1 /* 2 * Copyright(c) 2015, 2016 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 #include <linux/pci.h> 49 #include <linux/netdevice.h> 50 #include <linux/vmalloc.h> 51 #include <linux/delay.h> 52 #include <linux/idr.h> 53 #include <linux/module.h> 54 #include <linux/printk.h> 55 #include <linux/hrtimer.h> 56 #include <rdma/rdma_vt.h> 57 58 #include "hfi.h" 59 #include "device.h" 60 #include "common.h" 61 #include "trace.h" 62 #include "mad.h" 63 #include "sdma.h" 64 #include "debugfs.h" 65 #include "verbs.h" 66 #include "aspm.h" 67 #include "affinity.h" 68 69 #undef pr_fmt 70 #define pr_fmt(fmt) DRIVER_NAME ": " fmt 71 72 /* 73 * min buffers we want to have per context, after driver 74 */ 75 #define HFI1_MIN_USER_CTXT_BUFCNT 7 76 77 #define HFI1_MIN_HDRQ_EGRBUF_CNT 2 78 #define HFI1_MAX_HDRQ_EGRBUF_CNT 16352 79 #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */ 80 #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */ 81 82 /* 83 * Number of user receive contexts we are configured to use (to allow for more 84 * pio buffers per ctxt, etc.) Zero means use one user context per CPU. 85 */ 86 int num_user_contexts = -1; 87 module_param_named(num_user_contexts, num_user_contexts, uint, S_IRUGO); 88 MODULE_PARM_DESC( 89 num_user_contexts, "Set max number of user contexts to use"); 90 91 uint krcvqs[RXE_NUM_DATA_VL]; 92 int krcvqsset; 93 module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO); 94 MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL"); 95 96 /* computed based on above array */ 97 unsigned long n_krcvqs; 98 99 static unsigned hfi1_rcvarr_split = 25; 100 module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO); 101 MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers"); 102 103 static uint eager_buffer_size = (2 << 20); /* 2MB */ 104 module_param(eager_buffer_size, uint, S_IRUGO); 105 MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 2MB"); 106 107 static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */ 108 module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO); 109 MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)"); 110 111 static uint hfi1_hdrq_entsize = 32; 112 module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, S_IRUGO); 113 MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B (default), 32 - 128B"); 114 115 unsigned int user_credit_return_threshold = 33; /* default is 33% */ 116 module_param(user_credit_return_threshold, uint, S_IRUGO); 117 MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)"); 118 119 static inline u64 encode_rcv_header_entry_size(u16); 120 121 static struct idr hfi1_unit_table; 122 u32 hfi1_cpulist_count; 123 unsigned long *hfi1_cpulist; 124 125 /* 126 * Common code for creating the receive context array. 127 */ 128 int hfi1_create_ctxts(struct hfi1_devdata *dd) 129 { 130 unsigned i; 131 int ret; 132 133 /* Control context has to be always 0 */ 134 BUILD_BUG_ON(HFI1_CTRL_CTXT != 0); 135 136 dd->rcd = kzalloc_node(dd->num_rcv_contexts * sizeof(*dd->rcd), 137 GFP_KERNEL, dd->node); 138 if (!dd->rcd) 139 goto nomem; 140 141 /* create one or more kernel contexts */ 142 for (i = 0; i < dd->first_user_ctxt; ++i) { 143 struct hfi1_pportdata *ppd; 144 struct hfi1_ctxtdata *rcd; 145 146 ppd = dd->pport + (i % dd->num_pports); 147 rcd = hfi1_create_ctxtdata(ppd, i, dd->node); 148 if (!rcd) { 149 dd_dev_err(dd, 150 "Unable to allocate kernel receive context, failing\n"); 151 goto nomem; 152 } 153 /* 154 * Set up the kernel context flags here and now because they 155 * use default values for all receive side memories. User 156 * contexts will be handled as they are created. 157 */ 158 rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) | 159 HFI1_CAP_KGET(NODROP_RHQ_FULL) | 160 HFI1_CAP_KGET(NODROP_EGR_FULL) | 161 HFI1_CAP_KGET(DMA_RTAIL); 162 163 /* Control context must use DMA_RTAIL */ 164 if (rcd->ctxt == HFI1_CTRL_CTXT) 165 rcd->flags |= HFI1_CAP_DMA_RTAIL; 166 rcd->seq_cnt = 1; 167 168 rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node); 169 if (!rcd->sc) { 170 dd_dev_err(dd, 171 "Unable to allocate kernel send context, failing\n"); 172 dd->rcd[rcd->ctxt] = NULL; 173 hfi1_free_ctxtdata(dd, rcd); 174 goto nomem; 175 } 176 177 ret = hfi1_init_ctxt(rcd->sc); 178 if (ret < 0) { 179 dd_dev_err(dd, 180 "Failed to setup kernel receive context, failing\n"); 181 sc_free(rcd->sc); 182 dd->rcd[rcd->ctxt] = NULL; 183 hfi1_free_ctxtdata(dd, rcd); 184 ret = -EFAULT; 185 goto bail; 186 } 187 } 188 189 /* 190 * Initialize aspm, to be done after gen3 transition and setting up 191 * contexts and before enabling interrupts 192 */ 193 aspm_init(dd); 194 195 return 0; 196 nomem: 197 ret = -ENOMEM; 198 bail: 199 kfree(dd->rcd); 200 dd->rcd = NULL; 201 return ret; 202 } 203 204 /* 205 * Common code for user and kernel context setup. 206 */ 207 struct hfi1_ctxtdata *hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, u32 ctxt, 208 int numa) 209 { 210 struct hfi1_devdata *dd = ppd->dd; 211 struct hfi1_ctxtdata *rcd; 212 unsigned kctxt_ngroups = 0; 213 u32 base; 214 215 if (dd->rcv_entries.nctxt_extra > 216 dd->num_rcv_contexts - dd->first_user_ctxt) 217 kctxt_ngroups = (dd->rcv_entries.nctxt_extra - 218 (dd->num_rcv_contexts - dd->first_user_ctxt)); 219 rcd = kzalloc(sizeof(*rcd), GFP_KERNEL); 220 if (rcd) { 221 u32 rcvtids, max_entries; 222 223 hfi1_cdbg(PROC, "setting up context %u\n", ctxt); 224 225 INIT_LIST_HEAD(&rcd->qp_wait_list); 226 rcd->ppd = ppd; 227 rcd->dd = dd; 228 rcd->cnt = 1; 229 rcd->ctxt = ctxt; 230 dd->rcd[ctxt] = rcd; 231 rcd->numa_id = numa; 232 rcd->rcv_array_groups = dd->rcv_entries.ngroups; 233 234 mutex_init(&rcd->exp_lock); 235 236 /* 237 * Calculate the context's RcvArray entry starting point. 238 * We do this here because we have to take into account all 239 * the RcvArray entries that previous context would have 240 * taken and we have to account for any extra groups 241 * assigned to the kernel or user contexts. 242 */ 243 if (ctxt < dd->first_user_ctxt) { 244 if (ctxt < kctxt_ngroups) { 245 base = ctxt * (dd->rcv_entries.ngroups + 1); 246 rcd->rcv_array_groups++; 247 } else 248 base = kctxt_ngroups + 249 (ctxt * dd->rcv_entries.ngroups); 250 } else { 251 u16 ct = ctxt - dd->first_user_ctxt; 252 253 base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) + 254 kctxt_ngroups); 255 if (ct < dd->rcv_entries.nctxt_extra) { 256 base += ct * (dd->rcv_entries.ngroups + 1); 257 rcd->rcv_array_groups++; 258 } else 259 base += dd->rcv_entries.nctxt_extra + 260 (ct * dd->rcv_entries.ngroups); 261 } 262 rcd->eager_base = base * dd->rcv_entries.group_size; 263 264 /* Validate and initialize Rcv Hdr Q variables */ 265 if (rcvhdrcnt % HDRQ_INCREMENT) { 266 dd_dev_err(dd, 267 "ctxt%u: header queue count %d must be divisible by %lu\n", 268 rcd->ctxt, rcvhdrcnt, HDRQ_INCREMENT); 269 goto bail; 270 } 271 rcd->rcvhdrq_cnt = rcvhdrcnt; 272 rcd->rcvhdrqentsize = hfi1_hdrq_entsize; 273 /* 274 * Simple Eager buffer allocation: we have already pre-allocated 275 * the number of RcvArray entry groups. Each ctxtdata structure 276 * holds the number of groups for that context. 277 * 278 * To follow CSR requirements and maintain cacheline alignment, 279 * make sure all sizes and bases are multiples of group_size. 280 * 281 * The expected entry count is what is left after assigning 282 * eager. 283 */ 284 max_entries = rcd->rcv_array_groups * 285 dd->rcv_entries.group_size; 286 rcvtids = ((max_entries * hfi1_rcvarr_split) / 100); 287 rcd->egrbufs.count = round_down(rcvtids, 288 dd->rcv_entries.group_size); 289 if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) { 290 dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n", 291 rcd->ctxt); 292 rcd->egrbufs.count = MAX_EAGER_ENTRIES; 293 } 294 hfi1_cdbg(PROC, 295 "ctxt%u: max Eager buffer RcvArray entries: %u\n", 296 rcd->ctxt, rcd->egrbufs.count); 297 298 /* 299 * Allocate array that will hold the eager buffer accounting 300 * data. 301 * This will allocate the maximum possible buffer count based 302 * on the value of the RcvArray split parameter. 303 * The resulting value will be rounded down to the closest 304 * multiple of dd->rcv_entries.group_size. 305 */ 306 rcd->egrbufs.buffers = kcalloc(rcd->egrbufs.count, 307 sizeof(*rcd->egrbufs.buffers), 308 GFP_KERNEL); 309 if (!rcd->egrbufs.buffers) 310 goto bail; 311 rcd->egrbufs.rcvtids = kcalloc(rcd->egrbufs.count, 312 sizeof(*rcd->egrbufs.rcvtids), 313 GFP_KERNEL); 314 if (!rcd->egrbufs.rcvtids) 315 goto bail; 316 rcd->egrbufs.size = eager_buffer_size; 317 /* 318 * The size of the buffers programmed into the RcvArray 319 * entries needs to be big enough to handle the highest 320 * MTU supported. 321 */ 322 if (rcd->egrbufs.size < hfi1_max_mtu) { 323 rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu); 324 hfi1_cdbg(PROC, 325 "ctxt%u: eager bufs size too small. Adjusting to %zu\n", 326 rcd->ctxt, rcd->egrbufs.size); 327 } 328 rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE; 329 330 if (ctxt < dd->first_user_ctxt) { /* N/A for PSM contexts */ 331 rcd->opstats = kzalloc(sizeof(*rcd->opstats), 332 GFP_KERNEL); 333 if (!rcd->opstats) 334 goto bail; 335 } 336 } 337 return rcd; 338 bail: 339 dd->rcd[ctxt] = NULL; 340 kfree(rcd->egrbufs.rcvtids); 341 kfree(rcd->egrbufs.buffers); 342 kfree(rcd); 343 return NULL; 344 } 345 346 /* 347 * Convert a receive header entry size that to the encoding used in the CSR. 348 * 349 * Return a zero if the given size is invalid. 350 */ 351 static inline u64 encode_rcv_header_entry_size(u16 size) 352 { 353 /* there are only 3 valid receive header entry sizes */ 354 if (size == 2) 355 return 1; 356 if (size == 16) 357 return 2; 358 else if (size == 32) 359 return 4; 360 return 0; /* invalid */ 361 } 362 363 /* 364 * Select the largest ccti value over all SLs to determine the intra- 365 * packet gap for the link. 366 * 367 * called with cca_timer_lock held (to protect access to cca_timer 368 * array), and rcu_read_lock() (to protect access to cc_state). 369 */ 370 void set_link_ipg(struct hfi1_pportdata *ppd) 371 { 372 struct hfi1_devdata *dd = ppd->dd; 373 struct cc_state *cc_state; 374 int i; 375 u16 cce, ccti_limit, max_ccti = 0; 376 u16 shift, mult; 377 u64 src; 378 u32 current_egress_rate; /* Mbits /sec */ 379 u32 max_pkt_time; 380 /* 381 * max_pkt_time is the maximum packet egress time in units 382 * of the fabric clock period 1/(805 MHz). 383 */ 384 385 cc_state = get_cc_state(ppd); 386 387 if (!cc_state) 388 /* 389 * This should _never_ happen - rcu_read_lock() is held, 390 * and set_link_ipg() should not be called if cc_state 391 * is NULL. 392 */ 393 return; 394 395 for (i = 0; i < OPA_MAX_SLS; i++) { 396 u16 ccti = ppd->cca_timer[i].ccti; 397 398 if (ccti > max_ccti) 399 max_ccti = ccti; 400 } 401 402 ccti_limit = cc_state->cct.ccti_limit; 403 if (max_ccti > ccti_limit) 404 max_ccti = ccti_limit; 405 406 cce = cc_state->cct.entries[max_ccti].entry; 407 shift = (cce & 0xc000) >> 14; 408 mult = (cce & 0x3fff); 409 410 current_egress_rate = active_egress_rate(ppd); 411 412 max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate); 413 414 src = (max_pkt_time >> shift) * mult; 415 416 src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK; 417 src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT; 418 419 write_csr(dd, SEND_STATIC_RATE_CONTROL, src); 420 } 421 422 static enum hrtimer_restart cca_timer_fn(struct hrtimer *t) 423 { 424 struct cca_timer *cca_timer; 425 struct hfi1_pportdata *ppd; 426 int sl; 427 u16 ccti_timer, ccti_min; 428 struct cc_state *cc_state; 429 unsigned long flags; 430 enum hrtimer_restart ret = HRTIMER_NORESTART; 431 432 cca_timer = container_of(t, struct cca_timer, hrtimer); 433 ppd = cca_timer->ppd; 434 sl = cca_timer->sl; 435 436 rcu_read_lock(); 437 438 cc_state = get_cc_state(ppd); 439 440 if (!cc_state) { 441 rcu_read_unlock(); 442 return HRTIMER_NORESTART; 443 } 444 445 /* 446 * 1) decrement ccti for SL 447 * 2) calculate IPG for link (set_link_ipg()) 448 * 3) restart timer, unless ccti is at min value 449 */ 450 451 ccti_min = cc_state->cong_setting.entries[sl].ccti_min; 452 ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer; 453 454 spin_lock_irqsave(&ppd->cca_timer_lock, flags); 455 456 if (cca_timer->ccti > ccti_min) { 457 cca_timer->ccti--; 458 set_link_ipg(ppd); 459 } 460 461 if (cca_timer->ccti > ccti_min) { 462 unsigned long nsec = 1024 * ccti_timer; 463 /* ccti_timer is in units of 1.024 usec */ 464 hrtimer_forward_now(t, ns_to_ktime(nsec)); 465 ret = HRTIMER_RESTART; 466 } 467 468 spin_unlock_irqrestore(&ppd->cca_timer_lock, flags); 469 rcu_read_unlock(); 470 return ret; 471 } 472 473 /* 474 * Common code for initializing the physical port structure. 475 */ 476 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd, 477 struct hfi1_devdata *dd, u8 hw_pidx, u8 port) 478 { 479 int i; 480 uint default_pkey_idx; 481 struct cc_state *cc_state; 482 483 ppd->dd = dd; 484 ppd->hw_pidx = hw_pidx; 485 ppd->port = port; /* IB port number, not index */ 486 487 default_pkey_idx = 1; 488 489 ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY; 490 if (loopback) { 491 hfi1_early_err(&pdev->dev, 492 "Faking data partition 0x8001 in idx %u\n", 493 !default_pkey_idx); 494 ppd->pkeys[!default_pkey_idx] = 0x8001; 495 } 496 497 INIT_WORK(&ppd->link_vc_work, handle_verify_cap); 498 INIT_WORK(&ppd->link_up_work, handle_link_up); 499 INIT_WORK(&ppd->link_down_work, handle_link_down); 500 INIT_WORK(&ppd->freeze_work, handle_freeze); 501 INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade); 502 INIT_WORK(&ppd->sma_message_work, handle_sma_message); 503 INIT_WORK(&ppd->link_bounce_work, handle_link_bounce); 504 INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link); 505 INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work); 506 INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event); 507 508 mutex_init(&ppd->hls_lock); 509 spin_lock_init(&ppd->sdma_alllock); 510 spin_lock_init(&ppd->qsfp_info.qsfp_lock); 511 512 ppd->qsfp_info.ppd = ppd; 513 ppd->sm_trap_qp = 0x0; 514 ppd->sa_qp = 0x1; 515 516 ppd->hfi1_wq = NULL; 517 518 spin_lock_init(&ppd->cca_timer_lock); 519 520 for (i = 0; i < OPA_MAX_SLS; i++) { 521 hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC, 522 HRTIMER_MODE_REL); 523 ppd->cca_timer[i].ppd = ppd; 524 ppd->cca_timer[i].sl = i; 525 ppd->cca_timer[i].ccti = 0; 526 ppd->cca_timer[i].hrtimer.function = cca_timer_fn; 527 } 528 529 ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT; 530 531 spin_lock_init(&ppd->cc_state_lock); 532 spin_lock_init(&ppd->cc_log_lock); 533 cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL); 534 RCU_INIT_POINTER(ppd->cc_state, cc_state); 535 if (!cc_state) 536 goto bail; 537 return; 538 539 bail: 540 541 hfi1_early_err(&pdev->dev, 542 "Congestion Control Agent disabled for port %d\n", port); 543 } 544 545 /* 546 * Do initialization for device that is only needed on 547 * first detect, not on resets. 548 */ 549 static int loadtime_init(struct hfi1_devdata *dd) 550 { 551 return 0; 552 } 553 554 /** 555 * init_after_reset - re-initialize after a reset 556 * @dd: the hfi1_ib device 557 * 558 * sanity check at least some of the values after reset, and 559 * ensure no receive or transmit (explicitly, in case reset 560 * failed 561 */ 562 static int init_after_reset(struct hfi1_devdata *dd) 563 { 564 int i; 565 566 /* 567 * Ensure chip does no sends or receives, tail updates, or 568 * pioavail updates while we re-initialize. This is mostly 569 * for the driver data structures, not chip registers. 570 */ 571 for (i = 0; i < dd->num_rcv_contexts; i++) 572 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS | 573 HFI1_RCVCTRL_INTRAVAIL_DIS | 574 HFI1_RCVCTRL_TAILUPD_DIS, i); 575 pio_send_control(dd, PSC_GLOBAL_DISABLE); 576 for (i = 0; i < dd->num_send_contexts; i++) 577 sc_disable(dd->send_contexts[i].sc); 578 579 return 0; 580 } 581 582 static void enable_chip(struct hfi1_devdata *dd) 583 { 584 u32 rcvmask; 585 u32 i; 586 587 /* enable PIO send */ 588 pio_send_control(dd, PSC_GLOBAL_ENABLE); 589 590 /* 591 * Enable kernel ctxts' receive and receive interrupt. 592 * Other ctxts done as user opens and initializes them. 593 */ 594 for (i = 0; i < dd->first_user_ctxt; ++i) { 595 rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB; 596 rcvmask |= HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, DMA_RTAIL) ? 597 HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS; 598 if (!HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, MULTI_PKT_EGR)) 599 rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB; 600 if (HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, NODROP_RHQ_FULL)) 601 rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB; 602 if (HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, NODROP_EGR_FULL)) 603 rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB; 604 hfi1_rcvctrl(dd, rcvmask, i); 605 sc_enable(dd->rcd[i]->sc); 606 } 607 } 608 609 /** 610 * create_workqueues - create per port workqueues 611 * @dd: the hfi1_ib device 612 */ 613 static int create_workqueues(struct hfi1_devdata *dd) 614 { 615 int pidx; 616 struct hfi1_pportdata *ppd; 617 618 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 619 ppd = dd->pport + pidx; 620 if (!ppd->hfi1_wq) { 621 ppd->hfi1_wq = 622 alloc_workqueue( 623 "hfi%d_%d", 624 WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE, 625 dd->num_sdma, 626 dd->unit, pidx); 627 if (!ppd->hfi1_wq) 628 goto wq_error; 629 } 630 } 631 return 0; 632 wq_error: 633 pr_err("alloc_workqueue failed for port %d\n", pidx + 1); 634 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 635 ppd = dd->pport + pidx; 636 if (ppd->hfi1_wq) { 637 destroy_workqueue(ppd->hfi1_wq); 638 ppd->hfi1_wq = NULL; 639 } 640 } 641 return -ENOMEM; 642 } 643 644 /** 645 * hfi1_init - do the actual initialization sequence on the chip 646 * @dd: the hfi1_ib device 647 * @reinit: re-initializing, so don't allocate new memory 648 * 649 * Do the actual initialization sequence on the chip. This is done 650 * both from the init routine called from the PCI infrastructure, and 651 * when we reset the chip, or detect that it was reset internally, 652 * or it's administratively re-enabled. 653 * 654 * Memory allocation here and in called routines is only done in 655 * the first case (reinit == 0). We have to be careful, because even 656 * without memory allocation, we need to re-write all the chip registers 657 * TIDs, etc. after the reset or enable has completed. 658 */ 659 int hfi1_init(struct hfi1_devdata *dd, int reinit) 660 { 661 int ret = 0, pidx, lastfail = 0; 662 unsigned i, len; 663 struct hfi1_ctxtdata *rcd; 664 struct hfi1_pportdata *ppd; 665 666 /* Set up recv low level handlers */ 667 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EXPECTED] = 668 kdeth_process_expected; 669 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EAGER] = 670 kdeth_process_eager; 671 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_IB] = process_receive_ib; 672 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_ERROR] = 673 process_receive_error; 674 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_BYPASS] = 675 process_receive_bypass; 676 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID5] = 677 process_receive_invalid; 678 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID6] = 679 process_receive_invalid; 680 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID7] = 681 process_receive_invalid; 682 dd->rhf_rcv_function_map = dd->normal_rhf_rcv_functions; 683 684 /* Set up send low level handlers */ 685 dd->process_pio_send = hfi1_verbs_send_pio; 686 dd->process_dma_send = hfi1_verbs_send_dma; 687 dd->pio_inline_send = pio_copy; 688 689 if (is_ax(dd)) { 690 atomic_set(&dd->drop_packet, DROP_PACKET_ON); 691 dd->do_drop = 1; 692 } else { 693 atomic_set(&dd->drop_packet, DROP_PACKET_OFF); 694 dd->do_drop = 0; 695 } 696 697 /* make sure the link is not "up" */ 698 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 699 ppd = dd->pport + pidx; 700 ppd->linkup = 0; 701 } 702 703 if (reinit) 704 ret = init_after_reset(dd); 705 else 706 ret = loadtime_init(dd); 707 if (ret) 708 goto done; 709 710 /* allocate dummy tail memory for all receive contexts */ 711 dd->rcvhdrtail_dummy_kvaddr = dma_zalloc_coherent( 712 &dd->pcidev->dev, sizeof(u64), 713 &dd->rcvhdrtail_dummy_dma, 714 GFP_KERNEL); 715 716 if (!dd->rcvhdrtail_dummy_kvaddr) { 717 dd_dev_err(dd, "cannot allocate dummy tail memory\n"); 718 ret = -ENOMEM; 719 goto done; 720 } 721 722 /* dd->rcd can be NULL if early initialization failed */ 723 for (i = 0; dd->rcd && i < dd->first_user_ctxt; ++i) { 724 /* 725 * Set up the (kernel) rcvhdr queue and egr TIDs. If doing 726 * re-init, the simplest way to handle this is to free 727 * existing, and re-allocate. 728 * Need to re-create rest of ctxt 0 ctxtdata as well. 729 */ 730 rcd = dd->rcd[i]; 731 if (!rcd) 732 continue; 733 734 rcd->do_interrupt = &handle_receive_interrupt; 735 736 lastfail = hfi1_create_rcvhdrq(dd, rcd); 737 if (!lastfail) 738 lastfail = hfi1_setup_eagerbufs(rcd); 739 if (lastfail) { 740 dd_dev_err(dd, 741 "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n"); 742 ret = lastfail; 743 } 744 } 745 746 /* Allocate enough memory for user event notification. */ 747 len = PAGE_ALIGN(dd->chip_rcv_contexts * HFI1_MAX_SHARED_CTXTS * 748 sizeof(*dd->events)); 749 dd->events = vmalloc_user(len); 750 if (!dd->events) 751 dd_dev_err(dd, "Failed to allocate user events page\n"); 752 /* 753 * Allocate a page for device and port status. 754 * Page will be shared amongst all user processes. 755 */ 756 dd->status = vmalloc_user(PAGE_SIZE); 757 if (!dd->status) 758 dd_dev_err(dd, "Failed to allocate dev status page\n"); 759 else 760 dd->freezelen = PAGE_SIZE - (sizeof(*dd->status) - 761 sizeof(dd->status->freezemsg)); 762 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 763 ppd = dd->pport + pidx; 764 if (dd->status) 765 /* Currently, we only have one port */ 766 ppd->statusp = &dd->status->port; 767 768 set_mtu(ppd); 769 } 770 771 /* enable chip even if we have an error, so we can debug cause */ 772 enable_chip(dd); 773 774 done: 775 /* 776 * Set status even if port serdes is not initialized 777 * so that diags will work. 778 */ 779 if (dd->status) 780 dd->status->dev |= HFI1_STATUS_CHIP_PRESENT | 781 HFI1_STATUS_INITTED; 782 if (!ret) { 783 /* enable all interrupts from the chip */ 784 set_intr_state(dd, 1); 785 786 /* chip is OK for user apps; mark it as initialized */ 787 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 788 ppd = dd->pport + pidx; 789 790 /* 791 * start the serdes - must be after interrupts are 792 * enabled so we are notified when the link goes up 793 */ 794 lastfail = bringup_serdes(ppd); 795 if (lastfail) 796 dd_dev_info(dd, 797 "Failed to bring up port %u\n", 798 ppd->port); 799 800 /* 801 * Set status even if port serdes is not initialized 802 * so that diags will work. 803 */ 804 if (ppd->statusp) 805 *ppd->statusp |= HFI1_STATUS_CHIP_PRESENT | 806 HFI1_STATUS_INITTED; 807 if (!ppd->link_speed_enabled) 808 continue; 809 } 810 } 811 812 /* if ret is non-zero, we probably should do some cleanup here... */ 813 return ret; 814 } 815 816 static inline struct hfi1_devdata *__hfi1_lookup(int unit) 817 { 818 return idr_find(&hfi1_unit_table, unit); 819 } 820 821 struct hfi1_devdata *hfi1_lookup(int unit) 822 { 823 struct hfi1_devdata *dd; 824 unsigned long flags; 825 826 spin_lock_irqsave(&hfi1_devs_lock, flags); 827 dd = __hfi1_lookup(unit); 828 spin_unlock_irqrestore(&hfi1_devs_lock, flags); 829 830 return dd; 831 } 832 833 /* 834 * Stop the timers during unit shutdown, or after an error late 835 * in initialization. 836 */ 837 static void stop_timers(struct hfi1_devdata *dd) 838 { 839 struct hfi1_pportdata *ppd; 840 int pidx; 841 842 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 843 ppd = dd->pport + pidx; 844 if (ppd->led_override_timer.data) { 845 del_timer_sync(&ppd->led_override_timer); 846 atomic_set(&ppd->led_override_timer_active, 0); 847 } 848 } 849 } 850 851 /** 852 * shutdown_device - shut down a device 853 * @dd: the hfi1_ib device 854 * 855 * This is called to make the device quiet when we are about to 856 * unload the driver, and also when the device is administratively 857 * disabled. It does not free any data structures. 858 * Everything it does has to be setup again by hfi1_init(dd, 1) 859 */ 860 static void shutdown_device(struct hfi1_devdata *dd) 861 { 862 struct hfi1_pportdata *ppd; 863 unsigned pidx; 864 int i; 865 866 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 867 ppd = dd->pport + pidx; 868 869 ppd->linkup = 0; 870 if (ppd->statusp) 871 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF | 872 HFI1_STATUS_IB_READY); 873 } 874 dd->flags &= ~HFI1_INITTED; 875 876 /* mask interrupts, but not errors */ 877 set_intr_state(dd, 0); 878 879 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 880 ppd = dd->pport + pidx; 881 for (i = 0; i < dd->num_rcv_contexts; i++) 882 hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS | 883 HFI1_RCVCTRL_CTXT_DIS | 884 HFI1_RCVCTRL_INTRAVAIL_DIS | 885 HFI1_RCVCTRL_PKEY_DIS | 886 HFI1_RCVCTRL_ONE_PKT_EGR_DIS, i); 887 /* 888 * Gracefully stop all sends allowing any in progress to 889 * trickle out first. 890 */ 891 for (i = 0; i < dd->num_send_contexts; i++) 892 sc_flush(dd->send_contexts[i].sc); 893 } 894 895 /* 896 * Enough for anything that's going to trickle out to have actually 897 * done so. 898 */ 899 udelay(20); 900 901 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 902 ppd = dd->pport + pidx; 903 904 /* disable all contexts */ 905 for (i = 0; i < dd->num_send_contexts; i++) 906 sc_disable(dd->send_contexts[i].sc); 907 /* disable the send device */ 908 pio_send_control(dd, PSC_GLOBAL_DISABLE); 909 910 shutdown_led_override(ppd); 911 912 /* 913 * Clear SerdesEnable. 914 * We can't count on interrupts since we are stopping. 915 */ 916 hfi1_quiet_serdes(ppd); 917 918 if (ppd->hfi1_wq) { 919 destroy_workqueue(ppd->hfi1_wq); 920 ppd->hfi1_wq = NULL; 921 } 922 } 923 sdma_exit(dd); 924 } 925 926 /** 927 * hfi1_free_ctxtdata - free a context's allocated data 928 * @dd: the hfi1_ib device 929 * @rcd: the ctxtdata structure 930 * 931 * free up any allocated data for a context 932 * This should not touch anything that would affect a simultaneous 933 * re-allocation of context data, because it is called after hfi1_mutex 934 * is released (and can be called from reinit as well). 935 * It should never change any chip state, or global driver state. 936 */ 937 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd) 938 { 939 unsigned e; 940 941 if (!rcd) 942 return; 943 944 if (rcd->rcvhdrq) { 945 dma_free_coherent(&dd->pcidev->dev, rcd->rcvhdrq_size, 946 rcd->rcvhdrq, rcd->rcvhdrq_dma); 947 rcd->rcvhdrq = NULL; 948 if (rcd->rcvhdrtail_kvaddr) { 949 dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE, 950 (void *)rcd->rcvhdrtail_kvaddr, 951 rcd->rcvhdrqtailaddr_dma); 952 rcd->rcvhdrtail_kvaddr = NULL; 953 } 954 } 955 956 /* all the RcvArray entries should have been cleared by now */ 957 kfree(rcd->egrbufs.rcvtids); 958 959 for (e = 0; e < rcd->egrbufs.alloced; e++) { 960 if (rcd->egrbufs.buffers[e].dma) 961 dma_free_coherent(&dd->pcidev->dev, 962 rcd->egrbufs.buffers[e].len, 963 rcd->egrbufs.buffers[e].addr, 964 rcd->egrbufs.buffers[e].dma); 965 } 966 kfree(rcd->egrbufs.buffers); 967 968 sc_free(rcd->sc); 969 vfree(rcd->user_event_mask); 970 vfree(rcd->subctxt_uregbase); 971 vfree(rcd->subctxt_rcvegrbuf); 972 vfree(rcd->subctxt_rcvhdr_base); 973 kfree(rcd->opstats); 974 kfree(rcd); 975 } 976 977 /* 978 * Release our hold on the shared asic data. If we are the last one, 979 * return the structure to be finalized outside the lock. Must be 980 * holding hfi1_devs_lock. 981 */ 982 static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd) 983 { 984 struct hfi1_asic_data *ad; 985 int other; 986 987 if (!dd->asic_data) 988 return NULL; 989 dd->asic_data->dds[dd->hfi1_id] = NULL; 990 other = dd->hfi1_id ? 0 : 1; 991 ad = dd->asic_data; 992 dd->asic_data = NULL; 993 /* return NULL if the other dd still has a link */ 994 return ad->dds[other] ? NULL : ad; 995 } 996 997 static void finalize_asic_data(struct hfi1_devdata *dd, 998 struct hfi1_asic_data *ad) 999 { 1000 clean_up_i2c(dd, ad); 1001 kfree(ad); 1002 } 1003 1004 static void __hfi1_free_devdata(struct kobject *kobj) 1005 { 1006 struct hfi1_devdata *dd = 1007 container_of(kobj, struct hfi1_devdata, kobj); 1008 struct hfi1_asic_data *ad; 1009 unsigned long flags; 1010 1011 spin_lock_irqsave(&hfi1_devs_lock, flags); 1012 idr_remove(&hfi1_unit_table, dd->unit); 1013 list_del(&dd->list); 1014 ad = release_asic_data(dd); 1015 spin_unlock_irqrestore(&hfi1_devs_lock, flags); 1016 if (ad) 1017 finalize_asic_data(dd, ad); 1018 free_platform_config(dd); 1019 rcu_barrier(); /* wait for rcu callbacks to complete */ 1020 free_percpu(dd->int_counter); 1021 free_percpu(dd->rcv_limit); 1022 free_percpu(dd->send_schedule); 1023 rvt_dealloc_device(&dd->verbs_dev.rdi); 1024 } 1025 1026 static struct kobj_type hfi1_devdata_type = { 1027 .release = __hfi1_free_devdata, 1028 }; 1029 1030 void hfi1_free_devdata(struct hfi1_devdata *dd) 1031 { 1032 kobject_put(&dd->kobj); 1033 } 1034 1035 /* 1036 * Allocate our primary per-unit data structure. Must be done via verbs 1037 * allocator, because the verbs cleanup process both does cleanup and 1038 * free of the data structure. 1039 * "extra" is for chip-specific data. 1040 * 1041 * Use the idr mechanism to get a unit number for this unit. 1042 */ 1043 struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev, size_t extra) 1044 { 1045 unsigned long flags; 1046 struct hfi1_devdata *dd; 1047 int ret, nports; 1048 1049 /* extra is * number of ports */ 1050 nports = extra / sizeof(struct hfi1_pportdata); 1051 1052 dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra, 1053 nports); 1054 if (!dd) 1055 return ERR_PTR(-ENOMEM); 1056 dd->num_pports = nports; 1057 dd->pport = (struct hfi1_pportdata *)(dd + 1); 1058 1059 INIT_LIST_HEAD(&dd->list); 1060 idr_preload(GFP_KERNEL); 1061 spin_lock_irqsave(&hfi1_devs_lock, flags); 1062 1063 ret = idr_alloc(&hfi1_unit_table, dd, 0, 0, GFP_NOWAIT); 1064 if (ret >= 0) { 1065 dd->unit = ret; 1066 list_add(&dd->list, &hfi1_dev_list); 1067 } 1068 1069 spin_unlock_irqrestore(&hfi1_devs_lock, flags); 1070 idr_preload_end(); 1071 1072 if (ret < 0) { 1073 hfi1_early_err(&pdev->dev, 1074 "Could not allocate unit ID: error %d\n", -ret); 1075 goto bail; 1076 } 1077 /* 1078 * Initialize all locks for the device. This needs to be as early as 1079 * possible so locks are usable. 1080 */ 1081 spin_lock_init(&dd->sc_lock); 1082 spin_lock_init(&dd->sendctrl_lock); 1083 spin_lock_init(&dd->rcvctrl_lock); 1084 spin_lock_init(&dd->uctxt_lock); 1085 spin_lock_init(&dd->hfi1_diag_trans_lock); 1086 spin_lock_init(&dd->sc_init_lock); 1087 spin_lock_init(&dd->dc8051_lock); 1088 spin_lock_init(&dd->dc8051_memlock); 1089 seqlock_init(&dd->sc2vl_lock); 1090 spin_lock_init(&dd->sde_map_lock); 1091 spin_lock_init(&dd->pio_map_lock); 1092 init_waitqueue_head(&dd->event_queue); 1093 1094 dd->int_counter = alloc_percpu(u64); 1095 if (!dd->int_counter) { 1096 ret = -ENOMEM; 1097 hfi1_early_err(&pdev->dev, 1098 "Could not allocate per-cpu int_counter\n"); 1099 goto bail; 1100 } 1101 1102 dd->rcv_limit = alloc_percpu(u64); 1103 if (!dd->rcv_limit) { 1104 ret = -ENOMEM; 1105 hfi1_early_err(&pdev->dev, 1106 "Could not allocate per-cpu rcv_limit\n"); 1107 goto bail; 1108 } 1109 1110 dd->send_schedule = alloc_percpu(u64); 1111 if (!dd->send_schedule) { 1112 ret = -ENOMEM; 1113 hfi1_early_err(&pdev->dev, 1114 "Could not allocate per-cpu int_counter\n"); 1115 goto bail; 1116 } 1117 1118 if (!hfi1_cpulist_count) { 1119 u32 count = num_online_cpus(); 1120 1121 hfi1_cpulist = kcalloc(BITS_TO_LONGS(count), sizeof(long), 1122 GFP_KERNEL); 1123 if (hfi1_cpulist) 1124 hfi1_cpulist_count = count; 1125 else 1126 hfi1_early_err( 1127 &pdev->dev, 1128 "Could not alloc cpulist info, cpu affinity might be wrong\n"); 1129 } 1130 kobject_init(&dd->kobj, &hfi1_devdata_type); 1131 return dd; 1132 1133 bail: 1134 if (!list_empty(&dd->list)) 1135 list_del_init(&dd->list); 1136 rvt_dealloc_device(&dd->verbs_dev.rdi); 1137 return ERR_PTR(ret); 1138 } 1139 1140 /* 1141 * Called from freeze mode handlers, and from PCI error 1142 * reporting code. Should be paranoid about state of 1143 * system and data structures. 1144 */ 1145 void hfi1_disable_after_error(struct hfi1_devdata *dd) 1146 { 1147 if (dd->flags & HFI1_INITTED) { 1148 u32 pidx; 1149 1150 dd->flags &= ~HFI1_INITTED; 1151 if (dd->pport) 1152 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1153 struct hfi1_pportdata *ppd; 1154 1155 ppd = dd->pport + pidx; 1156 if (dd->flags & HFI1_PRESENT) 1157 set_link_state(ppd, HLS_DN_DISABLE); 1158 1159 if (ppd->statusp) 1160 *ppd->statusp &= ~HFI1_STATUS_IB_READY; 1161 } 1162 } 1163 1164 /* 1165 * Mark as having had an error for driver, and also 1166 * for /sys and status word mapped to user programs. 1167 * This marks unit as not usable, until reset. 1168 */ 1169 if (dd->status) 1170 dd->status->dev |= HFI1_STATUS_HWERROR; 1171 } 1172 1173 static void remove_one(struct pci_dev *); 1174 static int init_one(struct pci_dev *, const struct pci_device_id *); 1175 1176 #define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: " 1177 #define PFX DRIVER_NAME ": " 1178 1179 const struct pci_device_id hfi1_pci_tbl[] = { 1180 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) }, 1181 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) }, 1182 { 0, } 1183 }; 1184 1185 MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl); 1186 1187 static struct pci_driver hfi1_pci_driver = { 1188 .name = DRIVER_NAME, 1189 .probe = init_one, 1190 .remove = remove_one, 1191 .id_table = hfi1_pci_tbl, 1192 .err_handler = &hfi1_pci_err_handler, 1193 }; 1194 1195 static void __init compute_krcvqs(void) 1196 { 1197 int i; 1198 1199 for (i = 0; i < krcvqsset; i++) 1200 n_krcvqs += krcvqs[i]; 1201 } 1202 1203 /* 1204 * Do all the generic driver unit- and chip-independent memory 1205 * allocation and initialization. 1206 */ 1207 static int __init hfi1_mod_init(void) 1208 { 1209 int ret; 1210 1211 ret = dev_init(); 1212 if (ret) 1213 goto bail; 1214 1215 ret = node_affinity_init(); 1216 if (ret) 1217 goto bail; 1218 1219 /* validate max MTU before any devices start */ 1220 if (!valid_opa_max_mtu(hfi1_max_mtu)) { 1221 pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n", 1222 hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU); 1223 hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU; 1224 } 1225 /* valid CUs run from 1-128 in powers of 2 */ 1226 if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu)) 1227 hfi1_cu = 1; 1228 /* valid credit return threshold is 0-100, variable is unsigned */ 1229 if (user_credit_return_threshold > 100) 1230 user_credit_return_threshold = 100; 1231 1232 compute_krcvqs(); 1233 /* 1234 * sanitize receive interrupt count, time must wait until after 1235 * the hardware type is known 1236 */ 1237 if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK) 1238 rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK; 1239 /* reject invalid combinations */ 1240 if (rcv_intr_count == 0 && rcv_intr_timeout == 0) { 1241 pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n"); 1242 rcv_intr_count = 1; 1243 } 1244 if (rcv_intr_count > 1 && rcv_intr_timeout == 0) { 1245 /* 1246 * Avoid indefinite packet delivery by requiring a timeout 1247 * if count is > 1. 1248 */ 1249 pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n"); 1250 rcv_intr_timeout = 1; 1251 } 1252 if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) { 1253 /* 1254 * The dynamic algorithm expects a non-zero timeout 1255 * and a count > 1. 1256 */ 1257 pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n"); 1258 rcv_intr_dynamic = 0; 1259 } 1260 1261 /* sanitize link CRC options */ 1262 link_crc_mask &= SUPPORTED_CRCS; 1263 1264 /* 1265 * These must be called before the driver is registered with 1266 * the PCI subsystem. 1267 */ 1268 idr_init(&hfi1_unit_table); 1269 1270 hfi1_dbg_init(); 1271 ret = hfi1_wss_init(); 1272 if (ret < 0) 1273 goto bail_wss; 1274 ret = pci_register_driver(&hfi1_pci_driver); 1275 if (ret < 0) { 1276 pr_err("Unable to register driver: error %d\n", -ret); 1277 goto bail_dev; 1278 } 1279 goto bail; /* all OK */ 1280 1281 bail_dev: 1282 hfi1_wss_exit(); 1283 bail_wss: 1284 hfi1_dbg_exit(); 1285 idr_destroy(&hfi1_unit_table); 1286 dev_cleanup(); 1287 bail: 1288 return ret; 1289 } 1290 1291 module_init(hfi1_mod_init); 1292 1293 /* 1294 * Do the non-unit driver cleanup, memory free, etc. at unload. 1295 */ 1296 static void __exit hfi1_mod_cleanup(void) 1297 { 1298 pci_unregister_driver(&hfi1_pci_driver); 1299 node_affinity_destroy(); 1300 hfi1_wss_exit(); 1301 hfi1_dbg_exit(); 1302 hfi1_cpulist_count = 0; 1303 kfree(hfi1_cpulist); 1304 1305 idr_destroy(&hfi1_unit_table); 1306 dispose_firmware(); /* asymmetric with obtain_firmware() */ 1307 dev_cleanup(); 1308 } 1309 1310 module_exit(hfi1_mod_cleanup); 1311 1312 /* this can only be called after a successful initialization */ 1313 static void cleanup_device_data(struct hfi1_devdata *dd) 1314 { 1315 int ctxt; 1316 int pidx; 1317 struct hfi1_ctxtdata **tmp; 1318 unsigned long flags; 1319 1320 /* users can't do anything more with chip */ 1321 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1322 struct hfi1_pportdata *ppd = &dd->pport[pidx]; 1323 struct cc_state *cc_state; 1324 int i; 1325 1326 if (ppd->statusp) 1327 *ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT; 1328 1329 for (i = 0; i < OPA_MAX_SLS; i++) 1330 hrtimer_cancel(&ppd->cca_timer[i].hrtimer); 1331 1332 spin_lock(&ppd->cc_state_lock); 1333 cc_state = get_cc_state_protected(ppd); 1334 RCU_INIT_POINTER(ppd->cc_state, NULL); 1335 spin_unlock(&ppd->cc_state_lock); 1336 1337 if (cc_state) 1338 kfree_rcu(cc_state, rcu); 1339 } 1340 1341 free_credit_return(dd); 1342 1343 /* 1344 * Free any resources still in use (usually just kernel contexts) 1345 * at unload; we do for ctxtcnt, because that's what we allocate. 1346 * We acquire lock to be really paranoid that rcd isn't being 1347 * accessed from some interrupt-related code (that should not happen, 1348 * but best to be sure). 1349 */ 1350 spin_lock_irqsave(&dd->uctxt_lock, flags); 1351 tmp = dd->rcd; 1352 dd->rcd = NULL; 1353 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 1354 1355 if (dd->rcvhdrtail_dummy_kvaddr) { 1356 dma_free_coherent(&dd->pcidev->dev, sizeof(u64), 1357 (void *)dd->rcvhdrtail_dummy_kvaddr, 1358 dd->rcvhdrtail_dummy_dma); 1359 dd->rcvhdrtail_dummy_kvaddr = NULL; 1360 } 1361 1362 for (ctxt = 0; tmp && ctxt < dd->num_rcv_contexts; ctxt++) { 1363 struct hfi1_ctxtdata *rcd = tmp[ctxt]; 1364 1365 tmp[ctxt] = NULL; /* debugging paranoia */ 1366 if (rcd) { 1367 hfi1_clear_tids(rcd); 1368 hfi1_free_ctxtdata(dd, rcd); 1369 } 1370 } 1371 kfree(tmp); 1372 free_pio_map(dd); 1373 /* must follow rcv context free - need to remove rcv's hooks */ 1374 for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++) 1375 sc_free(dd->send_contexts[ctxt].sc); 1376 dd->num_send_contexts = 0; 1377 kfree(dd->send_contexts); 1378 dd->send_contexts = NULL; 1379 kfree(dd->hw_to_sw); 1380 dd->hw_to_sw = NULL; 1381 kfree(dd->boardname); 1382 vfree(dd->events); 1383 vfree(dd->status); 1384 } 1385 1386 /* 1387 * Clean up on unit shutdown, or error during unit load after 1388 * successful initialization. 1389 */ 1390 static void postinit_cleanup(struct hfi1_devdata *dd) 1391 { 1392 hfi1_start_cleanup(dd); 1393 1394 hfi1_pcie_ddcleanup(dd); 1395 hfi1_pcie_cleanup(dd->pcidev); 1396 1397 cleanup_device_data(dd); 1398 1399 hfi1_free_devdata(dd); 1400 } 1401 1402 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 1403 { 1404 int ret = 0, j, pidx, initfail; 1405 struct hfi1_devdata *dd = ERR_PTR(-EINVAL); 1406 struct hfi1_pportdata *ppd; 1407 1408 /* First, lock the non-writable module parameters */ 1409 HFI1_CAP_LOCK(); 1410 1411 /* Validate some global module parameters */ 1412 if (rcvhdrcnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) { 1413 hfi1_early_err(&pdev->dev, "Header queue count too small\n"); 1414 ret = -EINVAL; 1415 goto bail; 1416 } 1417 if (rcvhdrcnt > HFI1_MAX_HDRQ_EGRBUF_CNT) { 1418 hfi1_early_err(&pdev->dev, 1419 "Receive header queue count cannot be greater than %u\n", 1420 HFI1_MAX_HDRQ_EGRBUF_CNT); 1421 ret = -EINVAL; 1422 goto bail; 1423 } 1424 /* use the encoding function as a sanitization check */ 1425 if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) { 1426 hfi1_early_err(&pdev->dev, "Invalid HdrQ Entry size %u\n", 1427 hfi1_hdrq_entsize); 1428 ret = -EINVAL; 1429 goto bail; 1430 } 1431 1432 /* The receive eager buffer size must be set before the receive 1433 * contexts are created. 1434 * 1435 * Set the eager buffer size. Validate that it falls in a range 1436 * allowed by the hardware - all powers of 2 between the min and 1437 * max. The maximum valid MTU is within the eager buffer range 1438 * so we do not need to cap the max_mtu by an eager buffer size 1439 * setting. 1440 */ 1441 if (eager_buffer_size) { 1442 if (!is_power_of_2(eager_buffer_size)) 1443 eager_buffer_size = 1444 roundup_pow_of_two(eager_buffer_size); 1445 eager_buffer_size = 1446 clamp_val(eager_buffer_size, 1447 MIN_EAGER_BUFFER * 8, 1448 MAX_EAGER_BUFFER_TOTAL); 1449 hfi1_early_info(&pdev->dev, "Eager buffer size %u\n", 1450 eager_buffer_size); 1451 } else { 1452 hfi1_early_err(&pdev->dev, "Invalid Eager buffer size of 0\n"); 1453 ret = -EINVAL; 1454 goto bail; 1455 } 1456 1457 /* restrict value of hfi1_rcvarr_split */ 1458 hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100); 1459 1460 ret = hfi1_pcie_init(pdev, ent); 1461 if (ret) 1462 goto bail; 1463 1464 /* 1465 * Do device-specific initialization, function table setup, dd 1466 * allocation, etc. 1467 */ 1468 switch (ent->device) { 1469 case PCI_DEVICE_ID_INTEL0: 1470 case PCI_DEVICE_ID_INTEL1: 1471 dd = hfi1_init_dd(pdev, ent); 1472 break; 1473 default: 1474 hfi1_early_err(&pdev->dev, 1475 "Failing on unknown Intel deviceid 0x%x\n", 1476 ent->device); 1477 ret = -ENODEV; 1478 } 1479 1480 if (IS_ERR(dd)) 1481 ret = PTR_ERR(dd); 1482 if (ret) 1483 goto clean_bail; /* error already printed */ 1484 1485 ret = create_workqueues(dd); 1486 if (ret) 1487 goto clean_bail; 1488 1489 /* do the generic initialization */ 1490 initfail = hfi1_init(dd, 0); 1491 1492 ret = hfi1_register_ib_device(dd); 1493 1494 /* 1495 * Now ready for use. this should be cleared whenever we 1496 * detect a reset, or initiate one. If earlier failure, 1497 * we still create devices, so diags, etc. can be used 1498 * to determine cause of problem. 1499 */ 1500 if (!initfail && !ret) { 1501 dd->flags |= HFI1_INITTED; 1502 /* create debufs files after init and ib register */ 1503 hfi1_dbg_ibdev_init(&dd->verbs_dev); 1504 } 1505 1506 j = hfi1_device_create(dd); 1507 if (j) 1508 dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j); 1509 1510 if (initfail || ret) { 1511 stop_timers(dd); 1512 flush_workqueue(ib_wq); 1513 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1514 hfi1_quiet_serdes(dd->pport + pidx); 1515 ppd = dd->pport + pidx; 1516 if (ppd->hfi1_wq) { 1517 destroy_workqueue(ppd->hfi1_wq); 1518 ppd->hfi1_wq = NULL; 1519 } 1520 } 1521 if (!j) 1522 hfi1_device_remove(dd); 1523 if (!ret) 1524 hfi1_unregister_ib_device(dd); 1525 postinit_cleanup(dd); 1526 if (initfail) 1527 ret = initfail; 1528 goto bail; /* everything already cleaned */ 1529 } 1530 1531 sdma_start(dd); 1532 1533 return 0; 1534 1535 clean_bail: 1536 hfi1_pcie_cleanup(pdev); 1537 bail: 1538 return ret; 1539 } 1540 1541 static void remove_one(struct pci_dev *pdev) 1542 { 1543 struct hfi1_devdata *dd = pci_get_drvdata(pdev); 1544 1545 /* close debugfs files before ib unregister */ 1546 hfi1_dbg_ibdev_exit(&dd->verbs_dev); 1547 /* unregister from IB core */ 1548 hfi1_unregister_ib_device(dd); 1549 1550 /* 1551 * Disable the IB link, disable interrupts on the device, 1552 * clear dma engines, etc. 1553 */ 1554 shutdown_device(dd); 1555 1556 stop_timers(dd); 1557 1558 /* wait until all of our (qsfp) queue_work() calls complete */ 1559 flush_workqueue(ib_wq); 1560 1561 hfi1_device_remove(dd); 1562 1563 postinit_cleanup(dd); 1564 } 1565 1566 /** 1567 * hfi1_create_rcvhdrq - create a receive header queue 1568 * @dd: the hfi1_ib device 1569 * @rcd: the context data 1570 * 1571 * This must be contiguous memory (from an i/o perspective), and must be 1572 * DMA'able (which means for some systems, it will go through an IOMMU, 1573 * or be forced into a low address range). 1574 */ 1575 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd) 1576 { 1577 unsigned amt; 1578 u64 reg; 1579 1580 if (!rcd->rcvhdrq) { 1581 dma_addr_t dma_hdrqtail; 1582 gfp_t gfp_flags; 1583 1584 /* 1585 * rcvhdrqentsize is in DWs, so we have to convert to bytes 1586 * (* sizeof(u32)). 1587 */ 1588 amt = PAGE_ALIGN(rcd->rcvhdrq_cnt * rcd->rcvhdrqentsize * 1589 sizeof(u32)); 1590 1591 gfp_flags = (rcd->ctxt >= dd->first_user_ctxt) ? 1592 GFP_USER : GFP_KERNEL; 1593 rcd->rcvhdrq = dma_zalloc_coherent( 1594 &dd->pcidev->dev, amt, &rcd->rcvhdrq_dma, 1595 gfp_flags | __GFP_COMP); 1596 1597 if (!rcd->rcvhdrq) { 1598 dd_dev_err(dd, 1599 "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n", 1600 amt, rcd->ctxt); 1601 goto bail; 1602 } 1603 1604 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) { 1605 rcd->rcvhdrtail_kvaddr = dma_zalloc_coherent( 1606 &dd->pcidev->dev, PAGE_SIZE, &dma_hdrqtail, 1607 gfp_flags); 1608 if (!rcd->rcvhdrtail_kvaddr) 1609 goto bail_free; 1610 rcd->rcvhdrqtailaddr_dma = dma_hdrqtail; 1611 } 1612 1613 rcd->rcvhdrq_size = amt; 1614 } 1615 /* 1616 * These values are per-context: 1617 * RcvHdrCnt 1618 * RcvHdrEntSize 1619 * RcvHdrSize 1620 */ 1621 reg = ((u64)(rcd->rcvhdrq_cnt >> HDRQ_SIZE_SHIFT) 1622 & RCV_HDR_CNT_CNT_MASK) 1623 << RCV_HDR_CNT_CNT_SHIFT; 1624 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_CNT, reg); 1625 reg = (encode_rcv_header_entry_size(rcd->rcvhdrqentsize) 1626 & RCV_HDR_ENT_SIZE_ENT_SIZE_MASK) 1627 << RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT; 1628 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_ENT_SIZE, reg); 1629 reg = (dd->rcvhdrsize & RCV_HDR_SIZE_HDR_SIZE_MASK) 1630 << RCV_HDR_SIZE_HDR_SIZE_SHIFT; 1631 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_SIZE, reg); 1632 1633 /* 1634 * Program dummy tail address for every receive context 1635 * before enabling any receive context 1636 */ 1637 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_TAIL_ADDR, 1638 dd->rcvhdrtail_dummy_dma); 1639 1640 return 0; 1641 1642 bail_free: 1643 dd_dev_err(dd, 1644 "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n", 1645 rcd->ctxt); 1646 vfree(rcd->user_event_mask); 1647 rcd->user_event_mask = NULL; 1648 dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq, 1649 rcd->rcvhdrq_dma); 1650 rcd->rcvhdrq = NULL; 1651 bail: 1652 return -ENOMEM; 1653 } 1654 1655 /** 1656 * allocate eager buffers, both kernel and user contexts. 1657 * @rcd: the context we are setting up. 1658 * 1659 * Allocate the eager TID buffers and program them into hip. 1660 * They are no longer completely contiguous, we do multiple allocation 1661 * calls. Otherwise we get the OOM code involved, by asking for too 1662 * much per call, with disastrous results on some kernels. 1663 */ 1664 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd) 1665 { 1666 struct hfi1_devdata *dd = rcd->dd; 1667 u32 max_entries, egrtop, alloced_bytes = 0, idx = 0; 1668 gfp_t gfp_flags; 1669 u16 order; 1670 int ret = 0; 1671 u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu); 1672 1673 /* 1674 * GFP_USER, but without GFP_FS, so buffer cache can be 1675 * coalesced (we hope); otherwise, even at order 4, 1676 * heavy filesystem activity makes these fail, and we can 1677 * use compound pages. 1678 */ 1679 gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP; 1680 1681 /* 1682 * The minimum size of the eager buffers is a groups of MTU-sized 1683 * buffers. 1684 * The global eager_buffer_size parameter is checked against the 1685 * theoretical lower limit of the value. Here, we check against the 1686 * MTU. 1687 */ 1688 if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size)) 1689 rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size; 1690 /* 1691 * If using one-pkt-per-egr-buffer, lower the eager buffer 1692 * size to the max MTU (page-aligned). 1693 */ 1694 if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) 1695 rcd->egrbufs.rcvtid_size = round_mtu; 1696 1697 /* 1698 * Eager buffers sizes of 1MB or less require smaller TID sizes 1699 * to satisfy the "multiple of 8 RcvArray entries" requirement. 1700 */ 1701 if (rcd->egrbufs.size <= (1 << 20)) 1702 rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu, 1703 rounddown_pow_of_two(rcd->egrbufs.size / 8)); 1704 1705 while (alloced_bytes < rcd->egrbufs.size && 1706 rcd->egrbufs.alloced < rcd->egrbufs.count) { 1707 rcd->egrbufs.buffers[idx].addr = 1708 dma_zalloc_coherent(&dd->pcidev->dev, 1709 rcd->egrbufs.rcvtid_size, 1710 &rcd->egrbufs.buffers[idx].dma, 1711 gfp_flags); 1712 if (rcd->egrbufs.buffers[idx].addr) { 1713 rcd->egrbufs.buffers[idx].len = 1714 rcd->egrbufs.rcvtid_size; 1715 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr = 1716 rcd->egrbufs.buffers[idx].addr; 1717 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma = 1718 rcd->egrbufs.buffers[idx].dma; 1719 rcd->egrbufs.alloced++; 1720 alloced_bytes += rcd->egrbufs.rcvtid_size; 1721 idx++; 1722 } else { 1723 u32 new_size, i, j; 1724 u64 offset = 0; 1725 1726 /* 1727 * Fail the eager buffer allocation if: 1728 * - we are already using the lowest acceptable size 1729 * - we are using one-pkt-per-egr-buffer (this implies 1730 * that we are accepting only one size) 1731 */ 1732 if (rcd->egrbufs.rcvtid_size == round_mtu || 1733 !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) { 1734 dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n", 1735 rcd->ctxt); 1736 goto bail_rcvegrbuf_phys; 1737 } 1738 1739 new_size = rcd->egrbufs.rcvtid_size / 2; 1740 1741 /* 1742 * If the first attempt to allocate memory failed, don't 1743 * fail everything but continue with the next lower 1744 * size. 1745 */ 1746 if (idx == 0) { 1747 rcd->egrbufs.rcvtid_size = new_size; 1748 continue; 1749 } 1750 1751 /* 1752 * Re-partition already allocated buffers to a smaller 1753 * size. 1754 */ 1755 rcd->egrbufs.alloced = 0; 1756 for (i = 0, j = 0, offset = 0; j < idx; i++) { 1757 if (i >= rcd->egrbufs.count) 1758 break; 1759 rcd->egrbufs.rcvtids[i].dma = 1760 rcd->egrbufs.buffers[j].dma + offset; 1761 rcd->egrbufs.rcvtids[i].addr = 1762 rcd->egrbufs.buffers[j].addr + offset; 1763 rcd->egrbufs.alloced++; 1764 if ((rcd->egrbufs.buffers[j].dma + offset + 1765 new_size) == 1766 (rcd->egrbufs.buffers[j].dma + 1767 rcd->egrbufs.buffers[j].len)) { 1768 j++; 1769 offset = 0; 1770 } else { 1771 offset += new_size; 1772 } 1773 } 1774 rcd->egrbufs.rcvtid_size = new_size; 1775 } 1776 } 1777 rcd->egrbufs.numbufs = idx; 1778 rcd->egrbufs.size = alloced_bytes; 1779 1780 hfi1_cdbg(PROC, 1781 "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %zuKB\n", 1782 rcd->ctxt, rcd->egrbufs.alloced, 1783 rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024); 1784 1785 /* 1786 * Set the contexts rcv array head update threshold to the closest 1787 * power of 2 (so we can use a mask instead of modulo) below half 1788 * the allocated entries. 1789 */ 1790 rcd->egrbufs.threshold = 1791 rounddown_pow_of_two(rcd->egrbufs.alloced / 2); 1792 /* 1793 * Compute the expected RcvArray entry base. This is done after 1794 * allocating the eager buffers in order to maximize the 1795 * expected RcvArray entries for the context. 1796 */ 1797 max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size; 1798 egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size); 1799 rcd->expected_count = max_entries - egrtop; 1800 if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2) 1801 rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2; 1802 1803 rcd->expected_base = rcd->eager_base + egrtop; 1804 hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n", 1805 rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count, 1806 rcd->eager_base, rcd->expected_base); 1807 1808 if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) { 1809 hfi1_cdbg(PROC, 1810 "ctxt%u: current Eager buffer size is invalid %u\n", 1811 rcd->ctxt, rcd->egrbufs.rcvtid_size); 1812 ret = -EINVAL; 1813 goto bail; 1814 } 1815 1816 for (idx = 0; idx < rcd->egrbufs.alloced; idx++) { 1817 hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER, 1818 rcd->egrbufs.rcvtids[idx].dma, order); 1819 cond_resched(); 1820 } 1821 goto bail; 1822 1823 bail_rcvegrbuf_phys: 1824 for (idx = 0; idx < rcd->egrbufs.alloced && 1825 rcd->egrbufs.buffers[idx].addr; 1826 idx++) { 1827 dma_free_coherent(&dd->pcidev->dev, 1828 rcd->egrbufs.buffers[idx].len, 1829 rcd->egrbufs.buffers[idx].addr, 1830 rcd->egrbufs.buffers[idx].dma); 1831 rcd->egrbufs.buffers[idx].addr = NULL; 1832 rcd->egrbufs.buffers[idx].dma = 0; 1833 rcd->egrbufs.buffers[idx].len = 0; 1834 } 1835 bail: 1836 return ret; 1837 } 1838