xref: /openbmc/linux/drivers/infiniband/hw/hfi1/init.c (revision 5b4cb650)
1 /*
2  * Copyright(c) 2015 - 2018 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <linux/pci.h>
49 #include <linux/netdevice.h>
50 #include <linux/vmalloc.h>
51 #include <linux/delay.h>
52 #include <linux/idr.h>
53 #include <linux/module.h>
54 #include <linux/printk.h>
55 #include <linux/hrtimer.h>
56 #include <linux/bitmap.h>
57 #include <rdma/rdma_vt.h>
58 
59 #include "hfi.h"
60 #include "device.h"
61 #include "common.h"
62 #include "trace.h"
63 #include "mad.h"
64 #include "sdma.h"
65 #include "debugfs.h"
66 #include "verbs.h"
67 #include "aspm.h"
68 #include "affinity.h"
69 #include "vnic.h"
70 #include "exp_rcv.h"
71 
72 #undef pr_fmt
73 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
74 
75 #define HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES 5
76 /*
77  * min buffers we want to have per context, after driver
78  */
79 #define HFI1_MIN_USER_CTXT_BUFCNT 7
80 
81 #define HFI1_MIN_HDRQ_EGRBUF_CNT 2
82 #define HFI1_MAX_HDRQ_EGRBUF_CNT 16352
83 #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
84 #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */
85 
86 #define NUM_IB_PORTS 1
87 
88 /*
89  * Number of user receive contexts we are configured to use (to allow for more
90  * pio buffers per ctxt, etc.)  Zero means use one user context per CPU.
91  */
92 int num_user_contexts = -1;
93 module_param_named(num_user_contexts, num_user_contexts, int, 0444);
94 MODULE_PARM_DESC(
95 	num_user_contexts, "Set max number of user contexts to use (default: -1 will use the real (non-HT) CPU count)");
96 
97 uint krcvqs[RXE_NUM_DATA_VL];
98 int krcvqsset;
99 module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO);
100 MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL");
101 
102 /* computed based on above array */
103 unsigned long n_krcvqs;
104 
105 static unsigned hfi1_rcvarr_split = 25;
106 module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
107 MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");
108 
109 static uint eager_buffer_size = (8 << 20); /* 8MB */
110 module_param(eager_buffer_size, uint, S_IRUGO);
111 MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 8MB");
112 
113 static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
114 module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
115 MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");
116 
117 static uint hfi1_hdrq_entsize = 32;
118 module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, 0444);
119 MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B, 32 - 128B (default)");
120 
121 unsigned int user_credit_return_threshold = 33;	/* default is 33% */
122 module_param(user_credit_return_threshold, uint, S_IRUGO);
123 MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");
124 
125 static inline u64 encode_rcv_header_entry_size(u16 size);
126 
127 static struct idr hfi1_unit_table;
128 
129 static int hfi1_create_kctxt(struct hfi1_devdata *dd,
130 			     struct hfi1_pportdata *ppd)
131 {
132 	struct hfi1_ctxtdata *rcd;
133 	int ret;
134 
135 	/* Control context has to be always 0 */
136 	BUILD_BUG_ON(HFI1_CTRL_CTXT != 0);
137 
138 	ret = hfi1_create_ctxtdata(ppd, dd->node, &rcd);
139 	if (ret < 0) {
140 		dd_dev_err(dd, "Kernel receive context allocation failed\n");
141 		return ret;
142 	}
143 
144 	/*
145 	 * Set up the kernel context flags here and now because they use
146 	 * default values for all receive side memories.  User contexts will
147 	 * be handled as they are created.
148 	 */
149 	rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
150 		HFI1_CAP_KGET(NODROP_RHQ_FULL) |
151 		HFI1_CAP_KGET(NODROP_EGR_FULL) |
152 		HFI1_CAP_KGET(DMA_RTAIL);
153 
154 	/* Control context must use DMA_RTAIL */
155 	if (rcd->ctxt == HFI1_CTRL_CTXT)
156 		rcd->flags |= HFI1_CAP_DMA_RTAIL;
157 	rcd->seq_cnt = 1;
158 
159 	rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node);
160 	if (!rcd->sc) {
161 		dd_dev_err(dd, "Kernel send context allocation failed\n");
162 		return -ENOMEM;
163 	}
164 	hfi1_init_ctxt(rcd->sc);
165 
166 	return 0;
167 }
168 
169 /*
170  * Create the receive context array and one or more kernel contexts
171  */
172 int hfi1_create_kctxts(struct hfi1_devdata *dd)
173 {
174 	u16 i;
175 	int ret;
176 
177 	dd->rcd = kcalloc_node(dd->num_rcv_contexts, sizeof(*dd->rcd),
178 			       GFP_KERNEL, dd->node);
179 	if (!dd->rcd)
180 		return -ENOMEM;
181 
182 	for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
183 		ret = hfi1_create_kctxt(dd, dd->pport);
184 		if (ret)
185 			goto bail;
186 	}
187 
188 	return 0;
189 bail:
190 	for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i)
191 		hfi1_free_ctxt(dd->rcd[i]);
192 
193 	/* All the contexts should be freed, free the array */
194 	kfree(dd->rcd);
195 	dd->rcd = NULL;
196 	return ret;
197 }
198 
199 /*
200  * Helper routines for the receive context reference count (rcd and uctxt).
201  */
202 static void hfi1_rcd_init(struct hfi1_ctxtdata *rcd)
203 {
204 	kref_init(&rcd->kref);
205 }
206 
207 /**
208  * hfi1_rcd_free - When reference is zero clean up.
209  * @kref: pointer to an initialized rcd data structure
210  *
211  */
212 static void hfi1_rcd_free(struct kref *kref)
213 {
214 	unsigned long flags;
215 	struct hfi1_ctxtdata *rcd =
216 		container_of(kref, struct hfi1_ctxtdata, kref);
217 
218 	hfi1_free_ctxtdata(rcd->dd, rcd);
219 
220 	spin_lock_irqsave(&rcd->dd->uctxt_lock, flags);
221 	rcd->dd->rcd[rcd->ctxt] = NULL;
222 	spin_unlock_irqrestore(&rcd->dd->uctxt_lock, flags);
223 
224 	kfree(rcd);
225 }
226 
227 /**
228  * hfi1_rcd_put - decrement reference for rcd
229  * @rcd: pointer to an initialized rcd data structure
230  *
231  * Use this to put a reference after the init.
232  */
233 int hfi1_rcd_put(struct hfi1_ctxtdata *rcd)
234 {
235 	if (rcd)
236 		return kref_put(&rcd->kref, hfi1_rcd_free);
237 
238 	return 0;
239 }
240 
241 /**
242  * hfi1_rcd_get - increment reference for rcd
243  * @rcd: pointer to an initialized rcd data structure
244  *
245  * Use this to get a reference after the init.
246  */
247 void hfi1_rcd_get(struct hfi1_ctxtdata *rcd)
248 {
249 	kref_get(&rcd->kref);
250 }
251 
252 /**
253  * allocate_rcd_index - allocate an rcd index from the rcd array
254  * @dd: pointer to a valid devdata structure
255  * @rcd: rcd data structure to assign
256  * @index: pointer to index that is allocated
257  *
258  * Find an empty index in the rcd array, and assign the given rcd to it.
259  * If the array is full, we are EBUSY.
260  *
261  */
262 static int allocate_rcd_index(struct hfi1_devdata *dd,
263 			      struct hfi1_ctxtdata *rcd, u16 *index)
264 {
265 	unsigned long flags;
266 	u16 ctxt;
267 
268 	spin_lock_irqsave(&dd->uctxt_lock, flags);
269 	for (ctxt = 0; ctxt < dd->num_rcv_contexts; ctxt++)
270 		if (!dd->rcd[ctxt])
271 			break;
272 
273 	if (ctxt < dd->num_rcv_contexts) {
274 		rcd->ctxt = ctxt;
275 		dd->rcd[ctxt] = rcd;
276 		hfi1_rcd_init(rcd);
277 	}
278 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
279 
280 	if (ctxt >= dd->num_rcv_contexts)
281 		return -EBUSY;
282 
283 	*index = ctxt;
284 
285 	return 0;
286 }
287 
288 /**
289  * hfi1_rcd_get_by_index_safe - validate the ctxt index before accessing the
290  * array
291  * @dd: pointer to a valid devdata structure
292  * @ctxt: the index of an possilbe rcd
293  *
294  * This is a wrapper for hfi1_rcd_get_by_index() to validate that the given
295  * ctxt index is valid.
296  *
297  * The caller is responsible for making the _put().
298  *
299  */
300 struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd,
301 						 u16 ctxt)
302 {
303 	if (ctxt < dd->num_rcv_contexts)
304 		return hfi1_rcd_get_by_index(dd, ctxt);
305 
306 	return NULL;
307 }
308 
309 /**
310  * hfi1_rcd_get_by_index
311  * @dd: pointer to a valid devdata structure
312  * @ctxt: the index of an possilbe rcd
313  *
314  * We need to protect access to the rcd array.  If access is needed to
315  * one or more index, get the protecting spinlock and then increment the
316  * kref.
317  *
318  * The caller is responsible for making the _put().
319  *
320  */
321 struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt)
322 {
323 	unsigned long flags;
324 	struct hfi1_ctxtdata *rcd = NULL;
325 
326 	spin_lock_irqsave(&dd->uctxt_lock, flags);
327 	if (dd->rcd[ctxt]) {
328 		rcd = dd->rcd[ctxt];
329 		hfi1_rcd_get(rcd);
330 	}
331 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
332 
333 	return rcd;
334 }
335 
336 /*
337  * Common code for user and kernel context create and setup.
338  * NOTE: the initial kref is done here (hf1_rcd_init()).
339  */
340 int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa,
341 			 struct hfi1_ctxtdata **context)
342 {
343 	struct hfi1_devdata *dd = ppd->dd;
344 	struct hfi1_ctxtdata *rcd;
345 	unsigned kctxt_ngroups = 0;
346 	u32 base;
347 
348 	if (dd->rcv_entries.nctxt_extra >
349 	    dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt)
350 		kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
351 			 (dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt));
352 	rcd = kzalloc_node(sizeof(*rcd), GFP_KERNEL, numa);
353 	if (rcd) {
354 		u32 rcvtids, max_entries;
355 		u16 ctxt;
356 		int ret;
357 
358 		ret = allocate_rcd_index(dd, rcd, &ctxt);
359 		if (ret) {
360 			*context = NULL;
361 			kfree(rcd);
362 			return ret;
363 		}
364 
365 		INIT_LIST_HEAD(&rcd->qp_wait_list);
366 		hfi1_exp_tid_group_init(rcd);
367 		rcd->ppd = ppd;
368 		rcd->dd = dd;
369 		rcd->numa_id = numa;
370 		rcd->rcv_array_groups = dd->rcv_entries.ngroups;
371 		rcd->rhf_rcv_function_map = normal_rhf_rcv_functions;
372 
373 		mutex_init(&rcd->exp_mutex);
374 
375 		hfi1_cdbg(PROC, "setting up context %u\n", rcd->ctxt);
376 
377 		/*
378 		 * Calculate the context's RcvArray entry starting point.
379 		 * We do this here because we have to take into account all
380 		 * the RcvArray entries that previous context would have
381 		 * taken and we have to account for any extra groups assigned
382 		 * to the static (kernel) or dynamic (vnic/user) contexts.
383 		 */
384 		if (ctxt < dd->first_dyn_alloc_ctxt) {
385 			if (ctxt < kctxt_ngroups) {
386 				base = ctxt * (dd->rcv_entries.ngroups + 1);
387 				rcd->rcv_array_groups++;
388 			} else {
389 				base = kctxt_ngroups +
390 					(ctxt * dd->rcv_entries.ngroups);
391 			}
392 		} else {
393 			u16 ct = ctxt - dd->first_dyn_alloc_ctxt;
394 
395 			base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
396 				kctxt_ngroups);
397 			if (ct < dd->rcv_entries.nctxt_extra) {
398 				base += ct * (dd->rcv_entries.ngroups + 1);
399 				rcd->rcv_array_groups++;
400 			} else {
401 				base += dd->rcv_entries.nctxt_extra +
402 					(ct * dd->rcv_entries.ngroups);
403 			}
404 		}
405 		rcd->eager_base = base * dd->rcv_entries.group_size;
406 
407 		rcd->rcvhdrq_cnt = rcvhdrcnt;
408 		rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
409 		rcd->rhf_offset =
410 			rcd->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
411 		/*
412 		 * Simple Eager buffer allocation: we have already pre-allocated
413 		 * the number of RcvArray entry groups. Each ctxtdata structure
414 		 * holds the number of groups for that context.
415 		 *
416 		 * To follow CSR requirements and maintain cacheline alignment,
417 		 * make sure all sizes and bases are multiples of group_size.
418 		 *
419 		 * The expected entry count is what is left after assigning
420 		 * eager.
421 		 */
422 		max_entries = rcd->rcv_array_groups *
423 			dd->rcv_entries.group_size;
424 		rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
425 		rcd->egrbufs.count = round_down(rcvtids,
426 						dd->rcv_entries.group_size);
427 		if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
428 			dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
429 				   rcd->ctxt);
430 			rcd->egrbufs.count = MAX_EAGER_ENTRIES;
431 		}
432 		hfi1_cdbg(PROC,
433 			  "ctxt%u: max Eager buffer RcvArray entries: %u\n",
434 			  rcd->ctxt, rcd->egrbufs.count);
435 
436 		/*
437 		 * Allocate array that will hold the eager buffer accounting
438 		 * data.
439 		 * This will allocate the maximum possible buffer count based
440 		 * on the value of the RcvArray split parameter.
441 		 * The resulting value will be rounded down to the closest
442 		 * multiple of dd->rcv_entries.group_size.
443 		 */
444 		rcd->egrbufs.buffers =
445 			kcalloc_node(rcd->egrbufs.count,
446 				     sizeof(*rcd->egrbufs.buffers),
447 				     GFP_KERNEL, numa);
448 		if (!rcd->egrbufs.buffers)
449 			goto bail;
450 		rcd->egrbufs.rcvtids =
451 			kcalloc_node(rcd->egrbufs.count,
452 				     sizeof(*rcd->egrbufs.rcvtids),
453 				     GFP_KERNEL, numa);
454 		if (!rcd->egrbufs.rcvtids)
455 			goto bail;
456 		rcd->egrbufs.size = eager_buffer_size;
457 		/*
458 		 * The size of the buffers programmed into the RcvArray
459 		 * entries needs to be big enough to handle the highest
460 		 * MTU supported.
461 		 */
462 		if (rcd->egrbufs.size < hfi1_max_mtu) {
463 			rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu);
464 			hfi1_cdbg(PROC,
465 				  "ctxt%u: eager bufs size too small. Adjusting to %zu\n",
466 				    rcd->ctxt, rcd->egrbufs.size);
467 		}
468 		rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;
469 
470 		/* Applicable only for statically created kernel contexts */
471 		if (ctxt < dd->first_dyn_alloc_ctxt) {
472 			rcd->opstats = kzalloc_node(sizeof(*rcd->opstats),
473 						    GFP_KERNEL, numa);
474 			if (!rcd->opstats)
475 				goto bail;
476 		}
477 
478 		*context = rcd;
479 		return 0;
480 	}
481 
482 bail:
483 	*context = NULL;
484 	hfi1_free_ctxt(rcd);
485 	return -ENOMEM;
486 }
487 
488 /**
489  * hfi1_free_ctxt
490  * @rcd: pointer to an initialized rcd data structure
491  *
492  * This wrapper is the free function that matches hfi1_create_ctxtdata().
493  * When a context is done being used (kernel or user), this function is called
494  * for the "final" put to match the kref init from hf1i_create_ctxtdata().
495  * Other users of the context do a get/put sequence to make sure that the
496  * structure isn't removed while in use.
497  */
498 void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd)
499 {
500 	hfi1_rcd_put(rcd);
501 }
502 
503 /*
504  * Convert a receive header entry size that to the encoding used in the CSR.
505  *
506  * Return a zero if the given size is invalid.
507  */
508 static inline u64 encode_rcv_header_entry_size(u16 size)
509 {
510 	/* there are only 3 valid receive header entry sizes */
511 	if (size == 2)
512 		return 1;
513 	if (size == 16)
514 		return 2;
515 	else if (size == 32)
516 		return 4;
517 	return 0; /* invalid */
518 }
519 
520 /*
521  * Select the largest ccti value over all SLs to determine the intra-
522  * packet gap for the link.
523  *
524  * called with cca_timer_lock held (to protect access to cca_timer
525  * array), and rcu_read_lock() (to protect access to cc_state).
526  */
527 void set_link_ipg(struct hfi1_pportdata *ppd)
528 {
529 	struct hfi1_devdata *dd = ppd->dd;
530 	struct cc_state *cc_state;
531 	int i;
532 	u16 cce, ccti_limit, max_ccti = 0;
533 	u16 shift, mult;
534 	u64 src;
535 	u32 current_egress_rate; /* Mbits /sec */
536 	u32 max_pkt_time;
537 	/*
538 	 * max_pkt_time is the maximum packet egress time in units
539 	 * of the fabric clock period 1/(805 MHz).
540 	 */
541 
542 	cc_state = get_cc_state(ppd);
543 
544 	if (!cc_state)
545 		/*
546 		 * This should _never_ happen - rcu_read_lock() is held,
547 		 * and set_link_ipg() should not be called if cc_state
548 		 * is NULL.
549 		 */
550 		return;
551 
552 	for (i = 0; i < OPA_MAX_SLS; i++) {
553 		u16 ccti = ppd->cca_timer[i].ccti;
554 
555 		if (ccti > max_ccti)
556 			max_ccti = ccti;
557 	}
558 
559 	ccti_limit = cc_state->cct.ccti_limit;
560 	if (max_ccti > ccti_limit)
561 		max_ccti = ccti_limit;
562 
563 	cce = cc_state->cct.entries[max_ccti].entry;
564 	shift = (cce & 0xc000) >> 14;
565 	mult = (cce & 0x3fff);
566 
567 	current_egress_rate = active_egress_rate(ppd);
568 
569 	max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate);
570 
571 	src = (max_pkt_time >> shift) * mult;
572 
573 	src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
574 	src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;
575 
576 	write_csr(dd, SEND_STATIC_RATE_CONTROL, src);
577 }
578 
579 static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
580 {
581 	struct cca_timer *cca_timer;
582 	struct hfi1_pportdata *ppd;
583 	int sl;
584 	u16 ccti_timer, ccti_min;
585 	struct cc_state *cc_state;
586 	unsigned long flags;
587 	enum hrtimer_restart ret = HRTIMER_NORESTART;
588 
589 	cca_timer = container_of(t, struct cca_timer, hrtimer);
590 	ppd = cca_timer->ppd;
591 	sl = cca_timer->sl;
592 
593 	rcu_read_lock();
594 
595 	cc_state = get_cc_state(ppd);
596 
597 	if (!cc_state) {
598 		rcu_read_unlock();
599 		return HRTIMER_NORESTART;
600 	}
601 
602 	/*
603 	 * 1) decrement ccti for SL
604 	 * 2) calculate IPG for link (set_link_ipg())
605 	 * 3) restart timer, unless ccti is at min value
606 	 */
607 
608 	ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
609 	ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
610 
611 	spin_lock_irqsave(&ppd->cca_timer_lock, flags);
612 
613 	if (cca_timer->ccti > ccti_min) {
614 		cca_timer->ccti--;
615 		set_link_ipg(ppd);
616 	}
617 
618 	if (cca_timer->ccti > ccti_min) {
619 		unsigned long nsec = 1024 * ccti_timer;
620 		/* ccti_timer is in units of 1.024 usec */
621 		hrtimer_forward_now(t, ns_to_ktime(nsec));
622 		ret = HRTIMER_RESTART;
623 	}
624 
625 	spin_unlock_irqrestore(&ppd->cca_timer_lock, flags);
626 	rcu_read_unlock();
627 	return ret;
628 }
629 
630 /*
631  * Common code for initializing the physical port structure.
632  */
633 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
634 			 struct hfi1_devdata *dd, u8 hw_pidx, u8 port)
635 {
636 	int i;
637 	uint default_pkey_idx;
638 	struct cc_state *cc_state;
639 
640 	ppd->dd = dd;
641 	ppd->hw_pidx = hw_pidx;
642 	ppd->port = port; /* IB port number, not index */
643 	ppd->prev_link_width = LINK_WIDTH_DEFAULT;
644 	/*
645 	 * There are C_VL_COUNT number of PortVLXmitWait counters.
646 	 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
647 	 */
648 	for (i = 0; i < C_VL_COUNT + 1; i++) {
649 		ppd->port_vl_xmit_wait_last[i] = 0;
650 		ppd->vl_xmit_flit_cnt[i] = 0;
651 	}
652 
653 	default_pkey_idx = 1;
654 
655 	ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
656 	ppd->part_enforce |= HFI1_PART_ENFORCE_IN;
657 
658 	if (loopback) {
659 		dd_dev_err(dd, "Faking data partition 0x8001 in idx %u\n",
660 			   !default_pkey_idx);
661 		ppd->pkeys[!default_pkey_idx] = 0x8001;
662 	}
663 
664 	INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
665 	INIT_WORK(&ppd->link_up_work, handle_link_up);
666 	INIT_WORK(&ppd->link_down_work, handle_link_down);
667 	INIT_WORK(&ppd->freeze_work, handle_freeze);
668 	INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
669 	INIT_WORK(&ppd->sma_message_work, handle_sma_message);
670 	INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
671 	INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link);
672 	INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work);
673 	INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event);
674 
675 	mutex_init(&ppd->hls_lock);
676 	spin_lock_init(&ppd->qsfp_info.qsfp_lock);
677 
678 	ppd->qsfp_info.ppd = ppd;
679 	ppd->sm_trap_qp = 0x0;
680 	ppd->sa_qp = 0x1;
681 
682 	ppd->hfi1_wq = NULL;
683 
684 	spin_lock_init(&ppd->cca_timer_lock);
685 
686 	for (i = 0; i < OPA_MAX_SLS; i++) {
687 		hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
688 			     HRTIMER_MODE_REL);
689 		ppd->cca_timer[i].ppd = ppd;
690 		ppd->cca_timer[i].sl = i;
691 		ppd->cca_timer[i].ccti = 0;
692 		ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
693 	}
694 
695 	ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;
696 
697 	spin_lock_init(&ppd->cc_state_lock);
698 	spin_lock_init(&ppd->cc_log_lock);
699 	cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL);
700 	RCU_INIT_POINTER(ppd->cc_state, cc_state);
701 	if (!cc_state)
702 		goto bail;
703 	return;
704 
705 bail:
706 	dd_dev_err(dd, "Congestion Control Agent disabled for port %d\n", port);
707 }
708 
709 /*
710  * Do initialization for device that is only needed on
711  * first detect, not on resets.
712  */
713 static int loadtime_init(struct hfi1_devdata *dd)
714 {
715 	return 0;
716 }
717 
718 /**
719  * init_after_reset - re-initialize after a reset
720  * @dd: the hfi1_ib device
721  *
722  * sanity check at least some of the values after reset, and
723  * ensure no receive or transmit (explicitly, in case reset
724  * failed
725  */
726 static int init_after_reset(struct hfi1_devdata *dd)
727 {
728 	int i;
729 	struct hfi1_ctxtdata *rcd;
730 	/*
731 	 * Ensure chip does no sends or receives, tail updates, or
732 	 * pioavail updates while we re-initialize.  This is mostly
733 	 * for the driver data structures, not chip registers.
734 	 */
735 	for (i = 0; i < dd->num_rcv_contexts; i++) {
736 		rcd = hfi1_rcd_get_by_index(dd, i);
737 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
738 			     HFI1_RCVCTRL_INTRAVAIL_DIS |
739 			     HFI1_RCVCTRL_TAILUPD_DIS, rcd);
740 		hfi1_rcd_put(rcd);
741 	}
742 	pio_send_control(dd, PSC_GLOBAL_DISABLE);
743 	for (i = 0; i < dd->num_send_contexts; i++)
744 		sc_disable(dd->send_contexts[i].sc);
745 
746 	return 0;
747 }
748 
749 static void enable_chip(struct hfi1_devdata *dd)
750 {
751 	struct hfi1_ctxtdata *rcd;
752 	u32 rcvmask;
753 	u16 i;
754 
755 	/* enable PIO send */
756 	pio_send_control(dd, PSC_GLOBAL_ENABLE);
757 
758 	/*
759 	 * Enable kernel ctxts' receive and receive interrupt.
760 	 * Other ctxts done as user opens and initializes them.
761 	 */
762 	for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
763 		rcd = hfi1_rcd_get_by_index(dd, i);
764 		if (!rcd)
765 			continue;
766 		rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
767 		rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
768 			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
769 		if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
770 			rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
771 		if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_RHQ_FULL))
772 			rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
773 		if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_EGR_FULL))
774 			rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
775 		hfi1_rcvctrl(dd, rcvmask, rcd);
776 		sc_enable(rcd->sc);
777 		hfi1_rcd_put(rcd);
778 	}
779 }
780 
781 /**
782  * create_workqueues - create per port workqueues
783  * @dd: the hfi1_ib device
784  */
785 static int create_workqueues(struct hfi1_devdata *dd)
786 {
787 	int pidx;
788 	struct hfi1_pportdata *ppd;
789 
790 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
791 		ppd = dd->pport + pidx;
792 		if (!ppd->hfi1_wq) {
793 			ppd->hfi1_wq =
794 				alloc_workqueue(
795 				    "hfi%d_%d",
796 				    WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE,
797 				    HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES,
798 				    dd->unit, pidx);
799 			if (!ppd->hfi1_wq)
800 				goto wq_error;
801 		}
802 		if (!ppd->link_wq) {
803 			/*
804 			 * Make the link workqueue single-threaded to enforce
805 			 * serialization.
806 			 */
807 			ppd->link_wq =
808 				alloc_workqueue(
809 				    "hfi_link_%d_%d",
810 				    WQ_SYSFS | WQ_MEM_RECLAIM | WQ_UNBOUND,
811 				    1, /* max_active */
812 				    dd->unit, pidx);
813 			if (!ppd->link_wq)
814 				goto wq_error;
815 		}
816 	}
817 	return 0;
818 wq_error:
819 	pr_err("alloc_workqueue failed for port %d\n", pidx + 1);
820 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
821 		ppd = dd->pport + pidx;
822 		if (ppd->hfi1_wq) {
823 			destroy_workqueue(ppd->hfi1_wq);
824 			ppd->hfi1_wq = NULL;
825 		}
826 		if (ppd->link_wq) {
827 			destroy_workqueue(ppd->link_wq);
828 			ppd->link_wq = NULL;
829 		}
830 	}
831 	return -ENOMEM;
832 }
833 
834 /**
835  * enable_general_intr() - Enable the IRQs that will be handled by the
836  * general interrupt handler.
837  * @dd: valid devdata
838  *
839  */
840 static void enable_general_intr(struct hfi1_devdata *dd)
841 {
842 	set_intr_bits(dd, CCE_ERR_INT, MISC_ERR_INT, true);
843 	set_intr_bits(dd, PIO_ERR_INT, TXE_ERR_INT, true);
844 	set_intr_bits(dd, IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END, true);
845 	set_intr_bits(dd, PBC_INT, GPIO_ASSERT_INT, true);
846 	set_intr_bits(dd, TCRIT_INT, TCRIT_INT, true);
847 	set_intr_bits(dd, IS_DC_START, IS_DC_END, true);
848 	set_intr_bits(dd, IS_SENDCREDIT_START, IS_SENDCREDIT_END, true);
849 }
850 
851 /**
852  * hfi1_init - do the actual initialization sequence on the chip
853  * @dd: the hfi1_ib device
854  * @reinit: re-initializing, so don't allocate new memory
855  *
856  * Do the actual initialization sequence on the chip.  This is done
857  * both from the init routine called from the PCI infrastructure, and
858  * when we reset the chip, or detect that it was reset internally,
859  * or it's administratively re-enabled.
860  *
861  * Memory allocation here and in called routines is only done in
862  * the first case (reinit == 0).  We have to be careful, because even
863  * without memory allocation, we need to re-write all the chip registers
864  * TIDs, etc. after the reset or enable has completed.
865  */
866 int hfi1_init(struct hfi1_devdata *dd, int reinit)
867 {
868 	int ret = 0, pidx, lastfail = 0;
869 	unsigned long len;
870 	u16 i;
871 	struct hfi1_ctxtdata *rcd;
872 	struct hfi1_pportdata *ppd;
873 
874 	/* Set up send low level handlers */
875 	dd->process_pio_send = hfi1_verbs_send_pio;
876 	dd->process_dma_send = hfi1_verbs_send_dma;
877 	dd->pio_inline_send = pio_copy;
878 	dd->process_vnic_dma_send = hfi1_vnic_send_dma;
879 
880 	if (is_ax(dd)) {
881 		atomic_set(&dd->drop_packet, DROP_PACKET_ON);
882 		dd->do_drop = 1;
883 	} else {
884 		atomic_set(&dd->drop_packet, DROP_PACKET_OFF);
885 		dd->do_drop = 0;
886 	}
887 
888 	/* make sure the link is not "up" */
889 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
890 		ppd = dd->pport + pidx;
891 		ppd->linkup = 0;
892 	}
893 
894 	if (reinit)
895 		ret = init_after_reset(dd);
896 	else
897 		ret = loadtime_init(dd);
898 	if (ret)
899 		goto done;
900 
901 	/* allocate dummy tail memory for all receive contexts */
902 	dd->rcvhdrtail_dummy_kvaddr = dma_zalloc_coherent(
903 		&dd->pcidev->dev, sizeof(u64),
904 		&dd->rcvhdrtail_dummy_dma,
905 		GFP_KERNEL);
906 
907 	if (!dd->rcvhdrtail_dummy_kvaddr) {
908 		dd_dev_err(dd, "cannot allocate dummy tail memory\n");
909 		ret = -ENOMEM;
910 		goto done;
911 	}
912 
913 	/* dd->rcd can be NULL if early initialization failed */
914 	for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) {
915 		/*
916 		 * Set up the (kernel) rcvhdr queue and egr TIDs.  If doing
917 		 * re-init, the simplest way to handle this is to free
918 		 * existing, and re-allocate.
919 		 * Need to re-create rest of ctxt 0 ctxtdata as well.
920 		 */
921 		rcd = hfi1_rcd_get_by_index(dd, i);
922 		if (!rcd)
923 			continue;
924 
925 		rcd->do_interrupt = &handle_receive_interrupt;
926 
927 		lastfail = hfi1_create_rcvhdrq(dd, rcd);
928 		if (!lastfail)
929 			lastfail = hfi1_setup_eagerbufs(rcd);
930 		if (lastfail) {
931 			dd_dev_err(dd,
932 				   "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
933 			ret = lastfail;
934 		}
935 		/* enable IRQ */
936 		hfi1_rcd_put(rcd);
937 	}
938 
939 	/* Allocate enough memory for user event notification. */
940 	len = PAGE_ALIGN(chip_rcv_contexts(dd) * HFI1_MAX_SHARED_CTXTS *
941 			 sizeof(*dd->events));
942 	dd->events = vmalloc_user(len);
943 	if (!dd->events)
944 		dd_dev_err(dd, "Failed to allocate user events page\n");
945 	/*
946 	 * Allocate a page for device and port status.
947 	 * Page will be shared amongst all user processes.
948 	 */
949 	dd->status = vmalloc_user(PAGE_SIZE);
950 	if (!dd->status)
951 		dd_dev_err(dd, "Failed to allocate dev status page\n");
952 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
953 		ppd = dd->pport + pidx;
954 		if (dd->status)
955 			/* Currently, we only have one port */
956 			ppd->statusp = &dd->status->port;
957 
958 		set_mtu(ppd);
959 	}
960 
961 	/* enable chip even if we have an error, so we can debug cause */
962 	enable_chip(dd);
963 
964 done:
965 	/*
966 	 * Set status even if port serdes is not initialized
967 	 * so that diags will work.
968 	 */
969 	if (dd->status)
970 		dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
971 			HFI1_STATUS_INITTED;
972 	if (!ret) {
973 		/* enable all interrupts from the chip */
974 		enable_general_intr(dd);
975 		init_qsfp_int(dd);
976 
977 		/* chip is OK for user apps; mark it as initialized */
978 		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
979 			ppd = dd->pport + pidx;
980 
981 			/*
982 			 * start the serdes - must be after interrupts are
983 			 * enabled so we are notified when the link goes up
984 			 */
985 			lastfail = bringup_serdes(ppd);
986 			if (lastfail)
987 				dd_dev_info(dd,
988 					    "Failed to bring up port %u\n",
989 					    ppd->port);
990 
991 			/*
992 			 * Set status even if port serdes is not initialized
993 			 * so that diags will work.
994 			 */
995 			if (ppd->statusp)
996 				*ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
997 							HFI1_STATUS_INITTED;
998 			if (!ppd->link_speed_enabled)
999 				continue;
1000 		}
1001 	}
1002 
1003 	/* if ret is non-zero, we probably should do some cleanup here... */
1004 	return ret;
1005 }
1006 
1007 static inline struct hfi1_devdata *__hfi1_lookup(int unit)
1008 {
1009 	return idr_find(&hfi1_unit_table, unit);
1010 }
1011 
1012 struct hfi1_devdata *hfi1_lookup(int unit)
1013 {
1014 	struct hfi1_devdata *dd;
1015 	unsigned long flags;
1016 
1017 	spin_lock_irqsave(&hfi1_devs_lock, flags);
1018 	dd = __hfi1_lookup(unit);
1019 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1020 
1021 	return dd;
1022 }
1023 
1024 /*
1025  * Stop the timers during unit shutdown, or after an error late
1026  * in initialization.
1027  */
1028 static void stop_timers(struct hfi1_devdata *dd)
1029 {
1030 	struct hfi1_pportdata *ppd;
1031 	int pidx;
1032 
1033 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1034 		ppd = dd->pport + pidx;
1035 		if (ppd->led_override_timer.function) {
1036 			del_timer_sync(&ppd->led_override_timer);
1037 			atomic_set(&ppd->led_override_timer_active, 0);
1038 		}
1039 	}
1040 }
1041 
1042 /**
1043  * shutdown_device - shut down a device
1044  * @dd: the hfi1_ib device
1045  *
1046  * This is called to make the device quiet when we are about to
1047  * unload the driver, and also when the device is administratively
1048  * disabled.   It does not free any data structures.
1049  * Everything it does has to be setup again by hfi1_init(dd, 1)
1050  */
1051 static void shutdown_device(struct hfi1_devdata *dd)
1052 {
1053 	struct hfi1_pportdata *ppd;
1054 	struct hfi1_ctxtdata *rcd;
1055 	unsigned pidx;
1056 	int i;
1057 
1058 	if (dd->flags & HFI1_SHUTDOWN)
1059 		return;
1060 	dd->flags |= HFI1_SHUTDOWN;
1061 
1062 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1063 		ppd = dd->pport + pidx;
1064 
1065 		ppd->linkup = 0;
1066 		if (ppd->statusp)
1067 			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
1068 					   HFI1_STATUS_IB_READY);
1069 	}
1070 	dd->flags &= ~HFI1_INITTED;
1071 
1072 	/* mask and clean up interrupts */
1073 	set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, false);
1074 	msix_clean_up_interrupts(dd);
1075 
1076 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1077 		ppd = dd->pport + pidx;
1078 		for (i = 0; i < dd->num_rcv_contexts; i++) {
1079 			rcd = hfi1_rcd_get_by_index(dd, i);
1080 			hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
1081 				     HFI1_RCVCTRL_CTXT_DIS |
1082 				     HFI1_RCVCTRL_INTRAVAIL_DIS |
1083 				     HFI1_RCVCTRL_PKEY_DIS |
1084 				     HFI1_RCVCTRL_ONE_PKT_EGR_DIS, rcd);
1085 			hfi1_rcd_put(rcd);
1086 		}
1087 		/*
1088 		 * Gracefully stop all sends allowing any in progress to
1089 		 * trickle out first.
1090 		 */
1091 		for (i = 0; i < dd->num_send_contexts; i++)
1092 			sc_flush(dd->send_contexts[i].sc);
1093 	}
1094 
1095 	/*
1096 	 * Enough for anything that's going to trickle out to have actually
1097 	 * done so.
1098 	 */
1099 	udelay(20);
1100 
1101 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1102 		ppd = dd->pport + pidx;
1103 
1104 		/* disable all contexts */
1105 		for (i = 0; i < dd->num_send_contexts; i++)
1106 			sc_disable(dd->send_contexts[i].sc);
1107 		/* disable the send device */
1108 		pio_send_control(dd, PSC_GLOBAL_DISABLE);
1109 
1110 		shutdown_led_override(ppd);
1111 
1112 		/*
1113 		 * Clear SerdesEnable.
1114 		 * We can't count on interrupts since we are stopping.
1115 		 */
1116 		hfi1_quiet_serdes(ppd);
1117 
1118 		if (ppd->hfi1_wq) {
1119 			destroy_workqueue(ppd->hfi1_wq);
1120 			ppd->hfi1_wq = NULL;
1121 		}
1122 		if (ppd->link_wq) {
1123 			destroy_workqueue(ppd->link_wq);
1124 			ppd->link_wq = NULL;
1125 		}
1126 	}
1127 	sdma_exit(dd);
1128 }
1129 
1130 /**
1131  * hfi1_free_ctxtdata - free a context's allocated data
1132  * @dd: the hfi1_ib device
1133  * @rcd: the ctxtdata structure
1134  *
1135  * free up any allocated data for a context
1136  * It should never change any chip state, or global driver state.
1137  */
1138 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1139 {
1140 	u32 e;
1141 
1142 	if (!rcd)
1143 		return;
1144 
1145 	if (rcd->rcvhdrq) {
1146 		dma_free_coherent(&dd->pcidev->dev, rcvhdrq_size(rcd),
1147 				  rcd->rcvhdrq, rcd->rcvhdrq_dma);
1148 		rcd->rcvhdrq = NULL;
1149 		if (rcd->rcvhdrtail_kvaddr) {
1150 			dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
1151 					  (void *)rcd->rcvhdrtail_kvaddr,
1152 					  rcd->rcvhdrqtailaddr_dma);
1153 			rcd->rcvhdrtail_kvaddr = NULL;
1154 		}
1155 	}
1156 
1157 	/* all the RcvArray entries should have been cleared by now */
1158 	kfree(rcd->egrbufs.rcvtids);
1159 	rcd->egrbufs.rcvtids = NULL;
1160 
1161 	for (e = 0; e < rcd->egrbufs.alloced; e++) {
1162 		if (rcd->egrbufs.buffers[e].dma)
1163 			dma_free_coherent(&dd->pcidev->dev,
1164 					  rcd->egrbufs.buffers[e].len,
1165 					  rcd->egrbufs.buffers[e].addr,
1166 					  rcd->egrbufs.buffers[e].dma);
1167 	}
1168 	kfree(rcd->egrbufs.buffers);
1169 	rcd->egrbufs.alloced = 0;
1170 	rcd->egrbufs.buffers = NULL;
1171 
1172 	sc_free(rcd->sc);
1173 	rcd->sc = NULL;
1174 
1175 	vfree(rcd->subctxt_uregbase);
1176 	vfree(rcd->subctxt_rcvegrbuf);
1177 	vfree(rcd->subctxt_rcvhdr_base);
1178 	kfree(rcd->opstats);
1179 
1180 	rcd->subctxt_uregbase = NULL;
1181 	rcd->subctxt_rcvegrbuf = NULL;
1182 	rcd->subctxt_rcvhdr_base = NULL;
1183 	rcd->opstats = NULL;
1184 }
1185 
1186 /*
1187  * Release our hold on the shared asic data.  If we are the last one,
1188  * return the structure to be finalized outside the lock.  Must be
1189  * holding hfi1_devs_lock.
1190  */
1191 static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd)
1192 {
1193 	struct hfi1_asic_data *ad;
1194 	int other;
1195 
1196 	if (!dd->asic_data)
1197 		return NULL;
1198 	dd->asic_data->dds[dd->hfi1_id] = NULL;
1199 	other = dd->hfi1_id ? 0 : 1;
1200 	ad = dd->asic_data;
1201 	dd->asic_data = NULL;
1202 	/* return NULL if the other dd still has a link */
1203 	return ad->dds[other] ? NULL : ad;
1204 }
1205 
1206 static void finalize_asic_data(struct hfi1_devdata *dd,
1207 			       struct hfi1_asic_data *ad)
1208 {
1209 	clean_up_i2c(dd, ad);
1210 	kfree(ad);
1211 }
1212 
1213 /**
1214  * hfi1_clean_devdata - cleans up per-unit data structure
1215  * @dd: pointer to a valid devdata structure
1216  *
1217  * It cleans up all data structures set up by
1218  * by hfi1_alloc_devdata().
1219  */
1220 static void hfi1_clean_devdata(struct hfi1_devdata *dd)
1221 {
1222 	struct hfi1_asic_data *ad;
1223 	unsigned long flags;
1224 
1225 	spin_lock_irqsave(&hfi1_devs_lock, flags);
1226 	if (!list_empty(&dd->list)) {
1227 		idr_remove(&hfi1_unit_table, dd->unit);
1228 		list_del_init(&dd->list);
1229 	}
1230 	ad = release_asic_data(dd);
1231 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1232 
1233 	finalize_asic_data(dd, ad);
1234 	free_platform_config(dd);
1235 	rcu_barrier(); /* wait for rcu callbacks to complete */
1236 	free_percpu(dd->int_counter);
1237 	free_percpu(dd->rcv_limit);
1238 	free_percpu(dd->send_schedule);
1239 	free_percpu(dd->tx_opstats);
1240 	dd->int_counter   = NULL;
1241 	dd->rcv_limit     = NULL;
1242 	dd->send_schedule = NULL;
1243 	dd->tx_opstats    = NULL;
1244 	kfree(dd->comp_vect);
1245 	dd->comp_vect = NULL;
1246 	sdma_clean(dd, dd->num_sdma);
1247 	rvt_dealloc_device(&dd->verbs_dev.rdi);
1248 }
1249 
1250 static void __hfi1_free_devdata(struct kobject *kobj)
1251 {
1252 	struct hfi1_devdata *dd =
1253 		container_of(kobj, struct hfi1_devdata, kobj);
1254 
1255 	hfi1_clean_devdata(dd);
1256 }
1257 
1258 static struct kobj_type hfi1_devdata_type = {
1259 	.release = __hfi1_free_devdata,
1260 };
1261 
1262 void hfi1_free_devdata(struct hfi1_devdata *dd)
1263 {
1264 	kobject_put(&dd->kobj);
1265 }
1266 
1267 /**
1268  * hfi1_alloc_devdata - Allocate our primary per-unit data structure.
1269  * @pdev: Valid PCI device
1270  * @extra: How many bytes to alloc past the default
1271  *
1272  * Must be done via verbs allocator, because the verbs cleanup process
1273  * both does cleanup and free of the data structure.
1274  * "extra" is for chip-specific data.
1275  *
1276  * Use the idr mechanism to get a unit number for this unit.
1277  */
1278 static struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev,
1279 					       size_t extra)
1280 {
1281 	unsigned long flags;
1282 	struct hfi1_devdata *dd;
1283 	int ret, nports;
1284 
1285 	/* extra is * number of ports */
1286 	nports = extra / sizeof(struct hfi1_pportdata);
1287 
1288 	dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra,
1289 						     nports);
1290 	if (!dd)
1291 		return ERR_PTR(-ENOMEM);
1292 	dd->num_pports = nports;
1293 	dd->pport = (struct hfi1_pportdata *)(dd + 1);
1294 	dd->pcidev = pdev;
1295 	pci_set_drvdata(pdev, dd);
1296 
1297 	INIT_LIST_HEAD(&dd->list);
1298 	idr_preload(GFP_KERNEL);
1299 	spin_lock_irqsave(&hfi1_devs_lock, flags);
1300 
1301 	ret = idr_alloc(&hfi1_unit_table, dd, 0, 0, GFP_NOWAIT);
1302 	if (ret >= 0) {
1303 		dd->unit = ret;
1304 		list_add(&dd->list, &hfi1_dev_list);
1305 	}
1306 	dd->node = -1;
1307 
1308 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1309 	idr_preload_end();
1310 
1311 	if (ret < 0) {
1312 		dev_err(&pdev->dev,
1313 			"Could not allocate unit ID: error %d\n", -ret);
1314 		goto bail;
1315 	}
1316 	rvt_set_ibdev_name(&dd->verbs_dev.rdi, "%s_%d", class_name(), dd->unit);
1317 
1318 	/*
1319 	 * Initialize all locks for the device. This needs to be as early as
1320 	 * possible so locks are usable.
1321 	 */
1322 	spin_lock_init(&dd->sc_lock);
1323 	spin_lock_init(&dd->sendctrl_lock);
1324 	spin_lock_init(&dd->rcvctrl_lock);
1325 	spin_lock_init(&dd->uctxt_lock);
1326 	spin_lock_init(&dd->hfi1_diag_trans_lock);
1327 	spin_lock_init(&dd->sc_init_lock);
1328 	spin_lock_init(&dd->dc8051_memlock);
1329 	seqlock_init(&dd->sc2vl_lock);
1330 	spin_lock_init(&dd->sde_map_lock);
1331 	spin_lock_init(&dd->pio_map_lock);
1332 	mutex_init(&dd->dc8051_lock);
1333 	init_waitqueue_head(&dd->event_queue);
1334 	spin_lock_init(&dd->irq_src_lock);
1335 
1336 	dd->int_counter = alloc_percpu(u64);
1337 	if (!dd->int_counter) {
1338 		ret = -ENOMEM;
1339 		goto bail;
1340 	}
1341 
1342 	dd->rcv_limit = alloc_percpu(u64);
1343 	if (!dd->rcv_limit) {
1344 		ret = -ENOMEM;
1345 		goto bail;
1346 	}
1347 
1348 	dd->send_schedule = alloc_percpu(u64);
1349 	if (!dd->send_schedule) {
1350 		ret = -ENOMEM;
1351 		goto bail;
1352 	}
1353 
1354 	dd->tx_opstats = alloc_percpu(struct hfi1_opcode_stats_perctx);
1355 	if (!dd->tx_opstats) {
1356 		ret = -ENOMEM;
1357 		goto bail;
1358 	}
1359 
1360 	dd->comp_vect = kzalloc(sizeof(*dd->comp_vect), GFP_KERNEL);
1361 	if (!dd->comp_vect) {
1362 		ret = -ENOMEM;
1363 		goto bail;
1364 	}
1365 
1366 	kobject_init(&dd->kobj, &hfi1_devdata_type);
1367 	return dd;
1368 
1369 bail:
1370 	hfi1_clean_devdata(dd);
1371 	return ERR_PTR(ret);
1372 }
1373 
1374 /*
1375  * Called from freeze mode handlers, and from PCI error
1376  * reporting code.  Should be paranoid about state of
1377  * system and data structures.
1378  */
1379 void hfi1_disable_after_error(struct hfi1_devdata *dd)
1380 {
1381 	if (dd->flags & HFI1_INITTED) {
1382 		u32 pidx;
1383 
1384 		dd->flags &= ~HFI1_INITTED;
1385 		if (dd->pport)
1386 			for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1387 				struct hfi1_pportdata *ppd;
1388 
1389 				ppd = dd->pport + pidx;
1390 				if (dd->flags & HFI1_PRESENT)
1391 					set_link_state(ppd, HLS_DN_DISABLE);
1392 
1393 				if (ppd->statusp)
1394 					*ppd->statusp &= ~HFI1_STATUS_IB_READY;
1395 			}
1396 	}
1397 
1398 	/*
1399 	 * Mark as having had an error for driver, and also
1400 	 * for /sys and status word mapped to user programs.
1401 	 * This marks unit as not usable, until reset.
1402 	 */
1403 	if (dd->status)
1404 		dd->status->dev |= HFI1_STATUS_HWERROR;
1405 }
1406 
1407 static void remove_one(struct pci_dev *);
1408 static int init_one(struct pci_dev *, const struct pci_device_id *);
1409 static void shutdown_one(struct pci_dev *);
1410 
1411 #define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: "
1412 #define PFX DRIVER_NAME ": "
1413 
1414 const struct pci_device_id hfi1_pci_tbl[] = {
1415 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
1416 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
1417 	{ 0, }
1418 };
1419 
1420 MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);
1421 
1422 static struct pci_driver hfi1_pci_driver = {
1423 	.name = DRIVER_NAME,
1424 	.probe = init_one,
1425 	.remove = remove_one,
1426 	.shutdown = shutdown_one,
1427 	.id_table = hfi1_pci_tbl,
1428 	.err_handler = &hfi1_pci_err_handler,
1429 };
1430 
1431 static void __init compute_krcvqs(void)
1432 {
1433 	int i;
1434 
1435 	for (i = 0; i < krcvqsset; i++)
1436 		n_krcvqs += krcvqs[i];
1437 }
1438 
1439 /*
1440  * Do all the generic driver unit- and chip-independent memory
1441  * allocation and initialization.
1442  */
1443 static int __init hfi1_mod_init(void)
1444 {
1445 	int ret;
1446 
1447 	ret = dev_init();
1448 	if (ret)
1449 		goto bail;
1450 
1451 	ret = node_affinity_init();
1452 	if (ret)
1453 		goto bail;
1454 
1455 	/* validate max MTU before any devices start */
1456 	if (!valid_opa_max_mtu(hfi1_max_mtu)) {
1457 		pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
1458 		       hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
1459 		hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
1460 	}
1461 	/* valid CUs run from 1-128 in powers of 2 */
1462 	if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu))
1463 		hfi1_cu = 1;
1464 	/* valid credit return threshold is 0-100, variable is unsigned */
1465 	if (user_credit_return_threshold > 100)
1466 		user_credit_return_threshold = 100;
1467 
1468 	compute_krcvqs();
1469 	/*
1470 	 * sanitize receive interrupt count, time must wait until after
1471 	 * the hardware type is known
1472 	 */
1473 	if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
1474 		rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
1475 	/* reject invalid combinations */
1476 	if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
1477 		pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
1478 		rcv_intr_count = 1;
1479 	}
1480 	if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
1481 		/*
1482 		 * Avoid indefinite packet delivery by requiring a timeout
1483 		 * if count is > 1.
1484 		 */
1485 		pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
1486 		rcv_intr_timeout = 1;
1487 	}
1488 	if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
1489 		/*
1490 		 * The dynamic algorithm expects a non-zero timeout
1491 		 * and a count > 1.
1492 		 */
1493 		pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
1494 		rcv_intr_dynamic = 0;
1495 	}
1496 
1497 	/* sanitize link CRC options */
1498 	link_crc_mask &= SUPPORTED_CRCS;
1499 
1500 	/*
1501 	 * These must be called before the driver is registered with
1502 	 * the PCI subsystem.
1503 	 */
1504 	idr_init(&hfi1_unit_table);
1505 
1506 	hfi1_dbg_init();
1507 	ret = pci_register_driver(&hfi1_pci_driver);
1508 	if (ret < 0) {
1509 		pr_err("Unable to register driver: error %d\n", -ret);
1510 		goto bail_dev;
1511 	}
1512 	goto bail; /* all OK */
1513 
1514 bail_dev:
1515 	hfi1_dbg_exit();
1516 	idr_destroy(&hfi1_unit_table);
1517 	dev_cleanup();
1518 bail:
1519 	return ret;
1520 }
1521 
1522 module_init(hfi1_mod_init);
1523 
1524 /*
1525  * Do the non-unit driver cleanup, memory free, etc. at unload.
1526  */
1527 static void __exit hfi1_mod_cleanup(void)
1528 {
1529 	pci_unregister_driver(&hfi1_pci_driver);
1530 	node_affinity_destroy_all();
1531 	hfi1_dbg_exit();
1532 
1533 	idr_destroy(&hfi1_unit_table);
1534 	dispose_firmware();	/* asymmetric with obtain_firmware() */
1535 	dev_cleanup();
1536 }
1537 
1538 module_exit(hfi1_mod_cleanup);
1539 
1540 /* this can only be called after a successful initialization */
1541 static void cleanup_device_data(struct hfi1_devdata *dd)
1542 {
1543 	int ctxt;
1544 	int pidx;
1545 
1546 	/* users can't do anything more with chip */
1547 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1548 		struct hfi1_pportdata *ppd = &dd->pport[pidx];
1549 		struct cc_state *cc_state;
1550 		int i;
1551 
1552 		if (ppd->statusp)
1553 			*ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;
1554 
1555 		for (i = 0; i < OPA_MAX_SLS; i++)
1556 			hrtimer_cancel(&ppd->cca_timer[i].hrtimer);
1557 
1558 		spin_lock(&ppd->cc_state_lock);
1559 		cc_state = get_cc_state_protected(ppd);
1560 		RCU_INIT_POINTER(ppd->cc_state, NULL);
1561 		spin_unlock(&ppd->cc_state_lock);
1562 
1563 		if (cc_state)
1564 			kfree_rcu(cc_state, rcu);
1565 	}
1566 
1567 	free_credit_return(dd);
1568 
1569 	if (dd->rcvhdrtail_dummy_kvaddr) {
1570 		dma_free_coherent(&dd->pcidev->dev, sizeof(u64),
1571 				  (void *)dd->rcvhdrtail_dummy_kvaddr,
1572 				  dd->rcvhdrtail_dummy_dma);
1573 		dd->rcvhdrtail_dummy_kvaddr = NULL;
1574 	}
1575 
1576 	/*
1577 	 * Free any resources still in use (usually just kernel contexts)
1578 	 * at unload; we do for ctxtcnt, because that's what we allocate.
1579 	 */
1580 	for (ctxt = 0; dd->rcd && ctxt < dd->num_rcv_contexts; ctxt++) {
1581 		struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
1582 
1583 		if (rcd) {
1584 			hfi1_clear_tids(rcd);
1585 			hfi1_free_ctxt(rcd);
1586 		}
1587 	}
1588 
1589 	kfree(dd->rcd);
1590 	dd->rcd = NULL;
1591 
1592 	free_pio_map(dd);
1593 	/* must follow rcv context free - need to remove rcv's hooks */
1594 	for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
1595 		sc_free(dd->send_contexts[ctxt].sc);
1596 	dd->num_send_contexts = 0;
1597 	kfree(dd->send_contexts);
1598 	dd->send_contexts = NULL;
1599 	kfree(dd->hw_to_sw);
1600 	dd->hw_to_sw = NULL;
1601 	kfree(dd->boardname);
1602 	vfree(dd->events);
1603 	vfree(dd->status);
1604 }
1605 
1606 /*
1607  * Clean up on unit shutdown, or error during unit load after
1608  * successful initialization.
1609  */
1610 static void postinit_cleanup(struct hfi1_devdata *dd)
1611 {
1612 	hfi1_start_cleanup(dd);
1613 	hfi1_comp_vectors_clean_up(dd);
1614 	hfi1_dev_affinity_clean_up(dd);
1615 
1616 	hfi1_pcie_ddcleanup(dd);
1617 	hfi1_pcie_cleanup(dd->pcidev);
1618 
1619 	cleanup_device_data(dd);
1620 
1621 	hfi1_free_devdata(dd);
1622 }
1623 
1624 static int init_validate_rcvhdrcnt(struct hfi1_devdata *dd, uint thecnt)
1625 {
1626 	if (thecnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) {
1627 		dd_dev_err(dd, "Receive header queue count too small\n");
1628 		return -EINVAL;
1629 	}
1630 
1631 	if (thecnt > HFI1_MAX_HDRQ_EGRBUF_CNT) {
1632 		dd_dev_err(dd,
1633 			   "Receive header queue count cannot be greater than %u\n",
1634 			   HFI1_MAX_HDRQ_EGRBUF_CNT);
1635 		return -EINVAL;
1636 	}
1637 
1638 	if (thecnt % HDRQ_INCREMENT) {
1639 		dd_dev_err(dd, "Receive header queue count %d must be divisible by %lu\n",
1640 			   thecnt, HDRQ_INCREMENT);
1641 		return -EINVAL;
1642 	}
1643 
1644 	return 0;
1645 }
1646 
1647 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1648 {
1649 	int ret = 0, j, pidx, initfail;
1650 	struct hfi1_devdata *dd;
1651 	struct hfi1_pportdata *ppd;
1652 
1653 	/* First, lock the non-writable module parameters */
1654 	HFI1_CAP_LOCK();
1655 
1656 	/* Validate dev ids */
1657 	if (!(ent->device == PCI_DEVICE_ID_INTEL0 ||
1658 	      ent->device == PCI_DEVICE_ID_INTEL1)) {
1659 		dev_err(&pdev->dev, "Failing on unknown Intel deviceid 0x%x\n",
1660 			ent->device);
1661 		ret = -ENODEV;
1662 		goto bail;
1663 	}
1664 
1665 	/* Allocate the dd so we can get to work */
1666 	dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
1667 				sizeof(struct hfi1_pportdata));
1668 	if (IS_ERR(dd)) {
1669 		ret = PTR_ERR(dd);
1670 		goto bail;
1671 	}
1672 
1673 	/* Validate some global module parameters */
1674 	ret = init_validate_rcvhdrcnt(dd, rcvhdrcnt);
1675 	if (ret)
1676 		goto bail;
1677 
1678 	/* use the encoding function as a sanitization check */
1679 	if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) {
1680 		dd_dev_err(dd, "Invalid HdrQ Entry size %u\n",
1681 			   hfi1_hdrq_entsize);
1682 		ret = -EINVAL;
1683 		goto bail;
1684 	}
1685 
1686 	/* The receive eager buffer size must be set before the receive
1687 	 * contexts are created.
1688 	 *
1689 	 * Set the eager buffer size.  Validate that it falls in a range
1690 	 * allowed by the hardware - all powers of 2 between the min and
1691 	 * max.  The maximum valid MTU is within the eager buffer range
1692 	 * so we do not need to cap the max_mtu by an eager buffer size
1693 	 * setting.
1694 	 */
1695 	if (eager_buffer_size) {
1696 		if (!is_power_of_2(eager_buffer_size))
1697 			eager_buffer_size =
1698 				roundup_pow_of_two(eager_buffer_size);
1699 		eager_buffer_size =
1700 			clamp_val(eager_buffer_size,
1701 				  MIN_EAGER_BUFFER * 8,
1702 				  MAX_EAGER_BUFFER_TOTAL);
1703 		dd_dev_info(dd, "Eager buffer size %u\n",
1704 			    eager_buffer_size);
1705 	} else {
1706 		dd_dev_err(dd, "Invalid Eager buffer size of 0\n");
1707 		ret = -EINVAL;
1708 		goto bail;
1709 	}
1710 
1711 	/* restrict value of hfi1_rcvarr_split */
1712 	hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);
1713 
1714 	ret = hfi1_pcie_init(dd);
1715 	if (ret)
1716 		goto bail;
1717 
1718 	/*
1719 	 * Do device-specific initialization, function table setup, dd
1720 	 * allocation, etc.
1721 	 */
1722 	ret = hfi1_init_dd(dd);
1723 	if (ret)
1724 		goto clean_bail; /* error already printed */
1725 
1726 	ret = create_workqueues(dd);
1727 	if (ret)
1728 		goto clean_bail;
1729 
1730 	/* do the generic initialization */
1731 	initfail = hfi1_init(dd, 0);
1732 
1733 	/* setup vnic */
1734 	hfi1_vnic_setup(dd);
1735 
1736 	ret = hfi1_register_ib_device(dd);
1737 
1738 	/*
1739 	 * Now ready for use.  this should be cleared whenever we
1740 	 * detect a reset, or initiate one.  If earlier failure,
1741 	 * we still create devices, so diags, etc. can be used
1742 	 * to determine cause of problem.
1743 	 */
1744 	if (!initfail && !ret) {
1745 		dd->flags |= HFI1_INITTED;
1746 		/* create debufs files after init and ib register */
1747 		hfi1_dbg_ibdev_init(&dd->verbs_dev);
1748 	}
1749 
1750 	j = hfi1_device_create(dd);
1751 	if (j)
1752 		dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
1753 
1754 	if (initfail || ret) {
1755 		msix_clean_up_interrupts(dd);
1756 		stop_timers(dd);
1757 		flush_workqueue(ib_wq);
1758 		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1759 			hfi1_quiet_serdes(dd->pport + pidx);
1760 			ppd = dd->pport + pidx;
1761 			if (ppd->hfi1_wq) {
1762 				destroy_workqueue(ppd->hfi1_wq);
1763 				ppd->hfi1_wq = NULL;
1764 			}
1765 			if (ppd->link_wq) {
1766 				destroy_workqueue(ppd->link_wq);
1767 				ppd->link_wq = NULL;
1768 			}
1769 		}
1770 		if (!j)
1771 			hfi1_device_remove(dd);
1772 		if (!ret)
1773 			hfi1_unregister_ib_device(dd);
1774 		hfi1_vnic_cleanup(dd);
1775 		postinit_cleanup(dd);
1776 		if (initfail)
1777 			ret = initfail;
1778 		goto bail;	/* everything already cleaned */
1779 	}
1780 
1781 	sdma_start(dd);
1782 
1783 	return 0;
1784 
1785 clean_bail:
1786 	hfi1_pcie_cleanup(pdev);
1787 bail:
1788 	return ret;
1789 }
1790 
1791 static void wait_for_clients(struct hfi1_devdata *dd)
1792 {
1793 	/*
1794 	 * Remove the device init value and complete the device if there is
1795 	 * no clients or wait for active clients to finish.
1796 	 */
1797 	if (atomic_dec_and_test(&dd->user_refcount))
1798 		complete(&dd->user_comp);
1799 
1800 	wait_for_completion(&dd->user_comp);
1801 }
1802 
1803 static void remove_one(struct pci_dev *pdev)
1804 {
1805 	struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1806 
1807 	/* close debugfs files before ib unregister */
1808 	hfi1_dbg_ibdev_exit(&dd->verbs_dev);
1809 
1810 	/* remove the /dev hfi1 interface */
1811 	hfi1_device_remove(dd);
1812 
1813 	/* wait for existing user space clients to finish */
1814 	wait_for_clients(dd);
1815 
1816 	/* unregister from IB core */
1817 	hfi1_unregister_ib_device(dd);
1818 
1819 	/* cleanup vnic */
1820 	hfi1_vnic_cleanup(dd);
1821 
1822 	/*
1823 	 * Disable the IB link, disable interrupts on the device,
1824 	 * clear dma engines, etc.
1825 	 */
1826 	shutdown_device(dd);
1827 
1828 	stop_timers(dd);
1829 
1830 	/* wait until all of our (qsfp) queue_work() calls complete */
1831 	flush_workqueue(ib_wq);
1832 
1833 	postinit_cleanup(dd);
1834 }
1835 
1836 static void shutdown_one(struct pci_dev *pdev)
1837 {
1838 	struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1839 
1840 	shutdown_device(dd);
1841 }
1842 
1843 /**
1844  * hfi1_create_rcvhdrq - create a receive header queue
1845  * @dd: the hfi1_ib device
1846  * @rcd: the context data
1847  *
1848  * This must be contiguous memory (from an i/o perspective), and must be
1849  * DMA'able (which means for some systems, it will go through an IOMMU,
1850  * or be forced into a low address range).
1851  */
1852 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1853 {
1854 	unsigned amt;
1855 	u64 reg;
1856 
1857 	if (!rcd->rcvhdrq) {
1858 		gfp_t gfp_flags;
1859 
1860 		amt = rcvhdrq_size(rcd);
1861 
1862 		if (rcd->ctxt < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
1863 			gfp_flags = GFP_KERNEL;
1864 		else
1865 			gfp_flags = GFP_USER;
1866 		rcd->rcvhdrq = dma_zalloc_coherent(
1867 			&dd->pcidev->dev, amt, &rcd->rcvhdrq_dma,
1868 			gfp_flags | __GFP_COMP);
1869 
1870 		if (!rcd->rcvhdrq) {
1871 			dd_dev_err(dd,
1872 				   "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
1873 				   amt, rcd->ctxt);
1874 			goto bail;
1875 		}
1876 
1877 		if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ||
1878 		    HFI1_CAP_UGET_MASK(rcd->flags, DMA_RTAIL)) {
1879 			rcd->rcvhdrtail_kvaddr = dma_zalloc_coherent(
1880 				&dd->pcidev->dev, PAGE_SIZE,
1881 				&rcd->rcvhdrqtailaddr_dma, gfp_flags);
1882 			if (!rcd->rcvhdrtail_kvaddr)
1883 				goto bail_free;
1884 		}
1885 	}
1886 	/*
1887 	 * These values are per-context:
1888 	 *	RcvHdrCnt
1889 	 *	RcvHdrEntSize
1890 	 *	RcvHdrSize
1891 	 */
1892 	reg = ((u64)(rcd->rcvhdrq_cnt >> HDRQ_SIZE_SHIFT)
1893 			& RCV_HDR_CNT_CNT_MASK)
1894 		<< RCV_HDR_CNT_CNT_SHIFT;
1895 	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_CNT, reg);
1896 	reg = (encode_rcv_header_entry_size(rcd->rcvhdrqentsize)
1897 			& RCV_HDR_ENT_SIZE_ENT_SIZE_MASK)
1898 		<< RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT;
1899 	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_ENT_SIZE, reg);
1900 	reg = ((u64)DEFAULT_RCVHDRSIZE & RCV_HDR_SIZE_HDR_SIZE_MASK)
1901 		<< RCV_HDR_SIZE_HDR_SIZE_SHIFT;
1902 	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_SIZE, reg);
1903 
1904 	/*
1905 	 * Program dummy tail address for every receive context
1906 	 * before enabling any receive context
1907 	 */
1908 	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_TAIL_ADDR,
1909 			dd->rcvhdrtail_dummy_dma);
1910 
1911 	return 0;
1912 
1913 bail_free:
1914 	dd_dev_err(dd,
1915 		   "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
1916 		   rcd->ctxt);
1917 	dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
1918 			  rcd->rcvhdrq_dma);
1919 	rcd->rcvhdrq = NULL;
1920 bail:
1921 	return -ENOMEM;
1922 }
1923 
1924 /**
1925  * allocate eager buffers, both kernel and user contexts.
1926  * @rcd: the context we are setting up.
1927  *
1928  * Allocate the eager TID buffers and program them into hip.
1929  * They are no longer completely contiguous, we do multiple allocation
1930  * calls.  Otherwise we get the OOM code involved, by asking for too
1931  * much per call, with disastrous results on some kernels.
1932  */
1933 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
1934 {
1935 	struct hfi1_devdata *dd = rcd->dd;
1936 	u32 max_entries, egrtop, alloced_bytes = 0;
1937 	gfp_t gfp_flags;
1938 	u16 order, idx = 0;
1939 	int ret = 0;
1940 	u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);
1941 
1942 	/*
1943 	 * GFP_USER, but without GFP_FS, so buffer cache can be
1944 	 * coalesced (we hope); otherwise, even at order 4,
1945 	 * heavy filesystem activity makes these fail, and we can
1946 	 * use compound pages.
1947 	 */
1948 	gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP;
1949 
1950 	/*
1951 	 * The minimum size of the eager buffers is a groups of MTU-sized
1952 	 * buffers.
1953 	 * The global eager_buffer_size parameter is checked against the
1954 	 * theoretical lower limit of the value. Here, we check against the
1955 	 * MTU.
1956 	 */
1957 	if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
1958 		rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
1959 	/*
1960 	 * If using one-pkt-per-egr-buffer, lower the eager buffer
1961 	 * size to the max MTU (page-aligned).
1962 	 */
1963 	if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
1964 		rcd->egrbufs.rcvtid_size = round_mtu;
1965 
1966 	/*
1967 	 * Eager buffers sizes of 1MB or less require smaller TID sizes
1968 	 * to satisfy the "multiple of 8 RcvArray entries" requirement.
1969 	 */
1970 	if (rcd->egrbufs.size <= (1 << 20))
1971 		rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
1972 			rounddown_pow_of_two(rcd->egrbufs.size / 8));
1973 
1974 	while (alloced_bytes < rcd->egrbufs.size &&
1975 	       rcd->egrbufs.alloced < rcd->egrbufs.count) {
1976 		rcd->egrbufs.buffers[idx].addr =
1977 			dma_zalloc_coherent(&dd->pcidev->dev,
1978 					    rcd->egrbufs.rcvtid_size,
1979 					    &rcd->egrbufs.buffers[idx].dma,
1980 					    gfp_flags);
1981 		if (rcd->egrbufs.buffers[idx].addr) {
1982 			rcd->egrbufs.buffers[idx].len =
1983 				rcd->egrbufs.rcvtid_size;
1984 			rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
1985 				rcd->egrbufs.buffers[idx].addr;
1986 			rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma =
1987 				rcd->egrbufs.buffers[idx].dma;
1988 			rcd->egrbufs.alloced++;
1989 			alloced_bytes += rcd->egrbufs.rcvtid_size;
1990 			idx++;
1991 		} else {
1992 			u32 new_size, i, j;
1993 			u64 offset = 0;
1994 
1995 			/*
1996 			 * Fail the eager buffer allocation if:
1997 			 *   - we are already using the lowest acceptable size
1998 			 *   - we are using one-pkt-per-egr-buffer (this implies
1999 			 *     that we are accepting only one size)
2000 			 */
2001 			if (rcd->egrbufs.rcvtid_size == round_mtu ||
2002 			    !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
2003 				dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
2004 					   rcd->ctxt);
2005 				ret = -ENOMEM;
2006 				goto bail_rcvegrbuf_phys;
2007 			}
2008 
2009 			new_size = rcd->egrbufs.rcvtid_size / 2;
2010 
2011 			/*
2012 			 * If the first attempt to allocate memory failed, don't
2013 			 * fail everything but continue with the next lower
2014 			 * size.
2015 			 */
2016 			if (idx == 0) {
2017 				rcd->egrbufs.rcvtid_size = new_size;
2018 				continue;
2019 			}
2020 
2021 			/*
2022 			 * Re-partition already allocated buffers to a smaller
2023 			 * size.
2024 			 */
2025 			rcd->egrbufs.alloced = 0;
2026 			for (i = 0, j = 0, offset = 0; j < idx; i++) {
2027 				if (i >= rcd->egrbufs.count)
2028 					break;
2029 				rcd->egrbufs.rcvtids[i].dma =
2030 					rcd->egrbufs.buffers[j].dma + offset;
2031 				rcd->egrbufs.rcvtids[i].addr =
2032 					rcd->egrbufs.buffers[j].addr + offset;
2033 				rcd->egrbufs.alloced++;
2034 				if ((rcd->egrbufs.buffers[j].dma + offset +
2035 				     new_size) ==
2036 				    (rcd->egrbufs.buffers[j].dma +
2037 				     rcd->egrbufs.buffers[j].len)) {
2038 					j++;
2039 					offset = 0;
2040 				} else {
2041 					offset += new_size;
2042 				}
2043 			}
2044 			rcd->egrbufs.rcvtid_size = new_size;
2045 		}
2046 	}
2047 	rcd->egrbufs.numbufs = idx;
2048 	rcd->egrbufs.size = alloced_bytes;
2049 
2050 	hfi1_cdbg(PROC,
2051 		  "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %zuKB\n",
2052 		  rcd->ctxt, rcd->egrbufs.alloced,
2053 		  rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024);
2054 
2055 	/*
2056 	 * Set the contexts rcv array head update threshold to the closest
2057 	 * power of 2 (so we can use a mask instead of modulo) below half
2058 	 * the allocated entries.
2059 	 */
2060 	rcd->egrbufs.threshold =
2061 		rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
2062 	/*
2063 	 * Compute the expected RcvArray entry base. This is done after
2064 	 * allocating the eager buffers in order to maximize the
2065 	 * expected RcvArray entries for the context.
2066 	 */
2067 	max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
2068 	egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
2069 	rcd->expected_count = max_entries - egrtop;
2070 	if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
2071 		rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;
2072 
2073 	rcd->expected_base = rcd->eager_base + egrtop;
2074 	hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n",
2075 		  rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
2076 		  rcd->eager_base, rcd->expected_base);
2077 
2078 	if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) {
2079 		hfi1_cdbg(PROC,
2080 			  "ctxt%u: current Eager buffer size is invalid %u\n",
2081 			  rcd->ctxt, rcd->egrbufs.rcvtid_size);
2082 		ret = -EINVAL;
2083 		goto bail_rcvegrbuf_phys;
2084 	}
2085 
2086 	for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
2087 		hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER,
2088 			     rcd->egrbufs.rcvtids[idx].dma, order);
2089 		cond_resched();
2090 	}
2091 
2092 	return 0;
2093 
2094 bail_rcvegrbuf_phys:
2095 	for (idx = 0; idx < rcd->egrbufs.alloced &&
2096 	     rcd->egrbufs.buffers[idx].addr;
2097 	     idx++) {
2098 		dma_free_coherent(&dd->pcidev->dev,
2099 				  rcd->egrbufs.buffers[idx].len,
2100 				  rcd->egrbufs.buffers[idx].addr,
2101 				  rcd->egrbufs.buffers[idx].dma);
2102 		rcd->egrbufs.buffers[idx].addr = NULL;
2103 		rcd->egrbufs.buffers[idx].dma = 0;
2104 		rcd->egrbufs.buffers[idx].len = 0;
2105 	}
2106 
2107 	return ret;
2108 }
2109