xref: /openbmc/linux/drivers/infiniband/hw/hfi1/init.c (revision 887069f4)
1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
2 /*
3  * Copyright(c) 2015 - 2020 Intel Corporation.
4  */
5 
6 #include <linux/pci.h>
7 #include <linux/netdevice.h>
8 #include <linux/vmalloc.h>
9 #include <linux/delay.h>
10 #include <linux/xarray.h>
11 #include <linux/module.h>
12 #include <linux/printk.h>
13 #include <linux/hrtimer.h>
14 #include <linux/bitmap.h>
15 #include <linux/numa.h>
16 #include <rdma/rdma_vt.h>
17 
18 #include "hfi.h"
19 #include "device.h"
20 #include "common.h"
21 #include "trace.h"
22 #include "mad.h"
23 #include "sdma.h"
24 #include "debugfs.h"
25 #include "verbs.h"
26 #include "aspm.h"
27 #include "affinity.h"
28 #include "vnic.h"
29 #include "exp_rcv.h"
30 #include "netdev.h"
31 
32 #undef pr_fmt
33 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
34 
35 /*
36  * min buffers we want to have per context, after driver
37  */
38 #define HFI1_MIN_USER_CTXT_BUFCNT 7
39 
40 #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
41 #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */
42 
43 #define NUM_IB_PORTS 1
44 
45 /*
46  * Number of user receive contexts we are configured to use (to allow for more
47  * pio buffers per ctxt, etc.)  Zero means use one user context per CPU.
48  */
49 int num_user_contexts = -1;
50 module_param_named(num_user_contexts, num_user_contexts, int, 0444);
51 MODULE_PARM_DESC(
52 	num_user_contexts, "Set max number of user contexts to use (default: -1 will use the real (non-HT) CPU count)");
53 
54 uint krcvqs[RXE_NUM_DATA_VL];
55 int krcvqsset;
56 module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO);
57 MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL");
58 
59 /* computed based on above array */
60 unsigned long n_krcvqs;
61 
62 static unsigned hfi1_rcvarr_split = 25;
63 module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
64 MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");
65 
66 static uint eager_buffer_size = (8 << 20); /* 8MB */
67 module_param(eager_buffer_size, uint, S_IRUGO);
68 MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 8MB");
69 
70 static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
71 module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
72 MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");
73 
74 static uint hfi1_hdrq_entsize = 32;
75 module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, 0444);
76 MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B, 32 - 128B (default)");
77 
78 unsigned int user_credit_return_threshold = 33;	/* default is 33% */
79 module_param(user_credit_return_threshold, uint, S_IRUGO);
80 MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");
81 
82 DEFINE_XARRAY_FLAGS(hfi1_dev_table, XA_FLAGS_ALLOC | XA_FLAGS_LOCK_IRQ);
83 
84 static int hfi1_create_kctxt(struct hfi1_devdata *dd,
85 			     struct hfi1_pportdata *ppd)
86 {
87 	struct hfi1_ctxtdata *rcd;
88 	int ret;
89 
90 	/* Control context has to be always 0 */
91 	BUILD_BUG_ON(HFI1_CTRL_CTXT != 0);
92 
93 	ret = hfi1_create_ctxtdata(ppd, dd->node, &rcd);
94 	if (ret < 0) {
95 		dd_dev_err(dd, "Kernel receive context allocation failed\n");
96 		return ret;
97 	}
98 
99 	/*
100 	 * Set up the kernel context flags here and now because they use
101 	 * default values for all receive side memories.  User contexts will
102 	 * be handled as they are created.
103 	 */
104 	rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
105 		HFI1_CAP_KGET(NODROP_RHQ_FULL) |
106 		HFI1_CAP_KGET(NODROP_EGR_FULL) |
107 		HFI1_CAP_KGET(DMA_RTAIL);
108 
109 	/* Control context must use DMA_RTAIL */
110 	if (rcd->ctxt == HFI1_CTRL_CTXT)
111 		rcd->flags |= HFI1_CAP_DMA_RTAIL;
112 	rcd->fast_handler = get_dma_rtail_setting(rcd) ?
113 				handle_receive_interrupt_dma_rtail :
114 				handle_receive_interrupt_nodma_rtail;
115 	rcd->slow_handler = handle_receive_interrupt;
116 
117 	hfi1_set_seq_cnt(rcd, 1);
118 
119 	rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node);
120 	if (!rcd->sc) {
121 		dd_dev_err(dd, "Kernel send context allocation failed\n");
122 		return -ENOMEM;
123 	}
124 	hfi1_init_ctxt(rcd->sc);
125 
126 	return 0;
127 }
128 
129 /*
130  * Create the receive context array and one or more kernel contexts
131  */
132 int hfi1_create_kctxts(struct hfi1_devdata *dd)
133 {
134 	u16 i;
135 	int ret;
136 
137 	dd->rcd = kcalloc_node(dd->num_rcv_contexts, sizeof(*dd->rcd),
138 			       GFP_KERNEL, dd->node);
139 	if (!dd->rcd)
140 		return -ENOMEM;
141 
142 	for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
143 		ret = hfi1_create_kctxt(dd, dd->pport);
144 		if (ret)
145 			goto bail;
146 	}
147 
148 	return 0;
149 bail:
150 	for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i)
151 		hfi1_free_ctxt(dd->rcd[i]);
152 
153 	/* All the contexts should be freed, free the array */
154 	kfree(dd->rcd);
155 	dd->rcd = NULL;
156 	return ret;
157 }
158 
159 /*
160  * Helper routines for the receive context reference count (rcd and uctxt).
161  */
162 static void hfi1_rcd_init(struct hfi1_ctxtdata *rcd)
163 {
164 	kref_init(&rcd->kref);
165 }
166 
167 /**
168  * hfi1_rcd_free - When reference is zero clean up.
169  * @kref: pointer to an initialized rcd data structure
170  *
171  */
172 static void hfi1_rcd_free(struct kref *kref)
173 {
174 	unsigned long flags;
175 	struct hfi1_ctxtdata *rcd =
176 		container_of(kref, struct hfi1_ctxtdata, kref);
177 
178 	spin_lock_irqsave(&rcd->dd->uctxt_lock, flags);
179 	rcd->dd->rcd[rcd->ctxt] = NULL;
180 	spin_unlock_irqrestore(&rcd->dd->uctxt_lock, flags);
181 
182 	hfi1_free_ctxtdata(rcd->dd, rcd);
183 
184 	kfree(rcd);
185 }
186 
187 /**
188  * hfi1_rcd_put - decrement reference for rcd
189  * @rcd: pointer to an initialized rcd data structure
190  *
191  * Use this to put a reference after the init.
192  */
193 int hfi1_rcd_put(struct hfi1_ctxtdata *rcd)
194 {
195 	if (rcd)
196 		return kref_put(&rcd->kref, hfi1_rcd_free);
197 
198 	return 0;
199 }
200 
201 /**
202  * hfi1_rcd_get - increment reference for rcd
203  * @rcd: pointer to an initialized rcd data structure
204  *
205  * Use this to get a reference after the init.
206  *
207  * Return : reflect kref_get_unless_zero(), which returns non-zero on
208  * increment, otherwise 0.
209  */
210 int hfi1_rcd_get(struct hfi1_ctxtdata *rcd)
211 {
212 	return kref_get_unless_zero(&rcd->kref);
213 }
214 
215 /**
216  * allocate_rcd_index - allocate an rcd index from the rcd array
217  * @dd: pointer to a valid devdata structure
218  * @rcd: rcd data structure to assign
219  * @index: pointer to index that is allocated
220  *
221  * Find an empty index in the rcd array, and assign the given rcd to it.
222  * If the array is full, we are EBUSY.
223  *
224  */
225 static int allocate_rcd_index(struct hfi1_devdata *dd,
226 			      struct hfi1_ctxtdata *rcd, u16 *index)
227 {
228 	unsigned long flags;
229 	u16 ctxt;
230 
231 	spin_lock_irqsave(&dd->uctxt_lock, flags);
232 	for (ctxt = 0; ctxt < dd->num_rcv_contexts; ctxt++)
233 		if (!dd->rcd[ctxt])
234 			break;
235 
236 	if (ctxt < dd->num_rcv_contexts) {
237 		rcd->ctxt = ctxt;
238 		dd->rcd[ctxt] = rcd;
239 		hfi1_rcd_init(rcd);
240 	}
241 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
242 
243 	if (ctxt >= dd->num_rcv_contexts)
244 		return -EBUSY;
245 
246 	*index = ctxt;
247 
248 	return 0;
249 }
250 
251 /**
252  * hfi1_rcd_get_by_index_safe - validate the ctxt index before accessing the
253  * array
254  * @dd: pointer to a valid devdata structure
255  * @ctxt: the index of an possilbe rcd
256  *
257  * This is a wrapper for hfi1_rcd_get_by_index() to validate that the given
258  * ctxt index is valid.
259  *
260  * The caller is responsible for making the _put().
261  *
262  */
263 struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd,
264 						 u16 ctxt)
265 {
266 	if (ctxt < dd->num_rcv_contexts)
267 		return hfi1_rcd_get_by_index(dd, ctxt);
268 
269 	return NULL;
270 }
271 
272 /**
273  * hfi1_rcd_get_by_index - get by index
274  * @dd: pointer to a valid devdata structure
275  * @ctxt: the index of an possilbe rcd
276  *
277  * We need to protect access to the rcd array.  If access is needed to
278  * one or more index, get the protecting spinlock and then increment the
279  * kref.
280  *
281  * The caller is responsible for making the _put().
282  *
283  */
284 struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt)
285 {
286 	unsigned long flags;
287 	struct hfi1_ctxtdata *rcd = NULL;
288 
289 	spin_lock_irqsave(&dd->uctxt_lock, flags);
290 	if (dd->rcd[ctxt]) {
291 		rcd = dd->rcd[ctxt];
292 		if (!hfi1_rcd_get(rcd))
293 			rcd = NULL;
294 	}
295 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
296 
297 	return rcd;
298 }
299 
300 /*
301  * Common code for user and kernel context create and setup.
302  * NOTE: the initial kref is done here (hf1_rcd_init()).
303  */
304 int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa,
305 			 struct hfi1_ctxtdata **context)
306 {
307 	struct hfi1_devdata *dd = ppd->dd;
308 	struct hfi1_ctxtdata *rcd;
309 	unsigned kctxt_ngroups = 0;
310 	u32 base;
311 
312 	if (dd->rcv_entries.nctxt_extra >
313 	    dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt)
314 		kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
315 			 (dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt));
316 	rcd = kzalloc_node(sizeof(*rcd), GFP_KERNEL, numa);
317 	if (rcd) {
318 		u32 rcvtids, max_entries;
319 		u16 ctxt;
320 		int ret;
321 
322 		ret = allocate_rcd_index(dd, rcd, &ctxt);
323 		if (ret) {
324 			*context = NULL;
325 			kfree(rcd);
326 			return ret;
327 		}
328 
329 		INIT_LIST_HEAD(&rcd->qp_wait_list);
330 		hfi1_exp_tid_group_init(rcd);
331 		rcd->ppd = ppd;
332 		rcd->dd = dd;
333 		rcd->numa_id = numa;
334 		rcd->rcv_array_groups = dd->rcv_entries.ngroups;
335 		rcd->rhf_rcv_function_map = normal_rhf_rcv_functions;
336 		rcd->msix_intr = CCE_NUM_MSIX_VECTORS;
337 
338 		mutex_init(&rcd->exp_mutex);
339 		spin_lock_init(&rcd->exp_lock);
340 		INIT_LIST_HEAD(&rcd->flow_queue.queue_head);
341 		INIT_LIST_HEAD(&rcd->rarr_queue.queue_head);
342 
343 		hfi1_cdbg(PROC, "setting up context %u\n", rcd->ctxt);
344 
345 		/*
346 		 * Calculate the context's RcvArray entry starting point.
347 		 * We do this here because we have to take into account all
348 		 * the RcvArray entries that previous context would have
349 		 * taken and we have to account for any extra groups assigned
350 		 * to the static (kernel) or dynamic (vnic/user) contexts.
351 		 */
352 		if (ctxt < dd->first_dyn_alloc_ctxt) {
353 			if (ctxt < kctxt_ngroups) {
354 				base = ctxt * (dd->rcv_entries.ngroups + 1);
355 				rcd->rcv_array_groups++;
356 			} else {
357 				base = kctxt_ngroups +
358 					(ctxt * dd->rcv_entries.ngroups);
359 			}
360 		} else {
361 			u16 ct = ctxt - dd->first_dyn_alloc_ctxt;
362 
363 			base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
364 				kctxt_ngroups);
365 			if (ct < dd->rcv_entries.nctxt_extra) {
366 				base += ct * (dd->rcv_entries.ngroups + 1);
367 				rcd->rcv_array_groups++;
368 			} else {
369 				base += dd->rcv_entries.nctxt_extra +
370 					(ct * dd->rcv_entries.ngroups);
371 			}
372 		}
373 		rcd->eager_base = base * dd->rcv_entries.group_size;
374 
375 		rcd->rcvhdrq_cnt = rcvhdrcnt;
376 		rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
377 		rcd->rhf_offset =
378 			rcd->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
379 		/*
380 		 * Simple Eager buffer allocation: we have already pre-allocated
381 		 * the number of RcvArray entry groups. Each ctxtdata structure
382 		 * holds the number of groups for that context.
383 		 *
384 		 * To follow CSR requirements and maintain cacheline alignment,
385 		 * make sure all sizes and bases are multiples of group_size.
386 		 *
387 		 * The expected entry count is what is left after assigning
388 		 * eager.
389 		 */
390 		max_entries = rcd->rcv_array_groups *
391 			dd->rcv_entries.group_size;
392 		rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
393 		rcd->egrbufs.count = round_down(rcvtids,
394 						dd->rcv_entries.group_size);
395 		if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
396 			dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
397 				   rcd->ctxt);
398 			rcd->egrbufs.count = MAX_EAGER_ENTRIES;
399 		}
400 		hfi1_cdbg(PROC,
401 			  "ctxt%u: max Eager buffer RcvArray entries: %u\n",
402 			  rcd->ctxt, rcd->egrbufs.count);
403 
404 		/*
405 		 * Allocate array that will hold the eager buffer accounting
406 		 * data.
407 		 * This will allocate the maximum possible buffer count based
408 		 * on the value of the RcvArray split parameter.
409 		 * The resulting value will be rounded down to the closest
410 		 * multiple of dd->rcv_entries.group_size.
411 		 */
412 		rcd->egrbufs.buffers =
413 			kcalloc_node(rcd->egrbufs.count,
414 				     sizeof(*rcd->egrbufs.buffers),
415 				     GFP_KERNEL, numa);
416 		if (!rcd->egrbufs.buffers)
417 			goto bail;
418 		rcd->egrbufs.rcvtids =
419 			kcalloc_node(rcd->egrbufs.count,
420 				     sizeof(*rcd->egrbufs.rcvtids),
421 				     GFP_KERNEL, numa);
422 		if (!rcd->egrbufs.rcvtids)
423 			goto bail;
424 		rcd->egrbufs.size = eager_buffer_size;
425 		/*
426 		 * The size of the buffers programmed into the RcvArray
427 		 * entries needs to be big enough to handle the highest
428 		 * MTU supported.
429 		 */
430 		if (rcd->egrbufs.size < hfi1_max_mtu) {
431 			rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu);
432 			hfi1_cdbg(PROC,
433 				  "ctxt%u: eager bufs size too small. Adjusting to %u\n",
434 				    rcd->ctxt, rcd->egrbufs.size);
435 		}
436 		rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;
437 
438 		/* Applicable only for statically created kernel contexts */
439 		if (ctxt < dd->first_dyn_alloc_ctxt) {
440 			rcd->opstats = kzalloc_node(sizeof(*rcd->opstats),
441 						    GFP_KERNEL, numa);
442 			if (!rcd->opstats)
443 				goto bail;
444 
445 			/* Initialize TID flow generations for the context */
446 			hfi1_kern_init_ctxt_generations(rcd);
447 		}
448 
449 		*context = rcd;
450 		return 0;
451 	}
452 
453 bail:
454 	*context = NULL;
455 	hfi1_free_ctxt(rcd);
456 	return -ENOMEM;
457 }
458 
459 /**
460  * hfi1_free_ctxt - free context
461  * @rcd: pointer to an initialized rcd data structure
462  *
463  * This wrapper is the free function that matches hfi1_create_ctxtdata().
464  * When a context is done being used (kernel or user), this function is called
465  * for the "final" put to match the kref init from hf1i_create_ctxtdata().
466  * Other users of the context do a get/put sequence to make sure that the
467  * structure isn't removed while in use.
468  */
469 void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd)
470 {
471 	hfi1_rcd_put(rcd);
472 }
473 
474 /*
475  * Select the largest ccti value over all SLs to determine the intra-
476  * packet gap for the link.
477  *
478  * called with cca_timer_lock held (to protect access to cca_timer
479  * array), and rcu_read_lock() (to protect access to cc_state).
480  */
481 void set_link_ipg(struct hfi1_pportdata *ppd)
482 {
483 	struct hfi1_devdata *dd = ppd->dd;
484 	struct cc_state *cc_state;
485 	int i;
486 	u16 cce, ccti_limit, max_ccti = 0;
487 	u16 shift, mult;
488 	u64 src;
489 	u32 current_egress_rate; /* Mbits /sec */
490 	u32 max_pkt_time;
491 	/*
492 	 * max_pkt_time is the maximum packet egress time in units
493 	 * of the fabric clock period 1/(805 MHz).
494 	 */
495 
496 	cc_state = get_cc_state(ppd);
497 
498 	if (!cc_state)
499 		/*
500 		 * This should _never_ happen - rcu_read_lock() is held,
501 		 * and set_link_ipg() should not be called if cc_state
502 		 * is NULL.
503 		 */
504 		return;
505 
506 	for (i = 0; i < OPA_MAX_SLS; i++) {
507 		u16 ccti = ppd->cca_timer[i].ccti;
508 
509 		if (ccti > max_ccti)
510 			max_ccti = ccti;
511 	}
512 
513 	ccti_limit = cc_state->cct.ccti_limit;
514 	if (max_ccti > ccti_limit)
515 		max_ccti = ccti_limit;
516 
517 	cce = cc_state->cct.entries[max_ccti].entry;
518 	shift = (cce & 0xc000) >> 14;
519 	mult = (cce & 0x3fff);
520 
521 	current_egress_rate = active_egress_rate(ppd);
522 
523 	max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate);
524 
525 	src = (max_pkt_time >> shift) * mult;
526 
527 	src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
528 	src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;
529 
530 	write_csr(dd, SEND_STATIC_RATE_CONTROL, src);
531 }
532 
533 static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
534 {
535 	struct cca_timer *cca_timer;
536 	struct hfi1_pportdata *ppd;
537 	int sl;
538 	u16 ccti_timer, ccti_min;
539 	struct cc_state *cc_state;
540 	unsigned long flags;
541 	enum hrtimer_restart ret = HRTIMER_NORESTART;
542 
543 	cca_timer = container_of(t, struct cca_timer, hrtimer);
544 	ppd = cca_timer->ppd;
545 	sl = cca_timer->sl;
546 
547 	rcu_read_lock();
548 
549 	cc_state = get_cc_state(ppd);
550 
551 	if (!cc_state) {
552 		rcu_read_unlock();
553 		return HRTIMER_NORESTART;
554 	}
555 
556 	/*
557 	 * 1) decrement ccti for SL
558 	 * 2) calculate IPG for link (set_link_ipg())
559 	 * 3) restart timer, unless ccti is at min value
560 	 */
561 
562 	ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
563 	ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
564 
565 	spin_lock_irqsave(&ppd->cca_timer_lock, flags);
566 
567 	if (cca_timer->ccti > ccti_min) {
568 		cca_timer->ccti--;
569 		set_link_ipg(ppd);
570 	}
571 
572 	if (cca_timer->ccti > ccti_min) {
573 		unsigned long nsec = 1024 * ccti_timer;
574 		/* ccti_timer is in units of 1.024 usec */
575 		hrtimer_forward_now(t, ns_to_ktime(nsec));
576 		ret = HRTIMER_RESTART;
577 	}
578 
579 	spin_unlock_irqrestore(&ppd->cca_timer_lock, flags);
580 	rcu_read_unlock();
581 	return ret;
582 }
583 
584 /*
585  * Common code for initializing the physical port structure.
586  */
587 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
588 			 struct hfi1_devdata *dd, u8 hw_pidx, u32 port)
589 {
590 	int i;
591 	uint default_pkey_idx;
592 	struct cc_state *cc_state;
593 
594 	ppd->dd = dd;
595 	ppd->hw_pidx = hw_pidx;
596 	ppd->port = port; /* IB port number, not index */
597 	ppd->prev_link_width = LINK_WIDTH_DEFAULT;
598 	/*
599 	 * There are C_VL_COUNT number of PortVLXmitWait counters.
600 	 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
601 	 */
602 	for (i = 0; i < C_VL_COUNT + 1; i++) {
603 		ppd->port_vl_xmit_wait_last[i] = 0;
604 		ppd->vl_xmit_flit_cnt[i] = 0;
605 	}
606 
607 	default_pkey_idx = 1;
608 
609 	ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
610 	ppd->part_enforce |= HFI1_PART_ENFORCE_IN;
611 	ppd->pkeys[0] = 0x8001;
612 
613 	INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
614 	INIT_WORK(&ppd->link_up_work, handle_link_up);
615 	INIT_WORK(&ppd->link_down_work, handle_link_down);
616 	INIT_WORK(&ppd->freeze_work, handle_freeze);
617 	INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
618 	INIT_WORK(&ppd->sma_message_work, handle_sma_message);
619 	INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
620 	INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link);
621 	INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work);
622 	INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event);
623 
624 	mutex_init(&ppd->hls_lock);
625 	spin_lock_init(&ppd->qsfp_info.qsfp_lock);
626 
627 	ppd->qsfp_info.ppd = ppd;
628 	ppd->sm_trap_qp = 0x0;
629 	ppd->sa_qp = 0x1;
630 
631 	ppd->hfi1_wq = NULL;
632 
633 	spin_lock_init(&ppd->cca_timer_lock);
634 
635 	for (i = 0; i < OPA_MAX_SLS; i++) {
636 		hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
637 			     HRTIMER_MODE_REL);
638 		ppd->cca_timer[i].ppd = ppd;
639 		ppd->cca_timer[i].sl = i;
640 		ppd->cca_timer[i].ccti = 0;
641 		ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
642 	}
643 
644 	ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;
645 
646 	spin_lock_init(&ppd->cc_state_lock);
647 	spin_lock_init(&ppd->cc_log_lock);
648 	cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL);
649 	RCU_INIT_POINTER(ppd->cc_state, cc_state);
650 	if (!cc_state)
651 		goto bail;
652 	return;
653 
654 bail:
655 	dd_dev_err(dd, "Congestion Control Agent disabled for port %d\n", port);
656 }
657 
658 /*
659  * Do initialization for device that is only needed on
660  * first detect, not on resets.
661  */
662 static int loadtime_init(struct hfi1_devdata *dd)
663 {
664 	return 0;
665 }
666 
667 /**
668  * init_after_reset - re-initialize after a reset
669  * @dd: the hfi1_ib device
670  *
671  * sanity check at least some of the values after reset, and
672  * ensure no receive or transmit (explicitly, in case reset
673  * failed
674  */
675 static int init_after_reset(struct hfi1_devdata *dd)
676 {
677 	int i;
678 	struct hfi1_ctxtdata *rcd;
679 	/*
680 	 * Ensure chip does no sends or receives, tail updates, or
681 	 * pioavail updates while we re-initialize.  This is mostly
682 	 * for the driver data structures, not chip registers.
683 	 */
684 	for (i = 0; i < dd->num_rcv_contexts; i++) {
685 		rcd = hfi1_rcd_get_by_index(dd, i);
686 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
687 			     HFI1_RCVCTRL_INTRAVAIL_DIS |
688 			     HFI1_RCVCTRL_TAILUPD_DIS, rcd);
689 		hfi1_rcd_put(rcd);
690 	}
691 	pio_send_control(dd, PSC_GLOBAL_DISABLE);
692 	for (i = 0; i < dd->num_send_contexts; i++)
693 		sc_disable(dd->send_contexts[i].sc);
694 
695 	return 0;
696 }
697 
698 static void enable_chip(struct hfi1_devdata *dd)
699 {
700 	struct hfi1_ctxtdata *rcd;
701 	u32 rcvmask;
702 	u16 i;
703 
704 	/* enable PIO send */
705 	pio_send_control(dd, PSC_GLOBAL_ENABLE);
706 
707 	/*
708 	 * Enable kernel ctxts' receive and receive interrupt.
709 	 * Other ctxts done as user opens and initializes them.
710 	 */
711 	for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
712 		rcd = hfi1_rcd_get_by_index(dd, i);
713 		if (!rcd)
714 			continue;
715 		rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
716 		rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
717 			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
718 		if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
719 			rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
720 		if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_RHQ_FULL))
721 			rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
722 		if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_EGR_FULL))
723 			rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
724 		if (HFI1_CAP_IS_KSET(TID_RDMA))
725 			rcvmask |= HFI1_RCVCTRL_TIDFLOW_ENB;
726 		hfi1_rcvctrl(dd, rcvmask, rcd);
727 		sc_enable(rcd->sc);
728 		hfi1_rcd_put(rcd);
729 	}
730 }
731 
732 /**
733  * create_workqueues - create per port workqueues
734  * @dd: the hfi1_ib device
735  */
736 static int create_workqueues(struct hfi1_devdata *dd)
737 {
738 	int pidx;
739 	struct hfi1_pportdata *ppd;
740 
741 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
742 		ppd = dd->pport + pidx;
743 		if (!ppd->hfi1_wq) {
744 			ppd->hfi1_wq =
745 				alloc_workqueue(
746 				    "hfi%d_%d",
747 				    WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE |
748 				    WQ_MEM_RECLAIM,
749 				    HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES,
750 				    dd->unit, pidx);
751 			if (!ppd->hfi1_wq)
752 				goto wq_error;
753 		}
754 		if (!ppd->link_wq) {
755 			/*
756 			 * Make the link workqueue single-threaded to enforce
757 			 * serialization.
758 			 */
759 			ppd->link_wq =
760 				alloc_workqueue(
761 				    "hfi_link_%d_%d",
762 				    WQ_SYSFS | WQ_MEM_RECLAIM | WQ_UNBOUND,
763 				    1, /* max_active */
764 				    dd->unit, pidx);
765 			if (!ppd->link_wq)
766 				goto wq_error;
767 		}
768 	}
769 	return 0;
770 wq_error:
771 	pr_err("alloc_workqueue failed for port %d\n", pidx + 1);
772 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
773 		ppd = dd->pport + pidx;
774 		if (ppd->hfi1_wq) {
775 			destroy_workqueue(ppd->hfi1_wq);
776 			ppd->hfi1_wq = NULL;
777 		}
778 		if (ppd->link_wq) {
779 			destroy_workqueue(ppd->link_wq);
780 			ppd->link_wq = NULL;
781 		}
782 	}
783 	return -ENOMEM;
784 }
785 
786 /**
787  * destroy_workqueues - destroy per port workqueues
788  * @dd: the hfi1_ib device
789  */
790 static void destroy_workqueues(struct hfi1_devdata *dd)
791 {
792 	int pidx;
793 	struct hfi1_pportdata *ppd;
794 
795 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
796 		ppd = dd->pport + pidx;
797 
798 		if (ppd->hfi1_wq) {
799 			destroy_workqueue(ppd->hfi1_wq);
800 			ppd->hfi1_wq = NULL;
801 		}
802 		if (ppd->link_wq) {
803 			destroy_workqueue(ppd->link_wq);
804 			ppd->link_wq = NULL;
805 		}
806 	}
807 }
808 
809 /**
810  * enable_general_intr() - Enable the IRQs that will be handled by the
811  * general interrupt handler.
812  * @dd: valid devdata
813  *
814  */
815 static void enable_general_intr(struct hfi1_devdata *dd)
816 {
817 	set_intr_bits(dd, CCE_ERR_INT, MISC_ERR_INT, true);
818 	set_intr_bits(dd, PIO_ERR_INT, TXE_ERR_INT, true);
819 	set_intr_bits(dd, IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END, true);
820 	set_intr_bits(dd, PBC_INT, GPIO_ASSERT_INT, true);
821 	set_intr_bits(dd, TCRIT_INT, TCRIT_INT, true);
822 	set_intr_bits(dd, IS_DC_START, IS_DC_END, true);
823 	set_intr_bits(dd, IS_SENDCREDIT_START, IS_SENDCREDIT_END, true);
824 }
825 
826 /**
827  * hfi1_init - do the actual initialization sequence on the chip
828  * @dd: the hfi1_ib device
829  * @reinit: re-initializing, so don't allocate new memory
830  *
831  * Do the actual initialization sequence on the chip.  This is done
832  * both from the init routine called from the PCI infrastructure, and
833  * when we reset the chip, or detect that it was reset internally,
834  * or it's administratively re-enabled.
835  *
836  * Memory allocation here and in called routines is only done in
837  * the first case (reinit == 0).  We have to be careful, because even
838  * without memory allocation, we need to re-write all the chip registers
839  * TIDs, etc. after the reset or enable has completed.
840  */
841 int hfi1_init(struct hfi1_devdata *dd, int reinit)
842 {
843 	int ret = 0, pidx, lastfail = 0;
844 	unsigned long len;
845 	u16 i;
846 	struct hfi1_ctxtdata *rcd;
847 	struct hfi1_pportdata *ppd;
848 
849 	/* Set up send low level handlers */
850 	dd->process_pio_send = hfi1_verbs_send_pio;
851 	dd->process_dma_send = hfi1_verbs_send_dma;
852 	dd->pio_inline_send = pio_copy;
853 	dd->process_vnic_dma_send = hfi1_vnic_send_dma;
854 
855 	if (is_ax(dd)) {
856 		atomic_set(&dd->drop_packet, DROP_PACKET_ON);
857 		dd->do_drop = true;
858 	} else {
859 		atomic_set(&dd->drop_packet, DROP_PACKET_OFF);
860 		dd->do_drop = false;
861 	}
862 
863 	/* make sure the link is not "up" */
864 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
865 		ppd = dd->pport + pidx;
866 		ppd->linkup = 0;
867 	}
868 
869 	if (reinit)
870 		ret = init_after_reset(dd);
871 	else
872 		ret = loadtime_init(dd);
873 	if (ret)
874 		goto done;
875 
876 	/* allocate dummy tail memory for all receive contexts */
877 	dd->rcvhdrtail_dummy_kvaddr = dma_alloc_coherent(&dd->pcidev->dev,
878 							 sizeof(u64),
879 							 &dd->rcvhdrtail_dummy_dma,
880 							 GFP_KERNEL);
881 
882 	if (!dd->rcvhdrtail_dummy_kvaddr) {
883 		dd_dev_err(dd, "cannot allocate dummy tail memory\n");
884 		ret = -ENOMEM;
885 		goto done;
886 	}
887 
888 	/* dd->rcd can be NULL if early initialization failed */
889 	for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) {
890 		/*
891 		 * Set up the (kernel) rcvhdr queue and egr TIDs.  If doing
892 		 * re-init, the simplest way to handle this is to free
893 		 * existing, and re-allocate.
894 		 * Need to re-create rest of ctxt 0 ctxtdata as well.
895 		 */
896 		rcd = hfi1_rcd_get_by_index(dd, i);
897 		if (!rcd)
898 			continue;
899 
900 		rcd->do_interrupt = &handle_receive_interrupt;
901 
902 		lastfail = hfi1_create_rcvhdrq(dd, rcd);
903 		if (!lastfail)
904 			lastfail = hfi1_setup_eagerbufs(rcd);
905 		if (!lastfail)
906 			lastfail = hfi1_kern_exp_rcv_init(rcd, reinit);
907 		if (lastfail) {
908 			dd_dev_err(dd,
909 				   "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
910 			ret = lastfail;
911 		}
912 		/* enable IRQ */
913 		hfi1_rcd_put(rcd);
914 	}
915 
916 	/* Allocate enough memory for user event notification. */
917 	len = PAGE_ALIGN(chip_rcv_contexts(dd) * HFI1_MAX_SHARED_CTXTS *
918 			 sizeof(*dd->events));
919 	dd->events = vmalloc_user(len);
920 	if (!dd->events)
921 		dd_dev_err(dd, "Failed to allocate user events page\n");
922 	/*
923 	 * Allocate a page for device and port status.
924 	 * Page will be shared amongst all user processes.
925 	 */
926 	dd->status = vmalloc_user(PAGE_SIZE);
927 	if (!dd->status)
928 		dd_dev_err(dd, "Failed to allocate dev status page\n");
929 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
930 		ppd = dd->pport + pidx;
931 		if (dd->status)
932 			/* Currently, we only have one port */
933 			ppd->statusp = &dd->status->port;
934 
935 		set_mtu(ppd);
936 	}
937 
938 	/* enable chip even if we have an error, so we can debug cause */
939 	enable_chip(dd);
940 
941 done:
942 	/*
943 	 * Set status even if port serdes is not initialized
944 	 * so that diags will work.
945 	 */
946 	if (dd->status)
947 		dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
948 			HFI1_STATUS_INITTED;
949 	if (!ret) {
950 		/* enable all interrupts from the chip */
951 		enable_general_intr(dd);
952 		init_qsfp_int(dd);
953 
954 		/* chip is OK for user apps; mark it as initialized */
955 		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
956 			ppd = dd->pport + pidx;
957 
958 			/*
959 			 * start the serdes - must be after interrupts are
960 			 * enabled so we are notified when the link goes up
961 			 */
962 			lastfail = bringup_serdes(ppd);
963 			if (lastfail)
964 				dd_dev_info(dd,
965 					    "Failed to bring up port %u\n",
966 					    ppd->port);
967 
968 			/*
969 			 * Set status even if port serdes is not initialized
970 			 * so that diags will work.
971 			 */
972 			if (ppd->statusp)
973 				*ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
974 							HFI1_STATUS_INITTED;
975 			if (!ppd->link_speed_enabled)
976 				continue;
977 		}
978 	}
979 
980 	/* if ret is non-zero, we probably should do some cleanup here... */
981 	return ret;
982 }
983 
984 struct hfi1_devdata *hfi1_lookup(int unit)
985 {
986 	return xa_load(&hfi1_dev_table, unit);
987 }
988 
989 /*
990  * Stop the timers during unit shutdown, or after an error late
991  * in initialization.
992  */
993 static void stop_timers(struct hfi1_devdata *dd)
994 {
995 	struct hfi1_pportdata *ppd;
996 	int pidx;
997 
998 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
999 		ppd = dd->pport + pidx;
1000 		if (ppd->led_override_timer.function) {
1001 			del_timer_sync(&ppd->led_override_timer);
1002 			atomic_set(&ppd->led_override_timer_active, 0);
1003 		}
1004 	}
1005 }
1006 
1007 /**
1008  * shutdown_device - shut down a device
1009  * @dd: the hfi1_ib device
1010  *
1011  * This is called to make the device quiet when we are about to
1012  * unload the driver, and also when the device is administratively
1013  * disabled.   It does not free any data structures.
1014  * Everything it does has to be setup again by hfi1_init(dd, 1)
1015  */
1016 static void shutdown_device(struct hfi1_devdata *dd)
1017 {
1018 	struct hfi1_pportdata *ppd;
1019 	struct hfi1_ctxtdata *rcd;
1020 	unsigned pidx;
1021 	int i;
1022 
1023 	if (dd->flags & HFI1_SHUTDOWN)
1024 		return;
1025 	dd->flags |= HFI1_SHUTDOWN;
1026 
1027 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1028 		ppd = dd->pport + pidx;
1029 
1030 		ppd->linkup = 0;
1031 		if (ppd->statusp)
1032 			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
1033 					   HFI1_STATUS_IB_READY);
1034 	}
1035 	dd->flags &= ~HFI1_INITTED;
1036 
1037 	/* mask and clean up interrupts */
1038 	set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, false);
1039 	msix_clean_up_interrupts(dd);
1040 
1041 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1042 		ppd = dd->pport + pidx;
1043 		for (i = 0; i < dd->num_rcv_contexts; i++) {
1044 			rcd = hfi1_rcd_get_by_index(dd, i);
1045 			hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
1046 				     HFI1_RCVCTRL_CTXT_DIS |
1047 				     HFI1_RCVCTRL_INTRAVAIL_DIS |
1048 				     HFI1_RCVCTRL_PKEY_DIS |
1049 				     HFI1_RCVCTRL_ONE_PKT_EGR_DIS, rcd);
1050 			hfi1_rcd_put(rcd);
1051 		}
1052 		/*
1053 		 * Gracefully stop all sends allowing any in progress to
1054 		 * trickle out first.
1055 		 */
1056 		for (i = 0; i < dd->num_send_contexts; i++)
1057 			sc_flush(dd->send_contexts[i].sc);
1058 	}
1059 
1060 	/*
1061 	 * Enough for anything that's going to trickle out to have actually
1062 	 * done so.
1063 	 */
1064 	udelay(20);
1065 
1066 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1067 		ppd = dd->pport + pidx;
1068 
1069 		/* disable all contexts */
1070 		for (i = 0; i < dd->num_send_contexts; i++)
1071 			sc_disable(dd->send_contexts[i].sc);
1072 		/* disable the send device */
1073 		pio_send_control(dd, PSC_GLOBAL_DISABLE);
1074 
1075 		shutdown_led_override(ppd);
1076 
1077 		/*
1078 		 * Clear SerdesEnable.
1079 		 * We can't count on interrupts since we are stopping.
1080 		 */
1081 		hfi1_quiet_serdes(ppd);
1082 		if (ppd->hfi1_wq)
1083 			flush_workqueue(ppd->hfi1_wq);
1084 		if (ppd->link_wq)
1085 			flush_workqueue(ppd->link_wq);
1086 	}
1087 	sdma_exit(dd);
1088 }
1089 
1090 /**
1091  * hfi1_free_ctxtdata - free a context's allocated data
1092  * @dd: the hfi1_ib device
1093  * @rcd: the ctxtdata structure
1094  *
1095  * free up any allocated data for a context
1096  * It should never change any chip state, or global driver state.
1097  */
1098 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1099 {
1100 	u32 e;
1101 
1102 	if (!rcd)
1103 		return;
1104 
1105 	if (rcd->rcvhdrq) {
1106 		dma_free_coherent(&dd->pcidev->dev, rcvhdrq_size(rcd),
1107 				  rcd->rcvhdrq, rcd->rcvhdrq_dma);
1108 		rcd->rcvhdrq = NULL;
1109 		if (hfi1_rcvhdrtail_kvaddr(rcd)) {
1110 			dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
1111 					  (void *)hfi1_rcvhdrtail_kvaddr(rcd),
1112 					  rcd->rcvhdrqtailaddr_dma);
1113 			rcd->rcvhdrtail_kvaddr = NULL;
1114 		}
1115 	}
1116 
1117 	/* all the RcvArray entries should have been cleared by now */
1118 	kfree(rcd->egrbufs.rcvtids);
1119 	rcd->egrbufs.rcvtids = NULL;
1120 
1121 	for (e = 0; e < rcd->egrbufs.alloced; e++) {
1122 		if (rcd->egrbufs.buffers[e].dma)
1123 			dma_free_coherent(&dd->pcidev->dev,
1124 					  rcd->egrbufs.buffers[e].len,
1125 					  rcd->egrbufs.buffers[e].addr,
1126 					  rcd->egrbufs.buffers[e].dma);
1127 	}
1128 	kfree(rcd->egrbufs.buffers);
1129 	rcd->egrbufs.alloced = 0;
1130 	rcd->egrbufs.buffers = NULL;
1131 
1132 	sc_free(rcd->sc);
1133 	rcd->sc = NULL;
1134 
1135 	vfree(rcd->subctxt_uregbase);
1136 	vfree(rcd->subctxt_rcvegrbuf);
1137 	vfree(rcd->subctxt_rcvhdr_base);
1138 	kfree(rcd->opstats);
1139 
1140 	rcd->subctxt_uregbase = NULL;
1141 	rcd->subctxt_rcvegrbuf = NULL;
1142 	rcd->subctxt_rcvhdr_base = NULL;
1143 	rcd->opstats = NULL;
1144 }
1145 
1146 /*
1147  * Release our hold on the shared asic data.  If we are the last one,
1148  * return the structure to be finalized outside the lock.  Must be
1149  * holding hfi1_dev_table lock.
1150  */
1151 static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd)
1152 {
1153 	struct hfi1_asic_data *ad;
1154 	int other;
1155 
1156 	if (!dd->asic_data)
1157 		return NULL;
1158 	dd->asic_data->dds[dd->hfi1_id] = NULL;
1159 	other = dd->hfi1_id ? 0 : 1;
1160 	ad = dd->asic_data;
1161 	dd->asic_data = NULL;
1162 	/* return NULL if the other dd still has a link */
1163 	return ad->dds[other] ? NULL : ad;
1164 }
1165 
1166 static void finalize_asic_data(struct hfi1_devdata *dd,
1167 			       struct hfi1_asic_data *ad)
1168 {
1169 	clean_up_i2c(dd, ad);
1170 	kfree(ad);
1171 }
1172 
1173 /**
1174  * hfi1_free_devdata - cleans up and frees per-unit data structure
1175  * @dd: pointer to a valid devdata structure
1176  *
1177  * It cleans up and frees all data structures set up by
1178  * by hfi1_alloc_devdata().
1179  */
1180 void hfi1_free_devdata(struct hfi1_devdata *dd)
1181 {
1182 	struct hfi1_asic_data *ad;
1183 	unsigned long flags;
1184 
1185 	xa_lock_irqsave(&hfi1_dev_table, flags);
1186 	__xa_erase(&hfi1_dev_table, dd->unit);
1187 	ad = release_asic_data(dd);
1188 	xa_unlock_irqrestore(&hfi1_dev_table, flags);
1189 
1190 	finalize_asic_data(dd, ad);
1191 	free_platform_config(dd);
1192 	rcu_barrier(); /* wait for rcu callbacks to complete */
1193 	free_percpu(dd->int_counter);
1194 	free_percpu(dd->rcv_limit);
1195 	free_percpu(dd->send_schedule);
1196 	free_percpu(dd->tx_opstats);
1197 	dd->int_counter   = NULL;
1198 	dd->rcv_limit     = NULL;
1199 	dd->send_schedule = NULL;
1200 	dd->tx_opstats    = NULL;
1201 	kfree(dd->comp_vect);
1202 	dd->comp_vect = NULL;
1203 	sdma_clean(dd, dd->num_sdma);
1204 	rvt_dealloc_device(&dd->verbs_dev.rdi);
1205 }
1206 
1207 /**
1208  * hfi1_alloc_devdata - Allocate our primary per-unit data structure.
1209  * @pdev: Valid PCI device
1210  * @extra: How many bytes to alloc past the default
1211  *
1212  * Must be done via verbs allocator, because the verbs cleanup process
1213  * both does cleanup and free of the data structure.
1214  * "extra" is for chip-specific data.
1215  */
1216 static struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev,
1217 					       size_t extra)
1218 {
1219 	struct hfi1_devdata *dd;
1220 	int ret, nports;
1221 
1222 	/* extra is * number of ports */
1223 	nports = extra / sizeof(struct hfi1_pportdata);
1224 
1225 	dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra,
1226 						     nports);
1227 	if (!dd)
1228 		return ERR_PTR(-ENOMEM);
1229 	dd->num_pports = nports;
1230 	dd->pport = (struct hfi1_pportdata *)(dd + 1);
1231 	dd->pcidev = pdev;
1232 	pci_set_drvdata(pdev, dd);
1233 
1234 	ret = xa_alloc_irq(&hfi1_dev_table, &dd->unit, dd, xa_limit_32b,
1235 			GFP_KERNEL);
1236 	if (ret < 0) {
1237 		dev_err(&pdev->dev,
1238 			"Could not allocate unit ID: error %d\n", -ret);
1239 		goto bail;
1240 	}
1241 	rvt_set_ibdev_name(&dd->verbs_dev.rdi, "%s_%d", class_name(), dd->unit);
1242 	/*
1243 	 * If the BIOS does not have the NUMA node information set, select
1244 	 * NUMA 0 so we get consistent performance.
1245 	 */
1246 	dd->node = pcibus_to_node(pdev->bus);
1247 	if (dd->node == NUMA_NO_NODE) {
1248 		dd_dev_err(dd, "Invalid PCI NUMA node. Performance may be affected\n");
1249 		dd->node = 0;
1250 	}
1251 
1252 	/*
1253 	 * Initialize all locks for the device. This needs to be as early as
1254 	 * possible so locks are usable.
1255 	 */
1256 	spin_lock_init(&dd->sc_lock);
1257 	spin_lock_init(&dd->sendctrl_lock);
1258 	spin_lock_init(&dd->rcvctrl_lock);
1259 	spin_lock_init(&dd->uctxt_lock);
1260 	spin_lock_init(&dd->hfi1_diag_trans_lock);
1261 	spin_lock_init(&dd->sc_init_lock);
1262 	spin_lock_init(&dd->dc8051_memlock);
1263 	seqlock_init(&dd->sc2vl_lock);
1264 	spin_lock_init(&dd->sde_map_lock);
1265 	spin_lock_init(&dd->pio_map_lock);
1266 	mutex_init(&dd->dc8051_lock);
1267 	init_waitqueue_head(&dd->event_queue);
1268 	spin_lock_init(&dd->irq_src_lock);
1269 
1270 	dd->int_counter = alloc_percpu(u64);
1271 	if (!dd->int_counter) {
1272 		ret = -ENOMEM;
1273 		goto bail;
1274 	}
1275 
1276 	dd->rcv_limit = alloc_percpu(u64);
1277 	if (!dd->rcv_limit) {
1278 		ret = -ENOMEM;
1279 		goto bail;
1280 	}
1281 
1282 	dd->send_schedule = alloc_percpu(u64);
1283 	if (!dd->send_schedule) {
1284 		ret = -ENOMEM;
1285 		goto bail;
1286 	}
1287 
1288 	dd->tx_opstats = alloc_percpu(struct hfi1_opcode_stats_perctx);
1289 	if (!dd->tx_opstats) {
1290 		ret = -ENOMEM;
1291 		goto bail;
1292 	}
1293 
1294 	dd->comp_vect = kzalloc(sizeof(*dd->comp_vect), GFP_KERNEL);
1295 	if (!dd->comp_vect) {
1296 		ret = -ENOMEM;
1297 		goto bail;
1298 	}
1299 
1300 	atomic_set(&dd->ipoib_rsm_usr_num, 0);
1301 	return dd;
1302 
1303 bail:
1304 	hfi1_free_devdata(dd);
1305 	return ERR_PTR(ret);
1306 }
1307 
1308 /*
1309  * Called from freeze mode handlers, and from PCI error
1310  * reporting code.  Should be paranoid about state of
1311  * system and data structures.
1312  */
1313 void hfi1_disable_after_error(struct hfi1_devdata *dd)
1314 {
1315 	if (dd->flags & HFI1_INITTED) {
1316 		u32 pidx;
1317 
1318 		dd->flags &= ~HFI1_INITTED;
1319 		if (dd->pport)
1320 			for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1321 				struct hfi1_pportdata *ppd;
1322 
1323 				ppd = dd->pport + pidx;
1324 				if (dd->flags & HFI1_PRESENT)
1325 					set_link_state(ppd, HLS_DN_DISABLE);
1326 
1327 				if (ppd->statusp)
1328 					*ppd->statusp &= ~HFI1_STATUS_IB_READY;
1329 			}
1330 	}
1331 
1332 	/*
1333 	 * Mark as having had an error for driver, and also
1334 	 * for /sys and status word mapped to user programs.
1335 	 * This marks unit as not usable, until reset.
1336 	 */
1337 	if (dd->status)
1338 		dd->status->dev |= HFI1_STATUS_HWERROR;
1339 }
1340 
1341 static void remove_one(struct pci_dev *);
1342 static int init_one(struct pci_dev *, const struct pci_device_id *);
1343 static void shutdown_one(struct pci_dev *);
1344 
1345 #define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: "
1346 #define PFX DRIVER_NAME ": "
1347 
1348 const struct pci_device_id hfi1_pci_tbl[] = {
1349 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
1350 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
1351 	{ 0, }
1352 };
1353 
1354 MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);
1355 
1356 static struct pci_driver hfi1_pci_driver = {
1357 	.name = DRIVER_NAME,
1358 	.probe = init_one,
1359 	.remove = remove_one,
1360 	.shutdown = shutdown_one,
1361 	.id_table = hfi1_pci_tbl,
1362 	.err_handler = &hfi1_pci_err_handler,
1363 };
1364 
1365 static void __init compute_krcvqs(void)
1366 {
1367 	int i;
1368 
1369 	for (i = 0; i < krcvqsset; i++)
1370 		n_krcvqs += krcvqs[i];
1371 }
1372 
1373 /*
1374  * Do all the generic driver unit- and chip-independent memory
1375  * allocation and initialization.
1376  */
1377 static int __init hfi1_mod_init(void)
1378 {
1379 	int ret;
1380 
1381 	ret = dev_init();
1382 	if (ret)
1383 		goto bail;
1384 
1385 	ret = node_affinity_init();
1386 	if (ret)
1387 		goto bail;
1388 
1389 	/* validate max MTU before any devices start */
1390 	if (!valid_opa_max_mtu(hfi1_max_mtu)) {
1391 		pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
1392 		       hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
1393 		hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
1394 	}
1395 	/* valid CUs run from 1-128 in powers of 2 */
1396 	if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu))
1397 		hfi1_cu = 1;
1398 	/* valid credit return threshold is 0-100, variable is unsigned */
1399 	if (user_credit_return_threshold > 100)
1400 		user_credit_return_threshold = 100;
1401 
1402 	compute_krcvqs();
1403 	/*
1404 	 * sanitize receive interrupt count, time must wait until after
1405 	 * the hardware type is known
1406 	 */
1407 	if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
1408 		rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
1409 	/* reject invalid combinations */
1410 	if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
1411 		pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
1412 		rcv_intr_count = 1;
1413 	}
1414 	if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
1415 		/*
1416 		 * Avoid indefinite packet delivery by requiring a timeout
1417 		 * if count is > 1.
1418 		 */
1419 		pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
1420 		rcv_intr_timeout = 1;
1421 	}
1422 	if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
1423 		/*
1424 		 * The dynamic algorithm expects a non-zero timeout
1425 		 * and a count > 1.
1426 		 */
1427 		pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
1428 		rcv_intr_dynamic = 0;
1429 	}
1430 
1431 	/* sanitize link CRC options */
1432 	link_crc_mask &= SUPPORTED_CRCS;
1433 
1434 	ret = opfn_init();
1435 	if (ret < 0) {
1436 		pr_err("Failed to allocate opfn_wq");
1437 		goto bail_dev;
1438 	}
1439 
1440 	/*
1441 	 * These must be called before the driver is registered with
1442 	 * the PCI subsystem.
1443 	 */
1444 	hfi1_dbg_init();
1445 	ret = pci_register_driver(&hfi1_pci_driver);
1446 	if (ret < 0) {
1447 		pr_err("Unable to register driver: error %d\n", -ret);
1448 		goto bail_dev;
1449 	}
1450 	goto bail; /* all OK */
1451 
1452 bail_dev:
1453 	hfi1_dbg_exit();
1454 	dev_cleanup();
1455 bail:
1456 	return ret;
1457 }
1458 
1459 module_init(hfi1_mod_init);
1460 
1461 /*
1462  * Do the non-unit driver cleanup, memory free, etc. at unload.
1463  */
1464 static void __exit hfi1_mod_cleanup(void)
1465 {
1466 	pci_unregister_driver(&hfi1_pci_driver);
1467 	opfn_exit();
1468 	node_affinity_destroy_all();
1469 	hfi1_dbg_exit();
1470 
1471 	WARN_ON(!xa_empty(&hfi1_dev_table));
1472 	dispose_firmware();	/* asymmetric with obtain_firmware() */
1473 	dev_cleanup();
1474 }
1475 
1476 module_exit(hfi1_mod_cleanup);
1477 
1478 /* this can only be called after a successful initialization */
1479 static void cleanup_device_data(struct hfi1_devdata *dd)
1480 {
1481 	int ctxt;
1482 	int pidx;
1483 
1484 	/* users can't do anything more with chip */
1485 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1486 		struct hfi1_pportdata *ppd = &dd->pport[pidx];
1487 		struct cc_state *cc_state;
1488 		int i;
1489 
1490 		if (ppd->statusp)
1491 			*ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;
1492 
1493 		for (i = 0; i < OPA_MAX_SLS; i++)
1494 			hrtimer_cancel(&ppd->cca_timer[i].hrtimer);
1495 
1496 		spin_lock(&ppd->cc_state_lock);
1497 		cc_state = get_cc_state_protected(ppd);
1498 		RCU_INIT_POINTER(ppd->cc_state, NULL);
1499 		spin_unlock(&ppd->cc_state_lock);
1500 
1501 		if (cc_state)
1502 			kfree_rcu(cc_state, rcu);
1503 	}
1504 
1505 	free_credit_return(dd);
1506 
1507 	if (dd->rcvhdrtail_dummy_kvaddr) {
1508 		dma_free_coherent(&dd->pcidev->dev, sizeof(u64),
1509 				  (void *)dd->rcvhdrtail_dummy_kvaddr,
1510 				  dd->rcvhdrtail_dummy_dma);
1511 		dd->rcvhdrtail_dummy_kvaddr = NULL;
1512 	}
1513 
1514 	/*
1515 	 * Free any resources still in use (usually just kernel contexts)
1516 	 * at unload; we do for ctxtcnt, because that's what we allocate.
1517 	 */
1518 	for (ctxt = 0; dd->rcd && ctxt < dd->num_rcv_contexts; ctxt++) {
1519 		struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
1520 
1521 		if (rcd) {
1522 			hfi1_free_ctxt_rcv_groups(rcd);
1523 			hfi1_free_ctxt(rcd);
1524 		}
1525 	}
1526 
1527 	kfree(dd->rcd);
1528 	dd->rcd = NULL;
1529 
1530 	free_pio_map(dd);
1531 	/* must follow rcv context free - need to remove rcv's hooks */
1532 	for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
1533 		sc_free(dd->send_contexts[ctxt].sc);
1534 	dd->num_send_contexts = 0;
1535 	kfree(dd->send_contexts);
1536 	dd->send_contexts = NULL;
1537 	kfree(dd->hw_to_sw);
1538 	dd->hw_to_sw = NULL;
1539 	kfree(dd->boardname);
1540 	vfree(dd->events);
1541 	vfree(dd->status);
1542 }
1543 
1544 /*
1545  * Clean up on unit shutdown, or error during unit load after
1546  * successful initialization.
1547  */
1548 static void postinit_cleanup(struct hfi1_devdata *dd)
1549 {
1550 	hfi1_start_cleanup(dd);
1551 	hfi1_comp_vectors_clean_up(dd);
1552 	hfi1_dev_affinity_clean_up(dd);
1553 
1554 	hfi1_pcie_ddcleanup(dd);
1555 	hfi1_pcie_cleanup(dd->pcidev);
1556 
1557 	cleanup_device_data(dd);
1558 
1559 	hfi1_free_devdata(dd);
1560 }
1561 
1562 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1563 {
1564 	int ret = 0, j, pidx, initfail;
1565 	struct hfi1_devdata *dd;
1566 	struct hfi1_pportdata *ppd;
1567 
1568 	/* First, lock the non-writable module parameters */
1569 	HFI1_CAP_LOCK();
1570 
1571 	/* Validate dev ids */
1572 	if (!(ent->device == PCI_DEVICE_ID_INTEL0 ||
1573 	      ent->device == PCI_DEVICE_ID_INTEL1)) {
1574 		dev_err(&pdev->dev, "Failing on unknown Intel deviceid 0x%x\n",
1575 			ent->device);
1576 		ret = -ENODEV;
1577 		goto bail;
1578 	}
1579 
1580 	/* Allocate the dd so we can get to work */
1581 	dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
1582 				sizeof(struct hfi1_pportdata));
1583 	if (IS_ERR(dd)) {
1584 		ret = PTR_ERR(dd);
1585 		goto bail;
1586 	}
1587 
1588 	/* Validate some global module parameters */
1589 	ret = hfi1_validate_rcvhdrcnt(dd, rcvhdrcnt);
1590 	if (ret)
1591 		goto bail;
1592 
1593 	/* use the encoding function as a sanitization check */
1594 	if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) {
1595 		dd_dev_err(dd, "Invalid HdrQ Entry size %u\n",
1596 			   hfi1_hdrq_entsize);
1597 		ret = -EINVAL;
1598 		goto bail;
1599 	}
1600 
1601 	/* The receive eager buffer size must be set before the receive
1602 	 * contexts are created.
1603 	 *
1604 	 * Set the eager buffer size.  Validate that it falls in a range
1605 	 * allowed by the hardware - all powers of 2 between the min and
1606 	 * max.  The maximum valid MTU is within the eager buffer range
1607 	 * so we do not need to cap the max_mtu by an eager buffer size
1608 	 * setting.
1609 	 */
1610 	if (eager_buffer_size) {
1611 		if (!is_power_of_2(eager_buffer_size))
1612 			eager_buffer_size =
1613 				roundup_pow_of_two(eager_buffer_size);
1614 		eager_buffer_size =
1615 			clamp_val(eager_buffer_size,
1616 				  MIN_EAGER_BUFFER * 8,
1617 				  MAX_EAGER_BUFFER_TOTAL);
1618 		dd_dev_info(dd, "Eager buffer size %u\n",
1619 			    eager_buffer_size);
1620 	} else {
1621 		dd_dev_err(dd, "Invalid Eager buffer size of 0\n");
1622 		ret = -EINVAL;
1623 		goto bail;
1624 	}
1625 
1626 	/* restrict value of hfi1_rcvarr_split */
1627 	hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);
1628 
1629 	ret = hfi1_pcie_init(dd);
1630 	if (ret)
1631 		goto bail;
1632 
1633 	/*
1634 	 * Do device-specific initialization, function table setup, dd
1635 	 * allocation, etc.
1636 	 */
1637 	ret = hfi1_init_dd(dd);
1638 	if (ret)
1639 		goto clean_bail; /* error already printed */
1640 
1641 	ret = create_workqueues(dd);
1642 	if (ret)
1643 		goto clean_bail;
1644 
1645 	/* do the generic initialization */
1646 	initfail = hfi1_init(dd, 0);
1647 
1648 	ret = hfi1_register_ib_device(dd);
1649 
1650 	/*
1651 	 * Now ready for use.  this should be cleared whenever we
1652 	 * detect a reset, or initiate one.  If earlier failure,
1653 	 * we still create devices, so diags, etc. can be used
1654 	 * to determine cause of problem.
1655 	 */
1656 	if (!initfail && !ret) {
1657 		dd->flags |= HFI1_INITTED;
1658 		/* create debufs files after init and ib register */
1659 		hfi1_dbg_ibdev_init(&dd->verbs_dev);
1660 	}
1661 
1662 	j = hfi1_device_create(dd);
1663 	if (j)
1664 		dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
1665 
1666 	if (initfail || ret) {
1667 		msix_clean_up_interrupts(dd);
1668 		stop_timers(dd);
1669 		flush_workqueue(ib_wq);
1670 		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1671 			hfi1_quiet_serdes(dd->pport + pidx);
1672 			ppd = dd->pport + pidx;
1673 			if (ppd->hfi1_wq) {
1674 				destroy_workqueue(ppd->hfi1_wq);
1675 				ppd->hfi1_wq = NULL;
1676 			}
1677 			if (ppd->link_wq) {
1678 				destroy_workqueue(ppd->link_wq);
1679 				ppd->link_wq = NULL;
1680 			}
1681 		}
1682 		if (!j)
1683 			hfi1_device_remove(dd);
1684 		if (!ret)
1685 			hfi1_unregister_ib_device(dd);
1686 		postinit_cleanup(dd);
1687 		if (initfail)
1688 			ret = initfail;
1689 		goto bail;	/* everything already cleaned */
1690 	}
1691 
1692 	sdma_start(dd);
1693 
1694 	return 0;
1695 
1696 clean_bail:
1697 	hfi1_pcie_cleanup(pdev);
1698 bail:
1699 	return ret;
1700 }
1701 
1702 static void wait_for_clients(struct hfi1_devdata *dd)
1703 {
1704 	/*
1705 	 * Remove the device init value and complete the device if there is
1706 	 * no clients or wait for active clients to finish.
1707 	 */
1708 	if (refcount_dec_and_test(&dd->user_refcount))
1709 		complete(&dd->user_comp);
1710 
1711 	wait_for_completion(&dd->user_comp);
1712 }
1713 
1714 static void remove_one(struct pci_dev *pdev)
1715 {
1716 	struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1717 
1718 	/* close debugfs files before ib unregister */
1719 	hfi1_dbg_ibdev_exit(&dd->verbs_dev);
1720 
1721 	/* remove the /dev hfi1 interface */
1722 	hfi1_device_remove(dd);
1723 
1724 	/* wait for existing user space clients to finish */
1725 	wait_for_clients(dd);
1726 
1727 	/* unregister from IB core */
1728 	hfi1_unregister_ib_device(dd);
1729 
1730 	/* free netdev data */
1731 	hfi1_free_rx(dd);
1732 
1733 	/*
1734 	 * Disable the IB link, disable interrupts on the device,
1735 	 * clear dma engines, etc.
1736 	 */
1737 	shutdown_device(dd);
1738 	destroy_workqueues(dd);
1739 
1740 	stop_timers(dd);
1741 
1742 	/* wait until all of our (qsfp) queue_work() calls complete */
1743 	flush_workqueue(ib_wq);
1744 
1745 	postinit_cleanup(dd);
1746 }
1747 
1748 static void shutdown_one(struct pci_dev *pdev)
1749 {
1750 	struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1751 
1752 	shutdown_device(dd);
1753 }
1754 
1755 /**
1756  * hfi1_create_rcvhdrq - create a receive header queue
1757  * @dd: the hfi1_ib device
1758  * @rcd: the context data
1759  *
1760  * This must be contiguous memory (from an i/o perspective), and must be
1761  * DMA'able (which means for some systems, it will go through an IOMMU,
1762  * or be forced into a low address range).
1763  */
1764 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1765 {
1766 	unsigned amt;
1767 
1768 	if (!rcd->rcvhdrq) {
1769 		gfp_t gfp_flags;
1770 
1771 		amt = rcvhdrq_size(rcd);
1772 
1773 		if (rcd->ctxt < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
1774 			gfp_flags = GFP_KERNEL;
1775 		else
1776 			gfp_flags = GFP_USER;
1777 		rcd->rcvhdrq = dma_alloc_coherent(&dd->pcidev->dev, amt,
1778 						  &rcd->rcvhdrq_dma,
1779 						  gfp_flags | __GFP_COMP);
1780 
1781 		if (!rcd->rcvhdrq) {
1782 			dd_dev_err(dd,
1783 				   "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
1784 				   amt, rcd->ctxt);
1785 			goto bail;
1786 		}
1787 
1788 		if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ||
1789 		    HFI1_CAP_UGET_MASK(rcd->flags, DMA_RTAIL)) {
1790 			rcd->rcvhdrtail_kvaddr = dma_alloc_coherent(&dd->pcidev->dev,
1791 								    PAGE_SIZE,
1792 								    &rcd->rcvhdrqtailaddr_dma,
1793 								    gfp_flags);
1794 			if (!rcd->rcvhdrtail_kvaddr)
1795 				goto bail_free;
1796 		}
1797 	}
1798 
1799 	set_hdrq_regs(rcd->dd, rcd->ctxt, rcd->rcvhdrqentsize,
1800 		      rcd->rcvhdrq_cnt);
1801 
1802 	return 0;
1803 
1804 bail_free:
1805 	dd_dev_err(dd,
1806 		   "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
1807 		   rcd->ctxt);
1808 	dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
1809 			  rcd->rcvhdrq_dma);
1810 	rcd->rcvhdrq = NULL;
1811 bail:
1812 	return -ENOMEM;
1813 }
1814 
1815 /**
1816  * hfi1_setup_eagerbufs - llocate eager buffers, both kernel and user
1817  * contexts.
1818  * @rcd: the context we are setting up.
1819  *
1820  * Allocate the eager TID buffers and program them into hip.
1821  * They are no longer completely contiguous, we do multiple allocation
1822  * calls.  Otherwise we get the OOM code involved, by asking for too
1823  * much per call, with disastrous results on some kernels.
1824  */
1825 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
1826 {
1827 	struct hfi1_devdata *dd = rcd->dd;
1828 	u32 max_entries, egrtop, alloced_bytes = 0;
1829 	gfp_t gfp_flags;
1830 	u16 order, idx = 0;
1831 	int ret = 0;
1832 	u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);
1833 
1834 	/*
1835 	 * GFP_USER, but without GFP_FS, so buffer cache can be
1836 	 * coalesced (we hope); otherwise, even at order 4,
1837 	 * heavy filesystem activity makes these fail, and we can
1838 	 * use compound pages.
1839 	 */
1840 	gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP;
1841 
1842 	/*
1843 	 * The minimum size of the eager buffers is a groups of MTU-sized
1844 	 * buffers.
1845 	 * The global eager_buffer_size parameter is checked against the
1846 	 * theoretical lower limit of the value. Here, we check against the
1847 	 * MTU.
1848 	 */
1849 	if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
1850 		rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
1851 	/*
1852 	 * If using one-pkt-per-egr-buffer, lower the eager buffer
1853 	 * size to the max MTU (page-aligned).
1854 	 */
1855 	if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
1856 		rcd->egrbufs.rcvtid_size = round_mtu;
1857 
1858 	/*
1859 	 * Eager buffers sizes of 1MB or less require smaller TID sizes
1860 	 * to satisfy the "multiple of 8 RcvArray entries" requirement.
1861 	 */
1862 	if (rcd->egrbufs.size <= (1 << 20))
1863 		rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
1864 			rounddown_pow_of_two(rcd->egrbufs.size / 8));
1865 
1866 	while (alloced_bytes < rcd->egrbufs.size &&
1867 	       rcd->egrbufs.alloced < rcd->egrbufs.count) {
1868 		rcd->egrbufs.buffers[idx].addr =
1869 			dma_alloc_coherent(&dd->pcidev->dev,
1870 					   rcd->egrbufs.rcvtid_size,
1871 					   &rcd->egrbufs.buffers[idx].dma,
1872 					   gfp_flags);
1873 		if (rcd->egrbufs.buffers[idx].addr) {
1874 			rcd->egrbufs.buffers[idx].len =
1875 				rcd->egrbufs.rcvtid_size;
1876 			rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
1877 				rcd->egrbufs.buffers[idx].addr;
1878 			rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma =
1879 				rcd->egrbufs.buffers[idx].dma;
1880 			rcd->egrbufs.alloced++;
1881 			alloced_bytes += rcd->egrbufs.rcvtid_size;
1882 			idx++;
1883 		} else {
1884 			u32 new_size, i, j;
1885 			u64 offset = 0;
1886 
1887 			/*
1888 			 * Fail the eager buffer allocation if:
1889 			 *   - we are already using the lowest acceptable size
1890 			 *   - we are using one-pkt-per-egr-buffer (this implies
1891 			 *     that we are accepting only one size)
1892 			 */
1893 			if (rcd->egrbufs.rcvtid_size == round_mtu ||
1894 			    !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
1895 				dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
1896 					   rcd->ctxt);
1897 				ret = -ENOMEM;
1898 				goto bail_rcvegrbuf_phys;
1899 			}
1900 
1901 			new_size = rcd->egrbufs.rcvtid_size / 2;
1902 
1903 			/*
1904 			 * If the first attempt to allocate memory failed, don't
1905 			 * fail everything but continue with the next lower
1906 			 * size.
1907 			 */
1908 			if (idx == 0) {
1909 				rcd->egrbufs.rcvtid_size = new_size;
1910 				continue;
1911 			}
1912 
1913 			/*
1914 			 * Re-partition already allocated buffers to a smaller
1915 			 * size.
1916 			 */
1917 			rcd->egrbufs.alloced = 0;
1918 			for (i = 0, j = 0, offset = 0; j < idx; i++) {
1919 				if (i >= rcd->egrbufs.count)
1920 					break;
1921 				rcd->egrbufs.rcvtids[i].dma =
1922 					rcd->egrbufs.buffers[j].dma + offset;
1923 				rcd->egrbufs.rcvtids[i].addr =
1924 					rcd->egrbufs.buffers[j].addr + offset;
1925 				rcd->egrbufs.alloced++;
1926 				if ((rcd->egrbufs.buffers[j].dma + offset +
1927 				     new_size) ==
1928 				    (rcd->egrbufs.buffers[j].dma +
1929 				     rcd->egrbufs.buffers[j].len)) {
1930 					j++;
1931 					offset = 0;
1932 				} else {
1933 					offset += new_size;
1934 				}
1935 			}
1936 			rcd->egrbufs.rcvtid_size = new_size;
1937 		}
1938 	}
1939 	rcd->egrbufs.numbufs = idx;
1940 	rcd->egrbufs.size = alloced_bytes;
1941 
1942 	hfi1_cdbg(PROC,
1943 		  "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %uKB\n",
1944 		  rcd->ctxt, rcd->egrbufs.alloced,
1945 		  rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024);
1946 
1947 	/*
1948 	 * Set the contexts rcv array head update threshold to the closest
1949 	 * power of 2 (so we can use a mask instead of modulo) below half
1950 	 * the allocated entries.
1951 	 */
1952 	rcd->egrbufs.threshold =
1953 		rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
1954 	/*
1955 	 * Compute the expected RcvArray entry base. This is done after
1956 	 * allocating the eager buffers in order to maximize the
1957 	 * expected RcvArray entries for the context.
1958 	 */
1959 	max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
1960 	egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
1961 	rcd->expected_count = max_entries - egrtop;
1962 	if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
1963 		rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;
1964 
1965 	rcd->expected_base = rcd->eager_base + egrtop;
1966 	hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n",
1967 		  rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
1968 		  rcd->eager_base, rcd->expected_base);
1969 
1970 	if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) {
1971 		hfi1_cdbg(PROC,
1972 			  "ctxt%u: current Eager buffer size is invalid %u\n",
1973 			  rcd->ctxt, rcd->egrbufs.rcvtid_size);
1974 		ret = -EINVAL;
1975 		goto bail_rcvegrbuf_phys;
1976 	}
1977 
1978 	for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
1979 		hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER,
1980 			     rcd->egrbufs.rcvtids[idx].dma, order);
1981 		cond_resched();
1982 	}
1983 
1984 	return 0;
1985 
1986 bail_rcvegrbuf_phys:
1987 	for (idx = 0; idx < rcd->egrbufs.alloced &&
1988 	     rcd->egrbufs.buffers[idx].addr;
1989 	     idx++) {
1990 		dma_free_coherent(&dd->pcidev->dev,
1991 				  rcd->egrbufs.buffers[idx].len,
1992 				  rcd->egrbufs.buffers[idx].addr,
1993 				  rcd->egrbufs.buffers[idx].dma);
1994 		rcd->egrbufs.buffers[idx].addr = NULL;
1995 		rcd->egrbufs.buffers[idx].dma = 0;
1996 		rcd->egrbufs.buffers[idx].len = 0;
1997 	}
1998 
1999 	return ret;
2000 }
2001