xref: /openbmc/linux/drivers/infiniband/hw/hfi1/init.c (revision bbecb07f)
1 /*
2  * Copyright(c) 2015-2017 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <linux/pci.h>
49 #include <linux/netdevice.h>
50 #include <linux/vmalloc.h>
51 #include <linux/delay.h>
52 #include <linux/idr.h>
53 #include <linux/module.h>
54 #include <linux/printk.h>
55 #include <linux/hrtimer.h>
56 #include <linux/bitmap.h>
57 #include <rdma/rdma_vt.h>
58 
59 #include "hfi.h"
60 #include "device.h"
61 #include "common.h"
62 #include "trace.h"
63 #include "mad.h"
64 #include "sdma.h"
65 #include "debugfs.h"
66 #include "verbs.h"
67 #include "aspm.h"
68 #include "affinity.h"
69 #include "vnic.h"
70 #include "exp_rcv.h"
71 
72 #undef pr_fmt
73 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
74 
75 #define HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES 5
76 /*
77  * min buffers we want to have per context, after driver
78  */
79 #define HFI1_MIN_USER_CTXT_BUFCNT 7
80 
81 #define HFI1_MIN_HDRQ_EGRBUF_CNT 2
82 #define HFI1_MAX_HDRQ_EGRBUF_CNT 16352
83 #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
84 #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */
85 
86 /*
87  * Number of user receive contexts we are configured to use (to allow for more
88  * pio buffers per ctxt, etc.)  Zero means use one user context per CPU.
89  */
90 int num_user_contexts = -1;
91 module_param_named(num_user_contexts, num_user_contexts, uint, S_IRUGO);
92 MODULE_PARM_DESC(
93 	num_user_contexts, "Set max number of user contexts to use");
94 
95 uint krcvqs[RXE_NUM_DATA_VL];
96 int krcvqsset;
97 module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO);
98 MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL");
99 
100 /* computed based on above array */
101 unsigned long n_krcvqs;
102 
103 static unsigned hfi1_rcvarr_split = 25;
104 module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
105 MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");
106 
107 static uint eager_buffer_size = (8 << 20); /* 8MB */
108 module_param(eager_buffer_size, uint, S_IRUGO);
109 MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 8MB");
110 
111 static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
112 module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
113 MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");
114 
115 static uint hfi1_hdrq_entsize = 32;
116 module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, S_IRUGO);
117 MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B (default), 32 - 128B");
118 
119 unsigned int user_credit_return_threshold = 33;	/* default is 33% */
120 module_param(user_credit_return_threshold, uint, S_IRUGO);
121 MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");
122 
123 static inline u64 encode_rcv_header_entry_size(u16 size);
124 
125 static struct idr hfi1_unit_table;
126 
127 static int hfi1_create_kctxt(struct hfi1_devdata *dd,
128 			     struct hfi1_pportdata *ppd)
129 {
130 	struct hfi1_ctxtdata *rcd;
131 	int ret;
132 
133 	/* Control context has to be always 0 */
134 	BUILD_BUG_ON(HFI1_CTRL_CTXT != 0);
135 
136 	ret = hfi1_create_ctxtdata(ppd, dd->node, &rcd);
137 	if (ret < 0) {
138 		dd_dev_err(dd, "Kernel receive context allocation failed\n");
139 		return ret;
140 	}
141 
142 	/*
143 	 * Set up the kernel context flags here and now because they use
144 	 * default values for all receive side memories.  User contexts will
145 	 * be handled as they are created.
146 	 */
147 	rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
148 		HFI1_CAP_KGET(NODROP_RHQ_FULL) |
149 		HFI1_CAP_KGET(NODROP_EGR_FULL) |
150 		HFI1_CAP_KGET(DMA_RTAIL);
151 
152 	/* Control context must use DMA_RTAIL */
153 	if (rcd->ctxt == HFI1_CTRL_CTXT)
154 		rcd->flags |= HFI1_CAP_DMA_RTAIL;
155 	rcd->seq_cnt = 1;
156 
157 	rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node);
158 	if (!rcd->sc) {
159 		dd_dev_err(dd, "Kernel send context allocation failed\n");
160 		return -ENOMEM;
161 	}
162 	hfi1_init_ctxt(rcd->sc);
163 
164 	return 0;
165 }
166 
167 /*
168  * Create the receive context array and one or more kernel contexts
169  */
170 int hfi1_create_kctxts(struct hfi1_devdata *dd)
171 {
172 	u16 i;
173 	int ret;
174 
175 	dd->rcd = kzalloc_node(dd->num_rcv_contexts * sizeof(*dd->rcd),
176 			       GFP_KERNEL, dd->node);
177 	if (!dd->rcd)
178 		return -ENOMEM;
179 
180 	for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
181 		ret = hfi1_create_kctxt(dd, dd->pport);
182 		if (ret)
183 			goto bail;
184 	}
185 
186 	return 0;
187 bail:
188 	for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i)
189 		hfi1_free_ctxt(dd->rcd[i]);
190 
191 	/* All the contexts should be freed, free the array */
192 	kfree(dd->rcd);
193 	dd->rcd = NULL;
194 	return ret;
195 }
196 
197 /*
198  * Helper routines for the receive context reference count (rcd and uctxt).
199  */
200 static void hfi1_rcd_init(struct hfi1_ctxtdata *rcd)
201 {
202 	kref_init(&rcd->kref);
203 }
204 
205 /**
206  * hfi1_rcd_free - When reference is zero clean up.
207  * @kref: pointer to an initialized rcd data structure
208  *
209  */
210 static void hfi1_rcd_free(struct kref *kref)
211 {
212 	unsigned long flags;
213 	struct hfi1_ctxtdata *rcd =
214 		container_of(kref, struct hfi1_ctxtdata, kref);
215 
216 	hfi1_free_ctxtdata(rcd->dd, rcd);
217 
218 	spin_lock_irqsave(&rcd->dd->uctxt_lock, flags);
219 	rcd->dd->rcd[rcd->ctxt] = NULL;
220 	spin_unlock_irqrestore(&rcd->dd->uctxt_lock, flags);
221 
222 	kfree(rcd);
223 }
224 
225 /**
226  * hfi1_rcd_put - decrement reference for rcd
227  * @rcd: pointer to an initialized rcd data structure
228  *
229  * Use this to put a reference after the init.
230  */
231 int hfi1_rcd_put(struct hfi1_ctxtdata *rcd)
232 {
233 	if (rcd)
234 		return kref_put(&rcd->kref, hfi1_rcd_free);
235 
236 	return 0;
237 }
238 
239 /**
240  * hfi1_rcd_get - increment reference for rcd
241  * @rcd: pointer to an initialized rcd data structure
242  *
243  * Use this to get a reference after the init.
244  */
245 void hfi1_rcd_get(struct hfi1_ctxtdata *rcd)
246 {
247 	kref_get(&rcd->kref);
248 }
249 
250 /**
251  * allocate_rcd_index - allocate an rcd index from the rcd array
252  * @dd: pointer to a valid devdata structure
253  * @rcd: rcd data structure to assign
254  * @index: pointer to index that is allocated
255  *
256  * Find an empty index in the rcd array, and assign the given rcd to it.
257  * If the array is full, we are EBUSY.
258  *
259  */
260 static int allocate_rcd_index(struct hfi1_devdata *dd,
261 			      struct hfi1_ctxtdata *rcd, u16 *index)
262 {
263 	unsigned long flags;
264 	u16 ctxt;
265 
266 	spin_lock_irqsave(&dd->uctxt_lock, flags);
267 	for (ctxt = 0; ctxt < dd->num_rcv_contexts; ctxt++)
268 		if (!dd->rcd[ctxt])
269 			break;
270 
271 	if (ctxt < dd->num_rcv_contexts) {
272 		rcd->ctxt = ctxt;
273 		dd->rcd[ctxt] = rcd;
274 		hfi1_rcd_init(rcd);
275 	}
276 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
277 
278 	if (ctxt >= dd->num_rcv_contexts)
279 		return -EBUSY;
280 
281 	*index = ctxt;
282 
283 	return 0;
284 }
285 
286 /**
287  * hfi1_rcd_get_by_index_safe - validate the ctxt index before accessing the
288  * array
289  * @dd: pointer to a valid devdata structure
290  * @ctxt: the index of an possilbe rcd
291  *
292  * This is a wrapper for hfi1_rcd_get_by_index() to validate that the given
293  * ctxt index is valid.
294  *
295  * The caller is responsible for making the _put().
296  *
297  */
298 struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd,
299 						 u16 ctxt)
300 {
301 	if (ctxt < dd->num_rcv_contexts)
302 		return hfi1_rcd_get_by_index(dd, ctxt);
303 
304 	return NULL;
305 }
306 
307 /**
308  * hfi1_rcd_get_by_index
309  * @dd: pointer to a valid devdata structure
310  * @ctxt: the index of an possilbe rcd
311  *
312  * We need to protect access to the rcd array.  If access is needed to
313  * one or more index, get the protecting spinlock and then increment the
314  * kref.
315  *
316  * The caller is responsible for making the _put().
317  *
318  */
319 struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt)
320 {
321 	unsigned long flags;
322 	struct hfi1_ctxtdata *rcd = NULL;
323 
324 	spin_lock_irqsave(&dd->uctxt_lock, flags);
325 	if (dd->rcd[ctxt]) {
326 		rcd = dd->rcd[ctxt];
327 		hfi1_rcd_get(rcd);
328 	}
329 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
330 
331 	return rcd;
332 }
333 
334 /*
335  * Common code for user and kernel context create and setup.
336  * NOTE: the initial kref is done here (hf1_rcd_init()).
337  */
338 int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa,
339 			 struct hfi1_ctxtdata **context)
340 {
341 	struct hfi1_devdata *dd = ppd->dd;
342 	struct hfi1_ctxtdata *rcd;
343 	unsigned kctxt_ngroups = 0;
344 	u32 base;
345 
346 	if (dd->rcv_entries.nctxt_extra >
347 	    dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt)
348 		kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
349 			 (dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt));
350 	rcd = kzalloc_node(sizeof(*rcd), GFP_KERNEL, numa);
351 	if (rcd) {
352 		u32 rcvtids, max_entries;
353 		u16 ctxt;
354 		int ret;
355 
356 		ret = allocate_rcd_index(dd, rcd, &ctxt);
357 		if (ret) {
358 			*context = NULL;
359 			kfree(rcd);
360 			return ret;
361 		}
362 
363 		INIT_LIST_HEAD(&rcd->qp_wait_list);
364 		hfi1_exp_tid_group_init(&rcd->tid_group_list);
365 		hfi1_exp_tid_group_init(&rcd->tid_used_list);
366 		hfi1_exp_tid_group_init(&rcd->tid_full_list);
367 		rcd->ppd = ppd;
368 		rcd->dd = dd;
369 		__set_bit(0, rcd->in_use_ctxts);
370 		rcd->numa_id = numa;
371 		rcd->rcv_array_groups = dd->rcv_entries.ngroups;
372 
373 		mutex_init(&rcd->exp_lock);
374 
375 		hfi1_cdbg(PROC, "setting up context %u\n", rcd->ctxt);
376 
377 		/*
378 		 * Calculate the context's RcvArray entry starting point.
379 		 * We do this here because we have to take into account all
380 		 * the RcvArray entries that previous context would have
381 		 * taken and we have to account for any extra groups assigned
382 		 * to the static (kernel) or dynamic (vnic/user) contexts.
383 		 */
384 		if (ctxt < dd->first_dyn_alloc_ctxt) {
385 			if (ctxt < kctxt_ngroups) {
386 				base = ctxt * (dd->rcv_entries.ngroups + 1);
387 				rcd->rcv_array_groups++;
388 			} else {
389 				base = kctxt_ngroups +
390 					(ctxt * dd->rcv_entries.ngroups);
391 			}
392 		} else {
393 			u16 ct = ctxt - dd->first_dyn_alloc_ctxt;
394 
395 			base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
396 				kctxt_ngroups);
397 			if (ct < dd->rcv_entries.nctxt_extra) {
398 				base += ct * (dd->rcv_entries.ngroups + 1);
399 				rcd->rcv_array_groups++;
400 			} else {
401 				base += dd->rcv_entries.nctxt_extra +
402 					(ct * dd->rcv_entries.ngroups);
403 			}
404 		}
405 		rcd->eager_base = base * dd->rcv_entries.group_size;
406 
407 		rcd->rcvhdrq_cnt = rcvhdrcnt;
408 		rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
409 		/*
410 		 * Simple Eager buffer allocation: we have already pre-allocated
411 		 * the number of RcvArray entry groups. Each ctxtdata structure
412 		 * holds the number of groups for that context.
413 		 *
414 		 * To follow CSR requirements and maintain cacheline alignment,
415 		 * make sure all sizes and bases are multiples of group_size.
416 		 *
417 		 * The expected entry count is what is left after assigning
418 		 * eager.
419 		 */
420 		max_entries = rcd->rcv_array_groups *
421 			dd->rcv_entries.group_size;
422 		rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
423 		rcd->egrbufs.count = round_down(rcvtids,
424 						dd->rcv_entries.group_size);
425 		if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
426 			dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
427 				   rcd->ctxt);
428 			rcd->egrbufs.count = MAX_EAGER_ENTRIES;
429 		}
430 		hfi1_cdbg(PROC,
431 			  "ctxt%u: max Eager buffer RcvArray entries: %u\n",
432 			  rcd->ctxt, rcd->egrbufs.count);
433 
434 		/*
435 		 * Allocate array that will hold the eager buffer accounting
436 		 * data.
437 		 * This will allocate the maximum possible buffer count based
438 		 * on the value of the RcvArray split parameter.
439 		 * The resulting value will be rounded down to the closest
440 		 * multiple of dd->rcv_entries.group_size.
441 		 */
442 		rcd->egrbufs.buffers = kzalloc_node(
443 			rcd->egrbufs.count * sizeof(*rcd->egrbufs.buffers),
444 			GFP_KERNEL, numa);
445 		if (!rcd->egrbufs.buffers)
446 			goto bail;
447 		rcd->egrbufs.rcvtids = kzalloc_node(
448 				rcd->egrbufs.count *
449 				sizeof(*rcd->egrbufs.rcvtids),
450 				GFP_KERNEL, numa);
451 		if (!rcd->egrbufs.rcvtids)
452 			goto bail;
453 		rcd->egrbufs.size = eager_buffer_size;
454 		/*
455 		 * The size of the buffers programmed into the RcvArray
456 		 * entries needs to be big enough to handle the highest
457 		 * MTU supported.
458 		 */
459 		if (rcd->egrbufs.size < hfi1_max_mtu) {
460 			rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu);
461 			hfi1_cdbg(PROC,
462 				  "ctxt%u: eager bufs size too small. Adjusting to %zu\n",
463 				    rcd->ctxt, rcd->egrbufs.size);
464 		}
465 		rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;
466 
467 		/* Applicable only for statically created kernel contexts */
468 		if (ctxt < dd->first_dyn_alloc_ctxt) {
469 			rcd->opstats = kzalloc_node(sizeof(*rcd->opstats),
470 						    GFP_KERNEL, numa);
471 			if (!rcd->opstats)
472 				goto bail;
473 		}
474 
475 		*context = rcd;
476 		return 0;
477 	}
478 
479 bail:
480 	*context = NULL;
481 	hfi1_free_ctxt(rcd);
482 	return -ENOMEM;
483 }
484 
485 /**
486  * hfi1_free_ctxt
487  * @rcd: pointer to an initialized rcd data structure
488  *
489  * This wrapper is the free function that matches hfi1_create_ctxtdata().
490  * When a context is done being used (kernel or user), this function is called
491  * for the "final" put to match the kref init from hf1i_create_ctxtdata().
492  * Other users of the context do a get/put sequence to make sure that the
493  * structure isn't removed while in use.
494  */
495 void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd)
496 {
497 	hfi1_rcd_put(rcd);
498 }
499 
500 /*
501  * Convert a receive header entry size that to the encoding used in the CSR.
502  *
503  * Return a zero if the given size is invalid.
504  */
505 static inline u64 encode_rcv_header_entry_size(u16 size)
506 {
507 	/* there are only 3 valid receive header entry sizes */
508 	if (size == 2)
509 		return 1;
510 	if (size == 16)
511 		return 2;
512 	else if (size == 32)
513 		return 4;
514 	return 0; /* invalid */
515 }
516 
517 /*
518  * Select the largest ccti value over all SLs to determine the intra-
519  * packet gap for the link.
520  *
521  * called with cca_timer_lock held (to protect access to cca_timer
522  * array), and rcu_read_lock() (to protect access to cc_state).
523  */
524 void set_link_ipg(struct hfi1_pportdata *ppd)
525 {
526 	struct hfi1_devdata *dd = ppd->dd;
527 	struct cc_state *cc_state;
528 	int i;
529 	u16 cce, ccti_limit, max_ccti = 0;
530 	u16 shift, mult;
531 	u64 src;
532 	u32 current_egress_rate; /* Mbits /sec */
533 	u32 max_pkt_time;
534 	/*
535 	 * max_pkt_time is the maximum packet egress time in units
536 	 * of the fabric clock period 1/(805 MHz).
537 	 */
538 
539 	cc_state = get_cc_state(ppd);
540 
541 	if (!cc_state)
542 		/*
543 		 * This should _never_ happen - rcu_read_lock() is held,
544 		 * and set_link_ipg() should not be called if cc_state
545 		 * is NULL.
546 		 */
547 		return;
548 
549 	for (i = 0; i < OPA_MAX_SLS; i++) {
550 		u16 ccti = ppd->cca_timer[i].ccti;
551 
552 		if (ccti > max_ccti)
553 			max_ccti = ccti;
554 	}
555 
556 	ccti_limit = cc_state->cct.ccti_limit;
557 	if (max_ccti > ccti_limit)
558 		max_ccti = ccti_limit;
559 
560 	cce = cc_state->cct.entries[max_ccti].entry;
561 	shift = (cce & 0xc000) >> 14;
562 	mult = (cce & 0x3fff);
563 
564 	current_egress_rate = active_egress_rate(ppd);
565 
566 	max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate);
567 
568 	src = (max_pkt_time >> shift) * mult;
569 
570 	src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
571 	src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;
572 
573 	write_csr(dd, SEND_STATIC_RATE_CONTROL, src);
574 }
575 
576 static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
577 {
578 	struct cca_timer *cca_timer;
579 	struct hfi1_pportdata *ppd;
580 	int sl;
581 	u16 ccti_timer, ccti_min;
582 	struct cc_state *cc_state;
583 	unsigned long flags;
584 	enum hrtimer_restart ret = HRTIMER_NORESTART;
585 
586 	cca_timer = container_of(t, struct cca_timer, hrtimer);
587 	ppd = cca_timer->ppd;
588 	sl = cca_timer->sl;
589 
590 	rcu_read_lock();
591 
592 	cc_state = get_cc_state(ppd);
593 
594 	if (!cc_state) {
595 		rcu_read_unlock();
596 		return HRTIMER_NORESTART;
597 	}
598 
599 	/*
600 	 * 1) decrement ccti for SL
601 	 * 2) calculate IPG for link (set_link_ipg())
602 	 * 3) restart timer, unless ccti is at min value
603 	 */
604 
605 	ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
606 	ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
607 
608 	spin_lock_irqsave(&ppd->cca_timer_lock, flags);
609 
610 	if (cca_timer->ccti > ccti_min) {
611 		cca_timer->ccti--;
612 		set_link_ipg(ppd);
613 	}
614 
615 	if (cca_timer->ccti > ccti_min) {
616 		unsigned long nsec = 1024 * ccti_timer;
617 		/* ccti_timer is in units of 1.024 usec */
618 		hrtimer_forward_now(t, ns_to_ktime(nsec));
619 		ret = HRTIMER_RESTART;
620 	}
621 
622 	spin_unlock_irqrestore(&ppd->cca_timer_lock, flags);
623 	rcu_read_unlock();
624 	return ret;
625 }
626 
627 /*
628  * Common code for initializing the physical port structure.
629  */
630 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
631 			 struct hfi1_devdata *dd, u8 hw_pidx, u8 port)
632 {
633 	int i;
634 	uint default_pkey_idx;
635 	struct cc_state *cc_state;
636 
637 	ppd->dd = dd;
638 	ppd->hw_pidx = hw_pidx;
639 	ppd->port = port; /* IB port number, not index */
640 
641 	default_pkey_idx = 1;
642 
643 	ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
644 	ppd->part_enforce |= HFI1_PART_ENFORCE_IN;
645 
646 	if (loopback) {
647 		hfi1_early_err(&pdev->dev,
648 			       "Faking data partition 0x8001 in idx %u\n",
649 			       !default_pkey_idx);
650 		ppd->pkeys[!default_pkey_idx] = 0x8001;
651 	}
652 
653 	INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
654 	INIT_WORK(&ppd->link_up_work, handle_link_up);
655 	INIT_WORK(&ppd->link_down_work, handle_link_down);
656 	INIT_WORK(&ppd->freeze_work, handle_freeze);
657 	INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
658 	INIT_WORK(&ppd->sma_message_work, handle_sma_message);
659 	INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
660 	INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link);
661 	INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work);
662 	INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event);
663 
664 	mutex_init(&ppd->hls_lock);
665 	spin_lock_init(&ppd->qsfp_info.qsfp_lock);
666 
667 	ppd->qsfp_info.ppd = ppd;
668 	ppd->sm_trap_qp = 0x0;
669 	ppd->sa_qp = 0x1;
670 
671 	ppd->hfi1_wq = NULL;
672 
673 	spin_lock_init(&ppd->cca_timer_lock);
674 
675 	for (i = 0; i < OPA_MAX_SLS; i++) {
676 		hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
677 			     HRTIMER_MODE_REL);
678 		ppd->cca_timer[i].ppd = ppd;
679 		ppd->cca_timer[i].sl = i;
680 		ppd->cca_timer[i].ccti = 0;
681 		ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
682 	}
683 
684 	ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;
685 
686 	spin_lock_init(&ppd->cc_state_lock);
687 	spin_lock_init(&ppd->cc_log_lock);
688 	cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL);
689 	RCU_INIT_POINTER(ppd->cc_state, cc_state);
690 	if (!cc_state)
691 		goto bail;
692 	return;
693 
694 bail:
695 
696 	hfi1_early_err(&pdev->dev,
697 		       "Congestion Control Agent disabled for port %d\n", port);
698 }
699 
700 /*
701  * Do initialization for device that is only needed on
702  * first detect, not on resets.
703  */
704 static int loadtime_init(struct hfi1_devdata *dd)
705 {
706 	return 0;
707 }
708 
709 /**
710  * init_after_reset - re-initialize after a reset
711  * @dd: the hfi1_ib device
712  *
713  * sanity check at least some of the values after reset, and
714  * ensure no receive or transmit (explicitly, in case reset
715  * failed
716  */
717 static int init_after_reset(struct hfi1_devdata *dd)
718 {
719 	int i;
720 	struct hfi1_ctxtdata *rcd;
721 	/*
722 	 * Ensure chip does no sends or receives, tail updates, or
723 	 * pioavail updates while we re-initialize.  This is mostly
724 	 * for the driver data structures, not chip registers.
725 	 */
726 	for (i = 0; i < dd->num_rcv_contexts; i++) {
727 		rcd = hfi1_rcd_get_by_index(dd, i);
728 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
729 			     HFI1_RCVCTRL_INTRAVAIL_DIS |
730 			     HFI1_RCVCTRL_TAILUPD_DIS, rcd);
731 		hfi1_rcd_put(rcd);
732 	}
733 	pio_send_control(dd, PSC_GLOBAL_DISABLE);
734 	for (i = 0; i < dd->num_send_contexts; i++)
735 		sc_disable(dd->send_contexts[i].sc);
736 
737 	return 0;
738 }
739 
740 static void enable_chip(struct hfi1_devdata *dd)
741 {
742 	struct hfi1_ctxtdata *rcd;
743 	u32 rcvmask;
744 	u16 i;
745 
746 	/* enable PIO send */
747 	pio_send_control(dd, PSC_GLOBAL_ENABLE);
748 
749 	/*
750 	 * Enable kernel ctxts' receive and receive interrupt.
751 	 * Other ctxts done as user opens and initializes them.
752 	 */
753 	for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
754 		rcd = hfi1_rcd_get_by_index(dd, i);
755 		if (!rcd)
756 			continue;
757 		rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
758 		rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
759 			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
760 		if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
761 			rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
762 		if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_RHQ_FULL))
763 			rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
764 		if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_EGR_FULL))
765 			rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
766 		hfi1_rcvctrl(dd, rcvmask, rcd);
767 		sc_enable(rcd->sc);
768 		hfi1_rcd_put(rcd);
769 	}
770 }
771 
772 /**
773  * create_workqueues - create per port workqueues
774  * @dd: the hfi1_ib device
775  */
776 static int create_workqueues(struct hfi1_devdata *dd)
777 {
778 	int pidx;
779 	struct hfi1_pportdata *ppd;
780 
781 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
782 		ppd = dd->pport + pidx;
783 		if (!ppd->hfi1_wq) {
784 			ppd->hfi1_wq =
785 				alloc_workqueue(
786 				    "hfi%d_%d",
787 				    WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE,
788 				    HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES,
789 				    dd->unit, pidx);
790 			if (!ppd->hfi1_wq)
791 				goto wq_error;
792 		}
793 		if (!ppd->link_wq) {
794 			/*
795 			 * Make the link workqueue single-threaded to enforce
796 			 * serialization.
797 			 */
798 			ppd->link_wq =
799 				alloc_workqueue(
800 				    "hfi_link_%d_%d",
801 				    WQ_SYSFS | WQ_MEM_RECLAIM | WQ_UNBOUND,
802 				    1, /* max_active */
803 				    dd->unit, pidx);
804 			if (!ppd->link_wq)
805 				goto wq_error;
806 		}
807 	}
808 	return 0;
809 wq_error:
810 	pr_err("alloc_workqueue failed for port %d\n", pidx + 1);
811 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
812 		ppd = dd->pport + pidx;
813 		if (ppd->hfi1_wq) {
814 			destroy_workqueue(ppd->hfi1_wq);
815 			ppd->hfi1_wq = NULL;
816 		}
817 		if (ppd->link_wq) {
818 			destroy_workqueue(ppd->link_wq);
819 			ppd->link_wq = NULL;
820 		}
821 	}
822 	return -ENOMEM;
823 }
824 
825 /**
826  * hfi1_init - do the actual initialization sequence on the chip
827  * @dd: the hfi1_ib device
828  * @reinit: re-initializing, so don't allocate new memory
829  *
830  * Do the actual initialization sequence on the chip.  This is done
831  * both from the init routine called from the PCI infrastructure, and
832  * when we reset the chip, or detect that it was reset internally,
833  * or it's administratively re-enabled.
834  *
835  * Memory allocation here and in called routines is only done in
836  * the first case (reinit == 0).  We have to be careful, because even
837  * without memory allocation, we need to re-write all the chip registers
838  * TIDs, etc. after the reset or enable has completed.
839  */
840 int hfi1_init(struct hfi1_devdata *dd, int reinit)
841 {
842 	int ret = 0, pidx, lastfail = 0;
843 	unsigned long len;
844 	u16 i;
845 	struct hfi1_ctxtdata *rcd;
846 	struct hfi1_pportdata *ppd;
847 
848 	/* Set up recv low level handlers */
849 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EXPECTED] =
850 						kdeth_process_expected;
851 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EAGER] =
852 						kdeth_process_eager;
853 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_IB] = process_receive_ib;
854 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_ERROR] =
855 						process_receive_error;
856 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_BYPASS] =
857 						process_receive_bypass;
858 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID5] =
859 						process_receive_invalid;
860 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID6] =
861 						process_receive_invalid;
862 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID7] =
863 						process_receive_invalid;
864 	dd->rhf_rcv_function_map = dd->normal_rhf_rcv_functions;
865 
866 	/* Set up send low level handlers */
867 	dd->process_pio_send = hfi1_verbs_send_pio;
868 	dd->process_dma_send = hfi1_verbs_send_dma;
869 	dd->pio_inline_send = pio_copy;
870 	dd->process_vnic_dma_send = hfi1_vnic_send_dma;
871 
872 	if (is_ax(dd)) {
873 		atomic_set(&dd->drop_packet, DROP_PACKET_ON);
874 		dd->do_drop = 1;
875 	} else {
876 		atomic_set(&dd->drop_packet, DROP_PACKET_OFF);
877 		dd->do_drop = 0;
878 	}
879 
880 	/* make sure the link is not "up" */
881 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
882 		ppd = dd->pport + pidx;
883 		ppd->linkup = 0;
884 	}
885 
886 	if (reinit)
887 		ret = init_after_reset(dd);
888 	else
889 		ret = loadtime_init(dd);
890 	if (ret)
891 		goto done;
892 
893 	/* allocate dummy tail memory for all receive contexts */
894 	dd->rcvhdrtail_dummy_kvaddr = dma_zalloc_coherent(
895 		&dd->pcidev->dev, sizeof(u64),
896 		&dd->rcvhdrtail_dummy_dma,
897 		GFP_KERNEL);
898 
899 	if (!dd->rcvhdrtail_dummy_kvaddr) {
900 		dd_dev_err(dd, "cannot allocate dummy tail memory\n");
901 		ret = -ENOMEM;
902 		goto done;
903 	}
904 
905 	/* dd->rcd can be NULL if early initialization failed */
906 	for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) {
907 		/*
908 		 * Set up the (kernel) rcvhdr queue and egr TIDs.  If doing
909 		 * re-init, the simplest way to handle this is to free
910 		 * existing, and re-allocate.
911 		 * Need to re-create rest of ctxt 0 ctxtdata as well.
912 		 */
913 		rcd = hfi1_rcd_get_by_index(dd, i);
914 		if (!rcd)
915 			continue;
916 
917 		rcd->do_interrupt = &handle_receive_interrupt;
918 
919 		lastfail = hfi1_create_rcvhdrq(dd, rcd);
920 		if (!lastfail)
921 			lastfail = hfi1_setup_eagerbufs(rcd);
922 		if (lastfail) {
923 			dd_dev_err(dd,
924 				   "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
925 			ret = lastfail;
926 		}
927 		hfi1_rcd_put(rcd);
928 	}
929 
930 	/* Allocate enough memory for user event notification. */
931 	len = PAGE_ALIGN(dd->chip_rcv_contexts * HFI1_MAX_SHARED_CTXTS *
932 			 sizeof(*dd->events));
933 	dd->events = vmalloc_user(len);
934 	if (!dd->events)
935 		dd_dev_err(dd, "Failed to allocate user events page\n");
936 	/*
937 	 * Allocate a page for device and port status.
938 	 * Page will be shared amongst all user processes.
939 	 */
940 	dd->status = vmalloc_user(PAGE_SIZE);
941 	if (!dd->status)
942 		dd_dev_err(dd, "Failed to allocate dev status page\n");
943 	else
944 		dd->freezelen = PAGE_SIZE - (sizeof(*dd->status) -
945 					     sizeof(dd->status->freezemsg));
946 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
947 		ppd = dd->pport + pidx;
948 		if (dd->status)
949 			/* Currently, we only have one port */
950 			ppd->statusp = &dd->status->port;
951 
952 		set_mtu(ppd);
953 	}
954 
955 	/* enable chip even if we have an error, so we can debug cause */
956 	enable_chip(dd);
957 
958 done:
959 	/*
960 	 * Set status even if port serdes is not initialized
961 	 * so that diags will work.
962 	 */
963 	if (dd->status)
964 		dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
965 			HFI1_STATUS_INITTED;
966 	if (!ret) {
967 		/* enable all interrupts from the chip */
968 		set_intr_state(dd, 1);
969 
970 		/* chip is OK for user apps; mark it as initialized */
971 		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
972 			ppd = dd->pport + pidx;
973 
974 			/*
975 			 * start the serdes - must be after interrupts are
976 			 * enabled so we are notified when the link goes up
977 			 */
978 			lastfail = bringup_serdes(ppd);
979 			if (lastfail)
980 				dd_dev_info(dd,
981 					    "Failed to bring up port %u\n",
982 					    ppd->port);
983 
984 			/*
985 			 * Set status even if port serdes is not initialized
986 			 * so that diags will work.
987 			 */
988 			if (ppd->statusp)
989 				*ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
990 							HFI1_STATUS_INITTED;
991 			if (!ppd->link_speed_enabled)
992 				continue;
993 		}
994 	}
995 
996 	/* if ret is non-zero, we probably should do some cleanup here... */
997 	return ret;
998 }
999 
1000 static inline struct hfi1_devdata *__hfi1_lookup(int unit)
1001 {
1002 	return idr_find(&hfi1_unit_table, unit);
1003 }
1004 
1005 struct hfi1_devdata *hfi1_lookup(int unit)
1006 {
1007 	struct hfi1_devdata *dd;
1008 	unsigned long flags;
1009 
1010 	spin_lock_irqsave(&hfi1_devs_lock, flags);
1011 	dd = __hfi1_lookup(unit);
1012 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1013 
1014 	return dd;
1015 }
1016 
1017 /*
1018  * Stop the timers during unit shutdown, or after an error late
1019  * in initialization.
1020  */
1021 static void stop_timers(struct hfi1_devdata *dd)
1022 {
1023 	struct hfi1_pportdata *ppd;
1024 	int pidx;
1025 
1026 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1027 		ppd = dd->pport + pidx;
1028 		if (ppd->led_override_timer.function) {
1029 			del_timer_sync(&ppd->led_override_timer);
1030 			atomic_set(&ppd->led_override_timer_active, 0);
1031 		}
1032 	}
1033 }
1034 
1035 /**
1036  * shutdown_device - shut down a device
1037  * @dd: the hfi1_ib device
1038  *
1039  * This is called to make the device quiet when we are about to
1040  * unload the driver, and also when the device is administratively
1041  * disabled.   It does not free any data structures.
1042  * Everything it does has to be setup again by hfi1_init(dd, 1)
1043  */
1044 static void shutdown_device(struct hfi1_devdata *dd)
1045 {
1046 	struct hfi1_pportdata *ppd;
1047 	struct hfi1_ctxtdata *rcd;
1048 	unsigned pidx;
1049 	int i;
1050 
1051 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1052 		ppd = dd->pport + pidx;
1053 
1054 		ppd->linkup = 0;
1055 		if (ppd->statusp)
1056 			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
1057 					   HFI1_STATUS_IB_READY);
1058 	}
1059 	dd->flags &= ~HFI1_INITTED;
1060 
1061 	/* mask interrupts, but not errors */
1062 	set_intr_state(dd, 0);
1063 
1064 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1065 		ppd = dd->pport + pidx;
1066 		for (i = 0; i < dd->num_rcv_contexts; i++) {
1067 			rcd = hfi1_rcd_get_by_index(dd, i);
1068 			hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
1069 				     HFI1_RCVCTRL_CTXT_DIS |
1070 				     HFI1_RCVCTRL_INTRAVAIL_DIS |
1071 				     HFI1_RCVCTRL_PKEY_DIS |
1072 				     HFI1_RCVCTRL_ONE_PKT_EGR_DIS, rcd);
1073 			hfi1_rcd_put(rcd);
1074 		}
1075 		/*
1076 		 * Gracefully stop all sends allowing any in progress to
1077 		 * trickle out first.
1078 		 */
1079 		for (i = 0; i < dd->num_send_contexts; i++)
1080 			sc_flush(dd->send_contexts[i].sc);
1081 	}
1082 
1083 	/*
1084 	 * Enough for anything that's going to trickle out to have actually
1085 	 * done so.
1086 	 */
1087 	udelay(20);
1088 
1089 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1090 		ppd = dd->pport + pidx;
1091 
1092 		/* disable all contexts */
1093 		for (i = 0; i < dd->num_send_contexts; i++)
1094 			sc_disable(dd->send_contexts[i].sc);
1095 		/* disable the send device */
1096 		pio_send_control(dd, PSC_GLOBAL_DISABLE);
1097 
1098 		shutdown_led_override(ppd);
1099 
1100 		/*
1101 		 * Clear SerdesEnable.
1102 		 * We can't count on interrupts since we are stopping.
1103 		 */
1104 		hfi1_quiet_serdes(ppd);
1105 
1106 		if (ppd->hfi1_wq) {
1107 			destroy_workqueue(ppd->hfi1_wq);
1108 			ppd->hfi1_wq = NULL;
1109 		}
1110 		if (ppd->link_wq) {
1111 			destroy_workqueue(ppd->link_wq);
1112 			ppd->link_wq = NULL;
1113 		}
1114 	}
1115 	sdma_exit(dd);
1116 }
1117 
1118 /**
1119  * hfi1_free_ctxtdata - free a context's allocated data
1120  * @dd: the hfi1_ib device
1121  * @rcd: the ctxtdata structure
1122  *
1123  * free up any allocated data for a context
1124  * It should never change any chip state, or global driver state.
1125  */
1126 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1127 {
1128 	u32 e;
1129 
1130 	if (!rcd)
1131 		return;
1132 
1133 	if (rcd->rcvhdrq) {
1134 		dma_free_coherent(&dd->pcidev->dev, rcd->rcvhdrq_size,
1135 				  rcd->rcvhdrq, rcd->rcvhdrq_dma);
1136 		rcd->rcvhdrq = NULL;
1137 		if (rcd->rcvhdrtail_kvaddr) {
1138 			dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
1139 					  (void *)rcd->rcvhdrtail_kvaddr,
1140 					  rcd->rcvhdrqtailaddr_dma);
1141 			rcd->rcvhdrtail_kvaddr = NULL;
1142 		}
1143 	}
1144 
1145 	/* all the RcvArray entries should have been cleared by now */
1146 	kfree(rcd->egrbufs.rcvtids);
1147 	rcd->egrbufs.rcvtids = NULL;
1148 
1149 	for (e = 0; e < rcd->egrbufs.alloced; e++) {
1150 		if (rcd->egrbufs.buffers[e].dma)
1151 			dma_free_coherent(&dd->pcidev->dev,
1152 					  rcd->egrbufs.buffers[e].len,
1153 					  rcd->egrbufs.buffers[e].addr,
1154 					  rcd->egrbufs.buffers[e].dma);
1155 	}
1156 	kfree(rcd->egrbufs.buffers);
1157 	rcd->egrbufs.alloced = 0;
1158 	rcd->egrbufs.buffers = NULL;
1159 
1160 	sc_free(rcd->sc);
1161 	rcd->sc = NULL;
1162 
1163 	vfree(rcd->subctxt_uregbase);
1164 	vfree(rcd->subctxt_rcvegrbuf);
1165 	vfree(rcd->subctxt_rcvhdr_base);
1166 	kfree(rcd->opstats);
1167 
1168 	rcd->subctxt_uregbase = NULL;
1169 	rcd->subctxt_rcvegrbuf = NULL;
1170 	rcd->subctxt_rcvhdr_base = NULL;
1171 	rcd->opstats = NULL;
1172 }
1173 
1174 /*
1175  * Release our hold on the shared asic data.  If we are the last one,
1176  * return the structure to be finalized outside the lock.  Must be
1177  * holding hfi1_devs_lock.
1178  */
1179 static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd)
1180 {
1181 	struct hfi1_asic_data *ad;
1182 	int other;
1183 
1184 	if (!dd->asic_data)
1185 		return NULL;
1186 	dd->asic_data->dds[dd->hfi1_id] = NULL;
1187 	other = dd->hfi1_id ? 0 : 1;
1188 	ad = dd->asic_data;
1189 	dd->asic_data = NULL;
1190 	/* return NULL if the other dd still has a link */
1191 	return ad->dds[other] ? NULL : ad;
1192 }
1193 
1194 static void finalize_asic_data(struct hfi1_devdata *dd,
1195 			       struct hfi1_asic_data *ad)
1196 {
1197 	clean_up_i2c(dd, ad);
1198 	kfree(ad);
1199 }
1200 
1201 static void __hfi1_free_devdata(struct kobject *kobj)
1202 {
1203 	struct hfi1_devdata *dd =
1204 		container_of(kobj, struct hfi1_devdata, kobj);
1205 	struct hfi1_asic_data *ad;
1206 	unsigned long flags;
1207 
1208 	spin_lock_irqsave(&hfi1_devs_lock, flags);
1209 	idr_remove(&hfi1_unit_table, dd->unit);
1210 	list_del(&dd->list);
1211 	ad = release_asic_data(dd);
1212 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1213 	if (ad)
1214 		finalize_asic_data(dd, ad);
1215 	free_platform_config(dd);
1216 	rcu_barrier(); /* wait for rcu callbacks to complete */
1217 	free_percpu(dd->int_counter);
1218 	free_percpu(dd->rcv_limit);
1219 	free_percpu(dd->send_schedule);
1220 	free_percpu(dd->tx_opstats);
1221 	rvt_dealloc_device(&dd->verbs_dev.rdi);
1222 }
1223 
1224 static struct kobj_type hfi1_devdata_type = {
1225 	.release = __hfi1_free_devdata,
1226 };
1227 
1228 void hfi1_free_devdata(struct hfi1_devdata *dd)
1229 {
1230 	kobject_put(&dd->kobj);
1231 }
1232 
1233 /*
1234  * Allocate our primary per-unit data structure.  Must be done via verbs
1235  * allocator, because the verbs cleanup process both does cleanup and
1236  * free of the data structure.
1237  * "extra" is for chip-specific data.
1238  *
1239  * Use the idr mechanism to get a unit number for this unit.
1240  */
1241 struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev, size_t extra)
1242 {
1243 	unsigned long flags;
1244 	struct hfi1_devdata *dd;
1245 	int ret, nports;
1246 
1247 	/* extra is * number of ports */
1248 	nports = extra / sizeof(struct hfi1_pportdata);
1249 
1250 	dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra,
1251 						     nports);
1252 	if (!dd)
1253 		return ERR_PTR(-ENOMEM);
1254 	dd->num_pports = nports;
1255 	dd->pport = (struct hfi1_pportdata *)(dd + 1);
1256 
1257 	INIT_LIST_HEAD(&dd->list);
1258 	idr_preload(GFP_KERNEL);
1259 	spin_lock_irqsave(&hfi1_devs_lock, flags);
1260 
1261 	ret = idr_alloc(&hfi1_unit_table, dd, 0, 0, GFP_NOWAIT);
1262 	if (ret >= 0) {
1263 		dd->unit = ret;
1264 		list_add(&dd->list, &hfi1_dev_list);
1265 	}
1266 
1267 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1268 	idr_preload_end();
1269 
1270 	if (ret < 0) {
1271 		hfi1_early_err(&pdev->dev,
1272 			       "Could not allocate unit ID: error %d\n", -ret);
1273 		goto bail;
1274 	}
1275 	/*
1276 	 * Initialize all locks for the device. This needs to be as early as
1277 	 * possible so locks are usable.
1278 	 */
1279 	spin_lock_init(&dd->sc_lock);
1280 	spin_lock_init(&dd->sendctrl_lock);
1281 	spin_lock_init(&dd->rcvctrl_lock);
1282 	spin_lock_init(&dd->uctxt_lock);
1283 	spin_lock_init(&dd->hfi1_diag_trans_lock);
1284 	spin_lock_init(&dd->sc_init_lock);
1285 	spin_lock_init(&dd->dc8051_memlock);
1286 	seqlock_init(&dd->sc2vl_lock);
1287 	spin_lock_init(&dd->sde_map_lock);
1288 	spin_lock_init(&dd->pio_map_lock);
1289 	mutex_init(&dd->dc8051_lock);
1290 	init_waitqueue_head(&dd->event_queue);
1291 
1292 	dd->int_counter = alloc_percpu(u64);
1293 	if (!dd->int_counter) {
1294 		ret = -ENOMEM;
1295 		goto bail;
1296 	}
1297 
1298 	dd->rcv_limit = alloc_percpu(u64);
1299 	if (!dd->rcv_limit) {
1300 		ret = -ENOMEM;
1301 		goto bail;
1302 	}
1303 
1304 	dd->send_schedule = alloc_percpu(u64);
1305 	if (!dd->send_schedule) {
1306 		ret = -ENOMEM;
1307 		goto bail;
1308 	}
1309 
1310 	dd->tx_opstats = alloc_percpu(struct hfi1_opcode_stats_perctx);
1311 	if (!dd->tx_opstats) {
1312 		ret = -ENOMEM;
1313 		goto bail;
1314 	}
1315 
1316 	kobject_init(&dd->kobj, &hfi1_devdata_type);
1317 	return dd;
1318 
1319 bail:
1320 	if (!list_empty(&dd->list))
1321 		list_del_init(&dd->list);
1322 	rvt_dealloc_device(&dd->verbs_dev.rdi);
1323 	return ERR_PTR(ret);
1324 }
1325 
1326 /*
1327  * Called from freeze mode handlers, and from PCI error
1328  * reporting code.  Should be paranoid about state of
1329  * system and data structures.
1330  */
1331 void hfi1_disable_after_error(struct hfi1_devdata *dd)
1332 {
1333 	if (dd->flags & HFI1_INITTED) {
1334 		u32 pidx;
1335 
1336 		dd->flags &= ~HFI1_INITTED;
1337 		if (dd->pport)
1338 			for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1339 				struct hfi1_pportdata *ppd;
1340 
1341 				ppd = dd->pport + pidx;
1342 				if (dd->flags & HFI1_PRESENT)
1343 					set_link_state(ppd, HLS_DN_DISABLE);
1344 
1345 				if (ppd->statusp)
1346 					*ppd->statusp &= ~HFI1_STATUS_IB_READY;
1347 			}
1348 	}
1349 
1350 	/*
1351 	 * Mark as having had an error for driver, and also
1352 	 * for /sys and status word mapped to user programs.
1353 	 * This marks unit as not usable, until reset.
1354 	 */
1355 	if (dd->status)
1356 		dd->status->dev |= HFI1_STATUS_HWERROR;
1357 }
1358 
1359 static void remove_one(struct pci_dev *);
1360 static int init_one(struct pci_dev *, const struct pci_device_id *);
1361 
1362 #define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: "
1363 #define PFX DRIVER_NAME ": "
1364 
1365 const struct pci_device_id hfi1_pci_tbl[] = {
1366 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
1367 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
1368 	{ 0, }
1369 };
1370 
1371 MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);
1372 
1373 static struct pci_driver hfi1_pci_driver = {
1374 	.name = DRIVER_NAME,
1375 	.probe = init_one,
1376 	.remove = remove_one,
1377 	.id_table = hfi1_pci_tbl,
1378 	.err_handler = &hfi1_pci_err_handler,
1379 };
1380 
1381 static void __init compute_krcvqs(void)
1382 {
1383 	int i;
1384 
1385 	for (i = 0; i < krcvqsset; i++)
1386 		n_krcvqs += krcvqs[i];
1387 }
1388 
1389 /*
1390  * Do all the generic driver unit- and chip-independent memory
1391  * allocation and initialization.
1392  */
1393 static int __init hfi1_mod_init(void)
1394 {
1395 	int ret;
1396 
1397 	ret = dev_init();
1398 	if (ret)
1399 		goto bail;
1400 
1401 	ret = node_affinity_init();
1402 	if (ret)
1403 		goto bail;
1404 
1405 	/* validate max MTU before any devices start */
1406 	if (!valid_opa_max_mtu(hfi1_max_mtu)) {
1407 		pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
1408 		       hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
1409 		hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
1410 	}
1411 	/* valid CUs run from 1-128 in powers of 2 */
1412 	if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu))
1413 		hfi1_cu = 1;
1414 	/* valid credit return threshold is 0-100, variable is unsigned */
1415 	if (user_credit_return_threshold > 100)
1416 		user_credit_return_threshold = 100;
1417 
1418 	compute_krcvqs();
1419 	/*
1420 	 * sanitize receive interrupt count, time must wait until after
1421 	 * the hardware type is known
1422 	 */
1423 	if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
1424 		rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
1425 	/* reject invalid combinations */
1426 	if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
1427 		pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
1428 		rcv_intr_count = 1;
1429 	}
1430 	if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
1431 		/*
1432 		 * Avoid indefinite packet delivery by requiring a timeout
1433 		 * if count is > 1.
1434 		 */
1435 		pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
1436 		rcv_intr_timeout = 1;
1437 	}
1438 	if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
1439 		/*
1440 		 * The dynamic algorithm expects a non-zero timeout
1441 		 * and a count > 1.
1442 		 */
1443 		pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
1444 		rcv_intr_dynamic = 0;
1445 	}
1446 
1447 	/* sanitize link CRC options */
1448 	link_crc_mask &= SUPPORTED_CRCS;
1449 
1450 	/*
1451 	 * These must be called before the driver is registered with
1452 	 * the PCI subsystem.
1453 	 */
1454 	idr_init(&hfi1_unit_table);
1455 
1456 	hfi1_dbg_init();
1457 	ret = hfi1_wss_init();
1458 	if (ret < 0)
1459 		goto bail_wss;
1460 	ret = pci_register_driver(&hfi1_pci_driver);
1461 	if (ret < 0) {
1462 		pr_err("Unable to register driver: error %d\n", -ret);
1463 		goto bail_dev;
1464 	}
1465 	goto bail; /* all OK */
1466 
1467 bail_dev:
1468 	hfi1_wss_exit();
1469 bail_wss:
1470 	hfi1_dbg_exit();
1471 	idr_destroy(&hfi1_unit_table);
1472 	dev_cleanup();
1473 bail:
1474 	return ret;
1475 }
1476 
1477 module_init(hfi1_mod_init);
1478 
1479 /*
1480  * Do the non-unit driver cleanup, memory free, etc. at unload.
1481  */
1482 static void __exit hfi1_mod_cleanup(void)
1483 {
1484 	pci_unregister_driver(&hfi1_pci_driver);
1485 	node_affinity_destroy();
1486 	hfi1_wss_exit();
1487 	hfi1_dbg_exit();
1488 
1489 	idr_destroy(&hfi1_unit_table);
1490 	dispose_firmware();	/* asymmetric with obtain_firmware() */
1491 	dev_cleanup();
1492 }
1493 
1494 module_exit(hfi1_mod_cleanup);
1495 
1496 /* this can only be called after a successful initialization */
1497 static void cleanup_device_data(struct hfi1_devdata *dd)
1498 {
1499 	int ctxt;
1500 	int pidx;
1501 
1502 	/* users can't do anything more with chip */
1503 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1504 		struct hfi1_pportdata *ppd = &dd->pport[pidx];
1505 		struct cc_state *cc_state;
1506 		int i;
1507 
1508 		if (ppd->statusp)
1509 			*ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;
1510 
1511 		for (i = 0; i < OPA_MAX_SLS; i++)
1512 			hrtimer_cancel(&ppd->cca_timer[i].hrtimer);
1513 
1514 		spin_lock(&ppd->cc_state_lock);
1515 		cc_state = get_cc_state_protected(ppd);
1516 		RCU_INIT_POINTER(ppd->cc_state, NULL);
1517 		spin_unlock(&ppd->cc_state_lock);
1518 
1519 		if (cc_state)
1520 			kfree_rcu(cc_state, rcu);
1521 	}
1522 
1523 	free_credit_return(dd);
1524 
1525 	if (dd->rcvhdrtail_dummy_kvaddr) {
1526 		dma_free_coherent(&dd->pcidev->dev, sizeof(u64),
1527 				  (void *)dd->rcvhdrtail_dummy_kvaddr,
1528 				  dd->rcvhdrtail_dummy_dma);
1529 		dd->rcvhdrtail_dummy_kvaddr = NULL;
1530 	}
1531 
1532 	/*
1533 	 * Free any resources still in use (usually just kernel contexts)
1534 	 * at unload; we do for ctxtcnt, because that's what we allocate.
1535 	 */
1536 	for (ctxt = 0; dd->rcd && ctxt < dd->num_rcv_contexts; ctxt++) {
1537 		struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
1538 
1539 		if (rcd) {
1540 			hfi1_clear_tids(rcd);
1541 			hfi1_free_ctxt(rcd);
1542 		}
1543 	}
1544 
1545 	kfree(dd->rcd);
1546 	dd->rcd = NULL;
1547 
1548 	free_pio_map(dd);
1549 	/* must follow rcv context free - need to remove rcv's hooks */
1550 	for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
1551 		sc_free(dd->send_contexts[ctxt].sc);
1552 	dd->num_send_contexts = 0;
1553 	kfree(dd->send_contexts);
1554 	dd->send_contexts = NULL;
1555 	kfree(dd->hw_to_sw);
1556 	dd->hw_to_sw = NULL;
1557 	kfree(dd->boardname);
1558 	vfree(dd->events);
1559 	vfree(dd->status);
1560 }
1561 
1562 /*
1563  * Clean up on unit shutdown, or error during unit load after
1564  * successful initialization.
1565  */
1566 static void postinit_cleanup(struct hfi1_devdata *dd)
1567 {
1568 	hfi1_start_cleanup(dd);
1569 
1570 	hfi1_pcie_ddcleanup(dd);
1571 	hfi1_pcie_cleanup(dd->pcidev);
1572 
1573 	cleanup_device_data(dd);
1574 
1575 	hfi1_free_devdata(dd);
1576 }
1577 
1578 static int init_validate_rcvhdrcnt(struct device *dev, uint thecnt)
1579 {
1580 	if (thecnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) {
1581 		hfi1_early_err(dev, "Receive header queue count too small\n");
1582 		return -EINVAL;
1583 	}
1584 
1585 	if (thecnt > HFI1_MAX_HDRQ_EGRBUF_CNT) {
1586 		hfi1_early_err(dev,
1587 			       "Receive header queue count cannot be greater than %u\n",
1588 			       HFI1_MAX_HDRQ_EGRBUF_CNT);
1589 		return -EINVAL;
1590 	}
1591 
1592 	if (thecnt % HDRQ_INCREMENT) {
1593 		hfi1_early_err(dev, "Receive header queue count %d must be divisible by %lu\n",
1594 			       thecnt, HDRQ_INCREMENT);
1595 		return -EINVAL;
1596 	}
1597 
1598 	return 0;
1599 }
1600 
1601 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1602 {
1603 	int ret = 0, j, pidx, initfail;
1604 	struct hfi1_devdata *dd;
1605 	struct hfi1_pportdata *ppd;
1606 
1607 	/* First, lock the non-writable module parameters */
1608 	HFI1_CAP_LOCK();
1609 
1610 	/* Validate dev ids */
1611 	if (!(ent->device == PCI_DEVICE_ID_INTEL0 ||
1612 	      ent->device == PCI_DEVICE_ID_INTEL1)) {
1613 		hfi1_early_err(&pdev->dev,
1614 			       "Failing on unknown Intel deviceid 0x%x\n",
1615 			       ent->device);
1616 		ret = -ENODEV;
1617 		goto bail;
1618 	}
1619 
1620 	/* Validate some global module parameters */
1621 	ret = init_validate_rcvhdrcnt(&pdev->dev, rcvhdrcnt);
1622 	if (ret)
1623 		goto bail;
1624 
1625 	/* use the encoding function as a sanitization check */
1626 	if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) {
1627 		hfi1_early_err(&pdev->dev, "Invalid HdrQ Entry size %u\n",
1628 			       hfi1_hdrq_entsize);
1629 		ret = -EINVAL;
1630 		goto bail;
1631 	}
1632 
1633 	/* The receive eager buffer size must be set before the receive
1634 	 * contexts are created.
1635 	 *
1636 	 * Set the eager buffer size.  Validate that it falls in a range
1637 	 * allowed by the hardware - all powers of 2 between the min and
1638 	 * max.  The maximum valid MTU is within the eager buffer range
1639 	 * so we do not need to cap the max_mtu by an eager buffer size
1640 	 * setting.
1641 	 */
1642 	if (eager_buffer_size) {
1643 		if (!is_power_of_2(eager_buffer_size))
1644 			eager_buffer_size =
1645 				roundup_pow_of_two(eager_buffer_size);
1646 		eager_buffer_size =
1647 			clamp_val(eager_buffer_size,
1648 				  MIN_EAGER_BUFFER * 8,
1649 				  MAX_EAGER_BUFFER_TOTAL);
1650 		hfi1_early_info(&pdev->dev, "Eager buffer size %u\n",
1651 				eager_buffer_size);
1652 	} else {
1653 		hfi1_early_err(&pdev->dev, "Invalid Eager buffer size of 0\n");
1654 		ret = -EINVAL;
1655 		goto bail;
1656 	}
1657 
1658 	/* restrict value of hfi1_rcvarr_split */
1659 	hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);
1660 
1661 	ret = hfi1_pcie_init(pdev, ent);
1662 	if (ret)
1663 		goto bail;
1664 
1665 	/*
1666 	 * Do device-specific initialization, function table setup, dd
1667 	 * allocation, etc.
1668 	 */
1669 	dd = hfi1_init_dd(pdev, ent);
1670 
1671 	if (IS_ERR(dd)) {
1672 		ret = PTR_ERR(dd);
1673 		goto clean_bail; /* error already printed */
1674 	}
1675 
1676 	ret = create_workqueues(dd);
1677 	if (ret)
1678 		goto clean_bail;
1679 
1680 	/* do the generic initialization */
1681 	initfail = hfi1_init(dd, 0);
1682 
1683 	/* setup vnic */
1684 	hfi1_vnic_setup(dd);
1685 
1686 	ret = hfi1_register_ib_device(dd);
1687 
1688 	/*
1689 	 * Now ready for use.  this should be cleared whenever we
1690 	 * detect a reset, or initiate one.  If earlier failure,
1691 	 * we still create devices, so diags, etc. can be used
1692 	 * to determine cause of problem.
1693 	 */
1694 	if (!initfail && !ret) {
1695 		dd->flags |= HFI1_INITTED;
1696 		/* create debufs files after init and ib register */
1697 		hfi1_dbg_ibdev_init(&dd->verbs_dev);
1698 	}
1699 
1700 	j = hfi1_device_create(dd);
1701 	if (j)
1702 		dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
1703 
1704 	if (initfail || ret) {
1705 		stop_timers(dd);
1706 		flush_workqueue(ib_wq);
1707 		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1708 			hfi1_quiet_serdes(dd->pport + pidx);
1709 			ppd = dd->pport + pidx;
1710 			if (ppd->hfi1_wq) {
1711 				destroy_workqueue(ppd->hfi1_wq);
1712 				ppd->hfi1_wq = NULL;
1713 			}
1714 			if (ppd->link_wq) {
1715 				destroy_workqueue(ppd->link_wq);
1716 				ppd->link_wq = NULL;
1717 			}
1718 		}
1719 		if (!j)
1720 			hfi1_device_remove(dd);
1721 		if (!ret)
1722 			hfi1_unregister_ib_device(dd);
1723 		hfi1_vnic_cleanup(dd);
1724 		postinit_cleanup(dd);
1725 		if (initfail)
1726 			ret = initfail;
1727 		goto bail;	/* everything already cleaned */
1728 	}
1729 
1730 	sdma_start(dd);
1731 
1732 	return 0;
1733 
1734 clean_bail:
1735 	hfi1_pcie_cleanup(pdev);
1736 bail:
1737 	return ret;
1738 }
1739 
1740 static void wait_for_clients(struct hfi1_devdata *dd)
1741 {
1742 	/*
1743 	 * Remove the device init value and complete the device if there is
1744 	 * no clients or wait for active clients to finish.
1745 	 */
1746 	if (atomic_dec_and_test(&dd->user_refcount))
1747 		complete(&dd->user_comp);
1748 
1749 	wait_for_completion(&dd->user_comp);
1750 }
1751 
1752 static void remove_one(struct pci_dev *pdev)
1753 {
1754 	struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1755 
1756 	/* close debugfs files before ib unregister */
1757 	hfi1_dbg_ibdev_exit(&dd->verbs_dev);
1758 
1759 	/* remove the /dev hfi1 interface */
1760 	hfi1_device_remove(dd);
1761 
1762 	/* wait for existing user space clients to finish */
1763 	wait_for_clients(dd);
1764 
1765 	/* unregister from IB core */
1766 	hfi1_unregister_ib_device(dd);
1767 
1768 	/* cleanup vnic */
1769 	hfi1_vnic_cleanup(dd);
1770 
1771 	/*
1772 	 * Disable the IB link, disable interrupts on the device,
1773 	 * clear dma engines, etc.
1774 	 */
1775 	shutdown_device(dd);
1776 
1777 	stop_timers(dd);
1778 
1779 	/* wait until all of our (qsfp) queue_work() calls complete */
1780 	flush_workqueue(ib_wq);
1781 
1782 	postinit_cleanup(dd);
1783 }
1784 
1785 /**
1786  * hfi1_create_rcvhdrq - create a receive header queue
1787  * @dd: the hfi1_ib device
1788  * @rcd: the context data
1789  *
1790  * This must be contiguous memory (from an i/o perspective), and must be
1791  * DMA'able (which means for some systems, it will go through an IOMMU,
1792  * or be forced into a low address range).
1793  */
1794 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1795 {
1796 	unsigned amt;
1797 	u64 reg;
1798 
1799 	if (!rcd->rcvhdrq) {
1800 		dma_addr_t dma_hdrqtail;
1801 		gfp_t gfp_flags;
1802 
1803 		/*
1804 		 * rcvhdrqentsize is in DWs, so we have to convert to bytes
1805 		 * (* sizeof(u32)).
1806 		 */
1807 		amt = PAGE_ALIGN(rcd->rcvhdrq_cnt * rcd->rcvhdrqentsize *
1808 				 sizeof(u32));
1809 
1810 		if (rcd->ctxt < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
1811 			gfp_flags = GFP_KERNEL;
1812 		else
1813 			gfp_flags = GFP_USER;
1814 		rcd->rcvhdrq = dma_zalloc_coherent(
1815 			&dd->pcidev->dev, amt, &rcd->rcvhdrq_dma,
1816 			gfp_flags | __GFP_COMP);
1817 
1818 		if (!rcd->rcvhdrq) {
1819 			dd_dev_err(dd,
1820 				   "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
1821 				   amt, rcd->ctxt);
1822 			goto bail;
1823 		}
1824 
1825 		if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
1826 			rcd->rcvhdrtail_kvaddr = dma_zalloc_coherent(
1827 				&dd->pcidev->dev, PAGE_SIZE, &dma_hdrqtail,
1828 				gfp_flags);
1829 			if (!rcd->rcvhdrtail_kvaddr)
1830 				goto bail_free;
1831 			rcd->rcvhdrqtailaddr_dma = dma_hdrqtail;
1832 		}
1833 
1834 		rcd->rcvhdrq_size = amt;
1835 	}
1836 	/*
1837 	 * These values are per-context:
1838 	 *	RcvHdrCnt
1839 	 *	RcvHdrEntSize
1840 	 *	RcvHdrSize
1841 	 */
1842 	reg = ((u64)(rcd->rcvhdrq_cnt >> HDRQ_SIZE_SHIFT)
1843 			& RCV_HDR_CNT_CNT_MASK)
1844 		<< RCV_HDR_CNT_CNT_SHIFT;
1845 	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_CNT, reg);
1846 	reg = (encode_rcv_header_entry_size(rcd->rcvhdrqentsize)
1847 			& RCV_HDR_ENT_SIZE_ENT_SIZE_MASK)
1848 		<< RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT;
1849 	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_ENT_SIZE, reg);
1850 	reg = (dd->rcvhdrsize & RCV_HDR_SIZE_HDR_SIZE_MASK)
1851 		<< RCV_HDR_SIZE_HDR_SIZE_SHIFT;
1852 	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_SIZE, reg);
1853 
1854 	/*
1855 	 * Program dummy tail address for every receive context
1856 	 * before enabling any receive context
1857 	 */
1858 	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_TAIL_ADDR,
1859 			dd->rcvhdrtail_dummy_dma);
1860 
1861 	return 0;
1862 
1863 bail_free:
1864 	dd_dev_err(dd,
1865 		   "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
1866 		   rcd->ctxt);
1867 	dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
1868 			  rcd->rcvhdrq_dma);
1869 	rcd->rcvhdrq = NULL;
1870 bail:
1871 	return -ENOMEM;
1872 }
1873 
1874 /**
1875  * allocate eager buffers, both kernel and user contexts.
1876  * @rcd: the context we are setting up.
1877  *
1878  * Allocate the eager TID buffers and program them into hip.
1879  * They are no longer completely contiguous, we do multiple allocation
1880  * calls.  Otherwise we get the OOM code involved, by asking for too
1881  * much per call, with disastrous results on some kernels.
1882  */
1883 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
1884 {
1885 	struct hfi1_devdata *dd = rcd->dd;
1886 	u32 max_entries, egrtop, alloced_bytes = 0, idx = 0;
1887 	gfp_t gfp_flags;
1888 	u16 order;
1889 	int ret = 0;
1890 	u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);
1891 
1892 	/*
1893 	 * GFP_USER, but without GFP_FS, so buffer cache can be
1894 	 * coalesced (we hope); otherwise, even at order 4,
1895 	 * heavy filesystem activity makes these fail, and we can
1896 	 * use compound pages.
1897 	 */
1898 	gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP;
1899 
1900 	/*
1901 	 * The minimum size of the eager buffers is a groups of MTU-sized
1902 	 * buffers.
1903 	 * The global eager_buffer_size parameter is checked against the
1904 	 * theoretical lower limit of the value. Here, we check against the
1905 	 * MTU.
1906 	 */
1907 	if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
1908 		rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
1909 	/*
1910 	 * If using one-pkt-per-egr-buffer, lower the eager buffer
1911 	 * size to the max MTU (page-aligned).
1912 	 */
1913 	if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
1914 		rcd->egrbufs.rcvtid_size = round_mtu;
1915 
1916 	/*
1917 	 * Eager buffers sizes of 1MB or less require smaller TID sizes
1918 	 * to satisfy the "multiple of 8 RcvArray entries" requirement.
1919 	 */
1920 	if (rcd->egrbufs.size <= (1 << 20))
1921 		rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
1922 			rounddown_pow_of_two(rcd->egrbufs.size / 8));
1923 
1924 	while (alloced_bytes < rcd->egrbufs.size &&
1925 	       rcd->egrbufs.alloced < rcd->egrbufs.count) {
1926 		rcd->egrbufs.buffers[idx].addr =
1927 			dma_zalloc_coherent(&dd->pcidev->dev,
1928 					    rcd->egrbufs.rcvtid_size,
1929 					    &rcd->egrbufs.buffers[idx].dma,
1930 					    gfp_flags);
1931 		if (rcd->egrbufs.buffers[idx].addr) {
1932 			rcd->egrbufs.buffers[idx].len =
1933 				rcd->egrbufs.rcvtid_size;
1934 			rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
1935 				rcd->egrbufs.buffers[idx].addr;
1936 			rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma =
1937 				rcd->egrbufs.buffers[idx].dma;
1938 			rcd->egrbufs.alloced++;
1939 			alloced_bytes += rcd->egrbufs.rcvtid_size;
1940 			idx++;
1941 		} else {
1942 			u32 new_size, i, j;
1943 			u64 offset = 0;
1944 
1945 			/*
1946 			 * Fail the eager buffer allocation if:
1947 			 *   - we are already using the lowest acceptable size
1948 			 *   - we are using one-pkt-per-egr-buffer (this implies
1949 			 *     that we are accepting only one size)
1950 			 */
1951 			if (rcd->egrbufs.rcvtid_size == round_mtu ||
1952 			    !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
1953 				dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
1954 					   rcd->ctxt);
1955 				ret = -ENOMEM;
1956 				goto bail_rcvegrbuf_phys;
1957 			}
1958 
1959 			new_size = rcd->egrbufs.rcvtid_size / 2;
1960 
1961 			/*
1962 			 * If the first attempt to allocate memory failed, don't
1963 			 * fail everything but continue with the next lower
1964 			 * size.
1965 			 */
1966 			if (idx == 0) {
1967 				rcd->egrbufs.rcvtid_size = new_size;
1968 				continue;
1969 			}
1970 
1971 			/*
1972 			 * Re-partition already allocated buffers to a smaller
1973 			 * size.
1974 			 */
1975 			rcd->egrbufs.alloced = 0;
1976 			for (i = 0, j = 0, offset = 0; j < idx; i++) {
1977 				if (i >= rcd->egrbufs.count)
1978 					break;
1979 				rcd->egrbufs.rcvtids[i].dma =
1980 					rcd->egrbufs.buffers[j].dma + offset;
1981 				rcd->egrbufs.rcvtids[i].addr =
1982 					rcd->egrbufs.buffers[j].addr + offset;
1983 				rcd->egrbufs.alloced++;
1984 				if ((rcd->egrbufs.buffers[j].dma + offset +
1985 				     new_size) ==
1986 				    (rcd->egrbufs.buffers[j].dma +
1987 				     rcd->egrbufs.buffers[j].len)) {
1988 					j++;
1989 					offset = 0;
1990 				} else {
1991 					offset += new_size;
1992 				}
1993 			}
1994 			rcd->egrbufs.rcvtid_size = new_size;
1995 		}
1996 	}
1997 	rcd->egrbufs.numbufs = idx;
1998 	rcd->egrbufs.size = alloced_bytes;
1999 
2000 	hfi1_cdbg(PROC,
2001 		  "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %zuKB\n",
2002 		  rcd->ctxt, rcd->egrbufs.alloced,
2003 		  rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024);
2004 
2005 	/*
2006 	 * Set the contexts rcv array head update threshold to the closest
2007 	 * power of 2 (so we can use a mask instead of modulo) below half
2008 	 * the allocated entries.
2009 	 */
2010 	rcd->egrbufs.threshold =
2011 		rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
2012 	/*
2013 	 * Compute the expected RcvArray entry base. This is done after
2014 	 * allocating the eager buffers in order to maximize the
2015 	 * expected RcvArray entries for the context.
2016 	 */
2017 	max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
2018 	egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
2019 	rcd->expected_count = max_entries - egrtop;
2020 	if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
2021 		rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;
2022 
2023 	rcd->expected_base = rcd->eager_base + egrtop;
2024 	hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n",
2025 		  rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
2026 		  rcd->eager_base, rcd->expected_base);
2027 
2028 	if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) {
2029 		hfi1_cdbg(PROC,
2030 			  "ctxt%u: current Eager buffer size is invalid %u\n",
2031 			  rcd->ctxt, rcd->egrbufs.rcvtid_size);
2032 		ret = -EINVAL;
2033 		goto bail_rcvegrbuf_phys;
2034 	}
2035 
2036 	for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
2037 		hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER,
2038 			     rcd->egrbufs.rcvtids[idx].dma, order);
2039 		cond_resched();
2040 	}
2041 
2042 	return 0;
2043 
2044 bail_rcvegrbuf_phys:
2045 	for (idx = 0; idx < rcd->egrbufs.alloced &&
2046 	     rcd->egrbufs.buffers[idx].addr;
2047 	     idx++) {
2048 		dma_free_coherent(&dd->pcidev->dev,
2049 				  rcd->egrbufs.buffers[idx].len,
2050 				  rcd->egrbufs.buffers[idx].addr,
2051 				  rcd->egrbufs.buffers[idx].dma);
2052 		rcd->egrbufs.buffers[idx].addr = NULL;
2053 		rcd->egrbufs.buffers[idx].dma = 0;
2054 		rcd->egrbufs.buffers[idx].len = 0;
2055 	}
2056 
2057 	return ret;
2058 }
2059