTXTS *
919 			 sizeof(*dd->events));
920 	dd->events = vmalloc_user(len);
921 	if (!dd->events)
922 		dd_dev_err(dd, "Failed to allocate user events page\n");
923 	/*
924 	 * Allocate a page for device and port status.
925 	 * Page will be shared amongst all user processes.
926 	 */
927 	dd->status = vmalloc_user(PAGE_SIZE);
928 	if (!dd->status)
929 		dd_dev_err(dd, "Failed to allocate dev status page\n");
930 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
931 		ppd = dd->pport + pidx;
932 		if (dd->status)
933 			/* Currently, we only have one port */
934 			ppd->statusp = &dd->status->port;
935 
936 		set_mtu(ppd);
937 	}
938 
939 	/* enable chip even if we have an error, so we can debug cause */
940 	enable_chip(dd);
941 
942 done:
943 	/*
944 	 * Set status even if port serdes is not initialized
945 	 * so that diags will work.
946 	 */
947 	if (dd->status)
948 		dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
949 			HFI1_STATUS_INITTED;
950 	if (!ret) {
951 		/* enable all interrupts from the chip */
952 		enable_general_intr(dd);
953 		init_qsfp_int(dd);
954 
955 		/* chip is OK for user apps; mark it as initialized */
956 		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
957 			ppd = dd->pport + pidx;
958 
959 			/*
960 			 * start the serdes - must be after interrupts are
961 			 * enabled so we are notified when the link goes up
962 			 */
963 			lastfail = bringup_serdes(ppd);
964 			if (lastfail)
965 				dd_dev_info(dd,
966 					    "Failed to bring up port %u\n",
967 					    ppd->port);
968 
969 			/*
970 			 * Set status even if port serdes is not initialized
971 			 * so that diags will work.
972 			 */
973 			if (ppd->statusp)
974 				*ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
975 							HFI1_STATUS_INITTED;
976 			if (!ppd->link_speed_enabled)
977 				continue;
978 		}
979 	}
980 
981 	/* if ret is non-zero, we probably should do some cleanup here... */
982 	return ret;
983 }
984 
985 struct hfi1_devdata *hfi1_lookup(int unit)
986 {
987 	return xa_load(&hfi1_dev_table, unit);
988 }
989 
990 /*
991  * Stop the timers during unit shutdown, or after an error late
992  * in initialization.
993  */
994 static void stop_timers(struct hfi1_devdata *dd)
995 {
996 	struct hfi1_pportdata *ppd;
997 	int pidx;
998 
999 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1000 		ppd = dd->pport + pidx;
1001 		if (ppd->led_override_timer.function) {
1002 			del_timer_sync(&ppd->led_override_timer);
1003 			atomic_set(&ppd->led_override_timer_active, 0);
1004 		}
1005 	}
1006 }
1007 
1008 /**
1009  * shutdown_device - shut down a device
1010  * @dd: the hfi1_ib device
1011  *
1012  * This is called to make the device quiet when we are about to
1013  * unload the driver, and also when the device is administratively
1014  * disabled.   It does not free any data structures.
1015  * Everything it does has to be setup again by hfi1_init(dd, 1)
1016  */
1017 static void shutdown_device(struct hfi1_devdata *dd)
1018 {
1019 	struct hfi1_pportdata *ppd;
1020 	struct hfi1_ctxtdata *rcd;
1021 	unsigned pidx;
1022 	int i;
1023 
1024 	if (dd->flags & HFI1_SHUTDOWN)
1025 		return;
1026 	dd->flags |= HFI1_SHUTDOWN;
1027 
1028 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1029 		ppd = dd->pport + pidx;
1030 
1031 		ppd->linkup = 0;
1032 		if (ppd->statusp)
1033 			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
1034 					   HFI1_STATUS_IB_READY);
1035 	}
1036 	dd->flags &= ~HFI1_INITTED;
1037 
1038 	/* mask and clean up interrupts */
1039 	set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, false);
1040 	msix_clean_up_interrupts(dd);
1041 
1042 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1043 		ppd = dd->pport + pidx;
1044 		for (i = 0; i < dd->num_rcv_contexts; i++) {
1045 			rcd = hfi1_rcd_get_by_index(dd, i);
1046 			hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
1047 				     HFI1_RCVCTRL_CTXT_DIS |
1048 				     HFI1_RCVCTRL_INTRAVAIL_DIS |
1049 				     HFI1_RCVCTRL_PKEY_DIS |
1050 				     HFI1_RCVCTRL_ONE_PKT_EGR_DIS, rcd);
1051 			hfi1_rcd_put(rcd);
1052 		}
1053 		/*
1054 		 * Gracefully stop all sends allowing any in progress to
1055 		 * trickle out first.
1056 		 */
1057 		for (i = 0; i < dd->num_send_contexts; i++)
1058 			sc_flush(dd->send_contexts[i].sc);
1059 	}
1060 
1061 	/*
1062 	 * Enough for anything that's going to trickle out to have actually
1063 	 * done so.
1064 	 */
1065 	udelay(20);
1066 
1067 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1068 		ppd = dd->pport + pidx;
1069 
1070 		/* disable all contexts */
1071 		for (i = 0; i < dd->num_send_contexts; i++)
1072 			sc_disable(dd->send_contexts[i].sc);
1073 		/* disable the send device */
1074 		pio_send_control(dd, PSC_GLOBAL_DISABLE);
1075 
1076 		shutdown_led_override(ppd);
1077 
1078 		/*
1079 		 * Clear SerdesEnable.
1080 		 * We can't count on interrupts since we are stopping.
1081 		 */
1082 		hfi1_quiet_serdes(ppd);
1083 		if (ppd->hfi1_wq)
1084 			flush_workqueue(ppd->hfi1_wq);
1085 		if (ppd->link_wq)
1086 			flush_workqueue(ppd->link_wq);
1087 	}
1088 	sdma_exit(dd);
1089 }
1090 
1091 /**
1092  * hfi1_free_ctxtdata - free a context's allocated data
1093  * @dd: the hfi1_ib device
1094  * @rcd: the ctxtdata structure
1095  *
1096  * free up any allocated data for a context
1097  * It should never change any chip state, or global driver state.
1098  */
1099 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1100 {
1101 	u32 e;
1102 
1103 	if (!rcd)
1104 		return;
1105 
1106 	if (rcd->rcvhdrq) {
1107 		dma_free_coherent(&dd->pcidev->dev, rcvhdrq_size(rcd),
1108 				  rcd->rcvhdrq, rcd->rcvhdrq_dma);
1109 		rcd->rcvhdrq = NULL;
1110 		if (hfi1_rcvhdrtail_kvaddr(rcd)) {
1111 			dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
1112 					  (void *)hfi1_rcvhdrtail_kvaddr(rcd),
1113 					  rcd->rcvhdrqtailaddr_dma);
1114 			rcd->rcvhdrtail_kvaddr = NULL;
1115 		}
1116 	}
1117 
1118 	/* all the RcvArray entries should have been cleared by now */
1119 	kfree(rcd->egrbufs.rcvtids);
1120 	rcd->egrbufs.rcvtids = NULL;
1121 
1122 	for (e = 0; e < rcd->egrbufs.alloced; e++) {
1123 		if (rcd->egrbufs.buffers[e].dma)
1124 			dma_free_coherent(&dd->pcidev->dev,
1125 					  rcd->egrbufs.buffers[e].len,
1126 					  rcd->egrbufs.buffers[e].addr,
1127 					  rcd->egrbufs.buffers[e].dma);
1128 	}
1129 	kfree(rcd->egrbufs.buffers);
1130 	rcd->egrbufs.alloced = 0;
1131 	rcd->egrbufs.buffers = NULL;
1132 
1133 	sc_free(rcd->sc);
1134 	rcd->sc = NULL;
1135 
1136 	vfree(rcd->subctxt_uregbase);
1137 	vfree(rcd->subctxt_rcvegrbuf);
1138 	vfree(rcd->subctxt_rcvhdr_base);
1139 	kfree(rcd->opstats);
1140 
1141 	rcd->subctxt_uregbase = NULL;
1142 	rcd->subctxt_rcvegrbuf = NULL;
1143 	rcd->subctxt_rcvhdr_base = NULL;
1144 	rcd->opstats = NULL;
1145 }
1146 
1147 /*
1148  * Release our hold on the shared asic data.  If we are the last one,
1149  * return the structure to be finalized outside the lock.  Must be
1150  * holding hfi1_dev_table lock.
1151  */
1152 static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd)
1153 {
1154 	struct hfi1_asic_data *ad;
1155 	int other;
1156 
1157 	if (!dd->asic_data)
1158 		return NULL;
1159 	dd->asic_data->dds[dd->hfi1_id] = NULL;
1160 	other = dd->hfi1_id ? 0 : 1;
1161 	ad = dd->asic_data;
1162 	dd->asic_data = NULL;
1163 	/* return NULL if the other dd still has a link */
1164 	return ad->dds[other] ? NULL : ad;
1165 }
1166 
1167 static void finalize_asic_data(struct hfi1_devdata *dd,
1168 			       struct hfi1_asic_data *ad)
1169 {
1170 	clean_up_i2c(dd, ad);
1171 	kfree(ad);
1172 }
1173 
1174 /**
1175  * hfi1_free_devdata - cleans up and frees per-unit data structure
1176  * @dd: pointer to a valid devdata structure
1177  *
1178  * It cleans up and frees all data structures set up by
1179  * by hfi1_alloc_devdata().
1180  */
1181 void hfi1_free_devdata(struct hfi1_devdata *dd)
1182 {
1183 	struct hfi1_asic_data *ad;
1184 	unsigned long flags;
1185 
1186 	xa_lock_irqsave(&hfi1_dev_table, flags);
1187 	__xa_erase(&hfi1_dev_table, dd->unit);
1188 	ad = release_asic_data(dd);
1189 	xa_unlock_irqrestore(&hfi1_dev_table, flags);
1190 
1191 	finalize_asic_data(dd, ad);
1192 	free_platform_config(dd);
1193 	rcu_barrier(); /* wait for rcu callbacks to complete */
1194 	free_percpu(dd->int_counter);
1195 	free_percpu(dd->rcv_limit);
1196 	free_percpu(dd->send_schedule);
1197 	free_percpu(dd->tx_opstats);
1198 	dd->int_counter   = NULL;
1199 	dd->rcv_limit     = NULL;
1200 	dd->send_schedule = NULL;
1201 	dd->tx_opstats    = NULL;
1202 	kfree(dd->comp_vect);
1203 	dd->comp_vect = NULL;
1204 	sdma_clean(dd, dd->num_sdma);
1205 	rvt_dealloc_device(&dd->verbs_dev.rdi);
1206 }
1207 
1208 /**
1209  * hfi1_alloc_devdata - Allocate our primary per-unit data structure.
1210  * @pdev: Valid PCI device
1211  * @extra: How many bytes to alloc past the default
1212  *
1213  * Must be done via verbs allocator, because the verbs cleanup process
1214  * both does cleanup and free of the data structure.
1215  * "extra" is for chip-specific data.
1216  */
1217 static struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev,
1218 					       size_t extra)
1219 {
1220 	struct hfi1_devdata *dd;
1221 	int ret, nports;
1222 
1223 	/* extra is * number of ports */
1224 	nports = extra / sizeof(struct hfi1_pportdata);
1225 
1226 	dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra,
1227 						     nports);
1228 	if (!dd)
1229 		return ERR_PTR(-ENOMEM);
1230 	dd->num_pports = nports;
1231 	dd->pport = (struct hfi1_pportdata *)(dd + 1);
1232 	dd->pcidev = pdev;
1233 	pci_set_drvdata(pdev, dd);
1234 
1235 	ret = xa_alloc_irq(&hfi1_dev_table, &dd->unit, dd, xa_limit_32b,
1236 			GFP_KERNEL);
1237 	if (ret < 0) {
1238 		dev_err(&pdev->dev,
1239 			"Could not allocate unit ID: error %d\n", -ret);
1240 		goto bail;
1241 	}
1242 	rvt_set_ibdev_name(&dd->verbs_dev.rdi, "%s_%d", class_name(), dd->unit);
1243 	/*
1244 	 * If the BIOS does not have the NUMA node information set, select
1245 	 * NUMA 0 so we get consistent performance.
1246 	 */
1247 	dd->node = pcibus_to_node(pdev->bus);
1248 	if (dd->node == NUMA_NO_NODE) {
1249 		dd_dev_err(dd, "Invalid PCI NUMA node. Performance may be affected\n");
1250 		dd->node = 0;
1251 	}
1252 
1253 	/*
1254 	 * Initialize all locks for the device. This needs to be as early as
1255 	 * possible so locks are usable.
1256 	 */
1257 	spin_lock_init(&dd->sc_lock);
1258 	spin_lock_init(&dd->sendctrl_lock);
1259 	spin_lock_init(&dd->rcvctrl_lock);
1260 	spin_lock_init(&dd->uctxt_lock);
1261 	spin_lock_init(&dd->hfi1_diag_trans_lock);
1262 	spin_lock_init(&dd->sc_init_lock);
1263 	spin_lock_init(&dd->dc8051_memlock);
1264 	seqlock_init(&dd->sc2vl_lock);
1265 	spin_lock_init(&dd->sde_map_lock);
1266 	spin_lock_init(&dd->pio_map_lock);
1267 	mutex_init(&dd->dc8051_lock);
1268 	init_waitqueue_head(&dd->event_queue);
1269 	spin_lock_init(&dd->irq_src_lock);
1270 
1271 	dd->int_counter = alloc_percpu(u64);
1272 	if (!dd->int_counter) {
1273 		ret = -ENOMEM;
1274 		goto bail;
1275 	}
1276 
1277 	dd->rcv_limit = alloc_percpu(u64);
1278 	if (!dd->rcv_limit) {
1279 		ret = -ENOMEM;
1280 		goto bail;
1281 	}
1282 
1283 	dd->send_schedule = alloc_percpu(u64);
1284 	if (!dd->send_schedule) {
1285 		ret = -ENOMEM;
1286 		goto bail;
1287 	}
1288 
1289 	dd->tx_opstats = alloc_percpu(struct hfi1_opcode_stats_perctx);
1290 	if (!dd->tx_opstats) {
1291 		ret = -ENOMEM;
1292 		goto bail;
1293 	}
1294 
1295 	dd->comp_vect = kzalloc(sizeof(*dd->comp_vect), GFP_KERNEL);
1296 	if (!dd->comp_vect) {
1297 		ret = -ENOMEM;
1298 		goto bail;
1299 	}
1300 
1301 	atomic_set(&dd->ipoib_rsm_usr_num, 0);
1302 	return dd;
1303 
1304 bail:
1305 	hfi1_free_devdata(dd);
1306 	return ERR_PTR(ret);
1307 }
1308 
1309 /*
1310  * Called from freeze mode handlers, and from PCI error
1311  * reporting code.  Should be paranoid about state of
1312  * system and data structures.
1313  */
1314 void hfi1_disable_after_error(struct hfi1_devdata *dd)
1315 {
1316 	if (dd->flags & HFI1_INITTED) {
1317 		u32 pidx;
1318 
1319 		dd->flags &= ~HFI1_INITTED;
1320 		if (dd->pport)
1321 			for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1322 				struct hfi1_pportdata *ppd;
1323 
1324 				ppd = dd->pport + pidx;
1325 				if (dd->flags & HFI1_PRESENT)
1326 					set_link_state(ppd, HLS_DN_DISABLE);
1327 
1328 				if (ppd->statusp)
1329 					*ppd->statusp &= ~HFI1_STATUS_IB_READY;
1330 			}
1331 	}
1332 
1333 	/*
1334 	 * Mark as having had an error for driver, and also
1335 	 * for /sys and status word mapped to user programs.
1336 	 * This marks unit as not usable, until reset.
1337 	 */
1338 	if (dd->status)
1339 		dd->status->dev |= HFI1_STATUS_HWERROR;
1340 }
1341 
1342 static void remove_one(struct pci_dev *);
1343 static int init_one(struct pci_dev *, const struct pci_device_id *);
1344 static void shutdown_one(struct pci_dev *);
1345 
1346 #define DRIVER_LOAD_MSG "Cornelis " DRIVER_NAME " loaded: "
1347 #define PFX DRIVER_NAME ": "
1348 
1349 const struct pci_device_id hfi1_pci_tbl[] = {
1350 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
1351 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
1352 	{ 0, }
1353 };
1354 
1355 MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);
1356 
1357 static struct pci_driver hfi1_pci_driver = {
1358 	.name = DRIVER_NAME,
1359 	.probe = init_one,
1360 	.remove = remove_one,
1361 	.shutdown = shutdown_one,
1362 	.id_table = hfi1_pci_tbl,
1363 	.err_handler = &hfi1_pci_err_handler,
1364 };
1365 
1366 static void __init compute_krcvqs(void)
1367 {
1368 	int i;
1369 
1370 	for (i = 0; i < krcvqsset; i++)
1371 		n_krcvqs += krcvqs[i];
1372 }
1373 
1374 /*
1375  * Do all the generic driver unit- and chip-independent memory
1376  * allocation and initialization.
1377  */
1378 static int __init hfi1_mod_init(void)
1379 {
1380 	int ret;
1381 
1382 	ret = dev_init();
1383 	if (ret)
1384 		goto bail;
1385 
1386 	ret = node_affinity_init();
1387 	if (ret)
1388 		goto bail;
1389 
1390 	/* validate max MTU before any devices start */
1391 	if (!valid_opa_max_mtu(hfi1_max_mtu)) {
1392 		pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
1393 		       hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
1394 		hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
1395 	}
1396 	/* valid CUs run from 1-128 in powers of 2 */
1397 	if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu))
1398 		hfi1_cu = 1;
1399 	/* valid credit return threshold is 0-100, variable is unsigned */
1400 	if (user_credit_return_threshold > 100)
1401 		user_credit_return_threshold = 100;
1402 
1403 	compute_krcvqs();
1404 	/*
1405 	 * sanitize receive interrupt count, time must wait until after
1406 	 * the hardware type is known
1407 	 */
1408 	if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
1409 		rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
1410 	/* reject invalid combinations */
1411 	if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
1412 		pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
1413 		rcv_intr_count = 1;
1414 	}
1415 	if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
1416 		/*
1417 		 * Avoid indefinite packet delivery by requiring a timeout
1418 		 * if count is > 1.
1419 		 */
1420 		pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
1421 		rcv_intr_timeout = 1;
1422 	}
1423 	if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
1424 		/*
1425 		 * The dynamic algorithm expects a non-zero timeout
1426 		 * and a count > 1.
1427 		 */
1428 		pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
1429 		rcv_intr_dynamic = 0;
1430 	}
1431 
1432 	/* sanitize link CRC options */
1433 	link_crc_mask &= SUPPORTED_CRCS;
1434 
1435 	ret = opfn_init();
1436 	if (ret < 0) {
1437 		pr_err("Failed to allocate opfn_wq");
1438 		goto bail_dev;
1439 	}
1440 
1441 	/*
1442 	 * These must be called before the driver is registered with
1443 	 * the PCI subsystem.
1444 	 */
1445 	hfi1_dbg_init();
1446 	ret = pci_register_driver(&hfi1_pci_driver);
1447 	if (ret < 0) {
1448 		pr_err("Unable to register driver: error %d\n", -ret);
1449 		goto bail_dev;
1450 	}
1451 	goto bail; /* all OK */
1452 
1453 bail_dev:
1454 	hfi1_dbg_exit();
1455 	dev_cleanup();
1456 bail:
1457 	return ret;
1458 }
1459 
1460 module_init(hfi1_mod_init);
1461 
1462 /*
1463  * Do the non-unit driver cleanup, memory free, etc. at unload.
1464  */
1465 static void __exit hfi1_mod_cleanup(void)
1466 {
1467 	pci_unregister_driver(&hfi1_pci_driver);
1468 	opfn_exit();
1469 	node_affinity_destroy_all();
1470 	hfi1_dbg_exit();
1471 
1472 	WARN_ON(!xa_empty(&hfi1_dev_table));
1473 	dispose_firmware();	/* asymmetric with obtain_firmware() */
1474 	dev_cleanup();
1475 }
1476 
1477 module_exit(hfi1_mod_cleanup);
1478 
1479 /* this can only be called after a successful initialization */
1480 static void cleanup_device_data(struct hfi1_devdata *dd)
1481 {
1482 	int ctxt;
1483 	int pidx;
1484 
1485 	/* users can't do anything more with chip */
1486 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1487 		struct hfi1_pportdata *ppd = &dd->pport[pidx];
1488 		struct cc_state *cc_state;
1489 		int i;
1490 
1491 		if (ppd->statusp)
1492 			*ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;
1493 
1494 		for (i = 0; i < OPA_MAX_SLS; i++)
1495 			hrtimer_cancel(&ppd->cca_timer[i].hrtimer);
1496 
1497 		spin_lock(&ppd->cc_state_lock);
1498 		cc_state = get_cc_state_protected(ppd);
1499 		RCU_INIT_POINTER(ppd->cc_state, NULL);
1500 		spin_unlock(&ppd->cc_state_lock);
1501 
1502 		if (cc_state)
1503 			kfree_rcu(cc_state, rcu);
1504 	}
1505 
1506 	free_credit_return(dd);
1507 
1508 	if (dd->rcvhdrtail_dummy_kvaddr) {
1509 		dma_free_coherent(&dd->pcidev->dev, sizeof(u64),
1510 				  (void *)dd->rcvhdrtail_dummy_kvaddr,
1511 				  dd->rcvhdrtail_dummy_dma);
1512 		dd->rcvhdrtail_dummy_kvaddr = NULL;
1513 	}
1514 
1515 	/*
1516 	 * Free any resources still in use (usually just kernel contexts)
1517 	 * at unload; we do for ctxtcnt, because that's what we allocate.
1518 	 */
1519 	for (ctxt = 0; dd->rcd && ctxt < dd->num_rcv_contexts; ctxt++) {
1520 		struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
1521 
1522 		if (rcd) {
1523 			hfi1_free_ctxt_rcv_groups(rcd);
1524 			hfi1_free_ctxt(rcd);
1525 		}
1526 	}
1527 
1528 	kfree(dd->rcd);
1529 	dd->rcd = NULL;
1530 
1531 	free_pio_map(dd);
1532 	/* must follow rcv context free - need to remove rcv's hooks */
1533 	for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
1534 		sc_free(dd->send_contexts[ctxt].sc);
1535 	dd->num_send_contexts = 0;
1536 	kfree(dd->send_contexts);
1537 	dd->send_contexts = NULL;
1538 	kfree(dd->hw_to_sw);
1539 	dd->hw_to_sw = NULL;
1540 	kfree(dd->boardname);
1541 	vfree(dd->events);
1542 	vfree(dd->status);
1543 }
1544 
1545 /*
1546  * Clean up on unit shutdown, or error during unit load after
1547  * successful initialization.
1548  */
1549 static void postinit_cleanup(struct hfi1_devdata *dd)
1550 {
1551 	hfi1_start_cleanup(dd);
1552 	hfi1_comp_vectors_clean_up(dd);
1553 	hfi1_dev_affinity_clean_up(dd);
1554 
1555 	hfi1_pcie_ddcleanup(dd);
1556 	hfi1_pcie_cleanup(dd->pcidev);
1557 
1558 	cleanup_device_data(dd);
1559 
1560 	hfi1_free_devdata(dd);
1561 }
1562 
1563 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1564 {
1565 	int ret = 0, j, pidx, initfail;
1566 	struct hfi1_devdata *dd;
1567 	struct hfi1_pportdata *ppd;
1568 
1569 	/* First, lock the non-writable module parameters */
1570 	HFI1_CAP_LOCK();
1571 
1572 	/* Validate dev ids */
1573 	if (!(ent->device == PCI_DEVICE_ID_INTEL0 ||
1574 	      ent->device == PCI_DEVICE_ID_INTEL1)) {
1575 		dev_err(&pdev->dev, "Failing on unknown Intel deviceid 0x%x\n",
1576 			ent->device);
1577 		ret = -ENODEV;
1578 		goto bail;
1579 	}
1580 
1581 	/* Allocate the dd so we can get to work */
1582 	dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
1583 				sizeof(struct hfi1_pportdata));
1584 	if (IS_ERR(dd)) {
1585 		ret = PTR_ERR(dd);
1586 		goto bail;
1587 	}
1588 
1589 	/* Validate some global module parameters */
1590 	ret = hfi1_validate_rcvhdrcnt(dd, rcvhdrcnt);
1591 	if (ret)
1592 		goto bail;
1593 
1594 	/* use the encoding function as a sanitization check */
1595 	if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) {
1596 		dd_dev_err(dd, "Invalid HdrQ Entry size %u\n",
1597 			   hfi1_hdrq_entsize);
1598 		ret = -EINVAL;
1599 		goto bail;
1600 	}
1601 
1602 	/* The receive eager buffer size must be set before the receive
1603 	 * contexts are created.
1604 	 *
1605 	 * Set the eager buffer size.  Validate that it falls in a range
1606 	 * allowed by the hardware - all powers of 2 between the min and
1607 	 * max.  The maximum valid MTU is within the eager buffer range
1608 	 * so we do not need to cap the max_mtu by an eager buffer size
1609 	 * setting.
1610 	 */
1611 	if (eager_buffer_size) {
1612 		if (!is_power_of_2(eager_buffer_size))
1613 			eager_buffer_size =
1614 				roundup_pow_of_two(eager_buffer_size);
1615 		eager_buffer_size =
1616 			clamp_val(eager_buffer_size,
1617 				  MIN_EAGER_BUFFER * 8,
1618 				  MAX_EAGER_BUFFER_TOTAL);
1619 		dd_dev_info(dd, "Eager buffer size %u\n",
1620 			    eager_buffer_size);
1621 	} else {
1622 		dd_dev_err(dd, "Invalid Eager buffer size of 0\n");
1623 		ret = -EINVAL;
1624 		goto bail;
1625 	}
1626 
1627 	/* restrict value of hfi1_rcvarr_split */
1628 	hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);
1629 
1630 	ret = hfi1_pcie_init(dd);
1631 	if (ret)
1632 		goto bail;
1633 
1634 	/*
1635 	 * Do device-specific initialization, function table setup, dd
1636 	 * allocation, etc.
1637 	 */
1638 	ret = hfi1_init_dd(dd);
1639 	if (ret)
1640 		goto clean_bail; /* error already printed */
1641 
1642 	ret = create_workqueues(dd);
1643 	if (ret)
1644 		goto clean_bail;
1645 
1646 	/* do the generic initialization */
1647 	initfail = hfi1_init(dd, 0);
1648 
1649 	ret = hfi1_register_ib_device(dd);
1650 
1651 	/*
1652 	 * Now ready for use.  this should be cleared whenever we
1653 	 * detect a reset, or initiate one.  If earlier failure,
1654 	 * we still create devices, so diags, etc. can be used
1655 	 * to determine cause of problem.
1656 	 */
1657 	if (!initfail && !ret) {
1658 		dd->flags |= HFI1_INITTED;
1659 		/* create debufs files after init and ib register */
1660 		hfi1_dbg_ibdev_init(&dd->verbs_dev);
1661 	}
1662 
1663 	j = hfi1_device_create(dd);
1664 	if (j)
1665 		dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
1666 
1667 	if (initfail || ret) {
1668 		msix_clean_up_interrupts(dd);
1669 		stop_timers(dd);
1670 		flush_workqueue(ib_wq);
1671 		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1672 			hfi1_quiet_serdes(dd->pport + pidx);
1673 			ppd = dd->pport + pidx;
1674 			if (ppd->hfi1_wq) {
1675 				destroy_workqueue(ppd->hfi1_wq);
1676 				ppd->hfi1_wq = NULL;
1677 			}
1678 			if (ppd->link_wq) {
1679 				destroy_workqueue(ppd->link_wq);
1680 				ppd->link_wq = NULL;
1681 			}
1682 		}
1683 		if (!j)
1684 			hfi1_device_remove(dd);
1685 		if (!ret)
1686 			hfi1_unregister_ib_device(dd);
1687 		postinit_cleanup(dd);
1688 		if (initfail)
1689 			ret = initfail;
1690 		goto bail;	/* everything already cleaned */
1691 	}
1692 
1693 	sdma_start(dd);
1694 
1695 	return 0;
1696 
1697 clean_bail:
1698 	hfi1_pcie_cleanup(pdev);
1699 bail:
1700 	return ret;
1701 }
1702 
1703 static void wait_for_clients(struct hfi1_devdata *dd)
1704 {
1705 	/*
1706 	 * Remove the device init value and complete the device if there is
1707 	 * no clients or wait for active clients to finish.
1708 	 */
1709 	if (refcount_dec_and_test(&dd->user_refcount))
1710 		complete(&dd->user_comp);
1711 
1712 	wait_for_completion(&dd->user_comp);
1713 }
1714 
1715 static void remove_one(struct pci_dev *pdev)
1716 {
1717 	struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1718 
1719 	/* close debugfs files before ib unregister */
1720 	hfi1_dbg_ibdev_exit(&dd->verbs_dev);
1721 
1722 	/* remove the /dev hfi1 interface */
1723 	hfi1_device_remove(dd);
1724 
1725 	/* wait for existing user space clients to finish */
1726 	wait_for_clients(dd);
1727 
1728 	/* unregister from IB core */
1729 	hfi1_unregister_ib_device(dd);
1730 
1731 	/* free netdev data */
1732 	hfi1_free_rx(dd);
1733 
1734 	/*
1735 	 * Disable the IB link, disable interrupts on the device,
1736 	 * clear dma engines, etc.
1737 	 */
1738 	shutdown_device(dd);
1739 	destroy_workqueues(dd);
1740 
1741 	stop_timers(dd);
1742 
1743 	/* wait until all of our (qsfp) queue_work() calls complete */
1744 	flush_workqueue(ib_wq);
1745 
1746 	postinit_cleanup(dd);
1747 }
1748 
1749 static void shutdown_one(struct pci_dev *pdev)
1750 {
1751 	struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1752 
1753 	shutdown_device(dd);
1754 }
1755 
1756 /**
1757  * hfi1_create_rcvhdrq - create a receive header queue
1758  * @dd: the hfi1_ib device
1759  * @rcd: the context data
1760  *
1761  * This must be contiguous memory (from an i/o perspective), and must be
1762  * DMA'able (which means for some systems, it will go through an IOMMU,
1763  * or be forced into a low address range).
1764  */
1765 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1766 {
1767 	unsigned amt;
1768 
1769 	if (!rcd->rcvhdrq) {
1770 		gfp_t gfp_flags;
1771 
1772 		amt = rcvhdrq_size(rcd);
1773 
1774 		if (rcd->ctxt < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
1775 			gfp_flags = GFP_KERNEL;
1776 		else
1777 			gfp_flags = GFP_USER;
1778 		rcd->rcvhdrq = dma_alloc_coherent(&dd->pcidev->dev, amt,
1779 						  &rcd->rcvhdrq_dma,
1780 						  gfp_flags | __GFP_COMP);
1781 
1782 		if (!rcd->rcvhdrq) {
1783 			dd_dev_err(dd,
1784 				   "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
1785 				   amt, rcd->ctxt);
1786 			goto bail;
1787 		}
1788 
1789 		if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ||
1790 		    HFI1_CAP_UGET_MASK(rcd->flags, DMA_RTAIL)) {
1791 			rcd->rcvhdrtail_kvaddr = dma_alloc_coherent(&dd->pcidev->dev,
1792 								    PAGE_SIZE,
1793 								    &rcd->rcvhdrqtailaddr_dma,
1794 								    gfp_flags);
1795 			if (!rcd->rcvhdrtail_kvaddr)
1796 				goto bail_free;
1797 		}
1798 	}
1799 
1800 	set_hdrq_regs(rcd->dd, rcd->ctxt, rcd->rcvhdrqentsize,
1801 		      rcd->rcvhdrq_cnt);
1802 
1803 	return 0;
1804 
1805 bail_free:
1806 	dd_dev_err(dd,
1807 		   "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
1808 		   rcd->ctxt);
1809 	dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
1810 			  rcd->rcvhdrq_dma);
1811 	rcd->rcvhdrq = NULL;
1812 bail:
1813 	return -ENOMEM;
1814 }
1815 
1816 /**
1817  * hfi1_setup_eagerbufs - llocate eager buffers, both kernel and user
1818  * contexts.
1819  * @rcd: the context we are setting up.
1820  *
1821  * Allocate the eager TID buffers and program them into hip.
1822  * They are no longer completely contiguous, we do multiple allocation
1823  * calls.  Otherwise we get the OOM code involved, by asking for too
1824  * much per call, with disastrous results on some kernels.
1825  */
1826 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
1827 {
1828 	struct hfi1_devdata *dd = rcd->dd;
1829 	u32 max_entries, egrtop, alloced_bytes = 0;
1830 	gfp_t gfp_flags;
1831 	u16 order, idx = 0;
1832 	int ret = 0;
1833 	u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);
1834 
1835 	/*
1836 	 * GFP_USER, but without GFP_FS, so buffer cache can be
1837 	 * coalesced (we hope); otherwise, even at order 4,
1838 	 * heavy filesystem activity makes these fail, and we can
1839 	 * use compound pages.
1840 	 */
1841 	gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP;
1842 
1843 	/*
1844 	 * The minimum size of the eager buffers is a groups of MTU-sized
1845 	 * buffers.
1846 	 * The global eager_buffer_size parameter is checked against the
1847 	 * theoretical lower limit of the value. Here, we check against the
1848 	 * MTU.
1849 	 */
1850 	if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
1851 		rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
1852 	/*
1853 	 * If using one-pkt-per-egr-buffer, lower the eager buffer
1854 	 * size to the max MTU (page-aligned).
1855 	 */
1856 	if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
1857 		rcd->egrbufs.rcvtid_size = round_mtu;
1858 
1859 	/*
1860 	 * Eager buffers sizes of 1MB or less require smaller TID sizes
1861 	 * to satisfy the "multiple of 8 RcvArray entries" requirement.
1862 	 */
1863 	if (rcd->egrbufs.size <= (1 << 20))
1864 		rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
1865 			rounddown_pow_of_two(rcd->egrbufs.size / 8));
1866 
1867 	while (alloced_bytes < rcd->egrbufs.size &&
1868 	       rcd->egrbufs.alloced < rcd->egrbufs.count) {
1869 		rcd->egrbufs.buffers[idx].addr =
1870 			dma_alloc_coherent(&dd->pcidev->dev,
1871 					   rcd->egrbufs.rcvtid_size,
1872 					   &rcd->egrbufs.buffers[idx].dma,
1873 					   gfp_flags);
1874 		if (rcd->egrbufs.buffers[idx].addr) {
1875 			rcd->egrbufs.buffers[idx].len =
1876 				rcd->egrbufs.rcvtid_size;
1877 			rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
1878 				rcd->egrbufs.buffers[idx].addr;
1879 			rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma =
1880 				rcd->egrbufs.buffers[idx].dma;
1881 			rcd->egrbufs.alloced++;
1882 			alloced_bytes += rcd->egrbufs.rcvtid_size;
1883 			idx++;
1884 		} else {
1885 			u32 new_size, i, j;
1886 			u64 offset = 0;
1887 
1888 			/*
1889 			 * Fail the eager buffer allocation if:
1890 			 *   - we are already using the lowest acceptable size
1891 			 *   - we are using one-pkt-per-egr-buffer (this implies
1892 			 *     that we are accepting only one size)
1893 			 */
1894 			if (rcd->egrbufs.rcvtid_size == round_mtu ||
1895 			    !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
1896 				dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
1897 					   rcd->ctxt);
1898 				ret = -ENOMEM;
1899 				goto bail_rcvegrbuf_phys;
1900 			}
1901 
1902 			new_size = rcd->egrbufs.rcvtid_size / 2;
1903 
1904 			/*
1905 			 * If the first attempt to allocate memory failed, don't
1906 			 * fail everything but continue with the next lower
1907 			 * size.
1908 			 */
1909 			if (idx == 0) {
1910 				rcd->egrbufs.rcvtid_size = new_size;
1911 				continue;
1912 			}
1913 
1914 			/*
1915 			 * Re-partition already allocated buffers to a smaller
1916 			 * size.
1917 			 */
1918 			rcd->egrbufs.alloced = 0;
1919 			for (i = 0, j = 0, offset = 0; j < idx; i++) {
1920 				if (i >= rcd->egrbufs.count)
1921 					break;
1922 				rcd->egrbufs.rcvtids[i].dma =
1923 					rcd->egrbufs.buffers[j].dma + offset;
1924 				rcd->egrbufs.rcvtids[i].addr =
1925 					rcd->egrbufs.buffers[j].addr + offset;
1926 				rcd->egrbufs.alloced++;
1927 				if ((rcd->egrbufs.buffers[j].dma + offset +
1928 				     new_size) ==
1929 				    (rcd->egrbufs.buffers[j].dma +
1930 				     rcd->egrbufs.buffers[j].len)) {
1931 					j++;
1932 					offset = 0;
1933 				} else {
1934 					offset += new_size;
1935 				}
1936 			}
1937 			rcd->egrbufs.rcvtid_size = new_size;
1938 		}
1939 	}
1940 	rcd->egrbufs.numbufs = idx;
1941 	rcd->egrbufs.size = alloced_bytes;
1942 
1943 	hfi1_cdbg(PROC,
1944 		  "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %uKB\n",
1945 		  rcd->ctxt, rcd->egrbufs.alloced,
1946 		  rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024);
1947 
1948 	/*
1949 	 * Set the contexts rcv array head update threshold to the closest
1950 	 * power of 2 (so we can use a mask instead of modulo) below half
1951 	 * the allocated entries.
1952 	 */
1953 	rcd->egrbufs.threshold =
1954 		rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
1955 	/*
1956 	 * Compute the expected RcvArray entry base. This is done after
1957 	 * allocating the eager buffers in order to maximize the
1958 	 * expected RcvArray entries for the context.
1959 	 */
1960 	max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
1961 	egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
1962 	rcd->expected_count = max_entries - egrtop;
1963 	if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
1964 		rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;
1965 
1966 	rcd->expected_base = rcd->eager_base + egrtop;
1967 	hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n",
1968 		  rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
1969 		  rcd->eager_base, rcd->expected_base);
1970 
1971 	if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) {
1972 		hfi1_cdbg(PROC,
1973 			  "ctxt%u: current Eager buffer size is invalid %u\n",
1974 			  rcd->ctxt, rcd->egrbufs.rcvtid_size);
1975 		ret = -EINVAL;
1976 		goto bail_rcvegrbuf_phys;
1977 	}
1978 
1979 	for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
1980 		hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER,
1981 			     rcd->egrbufs.rcvtids[idx].dma, order);
1982 		cond_resched();
1983 	}
1984 
1985 	return 0;
1986 
1987 bail_rcvegrbuf_phys:
1988 	for (idx = 0; idx < rcd->egrbufs.alloced &&
1989 	     rcd->egrbufs.buffers[idx].addr;
1990 	     idx++) {
1991 		dma_free_coherent(&dd->pcidev->dev,
1992 				  rcd->egrbufs.buffers[idx].len,
1993 				  rcd->egrbufs.buffers[idx].addr,
1994 				  rcd->egrbufs.buffers[idx].dma);
1995 		rcd->egrbufs.buffers[idx].addr = NULL;
1996 		rcd->egrbufs.buffers[idx].dma = 0;
1997 		rcd->egrbufs.buffers[idx].len = 0;
1998 	}
1999 
2000 	return ret;
2001 }
2002