1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause 2 /* 3 * Copyright(c) 2015 - 2020 Intel Corporation. 4 * Copyright(c) 2021 Cornelis Networks. 5 */ 6 7 #include <linux/pci.h> 8 #include <linux/netdevice.h> 9 #include <linux/vmalloc.h> 10 #include <linux/delay.h> 11 #include <linux/xarray.h> 12 #include <linux/module.h> 13 #include <linux/printk.h> 14 #include <linux/hrtimer.h> 15 #include <linux/bitmap.h> 16 #include <linux/numa.h> 17 #include <rdma/rdma_vt.h> 18 19 #include "hfi.h" 20 #include "device.h" 21 #include "common.h" 22 #include "trace.h" 23 #include "mad.h" 24 #include "sdma.h" 25 #include "debugfs.h" 26 #include "verbs.h" 27 #include "aspm.h" 28 #include "affinity.h" 29 #include "vnic.h" 30 #include "exp_rcv.h" 31 #include "netdev.h" 32 33 #undef pr_fmt 34 #define pr_fmt(fmt) DRIVER_NAME ": " fmt 35 36 /* 37 * min buffers we want to have per context, after driver 38 */ 39 #define HFI1_MIN_USER_CTXT_BUFCNT 7 40 41 #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */ 42 #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */ 43 44 #define NUM_IB_PORTS 1 45 46 /* 47 * Number of user receive contexts we are configured to use (to allow for more 48 * pio buffers per ctxt, etc.) Zero means use one user context per CPU. 49 */ 50 int num_user_contexts = -1; 51 module_param_named(num_user_contexts, num_user_contexts, int, 0444); 52 MODULE_PARM_DESC( 53 num_user_contexts, "Set max number of user contexts to use (default: -1 will use the real (non-HT) CPU count)"); 54 55 uint krcvqs[RXE_NUM_DATA_VL]; 56 int krcvqsset; 57 module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO); 58 MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL"); 59 60 /* computed based on above array */ 61 unsigned long n_krcvqs; 62 63 static unsigned hfi1_rcvarr_split = 25; 64 module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO); 65 MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers"); 66 67 static uint eager_buffer_size = (8 << 20); /* 8MB */ 68 module_param(eager_buffer_size, uint, S_IRUGO); 69 MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 8MB"); 70 71 static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */ 72 module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO); 73 MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)"); 74 75 static uint hfi1_hdrq_entsize = 32; 76 module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, 0444); 77 MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B, 32 - 128B (default)"); 78 79 unsigned int user_credit_return_threshold = 33; /* default is 33% */ 80 module_param(user_credit_return_threshold, uint, S_IRUGO); 81 MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)"); 82 83 DEFINE_XARRAY_FLAGS(hfi1_dev_table, XA_FLAGS_ALLOC | XA_FLAGS_LOCK_IRQ); 84 85 static int hfi1_create_kctxt(struct hfi1_devdata *dd, 86 struct hfi1_pportdata *ppd) 87 { 88 struct hfi1_ctxtdata *rcd; 89 int ret; 90 91 /* Control context has to be always 0 */ 92 BUILD_BUG_ON(HFI1_CTRL_CTXT != 0); 93 94 ret = hfi1_create_ctxtdata(ppd, dd->node, &rcd); 95 if (ret < 0) { 96 dd_dev_err(dd, "Kernel receive context allocation failed\n"); 97 return ret; 98 } 99 100 /* 101 * Set up the kernel context flags here and now because they use 102 * default values for all receive side memories. User contexts will 103 * be handled as they are created. 104 */ 105 rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) | 106 HFI1_CAP_KGET(NODROP_RHQ_FULL) | 107 HFI1_CAP_KGET(NODROP_EGR_FULL) | 108 HFI1_CAP_KGET(DMA_RTAIL); 109 110 /* Control context must use DMA_RTAIL */ 111 if (rcd->ctxt == HFI1_CTRL_CTXT) 112 rcd->flags |= HFI1_CAP_DMA_RTAIL; 113 rcd->fast_handler = get_dma_rtail_setting(rcd) ? 114 handle_receive_interrupt_dma_rtail : 115 handle_receive_interrupt_nodma_rtail; 116 117 hfi1_set_seq_cnt(rcd, 1); 118 119 rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node); 120 if (!rcd->sc) { 121 dd_dev_err(dd, "Kernel send context allocation failed\n"); 122 return -ENOMEM; 123 } 124 hfi1_init_ctxt(rcd->sc); 125 126 return 0; 127 } 128 129 /* 130 * Create the receive context array and one or more kernel contexts 131 */ 132 int hfi1_create_kctxts(struct hfi1_devdata *dd) 133 { 134 u16 i; 135 int ret; 136 137 dd->rcd = kcalloc_node(dd->num_rcv_contexts, sizeof(*dd->rcd), 138 GFP_KERNEL, dd->node); 139 if (!dd->rcd) 140 return -ENOMEM; 141 142 for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) { 143 ret = hfi1_create_kctxt(dd, dd->pport); 144 if (ret) 145 goto bail; 146 } 147 148 return 0; 149 bail: 150 for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) 151 hfi1_free_ctxt(dd->rcd[i]); 152 153 /* All the contexts should be freed, free the array */ 154 kfree(dd->rcd); 155 dd->rcd = NULL; 156 return ret; 157 } 158 159 /* 160 * Helper routines for the receive context reference count (rcd and uctxt). 161 */ 162 static void hfi1_rcd_init(struct hfi1_ctxtdata *rcd) 163 { 164 kref_init(&rcd->kref); 165 } 166 167 /** 168 * hfi1_rcd_free - When reference is zero clean up. 169 * @kref: pointer to an initialized rcd data structure 170 * 171 */ 172 static void hfi1_rcd_free(struct kref *kref) 173 { 174 unsigned long flags; 175 struct hfi1_ctxtdata *rcd = 176 container_of(kref, struct hfi1_ctxtdata, kref); 177 178 spin_lock_irqsave(&rcd->dd->uctxt_lock, flags); 179 rcd->dd->rcd[rcd->ctxt] = NULL; 180 spin_unlock_irqrestore(&rcd->dd->uctxt_lock, flags); 181 182 hfi1_free_ctxtdata(rcd->dd, rcd); 183 184 kfree(rcd); 185 } 186 187 /** 188 * hfi1_rcd_put - decrement reference for rcd 189 * @rcd: pointer to an initialized rcd data structure 190 * 191 * Use this to put a reference after the init. 192 */ 193 int hfi1_rcd_put(struct hfi1_ctxtdata *rcd) 194 { 195 if (rcd) 196 return kref_put(&rcd->kref, hfi1_rcd_free); 197 198 return 0; 199 } 200 201 /** 202 * hfi1_rcd_get - increment reference for rcd 203 * @rcd: pointer to an initialized rcd data structure 204 * 205 * Use this to get a reference after the init. 206 * 207 * Return : reflect kref_get_unless_zero(), which returns non-zero on 208 * increment, otherwise 0. 209 */ 210 int hfi1_rcd_get(struct hfi1_ctxtdata *rcd) 211 { 212 return kref_get_unless_zero(&rcd->kref); 213 } 214 215 /** 216 * allocate_rcd_index - allocate an rcd index from the rcd array 217 * @dd: pointer to a valid devdata structure 218 * @rcd: rcd data structure to assign 219 * @index: pointer to index that is allocated 220 * 221 * Find an empty index in the rcd array, and assign the given rcd to it. 222 * If the array is full, we are EBUSY. 223 * 224 */ 225 static int allocate_rcd_index(struct hfi1_devdata *dd, 226 struct hfi1_ctxtdata *rcd, u16 *index) 227 { 228 unsigned long flags; 229 u16 ctxt; 230 231 spin_lock_irqsave(&dd->uctxt_lock, flags); 232 for (ctxt = 0; ctxt < dd->num_rcv_contexts; ctxt++) 233 if (!dd->rcd[ctxt]) 234 break; 235 236 if (ctxt < dd->num_rcv_contexts) { 237 rcd->ctxt = ctxt; 238 dd->rcd[ctxt] = rcd; 239 hfi1_rcd_init(rcd); 240 } 241 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 242 243 if (ctxt >= dd->num_rcv_contexts) 244 return -EBUSY; 245 246 *index = ctxt; 247 248 return 0; 249 } 250 251 /** 252 * hfi1_rcd_get_by_index_safe - validate the ctxt index before accessing the 253 * array 254 * @dd: pointer to a valid devdata structure 255 * @ctxt: the index of an possilbe rcd 256 * 257 * This is a wrapper for hfi1_rcd_get_by_index() to validate that the given 258 * ctxt index is valid. 259 * 260 * The caller is responsible for making the _put(). 261 * 262 */ 263 struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd, 264 u16 ctxt) 265 { 266 if (ctxt < dd->num_rcv_contexts) 267 return hfi1_rcd_get_by_index(dd, ctxt); 268 269 return NULL; 270 } 271 272 /** 273 * hfi1_rcd_get_by_index - get by index 274 * @dd: pointer to a valid devdata structure 275 * @ctxt: the index of an possilbe rcd 276 * 277 * We need to protect access to the rcd array. If access is needed to 278 * one or more index, get the protecting spinlock and then increment the 279 * kref. 280 * 281 * The caller is responsible for making the _put(). 282 * 283 */ 284 struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt) 285 { 286 unsigned long flags; 287 struct hfi1_ctxtdata *rcd = NULL; 288 289 spin_lock_irqsave(&dd->uctxt_lock, flags); 290 if (dd->rcd[ctxt]) { 291 rcd = dd->rcd[ctxt]; 292 if (!hfi1_rcd_get(rcd)) 293 rcd = NULL; 294 } 295 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 296 297 return rcd; 298 } 299 300 /* 301 * Common code for user and kernel context create and setup. 302 * NOTE: the initial kref is done here (hf1_rcd_init()). 303 */ 304 int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa, 305 struct hfi1_ctxtdata **context) 306 { 307 struct hfi1_devdata *dd = ppd->dd; 308 struct hfi1_ctxtdata *rcd; 309 unsigned kctxt_ngroups = 0; 310 u32 base; 311 312 if (dd->rcv_entries.nctxt_extra > 313 dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt) 314 kctxt_ngroups = (dd->rcv_entries.nctxt_extra - 315 (dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt)); 316 rcd = kzalloc_node(sizeof(*rcd), GFP_KERNEL, numa); 317 if (rcd) { 318 u32 rcvtids, max_entries; 319 u16 ctxt; 320 int ret; 321 322 ret = allocate_rcd_index(dd, rcd, &ctxt); 323 if (ret) { 324 *context = NULL; 325 kfree(rcd); 326 return ret; 327 } 328 329 INIT_LIST_HEAD(&rcd->qp_wait_list); 330 hfi1_exp_tid_group_init(rcd); 331 rcd->ppd = ppd; 332 rcd->dd = dd; 333 rcd->numa_id = numa; 334 rcd->rcv_array_groups = dd->rcv_entries.ngroups; 335 rcd->rhf_rcv_function_map = normal_rhf_rcv_functions; 336 rcd->slow_handler = handle_receive_interrupt; 337 rcd->do_interrupt = rcd->slow_handler; 338 rcd->msix_intr = CCE_NUM_MSIX_VECTORS; 339 340 mutex_init(&rcd->exp_mutex); 341 spin_lock_init(&rcd->exp_lock); 342 INIT_LIST_HEAD(&rcd->flow_queue.queue_head); 343 INIT_LIST_HEAD(&rcd->rarr_queue.queue_head); 344 345 hfi1_cdbg(PROC, "setting up context %u\n", rcd->ctxt); 346 347 /* 348 * Calculate the context's RcvArray entry starting point. 349 * We do this here because we have to take into account all 350 * the RcvArray entries that previous context would have 351 * taken and we have to account for any extra groups assigned 352 * to the static (kernel) or dynamic (vnic/user) contexts. 353 */ 354 if (ctxt < dd->first_dyn_alloc_ctxt) { 355 if (ctxt < kctxt_ngroups) { 356 base = ctxt * (dd->rcv_entries.ngroups + 1); 357 rcd->rcv_array_groups++; 358 } else { 359 base = kctxt_ngroups + 360 (ctxt * dd->rcv_entries.ngroups); 361 } 362 } else { 363 u16 ct = ctxt - dd->first_dyn_alloc_ctxt; 364 365 base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) + 366 kctxt_ngroups); 367 if (ct < dd->rcv_entries.nctxt_extra) { 368 base += ct * (dd->rcv_entries.ngroups + 1); 369 rcd->rcv_array_groups++; 370 } else { 371 base += dd->rcv_entries.nctxt_extra + 372 (ct * dd->rcv_entries.ngroups); 373 } 374 } 375 rcd->eager_base = base * dd->rcv_entries.group_size; 376 377 rcd->rcvhdrq_cnt = rcvhdrcnt; 378 rcd->rcvhdrqentsize = hfi1_hdrq_entsize; 379 rcd->rhf_offset = 380 rcd->rcvhdrqentsize - sizeof(u64) / sizeof(u32); 381 /* 382 * Simple Eager buffer allocation: we have already pre-allocated 383 * the number of RcvArray entry groups. Each ctxtdata structure 384 * holds the number of groups for that context. 385 * 386 * To follow CSR requirements and maintain cacheline alignment, 387 * make sure all sizes and bases are multiples of group_size. 388 * 389 * The expected entry count is what is left after assigning 390 * eager. 391 */ 392 max_entries = rcd->rcv_array_groups * 393 dd->rcv_entries.group_size; 394 rcvtids = ((max_entries * hfi1_rcvarr_split) / 100); 395 rcd->egrbufs.count = round_down(rcvtids, 396 dd->rcv_entries.group_size); 397 if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) { 398 dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n", 399 rcd->ctxt); 400 rcd->egrbufs.count = MAX_EAGER_ENTRIES; 401 } 402 hfi1_cdbg(PROC, 403 "ctxt%u: max Eager buffer RcvArray entries: %u\n", 404 rcd->ctxt, rcd->egrbufs.count); 405 406 /* 407 * Allocate array that will hold the eager buffer accounting 408 * data. 409 * This will allocate the maximum possible buffer count based 410 * on the value of the RcvArray split parameter. 411 * The resulting value will be rounded down to the closest 412 * multiple of dd->rcv_entries.group_size. 413 */ 414 rcd->egrbufs.buffers = 415 kcalloc_node(rcd->egrbufs.count, 416 sizeof(*rcd->egrbufs.buffers), 417 GFP_KERNEL, numa); 418 if (!rcd->egrbufs.buffers) 419 goto bail; 420 rcd->egrbufs.rcvtids = 421 kcalloc_node(rcd->egrbufs.count, 422 sizeof(*rcd->egrbufs.rcvtids), 423 GFP_KERNEL, numa); 424 if (!rcd->egrbufs.rcvtids) 425 goto bail; 426 rcd->egrbufs.size = eager_buffer_size; 427 /* 428 * The size of the buffers programmed into the RcvArray 429 * entries needs to be big enough to handle the highest 430 * MTU supported. 431 */ 432 if (rcd->egrbufs.size < hfi1_max_mtu) { 433 rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu); 434 hfi1_cdbg(PROC, 435 "ctxt%u: eager bufs size too small. Adjusting to %u\n", 436 rcd->ctxt, rcd->egrbufs.size); 437 } 438 rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE; 439 440 /* Applicable only for statically created kernel contexts */ 441 if (ctxt < dd->first_dyn_alloc_ctxt) { 442 rcd->opstats = kzalloc_node(sizeof(*rcd->opstats), 443 GFP_KERNEL, numa); 444 if (!rcd->opstats) 445 goto bail; 446 447 /* Initialize TID flow generations for the context */ 448 hfi1_kern_init_ctxt_generations(rcd); 449 } 450 451 *context = rcd; 452 return 0; 453 } 454 455 bail: 456 *context = NULL; 457 hfi1_free_ctxt(rcd); 458 return -ENOMEM; 459 } 460 461 /** 462 * hfi1_free_ctxt - free context 463 * @rcd: pointer to an initialized rcd data structure 464 * 465 * This wrapper is the free function that matches hfi1_create_ctxtdata(). 466 * When a context is done being used (kernel or user), this function is called 467 * for the "final" put to match the kref init from hf1i_create_ctxtdata(). 468 * Other users of the context do a get/put sequence to make sure that the 469 * structure isn't removed while in use. 470 */ 471 void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd) 472 { 473 hfi1_rcd_put(rcd); 474 } 475 476 /* 477 * Select the largest ccti value over all SLs to determine the intra- 478 * packet gap for the link. 479 * 480 * called with cca_timer_lock held (to protect access to cca_timer 481 * array), and rcu_read_lock() (to protect access to cc_state). 482 */ 483 void set_link_ipg(struct hfi1_pportdata *ppd) 484 { 485 struct hfi1_devdata *dd = ppd->dd; 486 struct cc_state *cc_state; 487 int i; 488 u16 cce, ccti_limit, max_ccti = 0; 489 u16 shift, mult; 490 u64 src; 491 u32 current_egress_rate; /* Mbits /sec */ 492 u64 max_pkt_time; 493 /* 494 * max_pkt_time is the maximum packet egress time in units 495 * of the fabric clock period 1/(805 MHz). 496 */ 497 498 cc_state = get_cc_state(ppd); 499 500 if (!cc_state) 501 /* 502 * This should _never_ happen - rcu_read_lock() is held, 503 * and set_link_ipg() should not be called if cc_state 504 * is NULL. 505 */ 506 return; 507 508 for (i = 0; i < OPA_MAX_SLS; i++) { 509 u16 ccti = ppd->cca_timer[i].ccti; 510 511 if (ccti > max_ccti) 512 max_ccti = ccti; 513 } 514 515 ccti_limit = cc_state->cct.ccti_limit; 516 if (max_ccti > ccti_limit) 517 max_ccti = ccti_limit; 518 519 cce = cc_state->cct.entries[max_ccti].entry; 520 shift = (cce & 0xc000) >> 14; 521 mult = (cce & 0x3fff); 522 523 current_egress_rate = active_egress_rate(ppd); 524 525 max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate); 526 527 src = (max_pkt_time >> shift) * mult; 528 529 src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK; 530 src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT; 531 532 write_csr(dd, SEND_STATIC_RATE_CONTROL, src); 533 } 534 535 static enum hrtimer_restart cca_timer_fn(struct hrtimer *t) 536 { 537 struct cca_timer *cca_timer; 538 struct hfi1_pportdata *ppd; 539 int sl; 540 u16 ccti_timer, ccti_min; 541 struct cc_state *cc_state; 542 unsigned long flags; 543 enum hrtimer_restart ret = HRTIMER_NORESTART; 544 545 cca_timer = container_of(t, struct cca_timer, hrtimer); 546 ppd = cca_timer->ppd; 547 sl = cca_timer->sl; 548 549 rcu_read_lock(); 550 551 cc_state = get_cc_state(ppd); 552 553 if (!cc_state) { 554 rcu_read_unlock(); 555 return HRTIMER_NORESTART; 556 } 557 558 /* 559 * 1) decrement ccti for SL 560 * 2) calculate IPG for link (set_link_ipg()) 561 * 3) restart timer, unless ccti is at min value 562 */ 563 564 ccti_min = cc_state->cong_setting.entries[sl].ccti_min; 565 ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer; 566 567 spin_lock_irqsave(&ppd->cca_timer_lock, flags); 568 569 if (cca_timer->ccti > ccti_min) { 570 cca_timer->ccti--; 571 set_link_ipg(ppd); 572 } 573 574 if (cca_timer->ccti > ccti_min) { 575 unsigned long nsec = 1024 * ccti_timer; 576 /* ccti_timer is in units of 1.024 usec */ 577 hrtimer_forward_now(t, ns_to_ktime(nsec)); 578 ret = HRTIMER_RESTART; 579 } 580 581 spin_unlock_irqrestore(&ppd->cca_timer_lock, flags); 582 rcu_read_unlock(); 583 return ret; 584 } 585 586 /* 587 * Common code for initializing the physical port structure. 588 */ 589 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd, 590 struct hfi1_devdata *dd, u8 hw_pidx, u32 port) 591 { 592 int i; 593 uint default_pkey_idx; 594 struct cc_state *cc_state; 595 596 ppd->dd = dd; 597 ppd->hw_pidx = hw_pidx; 598 ppd->port = port; /* IB port number, not index */ 599 ppd->prev_link_width = LINK_WIDTH_DEFAULT; 600 /* 601 * There are C_VL_COUNT number of PortVLXmitWait counters. 602 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter. 603 */ 604 for (i = 0; i < C_VL_COUNT + 1; i++) { 605 ppd->port_vl_xmit_wait_last[i] = 0; 606 ppd->vl_xmit_flit_cnt[i] = 0; 607 } 608 609 default_pkey_idx = 1; 610 611 ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY; 612 ppd->part_enforce |= HFI1_PART_ENFORCE_IN; 613 ppd->pkeys[0] = 0x8001; 614 615 INIT_WORK(&ppd->link_vc_work, handle_verify_cap); 616 INIT_WORK(&ppd->link_up_work, handle_link_up); 617 INIT_WORK(&ppd->link_down_work, handle_link_down); 618 INIT_WORK(&ppd->freeze_work, handle_freeze); 619 INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade); 620 INIT_WORK(&ppd->sma_message_work, handle_sma_message); 621 INIT_WORK(&ppd->link_bounce_work, handle_link_bounce); 622 INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link); 623 INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work); 624 INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event); 625 626 mutex_init(&ppd->hls_lock); 627 spin_lock_init(&ppd->qsfp_info.qsfp_lock); 628 629 ppd->qsfp_info.ppd = ppd; 630 ppd->sm_trap_qp = 0x0; 631 ppd->sa_qp = 0x1; 632 633 ppd->hfi1_wq = NULL; 634 635 spin_lock_init(&ppd->cca_timer_lock); 636 637 for (i = 0; i < OPA_MAX_SLS; i++) { 638 hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC, 639 HRTIMER_MODE_REL); 640 ppd->cca_timer[i].ppd = ppd; 641 ppd->cca_timer[i].sl = i; 642 ppd->cca_timer[i].ccti = 0; 643 ppd->cca_timer[i].hrtimer.function = cca_timer_fn; 644 } 645 646 ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT; 647 648 spin_lock_init(&ppd->cc_state_lock); 649 spin_lock_init(&ppd->cc_log_lock); 650 cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL); 651 RCU_INIT_POINTER(ppd->cc_state, cc_state); 652 if (!cc_state) 653 goto bail; 654 return; 655 656 bail: 657 dd_dev_err(dd, "Congestion Control Agent disabled for port %d\n", port); 658 } 659 660 /* 661 * Do initialization for device that is only needed on 662 * first detect, not on resets. 663 */ 664 static int loadtime_init(struct hfi1_devdata *dd) 665 { 666 return 0; 667 } 668 669 /** 670 * init_after_reset - re-initialize after a reset 671 * @dd: the hfi1_ib device 672 * 673 * sanity check at least some of the values after reset, and 674 * ensure no receive or transmit (explicitly, in case reset 675 * failed 676 */ 677 static int init_after_reset(struct hfi1_devdata *dd) 678 { 679 int i; 680 struct hfi1_ctxtdata *rcd; 681 /* 682 * Ensure chip does no sends or receives, tail updates, or 683 * pioavail updates while we re-initialize. This is mostly 684 * for the driver data structures, not chip registers. 685 */ 686 for (i = 0; i < dd->num_rcv_contexts; i++) { 687 rcd = hfi1_rcd_get_by_index(dd, i); 688 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS | 689 HFI1_RCVCTRL_INTRAVAIL_DIS | 690 HFI1_RCVCTRL_TAILUPD_DIS, rcd); 691 hfi1_rcd_put(rcd); 692 } 693 pio_send_control(dd, PSC_GLOBAL_DISABLE); 694 for (i = 0; i < dd->num_send_contexts; i++) 695 sc_disable(dd->send_contexts[i].sc); 696 697 return 0; 698 } 699 700 static void enable_chip(struct hfi1_devdata *dd) 701 { 702 struct hfi1_ctxtdata *rcd; 703 u32 rcvmask; 704 u16 i; 705 706 /* enable PIO send */ 707 pio_send_control(dd, PSC_GLOBAL_ENABLE); 708 709 /* 710 * Enable kernel ctxts' receive and receive interrupt. 711 * Other ctxts done as user opens and initializes them. 712 */ 713 for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) { 714 rcd = hfi1_rcd_get_by_index(dd, i); 715 if (!rcd) 716 continue; 717 rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB; 718 rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ? 719 HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS; 720 if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) 721 rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB; 722 if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_RHQ_FULL)) 723 rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB; 724 if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_EGR_FULL)) 725 rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB; 726 if (HFI1_CAP_IS_KSET(TID_RDMA)) 727 rcvmask |= HFI1_RCVCTRL_TIDFLOW_ENB; 728 hfi1_rcvctrl(dd, rcvmask, rcd); 729 sc_enable(rcd->sc); 730 hfi1_rcd_put(rcd); 731 } 732 } 733 734 /** 735 * create_workqueues - create per port workqueues 736 * @dd: the hfi1_ib device 737 */ 738 static int create_workqueues(struct hfi1_devdata *dd) 739 { 740 int pidx; 741 struct hfi1_pportdata *ppd; 742 743 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 744 ppd = dd->pport + pidx; 745 if (!ppd->hfi1_wq) { 746 ppd->hfi1_wq = 747 alloc_workqueue( 748 "hfi%d_%d", 749 WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE | 750 WQ_MEM_RECLAIM, 751 HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES, 752 dd->unit, pidx); 753 if (!ppd->hfi1_wq) 754 goto wq_error; 755 } 756 if (!ppd->link_wq) { 757 /* 758 * Make the link workqueue single-threaded to enforce 759 * serialization. 760 */ 761 ppd->link_wq = 762 alloc_workqueue( 763 "hfi_link_%d_%d", 764 WQ_SYSFS | WQ_MEM_RECLAIM | WQ_UNBOUND, 765 1, /* max_active */ 766 dd->unit, pidx); 767 if (!ppd->link_wq) 768 goto wq_error; 769 } 770 } 771 return 0; 772 wq_error: 773 pr_err("alloc_workqueue failed for port %d\n", pidx + 1); 774 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 775 ppd = dd->pport + pidx; 776 if (ppd->hfi1_wq) { 777 destroy_workqueue(ppd->hfi1_wq); 778 ppd->hfi1_wq = NULL; 779 } 780 if (ppd->link_wq) { 781 destroy_workqueue(ppd->link_wq); 782 ppd->link_wq = NULL; 783 } 784 } 785 return -ENOMEM; 786 } 787 788 /** 789 * destroy_workqueues - destroy per port workqueues 790 * @dd: the hfi1_ib device 791 */ 792 static void destroy_workqueues(struct hfi1_devdata *dd) 793 { 794 int pidx; 795 struct hfi1_pportdata *ppd; 796 797 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 798 ppd = dd->pport + pidx; 799 800 if (ppd->hfi1_wq) { 801 destroy_workqueue(ppd->hfi1_wq); 802 ppd->hfi1_wq = NULL; 803 } 804 if (ppd->link_wq) { 805 destroy_workqueue(ppd->link_wq); 806 ppd->link_wq = NULL; 807 } 808 } 809 } 810 811 /** 812 * enable_general_intr() - Enable the IRQs that will be handled by the 813 * general interrupt handler. 814 * @dd: valid devdata 815 * 816 */ 817 static void enable_general_intr(struct hfi1_devdata *dd) 818 { 819 set_intr_bits(dd, CCE_ERR_INT, MISC_ERR_INT, true); 820 set_intr_bits(dd, PIO_ERR_INT, TXE_ERR_INT, true); 821 set_intr_bits(dd, IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END, true); 822 set_intr_bits(dd, PBC_INT, GPIO_ASSERT_INT, true); 823 set_intr_bits(dd, TCRIT_INT, TCRIT_INT, true); 824 set_intr_bits(dd, IS_DC_START, IS_DC_END, true); 825 set_intr_bits(dd, IS_SENDCREDIT_START, IS_SENDCREDIT_END, true); 826 } 827 828 /** 829 * hfi1_init - do the actual initialization sequence on the chip 830 * @dd: the hfi1_ib device 831 * @reinit: re-initializing, so don't allocate new memory 832 * 833 * Do the actual initialization sequence on the chip. This is done 834 * both from the init routine called from the PCI infrastructure, and 835 * when we reset the chip, or detect that it was reset internally, 836 * or it's administratively re-enabled. 837 * 838 * Memory allocation here and in called routines is only done in 839 * the first case (reinit == 0). We have to be careful, because even 840 * without memory allocation, we need to re-write all the chip registers 841 * TIDs, etc. after the reset or enable has completed. 842 */ 843 int hfi1_init(struct hfi1_devdata *dd, int reinit) 844 { 845 int ret = 0, pidx, lastfail = 0; 846 unsigned long len; 847 u16 i; 848 struct hfi1_ctxtdata *rcd; 849 struct hfi1_pportdata *ppd; 850 851 /* Set up send low level handlers */ 852 dd->process_pio_send = hfi1_verbs_send_pio; 853 dd->process_dma_send = hfi1_verbs_send_dma; 854 dd->pio_inline_send = pio_copy; 855 dd->process_vnic_dma_send = hfi1_vnic_send_dma; 856 857 if (is_ax(dd)) { 858 atomic_set(&dd->drop_packet, DROP_PACKET_ON); 859 dd->do_drop = true; 860 } else { 861 atomic_set(&dd->drop_packet, DROP_PACKET_OFF); 862 dd->do_drop = false; 863 } 864 865 /* make sure the link is not "up" */ 866 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 867 ppd = dd->pport + pidx; 868 ppd->linkup = 0; 869 } 870 871 if (reinit) 872 ret = init_after_reset(dd); 873 else 874 ret = loadtime_init(dd); 875 if (ret) 876 goto done; 877 878 /* dd->rcd can be NULL if early initialization failed */ 879 for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) { 880 /* 881 * Set up the (kernel) rcvhdr queue and egr TIDs. If doing 882 * re-init, the simplest way to handle this is to free 883 * existing, and re-allocate. 884 * Need to re-create rest of ctxt 0 ctxtdata as well. 885 */ 886 rcd = hfi1_rcd_get_by_index(dd, i); 887 if (!rcd) 888 continue; 889 890 lastfail = hfi1_create_rcvhdrq(dd, rcd); 891 if (!lastfail) 892 lastfail = hfi1_setup_eagerbufs(rcd); 893 if (!lastfail) 894 lastfail = hfi1_kern_exp_rcv_init(rcd, reinit); 895 if (lastfail) { 896 dd_dev_err(dd, 897 "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n"); 898 ret = lastfail; 899 } 900 /* enable IRQ */ 901 hfi1_rcd_put(rcd); 902 } 903 904 /* Allocate enough memory for user event notification. */ 905 len = PAGE_ALIGN(chip_rcv_contexts(dd) * HFI1_MAX_SHARED_CTXTS * 906 sizeof(*dd->events)); 907 dd->events = vmalloc_user(len); 908 if (!dd->events) 909 dd_dev_err(dd, "Failed to allocate user events page\n"); 910 /* 911 * Allocate a page for device and port status. 912 * Page will be shared amongst all user processes. 913 */ 914 dd->status = vmalloc_user(PAGE_SIZE); 915 if (!dd->status) 916 dd_dev_err(dd, "Failed to allocate dev status page\n"); 917 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 918 ppd = dd->pport + pidx; 919 if (dd->status) 920 /* Currently, we only have one port */ 921 ppd->statusp = &dd->status->port; 922 923 set_mtu(ppd); 924 } 925 926 /* enable chip even if we have an error, so we can debug cause */ 927 enable_chip(dd); 928 929 done: 930 /* 931 * Set status even if port serdes is not initialized 932 * so that diags will work. 933 */ 934 if (dd->status) 935 dd->status->dev |= HFI1_STATUS_CHIP_PRESENT | 936 HFI1_STATUS_INITTED; 937 if (!ret) { 938 /* enable all interrupts from the chip */ 939 enable_general_intr(dd); 940 init_qsfp_int(dd); 941 942 /* chip is OK for user apps; mark it as initialized */ 943 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 944 ppd = dd->pport + pidx; 945 946 /* 947 * start the serdes - must be after interrupts are 948 * enabled so we are notified when the link goes up 949 */ 950 lastfail = bringup_serdes(ppd); 951 if (lastfail) 952 dd_dev_info(dd, 953 "Failed to bring up port %u\n", 954 ppd->port); 955 956 /* 957 * Set status even if port serdes is not initialized 958 * so that diags will work. 959 */ 960 if (ppd->statusp) 961 *ppd->statusp |= HFI1_STATUS_CHIP_PRESENT | 962 HFI1_STATUS_INITTED; 963 if (!ppd->link_speed_enabled) 964 continue; 965 } 966 } 967 968 /* if ret is non-zero, we probably should do some cleanup here... */ 969 return ret; 970 } 971 972 struct hfi1_devdata *hfi1_lookup(int unit) 973 { 974 return xa_load(&hfi1_dev_table, unit); 975 } 976 977 /* 978 * Stop the timers during unit shutdown, or after an error late 979 * in initialization. 980 */ 981 static void stop_timers(struct hfi1_devdata *dd) 982 { 983 struct hfi1_pportdata *ppd; 984 int pidx; 985 986 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 987 ppd = dd->pport + pidx; 988 if (ppd->led_override_timer.function) { 989 del_timer_sync(&ppd->led_override_timer); 990 atomic_set(&ppd->led_override_timer_active, 0); 991 } 992 } 993 } 994 995 /** 996 * shutdown_device - shut down a device 997 * @dd: the hfi1_ib device 998 * 999 * This is called to make the device quiet when we are about to 1000 * unload the driver, and also when the device is administratively 1001 * disabled. It does not free any data structures. 1002 * Everything it does has to be setup again by hfi1_init(dd, 1) 1003 */ 1004 static void shutdown_device(struct hfi1_devdata *dd) 1005 { 1006 struct hfi1_pportdata *ppd; 1007 struct hfi1_ctxtdata *rcd; 1008 unsigned pidx; 1009 int i; 1010 1011 if (dd->flags & HFI1_SHUTDOWN) 1012 return; 1013 dd->flags |= HFI1_SHUTDOWN; 1014 1015 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1016 ppd = dd->pport + pidx; 1017 1018 ppd->linkup = 0; 1019 if (ppd->statusp) 1020 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF | 1021 HFI1_STATUS_IB_READY); 1022 } 1023 dd->flags &= ~HFI1_INITTED; 1024 1025 /* mask and clean up interrupts */ 1026 set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, false); 1027 msix_clean_up_interrupts(dd); 1028 1029 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1030 ppd = dd->pport + pidx; 1031 for (i = 0; i < dd->num_rcv_contexts; i++) { 1032 rcd = hfi1_rcd_get_by_index(dd, i); 1033 hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS | 1034 HFI1_RCVCTRL_CTXT_DIS | 1035 HFI1_RCVCTRL_INTRAVAIL_DIS | 1036 HFI1_RCVCTRL_PKEY_DIS | 1037 HFI1_RCVCTRL_ONE_PKT_EGR_DIS, rcd); 1038 hfi1_rcd_put(rcd); 1039 } 1040 /* 1041 * Gracefully stop all sends allowing any in progress to 1042 * trickle out first. 1043 */ 1044 for (i = 0; i < dd->num_send_contexts; i++) 1045 sc_flush(dd->send_contexts[i].sc); 1046 } 1047 1048 /* 1049 * Enough for anything that's going to trickle out to have actually 1050 * done so. 1051 */ 1052 udelay(20); 1053 1054 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1055 ppd = dd->pport + pidx; 1056 1057 /* disable all contexts */ 1058 for (i = 0; i < dd->num_send_contexts; i++) 1059 sc_disable(dd->send_contexts[i].sc); 1060 /* disable the send device */ 1061 pio_send_control(dd, PSC_GLOBAL_DISABLE); 1062 1063 shutdown_led_override(ppd); 1064 1065 /* 1066 * Clear SerdesEnable. 1067 * We can't count on interrupts since we are stopping. 1068 */ 1069 hfi1_quiet_serdes(ppd); 1070 if (ppd->hfi1_wq) 1071 flush_workqueue(ppd->hfi1_wq); 1072 if (ppd->link_wq) 1073 flush_workqueue(ppd->link_wq); 1074 } 1075 sdma_exit(dd); 1076 } 1077 1078 /** 1079 * hfi1_free_ctxtdata - free a context's allocated data 1080 * @dd: the hfi1_ib device 1081 * @rcd: the ctxtdata structure 1082 * 1083 * free up any allocated data for a context 1084 * It should never change any chip state, or global driver state. 1085 */ 1086 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd) 1087 { 1088 u32 e; 1089 1090 if (!rcd) 1091 return; 1092 1093 if (rcd->rcvhdrq) { 1094 dma_free_coherent(&dd->pcidev->dev, rcvhdrq_size(rcd), 1095 rcd->rcvhdrq, rcd->rcvhdrq_dma); 1096 rcd->rcvhdrq = NULL; 1097 if (hfi1_rcvhdrtail_kvaddr(rcd)) { 1098 dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE, 1099 (void *)hfi1_rcvhdrtail_kvaddr(rcd), 1100 rcd->rcvhdrqtailaddr_dma); 1101 rcd->rcvhdrtail_kvaddr = NULL; 1102 } 1103 } 1104 1105 /* all the RcvArray entries should have been cleared by now */ 1106 kfree(rcd->egrbufs.rcvtids); 1107 rcd->egrbufs.rcvtids = NULL; 1108 1109 for (e = 0; e < rcd->egrbufs.alloced; e++) { 1110 if (rcd->egrbufs.buffers[e].addr) 1111 dma_free_coherent(&dd->pcidev->dev, 1112 rcd->egrbufs.buffers[e].len, 1113 rcd->egrbufs.buffers[e].addr, 1114 rcd->egrbufs.buffers[e].dma); 1115 } 1116 kfree(rcd->egrbufs.buffers); 1117 rcd->egrbufs.alloced = 0; 1118 rcd->egrbufs.buffers = NULL; 1119 1120 sc_free(rcd->sc); 1121 rcd->sc = NULL; 1122 1123 vfree(rcd->subctxt_uregbase); 1124 vfree(rcd->subctxt_rcvegrbuf); 1125 vfree(rcd->subctxt_rcvhdr_base); 1126 kfree(rcd->opstats); 1127 1128 rcd->subctxt_uregbase = NULL; 1129 rcd->subctxt_rcvegrbuf = NULL; 1130 rcd->subctxt_rcvhdr_base = NULL; 1131 rcd->opstats = NULL; 1132 } 1133 1134 /* 1135 * Release our hold on the shared asic data. If we are the last one, 1136 * return the structure to be finalized outside the lock. Must be 1137 * holding hfi1_dev_table lock. 1138 */ 1139 static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd) 1140 { 1141 struct hfi1_asic_data *ad; 1142 int other; 1143 1144 if (!dd->asic_data) 1145 return NULL; 1146 dd->asic_data->dds[dd->hfi1_id] = NULL; 1147 other = dd->hfi1_id ? 0 : 1; 1148 ad = dd->asic_data; 1149 dd->asic_data = NULL; 1150 /* return NULL if the other dd still has a link */ 1151 return ad->dds[other] ? NULL : ad; 1152 } 1153 1154 static void finalize_asic_data(struct hfi1_devdata *dd, 1155 struct hfi1_asic_data *ad) 1156 { 1157 clean_up_i2c(dd, ad); 1158 kfree(ad); 1159 } 1160 1161 /** 1162 * hfi1_free_devdata - cleans up and frees per-unit data structure 1163 * @dd: pointer to a valid devdata structure 1164 * 1165 * It cleans up and frees all data structures set up by 1166 * by hfi1_alloc_devdata(). 1167 */ 1168 void hfi1_free_devdata(struct hfi1_devdata *dd) 1169 { 1170 struct hfi1_asic_data *ad; 1171 unsigned long flags; 1172 1173 xa_lock_irqsave(&hfi1_dev_table, flags); 1174 __xa_erase(&hfi1_dev_table, dd->unit); 1175 ad = release_asic_data(dd); 1176 xa_unlock_irqrestore(&hfi1_dev_table, flags); 1177 1178 finalize_asic_data(dd, ad); 1179 free_platform_config(dd); 1180 rcu_barrier(); /* wait for rcu callbacks to complete */ 1181 free_percpu(dd->int_counter); 1182 free_percpu(dd->rcv_limit); 1183 free_percpu(dd->send_schedule); 1184 free_percpu(dd->tx_opstats); 1185 dd->int_counter = NULL; 1186 dd->rcv_limit = NULL; 1187 dd->send_schedule = NULL; 1188 dd->tx_opstats = NULL; 1189 kfree(dd->comp_vect); 1190 dd->comp_vect = NULL; 1191 if (dd->rcvhdrtail_dummy_kvaddr) 1192 dma_free_coherent(&dd->pcidev->dev, sizeof(u64), 1193 (void *)dd->rcvhdrtail_dummy_kvaddr, 1194 dd->rcvhdrtail_dummy_dma); 1195 dd->rcvhdrtail_dummy_kvaddr = NULL; 1196 sdma_clean(dd, dd->num_sdma); 1197 rvt_dealloc_device(&dd->verbs_dev.rdi); 1198 } 1199 1200 /** 1201 * hfi1_alloc_devdata - Allocate our primary per-unit data structure. 1202 * @pdev: Valid PCI device 1203 * @extra: How many bytes to alloc past the default 1204 * 1205 * Must be done via verbs allocator, because the verbs cleanup process 1206 * both does cleanup and free of the data structure. 1207 * "extra" is for chip-specific data. 1208 */ 1209 static struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev, 1210 size_t extra) 1211 { 1212 struct hfi1_devdata *dd; 1213 int ret, nports; 1214 1215 /* extra is * number of ports */ 1216 nports = extra / sizeof(struct hfi1_pportdata); 1217 1218 dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra, 1219 nports); 1220 if (!dd) 1221 return ERR_PTR(-ENOMEM); 1222 dd->num_pports = nports; 1223 dd->pport = (struct hfi1_pportdata *)(dd + 1); 1224 dd->pcidev = pdev; 1225 pci_set_drvdata(pdev, dd); 1226 1227 ret = xa_alloc_irq(&hfi1_dev_table, &dd->unit, dd, xa_limit_32b, 1228 GFP_KERNEL); 1229 if (ret < 0) { 1230 dev_err(&pdev->dev, 1231 "Could not allocate unit ID: error %d\n", -ret); 1232 goto bail; 1233 } 1234 rvt_set_ibdev_name(&dd->verbs_dev.rdi, "%s_%d", class_name(), dd->unit); 1235 /* 1236 * If the BIOS does not have the NUMA node information set, select 1237 * NUMA 0 so we get consistent performance. 1238 */ 1239 dd->node = pcibus_to_node(pdev->bus); 1240 if (dd->node == NUMA_NO_NODE) { 1241 dd_dev_err(dd, "Invalid PCI NUMA node. Performance may be affected\n"); 1242 dd->node = 0; 1243 } 1244 1245 /* 1246 * Initialize all locks for the device. This needs to be as early as 1247 * possible so locks are usable. 1248 */ 1249 spin_lock_init(&dd->sc_lock); 1250 spin_lock_init(&dd->sendctrl_lock); 1251 spin_lock_init(&dd->rcvctrl_lock); 1252 spin_lock_init(&dd->uctxt_lock); 1253 spin_lock_init(&dd->hfi1_diag_trans_lock); 1254 spin_lock_init(&dd->sc_init_lock); 1255 spin_lock_init(&dd->dc8051_memlock); 1256 seqlock_init(&dd->sc2vl_lock); 1257 spin_lock_init(&dd->sde_map_lock); 1258 spin_lock_init(&dd->pio_map_lock); 1259 mutex_init(&dd->dc8051_lock); 1260 init_waitqueue_head(&dd->event_queue); 1261 spin_lock_init(&dd->irq_src_lock); 1262 1263 dd->int_counter = alloc_percpu(u64); 1264 if (!dd->int_counter) { 1265 ret = -ENOMEM; 1266 goto bail; 1267 } 1268 1269 dd->rcv_limit = alloc_percpu(u64); 1270 if (!dd->rcv_limit) { 1271 ret = -ENOMEM; 1272 goto bail; 1273 } 1274 1275 dd->send_schedule = alloc_percpu(u64); 1276 if (!dd->send_schedule) { 1277 ret = -ENOMEM; 1278 goto bail; 1279 } 1280 1281 dd->tx_opstats = alloc_percpu(struct hfi1_opcode_stats_perctx); 1282 if (!dd->tx_opstats) { 1283 ret = -ENOMEM; 1284 goto bail; 1285 } 1286 1287 dd->comp_vect = kzalloc(sizeof(*dd->comp_vect), GFP_KERNEL); 1288 if (!dd->comp_vect) { 1289 ret = -ENOMEM; 1290 goto bail; 1291 } 1292 1293 /* allocate dummy tail memory for all receive contexts */ 1294 dd->rcvhdrtail_dummy_kvaddr = 1295 dma_alloc_coherent(&dd->pcidev->dev, sizeof(u64), 1296 &dd->rcvhdrtail_dummy_dma, GFP_KERNEL); 1297 if (!dd->rcvhdrtail_dummy_kvaddr) { 1298 ret = -ENOMEM; 1299 goto bail; 1300 } 1301 1302 atomic_set(&dd->ipoib_rsm_usr_num, 0); 1303 return dd; 1304 1305 bail: 1306 hfi1_free_devdata(dd); 1307 return ERR_PTR(ret); 1308 } 1309 1310 /* 1311 * Called from freeze mode handlers, and from PCI error 1312 * reporting code. Should be paranoid about state of 1313 * system and data structures. 1314 */ 1315 void hfi1_disable_after_error(struct hfi1_devdata *dd) 1316 { 1317 if (dd->flags & HFI1_INITTED) { 1318 u32 pidx; 1319 1320 dd->flags &= ~HFI1_INITTED; 1321 if (dd->pport) 1322 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1323 struct hfi1_pportdata *ppd; 1324 1325 ppd = dd->pport + pidx; 1326 if (dd->flags & HFI1_PRESENT) 1327 set_link_state(ppd, HLS_DN_DISABLE); 1328 1329 if (ppd->statusp) 1330 *ppd->statusp &= ~HFI1_STATUS_IB_READY; 1331 } 1332 } 1333 1334 /* 1335 * Mark as having had an error for driver, and also 1336 * for /sys and status word mapped to user programs. 1337 * This marks unit as not usable, until reset. 1338 */ 1339 if (dd->status) 1340 dd->status->dev |= HFI1_STATUS_HWERROR; 1341 } 1342 1343 static void remove_one(struct pci_dev *); 1344 static int init_one(struct pci_dev *, const struct pci_device_id *); 1345 static void shutdown_one(struct pci_dev *); 1346 1347 #define DRIVER_LOAD_MSG "Cornelis " DRIVER_NAME " loaded: " 1348 #define PFX DRIVER_NAME ": " 1349 1350 const struct pci_device_id hfi1_pci_tbl[] = { 1351 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) }, 1352 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) }, 1353 { 0, } 1354 }; 1355 1356 MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl); 1357 1358 static struct pci_driver hfi1_pci_driver = { 1359 .name = DRIVER_NAME, 1360 .probe = init_one, 1361 .remove = remove_one, 1362 .shutdown = shutdown_one, 1363 .id_table = hfi1_pci_tbl, 1364 .err_handler = &hfi1_pci_err_handler, 1365 }; 1366 1367 static void __init compute_krcvqs(void) 1368 { 1369 int i; 1370 1371 for (i = 0; i < krcvqsset; i++) 1372 n_krcvqs += krcvqs[i]; 1373 } 1374 1375 /* 1376 * Do all the generic driver unit- and chip-independent memory 1377 * allocation and initialization. 1378 */ 1379 static int __init hfi1_mod_init(void) 1380 { 1381 int ret; 1382 1383 ret = dev_init(); 1384 if (ret) 1385 goto bail; 1386 1387 ret = node_affinity_init(); 1388 if (ret) 1389 goto bail; 1390 1391 /* validate max MTU before any devices start */ 1392 if (!valid_opa_max_mtu(hfi1_max_mtu)) { 1393 pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n", 1394 hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU); 1395 hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU; 1396 } 1397 /* valid CUs run from 1-128 in powers of 2 */ 1398 if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu)) 1399 hfi1_cu = 1; 1400 /* valid credit return threshold is 0-100, variable is unsigned */ 1401 if (user_credit_return_threshold > 100) 1402 user_credit_return_threshold = 100; 1403 1404 compute_krcvqs(); 1405 /* 1406 * sanitize receive interrupt count, time must wait until after 1407 * the hardware type is known 1408 */ 1409 if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK) 1410 rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK; 1411 /* reject invalid combinations */ 1412 if (rcv_intr_count == 0 && rcv_intr_timeout == 0) { 1413 pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n"); 1414 rcv_intr_count = 1; 1415 } 1416 if (rcv_intr_count > 1 && rcv_intr_timeout == 0) { 1417 /* 1418 * Avoid indefinite packet delivery by requiring a timeout 1419 * if count is > 1. 1420 */ 1421 pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n"); 1422 rcv_intr_timeout = 1; 1423 } 1424 if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) { 1425 /* 1426 * The dynamic algorithm expects a non-zero timeout 1427 * and a count > 1. 1428 */ 1429 pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n"); 1430 rcv_intr_dynamic = 0; 1431 } 1432 1433 /* sanitize link CRC options */ 1434 link_crc_mask &= SUPPORTED_CRCS; 1435 1436 ret = opfn_init(); 1437 if (ret < 0) { 1438 pr_err("Failed to allocate opfn_wq"); 1439 goto bail_dev; 1440 } 1441 1442 /* 1443 * These must be called before the driver is registered with 1444 * the PCI subsystem. 1445 */ 1446 hfi1_dbg_init(); 1447 ret = pci_register_driver(&hfi1_pci_driver); 1448 if (ret < 0) { 1449 pr_err("Unable to register driver: error %d\n", -ret); 1450 goto bail_dev; 1451 } 1452 goto bail; /* all OK */ 1453 1454 bail_dev: 1455 hfi1_dbg_exit(); 1456 dev_cleanup(); 1457 bail: 1458 return ret; 1459 } 1460 1461 module_init(hfi1_mod_init); 1462 1463 /* 1464 * Do the non-unit driver cleanup, memory free, etc. at unload. 1465 */ 1466 static void __exit hfi1_mod_cleanup(void) 1467 { 1468 pci_unregister_driver(&hfi1_pci_driver); 1469 opfn_exit(); 1470 node_affinity_destroy_all(); 1471 hfi1_dbg_exit(); 1472 1473 WARN_ON(!xa_empty(&hfi1_dev_table)); 1474 dispose_firmware(); /* asymmetric with obtain_firmware() */ 1475 dev_cleanup(); 1476 } 1477 1478 module_exit(hfi1_mod_cleanup); 1479 1480 /* this can only be called after a successful initialization */ 1481 static void cleanup_device_data(struct hfi1_devdata *dd) 1482 { 1483 int ctxt; 1484 int pidx; 1485 1486 /* users can't do anything more with chip */ 1487 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1488 struct hfi1_pportdata *ppd = &dd->pport[pidx]; 1489 struct cc_state *cc_state; 1490 int i; 1491 1492 if (ppd->statusp) 1493 *ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT; 1494 1495 for (i = 0; i < OPA_MAX_SLS; i++) 1496 hrtimer_cancel(&ppd->cca_timer[i].hrtimer); 1497 1498 spin_lock(&ppd->cc_state_lock); 1499 cc_state = get_cc_state_protected(ppd); 1500 RCU_INIT_POINTER(ppd->cc_state, NULL); 1501 spin_unlock(&ppd->cc_state_lock); 1502 1503 if (cc_state) 1504 kfree_rcu(cc_state, rcu); 1505 } 1506 1507 free_credit_return(dd); 1508 1509 /* 1510 * Free any resources still in use (usually just kernel contexts) 1511 * at unload; we do for ctxtcnt, because that's what we allocate. 1512 */ 1513 for (ctxt = 0; dd->rcd && ctxt < dd->num_rcv_contexts; ctxt++) { 1514 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt]; 1515 1516 if (rcd) { 1517 hfi1_free_ctxt_rcv_groups(rcd); 1518 hfi1_free_ctxt(rcd); 1519 } 1520 } 1521 1522 kfree(dd->rcd); 1523 dd->rcd = NULL; 1524 1525 free_pio_map(dd); 1526 /* must follow rcv context free - need to remove rcv's hooks */ 1527 for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++) 1528 sc_free(dd->send_contexts[ctxt].sc); 1529 dd->num_send_contexts = 0; 1530 kfree(dd->send_contexts); 1531 dd->send_contexts = NULL; 1532 kfree(dd->hw_to_sw); 1533 dd->hw_to_sw = NULL; 1534 kfree(dd->boardname); 1535 vfree(dd->events); 1536 vfree(dd->status); 1537 } 1538 1539 /* 1540 * Clean up on unit shutdown, or error during unit load after 1541 * successful initialization. 1542 */ 1543 static void postinit_cleanup(struct hfi1_devdata *dd) 1544 { 1545 hfi1_start_cleanup(dd); 1546 hfi1_comp_vectors_clean_up(dd); 1547 hfi1_dev_affinity_clean_up(dd); 1548 1549 hfi1_pcie_ddcleanup(dd); 1550 hfi1_pcie_cleanup(dd->pcidev); 1551 1552 cleanup_device_data(dd); 1553 1554 hfi1_free_devdata(dd); 1555 } 1556 1557 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 1558 { 1559 int ret = 0, j, pidx, initfail; 1560 struct hfi1_devdata *dd; 1561 struct hfi1_pportdata *ppd; 1562 1563 /* First, lock the non-writable module parameters */ 1564 HFI1_CAP_LOCK(); 1565 1566 /* Validate dev ids */ 1567 if (!(ent->device == PCI_DEVICE_ID_INTEL0 || 1568 ent->device == PCI_DEVICE_ID_INTEL1)) { 1569 dev_err(&pdev->dev, "Failing on unknown Intel deviceid 0x%x\n", 1570 ent->device); 1571 ret = -ENODEV; 1572 goto bail; 1573 } 1574 1575 /* Allocate the dd so we can get to work */ 1576 dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS * 1577 sizeof(struct hfi1_pportdata)); 1578 if (IS_ERR(dd)) { 1579 ret = PTR_ERR(dd); 1580 goto bail; 1581 } 1582 1583 /* Validate some global module parameters */ 1584 ret = hfi1_validate_rcvhdrcnt(dd, rcvhdrcnt); 1585 if (ret) 1586 goto bail; 1587 1588 /* use the encoding function as a sanitization check */ 1589 if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) { 1590 dd_dev_err(dd, "Invalid HdrQ Entry size %u\n", 1591 hfi1_hdrq_entsize); 1592 ret = -EINVAL; 1593 goto bail; 1594 } 1595 1596 /* The receive eager buffer size must be set before the receive 1597 * contexts are created. 1598 * 1599 * Set the eager buffer size. Validate that it falls in a range 1600 * allowed by the hardware - all powers of 2 between the min and 1601 * max. The maximum valid MTU is within the eager buffer range 1602 * so we do not need to cap the max_mtu by an eager buffer size 1603 * setting. 1604 */ 1605 if (eager_buffer_size) { 1606 if (!is_power_of_2(eager_buffer_size)) 1607 eager_buffer_size = 1608 roundup_pow_of_two(eager_buffer_size); 1609 eager_buffer_size = 1610 clamp_val(eager_buffer_size, 1611 MIN_EAGER_BUFFER * 8, 1612 MAX_EAGER_BUFFER_TOTAL); 1613 dd_dev_info(dd, "Eager buffer size %u\n", 1614 eager_buffer_size); 1615 } else { 1616 dd_dev_err(dd, "Invalid Eager buffer size of 0\n"); 1617 ret = -EINVAL; 1618 goto bail; 1619 } 1620 1621 /* restrict value of hfi1_rcvarr_split */ 1622 hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100); 1623 1624 ret = hfi1_pcie_init(dd); 1625 if (ret) 1626 goto bail; 1627 1628 /* 1629 * Do device-specific initialization, function table setup, dd 1630 * allocation, etc. 1631 */ 1632 ret = hfi1_init_dd(dd); 1633 if (ret) 1634 goto clean_bail; /* error already printed */ 1635 1636 ret = create_workqueues(dd); 1637 if (ret) 1638 goto clean_bail; 1639 1640 /* do the generic initialization */ 1641 initfail = hfi1_init(dd, 0); 1642 1643 ret = hfi1_register_ib_device(dd); 1644 1645 /* 1646 * Now ready for use. this should be cleared whenever we 1647 * detect a reset, or initiate one. If earlier failure, 1648 * we still create devices, so diags, etc. can be used 1649 * to determine cause of problem. 1650 */ 1651 if (!initfail && !ret) { 1652 dd->flags |= HFI1_INITTED; 1653 /* create debufs files after init and ib register */ 1654 hfi1_dbg_ibdev_init(&dd->verbs_dev); 1655 } 1656 1657 j = hfi1_device_create(dd); 1658 if (j) 1659 dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j); 1660 1661 if (initfail || ret) { 1662 msix_clean_up_interrupts(dd); 1663 stop_timers(dd); 1664 flush_workqueue(ib_wq); 1665 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1666 hfi1_quiet_serdes(dd->pport + pidx); 1667 ppd = dd->pport + pidx; 1668 if (ppd->hfi1_wq) { 1669 destroy_workqueue(ppd->hfi1_wq); 1670 ppd->hfi1_wq = NULL; 1671 } 1672 if (ppd->link_wq) { 1673 destroy_workqueue(ppd->link_wq); 1674 ppd->link_wq = NULL; 1675 } 1676 } 1677 if (!j) 1678 hfi1_device_remove(dd); 1679 if (!ret) 1680 hfi1_unregister_ib_device(dd); 1681 postinit_cleanup(dd); 1682 if (initfail) 1683 ret = initfail; 1684 goto bail; /* everything already cleaned */ 1685 } 1686 1687 sdma_start(dd); 1688 1689 return 0; 1690 1691 clean_bail: 1692 hfi1_pcie_cleanup(pdev); 1693 bail: 1694 return ret; 1695 } 1696 1697 static void wait_for_clients(struct hfi1_devdata *dd) 1698 { 1699 /* 1700 * Remove the device init value and complete the device if there is 1701 * no clients or wait for active clients to finish. 1702 */ 1703 if (refcount_dec_and_test(&dd->user_refcount)) 1704 complete(&dd->user_comp); 1705 1706 wait_for_completion(&dd->user_comp); 1707 } 1708 1709 static void remove_one(struct pci_dev *pdev) 1710 { 1711 struct hfi1_devdata *dd = pci_get_drvdata(pdev); 1712 1713 /* close debugfs files before ib unregister */ 1714 hfi1_dbg_ibdev_exit(&dd->verbs_dev); 1715 1716 /* remove the /dev hfi1 interface */ 1717 hfi1_device_remove(dd); 1718 1719 /* wait for existing user space clients to finish */ 1720 wait_for_clients(dd); 1721 1722 /* unregister from IB core */ 1723 hfi1_unregister_ib_device(dd); 1724 1725 /* free netdev data */ 1726 hfi1_free_rx(dd); 1727 1728 /* 1729 * Disable the IB link, disable interrupts on the device, 1730 * clear dma engines, etc. 1731 */ 1732 shutdown_device(dd); 1733 destroy_workqueues(dd); 1734 1735 stop_timers(dd); 1736 1737 /* wait until all of our (qsfp) queue_work() calls complete */ 1738 flush_workqueue(ib_wq); 1739 1740 postinit_cleanup(dd); 1741 } 1742 1743 static void shutdown_one(struct pci_dev *pdev) 1744 { 1745 struct hfi1_devdata *dd = pci_get_drvdata(pdev); 1746 1747 shutdown_device(dd); 1748 } 1749 1750 /** 1751 * hfi1_create_rcvhdrq - create a receive header queue 1752 * @dd: the hfi1_ib device 1753 * @rcd: the context data 1754 * 1755 * This must be contiguous memory (from an i/o perspective), and must be 1756 * DMA'able (which means for some systems, it will go through an IOMMU, 1757 * or be forced into a low address range). 1758 */ 1759 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd) 1760 { 1761 unsigned amt; 1762 1763 if (!rcd->rcvhdrq) { 1764 gfp_t gfp_flags; 1765 1766 amt = rcvhdrq_size(rcd); 1767 1768 if (rcd->ctxt < dd->first_dyn_alloc_ctxt || rcd->is_vnic) 1769 gfp_flags = GFP_KERNEL; 1770 else 1771 gfp_flags = GFP_USER; 1772 rcd->rcvhdrq = dma_alloc_coherent(&dd->pcidev->dev, amt, 1773 &rcd->rcvhdrq_dma, 1774 gfp_flags | __GFP_COMP); 1775 1776 if (!rcd->rcvhdrq) { 1777 dd_dev_err(dd, 1778 "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n", 1779 amt, rcd->ctxt); 1780 goto bail; 1781 } 1782 1783 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) || 1784 HFI1_CAP_UGET_MASK(rcd->flags, DMA_RTAIL)) { 1785 rcd->rcvhdrtail_kvaddr = dma_alloc_coherent(&dd->pcidev->dev, 1786 PAGE_SIZE, 1787 &rcd->rcvhdrqtailaddr_dma, 1788 gfp_flags); 1789 if (!rcd->rcvhdrtail_kvaddr) 1790 goto bail_free; 1791 } 1792 } 1793 1794 set_hdrq_regs(rcd->dd, rcd->ctxt, rcd->rcvhdrqentsize, 1795 rcd->rcvhdrq_cnt); 1796 1797 return 0; 1798 1799 bail_free: 1800 dd_dev_err(dd, 1801 "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n", 1802 rcd->ctxt); 1803 dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq, 1804 rcd->rcvhdrq_dma); 1805 rcd->rcvhdrq = NULL; 1806 bail: 1807 return -ENOMEM; 1808 } 1809 1810 /** 1811 * hfi1_setup_eagerbufs - llocate eager buffers, both kernel and user 1812 * contexts. 1813 * @rcd: the context we are setting up. 1814 * 1815 * Allocate the eager TID buffers and program them into hip. 1816 * They are no longer completely contiguous, we do multiple allocation 1817 * calls. Otherwise we get the OOM code involved, by asking for too 1818 * much per call, with disastrous results on some kernels. 1819 */ 1820 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd) 1821 { 1822 struct hfi1_devdata *dd = rcd->dd; 1823 u32 max_entries, egrtop, alloced_bytes = 0; 1824 gfp_t gfp_flags; 1825 u16 order, idx = 0; 1826 int ret = 0; 1827 u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu); 1828 1829 /* 1830 * GFP_USER, but without GFP_FS, so buffer cache can be 1831 * coalesced (we hope); otherwise, even at order 4, 1832 * heavy filesystem activity makes these fail, and we can 1833 * use compound pages. 1834 */ 1835 gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP; 1836 1837 /* 1838 * The minimum size of the eager buffers is a groups of MTU-sized 1839 * buffers. 1840 * The global eager_buffer_size parameter is checked against the 1841 * theoretical lower limit of the value. Here, we check against the 1842 * MTU. 1843 */ 1844 if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size)) 1845 rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size; 1846 /* 1847 * If using one-pkt-per-egr-buffer, lower the eager buffer 1848 * size to the max MTU (page-aligned). 1849 */ 1850 if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) 1851 rcd->egrbufs.rcvtid_size = round_mtu; 1852 1853 /* 1854 * Eager buffers sizes of 1MB or less require smaller TID sizes 1855 * to satisfy the "multiple of 8 RcvArray entries" requirement. 1856 */ 1857 if (rcd->egrbufs.size <= (1 << 20)) 1858 rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu, 1859 rounddown_pow_of_two(rcd->egrbufs.size / 8)); 1860 1861 while (alloced_bytes < rcd->egrbufs.size && 1862 rcd->egrbufs.alloced < rcd->egrbufs.count) { 1863 rcd->egrbufs.buffers[idx].addr = 1864 dma_alloc_coherent(&dd->pcidev->dev, 1865 rcd->egrbufs.rcvtid_size, 1866 &rcd->egrbufs.buffers[idx].dma, 1867 gfp_flags); 1868 if (rcd->egrbufs.buffers[idx].addr) { 1869 rcd->egrbufs.buffers[idx].len = 1870 rcd->egrbufs.rcvtid_size; 1871 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr = 1872 rcd->egrbufs.buffers[idx].addr; 1873 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma = 1874 rcd->egrbufs.buffers[idx].dma; 1875 rcd->egrbufs.alloced++; 1876 alloced_bytes += rcd->egrbufs.rcvtid_size; 1877 idx++; 1878 } else { 1879 u32 new_size, i, j; 1880 u64 offset = 0; 1881 1882 /* 1883 * Fail the eager buffer allocation if: 1884 * - we are already using the lowest acceptable size 1885 * - we are using one-pkt-per-egr-buffer (this implies 1886 * that we are accepting only one size) 1887 */ 1888 if (rcd->egrbufs.rcvtid_size == round_mtu || 1889 !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) { 1890 dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n", 1891 rcd->ctxt); 1892 ret = -ENOMEM; 1893 goto bail_rcvegrbuf_phys; 1894 } 1895 1896 new_size = rcd->egrbufs.rcvtid_size / 2; 1897 1898 /* 1899 * If the first attempt to allocate memory failed, don't 1900 * fail everything but continue with the next lower 1901 * size. 1902 */ 1903 if (idx == 0) { 1904 rcd->egrbufs.rcvtid_size = new_size; 1905 continue; 1906 } 1907 1908 /* 1909 * Re-partition already allocated buffers to a smaller 1910 * size. 1911 */ 1912 rcd->egrbufs.alloced = 0; 1913 for (i = 0, j = 0, offset = 0; j < idx; i++) { 1914 if (i >= rcd->egrbufs.count) 1915 break; 1916 rcd->egrbufs.rcvtids[i].dma = 1917 rcd->egrbufs.buffers[j].dma + offset; 1918 rcd->egrbufs.rcvtids[i].addr = 1919 rcd->egrbufs.buffers[j].addr + offset; 1920 rcd->egrbufs.alloced++; 1921 if ((rcd->egrbufs.buffers[j].dma + offset + 1922 new_size) == 1923 (rcd->egrbufs.buffers[j].dma + 1924 rcd->egrbufs.buffers[j].len)) { 1925 j++; 1926 offset = 0; 1927 } else { 1928 offset += new_size; 1929 } 1930 } 1931 rcd->egrbufs.rcvtid_size = new_size; 1932 } 1933 } 1934 rcd->egrbufs.numbufs = idx; 1935 rcd->egrbufs.size = alloced_bytes; 1936 1937 hfi1_cdbg(PROC, 1938 "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %uKB\n", 1939 rcd->ctxt, rcd->egrbufs.alloced, 1940 rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024); 1941 1942 /* 1943 * Set the contexts rcv array head update threshold to the closest 1944 * power of 2 (so we can use a mask instead of modulo) below half 1945 * the allocated entries. 1946 */ 1947 rcd->egrbufs.threshold = 1948 rounddown_pow_of_two(rcd->egrbufs.alloced / 2); 1949 /* 1950 * Compute the expected RcvArray entry base. This is done after 1951 * allocating the eager buffers in order to maximize the 1952 * expected RcvArray entries for the context. 1953 */ 1954 max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size; 1955 egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size); 1956 rcd->expected_count = max_entries - egrtop; 1957 if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2) 1958 rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2; 1959 1960 rcd->expected_base = rcd->eager_base + egrtop; 1961 hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n", 1962 rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count, 1963 rcd->eager_base, rcd->expected_base); 1964 1965 if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) { 1966 hfi1_cdbg(PROC, 1967 "ctxt%u: current Eager buffer size is invalid %u\n", 1968 rcd->ctxt, rcd->egrbufs.rcvtid_size); 1969 ret = -EINVAL; 1970 goto bail_rcvegrbuf_phys; 1971 } 1972 1973 for (idx = 0; idx < rcd->egrbufs.alloced; idx++) { 1974 hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER, 1975 rcd->egrbufs.rcvtids[idx].dma, order); 1976 cond_resched(); 1977 } 1978 1979 return 0; 1980 1981 bail_rcvegrbuf_phys: 1982 for (idx = 0; idx < rcd->egrbufs.alloced && 1983 rcd->egrbufs.buffers[idx].addr; 1984 idx++) { 1985 dma_free_coherent(&dd->pcidev->dev, 1986 rcd->egrbufs.buffers[idx].len, 1987 rcd->egrbufs.buffers[idx].addr, 1988 rcd->egrbufs.buffers[idx].dma); 1989 rcd->egrbufs.buffers[idx].addr = NULL; 1990 rcd->egrbufs.buffers[idx].dma = 0; 1991 rcd->egrbufs.buffers[idx].len = 0; 1992 } 1993 1994 return ret; 1995 } 1996