1 /* 2 * Copyright(c) 2015 - 2018 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 #include <linux/pci.h> 49 #include <linux/netdevice.h> 50 #include <linux/vmalloc.h> 51 #include <linux/delay.h> 52 #include <linux/idr.h> 53 #include <linux/module.h> 54 #include <linux/printk.h> 55 #include <linux/hrtimer.h> 56 #include <linux/bitmap.h> 57 #include <rdma/rdma_vt.h> 58 59 #include "hfi.h" 60 #include "device.h" 61 #include "common.h" 62 #include "trace.h" 63 #include "mad.h" 64 #include "sdma.h" 65 #include "debugfs.h" 66 #include "verbs.h" 67 #include "aspm.h" 68 #include "affinity.h" 69 #include "vnic.h" 70 #include "exp_rcv.h" 71 72 #undef pr_fmt 73 #define pr_fmt(fmt) DRIVER_NAME ": " fmt 74 75 #define HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES 5 76 /* 77 * min buffers we want to have per context, after driver 78 */ 79 #define HFI1_MIN_USER_CTXT_BUFCNT 7 80 81 #define HFI1_MIN_HDRQ_EGRBUF_CNT 2 82 #define HFI1_MAX_HDRQ_EGRBUF_CNT 16352 83 #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */ 84 #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */ 85 86 /* 87 * Number of user receive contexts we are configured to use (to allow for more 88 * pio buffers per ctxt, etc.) Zero means use one user context per CPU. 89 */ 90 int num_user_contexts = -1; 91 module_param_named(num_user_contexts, num_user_contexts, int, 0444); 92 MODULE_PARM_DESC( 93 num_user_contexts, "Set max number of user contexts to use (default: -1 will use the real (non-HT) CPU count)"); 94 95 uint krcvqs[RXE_NUM_DATA_VL]; 96 int krcvqsset; 97 module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO); 98 MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL"); 99 100 /* computed based on above array */ 101 unsigned long n_krcvqs; 102 103 static unsigned hfi1_rcvarr_split = 25; 104 module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO); 105 MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers"); 106 107 static uint eager_buffer_size = (8 << 20); /* 8MB */ 108 module_param(eager_buffer_size, uint, S_IRUGO); 109 MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 8MB"); 110 111 static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */ 112 module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO); 113 MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)"); 114 115 static uint hfi1_hdrq_entsize = 32; 116 module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, 0444); 117 MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B, 32 - 128B (default)"); 118 119 unsigned int user_credit_return_threshold = 33; /* default is 33% */ 120 module_param(user_credit_return_threshold, uint, S_IRUGO); 121 MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)"); 122 123 static inline u64 encode_rcv_header_entry_size(u16 size); 124 125 static struct idr hfi1_unit_table; 126 127 static int hfi1_create_kctxt(struct hfi1_devdata *dd, 128 struct hfi1_pportdata *ppd) 129 { 130 struct hfi1_ctxtdata *rcd; 131 int ret; 132 133 /* Control context has to be always 0 */ 134 BUILD_BUG_ON(HFI1_CTRL_CTXT != 0); 135 136 ret = hfi1_create_ctxtdata(ppd, dd->node, &rcd); 137 if (ret < 0) { 138 dd_dev_err(dd, "Kernel receive context allocation failed\n"); 139 return ret; 140 } 141 142 /* 143 * Set up the kernel context flags here and now because they use 144 * default values for all receive side memories. User contexts will 145 * be handled as they are created. 146 */ 147 rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) | 148 HFI1_CAP_KGET(NODROP_RHQ_FULL) | 149 HFI1_CAP_KGET(NODROP_EGR_FULL) | 150 HFI1_CAP_KGET(DMA_RTAIL); 151 152 /* Control context must use DMA_RTAIL */ 153 if (rcd->ctxt == HFI1_CTRL_CTXT) 154 rcd->flags |= HFI1_CAP_DMA_RTAIL; 155 rcd->seq_cnt = 1; 156 157 rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node); 158 if (!rcd->sc) { 159 dd_dev_err(dd, "Kernel send context allocation failed\n"); 160 return -ENOMEM; 161 } 162 hfi1_init_ctxt(rcd->sc); 163 164 return 0; 165 } 166 167 /* 168 * Create the receive context array and one or more kernel contexts 169 */ 170 int hfi1_create_kctxts(struct hfi1_devdata *dd) 171 { 172 u16 i; 173 int ret; 174 175 dd->rcd = kcalloc_node(dd->num_rcv_contexts, sizeof(*dd->rcd), 176 GFP_KERNEL, dd->node); 177 if (!dd->rcd) 178 return -ENOMEM; 179 180 for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) { 181 ret = hfi1_create_kctxt(dd, dd->pport); 182 if (ret) 183 goto bail; 184 } 185 186 return 0; 187 bail: 188 for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) 189 hfi1_free_ctxt(dd->rcd[i]); 190 191 /* All the contexts should be freed, free the array */ 192 kfree(dd->rcd); 193 dd->rcd = NULL; 194 return ret; 195 } 196 197 /* 198 * Helper routines for the receive context reference count (rcd and uctxt). 199 */ 200 static void hfi1_rcd_init(struct hfi1_ctxtdata *rcd) 201 { 202 kref_init(&rcd->kref); 203 } 204 205 /** 206 * hfi1_rcd_free - When reference is zero clean up. 207 * @kref: pointer to an initialized rcd data structure 208 * 209 */ 210 static void hfi1_rcd_free(struct kref *kref) 211 { 212 unsigned long flags; 213 struct hfi1_ctxtdata *rcd = 214 container_of(kref, struct hfi1_ctxtdata, kref); 215 216 hfi1_free_ctxtdata(rcd->dd, rcd); 217 218 spin_lock_irqsave(&rcd->dd->uctxt_lock, flags); 219 rcd->dd->rcd[rcd->ctxt] = NULL; 220 spin_unlock_irqrestore(&rcd->dd->uctxt_lock, flags); 221 222 kfree(rcd); 223 } 224 225 /** 226 * hfi1_rcd_put - decrement reference for rcd 227 * @rcd: pointer to an initialized rcd data structure 228 * 229 * Use this to put a reference after the init. 230 */ 231 int hfi1_rcd_put(struct hfi1_ctxtdata *rcd) 232 { 233 if (rcd) 234 return kref_put(&rcd->kref, hfi1_rcd_free); 235 236 return 0; 237 } 238 239 /** 240 * hfi1_rcd_get - increment reference for rcd 241 * @rcd: pointer to an initialized rcd data structure 242 * 243 * Use this to get a reference after the init. 244 */ 245 void hfi1_rcd_get(struct hfi1_ctxtdata *rcd) 246 { 247 kref_get(&rcd->kref); 248 } 249 250 /** 251 * allocate_rcd_index - allocate an rcd index from the rcd array 252 * @dd: pointer to a valid devdata structure 253 * @rcd: rcd data structure to assign 254 * @index: pointer to index that is allocated 255 * 256 * Find an empty index in the rcd array, and assign the given rcd to it. 257 * If the array is full, we are EBUSY. 258 * 259 */ 260 static int allocate_rcd_index(struct hfi1_devdata *dd, 261 struct hfi1_ctxtdata *rcd, u16 *index) 262 { 263 unsigned long flags; 264 u16 ctxt; 265 266 spin_lock_irqsave(&dd->uctxt_lock, flags); 267 for (ctxt = 0; ctxt < dd->num_rcv_contexts; ctxt++) 268 if (!dd->rcd[ctxt]) 269 break; 270 271 if (ctxt < dd->num_rcv_contexts) { 272 rcd->ctxt = ctxt; 273 dd->rcd[ctxt] = rcd; 274 hfi1_rcd_init(rcd); 275 } 276 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 277 278 if (ctxt >= dd->num_rcv_contexts) 279 return -EBUSY; 280 281 *index = ctxt; 282 283 return 0; 284 } 285 286 /** 287 * hfi1_rcd_get_by_index_safe - validate the ctxt index before accessing the 288 * array 289 * @dd: pointer to a valid devdata structure 290 * @ctxt: the index of an possilbe rcd 291 * 292 * This is a wrapper for hfi1_rcd_get_by_index() to validate that the given 293 * ctxt index is valid. 294 * 295 * The caller is responsible for making the _put(). 296 * 297 */ 298 struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd, 299 u16 ctxt) 300 { 301 if (ctxt < dd->num_rcv_contexts) 302 return hfi1_rcd_get_by_index(dd, ctxt); 303 304 return NULL; 305 } 306 307 /** 308 * hfi1_rcd_get_by_index 309 * @dd: pointer to a valid devdata structure 310 * @ctxt: the index of an possilbe rcd 311 * 312 * We need to protect access to the rcd array. If access is needed to 313 * one or more index, get the protecting spinlock and then increment the 314 * kref. 315 * 316 * The caller is responsible for making the _put(). 317 * 318 */ 319 struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt) 320 { 321 unsigned long flags; 322 struct hfi1_ctxtdata *rcd = NULL; 323 324 spin_lock_irqsave(&dd->uctxt_lock, flags); 325 if (dd->rcd[ctxt]) { 326 rcd = dd->rcd[ctxt]; 327 hfi1_rcd_get(rcd); 328 } 329 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 330 331 return rcd; 332 } 333 334 /* 335 * Common code for user and kernel context create and setup. 336 * NOTE: the initial kref is done here (hf1_rcd_init()). 337 */ 338 int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa, 339 struct hfi1_ctxtdata **context) 340 { 341 struct hfi1_devdata *dd = ppd->dd; 342 struct hfi1_ctxtdata *rcd; 343 unsigned kctxt_ngroups = 0; 344 u32 base; 345 346 if (dd->rcv_entries.nctxt_extra > 347 dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt) 348 kctxt_ngroups = (dd->rcv_entries.nctxt_extra - 349 (dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt)); 350 rcd = kzalloc_node(sizeof(*rcd), GFP_KERNEL, numa); 351 if (rcd) { 352 u32 rcvtids, max_entries; 353 u16 ctxt; 354 int ret; 355 356 ret = allocate_rcd_index(dd, rcd, &ctxt); 357 if (ret) { 358 *context = NULL; 359 kfree(rcd); 360 return ret; 361 } 362 363 INIT_LIST_HEAD(&rcd->qp_wait_list); 364 hfi1_exp_tid_group_init(rcd); 365 rcd->ppd = ppd; 366 rcd->dd = dd; 367 __set_bit(0, rcd->in_use_ctxts); 368 rcd->numa_id = numa; 369 rcd->rcv_array_groups = dd->rcv_entries.ngroups; 370 371 mutex_init(&rcd->exp_mutex); 372 373 hfi1_cdbg(PROC, "setting up context %u\n", rcd->ctxt); 374 375 /* 376 * Calculate the context's RcvArray entry starting point. 377 * We do this here because we have to take into account all 378 * the RcvArray entries that previous context would have 379 * taken and we have to account for any extra groups assigned 380 * to the static (kernel) or dynamic (vnic/user) contexts. 381 */ 382 if (ctxt < dd->first_dyn_alloc_ctxt) { 383 if (ctxt < kctxt_ngroups) { 384 base = ctxt * (dd->rcv_entries.ngroups + 1); 385 rcd->rcv_array_groups++; 386 } else { 387 base = kctxt_ngroups + 388 (ctxt * dd->rcv_entries.ngroups); 389 } 390 } else { 391 u16 ct = ctxt - dd->first_dyn_alloc_ctxt; 392 393 base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) + 394 kctxt_ngroups); 395 if (ct < dd->rcv_entries.nctxt_extra) { 396 base += ct * (dd->rcv_entries.ngroups + 1); 397 rcd->rcv_array_groups++; 398 } else { 399 base += dd->rcv_entries.nctxt_extra + 400 (ct * dd->rcv_entries.ngroups); 401 } 402 } 403 rcd->eager_base = base * dd->rcv_entries.group_size; 404 405 rcd->rcvhdrq_cnt = rcvhdrcnt; 406 rcd->rcvhdrqentsize = hfi1_hdrq_entsize; 407 /* 408 * Simple Eager buffer allocation: we have already pre-allocated 409 * the number of RcvArray entry groups. Each ctxtdata structure 410 * holds the number of groups for that context. 411 * 412 * To follow CSR requirements and maintain cacheline alignment, 413 * make sure all sizes and bases are multiples of group_size. 414 * 415 * The expected entry count is what is left after assigning 416 * eager. 417 */ 418 max_entries = rcd->rcv_array_groups * 419 dd->rcv_entries.group_size; 420 rcvtids = ((max_entries * hfi1_rcvarr_split) / 100); 421 rcd->egrbufs.count = round_down(rcvtids, 422 dd->rcv_entries.group_size); 423 if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) { 424 dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n", 425 rcd->ctxt); 426 rcd->egrbufs.count = MAX_EAGER_ENTRIES; 427 } 428 hfi1_cdbg(PROC, 429 "ctxt%u: max Eager buffer RcvArray entries: %u\n", 430 rcd->ctxt, rcd->egrbufs.count); 431 432 /* 433 * Allocate array that will hold the eager buffer accounting 434 * data. 435 * This will allocate the maximum possible buffer count based 436 * on the value of the RcvArray split parameter. 437 * The resulting value will be rounded down to the closest 438 * multiple of dd->rcv_entries.group_size. 439 */ 440 rcd->egrbufs.buffers = 441 kcalloc_node(rcd->egrbufs.count, 442 sizeof(*rcd->egrbufs.buffers), 443 GFP_KERNEL, numa); 444 if (!rcd->egrbufs.buffers) 445 goto bail; 446 rcd->egrbufs.rcvtids = 447 kcalloc_node(rcd->egrbufs.count, 448 sizeof(*rcd->egrbufs.rcvtids), 449 GFP_KERNEL, numa); 450 if (!rcd->egrbufs.rcvtids) 451 goto bail; 452 rcd->egrbufs.size = eager_buffer_size; 453 /* 454 * The size of the buffers programmed into the RcvArray 455 * entries needs to be big enough to handle the highest 456 * MTU supported. 457 */ 458 if (rcd->egrbufs.size < hfi1_max_mtu) { 459 rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu); 460 hfi1_cdbg(PROC, 461 "ctxt%u: eager bufs size too small. Adjusting to %zu\n", 462 rcd->ctxt, rcd->egrbufs.size); 463 } 464 rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE; 465 466 /* Applicable only for statically created kernel contexts */ 467 if (ctxt < dd->first_dyn_alloc_ctxt) { 468 rcd->opstats = kzalloc_node(sizeof(*rcd->opstats), 469 GFP_KERNEL, numa); 470 if (!rcd->opstats) 471 goto bail; 472 } 473 474 *context = rcd; 475 return 0; 476 } 477 478 bail: 479 *context = NULL; 480 hfi1_free_ctxt(rcd); 481 return -ENOMEM; 482 } 483 484 /** 485 * hfi1_free_ctxt 486 * @rcd: pointer to an initialized rcd data structure 487 * 488 * This wrapper is the free function that matches hfi1_create_ctxtdata(). 489 * When a context is done being used (kernel or user), this function is called 490 * for the "final" put to match the kref init from hf1i_create_ctxtdata(). 491 * Other users of the context do a get/put sequence to make sure that the 492 * structure isn't removed while in use. 493 */ 494 void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd) 495 { 496 hfi1_rcd_put(rcd); 497 } 498 499 /* 500 * Convert a receive header entry size that to the encoding used in the CSR. 501 * 502 * Return a zero if the given size is invalid. 503 */ 504 static inline u64 encode_rcv_header_entry_size(u16 size) 505 { 506 /* there are only 3 valid receive header entry sizes */ 507 if (size == 2) 508 return 1; 509 if (size == 16) 510 return 2; 511 else if (size == 32) 512 return 4; 513 return 0; /* invalid */ 514 } 515 516 /* 517 * Select the largest ccti value over all SLs to determine the intra- 518 * packet gap for the link. 519 * 520 * called with cca_timer_lock held (to protect access to cca_timer 521 * array), and rcu_read_lock() (to protect access to cc_state). 522 */ 523 void set_link_ipg(struct hfi1_pportdata *ppd) 524 { 525 struct hfi1_devdata *dd = ppd->dd; 526 struct cc_state *cc_state; 527 int i; 528 u16 cce, ccti_limit, max_ccti = 0; 529 u16 shift, mult; 530 u64 src; 531 u32 current_egress_rate; /* Mbits /sec */ 532 u32 max_pkt_time; 533 /* 534 * max_pkt_time is the maximum packet egress time in units 535 * of the fabric clock period 1/(805 MHz). 536 */ 537 538 cc_state = get_cc_state(ppd); 539 540 if (!cc_state) 541 /* 542 * This should _never_ happen - rcu_read_lock() is held, 543 * and set_link_ipg() should not be called if cc_state 544 * is NULL. 545 */ 546 return; 547 548 for (i = 0; i < OPA_MAX_SLS; i++) { 549 u16 ccti = ppd->cca_timer[i].ccti; 550 551 if (ccti > max_ccti) 552 max_ccti = ccti; 553 } 554 555 ccti_limit = cc_state->cct.ccti_limit; 556 if (max_ccti > ccti_limit) 557 max_ccti = ccti_limit; 558 559 cce = cc_state->cct.entries[max_ccti].entry; 560 shift = (cce & 0xc000) >> 14; 561 mult = (cce & 0x3fff); 562 563 current_egress_rate = active_egress_rate(ppd); 564 565 max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate); 566 567 src = (max_pkt_time >> shift) * mult; 568 569 src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK; 570 src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT; 571 572 write_csr(dd, SEND_STATIC_RATE_CONTROL, src); 573 } 574 575 static enum hrtimer_restart cca_timer_fn(struct hrtimer *t) 576 { 577 struct cca_timer *cca_timer; 578 struct hfi1_pportdata *ppd; 579 int sl; 580 u16 ccti_timer, ccti_min; 581 struct cc_state *cc_state; 582 unsigned long flags; 583 enum hrtimer_restart ret = HRTIMER_NORESTART; 584 585 cca_timer = container_of(t, struct cca_timer, hrtimer); 586 ppd = cca_timer->ppd; 587 sl = cca_timer->sl; 588 589 rcu_read_lock(); 590 591 cc_state = get_cc_state(ppd); 592 593 if (!cc_state) { 594 rcu_read_unlock(); 595 return HRTIMER_NORESTART; 596 } 597 598 /* 599 * 1) decrement ccti for SL 600 * 2) calculate IPG for link (set_link_ipg()) 601 * 3) restart timer, unless ccti is at min value 602 */ 603 604 ccti_min = cc_state->cong_setting.entries[sl].ccti_min; 605 ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer; 606 607 spin_lock_irqsave(&ppd->cca_timer_lock, flags); 608 609 if (cca_timer->ccti > ccti_min) { 610 cca_timer->ccti--; 611 set_link_ipg(ppd); 612 } 613 614 if (cca_timer->ccti > ccti_min) { 615 unsigned long nsec = 1024 * ccti_timer; 616 /* ccti_timer is in units of 1.024 usec */ 617 hrtimer_forward_now(t, ns_to_ktime(nsec)); 618 ret = HRTIMER_RESTART; 619 } 620 621 spin_unlock_irqrestore(&ppd->cca_timer_lock, flags); 622 rcu_read_unlock(); 623 return ret; 624 } 625 626 /* 627 * Common code for initializing the physical port structure. 628 */ 629 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd, 630 struct hfi1_devdata *dd, u8 hw_pidx, u8 port) 631 { 632 int i; 633 uint default_pkey_idx; 634 struct cc_state *cc_state; 635 636 ppd->dd = dd; 637 ppd->hw_pidx = hw_pidx; 638 ppd->port = port; /* IB port number, not index */ 639 ppd->prev_link_width = LINK_WIDTH_DEFAULT; 640 /* 641 * There are C_VL_COUNT number of PortVLXmitWait counters. 642 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter. 643 */ 644 for (i = 0; i < C_VL_COUNT + 1; i++) { 645 ppd->port_vl_xmit_wait_last[i] = 0; 646 ppd->vl_xmit_flit_cnt[i] = 0; 647 } 648 649 default_pkey_idx = 1; 650 651 ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY; 652 ppd->part_enforce |= HFI1_PART_ENFORCE_IN; 653 654 if (loopback) { 655 hfi1_early_err(&pdev->dev, 656 "Faking data partition 0x8001 in idx %u\n", 657 !default_pkey_idx); 658 ppd->pkeys[!default_pkey_idx] = 0x8001; 659 } 660 661 INIT_WORK(&ppd->link_vc_work, handle_verify_cap); 662 INIT_WORK(&ppd->link_up_work, handle_link_up); 663 INIT_WORK(&ppd->link_down_work, handle_link_down); 664 INIT_WORK(&ppd->freeze_work, handle_freeze); 665 INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade); 666 INIT_WORK(&ppd->sma_message_work, handle_sma_message); 667 INIT_WORK(&ppd->link_bounce_work, handle_link_bounce); 668 INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link); 669 INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work); 670 INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event); 671 672 mutex_init(&ppd->hls_lock); 673 spin_lock_init(&ppd->qsfp_info.qsfp_lock); 674 675 ppd->qsfp_info.ppd = ppd; 676 ppd->sm_trap_qp = 0x0; 677 ppd->sa_qp = 0x1; 678 679 ppd->hfi1_wq = NULL; 680 681 spin_lock_init(&ppd->cca_timer_lock); 682 683 for (i = 0; i < OPA_MAX_SLS; i++) { 684 hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC, 685 HRTIMER_MODE_REL); 686 ppd->cca_timer[i].ppd = ppd; 687 ppd->cca_timer[i].sl = i; 688 ppd->cca_timer[i].ccti = 0; 689 ppd->cca_timer[i].hrtimer.function = cca_timer_fn; 690 } 691 692 ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT; 693 694 spin_lock_init(&ppd->cc_state_lock); 695 spin_lock_init(&ppd->cc_log_lock); 696 cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL); 697 RCU_INIT_POINTER(ppd->cc_state, cc_state); 698 if (!cc_state) 699 goto bail; 700 return; 701 702 bail: 703 704 hfi1_early_err(&pdev->dev, 705 "Congestion Control Agent disabled for port %d\n", port); 706 } 707 708 /* 709 * Do initialization for device that is only needed on 710 * first detect, not on resets. 711 */ 712 static int loadtime_init(struct hfi1_devdata *dd) 713 { 714 return 0; 715 } 716 717 /** 718 * init_after_reset - re-initialize after a reset 719 * @dd: the hfi1_ib device 720 * 721 * sanity check at least some of the values after reset, and 722 * ensure no receive or transmit (explicitly, in case reset 723 * failed 724 */ 725 static int init_after_reset(struct hfi1_devdata *dd) 726 { 727 int i; 728 struct hfi1_ctxtdata *rcd; 729 /* 730 * Ensure chip does no sends or receives, tail updates, or 731 * pioavail updates while we re-initialize. This is mostly 732 * for the driver data structures, not chip registers. 733 */ 734 for (i = 0; i < dd->num_rcv_contexts; i++) { 735 rcd = hfi1_rcd_get_by_index(dd, i); 736 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS | 737 HFI1_RCVCTRL_INTRAVAIL_DIS | 738 HFI1_RCVCTRL_TAILUPD_DIS, rcd); 739 hfi1_rcd_put(rcd); 740 } 741 pio_send_control(dd, PSC_GLOBAL_DISABLE); 742 for (i = 0; i < dd->num_send_contexts; i++) 743 sc_disable(dd->send_contexts[i].sc); 744 745 return 0; 746 } 747 748 static void enable_chip(struct hfi1_devdata *dd) 749 { 750 struct hfi1_ctxtdata *rcd; 751 u32 rcvmask; 752 u16 i; 753 754 /* enable PIO send */ 755 pio_send_control(dd, PSC_GLOBAL_ENABLE); 756 757 /* 758 * Enable kernel ctxts' receive and receive interrupt. 759 * Other ctxts done as user opens and initializes them. 760 */ 761 for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) { 762 rcd = hfi1_rcd_get_by_index(dd, i); 763 if (!rcd) 764 continue; 765 rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB; 766 rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ? 767 HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS; 768 if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) 769 rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB; 770 if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_RHQ_FULL)) 771 rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB; 772 if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_EGR_FULL)) 773 rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB; 774 hfi1_rcvctrl(dd, rcvmask, rcd); 775 sc_enable(rcd->sc); 776 hfi1_rcd_put(rcd); 777 } 778 } 779 780 /** 781 * create_workqueues - create per port workqueues 782 * @dd: the hfi1_ib device 783 */ 784 static int create_workqueues(struct hfi1_devdata *dd) 785 { 786 int pidx; 787 struct hfi1_pportdata *ppd; 788 789 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 790 ppd = dd->pport + pidx; 791 if (!ppd->hfi1_wq) { 792 ppd->hfi1_wq = 793 alloc_workqueue( 794 "hfi%d_%d", 795 WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE, 796 HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES, 797 dd->unit, pidx); 798 if (!ppd->hfi1_wq) 799 goto wq_error; 800 } 801 if (!ppd->link_wq) { 802 /* 803 * Make the link workqueue single-threaded to enforce 804 * serialization. 805 */ 806 ppd->link_wq = 807 alloc_workqueue( 808 "hfi_link_%d_%d", 809 WQ_SYSFS | WQ_MEM_RECLAIM | WQ_UNBOUND, 810 1, /* max_active */ 811 dd->unit, pidx); 812 if (!ppd->link_wq) 813 goto wq_error; 814 } 815 } 816 return 0; 817 wq_error: 818 pr_err("alloc_workqueue failed for port %d\n", pidx + 1); 819 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 820 ppd = dd->pport + pidx; 821 if (ppd->hfi1_wq) { 822 destroy_workqueue(ppd->hfi1_wq); 823 ppd->hfi1_wq = NULL; 824 } 825 if (ppd->link_wq) { 826 destroy_workqueue(ppd->link_wq); 827 ppd->link_wq = NULL; 828 } 829 } 830 return -ENOMEM; 831 } 832 833 /** 834 * hfi1_init - do the actual initialization sequence on the chip 835 * @dd: the hfi1_ib device 836 * @reinit: re-initializing, so don't allocate new memory 837 * 838 * Do the actual initialization sequence on the chip. This is done 839 * both from the init routine called from the PCI infrastructure, and 840 * when we reset the chip, or detect that it was reset internally, 841 * or it's administratively re-enabled. 842 * 843 * Memory allocation here and in called routines is only done in 844 * the first case (reinit == 0). We have to be careful, because even 845 * without memory allocation, we need to re-write all the chip registers 846 * TIDs, etc. after the reset or enable has completed. 847 */ 848 int hfi1_init(struct hfi1_devdata *dd, int reinit) 849 { 850 int ret = 0, pidx, lastfail = 0; 851 unsigned long len; 852 u16 i; 853 struct hfi1_ctxtdata *rcd; 854 struct hfi1_pportdata *ppd; 855 856 /* Set up recv low level handlers */ 857 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EXPECTED] = 858 kdeth_process_expected; 859 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EAGER] = 860 kdeth_process_eager; 861 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_IB] = process_receive_ib; 862 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_ERROR] = 863 process_receive_error; 864 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_BYPASS] = 865 process_receive_bypass; 866 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID5] = 867 process_receive_invalid; 868 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID6] = 869 process_receive_invalid; 870 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID7] = 871 process_receive_invalid; 872 dd->rhf_rcv_function_map = dd->normal_rhf_rcv_functions; 873 874 /* Set up send low level handlers */ 875 dd->process_pio_send = hfi1_verbs_send_pio; 876 dd->process_dma_send = hfi1_verbs_send_dma; 877 dd->pio_inline_send = pio_copy; 878 dd->process_vnic_dma_send = hfi1_vnic_send_dma; 879 880 if (is_ax(dd)) { 881 atomic_set(&dd->drop_packet, DROP_PACKET_ON); 882 dd->do_drop = 1; 883 } else { 884 atomic_set(&dd->drop_packet, DROP_PACKET_OFF); 885 dd->do_drop = 0; 886 } 887 888 /* make sure the link is not "up" */ 889 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 890 ppd = dd->pport + pidx; 891 ppd->linkup = 0; 892 } 893 894 if (reinit) 895 ret = init_after_reset(dd); 896 else 897 ret = loadtime_init(dd); 898 if (ret) 899 goto done; 900 901 /* allocate dummy tail memory for all receive contexts */ 902 dd->rcvhdrtail_dummy_kvaddr = dma_zalloc_coherent( 903 &dd->pcidev->dev, sizeof(u64), 904 &dd->rcvhdrtail_dummy_dma, 905 GFP_KERNEL); 906 907 if (!dd->rcvhdrtail_dummy_kvaddr) { 908 dd_dev_err(dd, "cannot allocate dummy tail memory\n"); 909 ret = -ENOMEM; 910 goto done; 911 } 912 913 /* dd->rcd can be NULL if early initialization failed */ 914 for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) { 915 /* 916 * Set up the (kernel) rcvhdr queue and egr TIDs. If doing 917 * re-init, the simplest way to handle this is to free 918 * existing, and re-allocate. 919 * Need to re-create rest of ctxt 0 ctxtdata as well. 920 */ 921 rcd = hfi1_rcd_get_by_index(dd, i); 922 if (!rcd) 923 continue; 924 925 rcd->do_interrupt = &handle_receive_interrupt; 926 927 lastfail = hfi1_create_rcvhdrq(dd, rcd); 928 if (!lastfail) 929 lastfail = hfi1_setup_eagerbufs(rcd); 930 if (lastfail) { 931 dd_dev_err(dd, 932 "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n"); 933 ret = lastfail; 934 } 935 hfi1_rcd_put(rcd); 936 } 937 938 /* Allocate enough memory for user event notification. */ 939 len = PAGE_ALIGN(dd->chip_rcv_contexts * HFI1_MAX_SHARED_CTXTS * 940 sizeof(*dd->events)); 941 dd->events = vmalloc_user(len); 942 if (!dd->events) 943 dd_dev_err(dd, "Failed to allocate user events page\n"); 944 /* 945 * Allocate a page for device and port status. 946 * Page will be shared amongst all user processes. 947 */ 948 dd->status = vmalloc_user(PAGE_SIZE); 949 if (!dd->status) 950 dd_dev_err(dd, "Failed to allocate dev status page\n"); 951 else 952 dd->freezelen = PAGE_SIZE - (sizeof(*dd->status) - 953 sizeof(dd->status->freezemsg)); 954 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 955 ppd = dd->pport + pidx; 956 if (dd->status) 957 /* Currently, we only have one port */ 958 ppd->statusp = &dd->status->port; 959 960 set_mtu(ppd); 961 } 962 963 /* enable chip even if we have an error, so we can debug cause */ 964 enable_chip(dd); 965 966 done: 967 /* 968 * Set status even if port serdes is not initialized 969 * so that diags will work. 970 */ 971 if (dd->status) 972 dd->status->dev |= HFI1_STATUS_CHIP_PRESENT | 973 HFI1_STATUS_INITTED; 974 if (!ret) { 975 /* enable all interrupts from the chip */ 976 set_intr_state(dd, 1); 977 978 /* chip is OK for user apps; mark it as initialized */ 979 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 980 ppd = dd->pport + pidx; 981 982 /* 983 * start the serdes - must be after interrupts are 984 * enabled so we are notified when the link goes up 985 */ 986 lastfail = bringup_serdes(ppd); 987 if (lastfail) 988 dd_dev_info(dd, 989 "Failed to bring up port %u\n", 990 ppd->port); 991 992 /* 993 * Set status even if port serdes is not initialized 994 * so that diags will work. 995 */ 996 if (ppd->statusp) 997 *ppd->statusp |= HFI1_STATUS_CHIP_PRESENT | 998 HFI1_STATUS_INITTED; 999 if (!ppd->link_speed_enabled) 1000 continue; 1001 } 1002 } 1003 1004 /* if ret is non-zero, we probably should do some cleanup here... */ 1005 return ret; 1006 } 1007 1008 static inline struct hfi1_devdata *__hfi1_lookup(int unit) 1009 { 1010 return idr_find(&hfi1_unit_table, unit); 1011 } 1012 1013 struct hfi1_devdata *hfi1_lookup(int unit) 1014 { 1015 struct hfi1_devdata *dd; 1016 unsigned long flags; 1017 1018 spin_lock_irqsave(&hfi1_devs_lock, flags); 1019 dd = __hfi1_lookup(unit); 1020 spin_unlock_irqrestore(&hfi1_devs_lock, flags); 1021 1022 return dd; 1023 } 1024 1025 /* 1026 * Stop the timers during unit shutdown, or after an error late 1027 * in initialization. 1028 */ 1029 static void stop_timers(struct hfi1_devdata *dd) 1030 { 1031 struct hfi1_pportdata *ppd; 1032 int pidx; 1033 1034 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1035 ppd = dd->pport + pidx; 1036 if (ppd->led_override_timer.function) { 1037 del_timer_sync(&ppd->led_override_timer); 1038 atomic_set(&ppd->led_override_timer_active, 0); 1039 } 1040 } 1041 } 1042 1043 /** 1044 * shutdown_device - shut down a device 1045 * @dd: the hfi1_ib device 1046 * 1047 * This is called to make the device quiet when we are about to 1048 * unload the driver, and also when the device is administratively 1049 * disabled. It does not free any data structures. 1050 * Everything it does has to be setup again by hfi1_init(dd, 1) 1051 */ 1052 static void shutdown_device(struct hfi1_devdata *dd) 1053 { 1054 struct hfi1_pportdata *ppd; 1055 struct hfi1_ctxtdata *rcd; 1056 unsigned pidx; 1057 int i; 1058 1059 if (dd->flags & HFI1_SHUTDOWN) 1060 return; 1061 dd->flags |= HFI1_SHUTDOWN; 1062 1063 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1064 ppd = dd->pport + pidx; 1065 1066 ppd->linkup = 0; 1067 if (ppd->statusp) 1068 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF | 1069 HFI1_STATUS_IB_READY); 1070 } 1071 dd->flags &= ~HFI1_INITTED; 1072 1073 /* mask and clean up interrupts, but not errors */ 1074 set_intr_state(dd, 0); 1075 hfi1_clean_up_interrupts(dd); 1076 1077 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1078 ppd = dd->pport + pidx; 1079 for (i = 0; i < dd->num_rcv_contexts; i++) { 1080 rcd = hfi1_rcd_get_by_index(dd, i); 1081 hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS | 1082 HFI1_RCVCTRL_CTXT_DIS | 1083 HFI1_RCVCTRL_INTRAVAIL_DIS | 1084 HFI1_RCVCTRL_PKEY_DIS | 1085 HFI1_RCVCTRL_ONE_PKT_EGR_DIS, rcd); 1086 hfi1_rcd_put(rcd); 1087 } 1088 /* 1089 * Gracefully stop all sends allowing any in progress to 1090 * trickle out first. 1091 */ 1092 for (i = 0; i < dd->num_send_contexts; i++) 1093 sc_flush(dd->send_contexts[i].sc); 1094 } 1095 1096 /* 1097 * Enough for anything that's going to trickle out to have actually 1098 * done so. 1099 */ 1100 udelay(20); 1101 1102 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1103 ppd = dd->pport + pidx; 1104 1105 /* disable all contexts */ 1106 for (i = 0; i < dd->num_send_contexts; i++) 1107 sc_disable(dd->send_contexts[i].sc); 1108 /* disable the send device */ 1109 pio_send_control(dd, PSC_GLOBAL_DISABLE); 1110 1111 shutdown_led_override(ppd); 1112 1113 /* 1114 * Clear SerdesEnable. 1115 * We can't count on interrupts since we are stopping. 1116 */ 1117 hfi1_quiet_serdes(ppd); 1118 1119 if (ppd->hfi1_wq) { 1120 destroy_workqueue(ppd->hfi1_wq); 1121 ppd->hfi1_wq = NULL; 1122 } 1123 if (ppd->link_wq) { 1124 destroy_workqueue(ppd->link_wq); 1125 ppd->link_wq = NULL; 1126 } 1127 } 1128 sdma_exit(dd); 1129 } 1130 1131 /** 1132 * hfi1_free_ctxtdata - free a context's allocated data 1133 * @dd: the hfi1_ib device 1134 * @rcd: the ctxtdata structure 1135 * 1136 * free up any allocated data for a context 1137 * It should never change any chip state, or global driver state. 1138 */ 1139 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd) 1140 { 1141 u32 e; 1142 1143 if (!rcd) 1144 return; 1145 1146 if (rcd->rcvhdrq) { 1147 dma_free_coherent(&dd->pcidev->dev, rcd->rcvhdrq_size, 1148 rcd->rcvhdrq, rcd->rcvhdrq_dma); 1149 rcd->rcvhdrq = NULL; 1150 if (rcd->rcvhdrtail_kvaddr) { 1151 dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE, 1152 (void *)rcd->rcvhdrtail_kvaddr, 1153 rcd->rcvhdrqtailaddr_dma); 1154 rcd->rcvhdrtail_kvaddr = NULL; 1155 } 1156 } 1157 1158 /* all the RcvArray entries should have been cleared by now */ 1159 kfree(rcd->egrbufs.rcvtids); 1160 rcd->egrbufs.rcvtids = NULL; 1161 1162 for (e = 0; e < rcd->egrbufs.alloced; e++) { 1163 if (rcd->egrbufs.buffers[e].dma) 1164 dma_free_coherent(&dd->pcidev->dev, 1165 rcd->egrbufs.buffers[e].len, 1166 rcd->egrbufs.buffers[e].addr, 1167 rcd->egrbufs.buffers[e].dma); 1168 } 1169 kfree(rcd->egrbufs.buffers); 1170 rcd->egrbufs.alloced = 0; 1171 rcd->egrbufs.buffers = NULL; 1172 1173 sc_free(rcd->sc); 1174 rcd->sc = NULL; 1175 1176 vfree(rcd->subctxt_uregbase); 1177 vfree(rcd->subctxt_rcvegrbuf); 1178 vfree(rcd->subctxt_rcvhdr_base); 1179 kfree(rcd->opstats); 1180 1181 rcd->subctxt_uregbase = NULL; 1182 rcd->subctxt_rcvegrbuf = NULL; 1183 rcd->subctxt_rcvhdr_base = NULL; 1184 rcd->opstats = NULL; 1185 } 1186 1187 /* 1188 * Release our hold on the shared asic data. If we are the last one, 1189 * return the structure to be finalized outside the lock. Must be 1190 * holding hfi1_devs_lock. 1191 */ 1192 static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd) 1193 { 1194 struct hfi1_asic_data *ad; 1195 int other; 1196 1197 if (!dd->asic_data) 1198 return NULL; 1199 dd->asic_data->dds[dd->hfi1_id] = NULL; 1200 other = dd->hfi1_id ? 0 : 1; 1201 ad = dd->asic_data; 1202 dd->asic_data = NULL; 1203 /* return NULL if the other dd still has a link */ 1204 return ad->dds[other] ? NULL : ad; 1205 } 1206 1207 static void finalize_asic_data(struct hfi1_devdata *dd, 1208 struct hfi1_asic_data *ad) 1209 { 1210 clean_up_i2c(dd, ad); 1211 kfree(ad); 1212 } 1213 1214 /** 1215 * hfi1_clean_devdata - cleans up per-unit data structure 1216 * @dd: pointer to a valid devdata structure 1217 * 1218 * It cleans up all data structures set up by 1219 * by hfi1_alloc_devdata(). 1220 */ 1221 static void hfi1_clean_devdata(struct hfi1_devdata *dd) 1222 { 1223 struct hfi1_asic_data *ad; 1224 unsigned long flags; 1225 1226 spin_lock_irqsave(&hfi1_devs_lock, flags); 1227 if (!list_empty(&dd->list)) { 1228 idr_remove(&hfi1_unit_table, dd->unit); 1229 list_del_init(&dd->list); 1230 } 1231 ad = release_asic_data(dd); 1232 spin_unlock_irqrestore(&hfi1_devs_lock, flags); 1233 1234 finalize_asic_data(dd, ad); 1235 free_platform_config(dd); 1236 rcu_barrier(); /* wait for rcu callbacks to complete */ 1237 free_percpu(dd->int_counter); 1238 free_percpu(dd->rcv_limit); 1239 free_percpu(dd->send_schedule); 1240 free_percpu(dd->tx_opstats); 1241 dd->int_counter = NULL; 1242 dd->rcv_limit = NULL; 1243 dd->send_schedule = NULL; 1244 dd->tx_opstats = NULL; 1245 kfree(dd->comp_vect); 1246 dd->comp_vect = NULL; 1247 sdma_clean(dd, dd->num_sdma); 1248 rvt_dealloc_device(&dd->verbs_dev.rdi); 1249 } 1250 1251 static void __hfi1_free_devdata(struct kobject *kobj) 1252 { 1253 struct hfi1_devdata *dd = 1254 container_of(kobj, struct hfi1_devdata, kobj); 1255 1256 hfi1_clean_devdata(dd); 1257 } 1258 1259 static struct kobj_type hfi1_devdata_type = { 1260 .release = __hfi1_free_devdata, 1261 }; 1262 1263 void hfi1_free_devdata(struct hfi1_devdata *dd) 1264 { 1265 kobject_put(&dd->kobj); 1266 } 1267 1268 /* 1269 * Allocate our primary per-unit data structure. Must be done via verbs 1270 * allocator, because the verbs cleanup process both does cleanup and 1271 * free of the data structure. 1272 * "extra" is for chip-specific data. 1273 * 1274 * Use the idr mechanism to get a unit number for this unit. 1275 */ 1276 struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev, size_t extra) 1277 { 1278 unsigned long flags; 1279 struct hfi1_devdata *dd; 1280 int ret, nports; 1281 1282 /* extra is * number of ports */ 1283 nports = extra / sizeof(struct hfi1_pportdata); 1284 1285 dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra, 1286 nports); 1287 if (!dd) 1288 return ERR_PTR(-ENOMEM); 1289 dd->num_pports = nports; 1290 dd->pport = (struct hfi1_pportdata *)(dd + 1); 1291 dd->pcidev = pdev; 1292 pci_set_drvdata(pdev, dd); 1293 1294 INIT_LIST_HEAD(&dd->list); 1295 idr_preload(GFP_KERNEL); 1296 spin_lock_irqsave(&hfi1_devs_lock, flags); 1297 1298 ret = idr_alloc(&hfi1_unit_table, dd, 0, 0, GFP_NOWAIT); 1299 if (ret >= 0) { 1300 dd->unit = ret; 1301 list_add(&dd->list, &hfi1_dev_list); 1302 } 1303 dd->node = -1; 1304 1305 spin_unlock_irqrestore(&hfi1_devs_lock, flags); 1306 idr_preload_end(); 1307 1308 if (ret < 0) { 1309 hfi1_early_err(&pdev->dev, 1310 "Could not allocate unit ID: error %d\n", -ret); 1311 goto bail; 1312 } 1313 rvt_set_ibdev_name(&dd->verbs_dev.rdi, "%s_%d", class_name(), dd->unit); 1314 1315 /* 1316 * Initialize all locks for the device. This needs to be as early as 1317 * possible so locks are usable. 1318 */ 1319 spin_lock_init(&dd->sc_lock); 1320 spin_lock_init(&dd->sendctrl_lock); 1321 spin_lock_init(&dd->rcvctrl_lock); 1322 spin_lock_init(&dd->uctxt_lock); 1323 spin_lock_init(&dd->hfi1_diag_trans_lock); 1324 spin_lock_init(&dd->sc_init_lock); 1325 spin_lock_init(&dd->dc8051_memlock); 1326 seqlock_init(&dd->sc2vl_lock); 1327 spin_lock_init(&dd->sde_map_lock); 1328 spin_lock_init(&dd->pio_map_lock); 1329 mutex_init(&dd->dc8051_lock); 1330 init_waitqueue_head(&dd->event_queue); 1331 1332 dd->int_counter = alloc_percpu(u64); 1333 if (!dd->int_counter) { 1334 ret = -ENOMEM; 1335 goto bail; 1336 } 1337 1338 dd->rcv_limit = alloc_percpu(u64); 1339 if (!dd->rcv_limit) { 1340 ret = -ENOMEM; 1341 goto bail; 1342 } 1343 1344 dd->send_schedule = alloc_percpu(u64); 1345 if (!dd->send_schedule) { 1346 ret = -ENOMEM; 1347 goto bail; 1348 } 1349 1350 dd->tx_opstats = alloc_percpu(struct hfi1_opcode_stats_perctx); 1351 if (!dd->tx_opstats) { 1352 ret = -ENOMEM; 1353 goto bail; 1354 } 1355 1356 dd->comp_vect = kzalloc(sizeof(*dd->comp_vect), GFP_KERNEL); 1357 if (!dd->comp_vect) { 1358 ret = -ENOMEM; 1359 goto bail; 1360 } 1361 1362 kobject_init(&dd->kobj, &hfi1_devdata_type); 1363 return dd; 1364 1365 bail: 1366 hfi1_clean_devdata(dd); 1367 return ERR_PTR(ret); 1368 } 1369 1370 /* 1371 * Called from freeze mode handlers, and from PCI error 1372 * reporting code. Should be paranoid about state of 1373 * system and data structures. 1374 */ 1375 void hfi1_disable_after_error(struct hfi1_devdata *dd) 1376 { 1377 if (dd->flags & HFI1_INITTED) { 1378 u32 pidx; 1379 1380 dd->flags &= ~HFI1_INITTED; 1381 if (dd->pport) 1382 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1383 struct hfi1_pportdata *ppd; 1384 1385 ppd = dd->pport + pidx; 1386 if (dd->flags & HFI1_PRESENT) 1387 set_link_state(ppd, HLS_DN_DISABLE); 1388 1389 if (ppd->statusp) 1390 *ppd->statusp &= ~HFI1_STATUS_IB_READY; 1391 } 1392 } 1393 1394 /* 1395 * Mark as having had an error for driver, and also 1396 * for /sys and status word mapped to user programs. 1397 * This marks unit as not usable, until reset. 1398 */ 1399 if (dd->status) 1400 dd->status->dev |= HFI1_STATUS_HWERROR; 1401 } 1402 1403 static void remove_one(struct pci_dev *); 1404 static int init_one(struct pci_dev *, const struct pci_device_id *); 1405 static void shutdown_one(struct pci_dev *); 1406 1407 #define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: " 1408 #define PFX DRIVER_NAME ": " 1409 1410 const struct pci_device_id hfi1_pci_tbl[] = { 1411 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) }, 1412 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) }, 1413 { 0, } 1414 }; 1415 1416 MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl); 1417 1418 static struct pci_driver hfi1_pci_driver = { 1419 .name = DRIVER_NAME, 1420 .probe = init_one, 1421 .remove = remove_one, 1422 .shutdown = shutdown_one, 1423 .id_table = hfi1_pci_tbl, 1424 .err_handler = &hfi1_pci_err_handler, 1425 }; 1426 1427 static void __init compute_krcvqs(void) 1428 { 1429 int i; 1430 1431 for (i = 0; i < krcvqsset; i++) 1432 n_krcvqs += krcvqs[i]; 1433 } 1434 1435 /* 1436 * Do all the generic driver unit- and chip-independent memory 1437 * allocation and initialization. 1438 */ 1439 static int __init hfi1_mod_init(void) 1440 { 1441 int ret; 1442 1443 ret = dev_init(); 1444 if (ret) 1445 goto bail; 1446 1447 ret = node_affinity_init(); 1448 if (ret) 1449 goto bail; 1450 1451 /* validate max MTU before any devices start */ 1452 if (!valid_opa_max_mtu(hfi1_max_mtu)) { 1453 pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n", 1454 hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU); 1455 hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU; 1456 } 1457 /* valid CUs run from 1-128 in powers of 2 */ 1458 if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu)) 1459 hfi1_cu = 1; 1460 /* valid credit return threshold is 0-100, variable is unsigned */ 1461 if (user_credit_return_threshold > 100) 1462 user_credit_return_threshold = 100; 1463 1464 compute_krcvqs(); 1465 /* 1466 * sanitize receive interrupt count, time must wait until after 1467 * the hardware type is known 1468 */ 1469 if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK) 1470 rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK; 1471 /* reject invalid combinations */ 1472 if (rcv_intr_count == 0 && rcv_intr_timeout == 0) { 1473 pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n"); 1474 rcv_intr_count = 1; 1475 } 1476 if (rcv_intr_count > 1 && rcv_intr_timeout == 0) { 1477 /* 1478 * Avoid indefinite packet delivery by requiring a timeout 1479 * if count is > 1. 1480 */ 1481 pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n"); 1482 rcv_intr_timeout = 1; 1483 } 1484 if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) { 1485 /* 1486 * The dynamic algorithm expects a non-zero timeout 1487 * and a count > 1. 1488 */ 1489 pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n"); 1490 rcv_intr_dynamic = 0; 1491 } 1492 1493 /* sanitize link CRC options */ 1494 link_crc_mask &= SUPPORTED_CRCS; 1495 1496 /* 1497 * These must be called before the driver is registered with 1498 * the PCI subsystem. 1499 */ 1500 idr_init(&hfi1_unit_table); 1501 1502 hfi1_dbg_init(); 1503 ret = hfi1_wss_init(); 1504 if (ret < 0) 1505 goto bail_wss; 1506 ret = pci_register_driver(&hfi1_pci_driver); 1507 if (ret < 0) { 1508 pr_err("Unable to register driver: error %d\n", -ret); 1509 goto bail_dev; 1510 } 1511 goto bail; /* all OK */ 1512 1513 bail_dev: 1514 hfi1_wss_exit(); 1515 bail_wss: 1516 hfi1_dbg_exit(); 1517 idr_destroy(&hfi1_unit_table); 1518 dev_cleanup(); 1519 bail: 1520 return ret; 1521 } 1522 1523 module_init(hfi1_mod_init); 1524 1525 /* 1526 * Do the non-unit driver cleanup, memory free, etc. at unload. 1527 */ 1528 static void __exit hfi1_mod_cleanup(void) 1529 { 1530 pci_unregister_driver(&hfi1_pci_driver); 1531 node_affinity_destroy_all(); 1532 hfi1_wss_exit(); 1533 hfi1_dbg_exit(); 1534 1535 idr_destroy(&hfi1_unit_table); 1536 dispose_firmware(); /* asymmetric with obtain_firmware() */ 1537 dev_cleanup(); 1538 } 1539 1540 module_exit(hfi1_mod_cleanup); 1541 1542 /* this can only be called after a successful initialization */ 1543 static void cleanup_device_data(struct hfi1_devdata *dd) 1544 { 1545 int ctxt; 1546 int pidx; 1547 1548 /* users can't do anything more with chip */ 1549 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1550 struct hfi1_pportdata *ppd = &dd->pport[pidx]; 1551 struct cc_state *cc_state; 1552 int i; 1553 1554 if (ppd->statusp) 1555 *ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT; 1556 1557 for (i = 0; i < OPA_MAX_SLS; i++) 1558 hrtimer_cancel(&ppd->cca_timer[i].hrtimer); 1559 1560 spin_lock(&ppd->cc_state_lock); 1561 cc_state = get_cc_state_protected(ppd); 1562 RCU_INIT_POINTER(ppd->cc_state, NULL); 1563 spin_unlock(&ppd->cc_state_lock); 1564 1565 if (cc_state) 1566 kfree_rcu(cc_state, rcu); 1567 } 1568 1569 free_credit_return(dd); 1570 1571 if (dd->rcvhdrtail_dummy_kvaddr) { 1572 dma_free_coherent(&dd->pcidev->dev, sizeof(u64), 1573 (void *)dd->rcvhdrtail_dummy_kvaddr, 1574 dd->rcvhdrtail_dummy_dma); 1575 dd->rcvhdrtail_dummy_kvaddr = NULL; 1576 } 1577 1578 /* 1579 * Free any resources still in use (usually just kernel contexts) 1580 * at unload; we do for ctxtcnt, because that's what we allocate. 1581 */ 1582 for (ctxt = 0; dd->rcd && ctxt < dd->num_rcv_contexts; ctxt++) { 1583 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt]; 1584 1585 if (rcd) { 1586 hfi1_clear_tids(rcd); 1587 hfi1_free_ctxt(rcd); 1588 } 1589 } 1590 1591 kfree(dd->rcd); 1592 dd->rcd = NULL; 1593 1594 free_pio_map(dd); 1595 /* must follow rcv context free - need to remove rcv's hooks */ 1596 for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++) 1597 sc_free(dd->send_contexts[ctxt].sc); 1598 dd->num_send_contexts = 0; 1599 kfree(dd->send_contexts); 1600 dd->send_contexts = NULL; 1601 kfree(dd->hw_to_sw); 1602 dd->hw_to_sw = NULL; 1603 kfree(dd->boardname); 1604 vfree(dd->events); 1605 vfree(dd->status); 1606 } 1607 1608 /* 1609 * Clean up on unit shutdown, or error during unit load after 1610 * successful initialization. 1611 */ 1612 static void postinit_cleanup(struct hfi1_devdata *dd) 1613 { 1614 hfi1_start_cleanup(dd); 1615 hfi1_comp_vectors_clean_up(dd); 1616 hfi1_dev_affinity_clean_up(dd); 1617 1618 hfi1_pcie_ddcleanup(dd); 1619 hfi1_pcie_cleanup(dd->pcidev); 1620 1621 cleanup_device_data(dd); 1622 1623 hfi1_free_devdata(dd); 1624 } 1625 1626 static int init_validate_rcvhdrcnt(struct device *dev, uint thecnt) 1627 { 1628 if (thecnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) { 1629 hfi1_early_err(dev, "Receive header queue count too small\n"); 1630 return -EINVAL; 1631 } 1632 1633 if (thecnt > HFI1_MAX_HDRQ_EGRBUF_CNT) { 1634 hfi1_early_err(dev, 1635 "Receive header queue count cannot be greater than %u\n", 1636 HFI1_MAX_HDRQ_EGRBUF_CNT); 1637 return -EINVAL; 1638 } 1639 1640 if (thecnt % HDRQ_INCREMENT) { 1641 hfi1_early_err(dev, "Receive header queue count %d must be divisible by %lu\n", 1642 thecnt, HDRQ_INCREMENT); 1643 return -EINVAL; 1644 } 1645 1646 return 0; 1647 } 1648 1649 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 1650 { 1651 int ret = 0, j, pidx, initfail; 1652 struct hfi1_devdata *dd; 1653 struct hfi1_pportdata *ppd; 1654 1655 /* First, lock the non-writable module parameters */ 1656 HFI1_CAP_LOCK(); 1657 1658 /* Validate dev ids */ 1659 if (!(ent->device == PCI_DEVICE_ID_INTEL0 || 1660 ent->device == PCI_DEVICE_ID_INTEL1)) { 1661 hfi1_early_err(&pdev->dev, 1662 "Failing on unknown Intel deviceid 0x%x\n", 1663 ent->device); 1664 ret = -ENODEV; 1665 goto bail; 1666 } 1667 1668 /* Validate some global module parameters */ 1669 ret = init_validate_rcvhdrcnt(&pdev->dev, rcvhdrcnt); 1670 if (ret) 1671 goto bail; 1672 1673 /* use the encoding function as a sanitization check */ 1674 if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) { 1675 hfi1_early_err(&pdev->dev, "Invalid HdrQ Entry size %u\n", 1676 hfi1_hdrq_entsize); 1677 ret = -EINVAL; 1678 goto bail; 1679 } 1680 1681 /* The receive eager buffer size must be set before the receive 1682 * contexts are created. 1683 * 1684 * Set the eager buffer size. Validate that it falls in a range 1685 * allowed by the hardware - all powers of 2 between the min and 1686 * max. The maximum valid MTU is within the eager buffer range 1687 * so we do not need to cap the max_mtu by an eager buffer size 1688 * setting. 1689 */ 1690 if (eager_buffer_size) { 1691 if (!is_power_of_2(eager_buffer_size)) 1692 eager_buffer_size = 1693 roundup_pow_of_two(eager_buffer_size); 1694 eager_buffer_size = 1695 clamp_val(eager_buffer_size, 1696 MIN_EAGER_BUFFER * 8, 1697 MAX_EAGER_BUFFER_TOTAL); 1698 hfi1_early_info(&pdev->dev, "Eager buffer size %u\n", 1699 eager_buffer_size); 1700 } else { 1701 hfi1_early_err(&pdev->dev, "Invalid Eager buffer size of 0\n"); 1702 ret = -EINVAL; 1703 goto bail; 1704 } 1705 1706 /* restrict value of hfi1_rcvarr_split */ 1707 hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100); 1708 1709 ret = hfi1_pcie_init(pdev, ent); 1710 if (ret) 1711 goto bail; 1712 1713 /* 1714 * Do device-specific initialization, function table setup, dd 1715 * allocation, etc. 1716 */ 1717 dd = hfi1_init_dd(pdev, ent); 1718 1719 if (IS_ERR(dd)) { 1720 ret = PTR_ERR(dd); 1721 goto clean_bail; /* error already printed */ 1722 } 1723 1724 ret = create_workqueues(dd); 1725 if (ret) 1726 goto clean_bail; 1727 1728 /* do the generic initialization */ 1729 initfail = hfi1_init(dd, 0); 1730 1731 /* setup vnic */ 1732 hfi1_vnic_setup(dd); 1733 1734 ret = hfi1_register_ib_device(dd); 1735 1736 /* 1737 * Now ready for use. this should be cleared whenever we 1738 * detect a reset, or initiate one. If earlier failure, 1739 * we still create devices, so diags, etc. can be used 1740 * to determine cause of problem. 1741 */ 1742 if (!initfail && !ret) { 1743 dd->flags |= HFI1_INITTED; 1744 /* create debufs files after init and ib register */ 1745 hfi1_dbg_ibdev_init(&dd->verbs_dev); 1746 } 1747 1748 j = hfi1_device_create(dd); 1749 if (j) 1750 dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j); 1751 1752 if (initfail || ret) { 1753 hfi1_clean_up_interrupts(dd); 1754 stop_timers(dd); 1755 flush_workqueue(ib_wq); 1756 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1757 hfi1_quiet_serdes(dd->pport + pidx); 1758 ppd = dd->pport + pidx; 1759 if (ppd->hfi1_wq) { 1760 destroy_workqueue(ppd->hfi1_wq); 1761 ppd->hfi1_wq = NULL; 1762 } 1763 if (ppd->link_wq) { 1764 destroy_workqueue(ppd->link_wq); 1765 ppd->link_wq = NULL; 1766 } 1767 } 1768 if (!j) 1769 hfi1_device_remove(dd); 1770 if (!ret) 1771 hfi1_unregister_ib_device(dd); 1772 hfi1_vnic_cleanup(dd); 1773 postinit_cleanup(dd); 1774 if (initfail) 1775 ret = initfail; 1776 goto bail; /* everything already cleaned */ 1777 } 1778 1779 sdma_start(dd); 1780 1781 return 0; 1782 1783 clean_bail: 1784 hfi1_pcie_cleanup(pdev); 1785 bail: 1786 return ret; 1787 } 1788 1789 static void wait_for_clients(struct hfi1_devdata *dd) 1790 { 1791 /* 1792 * Remove the device init value and complete the device if there is 1793 * no clients or wait for active clients to finish. 1794 */ 1795 if (atomic_dec_and_test(&dd->user_refcount)) 1796 complete(&dd->user_comp); 1797 1798 wait_for_completion(&dd->user_comp); 1799 } 1800 1801 static void remove_one(struct pci_dev *pdev) 1802 { 1803 struct hfi1_devdata *dd = pci_get_drvdata(pdev); 1804 1805 /* close debugfs files before ib unregister */ 1806 hfi1_dbg_ibdev_exit(&dd->verbs_dev); 1807 1808 /* remove the /dev hfi1 interface */ 1809 hfi1_device_remove(dd); 1810 1811 /* wait for existing user space clients to finish */ 1812 wait_for_clients(dd); 1813 1814 /* unregister from IB core */ 1815 hfi1_unregister_ib_device(dd); 1816 1817 /* cleanup vnic */ 1818 hfi1_vnic_cleanup(dd); 1819 1820 /* 1821 * Disable the IB link, disable interrupts on the device, 1822 * clear dma engines, etc. 1823 */ 1824 shutdown_device(dd); 1825 1826 stop_timers(dd); 1827 1828 /* wait until all of our (qsfp) queue_work() calls complete */ 1829 flush_workqueue(ib_wq); 1830 1831 postinit_cleanup(dd); 1832 } 1833 1834 static void shutdown_one(struct pci_dev *pdev) 1835 { 1836 struct hfi1_devdata *dd = pci_get_drvdata(pdev); 1837 1838 shutdown_device(dd); 1839 } 1840 1841 /** 1842 * hfi1_create_rcvhdrq - create a receive header queue 1843 * @dd: the hfi1_ib device 1844 * @rcd: the context data 1845 * 1846 * This must be contiguous memory (from an i/o perspective), and must be 1847 * DMA'able (which means for some systems, it will go through an IOMMU, 1848 * or be forced into a low address range). 1849 */ 1850 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd) 1851 { 1852 unsigned amt; 1853 u64 reg; 1854 1855 if (!rcd->rcvhdrq) { 1856 gfp_t gfp_flags; 1857 1858 /* 1859 * rcvhdrqentsize is in DWs, so we have to convert to bytes 1860 * (* sizeof(u32)). 1861 */ 1862 amt = PAGE_ALIGN(rcd->rcvhdrq_cnt * rcd->rcvhdrqentsize * 1863 sizeof(u32)); 1864 1865 if (rcd->ctxt < dd->first_dyn_alloc_ctxt || rcd->is_vnic) 1866 gfp_flags = GFP_KERNEL; 1867 else 1868 gfp_flags = GFP_USER; 1869 rcd->rcvhdrq = dma_zalloc_coherent( 1870 &dd->pcidev->dev, amt, &rcd->rcvhdrq_dma, 1871 gfp_flags | __GFP_COMP); 1872 1873 if (!rcd->rcvhdrq) { 1874 dd_dev_err(dd, 1875 "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n", 1876 amt, rcd->ctxt); 1877 goto bail; 1878 } 1879 1880 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) || 1881 HFI1_CAP_UGET_MASK(rcd->flags, DMA_RTAIL)) { 1882 rcd->rcvhdrtail_kvaddr = dma_zalloc_coherent( 1883 &dd->pcidev->dev, PAGE_SIZE, 1884 &rcd->rcvhdrqtailaddr_dma, gfp_flags); 1885 if (!rcd->rcvhdrtail_kvaddr) 1886 goto bail_free; 1887 } 1888 1889 rcd->rcvhdrq_size = amt; 1890 } 1891 /* 1892 * These values are per-context: 1893 * RcvHdrCnt 1894 * RcvHdrEntSize 1895 * RcvHdrSize 1896 */ 1897 reg = ((u64)(rcd->rcvhdrq_cnt >> HDRQ_SIZE_SHIFT) 1898 & RCV_HDR_CNT_CNT_MASK) 1899 << RCV_HDR_CNT_CNT_SHIFT; 1900 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_CNT, reg); 1901 reg = (encode_rcv_header_entry_size(rcd->rcvhdrqentsize) 1902 & RCV_HDR_ENT_SIZE_ENT_SIZE_MASK) 1903 << RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT; 1904 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_ENT_SIZE, reg); 1905 reg = (dd->rcvhdrsize & RCV_HDR_SIZE_HDR_SIZE_MASK) 1906 << RCV_HDR_SIZE_HDR_SIZE_SHIFT; 1907 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_SIZE, reg); 1908 1909 /* 1910 * Program dummy tail address for every receive context 1911 * before enabling any receive context 1912 */ 1913 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_TAIL_ADDR, 1914 dd->rcvhdrtail_dummy_dma); 1915 1916 return 0; 1917 1918 bail_free: 1919 dd_dev_err(dd, 1920 "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n", 1921 rcd->ctxt); 1922 dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq, 1923 rcd->rcvhdrq_dma); 1924 rcd->rcvhdrq = NULL; 1925 bail: 1926 return -ENOMEM; 1927 } 1928 1929 /** 1930 * allocate eager buffers, both kernel and user contexts. 1931 * @rcd: the context we are setting up. 1932 * 1933 * Allocate the eager TID buffers and program them into hip. 1934 * They are no longer completely contiguous, we do multiple allocation 1935 * calls. Otherwise we get the OOM code involved, by asking for too 1936 * much per call, with disastrous results on some kernels. 1937 */ 1938 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd) 1939 { 1940 struct hfi1_devdata *dd = rcd->dd; 1941 u32 max_entries, egrtop, alloced_bytes = 0, idx = 0; 1942 gfp_t gfp_flags; 1943 u16 order; 1944 int ret = 0; 1945 u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu); 1946 1947 /* 1948 * GFP_USER, but without GFP_FS, so buffer cache can be 1949 * coalesced (we hope); otherwise, even at order 4, 1950 * heavy filesystem activity makes these fail, and we can 1951 * use compound pages. 1952 */ 1953 gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP; 1954 1955 /* 1956 * The minimum size of the eager buffers is a groups of MTU-sized 1957 * buffers. 1958 * The global eager_buffer_size parameter is checked against the 1959 * theoretical lower limit of the value. Here, we check against the 1960 * MTU. 1961 */ 1962 if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size)) 1963 rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size; 1964 /* 1965 * If using one-pkt-per-egr-buffer, lower the eager buffer 1966 * size to the max MTU (page-aligned). 1967 */ 1968 if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) 1969 rcd->egrbufs.rcvtid_size = round_mtu; 1970 1971 /* 1972 * Eager buffers sizes of 1MB or less require smaller TID sizes 1973 * to satisfy the "multiple of 8 RcvArray entries" requirement. 1974 */ 1975 if (rcd->egrbufs.size <= (1 << 20)) 1976 rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu, 1977 rounddown_pow_of_two(rcd->egrbufs.size / 8)); 1978 1979 while (alloced_bytes < rcd->egrbufs.size && 1980 rcd->egrbufs.alloced < rcd->egrbufs.count) { 1981 rcd->egrbufs.buffers[idx].addr = 1982 dma_zalloc_coherent(&dd->pcidev->dev, 1983 rcd->egrbufs.rcvtid_size, 1984 &rcd->egrbufs.buffers[idx].dma, 1985 gfp_flags); 1986 if (rcd->egrbufs.buffers[idx].addr) { 1987 rcd->egrbufs.buffers[idx].len = 1988 rcd->egrbufs.rcvtid_size; 1989 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr = 1990 rcd->egrbufs.buffers[idx].addr; 1991 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma = 1992 rcd->egrbufs.buffers[idx].dma; 1993 rcd->egrbufs.alloced++; 1994 alloced_bytes += rcd->egrbufs.rcvtid_size; 1995 idx++; 1996 } else { 1997 u32 new_size, i, j; 1998 u64 offset = 0; 1999 2000 /* 2001 * Fail the eager buffer allocation if: 2002 * - we are already using the lowest acceptable size 2003 * - we are using one-pkt-per-egr-buffer (this implies 2004 * that we are accepting only one size) 2005 */ 2006 if (rcd->egrbufs.rcvtid_size == round_mtu || 2007 !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) { 2008 dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n", 2009 rcd->ctxt); 2010 ret = -ENOMEM; 2011 goto bail_rcvegrbuf_phys; 2012 } 2013 2014 new_size = rcd->egrbufs.rcvtid_size / 2; 2015 2016 /* 2017 * If the first attempt to allocate memory failed, don't 2018 * fail everything but continue with the next lower 2019 * size. 2020 */ 2021 if (idx == 0) { 2022 rcd->egrbufs.rcvtid_size = new_size; 2023 continue; 2024 } 2025 2026 /* 2027 * Re-partition already allocated buffers to a smaller 2028 * size. 2029 */ 2030 rcd->egrbufs.alloced = 0; 2031 for (i = 0, j = 0, offset = 0; j < idx; i++) { 2032 if (i >= rcd->egrbufs.count) 2033 break; 2034 rcd->egrbufs.rcvtids[i].dma = 2035 rcd->egrbufs.buffers[j].dma + offset; 2036 rcd->egrbufs.rcvtids[i].addr = 2037 rcd->egrbufs.buffers[j].addr + offset; 2038 rcd->egrbufs.alloced++; 2039 if ((rcd->egrbufs.buffers[j].dma + offset + 2040 new_size) == 2041 (rcd->egrbufs.buffers[j].dma + 2042 rcd->egrbufs.buffers[j].len)) { 2043 j++; 2044 offset = 0; 2045 } else { 2046 offset += new_size; 2047 } 2048 } 2049 rcd->egrbufs.rcvtid_size = new_size; 2050 } 2051 } 2052 rcd->egrbufs.numbufs = idx; 2053 rcd->egrbufs.size = alloced_bytes; 2054 2055 hfi1_cdbg(PROC, 2056 "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %zuKB\n", 2057 rcd->ctxt, rcd->egrbufs.alloced, 2058 rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024); 2059 2060 /* 2061 * Set the contexts rcv array head update threshold to the closest 2062 * power of 2 (so we can use a mask instead of modulo) below half 2063 * the allocated entries. 2064 */ 2065 rcd->egrbufs.threshold = 2066 rounddown_pow_of_two(rcd->egrbufs.alloced / 2); 2067 /* 2068 * Compute the expected RcvArray entry base. This is done after 2069 * allocating the eager buffers in order to maximize the 2070 * expected RcvArray entries for the context. 2071 */ 2072 max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size; 2073 egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size); 2074 rcd->expected_count = max_entries - egrtop; 2075 if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2) 2076 rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2; 2077 2078 rcd->expected_base = rcd->eager_base + egrtop; 2079 hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n", 2080 rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count, 2081 rcd->eager_base, rcd->expected_base); 2082 2083 if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) { 2084 hfi1_cdbg(PROC, 2085 "ctxt%u: current Eager buffer size is invalid %u\n", 2086 rcd->ctxt, rcd->egrbufs.rcvtid_size); 2087 ret = -EINVAL; 2088 goto bail_rcvegrbuf_phys; 2089 } 2090 2091 for (idx = 0; idx < rcd->egrbufs.alloced; idx++) { 2092 hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER, 2093 rcd->egrbufs.rcvtids[idx].dma, order); 2094 cond_resched(); 2095 } 2096 2097 return 0; 2098 2099 bail_rcvegrbuf_phys: 2100 for (idx = 0; idx < rcd->egrbufs.alloced && 2101 rcd->egrbufs.buffers[idx].addr; 2102 idx++) { 2103 dma_free_coherent(&dd->pcidev->dev, 2104 rcd->egrbufs.buffers[idx].len, 2105 rcd->egrbufs.buffers[idx].addr, 2106 rcd->egrbufs.buffers[idx].dma); 2107 rcd->egrbufs.buffers[idx].addr = NULL; 2108 rcd->egrbufs.buffers[idx].dma = 0; 2109 rcd->egrbufs.buffers[idx].len = 0; 2110 } 2111 2112 return ret; 2113 } 2114