1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause 2 /* 3 * Copyright(c) 2015 - 2020 Intel Corporation. 4 */ 5 6 #include <linux/pci.h> 7 #include <linux/netdevice.h> 8 #include <linux/vmalloc.h> 9 #include <linux/delay.h> 10 #include <linux/xarray.h> 11 #include <linux/module.h> 12 #include <linux/printk.h> 13 #include <linux/hrtimer.h> 14 #include <linux/bitmap.h> 15 #include <linux/numa.h> 16 #include <rdma/rdma_vt.h> 17 18 #include "hfi.h" 19 #include "device.h" 20 #include "common.h" 21 #include "trace.h" 22 #include "mad.h" 23 #include "sdma.h" 24 #include "debugfs.h" 25 #include "verbs.h" 26 #include "aspm.h" 27 #include "affinity.h" 28 #include "vnic.h" 29 #include "exp_rcv.h" 30 #include "netdev.h" 31 32 #undef pr_fmt 33 #define pr_fmt(fmt) DRIVER_NAME ": " fmt 34 35 /* 36 * min buffers we want to have per context, after driver 37 */ 38 #define HFI1_MIN_USER_CTXT_BUFCNT 7 39 40 #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */ 41 #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */ 42 43 #define NUM_IB_PORTS 1 44 45 /* 46 * Number of user receive contexts we are configured to use (to allow for more 47 * pio buffers per ctxt, etc.) Zero means use one user context per CPU. 48 */ 49 int num_user_contexts = -1; 50 module_param_named(num_user_contexts, num_user_contexts, int, 0444); 51 MODULE_PARM_DESC( 52 num_user_contexts, "Set max number of user contexts to use (default: -1 will use the real (non-HT) CPU count)"); 53 54 uint krcvqs[RXE_NUM_DATA_VL]; 55 int krcvqsset; 56 module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO); 57 MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL"); 58 59 /* computed based on above array */ 60 unsigned long n_krcvqs; 61 62 static unsigned hfi1_rcvarr_split = 25; 63 module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO); 64 MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers"); 65 66 static uint eager_buffer_size = (8 << 20); /* 8MB */ 67 module_param(eager_buffer_size, uint, S_IRUGO); 68 MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 8MB"); 69 70 static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */ 71 module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO); 72 MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)"); 73 74 static uint hfi1_hdrq_entsize = 32; 75 module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, 0444); 76 MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B, 32 - 128B (default)"); 77 78 unsigned int user_credit_return_threshold = 33; /* default is 33% */ 79 module_param(user_credit_return_threshold, uint, S_IRUGO); 80 MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)"); 81 82 DEFINE_XARRAY_FLAGS(hfi1_dev_table, XA_FLAGS_ALLOC | XA_FLAGS_LOCK_IRQ); 83 84 static int hfi1_create_kctxt(struct hfi1_devdata *dd, 85 struct hfi1_pportdata *ppd) 86 { 87 struct hfi1_ctxtdata *rcd; 88 int ret; 89 90 /* Control context has to be always 0 */ 91 BUILD_BUG_ON(HFI1_CTRL_CTXT != 0); 92 93 ret = hfi1_create_ctxtdata(ppd, dd->node, &rcd); 94 if (ret < 0) { 95 dd_dev_err(dd, "Kernel receive context allocation failed\n"); 96 return ret; 97 } 98 99 /* 100 * Set up the kernel context flags here and now because they use 101 * default values for all receive side memories. User contexts will 102 * be handled as they are created. 103 */ 104 rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) | 105 HFI1_CAP_KGET(NODROP_RHQ_FULL) | 106 HFI1_CAP_KGET(NODROP_EGR_FULL) | 107 HFI1_CAP_KGET(DMA_RTAIL); 108 109 /* Control context must use DMA_RTAIL */ 110 if (rcd->ctxt == HFI1_CTRL_CTXT) 111 rcd->flags |= HFI1_CAP_DMA_RTAIL; 112 rcd->fast_handler = get_dma_rtail_setting(rcd) ? 113 handle_receive_interrupt_dma_rtail : 114 handle_receive_interrupt_nodma_rtail; 115 rcd->slow_handler = handle_receive_interrupt; 116 117 hfi1_set_seq_cnt(rcd, 1); 118 119 rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node); 120 if (!rcd->sc) { 121 dd_dev_err(dd, "Kernel send context allocation failed\n"); 122 return -ENOMEM; 123 } 124 hfi1_init_ctxt(rcd->sc); 125 126 return 0; 127 } 128 129 /* 130 * Create the receive context array and one or more kernel contexts 131 */ 132 int hfi1_create_kctxts(struct hfi1_devdata *dd) 133 { 134 u16 i; 135 int ret; 136 137 dd->rcd = kcalloc_node(dd->num_rcv_contexts, sizeof(*dd->rcd), 138 GFP_KERNEL, dd->node); 139 if (!dd->rcd) 140 return -ENOMEM; 141 142 for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) { 143 ret = hfi1_create_kctxt(dd, dd->pport); 144 if (ret) 145 goto bail; 146 } 147 148 return 0; 149 bail: 150 for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) 151 hfi1_free_ctxt(dd->rcd[i]); 152 153 /* All the contexts should be freed, free the array */ 154 kfree(dd->rcd); 155 dd->rcd = NULL; 156 return ret; 157 } 158 159 /* 160 * Helper routines for the receive context reference count (rcd and uctxt). 161 */ 162 static void hfi1_rcd_init(struct hfi1_ctxtdata *rcd) 163 { 164 kref_init(&rcd->kref); 165 } 166 167 /** 168 * hfi1_rcd_free - When reference is zero clean up. 169 * @kref: pointer to an initialized rcd data structure 170 * 171 */ 172 static void hfi1_rcd_free(struct kref *kref) 173 { 174 unsigned long flags; 175 struct hfi1_ctxtdata *rcd = 176 container_of(kref, struct hfi1_ctxtdata, kref); 177 178 spin_lock_irqsave(&rcd->dd->uctxt_lock, flags); 179 rcd->dd->rcd[rcd->ctxt] = NULL; 180 spin_unlock_irqrestore(&rcd->dd->uctxt_lock, flags); 181 182 hfi1_free_ctxtdata(rcd->dd, rcd); 183 184 kfree(rcd); 185 } 186 187 /** 188 * hfi1_rcd_put - decrement reference for rcd 189 * @rcd: pointer to an initialized rcd data structure 190 * 191 * Use this to put a reference after the init. 192 */ 193 int hfi1_rcd_put(struct hfi1_ctxtdata *rcd) 194 { 195 if (rcd) 196 return kref_put(&rcd->kref, hfi1_rcd_free); 197 198 return 0; 199 } 200 201 /** 202 * hfi1_rcd_get - increment reference for rcd 203 * @rcd: pointer to an initialized rcd data structure 204 * 205 * Use this to get a reference after the init. 206 * 207 * Return : reflect kref_get_unless_zero(), which returns non-zero on 208 * increment, otherwise 0. 209 */ 210 int hfi1_rcd_get(struct hfi1_ctxtdata *rcd) 211 { 212 return kref_get_unless_zero(&rcd->kref); 213 } 214 215 /** 216 * allocate_rcd_index - allocate an rcd index from the rcd array 217 * @dd: pointer to a valid devdata structure 218 * @rcd: rcd data structure to assign 219 * @index: pointer to index that is allocated 220 * 221 * Find an empty index in the rcd array, and assign the given rcd to it. 222 * If the array is full, we are EBUSY. 223 * 224 */ 225 static int allocate_rcd_index(struct hfi1_devdata *dd, 226 struct hfi1_ctxtdata *rcd, u16 *index) 227 { 228 unsigned long flags; 229 u16 ctxt; 230 231 spin_lock_irqsave(&dd->uctxt_lock, flags); 232 for (ctxt = 0; ctxt < dd->num_rcv_contexts; ctxt++) 233 if (!dd->rcd[ctxt]) 234 break; 235 236 if (ctxt < dd->num_rcv_contexts) { 237 rcd->ctxt = ctxt; 238 dd->rcd[ctxt] = rcd; 239 hfi1_rcd_init(rcd); 240 } 241 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 242 243 if (ctxt >= dd->num_rcv_contexts) 244 return -EBUSY; 245 246 *index = ctxt; 247 248 return 0; 249 } 250 251 /** 252 * hfi1_rcd_get_by_index_safe - validate the ctxt index before accessing the 253 * array 254 * @dd: pointer to a valid devdata structure 255 * @ctxt: the index of an possilbe rcd 256 * 257 * This is a wrapper for hfi1_rcd_get_by_index() to validate that the given 258 * ctxt index is valid. 259 * 260 * The caller is responsible for making the _put(). 261 * 262 */ 263 struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd, 264 u16 ctxt) 265 { 266 if (ctxt < dd->num_rcv_contexts) 267 return hfi1_rcd_get_by_index(dd, ctxt); 268 269 return NULL; 270 } 271 272 /** 273 * hfi1_rcd_get_by_index - get by index 274 * @dd: pointer to a valid devdata structure 275 * @ctxt: the index of an possilbe rcd 276 * 277 * We need to protect access to the rcd array. If access is needed to 278 * one or more index, get the protecting spinlock and then increment the 279 * kref. 280 * 281 * The caller is responsible for making the _put(). 282 * 283 */ 284 struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt) 285 { 286 unsigned long flags; 287 struct hfi1_ctxtdata *rcd = NULL; 288 289 spin_lock_irqsave(&dd->uctxt_lock, flags); 290 if (dd->rcd[ctxt]) { 291 rcd = dd->rcd[ctxt]; 292 if (!hfi1_rcd_get(rcd)) 293 rcd = NULL; 294 } 295 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 296 297 return rcd; 298 } 299 300 /* 301 * Common code for user and kernel context create and setup. 302 * NOTE: the initial kref is done here (hf1_rcd_init()). 303 */ 304 int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa, 305 struct hfi1_ctxtdata **context) 306 { 307 struct hfi1_devdata *dd = ppd->dd; 308 struct hfi1_ctxtdata *rcd; 309 unsigned kctxt_ngroups = 0; 310 u32 base; 311 312 if (dd->rcv_entries.nctxt_extra > 313 dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt) 314 kctxt_ngroups = (dd->rcv_entries.nctxt_extra - 315 (dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt)); 316 rcd = kzalloc_node(sizeof(*rcd), GFP_KERNEL, numa); 317 if (rcd) { 318 u32 rcvtids, max_entries; 319 u16 ctxt; 320 int ret; 321 322 ret = allocate_rcd_index(dd, rcd, &ctxt); 323 if (ret) { 324 *context = NULL; 325 kfree(rcd); 326 return ret; 327 } 328 329 INIT_LIST_HEAD(&rcd->qp_wait_list); 330 hfi1_exp_tid_group_init(rcd); 331 rcd->ppd = ppd; 332 rcd->dd = dd; 333 rcd->numa_id = numa; 334 rcd->rcv_array_groups = dd->rcv_entries.ngroups; 335 rcd->rhf_rcv_function_map = normal_rhf_rcv_functions; 336 rcd->msix_intr = CCE_NUM_MSIX_VECTORS; 337 338 mutex_init(&rcd->exp_mutex); 339 spin_lock_init(&rcd->exp_lock); 340 INIT_LIST_HEAD(&rcd->flow_queue.queue_head); 341 INIT_LIST_HEAD(&rcd->rarr_queue.queue_head); 342 343 hfi1_cdbg(PROC, "setting up context %u\n", rcd->ctxt); 344 345 /* 346 * Calculate the context's RcvArray entry starting point. 347 * We do this here because we have to take into account all 348 * the RcvArray entries that previous context would have 349 * taken and we have to account for any extra groups assigned 350 * to the static (kernel) or dynamic (vnic/user) contexts. 351 */ 352 if (ctxt < dd->first_dyn_alloc_ctxt) { 353 if (ctxt < kctxt_ngroups) { 354 base = ctxt * (dd->rcv_entries.ngroups + 1); 355 rcd->rcv_array_groups++; 356 } else { 357 base = kctxt_ngroups + 358 (ctxt * dd->rcv_entries.ngroups); 359 } 360 } else { 361 u16 ct = ctxt - dd->first_dyn_alloc_ctxt; 362 363 base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) + 364 kctxt_ngroups); 365 if (ct < dd->rcv_entries.nctxt_extra) { 366 base += ct * (dd->rcv_entries.ngroups + 1); 367 rcd->rcv_array_groups++; 368 } else { 369 base += dd->rcv_entries.nctxt_extra + 370 (ct * dd->rcv_entries.ngroups); 371 } 372 } 373 rcd->eager_base = base * dd->rcv_entries.group_size; 374 375 rcd->rcvhdrq_cnt = rcvhdrcnt; 376 rcd->rcvhdrqentsize = hfi1_hdrq_entsize; 377 rcd->rhf_offset = 378 rcd->rcvhdrqentsize - sizeof(u64) / sizeof(u32); 379 /* 380 * Simple Eager buffer allocation: we have already pre-allocated 381 * the number of RcvArray entry groups. Each ctxtdata structure 382 * holds the number of groups for that context. 383 * 384 * To follow CSR requirements and maintain cacheline alignment, 385 * make sure all sizes and bases are multiples of group_size. 386 * 387 * The expected entry count is what is left after assigning 388 * eager. 389 */ 390 max_entries = rcd->rcv_array_groups * 391 dd->rcv_entries.group_size; 392 rcvtids = ((max_entries * hfi1_rcvarr_split) / 100); 393 rcd->egrbufs.count = round_down(rcvtids, 394 dd->rcv_entries.group_size); 395 if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) { 396 dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n", 397 rcd->ctxt); 398 rcd->egrbufs.count = MAX_EAGER_ENTRIES; 399 } 400 hfi1_cdbg(PROC, 401 "ctxt%u: max Eager buffer RcvArray entries: %u\n", 402 rcd->ctxt, rcd->egrbufs.count); 403 404 /* 405 * Allocate array that will hold the eager buffer accounting 406 * data. 407 * This will allocate the maximum possible buffer count based 408 * on the value of the RcvArray split parameter. 409 * The resulting value will be rounded down to the closest 410 * multiple of dd->rcv_entries.group_size. 411 */ 412 rcd->egrbufs.buffers = 413 kcalloc_node(rcd->egrbufs.count, 414 sizeof(*rcd->egrbufs.buffers), 415 GFP_KERNEL, numa); 416 if (!rcd->egrbufs.buffers) 417 goto bail; 418 rcd->egrbufs.rcvtids = 419 kcalloc_node(rcd->egrbufs.count, 420 sizeof(*rcd->egrbufs.rcvtids), 421 GFP_KERNEL, numa); 422 if (!rcd->egrbufs.rcvtids) 423 goto bail; 424 rcd->egrbufs.size = eager_buffer_size; 425 /* 426 * The size of the buffers programmed into the RcvArray 427 * entries needs to be big enough to handle the highest 428 * MTU supported. 429 */ 430 if (rcd->egrbufs.size < hfi1_max_mtu) { 431 rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu); 432 hfi1_cdbg(PROC, 433 "ctxt%u: eager bufs size too small. Adjusting to %u\n", 434 rcd->ctxt, rcd->egrbufs.size); 435 } 436 rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE; 437 438 /* Applicable only for statically created kernel contexts */ 439 if (ctxt < dd->first_dyn_alloc_ctxt) { 440 rcd->opstats = kzalloc_node(sizeof(*rcd->opstats), 441 GFP_KERNEL, numa); 442 if (!rcd->opstats) 443 goto bail; 444 445 /* Initialize TID flow generations for the context */ 446 hfi1_kern_init_ctxt_generations(rcd); 447 } 448 449 *context = rcd; 450 return 0; 451 } 452 453 bail: 454 *context = NULL; 455 hfi1_free_ctxt(rcd); 456 return -ENOMEM; 457 } 458 459 /** 460 * hfi1_free_ctxt - free context 461 * @rcd: pointer to an initialized rcd data structure 462 * 463 * This wrapper is the free function that matches hfi1_create_ctxtdata(). 464 * When a context is done being used (kernel or user), this function is called 465 * for the "final" put to match the kref init from hf1i_create_ctxtdata(). 466 * Other users of the context do a get/put sequence to make sure that the 467 * structure isn't removed while in use. 468 */ 469 void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd) 470 { 471 hfi1_rcd_put(rcd); 472 } 473 474 /* 475 * Select the largest ccti value over all SLs to determine the intra- 476 * packet gap for the link. 477 * 478 * called with cca_timer_lock held (to protect access to cca_timer 479 * array), and rcu_read_lock() (to protect access to cc_state). 480 */ 481 void set_link_ipg(struct hfi1_pportdata *ppd) 482 { 483 struct hfi1_devdata *dd = ppd->dd; 484 struct cc_state *cc_state; 485 int i; 486 u16 cce, ccti_limit, max_ccti = 0; 487 u16 shift, mult; 488 u64 src; 489 u32 current_egress_rate; /* Mbits /sec */ 490 u32 max_pkt_time; 491 /* 492 * max_pkt_time is the maximum packet egress time in units 493 * of the fabric clock period 1/(805 MHz). 494 */ 495 496 cc_state = get_cc_state(ppd); 497 498 if (!cc_state) 499 /* 500 * This should _never_ happen - rcu_read_lock() is held, 501 * and set_link_ipg() should not be called if cc_state 502 * is NULL. 503 */ 504 return; 505 506 for (i = 0; i < OPA_MAX_SLS; i++) { 507 u16 ccti = ppd->cca_timer[i].ccti; 508 509 if (ccti > max_ccti) 510 max_ccti = ccti; 511 } 512 513 ccti_limit = cc_state->cct.ccti_limit; 514 if (max_ccti > ccti_limit) 515 max_ccti = ccti_limit; 516 517 cce = cc_state->cct.entries[max_ccti].entry; 518 shift = (cce & 0xc000) >> 14; 519 mult = (cce & 0x3fff); 520 521 current_egress_rate = active_egress_rate(ppd); 522 523 max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate); 524 525 src = (max_pkt_time >> shift) * mult; 526 527 src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK; 528 src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT; 529 530 write_csr(dd, SEND_STATIC_RATE_CONTROL, src); 531 } 532 533 static enum hrtimer_restart cca_timer_fn(struct hrtimer *t) 534 { 535 struct cca_timer *cca_timer; 536 struct hfi1_pportdata *ppd; 537 int sl; 538 u16 ccti_timer, ccti_min; 539 struct cc_state *cc_state; 540 unsigned long flags; 541 enum hrtimer_restart ret = HRTIMER_NORESTART; 542 543 cca_timer = container_of(t, struct cca_timer, hrtimer); 544 ppd = cca_timer->ppd; 545 sl = cca_timer->sl; 546 547 rcu_read_lock(); 548 549 cc_state = get_cc_state(ppd); 550 551 if (!cc_state) { 552 rcu_read_unlock(); 553 return HRTIMER_NORESTART; 554 } 555 556 /* 557 * 1) decrement ccti for SL 558 * 2) calculate IPG for link (set_link_ipg()) 559 * 3) restart timer, unless ccti is at min value 560 */ 561 562 ccti_min = cc_state->cong_setting.entries[sl].ccti_min; 563 ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer; 564 565 spin_lock_irqsave(&ppd->cca_timer_lock, flags); 566 567 if (cca_timer->ccti > ccti_min) { 568 cca_timer->ccti--; 569 set_link_ipg(ppd); 570 } 571 572 if (cca_timer->ccti > ccti_min) { 573 unsigned long nsec = 1024 * ccti_timer; 574 /* ccti_timer is in units of 1.024 usec */ 575 hrtimer_forward_now(t, ns_to_ktime(nsec)); 576 ret = HRTIMER_RESTART; 577 } 578 579 spin_unlock_irqrestore(&ppd->cca_timer_lock, flags); 580 rcu_read_unlock(); 581 return ret; 582 } 583 584 /* 585 * Common code for initializing the physical port structure. 586 */ 587 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd, 588 struct hfi1_devdata *dd, u8 hw_pidx, u32 port) 589 { 590 int i; 591 uint default_pkey_idx; 592 struct cc_state *cc_state; 593 594 ppd->dd = dd; 595 ppd->hw_pidx = hw_pidx; 596 ppd->port = port; /* IB port number, not index */ 597 ppd->prev_link_width = LINK_WIDTH_DEFAULT; 598 /* 599 * There are C_VL_COUNT number of PortVLXmitWait counters. 600 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter. 601 */ 602 for (i = 0; i < C_VL_COUNT + 1; i++) { 603 ppd->port_vl_xmit_wait_last[i] = 0; 604 ppd->vl_xmit_flit_cnt[i] = 0; 605 } 606 607 default_pkey_idx = 1; 608 609 ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY; 610 ppd->part_enforce |= HFI1_PART_ENFORCE_IN; 611 ppd->pkeys[0] = 0x8001; 612 613 INIT_WORK(&ppd->link_vc_work, handle_verify_cap); 614 INIT_WORK(&ppd->link_up_work, handle_link_up); 615 INIT_WORK(&ppd->link_down_work, handle_link_down); 616 INIT_WORK(&ppd->freeze_work, handle_freeze); 617 INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade); 618 INIT_WORK(&ppd->sma_message_work, handle_sma_message); 619 INIT_WORK(&ppd->link_bounce_work, handle_link_bounce); 620 INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link); 621 INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work); 622 INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event); 623 624 mutex_init(&ppd->hls_lock); 625 spin_lock_init(&ppd->qsfp_info.qsfp_lock); 626 627 ppd->qsfp_info.ppd = ppd; 628 ppd->sm_trap_qp = 0x0; 629 ppd->sa_qp = 0x1; 630 631 ppd->hfi1_wq = NULL; 632 633 spin_lock_init(&ppd->cca_timer_lock); 634 635 for (i = 0; i < OPA_MAX_SLS; i++) { 636 hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC, 637 HRTIMER_MODE_REL); 638 ppd->cca_timer[i].ppd = ppd; 639 ppd->cca_timer[i].sl = i; 640 ppd->cca_timer[i].ccti = 0; 641 ppd->cca_timer[i].hrtimer.function = cca_timer_fn; 642 } 643 644 ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT; 645 646 spin_lock_init(&ppd->cc_state_lock); 647 spin_lock_init(&ppd->cc_log_lock); 648 cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL); 649 RCU_INIT_POINTER(ppd->cc_state, cc_state); 650 if (!cc_state) 651 goto bail; 652 return; 653 654 bail: 655 dd_dev_err(dd, "Congestion Control Agent disabled for port %d\n", port); 656 } 657 658 /* 659 * Do initialization for device that is only needed on 660 * first detect, not on resets. 661 */ 662 static int loadtime_init(struct hfi1_devdata *dd) 663 { 664 return 0; 665 } 666 667 /** 668 * init_after_reset - re-initialize after a reset 669 * @dd: the hfi1_ib device 670 * 671 * sanity check at least some of the values after reset, and 672 * ensure no receive or transmit (explicitly, in case reset 673 * failed 674 */ 675 static int init_after_reset(struct hfi1_devdata *dd) 676 { 677 int i; 678 struct hfi1_ctxtdata *rcd; 679 /* 680 * Ensure chip does no sends or receives, tail updates, or 681 * pioavail updates while we re-initialize. This is mostly 682 * for the driver data structures, not chip registers. 683 */ 684 for (i = 0; i < dd->num_rcv_contexts; i++) { 685 rcd = hfi1_rcd_get_by_index(dd, i); 686 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS | 687 HFI1_RCVCTRL_INTRAVAIL_DIS | 688 HFI1_RCVCTRL_TAILUPD_DIS, rcd); 689 hfi1_rcd_put(rcd); 690 } 691 pio_send_control(dd, PSC_GLOBAL_DISABLE); 692 for (i = 0; i < dd->num_send_contexts; i++) 693 sc_disable(dd->send_contexts[i].sc); 694 695 return 0; 696 } 697 698 static void enable_chip(struct hfi1_devdata *dd) 699 { 700 struct hfi1_ctxtdata *rcd; 701 u32 rcvmask; 702 u16 i; 703 704 /* enable PIO send */ 705 pio_send_control(dd, PSC_GLOBAL_ENABLE); 706 707 /* 708 * Enable kernel ctxts' receive and receive interrupt. 709 * Other ctxts done as user opens and initializes them. 710 */ 711 for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) { 712 rcd = hfi1_rcd_get_by_index(dd, i); 713 if (!rcd) 714 continue; 715 rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB; 716 rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ? 717 HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS; 718 if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) 719 rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB; 720 if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_RHQ_FULL)) 721 rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB; 722 if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_EGR_FULL)) 723 rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB; 724 if (HFI1_CAP_IS_KSET(TID_RDMA)) 725 rcvmask |= HFI1_RCVCTRL_TIDFLOW_ENB; 726 hfi1_rcvctrl(dd, rcvmask, rcd); 727 sc_enable(rcd->sc); 728 hfi1_rcd_put(rcd); 729 } 730 } 731 732 /** 733 * create_workqueues - create per port workqueues 734 * @dd: the hfi1_ib device 735 */ 736 static int create_workqueues(struct hfi1_devdata *dd) 737 { 738 int pidx; 739 struct hfi1_pportdata *ppd; 740 741 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 742 ppd = dd->pport + pidx; 743 if (!ppd->hfi1_wq) { 744 ppd->hfi1_wq = 745 alloc_workqueue( 746 "hfi%d_%d", 747 WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE | 748 WQ_MEM_RECLAIM, 749 HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES, 750 dd->unit, pidx); 751 if (!ppd->hfi1_wq) 752 goto wq_error; 753 } 754 if (!ppd->link_wq) { 755 /* 756 * Make the link workqueue single-threaded to enforce 757 * serialization. 758 */ 759 ppd->link_wq = 760 alloc_workqueue( 761 "hfi_link_%d_%d", 762 WQ_SYSFS | WQ_MEM_RECLAIM | WQ_UNBOUND, 763 1, /* max_active */ 764 dd->unit, pidx); 765 if (!ppd->link_wq) 766 goto wq_error; 767 } 768 } 769 return 0; 770 wq_error: 771 pr_err("alloc_workqueue failed for port %d\n", pidx + 1); 772 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 773 ppd = dd->pport + pidx; 774 if (ppd->hfi1_wq) { 775 destroy_workqueue(ppd->hfi1_wq); 776 ppd->hfi1_wq = NULL; 777 } 778 if (ppd->link_wq) { 779 destroy_workqueue(ppd->link_wq); 780 ppd->link_wq = NULL; 781 } 782 } 783 return -ENOMEM; 784 } 785 786 /** 787 * destroy_workqueues - destroy per port workqueues 788 * @dd: the hfi1_ib device 789 */ 790 static void destroy_workqueues(struct hfi1_devdata *dd) 791 { 792 int pidx; 793 struct hfi1_pportdata *ppd; 794 795 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 796 ppd = dd->pport + pidx; 797 798 if (ppd->hfi1_wq) { 799 destroy_workqueue(ppd->hfi1_wq); 800 ppd->hfi1_wq = NULL; 801 } 802 if (ppd->link_wq) { 803 destroy_workqueue(ppd->link_wq); 804 ppd->link_wq = NULL; 805 } 806 } 807 } 808 809 /** 810 * enable_general_intr() - Enable the IRQs that will be handled by the 811 * general interrupt handler. 812 * @dd: valid devdata 813 * 814 */ 815 static void enable_general_intr(struct hfi1_devdata *dd) 816 { 817 set_intr_bits(dd, CCE_ERR_INT, MISC_ERR_INT, true); 818 set_intr_bits(dd, PIO_ERR_INT, TXE_ERR_INT, true); 819 set_intr_bits(dd, IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END, true); 820 set_intr_bits(dd, PBC_INT, GPIO_ASSERT_INT, true); 821 set_intr_bits(dd, TCRIT_INT, TCRIT_INT, true); 822 set_intr_bits(dd, IS_DC_START, IS_DC_END, true); 823 set_intr_bits(dd, IS_SENDCREDIT_START, IS_SENDCREDIT_END, true); 824 } 825 826 /** 827 * hfi1_init - do the actual initialization sequence on the chip 828 * @dd: the hfi1_ib device 829 * @reinit: re-initializing, so don't allocate new memory 830 * 831 * Do the actual initialization sequence on the chip. This is done 832 * both from the init routine called from the PCI infrastructure, and 833 * when we reset the chip, or detect that it was reset internally, 834 * or it's administratively re-enabled. 835 * 836 * Memory allocation here and in called routines is only done in 837 * the first case (reinit == 0). We have to be careful, because even 838 * without memory allocation, we need to re-write all the chip registers 839 * TIDs, etc. after the reset or enable has completed. 840 */ 841 int hfi1_init(struct hfi1_devdata *dd, int reinit) 842 { 843 int ret = 0, pidx, lastfail = 0; 844 unsigned long len; 845 u16 i; 846 struct hfi1_ctxtdata *rcd; 847 struct hfi1_pportdata *ppd; 848 849 /* Set up send low level handlers */ 850 dd->process_pio_send = hfi1_verbs_send_pio; 851 dd->process_dma_send = hfi1_verbs_send_dma; 852 dd->pio_inline_send = pio_copy; 853 dd->process_vnic_dma_send = hfi1_vnic_send_dma; 854 855 if (is_ax(dd)) { 856 atomic_set(&dd->drop_packet, DROP_PACKET_ON); 857 dd->do_drop = true; 858 } else { 859 atomic_set(&dd->drop_packet, DROP_PACKET_OFF); 860 dd->do_drop = false; 861 } 862 863 /* make sure the link is not "up" */ 864 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 865 ppd = dd->pport + pidx; 866 ppd->linkup = 0; 867 } 868 869 if (reinit) 870 ret = init_after_reset(dd); 871 else 872 ret = loadtime_init(dd); 873 if (ret) 874 goto done; 875 876 /* allocate dummy tail memory for all receive contexts */ 877 dd->rcvhdrtail_dummy_kvaddr = dma_alloc_coherent(&dd->pcidev->dev, 878 sizeof(u64), 879 &dd->rcvhdrtail_dummy_dma, 880 GFP_KERNEL); 881 882 if (!dd->rcvhdrtail_dummy_kvaddr) { 883 dd_dev_err(dd, "cannot allocate dummy tail memory\n"); 884 ret = -ENOMEM; 885 goto done; 886 } 887 888 /* dd->rcd can be NULL if early initialization failed */ 889 for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) { 890 /* 891 * Set up the (kernel) rcvhdr queue and egr TIDs. If doing 892 * re-init, the simplest way to handle this is to free 893 * existing, and re-allocate. 894 * Need to re-create rest of ctxt 0 ctxtdata as well. 895 */ 896 rcd = hfi1_rcd_get_by_index(dd, i); 897 if (!rcd) 898 continue; 899 900 rcd->do_interrupt = &handle_receive_interrupt; 901 902 lastfail = hfi1_create_rcvhdrq(dd, rcd); 903 if (!lastfail) 904 lastfail = hfi1_setup_eagerbufs(rcd); 905 if (!lastfail) 906 lastfail = hfi1_kern_exp_rcv_init(rcd, reinit); 907 if (lastfail) { 908 dd_dev_err(dd, 909 "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n"); 910 ret = lastfail; 911 } 912 /* enable IRQ */ 913 hfi1_rcd_put(rcd); 914 } 915 916 /* Allocate enough memory for user event notification. */ 917 len = PAGE_ALIGN(chip_rcv_contexts(dd) * HFI1_MAX_SHARED_CTXTS * 918 sizeof(*dd->events)); 919 dd->events = vmalloc_user(len); 920 if (!dd->events) 921 dd_dev_err(dd, "Failed to allocate user events page\n"); 922 /* 923 * Allocate a page for device and port status. 924 * Page will be shared amongst all user processes. 925 */ 926 dd->status = vmalloc_user(PAGE_SIZE); 927 if (!dd->status) 928 dd_dev_err(dd, "Failed to allocate dev status page\n"); 929 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 930 ppd = dd->pport + pidx; 931 if (dd->status) 932 /* Currently, we only have one port */ 933 ppd->statusp = &dd->status->port; 934 935 set_mtu(ppd); 936 } 937 938 /* enable chip even if we have an error, so we can debug cause */ 939 enable_chip(dd); 940 941 done: 942 /* 943 * Set status even if port serdes is not initialized 944 * so that diags will work. 945 */ 946 if (dd->status) 947 dd->status->dev |= HFI1_STATUS_CHIP_PRESENT | 948 HFI1_STATUS_INITTED; 949 if (!ret) { 950 /* enable all interrupts from the chip */ 951 enable_general_intr(dd); 952 init_qsfp_int(dd); 953 954 /* chip is OK for user apps; mark it as initialized */ 955 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 956 ppd = dd->pport + pidx; 957 958 /* 959 * start the serdes - must be after interrupts are 960 * enabled so we are notified when the link goes up 961 */ 962 lastfail = bringup_serdes(ppd); 963 if (lastfail) 964 dd_dev_info(dd, 965 "Failed to bring up port %u\n", 966 ppd->port); 967 968 /* 969 * Set status even if port serdes is not initialized 970 * so that diags will work. 971 */ 972 if (ppd->statusp) 973 *ppd->statusp |= HFI1_STATUS_CHIP_PRESENT | 974 HFI1_STATUS_INITTED; 975 if (!ppd->link_speed_enabled) 976 continue; 977 } 978 } 979 980 /* if ret is non-zero, we probably should do some cleanup here... */ 981 return ret; 982 } 983 984 struct hfi1_devdata *hfi1_lookup(int unit) 985 { 986 return xa_load(&hfi1_dev_table, unit); 987 } 988 989 /* 990 * Stop the timers during unit shutdown, or after an error late 991 * in initialization. 992 */ 993 static void stop_timers(struct hfi1_devdata *dd) 994 { 995 struct hfi1_pportdata *ppd; 996 int pidx; 997 998 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 999 ppd = dd->pport + pidx; 1000 if (ppd->led_override_timer.function) { 1001 del_timer_sync(&ppd->led_override_timer); 1002 atomic_set(&ppd->led_override_timer_active, 0); 1003 } 1004 } 1005 } 1006 1007 /** 1008 * shutdown_device - shut down a device 1009 * @dd: the hfi1_ib device 1010 * 1011 * This is called to make the device quiet when we are about to 1012 * unload the driver, and also when the device is administratively 1013 * disabled. It does not free any data structures. 1014 * Everything it does has to be setup again by hfi1_init(dd, 1) 1015 */ 1016 static void shutdown_device(struct hfi1_devdata *dd) 1017 { 1018 struct hfi1_pportdata *ppd; 1019 struct hfi1_ctxtdata *rcd; 1020 unsigned pidx; 1021 int i; 1022 1023 if (dd->flags & HFI1_SHUTDOWN) 1024 return; 1025 dd->flags |= HFI1_SHUTDOWN; 1026 1027 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1028 ppd = dd->pport + pidx; 1029 1030 ppd->linkup = 0; 1031 if (ppd->statusp) 1032 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF | 1033 HFI1_STATUS_IB_READY); 1034 } 1035 dd->flags &= ~HFI1_INITTED; 1036 1037 /* mask and clean up interrupts */ 1038 set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, false); 1039 msix_clean_up_interrupts(dd); 1040 1041 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1042 ppd = dd->pport + pidx; 1043 for (i = 0; i < dd->num_rcv_contexts; i++) { 1044 rcd = hfi1_rcd_get_by_index(dd, i); 1045 hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS | 1046 HFI1_RCVCTRL_CTXT_DIS | 1047 HFI1_RCVCTRL_INTRAVAIL_DIS | 1048 HFI1_RCVCTRL_PKEY_DIS | 1049 HFI1_RCVCTRL_ONE_PKT_EGR_DIS, rcd); 1050 hfi1_rcd_put(rcd); 1051 } 1052 /* 1053 * Gracefully stop all sends allowing any in progress to 1054 * trickle out first. 1055 */ 1056 for (i = 0; i < dd->num_send_contexts; i++) 1057 sc_flush(dd->send_contexts[i].sc); 1058 } 1059 1060 /* 1061 * Enough for anything that's going to trickle out to have actually 1062 * done so. 1063 */ 1064 udelay(20); 1065 1066 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1067 ppd = dd->pport + pidx; 1068 1069 /* disable all contexts */ 1070 for (i = 0; i < dd->num_send_contexts; i++) 1071 sc_disable(dd->send_contexts[i].sc); 1072 /* disable the send device */ 1073 pio_send_control(dd, PSC_GLOBAL_DISABLE); 1074 1075 shutdown_led_override(ppd); 1076 1077 /* 1078 * Clear SerdesEnable. 1079 * We can't count on interrupts since we are stopping. 1080 */ 1081 hfi1_quiet_serdes(ppd); 1082 if (ppd->hfi1_wq) 1083 flush_workqueue(ppd->hfi1_wq); 1084 if (ppd->link_wq) 1085 flush_workqueue(ppd->link_wq); 1086 } 1087 sdma_exit(dd); 1088 } 1089 1090 /** 1091 * hfi1_free_ctxtdata - free a context's allocated data 1092 * @dd: the hfi1_ib device 1093 * @rcd: the ctxtdata structure 1094 * 1095 * free up any allocated data for a context 1096 * It should never change any chip state, or global driver state. 1097 */ 1098 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd) 1099 { 1100 u32 e; 1101 1102 if (!rcd) 1103 return; 1104 1105 if (rcd->rcvhdrq) { 1106 dma_free_coherent(&dd->pcidev->dev, rcvhdrq_size(rcd), 1107 rcd->rcvhdrq, rcd->rcvhdrq_dma); 1108 rcd->rcvhdrq = NULL; 1109 if (hfi1_rcvhdrtail_kvaddr(rcd)) { 1110 dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE, 1111 (void *)hfi1_rcvhdrtail_kvaddr(rcd), 1112 rcd->rcvhdrqtailaddr_dma); 1113 rcd->rcvhdrtail_kvaddr = NULL; 1114 } 1115 } 1116 1117 /* all the RcvArray entries should have been cleared by now */ 1118 kfree(rcd->egrbufs.rcvtids); 1119 rcd->egrbufs.rcvtids = NULL; 1120 1121 for (e = 0; e < rcd->egrbufs.alloced; e++) { 1122 if (rcd->egrbufs.buffers[e].dma) 1123 dma_free_coherent(&dd->pcidev->dev, 1124 rcd->egrbufs.buffers[e].len, 1125 rcd->egrbufs.buffers[e].addr, 1126 rcd->egrbufs.buffers[e].dma); 1127 } 1128 kfree(rcd->egrbufs.buffers); 1129 rcd->egrbufs.alloced = 0; 1130 rcd->egrbufs.buffers = NULL; 1131 1132 sc_free(rcd->sc); 1133 rcd->sc = NULL; 1134 1135 vfree(rcd->subctxt_uregbase); 1136 vfree(rcd->subctxt_rcvegrbuf); 1137 vfree(rcd->subctxt_rcvhdr_base); 1138 kfree(rcd->opstats); 1139 1140 rcd->subctxt_uregbase = NULL; 1141 rcd->subctxt_rcvegrbuf = NULL; 1142 rcd->subctxt_rcvhdr_base = NULL; 1143 rcd->opstats = NULL; 1144 } 1145 1146 /* 1147 * Release our hold on the shared asic data. If we are the last one, 1148 * return the structure to be finalized outside the lock. Must be 1149 * holding hfi1_dev_table lock. 1150 */ 1151 static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd) 1152 { 1153 struct hfi1_asic_data *ad; 1154 int other; 1155 1156 if (!dd->asic_data) 1157 return NULL; 1158 dd->asic_data->dds[dd->hfi1_id] = NULL; 1159 other = dd->hfi1_id ? 0 : 1; 1160 ad = dd->asic_data; 1161 dd->asic_data = NULL; 1162 /* return NULL if the other dd still has a link */ 1163 return ad->dds[other] ? NULL : ad; 1164 } 1165 1166 static void finalize_asic_data(struct hfi1_devdata *dd, 1167 struct hfi1_asic_data *ad) 1168 { 1169 clean_up_i2c(dd, ad); 1170 kfree(ad); 1171 } 1172 1173 /** 1174 * hfi1_free_devdata - cleans up and frees per-unit data structure 1175 * @dd: pointer to a valid devdata structure 1176 * 1177 * It cleans up and frees all data structures set up by 1178 * by hfi1_alloc_devdata(). 1179 */ 1180 void hfi1_free_devdata(struct hfi1_devdata *dd) 1181 { 1182 struct hfi1_asic_data *ad; 1183 unsigned long flags; 1184 1185 xa_lock_irqsave(&hfi1_dev_table, flags); 1186 __xa_erase(&hfi1_dev_table, dd->unit); 1187 ad = release_asic_data(dd); 1188 xa_unlock_irqrestore(&hfi1_dev_table, flags); 1189 1190 finalize_asic_data(dd, ad); 1191 free_platform_config(dd); 1192 rcu_barrier(); /* wait for rcu callbacks to complete */ 1193 free_percpu(dd->int_counter); 1194 free_percpu(dd->rcv_limit); 1195 free_percpu(dd->send_schedule); 1196 free_percpu(dd->tx_opstats); 1197 dd->int_counter = NULL; 1198 dd->rcv_limit = NULL; 1199 dd->send_schedule = NULL; 1200 dd->tx_opstats = NULL; 1201 kfree(dd->comp_vect); 1202 dd->comp_vect = NULL; 1203 sdma_clean(dd, dd->num_sdma); 1204 rvt_dealloc_device(&dd->verbs_dev.rdi); 1205 } 1206 1207 /** 1208 * hfi1_alloc_devdata - Allocate our primary per-unit data structure. 1209 * @pdev: Valid PCI device 1210 * @extra: How many bytes to alloc past the default 1211 * 1212 * Must be done via verbs allocator, because the verbs cleanup process 1213 * both does cleanup and free of the data structure. 1214 * "extra" is for chip-specific data. 1215 */ 1216 static struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev, 1217 size_t extra) 1218 { 1219 struct hfi1_devdata *dd; 1220 int ret, nports; 1221 1222 /* extra is * number of ports */ 1223 nports = extra / sizeof(struct hfi1_pportdata); 1224 1225 dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra, 1226 nports); 1227 if (!dd) 1228 return ERR_PTR(-ENOMEM); 1229 dd->num_pports = nports; 1230 dd->pport = (struct hfi1_pportdata *)(dd + 1); 1231 dd->pcidev = pdev; 1232 pci_set_drvdata(pdev, dd); 1233 1234 ret = xa_alloc_irq(&hfi1_dev_table, &dd->unit, dd, xa_limit_32b, 1235 GFP_KERNEL); 1236 if (ret < 0) { 1237 dev_err(&pdev->dev, 1238 "Could not allocate unit ID: error %d\n", -ret); 1239 goto bail; 1240 } 1241 rvt_set_ibdev_name(&dd->verbs_dev.rdi, "%s_%d", class_name(), dd->unit); 1242 /* 1243 * If the BIOS does not have the NUMA node information set, select 1244 * NUMA 0 so we get consistent performance. 1245 */ 1246 dd->node = pcibus_to_node(pdev->bus); 1247 if (dd->node == NUMA_NO_NODE) { 1248 dd_dev_err(dd, "Invalid PCI NUMA node. Performance may be affected\n"); 1249 dd->node = 0; 1250 } 1251 1252 /* 1253 * Initialize all locks for the device. This needs to be as early as 1254 * possible so locks are usable. 1255 */ 1256 spin_lock_init(&dd->sc_lock); 1257 spin_lock_init(&dd->sendctrl_lock); 1258 spin_lock_init(&dd->rcvctrl_lock); 1259 spin_lock_init(&dd->uctxt_lock); 1260 spin_lock_init(&dd->hfi1_diag_trans_lock); 1261 spin_lock_init(&dd->sc_init_lock); 1262 spin_lock_init(&dd->dc8051_memlock); 1263 seqlock_init(&dd->sc2vl_lock); 1264 spin_lock_init(&dd->sde_map_lock); 1265 spin_lock_init(&dd->pio_map_lock); 1266 mutex_init(&dd->dc8051_lock); 1267 init_waitqueue_head(&dd->event_queue); 1268 spin_lock_init(&dd->irq_src_lock); 1269 1270 dd->int_counter = alloc_percpu(u64); 1271 if (!dd->int_counter) { 1272 ret = -ENOMEM; 1273 goto bail; 1274 } 1275 1276 dd->rcv_limit = alloc_percpu(u64); 1277 if (!dd->rcv_limit) { 1278 ret = -ENOMEM; 1279 goto bail; 1280 } 1281 1282 dd->send_schedule = alloc_percpu(u64); 1283 if (!dd->send_schedule) { 1284 ret = -ENOMEM; 1285 goto bail; 1286 } 1287 1288 dd->tx_opstats = alloc_percpu(struct hfi1_opcode_stats_perctx); 1289 if (!dd->tx_opstats) { 1290 ret = -ENOMEM; 1291 goto bail; 1292 } 1293 1294 dd->comp_vect = kzalloc(sizeof(*dd->comp_vect), GFP_KERNEL); 1295 if (!dd->comp_vect) { 1296 ret = -ENOMEM; 1297 goto bail; 1298 } 1299 1300 atomic_set(&dd->ipoib_rsm_usr_num, 0); 1301 return dd; 1302 1303 bail: 1304 hfi1_free_devdata(dd); 1305 return ERR_PTR(ret); 1306 } 1307 1308 /* 1309 * Called from freeze mode handlers, and from PCI error 1310 * reporting code. Should be paranoid about state of 1311 * system and data structures. 1312 */ 1313 void hfi1_disable_after_error(struct hfi1_devdata *dd) 1314 { 1315 if (dd->flags & HFI1_INITTED) { 1316 u32 pidx; 1317 1318 dd->flags &= ~HFI1_INITTED; 1319 if (dd->pport) 1320 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1321 struct hfi1_pportdata *ppd; 1322 1323 ppd = dd->pport + pidx; 1324 if (dd->flags & HFI1_PRESENT) 1325 set_link_state(ppd, HLS_DN_DISABLE); 1326 1327 if (ppd->statusp) 1328 *ppd->statusp &= ~HFI1_STATUS_IB_READY; 1329 } 1330 } 1331 1332 /* 1333 * Mark as having had an error for driver, and also 1334 * for /sys and status word mapped to user programs. 1335 * This marks unit as not usable, until reset. 1336 */ 1337 if (dd->status) 1338 dd->status->dev |= HFI1_STATUS_HWERROR; 1339 } 1340 1341 static void remove_one(struct pci_dev *); 1342 static int init_one(struct pci_dev *, const struct pci_device_id *); 1343 static void shutdown_one(struct pci_dev *); 1344 1345 #define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: " 1346 #define PFX DRIVER_NAME ": " 1347 1348 const struct pci_device_id hfi1_pci_tbl[] = { 1349 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) }, 1350 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) }, 1351 { 0, } 1352 }; 1353 1354 MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl); 1355 1356 static struct pci_driver hfi1_pci_driver = { 1357 .name = DRIVER_NAME, 1358 .probe = init_one, 1359 .remove = remove_one, 1360 .shutdown = shutdown_one, 1361 .id_table = hfi1_pci_tbl, 1362 .err_handler = &hfi1_pci_err_handler, 1363 }; 1364 1365 static void __init compute_krcvqs(void) 1366 { 1367 int i; 1368 1369 for (i = 0; i < krcvqsset; i++) 1370 n_krcvqs += krcvqs[i]; 1371 } 1372 1373 /* 1374 * Do all the generic driver unit- and chip-independent memory 1375 * allocation and initialization. 1376 */ 1377 static int __init hfi1_mod_init(void) 1378 { 1379 int ret; 1380 1381 ret = dev_init(); 1382 if (ret) 1383 goto bail; 1384 1385 ret = node_affinity_init(); 1386 if (ret) 1387 goto bail; 1388 1389 /* validate max MTU before any devices start */ 1390 if (!valid_opa_max_mtu(hfi1_max_mtu)) { 1391 pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n", 1392 hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU); 1393 hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU; 1394 } 1395 /* valid CUs run from 1-128 in powers of 2 */ 1396 if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu)) 1397 hfi1_cu = 1; 1398 /* valid credit return threshold is 0-100, variable is unsigned */ 1399 if (user_credit_return_threshold > 100) 1400 user_credit_return_threshold = 100; 1401 1402 compute_krcvqs(); 1403 /* 1404 * sanitize receive interrupt count, time must wait until after 1405 * the hardware type is known 1406 */ 1407 if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK) 1408 rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK; 1409 /* reject invalid combinations */ 1410 if (rcv_intr_count == 0 && rcv_intr_timeout == 0) { 1411 pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n"); 1412 rcv_intr_count = 1; 1413 } 1414 if (rcv_intr_count > 1 && rcv_intr_timeout == 0) { 1415 /* 1416 * Avoid indefinite packet delivery by requiring a timeout 1417 * if count is > 1. 1418 */ 1419 pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n"); 1420 rcv_intr_timeout = 1; 1421 } 1422 if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) { 1423 /* 1424 * The dynamic algorithm expects a non-zero timeout 1425 * and a count > 1. 1426 */ 1427 pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n"); 1428 rcv_intr_dynamic = 0; 1429 } 1430 1431 /* sanitize link CRC options */ 1432 link_crc_mask &= SUPPORTED_CRCS; 1433 1434 ret = opfn_init(); 1435 if (ret < 0) { 1436 pr_err("Failed to allocate opfn_wq"); 1437 goto bail_dev; 1438 } 1439 1440 /* 1441 * These must be called before the driver is registered with 1442 * the PCI subsystem. 1443 */ 1444 hfi1_dbg_init(); 1445 ret = pci_register_driver(&hfi1_pci_driver); 1446 if (ret < 0) { 1447 pr_err("Unable to register driver: error %d\n", -ret); 1448 goto bail_dev; 1449 } 1450 goto bail; /* all OK */ 1451 1452 bail_dev: 1453 hfi1_dbg_exit(); 1454 dev_cleanup(); 1455 bail: 1456 return ret; 1457 } 1458 1459 module_init(hfi1_mod_init); 1460 1461 /* 1462 * Do the non-unit driver cleanup, memory free, etc. at unload. 1463 */ 1464 static void __exit hfi1_mod_cleanup(void) 1465 { 1466 pci_unregister_driver(&hfi1_pci_driver); 1467 opfn_exit(); 1468 node_affinity_destroy_all(); 1469 hfi1_dbg_exit(); 1470 1471 WARN_ON(!xa_empty(&hfi1_dev_table)); 1472 dispose_firmware(); /* asymmetric with obtain_firmware() */ 1473 dev_cleanup(); 1474 } 1475 1476 module_exit(hfi1_mod_cleanup); 1477 1478 /* this can only be called after a successful initialization */ 1479 static void cleanup_device_data(struct hfi1_devdata *dd) 1480 { 1481 int ctxt; 1482 int pidx; 1483 1484 /* users can't do anything more with chip */ 1485 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1486 struct hfi1_pportdata *ppd = &dd->pport[pidx]; 1487 struct cc_state *cc_state; 1488 int i; 1489 1490 if (ppd->statusp) 1491 *ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT; 1492 1493 for (i = 0; i < OPA_MAX_SLS; i++) 1494 hrtimer_cancel(&ppd->cca_timer[i].hrtimer); 1495 1496 spin_lock(&ppd->cc_state_lock); 1497 cc_state = get_cc_state_protected(ppd); 1498 RCU_INIT_POINTER(ppd->cc_state, NULL); 1499 spin_unlock(&ppd->cc_state_lock); 1500 1501 if (cc_state) 1502 kfree_rcu(cc_state, rcu); 1503 } 1504 1505 free_credit_return(dd); 1506 1507 if (dd->rcvhdrtail_dummy_kvaddr) { 1508 dma_free_coherent(&dd->pcidev->dev, sizeof(u64), 1509 (void *)dd->rcvhdrtail_dummy_kvaddr, 1510 dd->rcvhdrtail_dummy_dma); 1511 dd->rcvhdrtail_dummy_kvaddr = NULL; 1512 } 1513 1514 /* 1515 * Free any resources still in use (usually just kernel contexts) 1516 * at unload; we do for ctxtcnt, because that's what we allocate. 1517 */ 1518 for (ctxt = 0; dd->rcd && ctxt < dd->num_rcv_contexts; ctxt++) { 1519 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt]; 1520 1521 if (rcd) { 1522 hfi1_free_ctxt_rcv_groups(rcd); 1523 hfi1_free_ctxt(rcd); 1524 } 1525 } 1526 1527 kfree(dd->rcd); 1528 dd->rcd = NULL; 1529 1530 free_pio_map(dd); 1531 /* must follow rcv context free - need to remove rcv's hooks */ 1532 for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++) 1533 sc_free(dd->send_contexts[ctxt].sc); 1534 dd->num_send_contexts = 0; 1535 kfree(dd->send_contexts); 1536 dd->send_contexts = NULL; 1537 kfree(dd->hw_to_sw); 1538 dd->hw_to_sw = NULL; 1539 kfree(dd->boardname); 1540 vfree(dd->events); 1541 vfree(dd->status); 1542 } 1543 1544 /* 1545 * Clean up on unit shutdown, or error during unit load after 1546 * successful initialization. 1547 */ 1548 static void postinit_cleanup(struct hfi1_devdata *dd) 1549 { 1550 hfi1_start_cleanup(dd); 1551 hfi1_comp_vectors_clean_up(dd); 1552 hfi1_dev_affinity_clean_up(dd); 1553 1554 hfi1_pcie_ddcleanup(dd); 1555 hfi1_pcie_cleanup(dd->pcidev); 1556 1557 cleanup_device_data(dd); 1558 1559 hfi1_free_devdata(dd); 1560 } 1561 1562 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 1563 { 1564 int ret = 0, j, pidx, initfail; 1565 struct hfi1_devdata *dd; 1566 struct hfi1_pportdata *ppd; 1567 1568 /* First, lock the non-writable module parameters */ 1569 HFI1_CAP_LOCK(); 1570 1571 /* Validate dev ids */ 1572 if (!(ent->device == PCI_DEVICE_ID_INTEL0 || 1573 ent->device == PCI_DEVICE_ID_INTEL1)) { 1574 dev_err(&pdev->dev, "Failing on unknown Intel deviceid 0x%x\n", 1575 ent->device); 1576 ret = -ENODEV; 1577 goto bail; 1578 } 1579 1580 /* Allocate the dd so we can get to work */ 1581 dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS * 1582 sizeof(struct hfi1_pportdata)); 1583 if (IS_ERR(dd)) { 1584 ret = PTR_ERR(dd); 1585 goto bail; 1586 } 1587 1588 /* Validate some global module parameters */ 1589 ret = hfi1_validate_rcvhdrcnt(dd, rcvhdrcnt); 1590 if (ret) 1591 goto bail; 1592 1593 /* use the encoding function as a sanitization check */ 1594 if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) { 1595 dd_dev_err(dd, "Invalid HdrQ Entry size %u\n", 1596 hfi1_hdrq_entsize); 1597 ret = -EINVAL; 1598 goto bail; 1599 } 1600 1601 /* The receive eager buffer size must be set before the receive 1602 * contexts are created. 1603 * 1604 * Set the eager buffer size. Validate that it falls in a range 1605 * allowed by the hardware - all powers of 2 between the min and 1606 * max. The maximum valid MTU is within the eager buffer range 1607 * so we do not need to cap the max_mtu by an eager buffer size 1608 * setting. 1609 */ 1610 if (eager_buffer_size) { 1611 if (!is_power_of_2(eager_buffer_size)) 1612 eager_buffer_size = 1613 roundup_pow_of_two(eager_buffer_size); 1614 eager_buffer_size = 1615 clamp_val(eager_buffer_size, 1616 MIN_EAGER_BUFFER * 8, 1617 MAX_EAGER_BUFFER_TOTAL); 1618 dd_dev_info(dd, "Eager buffer size %u\n", 1619 eager_buffer_size); 1620 } else { 1621 dd_dev_err(dd, "Invalid Eager buffer size of 0\n"); 1622 ret = -EINVAL; 1623 goto bail; 1624 } 1625 1626 /* restrict value of hfi1_rcvarr_split */ 1627 hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100); 1628 1629 ret = hfi1_pcie_init(dd); 1630 if (ret) 1631 goto bail; 1632 1633 /* 1634 * Do device-specific initialization, function table setup, dd 1635 * allocation, etc. 1636 */ 1637 ret = hfi1_init_dd(dd); 1638 if (ret) 1639 goto clean_bail; /* error already printed */ 1640 1641 ret = create_workqueues(dd); 1642 if (ret) 1643 goto clean_bail; 1644 1645 /* do the generic initialization */ 1646 initfail = hfi1_init(dd, 0); 1647 1648 ret = hfi1_register_ib_device(dd); 1649 1650 /* 1651 * Now ready for use. this should be cleared whenever we 1652 * detect a reset, or initiate one. If earlier failure, 1653 * we still create devices, so diags, etc. can be used 1654 * to determine cause of problem. 1655 */ 1656 if (!initfail && !ret) { 1657 dd->flags |= HFI1_INITTED; 1658 /* create debufs files after init and ib register */ 1659 hfi1_dbg_ibdev_init(&dd->verbs_dev); 1660 } 1661 1662 j = hfi1_device_create(dd); 1663 if (j) 1664 dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j); 1665 1666 if (initfail || ret) { 1667 msix_clean_up_interrupts(dd); 1668 stop_timers(dd); 1669 flush_workqueue(ib_wq); 1670 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1671 hfi1_quiet_serdes(dd->pport + pidx); 1672 ppd = dd->pport + pidx; 1673 if (ppd->hfi1_wq) { 1674 destroy_workqueue(ppd->hfi1_wq); 1675 ppd->hfi1_wq = NULL; 1676 } 1677 if (ppd->link_wq) { 1678 destroy_workqueue(ppd->link_wq); 1679 ppd->link_wq = NULL; 1680 } 1681 } 1682 if (!j) 1683 hfi1_device_remove(dd); 1684 if (!ret) 1685 hfi1_unregister_ib_device(dd); 1686 postinit_cleanup(dd); 1687 if (initfail) 1688 ret = initfail; 1689 goto bail; /* everything already cleaned */ 1690 } 1691 1692 sdma_start(dd); 1693 1694 return 0; 1695 1696 clean_bail: 1697 hfi1_pcie_cleanup(pdev); 1698 bail: 1699 return ret; 1700 } 1701 1702 static void wait_for_clients(struct hfi1_devdata *dd) 1703 { 1704 /* 1705 * Remove the device init value and complete the device if there is 1706 * no clients or wait for active clients to finish. 1707 */ 1708 if (refcount_dec_and_test(&dd->user_refcount)) 1709 complete(&dd->user_comp); 1710 1711 wait_for_completion(&dd->user_comp); 1712 } 1713 1714 static void remove_one(struct pci_dev *pdev) 1715 { 1716 struct hfi1_devdata *dd = pci_get_drvdata(pdev); 1717 1718 /* close debugfs files before ib unregister */ 1719 hfi1_dbg_ibdev_exit(&dd->verbs_dev); 1720 1721 /* remove the /dev hfi1 interface */ 1722 hfi1_device_remove(dd); 1723 1724 /* wait for existing user space clients to finish */ 1725 wait_for_clients(dd); 1726 1727 /* unregister from IB core */ 1728 hfi1_unregister_ib_device(dd); 1729 1730 /* free netdev data */ 1731 hfi1_free_rx(dd); 1732 1733 /* 1734 * Disable the IB link, disable interrupts on the device, 1735 * clear dma engines, etc. 1736 */ 1737 shutdown_device(dd); 1738 destroy_workqueues(dd); 1739 1740 stop_timers(dd); 1741 1742 /* wait until all of our (qsfp) queue_work() calls complete */ 1743 flush_workqueue(ib_wq); 1744 1745 postinit_cleanup(dd); 1746 } 1747 1748 static void shutdown_one(struct pci_dev *pdev) 1749 { 1750 struct hfi1_devdata *dd = pci_get_drvdata(pdev); 1751 1752 shutdown_device(dd); 1753 } 1754 1755 /** 1756 * hfi1_create_rcvhdrq - create a receive header queue 1757 * @dd: the hfi1_ib device 1758 * @rcd: the context data 1759 * 1760 * This must be contiguous memory (from an i/o perspective), and must be 1761 * DMA'able (which means for some systems, it will go through an IOMMU, 1762 * or be forced into a low address range). 1763 */ 1764 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd) 1765 { 1766 unsigned amt; 1767 1768 if (!rcd->rcvhdrq) { 1769 gfp_t gfp_flags; 1770 1771 amt = rcvhdrq_size(rcd); 1772 1773 if (rcd->ctxt < dd->first_dyn_alloc_ctxt || rcd->is_vnic) 1774 gfp_flags = GFP_KERNEL; 1775 else 1776 gfp_flags = GFP_USER; 1777 rcd->rcvhdrq = dma_alloc_coherent(&dd->pcidev->dev, amt, 1778 &rcd->rcvhdrq_dma, 1779 gfp_flags | __GFP_COMP); 1780 1781 if (!rcd->rcvhdrq) { 1782 dd_dev_err(dd, 1783 "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n", 1784 amt, rcd->ctxt); 1785 goto bail; 1786 } 1787 1788 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) || 1789 HFI1_CAP_UGET_MASK(rcd->flags, DMA_RTAIL)) { 1790 rcd->rcvhdrtail_kvaddr = dma_alloc_coherent(&dd->pcidev->dev, 1791 PAGE_SIZE, 1792 &rcd->rcvhdrqtailaddr_dma, 1793 gfp_flags); 1794 if (!rcd->rcvhdrtail_kvaddr) 1795 goto bail_free; 1796 } 1797 } 1798 1799 set_hdrq_regs(rcd->dd, rcd->ctxt, rcd->rcvhdrqentsize, 1800 rcd->rcvhdrq_cnt); 1801 1802 return 0; 1803 1804 bail_free: 1805 dd_dev_err(dd, 1806 "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n", 1807 rcd->ctxt); 1808 dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq, 1809 rcd->rcvhdrq_dma); 1810 rcd->rcvhdrq = NULL; 1811 bail: 1812 return -ENOMEM; 1813 } 1814 1815 /** 1816 * hfi1_setup_eagerbufs - llocate eager buffers, both kernel and user 1817 * contexts. 1818 * @rcd: the context we are setting up. 1819 * 1820 * Allocate the eager TID buffers and program them into hip. 1821 * They are no longer completely contiguous, we do multiple allocation 1822 * calls. Otherwise we get the OOM code involved, by asking for too 1823 * much per call, with disastrous results on some kernels. 1824 */ 1825 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd) 1826 { 1827 struct hfi1_devdata *dd = rcd->dd; 1828 u32 max_entries, egrtop, alloced_bytes = 0; 1829 gfp_t gfp_flags; 1830 u16 order, idx = 0; 1831 int ret = 0; 1832 u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu); 1833 1834 /* 1835 * GFP_USER, but without GFP_FS, so buffer cache can be 1836 * coalesced (we hope); otherwise, even at order 4, 1837 * heavy filesystem activity makes these fail, and we can 1838 * use compound pages. 1839 */ 1840 gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP; 1841 1842 /* 1843 * The minimum size of the eager buffers is a groups of MTU-sized 1844 * buffers. 1845 * The global eager_buffer_size parameter is checked against the 1846 * theoretical lower limit of the value. Here, we check against the 1847 * MTU. 1848 */ 1849 if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size)) 1850 rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size; 1851 /* 1852 * If using one-pkt-per-egr-buffer, lower the eager buffer 1853 * size to the max MTU (page-aligned). 1854 */ 1855 if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) 1856 rcd->egrbufs.rcvtid_size = round_mtu; 1857 1858 /* 1859 * Eager buffers sizes of 1MB or less require smaller TID sizes 1860 * to satisfy the "multiple of 8 RcvArray entries" requirement. 1861 */ 1862 if (rcd->egrbufs.size <= (1 << 20)) 1863 rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu, 1864 rounddown_pow_of_two(rcd->egrbufs.size / 8)); 1865 1866 while (alloced_bytes < rcd->egrbufs.size && 1867 rcd->egrbufs.alloced < rcd->egrbufs.count) { 1868 rcd->egrbufs.buffers[idx].addr = 1869 dma_alloc_coherent(&dd->pcidev->dev, 1870 rcd->egrbufs.rcvtid_size, 1871 &rcd->egrbufs.buffers[idx].dma, 1872 gfp_flags); 1873 if (rcd->egrbufs.buffers[idx].addr) { 1874 rcd->egrbufs.buffers[idx].len = 1875 rcd->egrbufs.rcvtid_size; 1876 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr = 1877 rcd->egrbufs.buffers[idx].addr; 1878 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma = 1879 rcd->egrbufs.buffers[idx].dma; 1880 rcd->egrbufs.alloced++; 1881 alloced_bytes += rcd->egrbufs.rcvtid_size; 1882 idx++; 1883 } else { 1884 u32 new_size, i, j; 1885 u64 offset = 0; 1886 1887 /* 1888 * Fail the eager buffer allocation if: 1889 * - we are already using the lowest acceptable size 1890 * - we are using one-pkt-per-egr-buffer (this implies 1891 * that we are accepting only one size) 1892 */ 1893 if (rcd->egrbufs.rcvtid_size == round_mtu || 1894 !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) { 1895 dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n", 1896 rcd->ctxt); 1897 ret = -ENOMEM; 1898 goto bail_rcvegrbuf_phys; 1899 } 1900 1901 new_size = rcd->egrbufs.rcvtid_size / 2; 1902 1903 /* 1904 * If the first attempt to allocate memory failed, don't 1905 * fail everything but continue with the next lower 1906 * size. 1907 */ 1908 if (idx == 0) { 1909 rcd->egrbufs.rcvtid_size = new_size; 1910 continue; 1911 } 1912 1913 /* 1914 * Re-partition already allocated buffers to a smaller 1915 * size. 1916 */ 1917 rcd->egrbufs.alloced = 0; 1918 for (i = 0, j = 0, offset = 0; j < idx; i++) { 1919 if (i >= rcd->egrbufs.count) 1920 break; 1921 rcd->egrbufs.rcvtids[i].dma = 1922 rcd->egrbufs.buffers[j].dma + offset; 1923 rcd->egrbufs.rcvtids[i].addr = 1924 rcd->egrbufs.buffers[j].addr + offset; 1925 rcd->egrbufs.alloced++; 1926 if ((rcd->egrbufs.buffers[j].dma + offset + 1927 new_size) == 1928 (rcd->egrbufs.buffers[j].dma + 1929 rcd->egrbufs.buffers[j].len)) { 1930 j++; 1931 offset = 0; 1932 } else { 1933 offset += new_size; 1934 } 1935 } 1936 rcd->egrbufs.rcvtid_size = new_size; 1937 } 1938 } 1939 rcd->egrbufs.numbufs = idx; 1940 rcd->egrbufs.size = alloced_bytes; 1941 1942 hfi1_cdbg(PROC, 1943 "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %uKB\n", 1944 rcd->ctxt, rcd->egrbufs.alloced, 1945 rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024); 1946 1947 /* 1948 * Set the contexts rcv array head update threshold to the closest 1949 * power of 2 (so we can use a mask instead of modulo) below half 1950 * the allocated entries. 1951 */ 1952 rcd->egrbufs.threshold = 1953 rounddown_pow_of_two(rcd->egrbufs.alloced / 2); 1954 /* 1955 * Compute the expected RcvArray entry base. This is done after 1956 * allocating the eager buffers in order to maximize the 1957 * expected RcvArray entries for the context. 1958 */ 1959 max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size; 1960 egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size); 1961 rcd->expected_count = max_entries - egrtop; 1962 if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2) 1963 rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2; 1964 1965 rcd->expected_base = rcd->eager_base + egrtop; 1966 hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n", 1967 rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count, 1968 rcd->eager_base, rcd->expected_base); 1969 1970 if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) { 1971 hfi1_cdbg(PROC, 1972 "ctxt%u: current Eager buffer size is invalid %u\n", 1973 rcd->ctxt, rcd->egrbufs.rcvtid_size); 1974 ret = -EINVAL; 1975 goto bail_rcvegrbuf_phys; 1976 } 1977 1978 for (idx = 0; idx < rcd->egrbufs.alloced; idx++) { 1979 hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER, 1980 rcd->egrbufs.rcvtids[idx].dma, order); 1981 cond_resched(); 1982 } 1983 1984 return 0; 1985 1986 bail_rcvegrbuf_phys: 1987 for (idx = 0; idx < rcd->egrbufs.alloced && 1988 rcd->egrbufs.buffers[idx].addr; 1989 idx++) { 1990 dma_free_coherent(&dd->pcidev->dev, 1991 rcd->egrbufs.buffers[idx].len, 1992 rcd->egrbufs.buffers[idx].addr, 1993 rcd->egrbufs.buffers[idx].dma); 1994 rcd->egrbufs.buffers[idx].addr = NULL; 1995 rcd->egrbufs.buffers[idx].dma = 0; 1996 rcd->egrbufs.buffers[idx].len = 0; 1997 } 1998 1999 return ret; 2000 } 2001