1 /* 2 * Copyright(c) 2015 - 2018 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 #include <linux/pci.h> 49 #include <linux/netdevice.h> 50 #include <linux/vmalloc.h> 51 #include <linux/delay.h> 52 #include <linux/xarray.h> 53 #include <linux/module.h> 54 #include <linux/printk.h> 55 #include <linux/hrtimer.h> 56 #include <linux/bitmap.h> 57 #include <linux/numa.h> 58 #include <rdma/rdma_vt.h> 59 60 #include "hfi.h" 61 #include "device.h" 62 #include "common.h" 63 #include "trace.h" 64 #include "mad.h" 65 #include "sdma.h" 66 #include "debugfs.h" 67 #include "verbs.h" 68 #include "aspm.h" 69 #include "affinity.h" 70 #include "vnic.h" 71 #include "exp_rcv.h" 72 73 #undef pr_fmt 74 #define pr_fmt(fmt) DRIVER_NAME ": " fmt 75 76 /* 77 * min buffers we want to have per context, after driver 78 */ 79 #define HFI1_MIN_USER_CTXT_BUFCNT 7 80 81 #define HFI1_MIN_HDRQ_EGRBUF_CNT 2 82 #define HFI1_MAX_HDRQ_EGRBUF_CNT 16352 83 #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */ 84 #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */ 85 86 #define NUM_IB_PORTS 1 87 88 /* 89 * Number of user receive contexts we are configured to use (to allow for more 90 * pio buffers per ctxt, etc.) Zero means use one user context per CPU. 91 */ 92 int num_user_contexts = -1; 93 module_param_named(num_user_contexts, num_user_contexts, int, 0444); 94 MODULE_PARM_DESC( 95 num_user_contexts, "Set max number of user contexts to use (default: -1 will use the real (non-HT) CPU count)"); 96 97 uint krcvqs[RXE_NUM_DATA_VL]; 98 int krcvqsset; 99 module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO); 100 MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL"); 101 102 /* computed based on above array */ 103 unsigned long n_krcvqs; 104 105 static unsigned hfi1_rcvarr_split = 25; 106 module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO); 107 MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers"); 108 109 static uint eager_buffer_size = (8 << 20); /* 8MB */ 110 module_param(eager_buffer_size, uint, S_IRUGO); 111 MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 8MB"); 112 113 static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */ 114 module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO); 115 MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)"); 116 117 static uint hfi1_hdrq_entsize = 32; 118 module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, 0444); 119 MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B, 32 - 128B (default)"); 120 121 unsigned int user_credit_return_threshold = 33; /* default is 33% */ 122 module_param(user_credit_return_threshold, uint, S_IRUGO); 123 MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)"); 124 125 static inline u64 encode_rcv_header_entry_size(u16 size); 126 127 DEFINE_XARRAY_FLAGS(hfi1_dev_table, XA_FLAGS_ALLOC | XA_FLAGS_LOCK_IRQ); 128 129 static int hfi1_create_kctxt(struct hfi1_devdata *dd, 130 struct hfi1_pportdata *ppd) 131 { 132 struct hfi1_ctxtdata *rcd; 133 int ret; 134 135 /* Control context has to be always 0 */ 136 BUILD_BUG_ON(HFI1_CTRL_CTXT != 0); 137 138 ret = hfi1_create_ctxtdata(ppd, dd->node, &rcd); 139 if (ret < 0) { 140 dd_dev_err(dd, "Kernel receive context allocation failed\n"); 141 return ret; 142 } 143 144 /* 145 * Set up the kernel context flags here and now because they use 146 * default values for all receive side memories. User contexts will 147 * be handled as they are created. 148 */ 149 rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) | 150 HFI1_CAP_KGET(NODROP_RHQ_FULL) | 151 HFI1_CAP_KGET(NODROP_EGR_FULL) | 152 HFI1_CAP_KGET(DMA_RTAIL); 153 154 /* Control context must use DMA_RTAIL */ 155 if (rcd->ctxt == HFI1_CTRL_CTXT) 156 rcd->flags |= HFI1_CAP_DMA_RTAIL; 157 rcd->seq_cnt = 1; 158 159 rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node); 160 if (!rcd->sc) { 161 dd_dev_err(dd, "Kernel send context allocation failed\n"); 162 return -ENOMEM; 163 } 164 hfi1_init_ctxt(rcd->sc); 165 166 return 0; 167 } 168 169 /* 170 * Create the receive context array and one or more kernel contexts 171 */ 172 int hfi1_create_kctxts(struct hfi1_devdata *dd) 173 { 174 u16 i; 175 int ret; 176 177 dd->rcd = kcalloc_node(dd->num_rcv_contexts, sizeof(*dd->rcd), 178 GFP_KERNEL, dd->node); 179 if (!dd->rcd) 180 return -ENOMEM; 181 182 for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) { 183 ret = hfi1_create_kctxt(dd, dd->pport); 184 if (ret) 185 goto bail; 186 } 187 188 return 0; 189 bail: 190 for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) 191 hfi1_free_ctxt(dd->rcd[i]); 192 193 /* All the contexts should be freed, free the array */ 194 kfree(dd->rcd); 195 dd->rcd = NULL; 196 return ret; 197 } 198 199 /* 200 * Helper routines for the receive context reference count (rcd and uctxt). 201 */ 202 static void hfi1_rcd_init(struct hfi1_ctxtdata *rcd) 203 { 204 kref_init(&rcd->kref); 205 } 206 207 /** 208 * hfi1_rcd_free - When reference is zero clean up. 209 * @kref: pointer to an initialized rcd data structure 210 * 211 */ 212 static void hfi1_rcd_free(struct kref *kref) 213 { 214 unsigned long flags; 215 struct hfi1_ctxtdata *rcd = 216 container_of(kref, struct hfi1_ctxtdata, kref); 217 218 spin_lock_irqsave(&rcd->dd->uctxt_lock, flags); 219 rcd->dd->rcd[rcd->ctxt] = NULL; 220 spin_unlock_irqrestore(&rcd->dd->uctxt_lock, flags); 221 222 hfi1_free_ctxtdata(rcd->dd, rcd); 223 224 kfree(rcd); 225 } 226 227 /** 228 * hfi1_rcd_put - decrement reference for rcd 229 * @rcd: pointer to an initialized rcd data structure 230 * 231 * Use this to put a reference after the init. 232 */ 233 int hfi1_rcd_put(struct hfi1_ctxtdata *rcd) 234 { 235 if (rcd) 236 return kref_put(&rcd->kref, hfi1_rcd_free); 237 238 return 0; 239 } 240 241 /** 242 * hfi1_rcd_get - increment reference for rcd 243 * @rcd: pointer to an initialized rcd data structure 244 * 245 * Use this to get a reference after the init. 246 * 247 * Return : reflect kref_get_unless_zero(), which returns non-zero on 248 * increment, otherwise 0. 249 */ 250 int hfi1_rcd_get(struct hfi1_ctxtdata *rcd) 251 { 252 return kref_get_unless_zero(&rcd->kref); 253 } 254 255 /** 256 * allocate_rcd_index - allocate an rcd index from the rcd array 257 * @dd: pointer to a valid devdata structure 258 * @rcd: rcd data structure to assign 259 * @index: pointer to index that is allocated 260 * 261 * Find an empty index in the rcd array, and assign the given rcd to it. 262 * If the array is full, we are EBUSY. 263 * 264 */ 265 static int allocate_rcd_index(struct hfi1_devdata *dd, 266 struct hfi1_ctxtdata *rcd, u16 *index) 267 { 268 unsigned long flags; 269 u16 ctxt; 270 271 spin_lock_irqsave(&dd->uctxt_lock, flags); 272 for (ctxt = 0; ctxt < dd->num_rcv_contexts; ctxt++) 273 if (!dd->rcd[ctxt]) 274 break; 275 276 if (ctxt < dd->num_rcv_contexts) { 277 rcd->ctxt = ctxt; 278 dd->rcd[ctxt] = rcd; 279 hfi1_rcd_init(rcd); 280 } 281 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 282 283 if (ctxt >= dd->num_rcv_contexts) 284 return -EBUSY; 285 286 *index = ctxt; 287 288 return 0; 289 } 290 291 /** 292 * hfi1_rcd_get_by_index_safe - validate the ctxt index before accessing the 293 * array 294 * @dd: pointer to a valid devdata structure 295 * @ctxt: the index of an possilbe rcd 296 * 297 * This is a wrapper for hfi1_rcd_get_by_index() to validate that the given 298 * ctxt index is valid. 299 * 300 * The caller is responsible for making the _put(). 301 * 302 */ 303 struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd, 304 u16 ctxt) 305 { 306 if (ctxt < dd->num_rcv_contexts) 307 return hfi1_rcd_get_by_index(dd, ctxt); 308 309 return NULL; 310 } 311 312 /** 313 * hfi1_rcd_get_by_index 314 * @dd: pointer to a valid devdata structure 315 * @ctxt: the index of an possilbe rcd 316 * 317 * We need to protect access to the rcd array. If access is needed to 318 * one or more index, get the protecting spinlock and then increment the 319 * kref. 320 * 321 * The caller is responsible for making the _put(). 322 * 323 */ 324 struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt) 325 { 326 unsigned long flags; 327 struct hfi1_ctxtdata *rcd = NULL; 328 329 spin_lock_irqsave(&dd->uctxt_lock, flags); 330 if (dd->rcd[ctxt]) { 331 rcd = dd->rcd[ctxt]; 332 if (!hfi1_rcd_get(rcd)) 333 rcd = NULL; 334 } 335 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 336 337 return rcd; 338 } 339 340 /* 341 * Common code for user and kernel context create and setup. 342 * NOTE: the initial kref is done here (hf1_rcd_init()). 343 */ 344 int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa, 345 struct hfi1_ctxtdata **context) 346 { 347 struct hfi1_devdata *dd = ppd->dd; 348 struct hfi1_ctxtdata *rcd; 349 unsigned kctxt_ngroups = 0; 350 u32 base; 351 352 if (dd->rcv_entries.nctxt_extra > 353 dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt) 354 kctxt_ngroups = (dd->rcv_entries.nctxt_extra - 355 (dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt)); 356 rcd = kzalloc_node(sizeof(*rcd), GFP_KERNEL, numa); 357 if (rcd) { 358 u32 rcvtids, max_entries; 359 u16 ctxt; 360 int ret; 361 362 ret = allocate_rcd_index(dd, rcd, &ctxt); 363 if (ret) { 364 *context = NULL; 365 kfree(rcd); 366 return ret; 367 } 368 369 INIT_LIST_HEAD(&rcd->qp_wait_list); 370 hfi1_exp_tid_group_init(rcd); 371 rcd->ppd = ppd; 372 rcd->dd = dd; 373 rcd->numa_id = numa; 374 rcd->rcv_array_groups = dd->rcv_entries.ngroups; 375 rcd->rhf_rcv_function_map = normal_rhf_rcv_functions; 376 377 mutex_init(&rcd->exp_mutex); 378 spin_lock_init(&rcd->exp_lock); 379 INIT_LIST_HEAD(&rcd->flow_queue.queue_head); 380 INIT_LIST_HEAD(&rcd->rarr_queue.queue_head); 381 382 hfi1_cdbg(PROC, "setting up context %u\n", rcd->ctxt); 383 384 /* 385 * Calculate the context's RcvArray entry starting point. 386 * We do this here because we have to take into account all 387 * the RcvArray entries that previous context would have 388 * taken and we have to account for any extra groups assigned 389 * to the static (kernel) or dynamic (vnic/user) contexts. 390 */ 391 if (ctxt < dd->first_dyn_alloc_ctxt) { 392 if (ctxt < kctxt_ngroups) { 393 base = ctxt * (dd->rcv_entries.ngroups + 1); 394 rcd->rcv_array_groups++; 395 } else { 396 base = kctxt_ngroups + 397 (ctxt * dd->rcv_entries.ngroups); 398 } 399 } else { 400 u16 ct = ctxt - dd->first_dyn_alloc_ctxt; 401 402 base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) + 403 kctxt_ngroups); 404 if (ct < dd->rcv_entries.nctxt_extra) { 405 base += ct * (dd->rcv_entries.ngroups + 1); 406 rcd->rcv_array_groups++; 407 } else { 408 base += dd->rcv_entries.nctxt_extra + 409 (ct * dd->rcv_entries.ngroups); 410 } 411 } 412 rcd->eager_base = base * dd->rcv_entries.group_size; 413 414 rcd->rcvhdrq_cnt = rcvhdrcnt; 415 rcd->rcvhdrqentsize = hfi1_hdrq_entsize; 416 rcd->rhf_offset = 417 rcd->rcvhdrqentsize - sizeof(u64) / sizeof(u32); 418 /* 419 * Simple Eager buffer allocation: we have already pre-allocated 420 * the number of RcvArray entry groups. Each ctxtdata structure 421 * holds the number of groups for that context. 422 * 423 * To follow CSR requirements and maintain cacheline alignment, 424 * make sure all sizes and bases are multiples of group_size. 425 * 426 * The expected entry count is what is left after assigning 427 * eager. 428 */ 429 max_entries = rcd->rcv_array_groups * 430 dd->rcv_entries.group_size; 431 rcvtids = ((max_entries * hfi1_rcvarr_split) / 100); 432 rcd->egrbufs.count = round_down(rcvtids, 433 dd->rcv_entries.group_size); 434 if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) { 435 dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n", 436 rcd->ctxt); 437 rcd->egrbufs.count = MAX_EAGER_ENTRIES; 438 } 439 hfi1_cdbg(PROC, 440 "ctxt%u: max Eager buffer RcvArray entries: %u\n", 441 rcd->ctxt, rcd->egrbufs.count); 442 443 /* 444 * Allocate array that will hold the eager buffer accounting 445 * data. 446 * This will allocate the maximum possible buffer count based 447 * on the value of the RcvArray split parameter. 448 * The resulting value will be rounded down to the closest 449 * multiple of dd->rcv_entries.group_size. 450 */ 451 rcd->egrbufs.buffers = 452 kcalloc_node(rcd->egrbufs.count, 453 sizeof(*rcd->egrbufs.buffers), 454 GFP_KERNEL, numa); 455 if (!rcd->egrbufs.buffers) 456 goto bail; 457 rcd->egrbufs.rcvtids = 458 kcalloc_node(rcd->egrbufs.count, 459 sizeof(*rcd->egrbufs.rcvtids), 460 GFP_KERNEL, numa); 461 if (!rcd->egrbufs.rcvtids) 462 goto bail; 463 rcd->egrbufs.size = eager_buffer_size; 464 /* 465 * The size of the buffers programmed into the RcvArray 466 * entries needs to be big enough to handle the highest 467 * MTU supported. 468 */ 469 if (rcd->egrbufs.size < hfi1_max_mtu) { 470 rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu); 471 hfi1_cdbg(PROC, 472 "ctxt%u: eager bufs size too small. Adjusting to %u\n", 473 rcd->ctxt, rcd->egrbufs.size); 474 } 475 rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE; 476 477 /* Applicable only for statically created kernel contexts */ 478 if (ctxt < dd->first_dyn_alloc_ctxt) { 479 rcd->opstats = kzalloc_node(sizeof(*rcd->opstats), 480 GFP_KERNEL, numa); 481 if (!rcd->opstats) 482 goto bail; 483 484 /* Initialize TID flow generations for the context */ 485 hfi1_kern_init_ctxt_generations(rcd); 486 } 487 488 *context = rcd; 489 return 0; 490 } 491 492 bail: 493 *context = NULL; 494 hfi1_free_ctxt(rcd); 495 return -ENOMEM; 496 } 497 498 /** 499 * hfi1_free_ctxt 500 * @rcd: pointer to an initialized rcd data structure 501 * 502 * This wrapper is the free function that matches hfi1_create_ctxtdata(). 503 * When a context is done being used (kernel or user), this function is called 504 * for the "final" put to match the kref init from hf1i_create_ctxtdata(). 505 * Other users of the context do a get/put sequence to make sure that the 506 * structure isn't removed while in use. 507 */ 508 void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd) 509 { 510 hfi1_rcd_put(rcd); 511 } 512 513 /* 514 * Convert a receive header entry size that to the encoding used in the CSR. 515 * 516 * Return a zero if the given size is invalid. 517 */ 518 static inline u64 encode_rcv_header_entry_size(u16 size) 519 { 520 /* there are only 3 valid receive header entry sizes */ 521 if (size == 2) 522 return 1; 523 if (size == 16) 524 return 2; 525 else if (size == 32) 526 return 4; 527 return 0; /* invalid */ 528 } 529 530 /* 531 * Select the largest ccti value over all SLs to determine the intra- 532 * packet gap for the link. 533 * 534 * called with cca_timer_lock held (to protect access to cca_timer 535 * array), and rcu_read_lock() (to protect access to cc_state). 536 */ 537 void set_link_ipg(struct hfi1_pportdata *ppd) 538 { 539 struct hfi1_devdata *dd = ppd->dd; 540 struct cc_state *cc_state; 541 int i; 542 u16 cce, ccti_limit, max_ccti = 0; 543 u16 shift, mult; 544 u64 src; 545 u32 current_egress_rate; /* Mbits /sec */ 546 u32 max_pkt_time; 547 /* 548 * max_pkt_time is the maximum packet egress time in units 549 * of the fabric clock period 1/(805 MHz). 550 */ 551 552 cc_state = get_cc_state(ppd); 553 554 if (!cc_state) 555 /* 556 * This should _never_ happen - rcu_read_lock() is held, 557 * and set_link_ipg() should not be called if cc_state 558 * is NULL. 559 */ 560 return; 561 562 for (i = 0; i < OPA_MAX_SLS; i++) { 563 u16 ccti = ppd->cca_timer[i].ccti; 564 565 if (ccti > max_ccti) 566 max_ccti = ccti; 567 } 568 569 ccti_limit = cc_state->cct.ccti_limit; 570 if (max_ccti > ccti_limit) 571 max_ccti = ccti_limit; 572 573 cce = cc_state->cct.entries[max_ccti].entry; 574 shift = (cce & 0xc000) >> 14; 575 mult = (cce & 0x3fff); 576 577 current_egress_rate = active_egress_rate(ppd); 578 579 max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate); 580 581 src = (max_pkt_time >> shift) * mult; 582 583 src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK; 584 src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT; 585 586 write_csr(dd, SEND_STATIC_RATE_CONTROL, src); 587 } 588 589 static enum hrtimer_restart cca_timer_fn(struct hrtimer *t) 590 { 591 struct cca_timer *cca_timer; 592 struct hfi1_pportdata *ppd; 593 int sl; 594 u16 ccti_timer, ccti_min; 595 struct cc_state *cc_state; 596 unsigned long flags; 597 enum hrtimer_restart ret = HRTIMER_NORESTART; 598 599 cca_timer = container_of(t, struct cca_timer, hrtimer); 600 ppd = cca_timer->ppd; 601 sl = cca_timer->sl; 602 603 rcu_read_lock(); 604 605 cc_state = get_cc_state(ppd); 606 607 if (!cc_state) { 608 rcu_read_unlock(); 609 return HRTIMER_NORESTART; 610 } 611 612 /* 613 * 1) decrement ccti for SL 614 * 2) calculate IPG for link (set_link_ipg()) 615 * 3) restart timer, unless ccti is at min value 616 */ 617 618 ccti_min = cc_state->cong_setting.entries[sl].ccti_min; 619 ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer; 620 621 spin_lock_irqsave(&ppd->cca_timer_lock, flags); 622 623 if (cca_timer->ccti > ccti_min) { 624 cca_timer->ccti--; 625 set_link_ipg(ppd); 626 } 627 628 if (cca_timer->ccti > ccti_min) { 629 unsigned long nsec = 1024 * ccti_timer; 630 /* ccti_timer is in units of 1.024 usec */ 631 hrtimer_forward_now(t, ns_to_ktime(nsec)); 632 ret = HRTIMER_RESTART; 633 } 634 635 spin_unlock_irqrestore(&ppd->cca_timer_lock, flags); 636 rcu_read_unlock(); 637 return ret; 638 } 639 640 /* 641 * Common code for initializing the physical port structure. 642 */ 643 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd, 644 struct hfi1_devdata *dd, u8 hw_pidx, u8 port) 645 { 646 int i; 647 uint default_pkey_idx; 648 struct cc_state *cc_state; 649 650 ppd->dd = dd; 651 ppd->hw_pidx = hw_pidx; 652 ppd->port = port; /* IB port number, not index */ 653 ppd->prev_link_width = LINK_WIDTH_DEFAULT; 654 /* 655 * There are C_VL_COUNT number of PortVLXmitWait counters. 656 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter. 657 */ 658 for (i = 0; i < C_VL_COUNT + 1; i++) { 659 ppd->port_vl_xmit_wait_last[i] = 0; 660 ppd->vl_xmit_flit_cnt[i] = 0; 661 } 662 663 default_pkey_idx = 1; 664 665 ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY; 666 ppd->part_enforce |= HFI1_PART_ENFORCE_IN; 667 668 if (loopback) { 669 dd_dev_err(dd, "Faking data partition 0x8001 in idx %u\n", 670 !default_pkey_idx); 671 ppd->pkeys[!default_pkey_idx] = 0x8001; 672 } 673 674 INIT_WORK(&ppd->link_vc_work, handle_verify_cap); 675 INIT_WORK(&ppd->link_up_work, handle_link_up); 676 INIT_WORK(&ppd->link_down_work, handle_link_down); 677 INIT_WORK(&ppd->freeze_work, handle_freeze); 678 INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade); 679 INIT_WORK(&ppd->sma_message_work, handle_sma_message); 680 INIT_WORK(&ppd->link_bounce_work, handle_link_bounce); 681 INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link); 682 INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work); 683 INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event); 684 685 mutex_init(&ppd->hls_lock); 686 spin_lock_init(&ppd->qsfp_info.qsfp_lock); 687 688 ppd->qsfp_info.ppd = ppd; 689 ppd->sm_trap_qp = 0x0; 690 ppd->sa_qp = 0x1; 691 692 ppd->hfi1_wq = NULL; 693 694 spin_lock_init(&ppd->cca_timer_lock); 695 696 for (i = 0; i < OPA_MAX_SLS; i++) { 697 hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC, 698 HRTIMER_MODE_REL); 699 ppd->cca_timer[i].ppd = ppd; 700 ppd->cca_timer[i].sl = i; 701 ppd->cca_timer[i].ccti = 0; 702 ppd->cca_timer[i].hrtimer.function = cca_timer_fn; 703 } 704 705 ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT; 706 707 spin_lock_init(&ppd->cc_state_lock); 708 spin_lock_init(&ppd->cc_log_lock); 709 cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL); 710 RCU_INIT_POINTER(ppd->cc_state, cc_state); 711 if (!cc_state) 712 goto bail; 713 return; 714 715 bail: 716 dd_dev_err(dd, "Congestion Control Agent disabled for port %d\n", port); 717 } 718 719 /* 720 * Do initialization for device that is only needed on 721 * first detect, not on resets. 722 */ 723 static int loadtime_init(struct hfi1_devdata *dd) 724 { 725 return 0; 726 } 727 728 /** 729 * init_after_reset - re-initialize after a reset 730 * @dd: the hfi1_ib device 731 * 732 * sanity check at least some of the values after reset, and 733 * ensure no receive or transmit (explicitly, in case reset 734 * failed 735 */ 736 static int init_after_reset(struct hfi1_devdata *dd) 737 { 738 int i; 739 struct hfi1_ctxtdata *rcd; 740 /* 741 * Ensure chip does no sends or receives, tail updates, or 742 * pioavail updates while we re-initialize. This is mostly 743 * for the driver data structures, not chip registers. 744 */ 745 for (i = 0; i < dd->num_rcv_contexts; i++) { 746 rcd = hfi1_rcd_get_by_index(dd, i); 747 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS | 748 HFI1_RCVCTRL_INTRAVAIL_DIS | 749 HFI1_RCVCTRL_TAILUPD_DIS, rcd); 750 hfi1_rcd_put(rcd); 751 } 752 pio_send_control(dd, PSC_GLOBAL_DISABLE); 753 for (i = 0; i < dd->num_send_contexts; i++) 754 sc_disable(dd->send_contexts[i].sc); 755 756 return 0; 757 } 758 759 static void enable_chip(struct hfi1_devdata *dd) 760 { 761 struct hfi1_ctxtdata *rcd; 762 u32 rcvmask; 763 u16 i; 764 765 /* enable PIO send */ 766 pio_send_control(dd, PSC_GLOBAL_ENABLE); 767 768 /* 769 * Enable kernel ctxts' receive and receive interrupt. 770 * Other ctxts done as user opens and initializes them. 771 */ 772 for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) { 773 rcd = hfi1_rcd_get_by_index(dd, i); 774 if (!rcd) 775 continue; 776 rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB; 777 rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ? 778 HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS; 779 if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) 780 rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB; 781 if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_RHQ_FULL)) 782 rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB; 783 if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_EGR_FULL)) 784 rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB; 785 if (HFI1_CAP_IS_KSET(TID_RDMA)) 786 rcvmask |= HFI1_RCVCTRL_TIDFLOW_ENB; 787 hfi1_rcvctrl(dd, rcvmask, rcd); 788 sc_enable(rcd->sc); 789 hfi1_rcd_put(rcd); 790 } 791 } 792 793 /** 794 * create_workqueues - create per port workqueues 795 * @dd: the hfi1_ib device 796 */ 797 static int create_workqueues(struct hfi1_devdata *dd) 798 { 799 int pidx; 800 struct hfi1_pportdata *ppd; 801 802 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 803 ppd = dd->pport + pidx; 804 if (!ppd->hfi1_wq) { 805 ppd->hfi1_wq = 806 alloc_workqueue( 807 "hfi%d_%d", 808 WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE | 809 WQ_MEM_RECLAIM, 810 HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES, 811 dd->unit, pidx); 812 if (!ppd->hfi1_wq) 813 goto wq_error; 814 } 815 if (!ppd->link_wq) { 816 /* 817 * Make the link workqueue single-threaded to enforce 818 * serialization. 819 */ 820 ppd->link_wq = 821 alloc_workqueue( 822 "hfi_link_%d_%d", 823 WQ_SYSFS | WQ_MEM_RECLAIM | WQ_UNBOUND, 824 1, /* max_active */ 825 dd->unit, pidx); 826 if (!ppd->link_wq) 827 goto wq_error; 828 } 829 } 830 return 0; 831 wq_error: 832 pr_err("alloc_workqueue failed for port %d\n", pidx + 1); 833 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 834 ppd = dd->pport + pidx; 835 if (ppd->hfi1_wq) { 836 destroy_workqueue(ppd->hfi1_wq); 837 ppd->hfi1_wq = NULL; 838 } 839 if (ppd->link_wq) { 840 destroy_workqueue(ppd->link_wq); 841 ppd->link_wq = NULL; 842 } 843 } 844 return -ENOMEM; 845 } 846 847 /** 848 * enable_general_intr() - Enable the IRQs that will be handled by the 849 * general interrupt handler. 850 * @dd: valid devdata 851 * 852 */ 853 static void enable_general_intr(struct hfi1_devdata *dd) 854 { 855 set_intr_bits(dd, CCE_ERR_INT, MISC_ERR_INT, true); 856 set_intr_bits(dd, PIO_ERR_INT, TXE_ERR_INT, true); 857 set_intr_bits(dd, IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END, true); 858 set_intr_bits(dd, PBC_INT, GPIO_ASSERT_INT, true); 859 set_intr_bits(dd, TCRIT_INT, TCRIT_INT, true); 860 set_intr_bits(dd, IS_DC_START, IS_DC_END, true); 861 set_intr_bits(dd, IS_SENDCREDIT_START, IS_SENDCREDIT_END, true); 862 } 863 864 /** 865 * hfi1_init - do the actual initialization sequence on the chip 866 * @dd: the hfi1_ib device 867 * @reinit: re-initializing, so don't allocate new memory 868 * 869 * Do the actual initialization sequence on the chip. This is done 870 * both from the init routine called from the PCI infrastructure, and 871 * when we reset the chip, or detect that it was reset internally, 872 * or it's administratively re-enabled. 873 * 874 * Memory allocation here and in called routines is only done in 875 * the first case (reinit == 0). We have to be careful, because even 876 * without memory allocation, we need to re-write all the chip registers 877 * TIDs, etc. after the reset or enable has completed. 878 */ 879 int hfi1_init(struct hfi1_devdata *dd, int reinit) 880 { 881 int ret = 0, pidx, lastfail = 0; 882 unsigned long len; 883 u16 i; 884 struct hfi1_ctxtdata *rcd; 885 struct hfi1_pportdata *ppd; 886 887 /* Set up send low level handlers */ 888 dd->process_pio_send = hfi1_verbs_send_pio; 889 dd->process_dma_send = hfi1_verbs_send_dma; 890 dd->pio_inline_send = pio_copy; 891 dd->process_vnic_dma_send = hfi1_vnic_send_dma; 892 893 if (is_ax(dd)) { 894 atomic_set(&dd->drop_packet, DROP_PACKET_ON); 895 dd->do_drop = 1; 896 } else { 897 atomic_set(&dd->drop_packet, DROP_PACKET_OFF); 898 dd->do_drop = 0; 899 } 900 901 /* make sure the link is not "up" */ 902 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 903 ppd = dd->pport + pidx; 904 ppd->linkup = 0; 905 } 906 907 if (reinit) 908 ret = init_after_reset(dd); 909 else 910 ret = loadtime_init(dd); 911 if (ret) 912 goto done; 913 914 /* allocate dummy tail memory for all receive contexts */ 915 dd->rcvhdrtail_dummy_kvaddr = dma_alloc_coherent(&dd->pcidev->dev, 916 sizeof(u64), 917 &dd->rcvhdrtail_dummy_dma, 918 GFP_KERNEL); 919 920 if (!dd->rcvhdrtail_dummy_kvaddr) { 921 dd_dev_err(dd, "cannot allocate dummy tail memory\n"); 922 ret = -ENOMEM; 923 goto done; 924 } 925 926 /* dd->rcd can be NULL if early initialization failed */ 927 for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) { 928 /* 929 * Set up the (kernel) rcvhdr queue and egr TIDs. If doing 930 * re-init, the simplest way to handle this is to free 931 * existing, and re-allocate. 932 * Need to re-create rest of ctxt 0 ctxtdata as well. 933 */ 934 rcd = hfi1_rcd_get_by_index(dd, i); 935 if (!rcd) 936 continue; 937 938 rcd->do_interrupt = &handle_receive_interrupt; 939 940 lastfail = hfi1_create_rcvhdrq(dd, rcd); 941 if (!lastfail) 942 lastfail = hfi1_setup_eagerbufs(rcd); 943 if (!lastfail) 944 lastfail = hfi1_kern_exp_rcv_init(rcd, reinit); 945 if (lastfail) { 946 dd_dev_err(dd, 947 "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n"); 948 ret = lastfail; 949 } 950 /* enable IRQ */ 951 hfi1_rcd_put(rcd); 952 } 953 954 /* Allocate enough memory for user event notification. */ 955 len = PAGE_ALIGN(chip_rcv_contexts(dd) * HFI1_MAX_SHARED_CTXTS * 956 sizeof(*dd->events)); 957 dd->events = vmalloc_user(len); 958 if (!dd->events) 959 dd_dev_err(dd, "Failed to allocate user events page\n"); 960 /* 961 * Allocate a page for device and port status. 962 * Page will be shared amongst all user processes. 963 */ 964 dd->status = vmalloc_user(PAGE_SIZE); 965 if (!dd->status) 966 dd_dev_err(dd, "Failed to allocate dev status page\n"); 967 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 968 ppd = dd->pport + pidx; 969 if (dd->status) 970 /* Currently, we only have one port */ 971 ppd->statusp = &dd->status->port; 972 973 set_mtu(ppd); 974 } 975 976 /* enable chip even if we have an error, so we can debug cause */ 977 enable_chip(dd); 978 979 done: 980 /* 981 * Set status even if port serdes is not initialized 982 * so that diags will work. 983 */ 984 if (dd->status) 985 dd->status->dev |= HFI1_STATUS_CHIP_PRESENT | 986 HFI1_STATUS_INITTED; 987 if (!ret) { 988 /* enable all interrupts from the chip */ 989 enable_general_intr(dd); 990 init_qsfp_int(dd); 991 992 /* chip is OK for user apps; mark it as initialized */ 993 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 994 ppd = dd->pport + pidx; 995 996 /* 997 * start the serdes - must be after interrupts are 998 * enabled so we are notified when the link goes up 999 */ 1000 lastfail = bringup_serdes(ppd); 1001 if (lastfail) 1002 dd_dev_info(dd, 1003 "Failed to bring up port %u\n", 1004 ppd->port); 1005 1006 /* 1007 * Set status even if port serdes is not initialized 1008 * so that diags will work. 1009 */ 1010 if (ppd->statusp) 1011 *ppd->statusp |= HFI1_STATUS_CHIP_PRESENT | 1012 HFI1_STATUS_INITTED; 1013 if (!ppd->link_speed_enabled) 1014 continue; 1015 } 1016 } 1017 1018 /* if ret is non-zero, we probably should do some cleanup here... */ 1019 return ret; 1020 } 1021 1022 struct hfi1_devdata *hfi1_lookup(int unit) 1023 { 1024 return xa_load(&hfi1_dev_table, unit); 1025 } 1026 1027 /* 1028 * Stop the timers during unit shutdown, or after an error late 1029 * in initialization. 1030 */ 1031 static void stop_timers(struct hfi1_devdata *dd) 1032 { 1033 struct hfi1_pportdata *ppd; 1034 int pidx; 1035 1036 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1037 ppd = dd->pport + pidx; 1038 if (ppd->led_override_timer.function) { 1039 del_timer_sync(&ppd->led_override_timer); 1040 atomic_set(&ppd->led_override_timer_active, 0); 1041 } 1042 } 1043 } 1044 1045 /** 1046 * shutdown_device - shut down a device 1047 * @dd: the hfi1_ib device 1048 * 1049 * This is called to make the device quiet when we are about to 1050 * unload the driver, and also when the device is administratively 1051 * disabled. It does not free any data structures. 1052 * Everything it does has to be setup again by hfi1_init(dd, 1) 1053 */ 1054 static void shutdown_device(struct hfi1_devdata *dd) 1055 { 1056 struct hfi1_pportdata *ppd; 1057 struct hfi1_ctxtdata *rcd; 1058 unsigned pidx; 1059 int i; 1060 1061 if (dd->flags & HFI1_SHUTDOWN) 1062 return; 1063 dd->flags |= HFI1_SHUTDOWN; 1064 1065 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1066 ppd = dd->pport + pidx; 1067 1068 ppd->linkup = 0; 1069 if (ppd->statusp) 1070 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF | 1071 HFI1_STATUS_IB_READY); 1072 } 1073 dd->flags &= ~HFI1_INITTED; 1074 1075 /* mask and clean up interrupts */ 1076 set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, false); 1077 msix_clean_up_interrupts(dd); 1078 1079 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1080 ppd = dd->pport + pidx; 1081 for (i = 0; i < dd->num_rcv_contexts; i++) { 1082 rcd = hfi1_rcd_get_by_index(dd, i); 1083 hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS | 1084 HFI1_RCVCTRL_CTXT_DIS | 1085 HFI1_RCVCTRL_INTRAVAIL_DIS | 1086 HFI1_RCVCTRL_PKEY_DIS | 1087 HFI1_RCVCTRL_ONE_PKT_EGR_DIS, rcd); 1088 hfi1_rcd_put(rcd); 1089 } 1090 /* 1091 * Gracefully stop all sends allowing any in progress to 1092 * trickle out first. 1093 */ 1094 for (i = 0; i < dd->num_send_contexts; i++) 1095 sc_flush(dd->send_contexts[i].sc); 1096 } 1097 1098 /* 1099 * Enough for anything that's going to trickle out to have actually 1100 * done so. 1101 */ 1102 udelay(20); 1103 1104 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1105 ppd = dd->pport + pidx; 1106 1107 /* disable all contexts */ 1108 for (i = 0; i < dd->num_send_contexts; i++) 1109 sc_disable(dd->send_contexts[i].sc); 1110 /* disable the send device */ 1111 pio_send_control(dd, PSC_GLOBAL_DISABLE); 1112 1113 shutdown_led_override(ppd); 1114 1115 /* 1116 * Clear SerdesEnable. 1117 * We can't count on interrupts since we are stopping. 1118 */ 1119 hfi1_quiet_serdes(ppd); 1120 1121 if (ppd->hfi1_wq) { 1122 destroy_workqueue(ppd->hfi1_wq); 1123 ppd->hfi1_wq = NULL; 1124 } 1125 if (ppd->link_wq) { 1126 destroy_workqueue(ppd->link_wq); 1127 ppd->link_wq = NULL; 1128 } 1129 } 1130 sdma_exit(dd); 1131 } 1132 1133 /** 1134 * hfi1_free_ctxtdata - free a context's allocated data 1135 * @dd: the hfi1_ib device 1136 * @rcd: the ctxtdata structure 1137 * 1138 * free up any allocated data for a context 1139 * It should never change any chip state, or global driver state. 1140 */ 1141 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd) 1142 { 1143 u32 e; 1144 1145 if (!rcd) 1146 return; 1147 1148 if (rcd->rcvhdrq) { 1149 dma_free_coherent(&dd->pcidev->dev, rcvhdrq_size(rcd), 1150 rcd->rcvhdrq, rcd->rcvhdrq_dma); 1151 rcd->rcvhdrq = NULL; 1152 if (rcd->rcvhdrtail_kvaddr) { 1153 dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE, 1154 (void *)rcd->rcvhdrtail_kvaddr, 1155 rcd->rcvhdrqtailaddr_dma); 1156 rcd->rcvhdrtail_kvaddr = NULL; 1157 } 1158 } 1159 1160 /* all the RcvArray entries should have been cleared by now */ 1161 kfree(rcd->egrbufs.rcvtids); 1162 rcd->egrbufs.rcvtids = NULL; 1163 1164 for (e = 0; e < rcd->egrbufs.alloced; e++) { 1165 if (rcd->egrbufs.buffers[e].dma) 1166 dma_free_coherent(&dd->pcidev->dev, 1167 rcd->egrbufs.buffers[e].len, 1168 rcd->egrbufs.buffers[e].addr, 1169 rcd->egrbufs.buffers[e].dma); 1170 } 1171 kfree(rcd->egrbufs.buffers); 1172 rcd->egrbufs.alloced = 0; 1173 rcd->egrbufs.buffers = NULL; 1174 1175 sc_free(rcd->sc); 1176 rcd->sc = NULL; 1177 1178 vfree(rcd->subctxt_uregbase); 1179 vfree(rcd->subctxt_rcvegrbuf); 1180 vfree(rcd->subctxt_rcvhdr_base); 1181 kfree(rcd->opstats); 1182 1183 rcd->subctxt_uregbase = NULL; 1184 rcd->subctxt_rcvegrbuf = NULL; 1185 rcd->subctxt_rcvhdr_base = NULL; 1186 rcd->opstats = NULL; 1187 } 1188 1189 /* 1190 * Release our hold on the shared asic data. If we are the last one, 1191 * return the structure to be finalized outside the lock. Must be 1192 * holding hfi1_dev_table lock. 1193 */ 1194 static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd) 1195 { 1196 struct hfi1_asic_data *ad; 1197 int other; 1198 1199 if (!dd->asic_data) 1200 return NULL; 1201 dd->asic_data->dds[dd->hfi1_id] = NULL; 1202 other = dd->hfi1_id ? 0 : 1; 1203 ad = dd->asic_data; 1204 dd->asic_data = NULL; 1205 /* return NULL if the other dd still has a link */ 1206 return ad->dds[other] ? NULL : ad; 1207 } 1208 1209 static void finalize_asic_data(struct hfi1_devdata *dd, 1210 struct hfi1_asic_data *ad) 1211 { 1212 clean_up_i2c(dd, ad); 1213 kfree(ad); 1214 } 1215 1216 /** 1217 * hfi1_clean_devdata - cleans up per-unit data structure 1218 * @dd: pointer to a valid devdata structure 1219 * 1220 * It cleans up all data structures set up by 1221 * by hfi1_alloc_devdata(). 1222 */ 1223 static void hfi1_clean_devdata(struct hfi1_devdata *dd) 1224 { 1225 struct hfi1_asic_data *ad; 1226 unsigned long flags; 1227 1228 xa_lock_irqsave(&hfi1_dev_table, flags); 1229 __xa_erase(&hfi1_dev_table, dd->unit); 1230 ad = release_asic_data(dd); 1231 xa_unlock_irqrestore(&hfi1_dev_table, flags); 1232 1233 finalize_asic_data(dd, ad); 1234 free_platform_config(dd); 1235 rcu_barrier(); /* wait for rcu callbacks to complete */ 1236 free_percpu(dd->int_counter); 1237 free_percpu(dd->rcv_limit); 1238 free_percpu(dd->send_schedule); 1239 free_percpu(dd->tx_opstats); 1240 dd->int_counter = NULL; 1241 dd->rcv_limit = NULL; 1242 dd->send_schedule = NULL; 1243 dd->tx_opstats = NULL; 1244 kfree(dd->comp_vect); 1245 dd->comp_vect = NULL; 1246 sdma_clean(dd, dd->num_sdma); 1247 rvt_dealloc_device(&dd->verbs_dev.rdi); 1248 } 1249 1250 static void __hfi1_free_devdata(struct kobject *kobj) 1251 { 1252 struct hfi1_devdata *dd = 1253 container_of(kobj, struct hfi1_devdata, kobj); 1254 1255 hfi1_clean_devdata(dd); 1256 } 1257 1258 static struct kobj_type hfi1_devdata_type = { 1259 .release = __hfi1_free_devdata, 1260 }; 1261 1262 void hfi1_free_devdata(struct hfi1_devdata *dd) 1263 { 1264 kobject_put(&dd->kobj); 1265 } 1266 1267 /** 1268 * hfi1_alloc_devdata - Allocate our primary per-unit data structure. 1269 * @pdev: Valid PCI device 1270 * @extra: How many bytes to alloc past the default 1271 * 1272 * Must be done via verbs allocator, because the verbs cleanup process 1273 * both does cleanup and free of the data structure. 1274 * "extra" is for chip-specific data. 1275 */ 1276 static struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev, 1277 size_t extra) 1278 { 1279 struct hfi1_devdata *dd; 1280 int ret, nports; 1281 1282 /* extra is * number of ports */ 1283 nports = extra / sizeof(struct hfi1_pportdata); 1284 1285 dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra, 1286 nports); 1287 if (!dd) 1288 return ERR_PTR(-ENOMEM); 1289 dd->num_pports = nports; 1290 dd->pport = (struct hfi1_pportdata *)(dd + 1); 1291 dd->pcidev = pdev; 1292 pci_set_drvdata(pdev, dd); 1293 dd->node = NUMA_NO_NODE; 1294 1295 ret = xa_alloc_irq(&hfi1_dev_table, &dd->unit, dd, xa_limit_32b, 1296 GFP_KERNEL); 1297 if (ret < 0) { 1298 dev_err(&pdev->dev, 1299 "Could not allocate unit ID: error %d\n", -ret); 1300 goto bail; 1301 } 1302 rvt_set_ibdev_name(&dd->verbs_dev.rdi, "%s_%d", class_name(), dd->unit); 1303 1304 /* 1305 * Initialize all locks for the device. This needs to be as early as 1306 * possible so locks are usable. 1307 */ 1308 spin_lock_init(&dd->sc_lock); 1309 spin_lock_init(&dd->sendctrl_lock); 1310 spin_lock_init(&dd->rcvctrl_lock); 1311 spin_lock_init(&dd->uctxt_lock); 1312 spin_lock_init(&dd->hfi1_diag_trans_lock); 1313 spin_lock_init(&dd->sc_init_lock); 1314 spin_lock_init(&dd->dc8051_memlock); 1315 seqlock_init(&dd->sc2vl_lock); 1316 spin_lock_init(&dd->sde_map_lock); 1317 spin_lock_init(&dd->pio_map_lock); 1318 mutex_init(&dd->dc8051_lock); 1319 init_waitqueue_head(&dd->event_queue); 1320 spin_lock_init(&dd->irq_src_lock); 1321 1322 dd->int_counter = alloc_percpu(u64); 1323 if (!dd->int_counter) { 1324 ret = -ENOMEM; 1325 goto bail; 1326 } 1327 1328 dd->rcv_limit = alloc_percpu(u64); 1329 if (!dd->rcv_limit) { 1330 ret = -ENOMEM; 1331 goto bail; 1332 } 1333 1334 dd->send_schedule = alloc_percpu(u64); 1335 if (!dd->send_schedule) { 1336 ret = -ENOMEM; 1337 goto bail; 1338 } 1339 1340 dd->tx_opstats = alloc_percpu(struct hfi1_opcode_stats_perctx); 1341 if (!dd->tx_opstats) { 1342 ret = -ENOMEM; 1343 goto bail; 1344 } 1345 1346 dd->comp_vect = kzalloc(sizeof(*dd->comp_vect), GFP_KERNEL); 1347 if (!dd->comp_vect) { 1348 ret = -ENOMEM; 1349 goto bail; 1350 } 1351 1352 kobject_init(&dd->kobj, &hfi1_devdata_type); 1353 return dd; 1354 1355 bail: 1356 hfi1_clean_devdata(dd); 1357 return ERR_PTR(ret); 1358 } 1359 1360 /* 1361 * Called from freeze mode handlers, and from PCI error 1362 * reporting code. Should be paranoid about state of 1363 * system and data structures. 1364 */ 1365 void hfi1_disable_after_error(struct hfi1_devdata *dd) 1366 { 1367 if (dd->flags & HFI1_INITTED) { 1368 u32 pidx; 1369 1370 dd->flags &= ~HFI1_INITTED; 1371 if (dd->pport) 1372 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1373 struct hfi1_pportdata *ppd; 1374 1375 ppd = dd->pport + pidx; 1376 if (dd->flags & HFI1_PRESENT) 1377 set_link_state(ppd, HLS_DN_DISABLE); 1378 1379 if (ppd->statusp) 1380 *ppd->statusp &= ~HFI1_STATUS_IB_READY; 1381 } 1382 } 1383 1384 /* 1385 * Mark as having had an error for driver, and also 1386 * for /sys and status word mapped to user programs. 1387 * This marks unit as not usable, until reset. 1388 */ 1389 if (dd->status) 1390 dd->status->dev |= HFI1_STATUS_HWERROR; 1391 } 1392 1393 static void remove_one(struct pci_dev *); 1394 static int init_one(struct pci_dev *, const struct pci_device_id *); 1395 static void shutdown_one(struct pci_dev *); 1396 1397 #define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: " 1398 #define PFX DRIVER_NAME ": " 1399 1400 const struct pci_device_id hfi1_pci_tbl[] = { 1401 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) }, 1402 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) }, 1403 { 0, } 1404 }; 1405 1406 MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl); 1407 1408 static struct pci_driver hfi1_pci_driver = { 1409 .name = DRIVER_NAME, 1410 .probe = init_one, 1411 .remove = remove_one, 1412 .shutdown = shutdown_one, 1413 .id_table = hfi1_pci_tbl, 1414 .err_handler = &hfi1_pci_err_handler, 1415 }; 1416 1417 static void __init compute_krcvqs(void) 1418 { 1419 int i; 1420 1421 for (i = 0; i < krcvqsset; i++) 1422 n_krcvqs += krcvqs[i]; 1423 } 1424 1425 /* 1426 * Do all the generic driver unit- and chip-independent memory 1427 * allocation and initialization. 1428 */ 1429 static int __init hfi1_mod_init(void) 1430 { 1431 int ret; 1432 1433 ret = dev_init(); 1434 if (ret) 1435 goto bail; 1436 1437 ret = node_affinity_init(); 1438 if (ret) 1439 goto bail; 1440 1441 /* validate max MTU before any devices start */ 1442 if (!valid_opa_max_mtu(hfi1_max_mtu)) { 1443 pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n", 1444 hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU); 1445 hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU; 1446 } 1447 /* valid CUs run from 1-128 in powers of 2 */ 1448 if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu)) 1449 hfi1_cu = 1; 1450 /* valid credit return threshold is 0-100, variable is unsigned */ 1451 if (user_credit_return_threshold > 100) 1452 user_credit_return_threshold = 100; 1453 1454 compute_krcvqs(); 1455 /* 1456 * sanitize receive interrupt count, time must wait until after 1457 * the hardware type is known 1458 */ 1459 if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK) 1460 rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK; 1461 /* reject invalid combinations */ 1462 if (rcv_intr_count == 0 && rcv_intr_timeout == 0) { 1463 pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n"); 1464 rcv_intr_count = 1; 1465 } 1466 if (rcv_intr_count > 1 && rcv_intr_timeout == 0) { 1467 /* 1468 * Avoid indefinite packet delivery by requiring a timeout 1469 * if count is > 1. 1470 */ 1471 pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n"); 1472 rcv_intr_timeout = 1; 1473 } 1474 if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) { 1475 /* 1476 * The dynamic algorithm expects a non-zero timeout 1477 * and a count > 1. 1478 */ 1479 pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n"); 1480 rcv_intr_dynamic = 0; 1481 } 1482 1483 /* sanitize link CRC options */ 1484 link_crc_mask &= SUPPORTED_CRCS; 1485 1486 ret = opfn_init(); 1487 if (ret < 0) { 1488 pr_err("Failed to allocate opfn_wq"); 1489 goto bail_dev; 1490 } 1491 1492 hfi1_compute_tid_rdma_flow_wt(); 1493 /* 1494 * These must be called before the driver is registered with 1495 * the PCI subsystem. 1496 */ 1497 hfi1_dbg_init(); 1498 ret = pci_register_driver(&hfi1_pci_driver); 1499 if (ret < 0) { 1500 pr_err("Unable to register driver: error %d\n", -ret); 1501 goto bail_dev; 1502 } 1503 goto bail; /* all OK */ 1504 1505 bail_dev: 1506 hfi1_dbg_exit(); 1507 dev_cleanup(); 1508 bail: 1509 return ret; 1510 } 1511 1512 module_init(hfi1_mod_init); 1513 1514 /* 1515 * Do the non-unit driver cleanup, memory free, etc. at unload. 1516 */ 1517 static void __exit hfi1_mod_cleanup(void) 1518 { 1519 pci_unregister_driver(&hfi1_pci_driver); 1520 opfn_exit(); 1521 node_affinity_destroy_all(); 1522 hfi1_dbg_exit(); 1523 1524 WARN_ON(!xa_empty(&hfi1_dev_table)); 1525 dispose_firmware(); /* asymmetric with obtain_firmware() */ 1526 dev_cleanup(); 1527 } 1528 1529 module_exit(hfi1_mod_cleanup); 1530 1531 /* this can only be called after a successful initialization */ 1532 static void cleanup_device_data(struct hfi1_devdata *dd) 1533 { 1534 int ctxt; 1535 int pidx; 1536 1537 /* users can't do anything more with chip */ 1538 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1539 struct hfi1_pportdata *ppd = &dd->pport[pidx]; 1540 struct cc_state *cc_state; 1541 int i; 1542 1543 if (ppd->statusp) 1544 *ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT; 1545 1546 for (i = 0; i < OPA_MAX_SLS; i++) 1547 hrtimer_cancel(&ppd->cca_timer[i].hrtimer); 1548 1549 spin_lock(&ppd->cc_state_lock); 1550 cc_state = get_cc_state_protected(ppd); 1551 RCU_INIT_POINTER(ppd->cc_state, NULL); 1552 spin_unlock(&ppd->cc_state_lock); 1553 1554 if (cc_state) 1555 kfree_rcu(cc_state, rcu); 1556 } 1557 1558 free_credit_return(dd); 1559 1560 if (dd->rcvhdrtail_dummy_kvaddr) { 1561 dma_free_coherent(&dd->pcidev->dev, sizeof(u64), 1562 (void *)dd->rcvhdrtail_dummy_kvaddr, 1563 dd->rcvhdrtail_dummy_dma); 1564 dd->rcvhdrtail_dummy_kvaddr = NULL; 1565 } 1566 1567 /* 1568 * Free any resources still in use (usually just kernel contexts) 1569 * at unload; we do for ctxtcnt, because that's what we allocate. 1570 */ 1571 for (ctxt = 0; dd->rcd && ctxt < dd->num_rcv_contexts; ctxt++) { 1572 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt]; 1573 1574 if (rcd) { 1575 hfi1_free_ctxt_rcv_groups(rcd); 1576 hfi1_free_ctxt(rcd); 1577 } 1578 } 1579 1580 kfree(dd->rcd); 1581 dd->rcd = NULL; 1582 1583 free_pio_map(dd); 1584 /* must follow rcv context free - need to remove rcv's hooks */ 1585 for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++) 1586 sc_free(dd->send_contexts[ctxt].sc); 1587 dd->num_send_contexts = 0; 1588 kfree(dd->send_contexts); 1589 dd->send_contexts = NULL; 1590 kfree(dd->hw_to_sw); 1591 dd->hw_to_sw = NULL; 1592 kfree(dd->boardname); 1593 vfree(dd->events); 1594 vfree(dd->status); 1595 } 1596 1597 /* 1598 * Clean up on unit shutdown, or error during unit load after 1599 * successful initialization. 1600 */ 1601 static void postinit_cleanup(struct hfi1_devdata *dd) 1602 { 1603 hfi1_start_cleanup(dd); 1604 hfi1_comp_vectors_clean_up(dd); 1605 hfi1_dev_affinity_clean_up(dd); 1606 1607 hfi1_pcie_ddcleanup(dd); 1608 hfi1_pcie_cleanup(dd->pcidev); 1609 1610 cleanup_device_data(dd); 1611 1612 hfi1_free_devdata(dd); 1613 } 1614 1615 static int init_validate_rcvhdrcnt(struct hfi1_devdata *dd, uint thecnt) 1616 { 1617 if (thecnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) { 1618 dd_dev_err(dd, "Receive header queue count too small\n"); 1619 return -EINVAL; 1620 } 1621 1622 if (thecnt > HFI1_MAX_HDRQ_EGRBUF_CNT) { 1623 dd_dev_err(dd, 1624 "Receive header queue count cannot be greater than %u\n", 1625 HFI1_MAX_HDRQ_EGRBUF_CNT); 1626 return -EINVAL; 1627 } 1628 1629 if (thecnt % HDRQ_INCREMENT) { 1630 dd_dev_err(dd, "Receive header queue count %d must be divisible by %lu\n", 1631 thecnt, HDRQ_INCREMENT); 1632 return -EINVAL; 1633 } 1634 1635 return 0; 1636 } 1637 1638 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 1639 { 1640 int ret = 0, j, pidx, initfail; 1641 struct hfi1_devdata *dd; 1642 struct hfi1_pportdata *ppd; 1643 1644 /* First, lock the non-writable module parameters */ 1645 HFI1_CAP_LOCK(); 1646 1647 /* Validate dev ids */ 1648 if (!(ent->device == PCI_DEVICE_ID_INTEL0 || 1649 ent->device == PCI_DEVICE_ID_INTEL1)) { 1650 dev_err(&pdev->dev, "Failing on unknown Intel deviceid 0x%x\n", 1651 ent->device); 1652 ret = -ENODEV; 1653 goto bail; 1654 } 1655 1656 /* Allocate the dd so we can get to work */ 1657 dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS * 1658 sizeof(struct hfi1_pportdata)); 1659 if (IS_ERR(dd)) { 1660 ret = PTR_ERR(dd); 1661 goto bail; 1662 } 1663 1664 /* Validate some global module parameters */ 1665 ret = init_validate_rcvhdrcnt(dd, rcvhdrcnt); 1666 if (ret) 1667 goto bail; 1668 1669 /* use the encoding function as a sanitization check */ 1670 if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) { 1671 dd_dev_err(dd, "Invalid HdrQ Entry size %u\n", 1672 hfi1_hdrq_entsize); 1673 ret = -EINVAL; 1674 goto bail; 1675 } 1676 1677 /* The receive eager buffer size must be set before the receive 1678 * contexts are created. 1679 * 1680 * Set the eager buffer size. Validate that it falls in a range 1681 * allowed by the hardware - all powers of 2 between the min and 1682 * max. The maximum valid MTU is within the eager buffer range 1683 * so we do not need to cap the max_mtu by an eager buffer size 1684 * setting. 1685 */ 1686 if (eager_buffer_size) { 1687 if (!is_power_of_2(eager_buffer_size)) 1688 eager_buffer_size = 1689 roundup_pow_of_two(eager_buffer_size); 1690 eager_buffer_size = 1691 clamp_val(eager_buffer_size, 1692 MIN_EAGER_BUFFER * 8, 1693 MAX_EAGER_BUFFER_TOTAL); 1694 dd_dev_info(dd, "Eager buffer size %u\n", 1695 eager_buffer_size); 1696 } else { 1697 dd_dev_err(dd, "Invalid Eager buffer size of 0\n"); 1698 ret = -EINVAL; 1699 goto bail; 1700 } 1701 1702 /* restrict value of hfi1_rcvarr_split */ 1703 hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100); 1704 1705 ret = hfi1_pcie_init(dd); 1706 if (ret) 1707 goto bail; 1708 1709 /* 1710 * Do device-specific initialization, function table setup, dd 1711 * allocation, etc. 1712 */ 1713 ret = hfi1_init_dd(dd); 1714 if (ret) 1715 goto clean_bail; /* error already printed */ 1716 1717 ret = create_workqueues(dd); 1718 if (ret) 1719 goto clean_bail; 1720 1721 /* do the generic initialization */ 1722 initfail = hfi1_init(dd, 0); 1723 1724 /* setup vnic */ 1725 hfi1_vnic_setup(dd); 1726 1727 ret = hfi1_register_ib_device(dd); 1728 1729 /* 1730 * Now ready for use. this should be cleared whenever we 1731 * detect a reset, or initiate one. If earlier failure, 1732 * we still create devices, so diags, etc. can be used 1733 * to determine cause of problem. 1734 */ 1735 if (!initfail && !ret) { 1736 dd->flags |= HFI1_INITTED; 1737 /* create debufs files after init and ib register */ 1738 hfi1_dbg_ibdev_init(&dd->verbs_dev); 1739 } 1740 1741 j = hfi1_device_create(dd); 1742 if (j) 1743 dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j); 1744 1745 if (initfail || ret) { 1746 msix_clean_up_interrupts(dd); 1747 stop_timers(dd); 1748 flush_workqueue(ib_wq); 1749 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1750 hfi1_quiet_serdes(dd->pport + pidx); 1751 ppd = dd->pport + pidx; 1752 if (ppd->hfi1_wq) { 1753 destroy_workqueue(ppd->hfi1_wq); 1754 ppd->hfi1_wq = NULL; 1755 } 1756 if (ppd->link_wq) { 1757 destroy_workqueue(ppd->link_wq); 1758 ppd->link_wq = NULL; 1759 } 1760 } 1761 if (!j) 1762 hfi1_device_remove(dd); 1763 if (!ret) 1764 hfi1_unregister_ib_device(dd); 1765 hfi1_vnic_cleanup(dd); 1766 postinit_cleanup(dd); 1767 if (initfail) 1768 ret = initfail; 1769 goto bail; /* everything already cleaned */ 1770 } 1771 1772 sdma_start(dd); 1773 1774 return 0; 1775 1776 clean_bail: 1777 hfi1_pcie_cleanup(pdev); 1778 bail: 1779 return ret; 1780 } 1781 1782 static void wait_for_clients(struct hfi1_devdata *dd) 1783 { 1784 /* 1785 * Remove the device init value and complete the device if there is 1786 * no clients or wait for active clients to finish. 1787 */ 1788 if (atomic_dec_and_test(&dd->user_refcount)) 1789 complete(&dd->user_comp); 1790 1791 wait_for_completion(&dd->user_comp); 1792 } 1793 1794 static void remove_one(struct pci_dev *pdev) 1795 { 1796 struct hfi1_devdata *dd = pci_get_drvdata(pdev); 1797 1798 /* close debugfs files before ib unregister */ 1799 hfi1_dbg_ibdev_exit(&dd->verbs_dev); 1800 1801 /* remove the /dev hfi1 interface */ 1802 hfi1_device_remove(dd); 1803 1804 /* wait for existing user space clients to finish */ 1805 wait_for_clients(dd); 1806 1807 /* unregister from IB core */ 1808 hfi1_unregister_ib_device(dd); 1809 1810 /* cleanup vnic */ 1811 hfi1_vnic_cleanup(dd); 1812 1813 /* 1814 * Disable the IB link, disable interrupts on the device, 1815 * clear dma engines, etc. 1816 */ 1817 shutdown_device(dd); 1818 1819 stop_timers(dd); 1820 1821 /* wait until all of our (qsfp) queue_work() calls complete */ 1822 flush_workqueue(ib_wq); 1823 1824 postinit_cleanup(dd); 1825 } 1826 1827 static void shutdown_one(struct pci_dev *pdev) 1828 { 1829 struct hfi1_devdata *dd = pci_get_drvdata(pdev); 1830 1831 shutdown_device(dd); 1832 } 1833 1834 /** 1835 * hfi1_create_rcvhdrq - create a receive header queue 1836 * @dd: the hfi1_ib device 1837 * @rcd: the context data 1838 * 1839 * This must be contiguous memory (from an i/o perspective), and must be 1840 * DMA'able (which means for some systems, it will go through an IOMMU, 1841 * or be forced into a low address range). 1842 */ 1843 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd) 1844 { 1845 unsigned amt; 1846 u64 reg; 1847 1848 if (!rcd->rcvhdrq) { 1849 gfp_t gfp_flags; 1850 1851 amt = rcvhdrq_size(rcd); 1852 1853 if (rcd->ctxt < dd->first_dyn_alloc_ctxt || rcd->is_vnic) 1854 gfp_flags = GFP_KERNEL; 1855 else 1856 gfp_flags = GFP_USER; 1857 rcd->rcvhdrq = dma_alloc_coherent(&dd->pcidev->dev, amt, 1858 &rcd->rcvhdrq_dma, 1859 gfp_flags | __GFP_COMP); 1860 1861 if (!rcd->rcvhdrq) { 1862 dd_dev_err(dd, 1863 "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n", 1864 amt, rcd->ctxt); 1865 goto bail; 1866 } 1867 1868 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) || 1869 HFI1_CAP_UGET_MASK(rcd->flags, DMA_RTAIL)) { 1870 rcd->rcvhdrtail_kvaddr = dma_alloc_coherent(&dd->pcidev->dev, 1871 PAGE_SIZE, 1872 &rcd->rcvhdrqtailaddr_dma, 1873 gfp_flags); 1874 if (!rcd->rcvhdrtail_kvaddr) 1875 goto bail_free; 1876 } 1877 } 1878 /* 1879 * These values are per-context: 1880 * RcvHdrCnt 1881 * RcvHdrEntSize 1882 * RcvHdrSize 1883 */ 1884 reg = ((u64)(rcd->rcvhdrq_cnt >> HDRQ_SIZE_SHIFT) 1885 & RCV_HDR_CNT_CNT_MASK) 1886 << RCV_HDR_CNT_CNT_SHIFT; 1887 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_CNT, reg); 1888 reg = (encode_rcv_header_entry_size(rcd->rcvhdrqentsize) 1889 & RCV_HDR_ENT_SIZE_ENT_SIZE_MASK) 1890 << RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT; 1891 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_ENT_SIZE, reg); 1892 reg = ((u64)DEFAULT_RCVHDRSIZE & RCV_HDR_SIZE_HDR_SIZE_MASK) 1893 << RCV_HDR_SIZE_HDR_SIZE_SHIFT; 1894 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_SIZE, reg); 1895 1896 /* 1897 * Program dummy tail address for every receive context 1898 * before enabling any receive context 1899 */ 1900 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_TAIL_ADDR, 1901 dd->rcvhdrtail_dummy_dma); 1902 1903 return 0; 1904 1905 bail_free: 1906 dd_dev_err(dd, 1907 "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n", 1908 rcd->ctxt); 1909 dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq, 1910 rcd->rcvhdrq_dma); 1911 rcd->rcvhdrq = NULL; 1912 bail: 1913 return -ENOMEM; 1914 } 1915 1916 /** 1917 * allocate eager buffers, both kernel and user contexts. 1918 * @rcd: the context we are setting up. 1919 * 1920 * Allocate the eager TID buffers and program them into hip. 1921 * They are no longer completely contiguous, we do multiple allocation 1922 * calls. Otherwise we get the OOM code involved, by asking for too 1923 * much per call, with disastrous results on some kernels. 1924 */ 1925 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd) 1926 { 1927 struct hfi1_devdata *dd = rcd->dd; 1928 u32 max_entries, egrtop, alloced_bytes = 0; 1929 gfp_t gfp_flags; 1930 u16 order, idx = 0; 1931 int ret = 0; 1932 u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu); 1933 1934 /* 1935 * GFP_USER, but without GFP_FS, so buffer cache can be 1936 * coalesced (we hope); otherwise, even at order 4, 1937 * heavy filesystem activity makes these fail, and we can 1938 * use compound pages. 1939 */ 1940 gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP; 1941 1942 /* 1943 * The minimum size of the eager buffers is a groups of MTU-sized 1944 * buffers. 1945 * The global eager_buffer_size parameter is checked against the 1946 * theoretical lower limit of the value. Here, we check against the 1947 * MTU. 1948 */ 1949 if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size)) 1950 rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size; 1951 /* 1952 * If using one-pkt-per-egr-buffer, lower the eager buffer 1953 * size to the max MTU (page-aligned). 1954 */ 1955 if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) 1956 rcd->egrbufs.rcvtid_size = round_mtu; 1957 1958 /* 1959 * Eager buffers sizes of 1MB or less require smaller TID sizes 1960 * to satisfy the "multiple of 8 RcvArray entries" requirement. 1961 */ 1962 if (rcd->egrbufs.size <= (1 << 20)) 1963 rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu, 1964 rounddown_pow_of_two(rcd->egrbufs.size / 8)); 1965 1966 while (alloced_bytes < rcd->egrbufs.size && 1967 rcd->egrbufs.alloced < rcd->egrbufs.count) { 1968 rcd->egrbufs.buffers[idx].addr = 1969 dma_alloc_coherent(&dd->pcidev->dev, 1970 rcd->egrbufs.rcvtid_size, 1971 &rcd->egrbufs.buffers[idx].dma, 1972 gfp_flags); 1973 if (rcd->egrbufs.buffers[idx].addr) { 1974 rcd->egrbufs.buffers[idx].len = 1975 rcd->egrbufs.rcvtid_size; 1976 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr = 1977 rcd->egrbufs.buffers[idx].addr; 1978 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma = 1979 rcd->egrbufs.buffers[idx].dma; 1980 rcd->egrbufs.alloced++; 1981 alloced_bytes += rcd->egrbufs.rcvtid_size; 1982 idx++; 1983 } else { 1984 u32 new_size, i, j; 1985 u64 offset = 0; 1986 1987 /* 1988 * Fail the eager buffer allocation if: 1989 * - we are already using the lowest acceptable size 1990 * - we are using one-pkt-per-egr-buffer (this implies 1991 * that we are accepting only one size) 1992 */ 1993 if (rcd->egrbufs.rcvtid_size == round_mtu || 1994 !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) { 1995 dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n", 1996 rcd->ctxt); 1997 ret = -ENOMEM; 1998 goto bail_rcvegrbuf_phys; 1999 } 2000 2001 new_size = rcd->egrbufs.rcvtid_size / 2; 2002 2003 /* 2004 * If the first attempt to allocate memory failed, don't 2005 * fail everything but continue with the next lower 2006 * size. 2007 */ 2008 if (idx == 0) { 2009 rcd->egrbufs.rcvtid_size = new_size; 2010 continue; 2011 } 2012 2013 /* 2014 * Re-partition already allocated buffers to a smaller 2015 * size. 2016 */ 2017 rcd->egrbufs.alloced = 0; 2018 for (i = 0, j = 0, offset = 0; j < idx; i++) { 2019 if (i >= rcd->egrbufs.count) 2020 break; 2021 rcd->egrbufs.rcvtids[i].dma = 2022 rcd->egrbufs.buffers[j].dma + offset; 2023 rcd->egrbufs.rcvtids[i].addr = 2024 rcd->egrbufs.buffers[j].addr + offset; 2025 rcd->egrbufs.alloced++; 2026 if ((rcd->egrbufs.buffers[j].dma + offset + 2027 new_size) == 2028 (rcd->egrbufs.buffers[j].dma + 2029 rcd->egrbufs.buffers[j].len)) { 2030 j++; 2031 offset = 0; 2032 } else { 2033 offset += new_size; 2034 } 2035 } 2036 rcd->egrbufs.rcvtid_size = new_size; 2037 } 2038 } 2039 rcd->egrbufs.numbufs = idx; 2040 rcd->egrbufs.size = alloced_bytes; 2041 2042 hfi1_cdbg(PROC, 2043 "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %uKB\n", 2044 rcd->ctxt, rcd->egrbufs.alloced, 2045 rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024); 2046 2047 /* 2048 * Set the contexts rcv array head update threshold to the closest 2049 * power of 2 (so we can use a mask instead of modulo) below half 2050 * the allocated entries. 2051 */ 2052 rcd->egrbufs.threshold = 2053 rounddown_pow_of_two(rcd->egrbufs.alloced / 2); 2054 /* 2055 * Compute the expected RcvArray entry base. This is done after 2056 * allocating the eager buffers in order to maximize the 2057 * expected RcvArray entries for the context. 2058 */ 2059 max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size; 2060 egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size); 2061 rcd->expected_count = max_entries - egrtop; 2062 if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2) 2063 rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2; 2064 2065 rcd->expected_base = rcd->eager_base + egrtop; 2066 hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n", 2067 rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count, 2068 rcd->eager_base, rcd->expected_base); 2069 2070 if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) { 2071 hfi1_cdbg(PROC, 2072 "ctxt%u: current Eager buffer size is invalid %u\n", 2073 rcd->ctxt, rcd->egrbufs.rcvtid_size); 2074 ret = -EINVAL; 2075 goto bail_rcvegrbuf_phys; 2076 } 2077 2078 for (idx = 0; idx < rcd->egrbufs.alloced; idx++) { 2079 hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER, 2080 rcd->egrbufs.rcvtids[idx].dma, order); 2081 cond_resched(); 2082 } 2083 2084 return 0; 2085 2086 bail_rcvegrbuf_phys: 2087 for (idx = 0; idx < rcd->egrbufs.alloced && 2088 rcd->egrbufs.buffers[idx].addr; 2089 idx++) { 2090 dma_free_coherent(&dd->pcidev->dev, 2091 rcd->egrbufs.buffers[idx].len, 2092 rcd->egrbufs.buffers[idx].addr, 2093 rcd->egrbufs.buffers[idx].dma); 2094 rcd->egrbufs.buffers[idx].addr = NULL; 2095 rcd->egrbufs.buffers[idx].dma = 0; 2096 rcd->egrbufs.buffers[idx].len = 0; 2097 } 2098 2099 return ret; 2100 } 2101