xref: /openbmc/linux/drivers/infiniband/hw/hfi1/init.c (revision 79a93295)
1 /*
2  * Copyright(c) 2015, 2016 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <linux/pci.h>
49 #include <linux/netdevice.h>
50 #include <linux/vmalloc.h>
51 #include <linux/delay.h>
52 #include <linux/idr.h>
53 #include <linux/module.h>
54 #include <linux/printk.h>
55 #include <linux/hrtimer.h>
56 #include <rdma/rdma_vt.h>
57 
58 #include "hfi.h"
59 #include "device.h"
60 #include "common.h"
61 #include "trace.h"
62 #include "mad.h"
63 #include "sdma.h"
64 #include "debugfs.h"
65 #include "verbs.h"
66 #include "aspm.h"
67 #include "affinity.h"
68 
69 #undef pr_fmt
70 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
71 
72 /*
73  * min buffers we want to have per context, after driver
74  */
75 #define HFI1_MIN_USER_CTXT_BUFCNT 7
76 
77 #define HFI1_MIN_HDRQ_EGRBUF_CNT 2
78 #define HFI1_MAX_HDRQ_EGRBUF_CNT 16352
79 #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
80 #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */
81 
82 /*
83  * Number of user receive contexts we are configured to use (to allow for more
84  * pio buffers per ctxt, etc.)  Zero means use one user context per CPU.
85  */
86 int num_user_contexts = -1;
87 module_param_named(num_user_contexts, num_user_contexts, uint, S_IRUGO);
88 MODULE_PARM_DESC(
89 	num_user_contexts, "Set max number of user contexts to use");
90 
91 uint krcvqs[RXE_NUM_DATA_VL];
92 int krcvqsset;
93 module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO);
94 MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL");
95 
96 /* computed based on above array */
97 unsigned long n_krcvqs;
98 
99 static unsigned hfi1_rcvarr_split = 25;
100 module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
101 MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");
102 
103 static uint eager_buffer_size = (2 << 20); /* 2MB */
104 module_param(eager_buffer_size, uint, S_IRUGO);
105 MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 2MB");
106 
107 static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
108 module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
109 MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");
110 
111 static uint hfi1_hdrq_entsize = 32;
112 module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, S_IRUGO);
113 MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B (default), 32 - 128B");
114 
115 unsigned int user_credit_return_threshold = 33;	/* default is 33% */
116 module_param(user_credit_return_threshold, uint, S_IRUGO);
117 MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");
118 
119 static inline u64 encode_rcv_header_entry_size(u16);
120 
121 static struct idr hfi1_unit_table;
122 u32 hfi1_cpulist_count;
123 unsigned long *hfi1_cpulist;
124 
125 /*
126  * Common code for creating the receive context array.
127  */
128 int hfi1_create_ctxts(struct hfi1_devdata *dd)
129 {
130 	unsigned i;
131 	int ret;
132 
133 	/* Control context has to be always 0 */
134 	BUILD_BUG_ON(HFI1_CTRL_CTXT != 0);
135 
136 	dd->rcd = kzalloc_node(dd->num_rcv_contexts * sizeof(*dd->rcd),
137 			       GFP_KERNEL, dd->node);
138 	if (!dd->rcd)
139 		goto nomem;
140 
141 	/* create one or more kernel contexts */
142 	for (i = 0; i < dd->first_user_ctxt; ++i) {
143 		struct hfi1_pportdata *ppd;
144 		struct hfi1_ctxtdata *rcd;
145 
146 		ppd = dd->pport + (i % dd->num_pports);
147 
148 		/* dd->rcd[i] gets assigned inside the callee */
149 		rcd = hfi1_create_ctxtdata(ppd, i, dd->node);
150 		if (!rcd) {
151 			dd_dev_err(dd,
152 				   "Unable to allocate kernel receive context, failing\n");
153 			goto nomem;
154 		}
155 		/*
156 		 * Set up the kernel context flags here and now because they
157 		 * use default values for all receive side memories.  User
158 		 * contexts will be handled as they are created.
159 		 */
160 		rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
161 			HFI1_CAP_KGET(NODROP_RHQ_FULL) |
162 			HFI1_CAP_KGET(NODROP_EGR_FULL) |
163 			HFI1_CAP_KGET(DMA_RTAIL);
164 
165 		/* Control context must use DMA_RTAIL */
166 		if (rcd->ctxt == HFI1_CTRL_CTXT)
167 			rcd->flags |= HFI1_CAP_DMA_RTAIL;
168 		rcd->seq_cnt = 1;
169 
170 		rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node);
171 		if (!rcd->sc) {
172 			dd_dev_err(dd,
173 				   "Unable to allocate kernel send context, failing\n");
174 			goto nomem;
175 		}
176 
177 		ret = hfi1_init_ctxt(rcd->sc);
178 		if (ret < 0) {
179 			dd_dev_err(dd,
180 				   "Failed to setup kernel receive context, failing\n");
181 			ret = -EFAULT;
182 			goto bail;
183 		}
184 	}
185 
186 	/*
187 	 * Initialize aspm, to be done after gen3 transition and setting up
188 	 * contexts and before enabling interrupts
189 	 */
190 	aspm_init(dd);
191 
192 	return 0;
193 nomem:
194 	ret = -ENOMEM;
195 bail:
196 	if (dd->rcd) {
197 		for (i = 0; i < dd->num_rcv_contexts; ++i)
198 			hfi1_free_ctxtdata(dd, dd->rcd[i]);
199 	}
200 	kfree(dd->rcd);
201 	dd->rcd = NULL;
202 	return ret;
203 }
204 
205 /*
206  * Common code for user and kernel context setup.
207  */
208 struct hfi1_ctxtdata *hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, u32 ctxt,
209 					   int numa)
210 {
211 	struct hfi1_devdata *dd = ppd->dd;
212 	struct hfi1_ctxtdata *rcd;
213 	unsigned kctxt_ngroups = 0;
214 	u32 base;
215 
216 	if (dd->rcv_entries.nctxt_extra >
217 	    dd->num_rcv_contexts - dd->first_user_ctxt)
218 		kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
219 				 (dd->num_rcv_contexts - dd->first_user_ctxt));
220 	rcd = kzalloc_node(sizeof(*rcd), GFP_KERNEL, numa);
221 	if (rcd) {
222 		u32 rcvtids, max_entries;
223 
224 		hfi1_cdbg(PROC, "setting up context %u\n", ctxt);
225 
226 		INIT_LIST_HEAD(&rcd->qp_wait_list);
227 		rcd->ppd = ppd;
228 		rcd->dd = dd;
229 		rcd->cnt = 1;
230 		rcd->ctxt = ctxt;
231 		dd->rcd[ctxt] = rcd;
232 		rcd->numa_id = numa;
233 		rcd->rcv_array_groups = dd->rcv_entries.ngroups;
234 
235 		mutex_init(&rcd->exp_lock);
236 
237 		/*
238 		 * Calculate the context's RcvArray entry starting point.
239 		 * We do this here because we have to take into account all
240 		 * the RcvArray entries that previous context would have
241 		 * taken and we have to account for any extra groups
242 		 * assigned to the kernel or user contexts.
243 		 */
244 		if (ctxt < dd->first_user_ctxt) {
245 			if (ctxt < kctxt_ngroups) {
246 				base = ctxt * (dd->rcv_entries.ngroups + 1);
247 				rcd->rcv_array_groups++;
248 			} else
249 				base = kctxt_ngroups +
250 					(ctxt * dd->rcv_entries.ngroups);
251 		} else {
252 			u16 ct = ctxt - dd->first_user_ctxt;
253 
254 			base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
255 				kctxt_ngroups);
256 			if (ct < dd->rcv_entries.nctxt_extra) {
257 				base += ct * (dd->rcv_entries.ngroups + 1);
258 				rcd->rcv_array_groups++;
259 			} else
260 				base += dd->rcv_entries.nctxt_extra +
261 					(ct * dd->rcv_entries.ngroups);
262 		}
263 		rcd->eager_base = base * dd->rcv_entries.group_size;
264 
265 		rcd->rcvhdrq_cnt = rcvhdrcnt;
266 		rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
267 		/*
268 		 * Simple Eager buffer allocation: we have already pre-allocated
269 		 * the number of RcvArray entry groups. Each ctxtdata structure
270 		 * holds the number of groups for that context.
271 		 *
272 		 * To follow CSR requirements and maintain cacheline alignment,
273 		 * make sure all sizes and bases are multiples of group_size.
274 		 *
275 		 * The expected entry count is what is left after assigning
276 		 * eager.
277 		 */
278 		max_entries = rcd->rcv_array_groups *
279 			dd->rcv_entries.group_size;
280 		rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
281 		rcd->egrbufs.count = round_down(rcvtids,
282 						dd->rcv_entries.group_size);
283 		if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
284 			dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
285 				   rcd->ctxt);
286 			rcd->egrbufs.count = MAX_EAGER_ENTRIES;
287 		}
288 		hfi1_cdbg(PROC,
289 			  "ctxt%u: max Eager buffer RcvArray entries: %u\n",
290 			  rcd->ctxt, rcd->egrbufs.count);
291 
292 		/*
293 		 * Allocate array that will hold the eager buffer accounting
294 		 * data.
295 		 * This will allocate the maximum possible buffer count based
296 		 * on the value of the RcvArray split parameter.
297 		 * The resulting value will be rounded down to the closest
298 		 * multiple of dd->rcv_entries.group_size.
299 		 */
300 		rcd->egrbufs.buffers = kcalloc(rcd->egrbufs.count,
301 					       sizeof(*rcd->egrbufs.buffers),
302 					       GFP_KERNEL);
303 		if (!rcd->egrbufs.buffers)
304 			goto bail;
305 		rcd->egrbufs.rcvtids = kcalloc(rcd->egrbufs.count,
306 					       sizeof(*rcd->egrbufs.rcvtids),
307 					       GFP_KERNEL);
308 		if (!rcd->egrbufs.rcvtids)
309 			goto bail;
310 		rcd->egrbufs.size = eager_buffer_size;
311 		/*
312 		 * The size of the buffers programmed into the RcvArray
313 		 * entries needs to be big enough to handle the highest
314 		 * MTU supported.
315 		 */
316 		if (rcd->egrbufs.size < hfi1_max_mtu) {
317 			rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu);
318 			hfi1_cdbg(PROC,
319 				  "ctxt%u: eager bufs size too small. Adjusting to %zu\n",
320 				    rcd->ctxt, rcd->egrbufs.size);
321 		}
322 		rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;
323 
324 		if (ctxt < dd->first_user_ctxt) { /* N/A for PSM contexts */
325 			rcd->opstats = kzalloc(sizeof(*rcd->opstats),
326 				GFP_KERNEL);
327 			if (!rcd->opstats)
328 				goto bail;
329 		}
330 	}
331 	return rcd;
332 bail:
333 	dd->rcd[ctxt] = NULL;
334 	kfree(rcd->egrbufs.rcvtids);
335 	kfree(rcd->egrbufs.buffers);
336 	kfree(rcd);
337 	return NULL;
338 }
339 
340 /*
341  * Convert a receive header entry size that to the encoding used in the CSR.
342  *
343  * Return a zero if the given size is invalid.
344  */
345 static inline u64 encode_rcv_header_entry_size(u16 size)
346 {
347 	/* there are only 3 valid receive header entry sizes */
348 	if (size == 2)
349 		return 1;
350 	if (size == 16)
351 		return 2;
352 	else if (size == 32)
353 		return 4;
354 	return 0; /* invalid */
355 }
356 
357 /*
358  * Select the largest ccti value over all SLs to determine the intra-
359  * packet gap for the link.
360  *
361  * called with cca_timer_lock held (to protect access to cca_timer
362  * array), and rcu_read_lock() (to protect access to cc_state).
363  */
364 void set_link_ipg(struct hfi1_pportdata *ppd)
365 {
366 	struct hfi1_devdata *dd = ppd->dd;
367 	struct cc_state *cc_state;
368 	int i;
369 	u16 cce, ccti_limit, max_ccti = 0;
370 	u16 shift, mult;
371 	u64 src;
372 	u32 current_egress_rate; /* Mbits /sec */
373 	u32 max_pkt_time;
374 	/*
375 	 * max_pkt_time is the maximum packet egress time in units
376 	 * of the fabric clock period 1/(805 MHz).
377 	 */
378 
379 	cc_state = get_cc_state(ppd);
380 
381 	if (!cc_state)
382 		/*
383 		 * This should _never_ happen - rcu_read_lock() is held,
384 		 * and set_link_ipg() should not be called if cc_state
385 		 * is NULL.
386 		 */
387 		return;
388 
389 	for (i = 0; i < OPA_MAX_SLS; i++) {
390 		u16 ccti = ppd->cca_timer[i].ccti;
391 
392 		if (ccti > max_ccti)
393 			max_ccti = ccti;
394 	}
395 
396 	ccti_limit = cc_state->cct.ccti_limit;
397 	if (max_ccti > ccti_limit)
398 		max_ccti = ccti_limit;
399 
400 	cce = cc_state->cct.entries[max_ccti].entry;
401 	shift = (cce & 0xc000) >> 14;
402 	mult = (cce & 0x3fff);
403 
404 	current_egress_rate = active_egress_rate(ppd);
405 
406 	max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate);
407 
408 	src = (max_pkt_time >> shift) * mult;
409 
410 	src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
411 	src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;
412 
413 	write_csr(dd, SEND_STATIC_RATE_CONTROL, src);
414 }
415 
416 static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
417 {
418 	struct cca_timer *cca_timer;
419 	struct hfi1_pportdata *ppd;
420 	int sl;
421 	u16 ccti_timer, ccti_min;
422 	struct cc_state *cc_state;
423 	unsigned long flags;
424 	enum hrtimer_restart ret = HRTIMER_NORESTART;
425 
426 	cca_timer = container_of(t, struct cca_timer, hrtimer);
427 	ppd = cca_timer->ppd;
428 	sl = cca_timer->sl;
429 
430 	rcu_read_lock();
431 
432 	cc_state = get_cc_state(ppd);
433 
434 	if (!cc_state) {
435 		rcu_read_unlock();
436 		return HRTIMER_NORESTART;
437 	}
438 
439 	/*
440 	 * 1) decrement ccti for SL
441 	 * 2) calculate IPG for link (set_link_ipg())
442 	 * 3) restart timer, unless ccti is at min value
443 	 */
444 
445 	ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
446 	ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
447 
448 	spin_lock_irqsave(&ppd->cca_timer_lock, flags);
449 
450 	if (cca_timer->ccti > ccti_min) {
451 		cca_timer->ccti--;
452 		set_link_ipg(ppd);
453 	}
454 
455 	if (cca_timer->ccti > ccti_min) {
456 		unsigned long nsec = 1024 * ccti_timer;
457 		/* ccti_timer is in units of 1.024 usec */
458 		hrtimer_forward_now(t, ns_to_ktime(nsec));
459 		ret = HRTIMER_RESTART;
460 	}
461 
462 	spin_unlock_irqrestore(&ppd->cca_timer_lock, flags);
463 	rcu_read_unlock();
464 	return ret;
465 }
466 
467 /*
468  * Common code for initializing the physical port structure.
469  */
470 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
471 			 struct hfi1_devdata *dd, u8 hw_pidx, u8 port)
472 {
473 	int i;
474 	uint default_pkey_idx;
475 	struct cc_state *cc_state;
476 
477 	ppd->dd = dd;
478 	ppd->hw_pidx = hw_pidx;
479 	ppd->port = port; /* IB port number, not index */
480 
481 	default_pkey_idx = 1;
482 
483 	ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
484 	if (loopback) {
485 		hfi1_early_err(&pdev->dev,
486 			       "Faking data partition 0x8001 in idx %u\n",
487 			       !default_pkey_idx);
488 		ppd->pkeys[!default_pkey_idx] = 0x8001;
489 	}
490 
491 	INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
492 	INIT_WORK(&ppd->link_up_work, handle_link_up);
493 	INIT_WORK(&ppd->link_down_work, handle_link_down);
494 	INIT_WORK(&ppd->freeze_work, handle_freeze);
495 	INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
496 	INIT_WORK(&ppd->sma_message_work, handle_sma_message);
497 	INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
498 	INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link);
499 	INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work);
500 	INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event);
501 
502 	mutex_init(&ppd->hls_lock);
503 	spin_lock_init(&ppd->qsfp_info.qsfp_lock);
504 
505 	ppd->qsfp_info.ppd = ppd;
506 	ppd->sm_trap_qp = 0x0;
507 	ppd->sa_qp = 0x1;
508 
509 	ppd->hfi1_wq = NULL;
510 
511 	spin_lock_init(&ppd->cca_timer_lock);
512 
513 	for (i = 0; i < OPA_MAX_SLS; i++) {
514 		hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
515 			     HRTIMER_MODE_REL);
516 		ppd->cca_timer[i].ppd = ppd;
517 		ppd->cca_timer[i].sl = i;
518 		ppd->cca_timer[i].ccti = 0;
519 		ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
520 	}
521 
522 	ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;
523 
524 	spin_lock_init(&ppd->cc_state_lock);
525 	spin_lock_init(&ppd->cc_log_lock);
526 	cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL);
527 	RCU_INIT_POINTER(ppd->cc_state, cc_state);
528 	if (!cc_state)
529 		goto bail;
530 	return;
531 
532 bail:
533 
534 	hfi1_early_err(&pdev->dev,
535 		       "Congestion Control Agent disabled for port %d\n", port);
536 }
537 
538 /*
539  * Do initialization for device that is only needed on
540  * first detect, not on resets.
541  */
542 static int loadtime_init(struct hfi1_devdata *dd)
543 {
544 	return 0;
545 }
546 
547 /**
548  * init_after_reset - re-initialize after a reset
549  * @dd: the hfi1_ib device
550  *
551  * sanity check at least some of the values after reset, and
552  * ensure no receive or transmit (explicitly, in case reset
553  * failed
554  */
555 static int init_after_reset(struct hfi1_devdata *dd)
556 {
557 	int i;
558 
559 	/*
560 	 * Ensure chip does no sends or receives, tail updates, or
561 	 * pioavail updates while we re-initialize.  This is mostly
562 	 * for the driver data structures, not chip registers.
563 	 */
564 	for (i = 0; i < dd->num_rcv_contexts; i++)
565 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
566 				  HFI1_RCVCTRL_INTRAVAIL_DIS |
567 				  HFI1_RCVCTRL_TAILUPD_DIS, i);
568 	pio_send_control(dd, PSC_GLOBAL_DISABLE);
569 	for (i = 0; i < dd->num_send_contexts; i++)
570 		sc_disable(dd->send_contexts[i].sc);
571 
572 	return 0;
573 }
574 
575 static void enable_chip(struct hfi1_devdata *dd)
576 {
577 	u32 rcvmask;
578 	u32 i;
579 
580 	/* enable PIO send */
581 	pio_send_control(dd, PSC_GLOBAL_ENABLE);
582 
583 	/*
584 	 * Enable kernel ctxts' receive and receive interrupt.
585 	 * Other ctxts done as user opens and initializes them.
586 	 */
587 	for (i = 0; i < dd->first_user_ctxt; ++i) {
588 		rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
589 		rcvmask |= HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, DMA_RTAIL) ?
590 			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
591 		if (!HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, MULTI_PKT_EGR))
592 			rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
593 		if (HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, NODROP_RHQ_FULL))
594 			rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
595 		if (HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, NODROP_EGR_FULL))
596 			rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
597 		hfi1_rcvctrl(dd, rcvmask, i);
598 		sc_enable(dd->rcd[i]->sc);
599 	}
600 }
601 
602 /**
603  * create_workqueues - create per port workqueues
604  * @dd: the hfi1_ib device
605  */
606 static int create_workqueues(struct hfi1_devdata *dd)
607 {
608 	int pidx;
609 	struct hfi1_pportdata *ppd;
610 
611 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
612 		ppd = dd->pport + pidx;
613 		if (!ppd->hfi1_wq) {
614 			ppd->hfi1_wq =
615 				alloc_workqueue(
616 				    "hfi%d_%d",
617 				    WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE,
618 				    dd->num_sdma,
619 				    dd->unit, pidx);
620 			if (!ppd->hfi1_wq)
621 				goto wq_error;
622 		}
623 	}
624 	return 0;
625 wq_error:
626 	pr_err("alloc_workqueue failed for port %d\n", pidx + 1);
627 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
628 		ppd = dd->pport + pidx;
629 		if (ppd->hfi1_wq) {
630 			destroy_workqueue(ppd->hfi1_wq);
631 			ppd->hfi1_wq = NULL;
632 		}
633 	}
634 	return -ENOMEM;
635 }
636 
637 /**
638  * hfi1_init - do the actual initialization sequence on the chip
639  * @dd: the hfi1_ib device
640  * @reinit: re-initializing, so don't allocate new memory
641  *
642  * Do the actual initialization sequence on the chip.  This is done
643  * both from the init routine called from the PCI infrastructure, and
644  * when we reset the chip, or detect that it was reset internally,
645  * or it's administratively re-enabled.
646  *
647  * Memory allocation here and in called routines is only done in
648  * the first case (reinit == 0).  We have to be careful, because even
649  * without memory allocation, we need to re-write all the chip registers
650  * TIDs, etc. after the reset or enable has completed.
651  */
652 int hfi1_init(struct hfi1_devdata *dd, int reinit)
653 {
654 	int ret = 0, pidx, lastfail = 0;
655 	unsigned i, len;
656 	struct hfi1_ctxtdata *rcd;
657 	struct hfi1_pportdata *ppd;
658 
659 	/* Set up recv low level handlers */
660 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EXPECTED] =
661 						kdeth_process_expected;
662 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EAGER] =
663 						kdeth_process_eager;
664 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_IB] = process_receive_ib;
665 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_ERROR] =
666 						process_receive_error;
667 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_BYPASS] =
668 						process_receive_bypass;
669 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID5] =
670 						process_receive_invalid;
671 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID6] =
672 						process_receive_invalid;
673 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID7] =
674 						process_receive_invalid;
675 	dd->rhf_rcv_function_map = dd->normal_rhf_rcv_functions;
676 
677 	/* Set up send low level handlers */
678 	dd->process_pio_send = hfi1_verbs_send_pio;
679 	dd->process_dma_send = hfi1_verbs_send_dma;
680 	dd->pio_inline_send = pio_copy;
681 
682 	if (is_ax(dd)) {
683 		atomic_set(&dd->drop_packet, DROP_PACKET_ON);
684 		dd->do_drop = 1;
685 	} else {
686 		atomic_set(&dd->drop_packet, DROP_PACKET_OFF);
687 		dd->do_drop = 0;
688 	}
689 
690 	/* make sure the link is not "up" */
691 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
692 		ppd = dd->pport + pidx;
693 		ppd->linkup = 0;
694 	}
695 
696 	if (reinit)
697 		ret = init_after_reset(dd);
698 	else
699 		ret = loadtime_init(dd);
700 	if (ret)
701 		goto done;
702 
703 	/* allocate dummy tail memory for all receive contexts */
704 	dd->rcvhdrtail_dummy_kvaddr = dma_zalloc_coherent(
705 		&dd->pcidev->dev, sizeof(u64),
706 		&dd->rcvhdrtail_dummy_dma,
707 		GFP_KERNEL);
708 
709 	if (!dd->rcvhdrtail_dummy_kvaddr) {
710 		dd_dev_err(dd, "cannot allocate dummy tail memory\n");
711 		ret = -ENOMEM;
712 		goto done;
713 	}
714 
715 	/* dd->rcd can be NULL if early initialization failed */
716 	for (i = 0; dd->rcd && i < dd->first_user_ctxt; ++i) {
717 		/*
718 		 * Set up the (kernel) rcvhdr queue and egr TIDs.  If doing
719 		 * re-init, the simplest way to handle this is to free
720 		 * existing, and re-allocate.
721 		 * Need to re-create rest of ctxt 0 ctxtdata as well.
722 		 */
723 		rcd = dd->rcd[i];
724 		if (!rcd)
725 			continue;
726 
727 		rcd->do_interrupt = &handle_receive_interrupt;
728 
729 		lastfail = hfi1_create_rcvhdrq(dd, rcd);
730 		if (!lastfail)
731 			lastfail = hfi1_setup_eagerbufs(rcd);
732 		if (lastfail) {
733 			dd_dev_err(dd,
734 				   "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
735 			ret = lastfail;
736 		}
737 	}
738 
739 	/* Allocate enough memory for user event notification. */
740 	len = PAGE_ALIGN(dd->chip_rcv_contexts * HFI1_MAX_SHARED_CTXTS *
741 			 sizeof(*dd->events));
742 	dd->events = vmalloc_user(len);
743 	if (!dd->events)
744 		dd_dev_err(dd, "Failed to allocate user events page\n");
745 	/*
746 	 * Allocate a page for device and port status.
747 	 * Page will be shared amongst all user processes.
748 	 */
749 	dd->status = vmalloc_user(PAGE_SIZE);
750 	if (!dd->status)
751 		dd_dev_err(dd, "Failed to allocate dev status page\n");
752 	else
753 		dd->freezelen = PAGE_SIZE - (sizeof(*dd->status) -
754 					     sizeof(dd->status->freezemsg));
755 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
756 		ppd = dd->pport + pidx;
757 		if (dd->status)
758 			/* Currently, we only have one port */
759 			ppd->statusp = &dd->status->port;
760 
761 		set_mtu(ppd);
762 	}
763 
764 	/* enable chip even if we have an error, so we can debug cause */
765 	enable_chip(dd);
766 
767 done:
768 	/*
769 	 * Set status even if port serdes is not initialized
770 	 * so that diags will work.
771 	 */
772 	if (dd->status)
773 		dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
774 			HFI1_STATUS_INITTED;
775 	if (!ret) {
776 		/* enable all interrupts from the chip */
777 		set_intr_state(dd, 1);
778 
779 		/* chip is OK for user apps; mark it as initialized */
780 		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
781 			ppd = dd->pport + pidx;
782 
783 			/*
784 			 * start the serdes - must be after interrupts are
785 			 * enabled so we are notified when the link goes up
786 			 */
787 			lastfail = bringup_serdes(ppd);
788 			if (lastfail)
789 				dd_dev_info(dd,
790 					    "Failed to bring up port %u\n",
791 					    ppd->port);
792 
793 			/*
794 			 * Set status even if port serdes is not initialized
795 			 * so that diags will work.
796 			 */
797 			if (ppd->statusp)
798 				*ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
799 							HFI1_STATUS_INITTED;
800 			if (!ppd->link_speed_enabled)
801 				continue;
802 		}
803 	}
804 
805 	/* if ret is non-zero, we probably should do some cleanup here... */
806 	return ret;
807 }
808 
809 static inline struct hfi1_devdata *__hfi1_lookup(int unit)
810 {
811 	return idr_find(&hfi1_unit_table, unit);
812 }
813 
814 struct hfi1_devdata *hfi1_lookup(int unit)
815 {
816 	struct hfi1_devdata *dd;
817 	unsigned long flags;
818 
819 	spin_lock_irqsave(&hfi1_devs_lock, flags);
820 	dd = __hfi1_lookup(unit);
821 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
822 
823 	return dd;
824 }
825 
826 /*
827  * Stop the timers during unit shutdown, or after an error late
828  * in initialization.
829  */
830 static void stop_timers(struct hfi1_devdata *dd)
831 {
832 	struct hfi1_pportdata *ppd;
833 	int pidx;
834 
835 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
836 		ppd = dd->pport + pidx;
837 		if (ppd->led_override_timer.data) {
838 			del_timer_sync(&ppd->led_override_timer);
839 			atomic_set(&ppd->led_override_timer_active, 0);
840 		}
841 	}
842 }
843 
844 /**
845  * shutdown_device - shut down a device
846  * @dd: the hfi1_ib device
847  *
848  * This is called to make the device quiet when we are about to
849  * unload the driver, and also when the device is administratively
850  * disabled.   It does not free any data structures.
851  * Everything it does has to be setup again by hfi1_init(dd, 1)
852  */
853 static void shutdown_device(struct hfi1_devdata *dd)
854 {
855 	struct hfi1_pportdata *ppd;
856 	unsigned pidx;
857 	int i;
858 
859 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
860 		ppd = dd->pport + pidx;
861 
862 		ppd->linkup = 0;
863 		if (ppd->statusp)
864 			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
865 					   HFI1_STATUS_IB_READY);
866 	}
867 	dd->flags &= ~HFI1_INITTED;
868 
869 	/* mask interrupts, but not errors */
870 	set_intr_state(dd, 0);
871 
872 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
873 		ppd = dd->pport + pidx;
874 		for (i = 0; i < dd->num_rcv_contexts; i++)
875 			hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
876 					  HFI1_RCVCTRL_CTXT_DIS |
877 					  HFI1_RCVCTRL_INTRAVAIL_DIS |
878 					  HFI1_RCVCTRL_PKEY_DIS |
879 					  HFI1_RCVCTRL_ONE_PKT_EGR_DIS, i);
880 		/*
881 		 * Gracefully stop all sends allowing any in progress to
882 		 * trickle out first.
883 		 */
884 		for (i = 0; i < dd->num_send_contexts; i++)
885 			sc_flush(dd->send_contexts[i].sc);
886 	}
887 
888 	/*
889 	 * Enough for anything that's going to trickle out to have actually
890 	 * done so.
891 	 */
892 	udelay(20);
893 
894 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
895 		ppd = dd->pport + pidx;
896 
897 		/* disable all contexts */
898 		for (i = 0; i < dd->num_send_contexts; i++)
899 			sc_disable(dd->send_contexts[i].sc);
900 		/* disable the send device */
901 		pio_send_control(dd, PSC_GLOBAL_DISABLE);
902 
903 		shutdown_led_override(ppd);
904 
905 		/*
906 		 * Clear SerdesEnable.
907 		 * We can't count on interrupts since we are stopping.
908 		 */
909 		hfi1_quiet_serdes(ppd);
910 
911 		if (ppd->hfi1_wq) {
912 			destroy_workqueue(ppd->hfi1_wq);
913 			ppd->hfi1_wq = NULL;
914 		}
915 	}
916 	sdma_exit(dd);
917 }
918 
919 /**
920  * hfi1_free_ctxtdata - free a context's allocated data
921  * @dd: the hfi1_ib device
922  * @rcd: the ctxtdata structure
923  *
924  * free up any allocated data for a context
925  * This should not touch anything that would affect a simultaneous
926  * re-allocation of context data, because it is called after hfi1_mutex
927  * is released (and can be called from reinit as well).
928  * It should never change any chip state, or global driver state.
929  */
930 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
931 {
932 	unsigned e;
933 
934 	if (!rcd)
935 		return;
936 
937 	if (rcd->rcvhdrq) {
938 		dma_free_coherent(&dd->pcidev->dev, rcd->rcvhdrq_size,
939 				  rcd->rcvhdrq, rcd->rcvhdrq_dma);
940 		rcd->rcvhdrq = NULL;
941 		if (rcd->rcvhdrtail_kvaddr) {
942 			dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
943 					  (void *)rcd->rcvhdrtail_kvaddr,
944 					  rcd->rcvhdrqtailaddr_dma);
945 			rcd->rcvhdrtail_kvaddr = NULL;
946 		}
947 	}
948 
949 	/* all the RcvArray entries should have been cleared by now */
950 	kfree(rcd->egrbufs.rcvtids);
951 
952 	for (e = 0; e < rcd->egrbufs.alloced; e++) {
953 		if (rcd->egrbufs.buffers[e].dma)
954 			dma_free_coherent(&dd->pcidev->dev,
955 					  rcd->egrbufs.buffers[e].len,
956 					  rcd->egrbufs.buffers[e].addr,
957 					  rcd->egrbufs.buffers[e].dma);
958 	}
959 	kfree(rcd->egrbufs.buffers);
960 
961 	sc_free(rcd->sc);
962 	vfree(rcd->user_event_mask);
963 	vfree(rcd->subctxt_uregbase);
964 	vfree(rcd->subctxt_rcvegrbuf);
965 	vfree(rcd->subctxt_rcvhdr_base);
966 	kfree(rcd->opstats);
967 	kfree(rcd);
968 }
969 
970 /*
971  * Release our hold on the shared asic data.  If we are the last one,
972  * return the structure to be finalized outside the lock.  Must be
973  * holding hfi1_devs_lock.
974  */
975 static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd)
976 {
977 	struct hfi1_asic_data *ad;
978 	int other;
979 
980 	if (!dd->asic_data)
981 		return NULL;
982 	dd->asic_data->dds[dd->hfi1_id] = NULL;
983 	other = dd->hfi1_id ? 0 : 1;
984 	ad = dd->asic_data;
985 	dd->asic_data = NULL;
986 	/* return NULL if the other dd still has a link */
987 	return ad->dds[other] ? NULL : ad;
988 }
989 
990 static void finalize_asic_data(struct hfi1_devdata *dd,
991 			       struct hfi1_asic_data *ad)
992 {
993 	clean_up_i2c(dd, ad);
994 	kfree(ad);
995 }
996 
997 static void __hfi1_free_devdata(struct kobject *kobj)
998 {
999 	struct hfi1_devdata *dd =
1000 		container_of(kobj, struct hfi1_devdata, kobj);
1001 	struct hfi1_asic_data *ad;
1002 	unsigned long flags;
1003 
1004 	spin_lock_irqsave(&hfi1_devs_lock, flags);
1005 	idr_remove(&hfi1_unit_table, dd->unit);
1006 	list_del(&dd->list);
1007 	ad = release_asic_data(dd);
1008 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1009 	if (ad)
1010 		finalize_asic_data(dd, ad);
1011 	free_platform_config(dd);
1012 	rcu_barrier(); /* wait for rcu callbacks to complete */
1013 	free_percpu(dd->int_counter);
1014 	free_percpu(dd->rcv_limit);
1015 	free_percpu(dd->send_schedule);
1016 	rvt_dealloc_device(&dd->verbs_dev.rdi);
1017 }
1018 
1019 static struct kobj_type hfi1_devdata_type = {
1020 	.release = __hfi1_free_devdata,
1021 };
1022 
1023 void hfi1_free_devdata(struct hfi1_devdata *dd)
1024 {
1025 	kobject_put(&dd->kobj);
1026 }
1027 
1028 /*
1029  * Allocate our primary per-unit data structure.  Must be done via verbs
1030  * allocator, because the verbs cleanup process both does cleanup and
1031  * free of the data structure.
1032  * "extra" is for chip-specific data.
1033  *
1034  * Use the idr mechanism to get a unit number for this unit.
1035  */
1036 struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev, size_t extra)
1037 {
1038 	unsigned long flags;
1039 	struct hfi1_devdata *dd;
1040 	int ret, nports;
1041 
1042 	/* extra is * number of ports */
1043 	nports = extra / sizeof(struct hfi1_pportdata);
1044 
1045 	dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra,
1046 						     nports);
1047 	if (!dd)
1048 		return ERR_PTR(-ENOMEM);
1049 	dd->num_pports = nports;
1050 	dd->pport = (struct hfi1_pportdata *)(dd + 1);
1051 
1052 	INIT_LIST_HEAD(&dd->list);
1053 	idr_preload(GFP_KERNEL);
1054 	spin_lock_irqsave(&hfi1_devs_lock, flags);
1055 
1056 	ret = idr_alloc(&hfi1_unit_table, dd, 0, 0, GFP_NOWAIT);
1057 	if (ret >= 0) {
1058 		dd->unit = ret;
1059 		list_add(&dd->list, &hfi1_dev_list);
1060 	}
1061 
1062 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1063 	idr_preload_end();
1064 
1065 	if (ret < 0) {
1066 		hfi1_early_err(&pdev->dev,
1067 			       "Could not allocate unit ID: error %d\n", -ret);
1068 		goto bail;
1069 	}
1070 	/*
1071 	 * Initialize all locks for the device. This needs to be as early as
1072 	 * possible so locks are usable.
1073 	 */
1074 	spin_lock_init(&dd->sc_lock);
1075 	spin_lock_init(&dd->sendctrl_lock);
1076 	spin_lock_init(&dd->rcvctrl_lock);
1077 	spin_lock_init(&dd->uctxt_lock);
1078 	spin_lock_init(&dd->hfi1_diag_trans_lock);
1079 	spin_lock_init(&dd->sc_init_lock);
1080 	spin_lock_init(&dd->dc8051_lock);
1081 	spin_lock_init(&dd->dc8051_memlock);
1082 	seqlock_init(&dd->sc2vl_lock);
1083 	spin_lock_init(&dd->sde_map_lock);
1084 	spin_lock_init(&dd->pio_map_lock);
1085 	init_waitqueue_head(&dd->event_queue);
1086 
1087 	dd->int_counter = alloc_percpu(u64);
1088 	if (!dd->int_counter) {
1089 		ret = -ENOMEM;
1090 		hfi1_early_err(&pdev->dev,
1091 			       "Could not allocate per-cpu int_counter\n");
1092 		goto bail;
1093 	}
1094 
1095 	dd->rcv_limit = alloc_percpu(u64);
1096 	if (!dd->rcv_limit) {
1097 		ret = -ENOMEM;
1098 		hfi1_early_err(&pdev->dev,
1099 			       "Could not allocate per-cpu rcv_limit\n");
1100 		goto bail;
1101 	}
1102 
1103 	dd->send_schedule = alloc_percpu(u64);
1104 	if (!dd->send_schedule) {
1105 		ret = -ENOMEM;
1106 		hfi1_early_err(&pdev->dev,
1107 			       "Could not allocate per-cpu int_counter\n");
1108 		goto bail;
1109 	}
1110 
1111 	if (!hfi1_cpulist_count) {
1112 		u32 count = num_online_cpus();
1113 
1114 		hfi1_cpulist = kcalloc(BITS_TO_LONGS(count), sizeof(long),
1115 				       GFP_KERNEL);
1116 		if (hfi1_cpulist)
1117 			hfi1_cpulist_count = count;
1118 		else
1119 			hfi1_early_err(
1120 			&pdev->dev,
1121 			"Could not alloc cpulist info, cpu affinity might be wrong\n");
1122 	}
1123 	kobject_init(&dd->kobj, &hfi1_devdata_type);
1124 	return dd;
1125 
1126 bail:
1127 	if (!list_empty(&dd->list))
1128 		list_del_init(&dd->list);
1129 	rvt_dealloc_device(&dd->verbs_dev.rdi);
1130 	return ERR_PTR(ret);
1131 }
1132 
1133 /*
1134  * Called from freeze mode handlers, and from PCI error
1135  * reporting code.  Should be paranoid about state of
1136  * system and data structures.
1137  */
1138 void hfi1_disable_after_error(struct hfi1_devdata *dd)
1139 {
1140 	if (dd->flags & HFI1_INITTED) {
1141 		u32 pidx;
1142 
1143 		dd->flags &= ~HFI1_INITTED;
1144 		if (dd->pport)
1145 			for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1146 				struct hfi1_pportdata *ppd;
1147 
1148 				ppd = dd->pport + pidx;
1149 				if (dd->flags & HFI1_PRESENT)
1150 					set_link_state(ppd, HLS_DN_DISABLE);
1151 
1152 				if (ppd->statusp)
1153 					*ppd->statusp &= ~HFI1_STATUS_IB_READY;
1154 			}
1155 	}
1156 
1157 	/*
1158 	 * Mark as having had an error for driver, and also
1159 	 * for /sys and status word mapped to user programs.
1160 	 * This marks unit as not usable, until reset.
1161 	 */
1162 	if (dd->status)
1163 		dd->status->dev |= HFI1_STATUS_HWERROR;
1164 }
1165 
1166 static void remove_one(struct pci_dev *);
1167 static int init_one(struct pci_dev *, const struct pci_device_id *);
1168 
1169 #define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: "
1170 #define PFX DRIVER_NAME ": "
1171 
1172 const struct pci_device_id hfi1_pci_tbl[] = {
1173 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
1174 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
1175 	{ 0, }
1176 };
1177 
1178 MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);
1179 
1180 static struct pci_driver hfi1_pci_driver = {
1181 	.name = DRIVER_NAME,
1182 	.probe = init_one,
1183 	.remove = remove_one,
1184 	.id_table = hfi1_pci_tbl,
1185 	.err_handler = &hfi1_pci_err_handler,
1186 };
1187 
1188 static void __init compute_krcvqs(void)
1189 {
1190 	int i;
1191 
1192 	for (i = 0; i < krcvqsset; i++)
1193 		n_krcvqs += krcvqs[i];
1194 }
1195 
1196 /*
1197  * Do all the generic driver unit- and chip-independent memory
1198  * allocation and initialization.
1199  */
1200 static int __init hfi1_mod_init(void)
1201 {
1202 	int ret;
1203 
1204 	ret = dev_init();
1205 	if (ret)
1206 		goto bail;
1207 
1208 	ret = node_affinity_init();
1209 	if (ret)
1210 		goto bail;
1211 
1212 	/* validate max MTU before any devices start */
1213 	if (!valid_opa_max_mtu(hfi1_max_mtu)) {
1214 		pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
1215 		       hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
1216 		hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
1217 	}
1218 	/* valid CUs run from 1-128 in powers of 2 */
1219 	if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu))
1220 		hfi1_cu = 1;
1221 	/* valid credit return threshold is 0-100, variable is unsigned */
1222 	if (user_credit_return_threshold > 100)
1223 		user_credit_return_threshold = 100;
1224 
1225 	compute_krcvqs();
1226 	/*
1227 	 * sanitize receive interrupt count, time must wait until after
1228 	 * the hardware type is known
1229 	 */
1230 	if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
1231 		rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
1232 	/* reject invalid combinations */
1233 	if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
1234 		pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
1235 		rcv_intr_count = 1;
1236 	}
1237 	if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
1238 		/*
1239 		 * Avoid indefinite packet delivery by requiring a timeout
1240 		 * if count is > 1.
1241 		 */
1242 		pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
1243 		rcv_intr_timeout = 1;
1244 	}
1245 	if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
1246 		/*
1247 		 * The dynamic algorithm expects a non-zero timeout
1248 		 * and a count > 1.
1249 		 */
1250 		pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
1251 		rcv_intr_dynamic = 0;
1252 	}
1253 
1254 	/* sanitize link CRC options */
1255 	link_crc_mask &= SUPPORTED_CRCS;
1256 
1257 	/*
1258 	 * These must be called before the driver is registered with
1259 	 * the PCI subsystem.
1260 	 */
1261 	idr_init(&hfi1_unit_table);
1262 
1263 	hfi1_dbg_init();
1264 	ret = hfi1_wss_init();
1265 	if (ret < 0)
1266 		goto bail_wss;
1267 	ret = pci_register_driver(&hfi1_pci_driver);
1268 	if (ret < 0) {
1269 		pr_err("Unable to register driver: error %d\n", -ret);
1270 		goto bail_dev;
1271 	}
1272 	goto bail; /* all OK */
1273 
1274 bail_dev:
1275 	hfi1_wss_exit();
1276 bail_wss:
1277 	hfi1_dbg_exit();
1278 	idr_destroy(&hfi1_unit_table);
1279 	dev_cleanup();
1280 bail:
1281 	return ret;
1282 }
1283 
1284 module_init(hfi1_mod_init);
1285 
1286 /*
1287  * Do the non-unit driver cleanup, memory free, etc. at unload.
1288  */
1289 static void __exit hfi1_mod_cleanup(void)
1290 {
1291 	pci_unregister_driver(&hfi1_pci_driver);
1292 	node_affinity_destroy();
1293 	hfi1_wss_exit();
1294 	hfi1_dbg_exit();
1295 	hfi1_cpulist_count = 0;
1296 	kfree(hfi1_cpulist);
1297 
1298 	idr_destroy(&hfi1_unit_table);
1299 	dispose_firmware();	/* asymmetric with obtain_firmware() */
1300 	dev_cleanup();
1301 }
1302 
1303 module_exit(hfi1_mod_cleanup);
1304 
1305 /* this can only be called after a successful initialization */
1306 static void cleanup_device_data(struct hfi1_devdata *dd)
1307 {
1308 	int ctxt;
1309 	int pidx;
1310 	struct hfi1_ctxtdata **tmp;
1311 	unsigned long flags;
1312 
1313 	/* users can't do anything more with chip */
1314 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1315 		struct hfi1_pportdata *ppd = &dd->pport[pidx];
1316 		struct cc_state *cc_state;
1317 		int i;
1318 
1319 		if (ppd->statusp)
1320 			*ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;
1321 
1322 		for (i = 0; i < OPA_MAX_SLS; i++)
1323 			hrtimer_cancel(&ppd->cca_timer[i].hrtimer);
1324 
1325 		spin_lock(&ppd->cc_state_lock);
1326 		cc_state = get_cc_state_protected(ppd);
1327 		RCU_INIT_POINTER(ppd->cc_state, NULL);
1328 		spin_unlock(&ppd->cc_state_lock);
1329 
1330 		if (cc_state)
1331 			kfree_rcu(cc_state, rcu);
1332 	}
1333 
1334 	free_credit_return(dd);
1335 
1336 	/*
1337 	 * Free any resources still in use (usually just kernel contexts)
1338 	 * at unload; we do for ctxtcnt, because that's what we allocate.
1339 	 * We acquire lock to be really paranoid that rcd isn't being
1340 	 * accessed from some interrupt-related code (that should not happen,
1341 	 * but best to be sure).
1342 	 */
1343 	spin_lock_irqsave(&dd->uctxt_lock, flags);
1344 	tmp = dd->rcd;
1345 	dd->rcd = NULL;
1346 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
1347 
1348 	if (dd->rcvhdrtail_dummy_kvaddr) {
1349 		dma_free_coherent(&dd->pcidev->dev, sizeof(u64),
1350 				  (void *)dd->rcvhdrtail_dummy_kvaddr,
1351 				  dd->rcvhdrtail_dummy_dma);
1352 		dd->rcvhdrtail_dummy_kvaddr = NULL;
1353 	}
1354 
1355 	for (ctxt = 0; tmp && ctxt < dd->num_rcv_contexts; ctxt++) {
1356 		struct hfi1_ctxtdata *rcd = tmp[ctxt];
1357 
1358 		tmp[ctxt] = NULL; /* debugging paranoia */
1359 		if (rcd) {
1360 			hfi1_clear_tids(rcd);
1361 			hfi1_free_ctxtdata(dd, rcd);
1362 		}
1363 	}
1364 	kfree(tmp);
1365 	free_pio_map(dd);
1366 	/* must follow rcv context free - need to remove rcv's hooks */
1367 	for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
1368 		sc_free(dd->send_contexts[ctxt].sc);
1369 	dd->num_send_contexts = 0;
1370 	kfree(dd->send_contexts);
1371 	dd->send_contexts = NULL;
1372 	kfree(dd->hw_to_sw);
1373 	dd->hw_to_sw = NULL;
1374 	kfree(dd->boardname);
1375 	vfree(dd->events);
1376 	vfree(dd->status);
1377 }
1378 
1379 /*
1380  * Clean up on unit shutdown, or error during unit load after
1381  * successful initialization.
1382  */
1383 static void postinit_cleanup(struct hfi1_devdata *dd)
1384 {
1385 	hfi1_start_cleanup(dd);
1386 
1387 	hfi1_pcie_ddcleanup(dd);
1388 	hfi1_pcie_cleanup(dd->pcidev);
1389 
1390 	cleanup_device_data(dd);
1391 
1392 	hfi1_free_devdata(dd);
1393 }
1394 
1395 static int init_validate_rcvhdrcnt(struct device *dev, uint thecnt)
1396 {
1397 	if (thecnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) {
1398 		hfi1_early_err(dev, "Receive header queue count too small\n");
1399 		return -EINVAL;
1400 	}
1401 
1402 	if (thecnt > HFI1_MAX_HDRQ_EGRBUF_CNT) {
1403 		hfi1_early_err(dev,
1404 			       "Receive header queue count cannot be greater than %u\n",
1405 			       HFI1_MAX_HDRQ_EGRBUF_CNT);
1406 		return -EINVAL;
1407 	}
1408 
1409 	if (thecnt % HDRQ_INCREMENT) {
1410 		hfi1_early_err(dev, "Receive header queue count %d must be divisible by %lu\n",
1411 			       thecnt, HDRQ_INCREMENT);
1412 		return -EINVAL;
1413 	}
1414 
1415 	return 0;
1416 }
1417 
1418 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1419 {
1420 	int ret = 0, j, pidx, initfail;
1421 	struct hfi1_devdata *dd;
1422 	struct hfi1_pportdata *ppd;
1423 
1424 	/* First, lock the non-writable module parameters */
1425 	HFI1_CAP_LOCK();
1426 
1427 	/* Validate some global module parameters */
1428 	ret = init_validate_rcvhdrcnt(&pdev->dev, rcvhdrcnt);
1429 	if (ret)
1430 		goto bail;
1431 
1432 	/* use the encoding function as a sanitization check */
1433 	if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) {
1434 		hfi1_early_err(&pdev->dev, "Invalid HdrQ Entry size %u\n",
1435 			       hfi1_hdrq_entsize);
1436 		ret = -EINVAL;
1437 		goto bail;
1438 	}
1439 
1440 	/* The receive eager buffer size must be set before the receive
1441 	 * contexts are created.
1442 	 *
1443 	 * Set the eager buffer size.  Validate that it falls in a range
1444 	 * allowed by the hardware - all powers of 2 between the min and
1445 	 * max.  The maximum valid MTU is within the eager buffer range
1446 	 * so we do not need to cap the max_mtu by an eager buffer size
1447 	 * setting.
1448 	 */
1449 	if (eager_buffer_size) {
1450 		if (!is_power_of_2(eager_buffer_size))
1451 			eager_buffer_size =
1452 				roundup_pow_of_two(eager_buffer_size);
1453 		eager_buffer_size =
1454 			clamp_val(eager_buffer_size,
1455 				  MIN_EAGER_BUFFER * 8,
1456 				  MAX_EAGER_BUFFER_TOTAL);
1457 		hfi1_early_info(&pdev->dev, "Eager buffer size %u\n",
1458 				eager_buffer_size);
1459 	} else {
1460 		hfi1_early_err(&pdev->dev, "Invalid Eager buffer size of 0\n");
1461 		ret = -EINVAL;
1462 		goto bail;
1463 	}
1464 
1465 	/* restrict value of hfi1_rcvarr_split */
1466 	hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);
1467 
1468 	ret = hfi1_pcie_init(pdev, ent);
1469 	if (ret)
1470 		goto bail;
1471 
1472 	if (!(ent->device == PCI_DEVICE_ID_INTEL0 ||
1473 	      ent->device == PCI_DEVICE_ID_INTEL1)) {
1474 		hfi1_early_err(&pdev->dev,
1475 			       "Failing on unknown Intel deviceid 0x%x\n",
1476 			       ent->device);
1477 		ret = -ENODEV;
1478 		goto clean_bail;
1479 	}
1480 
1481 	/*
1482 	 * Do device-specific initialization, function table setup, dd
1483 	 * allocation, etc.
1484 	 */
1485 	dd = hfi1_init_dd(pdev, ent);
1486 
1487 	if (IS_ERR(dd)) {
1488 		ret = PTR_ERR(dd);
1489 		goto clean_bail; /* error already printed */
1490 	}
1491 
1492 	ret = create_workqueues(dd);
1493 	if (ret)
1494 		goto clean_bail;
1495 
1496 	/* do the generic initialization */
1497 	initfail = hfi1_init(dd, 0);
1498 
1499 	ret = hfi1_register_ib_device(dd);
1500 
1501 	/*
1502 	 * Now ready for use.  this should be cleared whenever we
1503 	 * detect a reset, or initiate one.  If earlier failure,
1504 	 * we still create devices, so diags, etc. can be used
1505 	 * to determine cause of problem.
1506 	 */
1507 	if (!initfail && !ret) {
1508 		dd->flags |= HFI1_INITTED;
1509 		/* create debufs files after init and ib register */
1510 		hfi1_dbg_ibdev_init(&dd->verbs_dev);
1511 	}
1512 
1513 	j = hfi1_device_create(dd);
1514 	if (j)
1515 		dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
1516 
1517 	if (initfail || ret) {
1518 		stop_timers(dd);
1519 		flush_workqueue(ib_wq);
1520 		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1521 			hfi1_quiet_serdes(dd->pport + pidx);
1522 			ppd = dd->pport + pidx;
1523 			if (ppd->hfi1_wq) {
1524 				destroy_workqueue(ppd->hfi1_wq);
1525 				ppd->hfi1_wq = NULL;
1526 			}
1527 		}
1528 		if (!j)
1529 			hfi1_device_remove(dd);
1530 		if (!ret)
1531 			hfi1_unregister_ib_device(dd);
1532 		postinit_cleanup(dd);
1533 		if (initfail)
1534 			ret = initfail;
1535 		goto bail;	/* everything already cleaned */
1536 	}
1537 
1538 	sdma_start(dd);
1539 
1540 	return 0;
1541 
1542 clean_bail:
1543 	hfi1_pcie_cleanup(pdev);
1544 bail:
1545 	return ret;
1546 }
1547 
1548 static void wait_for_clients(struct hfi1_devdata *dd)
1549 {
1550 	/*
1551 	 * Remove the device init value and complete the device if there is
1552 	 * no clients or wait for active clients to finish.
1553 	 */
1554 	if (atomic_dec_and_test(&dd->user_refcount))
1555 		complete(&dd->user_comp);
1556 
1557 	wait_for_completion(&dd->user_comp);
1558 }
1559 
1560 static void remove_one(struct pci_dev *pdev)
1561 {
1562 	struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1563 
1564 	/* close debugfs files before ib unregister */
1565 	hfi1_dbg_ibdev_exit(&dd->verbs_dev);
1566 
1567 	/* remove the /dev hfi1 interface */
1568 	hfi1_device_remove(dd);
1569 
1570 	/* wait for existing user space clients to finish */
1571 	wait_for_clients(dd);
1572 
1573 	/* unregister from IB core */
1574 	hfi1_unregister_ib_device(dd);
1575 
1576 	/*
1577 	 * Disable the IB link, disable interrupts on the device,
1578 	 * clear dma engines, etc.
1579 	 */
1580 	shutdown_device(dd);
1581 
1582 	stop_timers(dd);
1583 
1584 	/* wait until all of our (qsfp) queue_work() calls complete */
1585 	flush_workqueue(ib_wq);
1586 
1587 	postinit_cleanup(dd);
1588 }
1589 
1590 /**
1591  * hfi1_create_rcvhdrq - create a receive header queue
1592  * @dd: the hfi1_ib device
1593  * @rcd: the context data
1594  *
1595  * This must be contiguous memory (from an i/o perspective), and must be
1596  * DMA'able (which means for some systems, it will go through an IOMMU,
1597  * or be forced into a low address range).
1598  */
1599 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1600 {
1601 	unsigned amt;
1602 	u64 reg;
1603 
1604 	if (!rcd->rcvhdrq) {
1605 		dma_addr_t dma_hdrqtail;
1606 		gfp_t gfp_flags;
1607 
1608 		/*
1609 		 * rcvhdrqentsize is in DWs, so we have to convert to bytes
1610 		 * (* sizeof(u32)).
1611 		 */
1612 		amt = PAGE_ALIGN(rcd->rcvhdrq_cnt * rcd->rcvhdrqentsize *
1613 				 sizeof(u32));
1614 
1615 		gfp_flags = (rcd->ctxt >= dd->first_user_ctxt) ?
1616 			GFP_USER : GFP_KERNEL;
1617 		rcd->rcvhdrq = dma_zalloc_coherent(
1618 			&dd->pcidev->dev, amt, &rcd->rcvhdrq_dma,
1619 			gfp_flags | __GFP_COMP);
1620 
1621 		if (!rcd->rcvhdrq) {
1622 			dd_dev_err(dd,
1623 				   "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
1624 				   amt, rcd->ctxt);
1625 			goto bail;
1626 		}
1627 
1628 		if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
1629 			rcd->rcvhdrtail_kvaddr = dma_zalloc_coherent(
1630 				&dd->pcidev->dev, PAGE_SIZE, &dma_hdrqtail,
1631 				gfp_flags);
1632 			if (!rcd->rcvhdrtail_kvaddr)
1633 				goto bail_free;
1634 			rcd->rcvhdrqtailaddr_dma = dma_hdrqtail;
1635 		}
1636 
1637 		rcd->rcvhdrq_size = amt;
1638 	}
1639 	/*
1640 	 * These values are per-context:
1641 	 *	RcvHdrCnt
1642 	 *	RcvHdrEntSize
1643 	 *	RcvHdrSize
1644 	 */
1645 	reg = ((u64)(rcd->rcvhdrq_cnt >> HDRQ_SIZE_SHIFT)
1646 			& RCV_HDR_CNT_CNT_MASK)
1647 		<< RCV_HDR_CNT_CNT_SHIFT;
1648 	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_CNT, reg);
1649 	reg = (encode_rcv_header_entry_size(rcd->rcvhdrqentsize)
1650 			& RCV_HDR_ENT_SIZE_ENT_SIZE_MASK)
1651 		<< RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT;
1652 	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_ENT_SIZE, reg);
1653 	reg = (dd->rcvhdrsize & RCV_HDR_SIZE_HDR_SIZE_MASK)
1654 		<< RCV_HDR_SIZE_HDR_SIZE_SHIFT;
1655 	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_SIZE, reg);
1656 
1657 	/*
1658 	 * Program dummy tail address for every receive context
1659 	 * before enabling any receive context
1660 	 */
1661 	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_TAIL_ADDR,
1662 			dd->rcvhdrtail_dummy_dma);
1663 
1664 	return 0;
1665 
1666 bail_free:
1667 	dd_dev_err(dd,
1668 		   "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
1669 		   rcd->ctxt);
1670 	vfree(rcd->user_event_mask);
1671 	rcd->user_event_mask = NULL;
1672 	dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
1673 			  rcd->rcvhdrq_dma);
1674 	rcd->rcvhdrq = NULL;
1675 bail:
1676 	return -ENOMEM;
1677 }
1678 
1679 /**
1680  * allocate eager buffers, both kernel and user contexts.
1681  * @rcd: the context we are setting up.
1682  *
1683  * Allocate the eager TID buffers and program them into hip.
1684  * They are no longer completely contiguous, we do multiple allocation
1685  * calls.  Otherwise we get the OOM code involved, by asking for too
1686  * much per call, with disastrous results on some kernels.
1687  */
1688 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
1689 {
1690 	struct hfi1_devdata *dd = rcd->dd;
1691 	u32 max_entries, egrtop, alloced_bytes = 0, idx = 0;
1692 	gfp_t gfp_flags;
1693 	u16 order;
1694 	int ret = 0;
1695 	u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);
1696 
1697 	/*
1698 	 * GFP_USER, but without GFP_FS, so buffer cache can be
1699 	 * coalesced (we hope); otherwise, even at order 4,
1700 	 * heavy filesystem activity makes these fail, and we can
1701 	 * use compound pages.
1702 	 */
1703 	gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP;
1704 
1705 	/*
1706 	 * The minimum size of the eager buffers is a groups of MTU-sized
1707 	 * buffers.
1708 	 * The global eager_buffer_size parameter is checked against the
1709 	 * theoretical lower limit of the value. Here, we check against the
1710 	 * MTU.
1711 	 */
1712 	if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
1713 		rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
1714 	/*
1715 	 * If using one-pkt-per-egr-buffer, lower the eager buffer
1716 	 * size to the max MTU (page-aligned).
1717 	 */
1718 	if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
1719 		rcd->egrbufs.rcvtid_size = round_mtu;
1720 
1721 	/*
1722 	 * Eager buffers sizes of 1MB or less require smaller TID sizes
1723 	 * to satisfy the "multiple of 8 RcvArray entries" requirement.
1724 	 */
1725 	if (rcd->egrbufs.size <= (1 << 20))
1726 		rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
1727 			rounddown_pow_of_two(rcd->egrbufs.size / 8));
1728 
1729 	while (alloced_bytes < rcd->egrbufs.size &&
1730 	       rcd->egrbufs.alloced < rcd->egrbufs.count) {
1731 		rcd->egrbufs.buffers[idx].addr =
1732 			dma_zalloc_coherent(&dd->pcidev->dev,
1733 					    rcd->egrbufs.rcvtid_size,
1734 					    &rcd->egrbufs.buffers[idx].dma,
1735 					    gfp_flags);
1736 		if (rcd->egrbufs.buffers[idx].addr) {
1737 			rcd->egrbufs.buffers[idx].len =
1738 				rcd->egrbufs.rcvtid_size;
1739 			rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
1740 				rcd->egrbufs.buffers[idx].addr;
1741 			rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma =
1742 				rcd->egrbufs.buffers[idx].dma;
1743 			rcd->egrbufs.alloced++;
1744 			alloced_bytes += rcd->egrbufs.rcvtid_size;
1745 			idx++;
1746 		} else {
1747 			u32 new_size, i, j;
1748 			u64 offset = 0;
1749 
1750 			/*
1751 			 * Fail the eager buffer allocation if:
1752 			 *   - we are already using the lowest acceptable size
1753 			 *   - we are using one-pkt-per-egr-buffer (this implies
1754 			 *     that we are accepting only one size)
1755 			 */
1756 			if (rcd->egrbufs.rcvtid_size == round_mtu ||
1757 			    !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
1758 				dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
1759 					   rcd->ctxt);
1760 				goto bail_rcvegrbuf_phys;
1761 			}
1762 
1763 			new_size = rcd->egrbufs.rcvtid_size / 2;
1764 
1765 			/*
1766 			 * If the first attempt to allocate memory failed, don't
1767 			 * fail everything but continue with the next lower
1768 			 * size.
1769 			 */
1770 			if (idx == 0) {
1771 				rcd->egrbufs.rcvtid_size = new_size;
1772 				continue;
1773 			}
1774 
1775 			/*
1776 			 * Re-partition already allocated buffers to a smaller
1777 			 * size.
1778 			 */
1779 			rcd->egrbufs.alloced = 0;
1780 			for (i = 0, j = 0, offset = 0; j < idx; i++) {
1781 				if (i >= rcd->egrbufs.count)
1782 					break;
1783 				rcd->egrbufs.rcvtids[i].dma =
1784 					rcd->egrbufs.buffers[j].dma + offset;
1785 				rcd->egrbufs.rcvtids[i].addr =
1786 					rcd->egrbufs.buffers[j].addr + offset;
1787 				rcd->egrbufs.alloced++;
1788 				if ((rcd->egrbufs.buffers[j].dma + offset +
1789 				     new_size) ==
1790 				    (rcd->egrbufs.buffers[j].dma +
1791 				     rcd->egrbufs.buffers[j].len)) {
1792 					j++;
1793 					offset = 0;
1794 				} else {
1795 					offset += new_size;
1796 				}
1797 			}
1798 			rcd->egrbufs.rcvtid_size = new_size;
1799 		}
1800 	}
1801 	rcd->egrbufs.numbufs = idx;
1802 	rcd->egrbufs.size = alloced_bytes;
1803 
1804 	hfi1_cdbg(PROC,
1805 		  "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %zuKB\n",
1806 		  rcd->ctxt, rcd->egrbufs.alloced,
1807 		  rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024);
1808 
1809 	/*
1810 	 * Set the contexts rcv array head update threshold to the closest
1811 	 * power of 2 (so we can use a mask instead of modulo) below half
1812 	 * the allocated entries.
1813 	 */
1814 	rcd->egrbufs.threshold =
1815 		rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
1816 	/*
1817 	 * Compute the expected RcvArray entry base. This is done after
1818 	 * allocating the eager buffers in order to maximize the
1819 	 * expected RcvArray entries for the context.
1820 	 */
1821 	max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
1822 	egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
1823 	rcd->expected_count = max_entries - egrtop;
1824 	if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
1825 		rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;
1826 
1827 	rcd->expected_base = rcd->eager_base + egrtop;
1828 	hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n",
1829 		  rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
1830 		  rcd->eager_base, rcd->expected_base);
1831 
1832 	if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) {
1833 		hfi1_cdbg(PROC,
1834 			  "ctxt%u: current Eager buffer size is invalid %u\n",
1835 			  rcd->ctxt, rcd->egrbufs.rcvtid_size);
1836 		ret = -EINVAL;
1837 		goto bail;
1838 	}
1839 
1840 	for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
1841 		hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER,
1842 			     rcd->egrbufs.rcvtids[idx].dma, order);
1843 		cond_resched();
1844 	}
1845 	goto bail;
1846 
1847 bail_rcvegrbuf_phys:
1848 	for (idx = 0; idx < rcd->egrbufs.alloced &&
1849 	     rcd->egrbufs.buffers[idx].addr;
1850 	     idx++) {
1851 		dma_free_coherent(&dd->pcidev->dev,
1852 				  rcd->egrbufs.buffers[idx].len,
1853 				  rcd->egrbufs.buffers[idx].addr,
1854 				  rcd->egrbufs.buffers[idx].dma);
1855 		rcd->egrbufs.buffers[idx].addr = NULL;
1856 		rcd->egrbufs.buffers[idx].dma = 0;
1857 		rcd->egrbufs.buffers[idx].len = 0;
1858 	}
1859 bail:
1860 	return ret;
1861 }
1862