1 /* 2 * Copyright(c) 2015-2017 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 #include <linux/pci.h> 49 #include <linux/netdevice.h> 50 #include <linux/vmalloc.h> 51 #include <linux/delay.h> 52 #include <linux/idr.h> 53 #include <linux/module.h> 54 #include <linux/printk.h> 55 #include <linux/hrtimer.h> 56 #include <linux/bitmap.h> 57 #include <rdma/rdma_vt.h> 58 59 #include "hfi.h" 60 #include "device.h" 61 #include "common.h" 62 #include "trace.h" 63 #include "mad.h" 64 #include "sdma.h" 65 #include "debugfs.h" 66 #include "verbs.h" 67 #include "aspm.h" 68 #include "affinity.h" 69 #include "vnic.h" 70 #include "exp_rcv.h" 71 72 #undef pr_fmt 73 #define pr_fmt(fmt) DRIVER_NAME ": " fmt 74 75 #define HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES 5 76 /* 77 * min buffers we want to have per context, after driver 78 */ 79 #define HFI1_MIN_USER_CTXT_BUFCNT 7 80 81 #define HFI1_MIN_HDRQ_EGRBUF_CNT 2 82 #define HFI1_MAX_HDRQ_EGRBUF_CNT 16352 83 #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */ 84 #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */ 85 86 /* 87 * Number of user receive contexts we are configured to use (to allow for more 88 * pio buffers per ctxt, etc.) Zero means use one user context per CPU. 89 */ 90 int num_user_contexts = -1; 91 module_param_named(num_user_contexts, num_user_contexts, uint, S_IRUGO); 92 MODULE_PARM_DESC( 93 num_user_contexts, "Set max number of user contexts to use"); 94 95 uint krcvqs[RXE_NUM_DATA_VL]; 96 int krcvqsset; 97 module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO); 98 MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL"); 99 100 /* computed based on above array */ 101 unsigned long n_krcvqs; 102 103 static unsigned hfi1_rcvarr_split = 25; 104 module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO); 105 MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers"); 106 107 static uint eager_buffer_size = (8 << 20); /* 8MB */ 108 module_param(eager_buffer_size, uint, S_IRUGO); 109 MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 8MB"); 110 111 static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */ 112 module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO); 113 MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)"); 114 115 static uint hfi1_hdrq_entsize = 32; 116 module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, S_IRUGO); 117 MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B (default), 32 - 128B"); 118 119 unsigned int user_credit_return_threshold = 33; /* default is 33% */ 120 module_param(user_credit_return_threshold, uint, S_IRUGO); 121 MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)"); 122 123 static inline u64 encode_rcv_header_entry_size(u16 size); 124 125 static struct idr hfi1_unit_table; 126 127 static int hfi1_create_kctxt(struct hfi1_devdata *dd, 128 struct hfi1_pportdata *ppd) 129 { 130 struct hfi1_ctxtdata *rcd; 131 int ret; 132 133 /* Control context has to be always 0 */ 134 BUILD_BUG_ON(HFI1_CTRL_CTXT != 0); 135 136 ret = hfi1_create_ctxtdata(ppd, dd->node, &rcd); 137 if (ret < 0) { 138 dd_dev_err(dd, "Kernel receive context allocation failed\n"); 139 return ret; 140 } 141 142 /* 143 * Set up the kernel context flags here and now because they use 144 * default values for all receive side memories. User contexts will 145 * be handled as they are created. 146 */ 147 rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) | 148 HFI1_CAP_KGET(NODROP_RHQ_FULL) | 149 HFI1_CAP_KGET(NODROP_EGR_FULL) | 150 HFI1_CAP_KGET(DMA_RTAIL); 151 152 /* Control context must use DMA_RTAIL */ 153 if (rcd->ctxt == HFI1_CTRL_CTXT) 154 rcd->flags |= HFI1_CAP_DMA_RTAIL; 155 rcd->seq_cnt = 1; 156 157 rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node); 158 if (!rcd->sc) { 159 dd_dev_err(dd, "Kernel send context allocation failed\n"); 160 return -ENOMEM; 161 } 162 hfi1_init_ctxt(rcd->sc); 163 164 return 0; 165 } 166 167 /* 168 * Create the receive context array and one or more kernel contexts 169 */ 170 int hfi1_create_kctxts(struct hfi1_devdata *dd) 171 { 172 u16 i; 173 int ret; 174 175 dd->rcd = kcalloc_node(dd->num_rcv_contexts, sizeof(*dd->rcd), 176 GFP_KERNEL, dd->node); 177 if (!dd->rcd) 178 return -ENOMEM; 179 180 for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) { 181 ret = hfi1_create_kctxt(dd, dd->pport); 182 if (ret) 183 goto bail; 184 } 185 186 return 0; 187 bail: 188 for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) 189 hfi1_free_ctxt(dd->rcd[i]); 190 191 /* All the contexts should be freed, free the array */ 192 kfree(dd->rcd); 193 dd->rcd = NULL; 194 return ret; 195 } 196 197 /* 198 * Helper routines for the receive context reference count (rcd and uctxt). 199 */ 200 static void hfi1_rcd_init(struct hfi1_ctxtdata *rcd) 201 { 202 kref_init(&rcd->kref); 203 } 204 205 /** 206 * hfi1_rcd_free - When reference is zero clean up. 207 * @kref: pointer to an initialized rcd data structure 208 * 209 */ 210 static void hfi1_rcd_free(struct kref *kref) 211 { 212 unsigned long flags; 213 struct hfi1_ctxtdata *rcd = 214 container_of(kref, struct hfi1_ctxtdata, kref); 215 216 hfi1_free_ctxtdata(rcd->dd, rcd); 217 218 spin_lock_irqsave(&rcd->dd->uctxt_lock, flags); 219 rcd->dd->rcd[rcd->ctxt] = NULL; 220 spin_unlock_irqrestore(&rcd->dd->uctxt_lock, flags); 221 222 kfree(rcd); 223 } 224 225 /** 226 * hfi1_rcd_put - decrement reference for rcd 227 * @rcd: pointer to an initialized rcd data structure 228 * 229 * Use this to put a reference after the init. 230 */ 231 int hfi1_rcd_put(struct hfi1_ctxtdata *rcd) 232 { 233 if (rcd) 234 return kref_put(&rcd->kref, hfi1_rcd_free); 235 236 return 0; 237 } 238 239 /** 240 * hfi1_rcd_get - increment reference for rcd 241 * @rcd: pointer to an initialized rcd data structure 242 * 243 * Use this to get a reference after the init. 244 */ 245 void hfi1_rcd_get(struct hfi1_ctxtdata *rcd) 246 { 247 kref_get(&rcd->kref); 248 } 249 250 /** 251 * allocate_rcd_index - allocate an rcd index from the rcd array 252 * @dd: pointer to a valid devdata structure 253 * @rcd: rcd data structure to assign 254 * @index: pointer to index that is allocated 255 * 256 * Find an empty index in the rcd array, and assign the given rcd to it. 257 * If the array is full, we are EBUSY. 258 * 259 */ 260 static int allocate_rcd_index(struct hfi1_devdata *dd, 261 struct hfi1_ctxtdata *rcd, u16 *index) 262 { 263 unsigned long flags; 264 u16 ctxt; 265 266 spin_lock_irqsave(&dd->uctxt_lock, flags); 267 for (ctxt = 0; ctxt < dd->num_rcv_contexts; ctxt++) 268 if (!dd->rcd[ctxt]) 269 break; 270 271 if (ctxt < dd->num_rcv_contexts) { 272 rcd->ctxt = ctxt; 273 dd->rcd[ctxt] = rcd; 274 hfi1_rcd_init(rcd); 275 } 276 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 277 278 if (ctxt >= dd->num_rcv_contexts) 279 return -EBUSY; 280 281 *index = ctxt; 282 283 return 0; 284 } 285 286 /** 287 * hfi1_rcd_get_by_index_safe - validate the ctxt index before accessing the 288 * array 289 * @dd: pointer to a valid devdata structure 290 * @ctxt: the index of an possilbe rcd 291 * 292 * This is a wrapper for hfi1_rcd_get_by_index() to validate that the given 293 * ctxt index is valid. 294 * 295 * The caller is responsible for making the _put(). 296 * 297 */ 298 struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd, 299 u16 ctxt) 300 { 301 if (ctxt < dd->num_rcv_contexts) 302 return hfi1_rcd_get_by_index(dd, ctxt); 303 304 return NULL; 305 } 306 307 /** 308 * hfi1_rcd_get_by_index 309 * @dd: pointer to a valid devdata structure 310 * @ctxt: the index of an possilbe rcd 311 * 312 * We need to protect access to the rcd array. If access is needed to 313 * one or more index, get the protecting spinlock and then increment the 314 * kref. 315 * 316 * The caller is responsible for making the _put(). 317 * 318 */ 319 struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt) 320 { 321 unsigned long flags; 322 struct hfi1_ctxtdata *rcd = NULL; 323 324 spin_lock_irqsave(&dd->uctxt_lock, flags); 325 if (dd->rcd[ctxt]) { 326 rcd = dd->rcd[ctxt]; 327 hfi1_rcd_get(rcd); 328 } 329 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 330 331 return rcd; 332 } 333 334 /* 335 * Common code for user and kernel context create and setup. 336 * NOTE: the initial kref is done here (hf1_rcd_init()). 337 */ 338 int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa, 339 struct hfi1_ctxtdata **context) 340 { 341 struct hfi1_devdata *dd = ppd->dd; 342 struct hfi1_ctxtdata *rcd; 343 unsigned kctxt_ngroups = 0; 344 u32 base; 345 346 if (dd->rcv_entries.nctxt_extra > 347 dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt) 348 kctxt_ngroups = (dd->rcv_entries.nctxt_extra - 349 (dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt)); 350 rcd = kzalloc_node(sizeof(*rcd), GFP_KERNEL, numa); 351 if (rcd) { 352 u32 rcvtids, max_entries; 353 u16 ctxt; 354 int ret; 355 356 ret = allocate_rcd_index(dd, rcd, &ctxt); 357 if (ret) { 358 *context = NULL; 359 kfree(rcd); 360 return ret; 361 } 362 363 INIT_LIST_HEAD(&rcd->qp_wait_list); 364 hfi1_exp_tid_group_init(&rcd->tid_group_list); 365 hfi1_exp_tid_group_init(&rcd->tid_used_list); 366 hfi1_exp_tid_group_init(&rcd->tid_full_list); 367 rcd->ppd = ppd; 368 rcd->dd = dd; 369 __set_bit(0, rcd->in_use_ctxts); 370 rcd->numa_id = numa; 371 rcd->rcv_array_groups = dd->rcv_entries.ngroups; 372 373 mutex_init(&rcd->exp_lock); 374 375 hfi1_cdbg(PROC, "setting up context %u\n", rcd->ctxt); 376 377 /* 378 * Calculate the context's RcvArray entry starting point. 379 * We do this here because we have to take into account all 380 * the RcvArray entries that previous context would have 381 * taken and we have to account for any extra groups assigned 382 * to the static (kernel) or dynamic (vnic/user) contexts. 383 */ 384 if (ctxt < dd->first_dyn_alloc_ctxt) { 385 if (ctxt < kctxt_ngroups) { 386 base = ctxt * (dd->rcv_entries.ngroups + 1); 387 rcd->rcv_array_groups++; 388 } else { 389 base = kctxt_ngroups + 390 (ctxt * dd->rcv_entries.ngroups); 391 } 392 } else { 393 u16 ct = ctxt - dd->first_dyn_alloc_ctxt; 394 395 base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) + 396 kctxt_ngroups); 397 if (ct < dd->rcv_entries.nctxt_extra) { 398 base += ct * (dd->rcv_entries.ngroups + 1); 399 rcd->rcv_array_groups++; 400 } else { 401 base += dd->rcv_entries.nctxt_extra + 402 (ct * dd->rcv_entries.ngroups); 403 } 404 } 405 rcd->eager_base = base * dd->rcv_entries.group_size; 406 407 rcd->rcvhdrq_cnt = rcvhdrcnt; 408 rcd->rcvhdrqentsize = hfi1_hdrq_entsize; 409 /* 410 * Simple Eager buffer allocation: we have already pre-allocated 411 * the number of RcvArray entry groups. Each ctxtdata structure 412 * holds the number of groups for that context. 413 * 414 * To follow CSR requirements and maintain cacheline alignment, 415 * make sure all sizes and bases are multiples of group_size. 416 * 417 * The expected entry count is what is left after assigning 418 * eager. 419 */ 420 max_entries = rcd->rcv_array_groups * 421 dd->rcv_entries.group_size; 422 rcvtids = ((max_entries * hfi1_rcvarr_split) / 100); 423 rcd->egrbufs.count = round_down(rcvtids, 424 dd->rcv_entries.group_size); 425 if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) { 426 dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n", 427 rcd->ctxt); 428 rcd->egrbufs.count = MAX_EAGER_ENTRIES; 429 } 430 hfi1_cdbg(PROC, 431 "ctxt%u: max Eager buffer RcvArray entries: %u\n", 432 rcd->ctxt, rcd->egrbufs.count); 433 434 /* 435 * Allocate array that will hold the eager buffer accounting 436 * data. 437 * This will allocate the maximum possible buffer count based 438 * on the value of the RcvArray split parameter. 439 * The resulting value will be rounded down to the closest 440 * multiple of dd->rcv_entries.group_size. 441 */ 442 rcd->egrbufs.buffers = 443 kcalloc_node(rcd->egrbufs.count, 444 sizeof(*rcd->egrbufs.buffers), 445 GFP_KERNEL, numa); 446 if (!rcd->egrbufs.buffers) 447 goto bail; 448 rcd->egrbufs.rcvtids = 449 kcalloc_node(rcd->egrbufs.count, 450 sizeof(*rcd->egrbufs.rcvtids), 451 GFP_KERNEL, numa); 452 if (!rcd->egrbufs.rcvtids) 453 goto bail; 454 rcd->egrbufs.size = eager_buffer_size; 455 /* 456 * The size of the buffers programmed into the RcvArray 457 * entries needs to be big enough to handle the highest 458 * MTU supported. 459 */ 460 if (rcd->egrbufs.size < hfi1_max_mtu) { 461 rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu); 462 hfi1_cdbg(PROC, 463 "ctxt%u: eager bufs size too small. Adjusting to %zu\n", 464 rcd->ctxt, rcd->egrbufs.size); 465 } 466 rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE; 467 468 /* Applicable only for statically created kernel contexts */ 469 if (ctxt < dd->first_dyn_alloc_ctxt) { 470 rcd->opstats = kzalloc_node(sizeof(*rcd->opstats), 471 GFP_KERNEL, numa); 472 if (!rcd->opstats) 473 goto bail; 474 } 475 476 *context = rcd; 477 return 0; 478 } 479 480 bail: 481 *context = NULL; 482 hfi1_free_ctxt(rcd); 483 return -ENOMEM; 484 } 485 486 /** 487 * hfi1_free_ctxt 488 * @rcd: pointer to an initialized rcd data structure 489 * 490 * This wrapper is the free function that matches hfi1_create_ctxtdata(). 491 * When a context is done being used (kernel or user), this function is called 492 * for the "final" put to match the kref init from hf1i_create_ctxtdata(). 493 * Other users of the context do a get/put sequence to make sure that the 494 * structure isn't removed while in use. 495 */ 496 void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd) 497 { 498 hfi1_rcd_put(rcd); 499 } 500 501 /* 502 * Convert a receive header entry size that to the encoding used in the CSR. 503 * 504 * Return a zero if the given size is invalid. 505 */ 506 static inline u64 encode_rcv_header_entry_size(u16 size) 507 { 508 /* there are only 3 valid receive header entry sizes */ 509 if (size == 2) 510 return 1; 511 if (size == 16) 512 return 2; 513 else if (size == 32) 514 return 4; 515 return 0; /* invalid */ 516 } 517 518 /* 519 * Select the largest ccti value over all SLs to determine the intra- 520 * packet gap for the link. 521 * 522 * called with cca_timer_lock held (to protect access to cca_timer 523 * array), and rcu_read_lock() (to protect access to cc_state). 524 */ 525 void set_link_ipg(struct hfi1_pportdata *ppd) 526 { 527 struct hfi1_devdata *dd = ppd->dd; 528 struct cc_state *cc_state; 529 int i; 530 u16 cce, ccti_limit, max_ccti = 0; 531 u16 shift, mult; 532 u64 src; 533 u32 current_egress_rate; /* Mbits /sec */ 534 u32 max_pkt_time; 535 /* 536 * max_pkt_time is the maximum packet egress time in units 537 * of the fabric clock period 1/(805 MHz). 538 */ 539 540 cc_state = get_cc_state(ppd); 541 542 if (!cc_state) 543 /* 544 * This should _never_ happen - rcu_read_lock() is held, 545 * and set_link_ipg() should not be called if cc_state 546 * is NULL. 547 */ 548 return; 549 550 for (i = 0; i < OPA_MAX_SLS; i++) { 551 u16 ccti = ppd->cca_timer[i].ccti; 552 553 if (ccti > max_ccti) 554 max_ccti = ccti; 555 } 556 557 ccti_limit = cc_state->cct.ccti_limit; 558 if (max_ccti > ccti_limit) 559 max_ccti = ccti_limit; 560 561 cce = cc_state->cct.entries[max_ccti].entry; 562 shift = (cce & 0xc000) >> 14; 563 mult = (cce & 0x3fff); 564 565 current_egress_rate = active_egress_rate(ppd); 566 567 max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate); 568 569 src = (max_pkt_time >> shift) * mult; 570 571 src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK; 572 src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT; 573 574 write_csr(dd, SEND_STATIC_RATE_CONTROL, src); 575 } 576 577 static enum hrtimer_restart cca_timer_fn(struct hrtimer *t) 578 { 579 struct cca_timer *cca_timer; 580 struct hfi1_pportdata *ppd; 581 int sl; 582 u16 ccti_timer, ccti_min; 583 struct cc_state *cc_state; 584 unsigned long flags; 585 enum hrtimer_restart ret = HRTIMER_NORESTART; 586 587 cca_timer = container_of(t, struct cca_timer, hrtimer); 588 ppd = cca_timer->ppd; 589 sl = cca_timer->sl; 590 591 rcu_read_lock(); 592 593 cc_state = get_cc_state(ppd); 594 595 if (!cc_state) { 596 rcu_read_unlock(); 597 return HRTIMER_NORESTART; 598 } 599 600 /* 601 * 1) decrement ccti for SL 602 * 2) calculate IPG for link (set_link_ipg()) 603 * 3) restart timer, unless ccti is at min value 604 */ 605 606 ccti_min = cc_state->cong_setting.entries[sl].ccti_min; 607 ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer; 608 609 spin_lock_irqsave(&ppd->cca_timer_lock, flags); 610 611 if (cca_timer->ccti > ccti_min) { 612 cca_timer->ccti--; 613 set_link_ipg(ppd); 614 } 615 616 if (cca_timer->ccti > ccti_min) { 617 unsigned long nsec = 1024 * ccti_timer; 618 /* ccti_timer is in units of 1.024 usec */ 619 hrtimer_forward_now(t, ns_to_ktime(nsec)); 620 ret = HRTIMER_RESTART; 621 } 622 623 spin_unlock_irqrestore(&ppd->cca_timer_lock, flags); 624 rcu_read_unlock(); 625 return ret; 626 } 627 628 /* 629 * Common code for initializing the physical port structure. 630 */ 631 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd, 632 struct hfi1_devdata *dd, u8 hw_pidx, u8 port) 633 { 634 int i; 635 uint default_pkey_idx; 636 struct cc_state *cc_state; 637 638 ppd->dd = dd; 639 ppd->hw_pidx = hw_pidx; 640 ppd->port = port; /* IB port number, not index */ 641 ppd->prev_link_width = LINK_WIDTH_DEFAULT; 642 /* 643 * There are C_VL_COUNT number of PortVLXmitWait counters. 644 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter. 645 */ 646 for (i = 0; i < C_VL_COUNT + 1; i++) { 647 ppd->port_vl_xmit_wait_last[i] = 0; 648 ppd->vl_xmit_flit_cnt[i] = 0; 649 } 650 651 default_pkey_idx = 1; 652 653 ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY; 654 ppd->part_enforce |= HFI1_PART_ENFORCE_IN; 655 656 if (loopback) { 657 hfi1_early_err(&pdev->dev, 658 "Faking data partition 0x8001 in idx %u\n", 659 !default_pkey_idx); 660 ppd->pkeys[!default_pkey_idx] = 0x8001; 661 } 662 663 INIT_WORK(&ppd->link_vc_work, handle_verify_cap); 664 INIT_WORK(&ppd->link_up_work, handle_link_up); 665 INIT_WORK(&ppd->link_down_work, handle_link_down); 666 INIT_WORK(&ppd->freeze_work, handle_freeze); 667 INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade); 668 INIT_WORK(&ppd->sma_message_work, handle_sma_message); 669 INIT_WORK(&ppd->link_bounce_work, handle_link_bounce); 670 INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link); 671 INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work); 672 INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event); 673 674 mutex_init(&ppd->hls_lock); 675 spin_lock_init(&ppd->qsfp_info.qsfp_lock); 676 677 ppd->qsfp_info.ppd = ppd; 678 ppd->sm_trap_qp = 0x0; 679 ppd->sa_qp = 0x1; 680 681 ppd->hfi1_wq = NULL; 682 683 spin_lock_init(&ppd->cca_timer_lock); 684 685 for (i = 0; i < OPA_MAX_SLS; i++) { 686 hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC, 687 HRTIMER_MODE_REL); 688 ppd->cca_timer[i].ppd = ppd; 689 ppd->cca_timer[i].sl = i; 690 ppd->cca_timer[i].ccti = 0; 691 ppd->cca_timer[i].hrtimer.function = cca_timer_fn; 692 } 693 694 ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT; 695 696 spin_lock_init(&ppd->cc_state_lock); 697 spin_lock_init(&ppd->cc_log_lock); 698 cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL); 699 RCU_INIT_POINTER(ppd->cc_state, cc_state); 700 if (!cc_state) 701 goto bail; 702 return; 703 704 bail: 705 706 hfi1_early_err(&pdev->dev, 707 "Congestion Control Agent disabled for port %d\n", port); 708 } 709 710 /* 711 * Do initialization for device that is only needed on 712 * first detect, not on resets. 713 */ 714 static int loadtime_init(struct hfi1_devdata *dd) 715 { 716 return 0; 717 } 718 719 /** 720 * init_after_reset - re-initialize after a reset 721 * @dd: the hfi1_ib device 722 * 723 * sanity check at least some of the values after reset, and 724 * ensure no receive or transmit (explicitly, in case reset 725 * failed 726 */ 727 static int init_after_reset(struct hfi1_devdata *dd) 728 { 729 int i; 730 struct hfi1_ctxtdata *rcd; 731 /* 732 * Ensure chip does no sends or receives, tail updates, or 733 * pioavail updates while we re-initialize. This is mostly 734 * for the driver data structures, not chip registers. 735 */ 736 for (i = 0; i < dd->num_rcv_contexts; i++) { 737 rcd = hfi1_rcd_get_by_index(dd, i); 738 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS | 739 HFI1_RCVCTRL_INTRAVAIL_DIS | 740 HFI1_RCVCTRL_TAILUPD_DIS, rcd); 741 hfi1_rcd_put(rcd); 742 } 743 pio_send_control(dd, PSC_GLOBAL_DISABLE); 744 for (i = 0; i < dd->num_send_contexts; i++) 745 sc_disable(dd->send_contexts[i].sc); 746 747 return 0; 748 } 749 750 static void enable_chip(struct hfi1_devdata *dd) 751 { 752 struct hfi1_ctxtdata *rcd; 753 u32 rcvmask; 754 u16 i; 755 756 /* enable PIO send */ 757 pio_send_control(dd, PSC_GLOBAL_ENABLE); 758 759 /* 760 * Enable kernel ctxts' receive and receive interrupt. 761 * Other ctxts done as user opens and initializes them. 762 */ 763 for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) { 764 rcd = hfi1_rcd_get_by_index(dd, i); 765 if (!rcd) 766 continue; 767 rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB; 768 rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ? 769 HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS; 770 if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) 771 rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB; 772 if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_RHQ_FULL)) 773 rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB; 774 if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_EGR_FULL)) 775 rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB; 776 hfi1_rcvctrl(dd, rcvmask, rcd); 777 sc_enable(rcd->sc); 778 hfi1_rcd_put(rcd); 779 } 780 } 781 782 /** 783 * create_workqueues - create per port workqueues 784 * @dd: the hfi1_ib device 785 */ 786 static int create_workqueues(struct hfi1_devdata *dd) 787 { 788 int pidx; 789 struct hfi1_pportdata *ppd; 790 791 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 792 ppd = dd->pport + pidx; 793 if (!ppd->hfi1_wq) { 794 ppd->hfi1_wq = 795 alloc_workqueue( 796 "hfi%d_%d", 797 WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE, 798 HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES, 799 dd->unit, pidx); 800 if (!ppd->hfi1_wq) 801 goto wq_error; 802 } 803 if (!ppd->link_wq) { 804 /* 805 * Make the link workqueue single-threaded to enforce 806 * serialization. 807 */ 808 ppd->link_wq = 809 alloc_workqueue( 810 "hfi_link_%d_%d", 811 WQ_SYSFS | WQ_MEM_RECLAIM | WQ_UNBOUND, 812 1, /* max_active */ 813 dd->unit, pidx); 814 if (!ppd->link_wq) 815 goto wq_error; 816 } 817 } 818 return 0; 819 wq_error: 820 pr_err("alloc_workqueue failed for port %d\n", pidx + 1); 821 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 822 ppd = dd->pport + pidx; 823 if (ppd->hfi1_wq) { 824 destroy_workqueue(ppd->hfi1_wq); 825 ppd->hfi1_wq = NULL; 826 } 827 if (ppd->link_wq) { 828 destroy_workqueue(ppd->link_wq); 829 ppd->link_wq = NULL; 830 } 831 } 832 return -ENOMEM; 833 } 834 835 /** 836 * hfi1_init - do the actual initialization sequence on the chip 837 * @dd: the hfi1_ib device 838 * @reinit: re-initializing, so don't allocate new memory 839 * 840 * Do the actual initialization sequence on the chip. This is done 841 * both from the init routine called from the PCI infrastructure, and 842 * when we reset the chip, or detect that it was reset internally, 843 * or it's administratively re-enabled. 844 * 845 * Memory allocation here and in called routines is only done in 846 * the first case (reinit == 0). We have to be careful, because even 847 * without memory allocation, we need to re-write all the chip registers 848 * TIDs, etc. after the reset or enable has completed. 849 */ 850 int hfi1_init(struct hfi1_devdata *dd, int reinit) 851 { 852 int ret = 0, pidx, lastfail = 0; 853 unsigned long len; 854 u16 i; 855 struct hfi1_ctxtdata *rcd; 856 struct hfi1_pportdata *ppd; 857 858 /* Set up recv low level handlers */ 859 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EXPECTED] = 860 kdeth_process_expected; 861 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EAGER] = 862 kdeth_process_eager; 863 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_IB] = process_receive_ib; 864 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_ERROR] = 865 process_receive_error; 866 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_BYPASS] = 867 process_receive_bypass; 868 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID5] = 869 process_receive_invalid; 870 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID6] = 871 process_receive_invalid; 872 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID7] = 873 process_receive_invalid; 874 dd->rhf_rcv_function_map = dd->normal_rhf_rcv_functions; 875 876 /* Set up send low level handlers */ 877 dd->process_pio_send = hfi1_verbs_send_pio; 878 dd->process_dma_send = hfi1_verbs_send_dma; 879 dd->pio_inline_send = pio_copy; 880 dd->process_vnic_dma_send = hfi1_vnic_send_dma; 881 882 if (is_ax(dd)) { 883 atomic_set(&dd->drop_packet, DROP_PACKET_ON); 884 dd->do_drop = 1; 885 } else { 886 atomic_set(&dd->drop_packet, DROP_PACKET_OFF); 887 dd->do_drop = 0; 888 } 889 890 /* make sure the link is not "up" */ 891 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 892 ppd = dd->pport + pidx; 893 ppd->linkup = 0; 894 } 895 896 if (reinit) 897 ret = init_after_reset(dd); 898 else 899 ret = loadtime_init(dd); 900 if (ret) 901 goto done; 902 903 /* allocate dummy tail memory for all receive contexts */ 904 dd->rcvhdrtail_dummy_kvaddr = dma_zalloc_coherent( 905 &dd->pcidev->dev, sizeof(u64), 906 &dd->rcvhdrtail_dummy_dma, 907 GFP_KERNEL); 908 909 if (!dd->rcvhdrtail_dummy_kvaddr) { 910 dd_dev_err(dd, "cannot allocate dummy tail memory\n"); 911 ret = -ENOMEM; 912 goto done; 913 } 914 915 /* dd->rcd can be NULL if early initialization failed */ 916 for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) { 917 /* 918 * Set up the (kernel) rcvhdr queue and egr TIDs. If doing 919 * re-init, the simplest way to handle this is to free 920 * existing, and re-allocate. 921 * Need to re-create rest of ctxt 0 ctxtdata as well. 922 */ 923 rcd = hfi1_rcd_get_by_index(dd, i); 924 if (!rcd) 925 continue; 926 927 rcd->do_interrupt = &handle_receive_interrupt; 928 929 lastfail = hfi1_create_rcvhdrq(dd, rcd); 930 if (!lastfail) 931 lastfail = hfi1_setup_eagerbufs(rcd); 932 if (lastfail) { 933 dd_dev_err(dd, 934 "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n"); 935 ret = lastfail; 936 } 937 hfi1_rcd_put(rcd); 938 } 939 940 /* Allocate enough memory for user event notification. */ 941 len = PAGE_ALIGN(dd->chip_rcv_contexts * HFI1_MAX_SHARED_CTXTS * 942 sizeof(*dd->events)); 943 dd->events = vmalloc_user(len); 944 if (!dd->events) 945 dd_dev_err(dd, "Failed to allocate user events page\n"); 946 /* 947 * Allocate a page for device and port status. 948 * Page will be shared amongst all user processes. 949 */ 950 dd->status = vmalloc_user(PAGE_SIZE); 951 if (!dd->status) 952 dd_dev_err(dd, "Failed to allocate dev status page\n"); 953 else 954 dd->freezelen = PAGE_SIZE - (sizeof(*dd->status) - 955 sizeof(dd->status->freezemsg)); 956 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 957 ppd = dd->pport + pidx; 958 if (dd->status) 959 /* Currently, we only have one port */ 960 ppd->statusp = &dd->status->port; 961 962 set_mtu(ppd); 963 } 964 965 /* enable chip even if we have an error, so we can debug cause */ 966 enable_chip(dd); 967 968 done: 969 /* 970 * Set status even if port serdes is not initialized 971 * so that diags will work. 972 */ 973 if (dd->status) 974 dd->status->dev |= HFI1_STATUS_CHIP_PRESENT | 975 HFI1_STATUS_INITTED; 976 if (!ret) { 977 /* enable all interrupts from the chip */ 978 set_intr_state(dd, 1); 979 980 /* chip is OK for user apps; mark it as initialized */ 981 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 982 ppd = dd->pport + pidx; 983 984 /* 985 * start the serdes - must be after interrupts are 986 * enabled so we are notified when the link goes up 987 */ 988 lastfail = bringup_serdes(ppd); 989 if (lastfail) 990 dd_dev_info(dd, 991 "Failed to bring up port %u\n", 992 ppd->port); 993 994 /* 995 * Set status even if port serdes is not initialized 996 * so that diags will work. 997 */ 998 if (ppd->statusp) 999 *ppd->statusp |= HFI1_STATUS_CHIP_PRESENT | 1000 HFI1_STATUS_INITTED; 1001 if (!ppd->link_speed_enabled) 1002 continue; 1003 } 1004 } 1005 1006 /* if ret is non-zero, we probably should do some cleanup here... */ 1007 return ret; 1008 } 1009 1010 static inline struct hfi1_devdata *__hfi1_lookup(int unit) 1011 { 1012 return idr_find(&hfi1_unit_table, unit); 1013 } 1014 1015 struct hfi1_devdata *hfi1_lookup(int unit) 1016 { 1017 struct hfi1_devdata *dd; 1018 unsigned long flags; 1019 1020 spin_lock_irqsave(&hfi1_devs_lock, flags); 1021 dd = __hfi1_lookup(unit); 1022 spin_unlock_irqrestore(&hfi1_devs_lock, flags); 1023 1024 return dd; 1025 } 1026 1027 /* 1028 * Stop the timers during unit shutdown, or after an error late 1029 * in initialization. 1030 */ 1031 static void stop_timers(struct hfi1_devdata *dd) 1032 { 1033 struct hfi1_pportdata *ppd; 1034 int pidx; 1035 1036 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1037 ppd = dd->pport + pidx; 1038 if (ppd->led_override_timer.function) { 1039 del_timer_sync(&ppd->led_override_timer); 1040 atomic_set(&ppd->led_override_timer_active, 0); 1041 } 1042 } 1043 } 1044 1045 /** 1046 * shutdown_device - shut down a device 1047 * @dd: the hfi1_ib device 1048 * 1049 * This is called to make the device quiet when we are about to 1050 * unload the driver, and also when the device is administratively 1051 * disabled. It does not free any data structures. 1052 * Everything it does has to be setup again by hfi1_init(dd, 1) 1053 */ 1054 static void shutdown_device(struct hfi1_devdata *dd) 1055 { 1056 struct hfi1_pportdata *ppd; 1057 struct hfi1_ctxtdata *rcd; 1058 unsigned pidx; 1059 int i; 1060 1061 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1062 ppd = dd->pport + pidx; 1063 1064 ppd->linkup = 0; 1065 if (ppd->statusp) 1066 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF | 1067 HFI1_STATUS_IB_READY); 1068 } 1069 dd->flags &= ~HFI1_INITTED; 1070 1071 /* mask and clean up interrupts, but not errors */ 1072 set_intr_state(dd, 0); 1073 hfi1_clean_up_interrupts(dd); 1074 1075 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1076 ppd = dd->pport + pidx; 1077 for (i = 0; i < dd->num_rcv_contexts; i++) { 1078 rcd = hfi1_rcd_get_by_index(dd, i); 1079 hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS | 1080 HFI1_RCVCTRL_CTXT_DIS | 1081 HFI1_RCVCTRL_INTRAVAIL_DIS | 1082 HFI1_RCVCTRL_PKEY_DIS | 1083 HFI1_RCVCTRL_ONE_PKT_EGR_DIS, rcd); 1084 hfi1_rcd_put(rcd); 1085 } 1086 /* 1087 * Gracefully stop all sends allowing any in progress to 1088 * trickle out first. 1089 */ 1090 for (i = 0; i < dd->num_send_contexts; i++) 1091 sc_flush(dd->send_contexts[i].sc); 1092 } 1093 1094 /* 1095 * Enough for anything that's going to trickle out to have actually 1096 * done so. 1097 */ 1098 udelay(20); 1099 1100 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1101 ppd = dd->pport + pidx; 1102 1103 /* disable all contexts */ 1104 for (i = 0; i < dd->num_send_contexts; i++) 1105 sc_disable(dd->send_contexts[i].sc); 1106 /* disable the send device */ 1107 pio_send_control(dd, PSC_GLOBAL_DISABLE); 1108 1109 shutdown_led_override(ppd); 1110 1111 /* 1112 * Clear SerdesEnable. 1113 * We can't count on interrupts since we are stopping. 1114 */ 1115 hfi1_quiet_serdes(ppd); 1116 1117 if (ppd->hfi1_wq) { 1118 destroy_workqueue(ppd->hfi1_wq); 1119 ppd->hfi1_wq = NULL; 1120 } 1121 if (ppd->link_wq) { 1122 destroy_workqueue(ppd->link_wq); 1123 ppd->link_wq = NULL; 1124 } 1125 } 1126 sdma_exit(dd); 1127 } 1128 1129 /** 1130 * hfi1_free_ctxtdata - free a context's allocated data 1131 * @dd: the hfi1_ib device 1132 * @rcd: the ctxtdata structure 1133 * 1134 * free up any allocated data for a context 1135 * It should never change any chip state, or global driver state. 1136 */ 1137 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd) 1138 { 1139 u32 e; 1140 1141 if (!rcd) 1142 return; 1143 1144 if (rcd->rcvhdrq) { 1145 dma_free_coherent(&dd->pcidev->dev, rcd->rcvhdrq_size, 1146 rcd->rcvhdrq, rcd->rcvhdrq_dma); 1147 rcd->rcvhdrq = NULL; 1148 if (rcd->rcvhdrtail_kvaddr) { 1149 dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE, 1150 (void *)rcd->rcvhdrtail_kvaddr, 1151 rcd->rcvhdrqtailaddr_dma); 1152 rcd->rcvhdrtail_kvaddr = NULL; 1153 } 1154 } 1155 1156 /* all the RcvArray entries should have been cleared by now */ 1157 kfree(rcd->egrbufs.rcvtids); 1158 rcd->egrbufs.rcvtids = NULL; 1159 1160 for (e = 0; e < rcd->egrbufs.alloced; e++) { 1161 if (rcd->egrbufs.buffers[e].dma) 1162 dma_free_coherent(&dd->pcidev->dev, 1163 rcd->egrbufs.buffers[e].len, 1164 rcd->egrbufs.buffers[e].addr, 1165 rcd->egrbufs.buffers[e].dma); 1166 } 1167 kfree(rcd->egrbufs.buffers); 1168 rcd->egrbufs.alloced = 0; 1169 rcd->egrbufs.buffers = NULL; 1170 1171 sc_free(rcd->sc); 1172 rcd->sc = NULL; 1173 1174 vfree(rcd->subctxt_uregbase); 1175 vfree(rcd->subctxt_rcvegrbuf); 1176 vfree(rcd->subctxt_rcvhdr_base); 1177 kfree(rcd->opstats); 1178 1179 rcd->subctxt_uregbase = NULL; 1180 rcd->subctxt_rcvegrbuf = NULL; 1181 rcd->subctxt_rcvhdr_base = NULL; 1182 rcd->opstats = NULL; 1183 } 1184 1185 /* 1186 * Release our hold on the shared asic data. If we are the last one, 1187 * return the structure to be finalized outside the lock. Must be 1188 * holding hfi1_devs_lock. 1189 */ 1190 static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd) 1191 { 1192 struct hfi1_asic_data *ad; 1193 int other; 1194 1195 if (!dd->asic_data) 1196 return NULL; 1197 dd->asic_data->dds[dd->hfi1_id] = NULL; 1198 other = dd->hfi1_id ? 0 : 1; 1199 ad = dd->asic_data; 1200 dd->asic_data = NULL; 1201 /* return NULL if the other dd still has a link */ 1202 return ad->dds[other] ? NULL : ad; 1203 } 1204 1205 static void finalize_asic_data(struct hfi1_devdata *dd, 1206 struct hfi1_asic_data *ad) 1207 { 1208 clean_up_i2c(dd, ad); 1209 kfree(ad); 1210 } 1211 1212 static void __hfi1_free_devdata(struct kobject *kobj) 1213 { 1214 struct hfi1_devdata *dd = 1215 container_of(kobj, struct hfi1_devdata, kobj); 1216 struct hfi1_asic_data *ad; 1217 unsigned long flags; 1218 1219 spin_lock_irqsave(&hfi1_devs_lock, flags); 1220 idr_remove(&hfi1_unit_table, dd->unit); 1221 list_del(&dd->list); 1222 ad = release_asic_data(dd); 1223 spin_unlock_irqrestore(&hfi1_devs_lock, flags); 1224 if (ad) 1225 finalize_asic_data(dd, ad); 1226 free_platform_config(dd); 1227 rcu_barrier(); /* wait for rcu callbacks to complete */ 1228 free_percpu(dd->int_counter); 1229 free_percpu(dd->rcv_limit); 1230 free_percpu(dd->send_schedule); 1231 free_percpu(dd->tx_opstats); 1232 sdma_clean(dd, dd->num_sdma); 1233 rvt_dealloc_device(&dd->verbs_dev.rdi); 1234 } 1235 1236 static struct kobj_type hfi1_devdata_type = { 1237 .release = __hfi1_free_devdata, 1238 }; 1239 1240 void hfi1_free_devdata(struct hfi1_devdata *dd) 1241 { 1242 kobject_put(&dd->kobj); 1243 } 1244 1245 /* 1246 * Allocate our primary per-unit data structure. Must be done via verbs 1247 * allocator, because the verbs cleanup process both does cleanup and 1248 * free of the data structure. 1249 * "extra" is for chip-specific data. 1250 * 1251 * Use the idr mechanism to get a unit number for this unit. 1252 */ 1253 struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev, size_t extra) 1254 { 1255 unsigned long flags; 1256 struct hfi1_devdata *dd; 1257 int ret, nports; 1258 1259 /* extra is * number of ports */ 1260 nports = extra / sizeof(struct hfi1_pportdata); 1261 1262 dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra, 1263 nports); 1264 if (!dd) 1265 return ERR_PTR(-ENOMEM); 1266 dd->num_pports = nports; 1267 dd->pport = (struct hfi1_pportdata *)(dd + 1); 1268 1269 INIT_LIST_HEAD(&dd->list); 1270 idr_preload(GFP_KERNEL); 1271 spin_lock_irqsave(&hfi1_devs_lock, flags); 1272 1273 ret = idr_alloc(&hfi1_unit_table, dd, 0, 0, GFP_NOWAIT); 1274 if (ret >= 0) { 1275 dd->unit = ret; 1276 list_add(&dd->list, &hfi1_dev_list); 1277 } 1278 1279 spin_unlock_irqrestore(&hfi1_devs_lock, flags); 1280 idr_preload_end(); 1281 1282 if (ret < 0) { 1283 hfi1_early_err(&pdev->dev, 1284 "Could not allocate unit ID: error %d\n", -ret); 1285 goto bail; 1286 } 1287 rvt_set_ibdev_name(&dd->verbs_dev.rdi, "%s_%d", class_name(), dd->unit); 1288 1289 /* 1290 * Initialize all locks for the device. This needs to be as early as 1291 * possible so locks are usable. 1292 */ 1293 spin_lock_init(&dd->sc_lock); 1294 spin_lock_init(&dd->sendctrl_lock); 1295 spin_lock_init(&dd->rcvctrl_lock); 1296 spin_lock_init(&dd->uctxt_lock); 1297 spin_lock_init(&dd->hfi1_diag_trans_lock); 1298 spin_lock_init(&dd->sc_init_lock); 1299 spin_lock_init(&dd->dc8051_memlock); 1300 seqlock_init(&dd->sc2vl_lock); 1301 spin_lock_init(&dd->sde_map_lock); 1302 spin_lock_init(&dd->pio_map_lock); 1303 mutex_init(&dd->dc8051_lock); 1304 init_waitqueue_head(&dd->event_queue); 1305 1306 dd->int_counter = alloc_percpu(u64); 1307 if (!dd->int_counter) { 1308 ret = -ENOMEM; 1309 goto bail; 1310 } 1311 1312 dd->rcv_limit = alloc_percpu(u64); 1313 if (!dd->rcv_limit) { 1314 ret = -ENOMEM; 1315 goto bail; 1316 } 1317 1318 dd->send_schedule = alloc_percpu(u64); 1319 if (!dd->send_schedule) { 1320 ret = -ENOMEM; 1321 goto bail; 1322 } 1323 1324 dd->tx_opstats = alloc_percpu(struct hfi1_opcode_stats_perctx); 1325 if (!dd->tx_opstats) { 1326 ret = -ENOMEM; 1327 goto bail; 1328 } 1329 1330 kobject_init(&dd->kobj, &hfi1_devdata_type); 1331 return dd; 1332 1333 bail: 1334 if (!list_empty(&dd->list)) 1335 list_del_init(&dd->list); 1336 rvt_dealloc_device(&dd->verbs_dev.rdi); 1337 return ERR_PTR(ret); 1338 } 1339 1340 /* 1341 * Called from freeze mode handlers, and from PCI error 1342 * reporting code. Should be paranoid about state of 1343 * system and data structures. 1344 */ 1345 void hfi1_disable_after_error(struct hfi1_devdata *dd) 1346 { 1347 if (dd->flags & HFI1_INITTED) { 1348 u32 pidx; 1349 1350 dd->flags &= ~HFI1_INITTED; 1351 if (dd->pport) 1352 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1353 struct hfi1_pportdata *ppd; 1354 1355 ppd = dd->pport + pidx; 1356 if (dd->flags & HFI1_PRESENT) 1357 set_link_state(ppd, HLS_DN_DISABLE); 1358 1359 if (ppd->statusp) 1360 *ppd->statusp &= ~HFI1_STATUS_IB_READY; 1361 } 1362 } 1363 1364 /* 1365 * Mark as having had an error for driver, and also 1366 * for /sys and status word mapped to user programs. 1367 * This marks unit as not usable, until reset. 1368 */ 1369 if (dd->status) 1370 dd->status->dev |= HFI1_STATUS_HWERROR; 1371 } 1372 1373 static void remove_one(struct pci_dev *); 1374 static int init_one(struct pci_dev *, const struct pci_device_id *); 1375 1376 #define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: " 1377 #define PFX DRIVER_NAME ": " 1378 1379 const struct pci_device_id hfi1_pci_tbl[] = { 1380 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) }, 1381 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) }, 1382 { 0, } 1383 }; 1384 1385 MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl); 1386 1387 static struct pci_driver hfi1_pci_driver = { 1388 .name = DRIVER_NAME, 1389 .probe = init_one, 1390 .remove = remove_one, 1391 .id_table = hfi1_pci_tbl, 1392 .err_handler = &hfi1_pci_err_handler, 1393 }; 1394 1395 static void __init compute_krcvqs(void) 1396 { 1397 int i; 1398 1399 for (i = 0; i < krcvqsset; i++) 1400 n_krcvqs += krcvqs[i]; 1401 } 1402 1403 /* 1404 * Do all the generic driver unit- and chip-independent memory 1405 * allocation and initialization. 1406 */ 1407 static int __init hfi1_mod_init(void) 1408 { 1409 int ret; 1410 1411 ret = dev_init(); 1412 if (ret) 1413 goto bail; 1414 1415 ret = node_affinity_init(); 1416 if (ret) 1417 goto bail; 1418 1419 /* validate max MTU before any devices start */ 1420 if (!valid_opa_max_mtu(hfi1_max_mtu)) { 1421 pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n", 1422 hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU); 1423 hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU; 1424 } 1425 /* valid CUs run from 1-128 in powers of 2 */ 1426 if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu)) 1427 hfi1_cu = 1; 1428 /* valid credit return threshold is 0-100, variable is unsigned */ 1429 if (user_credit_return_threshold > 100) 1430 user_credit_return_threshold = 100; 1431 1432 compute_krcvqs(); 1433 /* 1434 * sanitize receive interrupt count, time must wait until after 1435 * the hardware type is known 1436 */ 1437 if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK) 1438 rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK; 1439 /* reject invalid combinations */ 1440 if (rcv_intr_count == 0 && rcv_intr_timeout == 0) { 1441 pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n"); 1442 rcv_intr_count = 1; 1443 } 1444 if (rcv_intr_count > 1 && rcv_intr_timeout == 0) { 1445 /* 1446 * Avoid indefinite packet delivery by requiring a timeout 1447 * if count is > 1. 1448 */ 1449 pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n"); 1450 rcv_intr_timeout = 1; 1451 } 1452 if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) { 1453 /* 1454 * The dynamic algorithm expects a non-zero timeout 1455 * and a count > 1. 1456 */ 1457 pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n"); 1458 rcv_intr_dynamic = 0; 1459 } 1460 1461 /* sanitize link CRC options */ 1462 link_crc_mask &= SUPPORTED_CRCS; 1463 1464 /* 1465 * These must be called before the driver is registered with 1466 * the PCI subsystem. 1467 */ 1468 idr_init(&hfi1_unit_table); 1469 1470 hfi1_dbg_init(); 1471 ret = hfi1_wss_init(); 1472 if (ret < 0) 1473 goto bail_wss; 1474 ret = pci_register_driver(&hfi1_pci_driver); 1475 if (ret < 0) { 1476 pr_err("Unable to register driver: error %d\n", -ret); 1477 goto bail_dev; 1478 } 1479 goto bail; /* all OK */ 1480 1481 bail_dev: 1482 hfi1_wss_exit(); 1483 bail_wss: 1484 hfi1_dbg_exit(); 1485 idr_destroy(&hfi1_unit_table); 1486 dev_cleanup(); 1487 bail: 1488 return ret; 1489 } 1490 1491 module_init(hfi1_mod_init); 1492 1493 /* 1494 * Do the non-unit driver cleanup, memory free, etc. at unload. 1495 */ 1496 static void __exit hfi1_mod_cleanup(void) 1497 { 1498 pci_unregister_driver(&hfi1_pci_driver); 1499 node_affinity_destroy(); 1500 hfi1_wss_exit(); 1501 hfi1_dbg_exit(); 1502 1503 idr_destroy(&hfi1_unit_table); 1504 dispose_firmware(); /* asymmetric with obtain_firmware() */ 1505 dev_cleanup(); 1506 } 1507 1508 module_exit(hfi1_mod_cleanup); 1509 1510 /* this can only be called after a successful initialization */ 1511 static void cleanup_device_data(struct hfi1_devdata *dd) 1512 { 1513 int ctxt; 1514 int pidx; 1515 1516 /* users can't do anything more with chip */ 1517 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1518 struct hfi1_pportdata *ppd = &dd->pport[pidx]; 1519 struct cc_state *cc_state; 1520 int i; 1521 1522 if (ppd->statusp) 1523 *ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT; 1524 1525 for (i = 0; i < OPA_MAX_SLS; i++) 1526 hrtimer_cancel(&ppd->cca_timer[i].hrtimer); 1527 1528 spin_lock(&ppd->cc_state_lock); 1529 cc_state = get_cc_state_protected(ppd); 1530 RCU_INIT_POINTER(ppd->cc_state, NULL); 1531 spin_unlock(&ppd->cc_state_lock); 1532 1533 if (cc_state) 1534 kfree_rcu(cc_state, rcu); 1535 } 1536 1537 free_credit_return(dd); 1538 1539 if (dd->rcvhdrtail_dummy_kvaddr) { 1540 dma_free_coherent(&dd->pcidev->dev, sizeof(u64), 1541 (void *)dd->rcvhdrtail_dummy_kvaddr, 1542 dd->rcvhdrtail_dummy_dma); 1543 dd->rcvhdrtail_dummy_kvaddr = NULL; 1544 } 1545 1546 /* 1547 * Free any resources still in use (usually just kernel contexts) 1548 * at unload; we do for ctxtcnt, because that's what we allocate. 1549 */ 1550 for (ctxt = 0; dd->rcd && ctxt < dd->num_rcv_contexts; ctxt++) { 1551 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt]; 1552 1553 if (rcd) { 1554 hfi1_clear_tids(rcd); 1555 hfi1_free_ctxt(rcd); 1556 } 1557 } 1558 1559 kfree(dd->rcd); 1560 dd->rcd = NULL; 1561 1562 free_pio_map(dd); 1563 /* must follow rcv context free - need to remove rcv's hooks */ 1564 for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++) 1565 sc_free(dd->send_contexts[ctxt].sc); 1566 dd->num_send_contexts = 0; 1567 kfree(dd->send_contexts); 1568 dd->send_contexts = NULL; 1569 kfree(dd->hw_to_sw); 1570 dd->hw_to_sw = NULL; 1571 kfree(dd->boardname); 1572 vfree(dd->events); 1573 vfree(dd->status); 1574 } 1575 1576 /* 1577 * Clean up on unit shutdown, or error during unit load after 1578 * successful initialization. 1579 */ 1580 static void postinit_cleanup(struct hfi1_devdata *dd) 1581 { 1582 hfi1_start_cleanup(dd); 1583 1584 hfi1_pcie_ddcleanup(dd); 1585 hfi1_pcie_cleanup(dd->pcidev); 1586 1587 cleanup_device_data(dd); 1588 1589 hfi1_free_devdata(dd); 1590 } 1591 1592 static int init_validate_rcvhdrcnt(struct device *dev, uint thecnt) 1593 { 1594 if (thecnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) { 1595 hfi1_early_err(dev, "Receive header queue count too small\n"); 1596 return -EINVAL; 1597 } 1598 1599 if (thecnt > HFI1_MAX_HDRQ_EGRBUF_CNT) { 1600 hfi1_early_err(dev, 1601 "Receive header queue count cannot be greater than %u\n", 1602 HFI1_MAX_HDRQ_EGRBUF_CNT); 1603 return -EINVAL; 1604 } 1605 1606 if (thecnt % HDRQ_INCREMENT) { 1607 hfi1_early_err(dev, "Receive header queue count %d must be divisible by %lu\n", 1608 thecnt, HDRQ_INCREMENT); 1609 return -EINVAL; 1610 } 1611 1612 return 0; 1613 } 1614 1615 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 1616 { 1617 int ret = 0, j, pidx, initfail; 1618 struct hfi1_devdata *dd; 1619 struct hfi1_pportdata *ppd; 1620 1621 /* First, lock the non-writable module parameters */ 1622 HFI1_CAP_LOCK(); 1623 1624 /* Validate dev ids */ 1625 if (!(ent->device == PCI_DEVICE_ID_INTEL0 || 1626 ent->device == PCI_DEVICE_ID_INTEL1)) { 1627 hfi1_early_err(&pdev->dev, 1628 "Failing on unknown Intel deviceid 0x%x\n", 1629 ent->device); 1630 ret = -ENODEV; 1631 goto bail; 1632 } 1633 1634 /* Validate some global module parameters */ 1635 ret = init_validate_rcvhdrcnt(&pdev->dev, rcvhdrcnt); 1636 if (ret) 1637 goto bail; 1638 1639 /* use the encoding function as a sanitization check */ 1640 if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) { 1641 hfi1_early_err(&pdev->dev, "Invalid HdrQ Entry size %u\n", 1642 hfi1_hdrq_entsize); 1643 ret = -EINVAL; 1644 goto bail; 1645 } 1646 1647 /* The receive eager buffer size must be set before the receive 1648 * contexts are created. 1649 * 1650 * Set the eager buffer size. Validate that it falls in a range 1651 * allowed by the hardware - all powers of 2 between the min and 1652 * max. The maximum valid MTU is within the eager buffer range 1653 * so we do not need to cap the max_mtu by an eager buffer size 1654 * setting. 1655 */ 1656 if (eager_buffer_size) { 1657 if (!is_power_of_2(eager_buffer_size)) 1658 eager_buffer_size = 1659 roundup_pow_of_two(eager_buffer_size); 1660 eager_buffer_size = 1661 clamp_val(eager_buffer_size, 1662 MIN_EAGER_BUFFER * 8, 1663 MAX_EAGER_BUFFER_TOTAL); 1664 hfi1_early_info(&pdev->dev, "Eager buffer size %u\n", 1665 eager_buffer_size); 1666 } else { 1667 hfi1_early_err(&pdev->dev, "Invalid Eager buffer size of 0\n"); 1668 ret = -EINVAL; 1669 goto bail; 1670 } 1671 1672 /* restrict value of hfi1_rcvarr_split */ 1673 hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100); 1674 1675 ret = hfi1_pcie_init(pdev, ent); 1676 if (ret) 1677 goto bail; 1678 1679 /* 1680 * Do device-specific initialization, function table setup, dd 1681 * allocation, etc. 1682 */ 1683 dd = hfi1_init_dd(pdev, ent); 1684 1685 if (IS_ERR(dd)) { 1686 ret = PTR_ERR(dd); 1687 goto clean_bail; /* error already printed */ 1688 } 1689 1690 ret = create_workqueues(dd); 1691 if (ret) 1692 goto clean_bail; 1693 1694 /* do the generic initialization */ 1695 initfail = hfi1_init(dd, 0); 1696 1697 /* setup vnic */ 1698 hfi1_vnic_setup(dd); 1699 1700 ret = hfi1_register_ib_device(dd); 1701 1702 /* 1703 * Now ready for use. this should be cleared whenever we 1704 * detect a reset, or initiate one. If earlier failure, 1705 * we still create devices, so diags, etc. can be used 1706 * to determine cause of problem. 1707 */ 1708 if (!initfail && !ret) { 1709 dd->flags |= HFI1_INITTED; 1710 /* create debufs files after init and ib register */ 1711 hfi1_dbg_ibdev_init(&dd->verbs_dev); 1712 } 1713 1714 j = hfi1_device_create(dd); 1715 if (j) 1716 dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j); 1717 1718 if (initfail || ret) { 1719 hfi1_clean_up_interrupts(dd); 1720 stop_timers(dd); 1721 flush_workqueue(ib_wq); 1722 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1723 hfi1_quiet_serdes(dd->pport + pidx); 1724 ppd = dd->pport + pidx; 1725 if (ppd->hfi1_wq) { 1726 destroy_workqueue(ppd->hfi1_wq); 1727 ppd->hfi1_wq = NULL; 1728 } 1729 if (ppd->link_wq) { 1730 destroy_workqueue(ppd->link_wq); 1731 ppd->link_wq = NULL; 1732 } 1733 } 1734 if (!j) 1735 hfi1_device_remove(dd); 1736 if (!ret) 1737 hfi1_unregister_ib_device(dd); 1738 hfi1_vnic_cleanup(dd); 1739 postinit_cleanup(dd); 1740 if (initfail) 1741 ret = initfail; 1742 goto bail; /* everything already cleaned */ 1743 } 1744 1745 sdma_start(dd); 1746 1747 return 0; 1748 1749 clean_bail: 1750 hfi1_pcie_cleanup(pdev); 1751 bail: 1752 return ret; 1753 } 1754 1755 static void wait_for_clients(struct hfi1_devdata *dd) 1756 { 1757 /* 1758 * Remove the device init value and complete the device if there is 1759 * no clients or wait for active clients to finish. 1760 */ 1761 if (atomic_dec_and_test(&dd->user_refcount)) 1762 complete(&dd->user_comp); 1763 1764 wait_for_completion(&dd->user_comp); 1765 } 1766 1767 static void remove_one(struct pci_dev *pdev) 1768 { 1769 struct hfi1_devdata *dd = pci_get_drvdata(pdev); 1770 1771 /* close debugfs files before ib unregister */ 1772 hfi1_dbg_ibdev_exit(&dd->verbs_dev); 1773 1774 /* remove the /dev hfi1 interface */ 1775 hfi1_device_remove(dd); 1776 1777 /* wait for existing user space clients to finish */ 1778 wait_for_clients(dd); 1779 1780 /* unregister from IB core */ 1781 hfi1_unregister_ib_device(dd); 1782 1783 /* cleanup vnic */ 1784 hfi1_vnic_cleanup(dd); 1785 1786 /* 1787 * Disable the IB link, disable interrupts on the device, 1788 * clear dma engines, etc. 1789 */ 1790 shutdown_device(dd); 1791 1792 stop_timers(dd); 1793 1794 /* wait until all of our (qsfp) queue_work() calls complete */ 1795 flush_workqueue(ib_wq); 1796 1797 postinit_cleanup(dd); 1798 } 1799 1800 /** 1801 * hfi1_create_rcvhdrq - create a receive header queue 1802 * @dd: the hfi1_ib device 1803 * @rcd: the context data 1804 * 1805 * This must be contiguous memory (from an i/o perspective), and must be 1806 * DMA'able (which means for some systems, it will go through an IOMMU, 1807 * or be forced into a low address range). 1808 */ 1809 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd) 1810 { 1811 unsigned amt; 1812 u64 reg; 1813 1814 if (!rcd->rcvhdrq) { 1815 dma_addr_t dma_hdrqtail; 1816 gfp_t gfp_flags; 1817 1818 /* 1819 * rcvhdrqentsize is in DWs, so we have to convert to bytes 1820 * (* sizeof(u32)). 1821 */ 1822 amt = PAGE_ALIGN(rcd->rcvhdrq_cnt * rcd->rcvhdrqentsize * 1823 sizeof(u32)); 1824 1825 if (rcd->ctxt < dd->first_dyn_alloc_ctxt || rcd->is_vnic) 1826 gfp_flags = GFP_KERNEL; 1827 else 1828 gfp_flags = GFP_USER; 1829 rcd->rcvhdrq = dma_zalloc_coherent( 1830 &dd->pcidev->dev, amt, &rcd->rcvhdrq_dma, 1831 gfp_flags | __GFP_COMP); 1832 1833 if (!rcd->rcvhdrq) { 1834 dd_dev_err(dd, 1835 "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n", 1836 amt, rcd->ctxt); 1837 goto bail; 1838 } 1839 1840 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) { 1841 rcd->rcvhdrtail_kvaddr = dma_zalloc_coherent( 1842 &dd->pcidev->dev, PAGE_SIZE, &dma_hdrqtail, 1843 gfp_flags); 1844 if (!rcd->rcvhdrtail_kvaddr) 1845 goto bail_free; 1846 rcd->rcvhdrqtailaddr_dma = dma_hdrqtail; 1847 } 1848 1849 rcd->rcvhdrq_size = amt; 1850 } 1851 /* 1852 * These values are per-context: 1853 * RcvHdrCnt 1854 * RcvHdrEntSize 1855 * RcvHdrSize 1856 */ 1857 reg = ((u64)(rcd->rcvhdrq_cnt >> HDRQ_SIZE_SHIFT) 1858 & RCV_HDR_CNT_CNT_MASK) 1859 << RCV_HDR_CNT_CNT_SHIFT; 1860 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_CNT, reg); 1861 reg = (encode_rcv_header_entry_size(rcd->rcvhdrqentsize) 1862 & RCV_HDR_ENT_SIZE_ENT_SIZE_MASK) 1863 << RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT; 1864 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_ENT_SIZE, reg); 1865 reg = (dd->rcvhdrsize & RCV_HDR_SIZE_HDR_SIZE_MASK) 1866 << RCV_HDR_SIZE_HDR_SIZE_SHIFT; 1867 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_SIZE, reg); 1868 1869 /* 1870 * Program dummy tail address for every receive context 1871 * before enabling any receive context 1872 */ 1873 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_TAIL_ADDR, 1874 dd->rcvhdrtail_dummy_dma); 1875 1876 return 0; 1877 1878 bail_free: 1879 dd_dev_err(dd, 1880 "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n", 1881 rcd->ctxt); 1882 dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq, 1883 rcd->rcvhdrq_dma); 1884 rcd->rcvhdrq = NULL; 1885 bail: 1886 return -ENOMEM; 1887 } 1888 1889 /** 1890 * allocate eager buffers, both kernel and user contexts. 1891 * @rcd: the context we are setting up. 1892 * 1893 * Allocate the eager TID buffers and program them into hip. 1894 * They are no longer completely contiguous, we do multiple allocation 1895 * calls. Otherwise we get the OOM code involved, by asking for too 1896 * much per call, with disastrous results on some kernels. 1897 */ 1898 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd) 1899 { 1900 struct hfi1_devdata *dd = rcd->dd; 1901 u32 max_entries, egrtop, alloced_bytes = 0, idx = 0; 1902 gfp_t gfp_flags; 1903 u16 order; 1904 int ret = 0; 1905 u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu); 1906 1907 /* 1908 * GFP_USER, but without GFP_FS, so buffer cache can be 1909 * coalesced (we hope); otherwise, even at order 4, 1910 * heavy filesystem activity makes these fail, and we can 1911 * use compound pages. 1912 */ 1913 gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP; 1914 1915 /* 1916 * The minimum size of the eager buffers is a groups of MTU-sized 1917 * buffers. 1918 * The global eager_buffer_size parameter is checked against the 1919 * theoretical lower limit of the value. Here, we check against the 1920 * MTU. 1921 */ 1922 if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size)) 1923 rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size; 1924 /* 1925 * If using one-pkt-per-egr-buffer, lower the eager buffer 1926 * size to the max MTU (page-aligned). 1927 */ 1928 if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) 1929 rcd->egrbufs.rcvtid_size = round_mtu; 1930 1931 /* 1932 * Eager buffers sizes of 1MB or less require smaller TID sizes 1933 * to satisfy the "multiple of 8 RcvArray entries" requirement. 1934 */ 1935 if (rcd->egrbufs.size <= (1 << 20)) 1936 rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu, 1937 rounddown_pow_of_two(rcd->egrbufs.size / 8)); 1938 1939 while (alloced_bytes < rcd->egrbufs.size && 1940 rcd->egrbufs.alloced < rcd->egrbufs.count) { 1941 rcd->egrbufs.buffers[idx].addr = 1942 dma_zalloc_coherent(&dd->pcidev->dev, 1943 rcd->egrbufs.rcvtid_size, 1944 &rcd->egrbufs.buffers[idx].dma, 1945 gfp_flags); 1946 if (rcd->egrbufs.buffers[idx].addr) { 1947 rcd->egrbufs.buffers[idx].len = 1948 rcd->egrbufs.rcvtid_size; 1949 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr = 1950 rcd->egrbufs.buffers[idx].addr; 1951 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma = 1952 rcd->egrbufs.buffers[idx].dma; 1953 rcd->egrbufs.alloced++; 1954 alloced_bytes += rcd->egrbufs.rcvtid_size; 1955 idx++; 1956 } else { 1957 u32 new_size, i, j; 1958 u64 offset = 0; 1959 1960 /* 1961 * Fail the eager buffer allocation if: 1962 * - we are already using the lowest acceptable size 1963 * - we are using one-pkt-per-egr-buffer (this implies 1964 * that we are accepting only one size) 1965 */ 1966 if (rcd->egrbufs.rcvtid_size == round_mtu || 1967 !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) { 1968 dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n", 1969 rcd->ctxt); 1970 ret = -ENOMEM; 1971 goto bail_rcvegrbuf_phys; 1972 } 1973 1974 new_size = rcd->egrbufs.rcvtid_size / 2; 1975 1976 /* 1977 * If the first attempt to allocate memory failed, don't 1978 * fail everything but continue with the next lower 1979 * size. 1980 */ 1981 if (idx == 0) { 1982 rcd->egrbufs.rcvtid_size = new_size; 1983 continue; 1984 } 1985 1986 /* 1987 * Re-partition already allocated buffers to a smaller 1988 * size. 1989 */ 1990 rcd->egrbufs.alloced = 0; 1991 for (i = 0, j = 0, offset = 0; j < idx; i++) { 1992 if (i >= rcd->egrbufs.count) 1993 break; 1994 rcd->egrbufs.rcvtids[i].dma = 1995 rcd->egrbufs.buffers[j].dma + offset; 1996 rcd->egrbufs.rcvtids[i].addr = 1997 rcd->egrbufs.buffers[j].addr + offset; 1998 rcd->egrbufs.alloced++; 1999 if ((rcd->egrbufs.buffers[j].dma + offset + 2000 new_size) == 2001 (rcd->egrbufs.buffers[j].dma + 2002 rcd->egrbufs.buffers[j].len)) { 2003 j++; 2004 offset = 0; 2005 } else { 2006 offset += new_size; 2007 } 2008 } 2009 rcd->egrbufs.rcvtid_size = new_size; 2010 } 2011 } 2012 rcd->egrbufs.numbufs = idx; 2013 rcd->egrbufs.size = alloced_bytes; 2014 2015 hfi1_cdbg(PROC, 2016 "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %zuKB\n", 2017 rcd->ctxt, rcd->egrbufs.alloced, 2018 rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024); 2019 2020 /* 2021 * Set the contexts rcv array head update threshold to the closest 2022 * power of 2 (so we can use a mask instead of modulo) below half 2023 * the allocated entries. 2024 */ 2025 rcd->egrbufs.threshold = 2026 rounddown_pow_of_two(rcd->egrbufs.alloced / 2); 2027 /* 2028 * Compute the expected RcvArray entry base. This is done after 2029 * allocating the eager buffers in order to maximize the 2030 * expected RcvArray entries for the context. 2031 */ 2032 max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size; 2033 egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size); 2034 rcd->expected_count = max_entries - egrtop; 2035 if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2) 2036 rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2; 2037 2038 rcd->expected_base = rcd->eager_base + egrtop; 2039 hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n", 2040 rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count, 2041 rcd->eager_base, rcd->expected_base); 2042 2043 if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) { 2044 hfi1_cdbg(PROC, 2045 "ctxt%u: current Eager buffer size is invalid %u\n", 2046 rcd->ctxt, rcd->egrbufs.rcvtid_size); 2047 ret = -EINVAL; 2048 goto bail_rcvegrbuf_phys; 2049 } 2050 2051 for (idx = 0; idx < rcd->egrbufs.alloced; idx++) { 2052 hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER, 2053 rcd->egrbufs.rcvtids[idx].dma, order); 2054 cond_resched(); 2055 } 2056 2057 return 0; 2058 2059 bail_rcvegrbuf_phys: 2060 for (idx = 0; idx < rcd->egrbufs.alloced && 2061 rcd->egrbufs.buffers[idx].addr; 2062 idx++) { 2063 dma_free_coherent(&dd->pcidev->dev, 2064 rcd->egrbufs.buffers[idx].len, 2065 rcd->egrbufs.buffers[idx].addr, 2066 rcd->egrbufs.buffers[idx].dma); 2067 rcd->egrbufs.buffers[idx].addr = NULL; 2068 rcd->egrbufs.buffers[idx].dma = 0; 2069 rcd->egrbufs.buffers[idx].len = 0; 2070 } 2071 2072 return ret; 2073 } 2074