1 /* 2 * Copyright(c) 2015, 2016 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 #include <linux/pci.h> 49 #include <linux/netdevice.h> 50 #include <linux/vmalloc.h> 51 #include <linux/delay.h> 52 #include <linux/idr.h> 53 #include <linux/module.h> 54 #include <linux/printk.h> 55 #include <linux/hrtimer.h> 56 #include <rdma/rdma_vt.h> 57 58 #include "hfi.h" 59 #include "device.h" 60 #include "common.h" 61 #include "trace.h" 62 #include "mad.h" 63 #include "sdma.h" 64 #include "debugfs.h" 65 #include "verbs.h" 66 #include "aspm.h" 67 #include "affinity.h" 68 69 #undef pr_fmt 70 #define pr_fmt(fmt) DRIVER_NAME ": " fmt 71 72 /* 73 * min buffers we want to have per context, after driver 74 */ 75 #define HFI1_MIN_USER_CTXT_BUFCNT 7 76 77 #define HFI1_MIN_HDRQ_EGRBUF_CNT 2 78 #define HFI1_MAX_HDRQ_EGRBUF_CNT 16352 79 #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */ 80 #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */ 81 82 /* 83 * Number of user receive contexts we are configured to use (to allow for more 84 * pio buffers per ctxt, etc.) Zero means use one user context per CPU. 85 */ 86 int num_user_contexts = -1; 87 module_param_named(num_user_contexts, num_user_contexts, uint, S_IRUGO); 88 MODULE_PARM_DESC( 89 num_user_contexts, "Set max number of user contexts to use"); 90 91 uint krcvqs[RXE_NUM_DATA_VL]; 92 int krcvqsset; 93 module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO); 94 MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL"); 95 96 /* computed based on above array */ 97 unsigned long n_krcvqs; 98 99 static unsigned hfi1_rcvarr_split = 25; 100 module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO); 101 MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers"); 102 103 static uint eager_buffer_size = (2 << 20); /* 2MB */ 104 module_param(eager_buffer_size, uint, S_IRUGO); 105 MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 2MB"); 106 107 static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */ 108 module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO); 109 MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)"); 110 111 static uint hfi1_hdrq_entsize = 32; 112 module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, S_IRUGO); 113 MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B (default), 32 - 128B"); 114 115 unsigned int user_credit_return_threshold = 33; /* default is 33% */ 116 module_param(user_credit_return_threshold, uint, S_IRUGO); 117 MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)"); 118 119 static inline u64 encode_rcv_header_entry_size(u16); 120 121 static struct idr hfi1_unit_table; 122 u32 hfi1_cpulist_count; 123 unsigned long *hfi1_cpulist; 124 125 /* 126 * Common code for creating the receive context array. 127 */ 128 int hfi1_create_ctxts(struct hfi1_devdata *dd) 129 { 130 unsigned i; 131 int ret; 132 133 /* Control context has to be always 0 */ 134 BUILD_BUG_ON(HFI1_CTRL_CTXT != 0); 135 136 dd->rcd = kzalloc_node(dd->num_rcv_contexts * sizeof(*dd->rcd), 137 GFP_KERNEL, dd->node); 138 if (!dd->rcd) 139 goto nomem; 140 141 /* create one or more kernel contexts */ 142 for (i = 0; i < dd->first_user_ctxt; ++i) { 143 struct hfi1_pportdata *ppd; 144 struct hfi1_ctxtdata *rcd; 145 146 ppd = dd->pport + (i % dd->num_pports); 147 148 /* dd->rcd[i] gets assigned inside the callee */ 149 rcd = hfi1_create_ctxtdata(ppd, i, dd->node); 150 if (!rcd) { 151 dd_dev_err(dd, 152 "Unable to allocate kernel receive context, failing\n"); 153 goto nomem; 154 } 155 /* 156 * Set up the kernel context flags here and now because they 157 * use default values for all receive side memories. User 158 * contexts will be handled as they are created. 159 */ 160 rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) | 161 HFI1_CAP_KGET(NODROP_RHQ_FULL) | 162 HFI1_CAP_KGET(NODROP_EGR_FULL) | 163 HFI1_CAP_KGET(DMA_RTAIL); 164 165 /* Control context must use DMA_RTAIL */ 166 if (rcd->ctxt == HFI1_CTRL_CTXT) 167 rcd->flags |= HFI1_CAP_DMA_RTAIL; 168 rcd->seq_cnt = 1; 169 170 rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node); 171 if (!rcd->sc) { 172 dd_dev_err(dd, 173 "Unable to allocate kernel send context, failing\n"); 174 goto nomem; 175 } 176 177 ret = hfi1_init_ctxt(rcd->sc); 178 if (ret < 0) { 179 dd_dev_err(dd, 180 "Failed to setup kernel receive context, failing\n"); 181 ret = -EFAULT; 182 goto bail; 183 } 184 } 185 186 /* 187 * Initialize aspm, to be done after gen3 transition and setting up 188 * contexts and before enabling interrupts 189 */ 190 aspm_init(dd); 191 192 return 0; 193 nomem: 194 ret = -ENOMEM; 195 bail: 196 if (dd->rcd) { 197 for (i = 0; i < dd->num_rcv_contexts; ++i) 198 hfi1_free_ctxtdata(dd, dd->rcd[i]); 199 } 200 kfree(dd->rcd); 201 dd->rcd = NULL; 202 return ret; 203 } 204 205 /* 206 * Common code for user and kernel context setup. 207 */ 208 struct hfi1_ctxtdata *hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, u32 ctxt, 209 int numa) 210 { 211 struct hfi1_devdata *dd = ppd->dd; 212 struct hfi1_ctxtdata *rcd; 213 unsigned kctxt_ngroups = 0; 214 u32 base; 215 216 if (dd->rcv_entries.nctxt_extra > 217 dd->num_rcv_contexts - dd->first_user_ctxt) 218 kctxt_ngroups = (dd->rcv_entries.nctxt_extra - 219 (dd->num_rcv_contexts - dd->first_user_ctxt)); 220 rcd = kzalloc_node(sizeof(*rcd), GFP_KERNEL, numa); 221 if (rcd) { 222 u32 rcvtids, max_entries; 223 224 hfi1_cdbg(PROC, "setting up context %u\n", ctxt); 225 226 INIT_LIST_HEAD(&rcd->qp_wait_list); 227 rcd->ppd = ppd; 228 rcd->dd = dd; 229 rcd->cnt = 1; 230 rcd->ctxt = ctxt; 231 dd->rcd[ctxt] = rcd; 232 rcd->numa_id = numa; 233 rcd->rcv_array_groups = dd->rcv_entries.ngroups; 234 235 mutex_init(&rcd->exp_lock); 236 237 /* 238 * Calculate the context's RcvArray entry starting point. 239 * We do this here because we have to take into account all 240 * the RcvArray entries that previous context would have 241 * taken and we have to account for any extra groups 242 * assigned to the kernel or user contexts. 243 */ 244 if (ctxt < dd->first_user_ctxt) { 245 if (ctxt < kctxt_ngroups) { 246 base = ctxt * (dd->rcv_entries.ngroups + 1); 247 rcd->rcv_array_groups++; 248 } else 249 base = kctxt_ngroups + 250 (ctxt * dd->rcv_entries.ngroups); 251 } else { 252 u16 ct = ctxt - dd->first_user_ctxt; 253 254 base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) + 255 kctxt_ngroups); 256 if (ct < dd->rcv_entries.nctxt_extra) { 257 base += ct * (dd->rcv_entries.ngroups + 1); 258 rcd->rcv_array_groups++; 259 } else 260 base += dd->rcv_entries.nctxt_extra + 261 (ct * dd->rcv_entries.ngroups); 262 } 263 rcd->eager_base = base * dd->rcv_entries.group_size; 264 265 rcd->rcvhdrq_cnt = rcvhdrcnt; 266 rcd->rcvhdrqentsize = hfi1_hdrq_entsize; 267 /* 268 * Simple Eager buffer allocation: we have already pre-allocated 269 * the number of RcvArray entry groups. Each ctxtdata structure 270 * holds the number of groups for that context. 271 * 272 * To follow CSR requirements and maintain cacheline alignment, 273 * make sure all sizes and bases are multiples of group_size. 274 * 275 * The expected entry count is what is left after assigning 276 * eager. 277 */ 278 max_entries = rcd->rcv_array_groups * 279 dd->rcv_entries.group_size; 280 rcvtids = ((max_entries * hfi1_rcvarr_split) / 100); 281 rcd->egrbufs.count = round_down(rcvtids, 282 dd->rcv_entries.group_size); 283 if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) { 284 dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n", 285 rcd->ctxt); 286 rcd->egrbufs.count = MAX_EAGER_ENTRIES; 287 } 288 hfi1_cdbg(PROC, 289 "ctxt%u: max Eager buffer RcvArray entries: %u\n", 290 rcd->ctxt, rcd->egrbufs.count); 291 292 /* 293 * Allocate array that will hold the eager buffer accounting 294 * data. 295 * This will allocate the maximum possible buffer count based 296 * on the value of the RcvArray split parameter. 297 * The resulting value will be rounded down to the closest 298 * multiple of dd->rcv_entries.group_size. 299 */ 300 rcd->egrbufs.buffers = kzalloc_node( 301 rcd->egrbufs.count * sizeof(*rcd->egrbufs.buffers), 302 GFP_KERNEL, numa); 303 if (!rcd->egrbufs.buffers) 304 goto bail; 305 rcd->egrbufs.rcvtids = kzalloc_node( 306 rcd->egrbufs.count * 307 sizeof(*rcd->egrbufs.rcvtids), 308 GFP_KERNEL, numa); 309 if (!rcd->egrbufs.rcvtids) 310 goto bail; 311 rcd->egrbufs.size = eager_buffer_size; 312 /* 313 * The size of the buffers programmed into the RcvArray 314 * entries needs to be big enough to handle the highest 315 * MTU supported. 316 */ 317 if (rcd->egrbufs.size < hfi1_max_mtu) { 318 rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu); 319 hfi1_cdbg(PROC, 320 "ctxt%u: eager bufs size too small. Adjusting to %zu\n", 321 rcd->ctxt, rcd->egrbufs.size); 322 } 323 rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE; 324 325 if (ctxt < dd->first_user_ctxt) { /* N/A for PSM contexts */ 326 rcd->opstats = kzalloc_node(sizeof(*rcd->opstats), 327 GFP_KERNEL, numa); 328 if (!rcd->opstats) 329 goto bail; 330 } 331 } 332 return rcd; 333 bail: 334 dd->rcd[ctxt] = NULL; 335 kfree(rcd->egrbufs.rcvtids); 336 kfree(rcd->egrbufs.buffers); 337 kfree(rcd); 338 return NULL; 339 } 340 341 /* 342 * Convert a receive header entry size that to the encoding used in the CSR. 343 * 344 * Return a zero if the given size is invalid. 345 */ 346 static inline u64 encode_rcv_header_entry_size(u16 size) 347 { 348 /* there are only 3 valid receive header entry sizes */ 349 if (size == 2) 350 return 1; 351 if (size == 16) 352 return 2; 353 else if (size == 32) 354 return 4; 355 return 0; /* invalid */ 356 } 357 358 /* 359 * Select the largest ccti value over all SLs to determine the intra- 360 * packet gap for the link. 361 * 362 * called with cca_timer_lock held (to protect access to cca_timer 363 * array), and rcu_read_lock() (to protect access to cc_state). 364 */ 365 void set_link_ipg(struct hfi1_pportdata *ppd) 366 { 367 struct hfi1_devdata *dd = ppd->dd; 368 struct cc_state *cc_state; 369 int i; 370 u16 cce, ccti_limit, max_ccti = 0; 371 u16 shift, mult; 372 u64 src; 373 u32 current_egress_rate; /* Mbits /sec */ 374 u32 max_pkt_time; 375 /* 376 * max_pkt_time is the maximum packet egress time in units 377 * of the fabric clock period 1/(805 MHz). 378 */ 379 380 cc_state = get_cc_state(ppd); 381 382 if (!cc_state) 383 /* 384 * This should _never_ happen - rcu_read_lock() is held, 385 * and set_link_ipg() should not be called if cc_state 386 * is NULL. 387 */ 388 return; 389 390 for (i = 0; i < OPA_MAX_SLS; i++) { 391 u16 ccti = ppd->cca_timer[i].ccti; 392 393 if (ccti > max_ccti) 394 max_ccti = ccti; 395 } 396 397 ccti_limit = cc_state->cct.ccti_limit; 398 if (max_ccti > ccti_limit) 399 max_ccti = ccti_limit; 400 401 cce = cc_state->cct.entries[max_ccti].entry; 402 shift = (cce & 0xc000) >> 14; 403 mult = (cce & 0x3fff); 404 405 current_egress_rate = active_egress_rate(ppd); 406 407 max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate); 408 409 src = (max_pkt_time >> shift) * mult; 410 411 src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK; 412 src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT; 413 414 write_csr(dd, SEND_STATIC_RATE_CONTROL, src); 415 } 416 417 static enum hrtimer_restart cca_timer_fn(struct hrtimer *t) 418 { 419 struct cca_timer *cca_timer; 420 struct hfi1_pportdata *ppd; 421 int sl; 422 u16 ccti_timer, ccti_min; 423 struct cc_state *cc_state; 424 unsigned long flags; 425 enum hrtimer_restart ret = HRTIMER_NORESTART; 426 427 cca_timer = container_of(t, struct cca_timer, hrtimer); 428 ppd = cca_timer->ppd; 429 sl = cca_timer->sl; 430 431 rcu_read_lock(); 432 433 cc_state = get_cc_state(ppd); 434 435 if (!cc_state) { 436 rcu_read_unlock(); 437 return HRTIMER_NORESTART; 438 } 439 440 /* 441 * 1) decrement ccti for SL 442 * 2) calculate IPG for link (set_link_ipg()) 443 * 3) restart timer, unless ccti is at min value 444 */ 445 446 ccti_min = cc_state->cong_setting.entries[sl].ccti_min; 447 ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer; 448 449 spin_lock_irqsave(&ppd->cca_timer_lock, flags); 450 451 if (cca_timer->ccti > ccti_min) { 452 cca_timer->ccti--; 453 set_link_ipg(ppd); 454 } 455 456 if (cca_timer->ccti > ccti_min) { 457 unsigned long nsec = 1024 * ccti_timer; 458 /* ccti_timer is in units of 1.024 usec */ 459 hrtimer_forward_now(t, ns_to_ktime(nsec)); 460 ret = HRTIMER_RESTART; 461 } 462 463 spin_unlock_irqrestore(&ppd->cca_timer_lock, flags); 464 rcu_read_unlock(); 465 return ret; 466 } 467 468 /* 469 * Common code for initializing the physical port structure. 470 */ 471 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd, 472 struct hfi1_devdata *dd, u8 hw_pidx, u8 port) 473 { 474 int i; 475 uint default_pkey_idx; 476 struct cc_state *cc_state; 477 478 ppd->dd = dd; 479 ppd->hw_pidx = hw_pidx; 480 ppd->port = port; /* IB port number, not index */ 481 482 default_pkey_idx = 1; 483 484 ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY; 485 if (loopback) { 486 hfi1_early_err(&pdev->dev, 487 "Faking data partition 0x8001 in idx %u\n", 488 !default_pkey_idx); 489 ppd->pkeys[!default_pkey_idx] = 0x8001; 490 } 491 492 INIT_WORK(&ppd->link_vc_work, handle_verify_cap); 493 INIT_WORK(&ppd->link_up_work, handle_link_up); 494 INIT_WORK(&ppd->link_down_work, handle_link_down); 495 INIT_WORK(&ppd->freeze_work, handle_freeze); 496 INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade); 497 INIT_WORK(&ppd->sma_message_work, handle_sma_message); 498 INIT_WORK(&ppd->link_bounce_work, handle_link_bounce); 499 INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link); 500 INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work); 501 INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event); 502 503 mutex_init(&ppd->hls_lock); 504 spin_lock_init(&ppd->qsfp_info.qsfp_lock); 505 506 ppd->qsfp_info.ppd = ppd; 507 ppd->sm_trap_qp = 0x0; 508 ppd->sa_qp = 0x1; 509 510 ppd->hfi1_wq = NULL; 511 512 spin_lock_init(&ppd->cca_timer_lock); 513 514 for (i = 0; i < OPA_MAX_SLS; i++) { 515 hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC, 516 HRTIMER_MODE_REL); 517 ppd->cca_timer[i].ppd = ppd; 518 ppd->cca_timer[i].sl = i; 519 ppd->cca_timer[i].ccti = 0; 520 ppd->cca_timer[i].hrtimer.function = cca_timer_fn; 521 } 522 523 ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT; 524 525 spin_lock_init(&ppd->cc_state_lock); 526 spin_lock_init(&ppd->cc_log_lock); 527 cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL); 528 RCU_INIT_POINTER(ppd->cc_state, cc_state); 529 if (!cc_state) 530 goto bail; 531 return; 532 533 bail: 534 535 hfi1_early_err(&pdev->dev, 536 "Congestion Control Agent disabled for port %d\n", port); 537 } 538 539 /* 540 * Do initialization for device that is only needed on 541 * first detect, not on resets. 542 */ 543 static int loadtime_init(struct hfi1_devdata *dd) 544 { 545 return 0; 546 } 547 548 /** 549 * init_after_reset - re-initialize after a reset 550 * @dd: the hfi1_ib device 551 * 552 * sanity check at least some of the values after reset, and 553 * ensure no receive or transmit (explicitly, in case reset 554 * failed 555 */ 556 static int init_after_reset(struct hfi1_devdata *dd) 557 { 558 int i; 559 560 /* 561 * Ensure chip does no sends or receives, tail updates, or 562 * pioavail updates while we re-initialize. This is mostly 563 * for the driver data structures, not chip registers. 564 */ 565 for (i = 0; i < dd->num_rcv_contexts; i++) 566 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS | 567 HFI1_RCVCTRL_INTRAVAIL_DIS | 568 HFI1_RCVCTRL_TAILUPD_DIS, i); 569 pio_send_control(dd, PSC_GLOBAL_DISABLE); 570 for (i = 0; i < dd->num_send_contexts; i++) 571 sc_disable(dd->send_contexts[i].sc); 572 573 return 0; 574 } 575 576 static void enable_chip(struct hfi1_devdata *dd) 577 { 578 u32 rcvmask; 579 u32 i; 580 581 /* enable PIO send */ 582 pio_send_control(dd, PSC_GLOBAL_ENABLE); 583 584 /* 585 * Enable kernel ctxts' receive and receive interrupt. 586 * Other ctxts done as user opens and initializes them. 587 */ 588 for (i = 0; i < dd->first_user_ctxt; ++i) { 589 rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB; 590 rcvmask |= HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, DMA_RTAIL) ? 591 HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS; 592 if (!HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, MULTI_PKT_EGR)) 593 rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB; 594 if (HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, NODROP_RHQ_FULL)) 595 rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB; 596 if (HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, NODROP_EGR_FULL)) 597 rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB; 598 hfi1_rcvctrl(dd, rcvmask, i); 599 sc_enable(dd->rcd[i]->sc); 600 } 601 } 602 603 /** 604 * create_workqueues - create per port workqueues 605 * @dd: the hfi1_ib device 606 */ 607 static int create_workqueues(struct hfi1_devdata *dd) 608 { 609 int pidx; 610 struct hfi1_pportdata *ppd; 611 612 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 613 ppd = dd->pport + pidx; 614 if (!ppd->hfi1_wq) { 615 ppd->hfi1_wq = 616 alloc_workqueue( 617 "hfi%d_%d", 618 WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE, 619 dd->num_sdma, 620 dd->unit, pidx); 621 if (!ppd->hfi1_wq) 622 goto wq_error; 623 } 624 } 625 return 0; 626 wq_error: 627 pr_err("alloc_workqueue failed for port %d\n", pidx + 1); 628 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 629 ppd = dd->pport + pidx; 630 if (ppd->hfi1_wq) { 631 destroy_workqueue(ppd->hfi1_wq); 632 ppd->hfi1_wq = NULL; 633 } 634 } 635 return -ENOMEM; 636 } 637 638 /** 639 * hfi1_init - do the actual initialization sequence on the chip 640 * @dd: the hfi1_ib device 641 * @reinit: re-initializing, so don't allocate new memory 642 * 643 * Do the actual initialization sequence on the chip. This is done 644 * both from the init routine called from the PCI infrastructure, and 645 * when we reset the chip, or detect that it was reset internally, 646 * or it's administratively re-enabled. 647 * 648 * Memory allocation here and in called routines is only done in 649 * the first case (reinit == 0). We have to be careful, because even 650 * without memory allocation, we need to re-write all the chip registers 651 * TIDs, etc. after the reset or enable has completed. 652 */ 653 int hfi1_init(struct hfi1_devdata *dd, int reinit) 654 { 655 int ret = 0, pidx, lastfail = 0; 656 unsigned i, len; 657 struct hfi1_ctxtdata *rcd; 658 struct hfi1_pportdata *ppd; 659 660 /* Set up recv low level handlers */ 661 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EXPECTED] = 662 kdeth_process_expected; 663 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EAGER] = 664 kdeth_process_eager; 665 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_IB] = process_receive_ib; 666 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_ERROR] = 667 process_receive_error; 668 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_BYPASS] = 669 process_receive_bypass; 670 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID5] = 671 process_receive_invalid; 672 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID6] = 673 process_receive_invalid; 674 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID7] = 675 process_receive_invalid; 676 dd->rhf_rcv_function_map = dd->normal_rhf_rcv_functions; 677 678 /* Set up send low level handlers */ 679 dd->process_pio_send = hfi1_verbs_send_pio; 680 dd->process_dma_send = hfi1_verbs_send_dma; 681 dd->pio_inline_send = pio_copy; 682 683 if (is_ax(dd)) { 684 atomic_set(&dd->drop_packet, DROP_PACKET_ON); 685 dd->do_drop = 1; 686 } else { 687 atomic_set(&dd->drop_packet, DROP_PACKET_OFF); 688 dd->do_drop = 0; 689 } 690 691 /* make sure the link is not "up" */ 692 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 693 ppd = dd->pport + pidx; 694 ppd->linkup = 0; 695 } 696 697 if (reinit) 698 ret = init_after_reset(dd); 699 else 700 ret = loadtime_init(dd); 701 if (ret) 702 goto done; 703 704 /* allocate dummy tail memory for all receive contexts */ 705 dd->rcvhdrtail_dummy_kvaddr = dma_zalloc_coherent( 706 &dd->pcidev->dev, sizeof(u64), 707 &dd->rcvhdrtail_dummy_dma, 708 GFP_KERNEL); 709 710 if (!dd->rcvhdrtail_dummy_kvaddr) { 711 dd_dev_err(dd, "cannot allocate dummy tail memory\n"); 712 ret = -ENOMEM; 713 goto done; 714 } 715 716 /* dd->rcd can be NULL if early initialization failed */ 717 for (i = 0; dd->rcd && i < dd->first_user_ctxt; ++i) { 718 /* 719 * Set up the (kernel) rcvhdr queue and egr TIDs. If doing 720 * re-init, the simplest way to handle this is to free 721 * existing, and re-allocate. 722 * Need to re-create rest of ctxt 0 ctxtdata as well. 723 */ 724 rcd = dd->rcd[i]; 725 if (!rcd) 726 continue; 727 728 rcd->do_interrupt = &handle_receive_interrupt; 729 730 lastfail = hfi1_create_rcvhdrq(dd, rcd); 731 if (!lastfail) 732 lastfail = hfi1_setup_eagerbufs(rcd); 733 if (lastfail) { 734 dd_dev_err(dd, 735 "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n"); 736 ret = lastfail; 737 } 738 } 739 740 /* Allocate enough memory for user event notification. */ 741 len = PAGE_ALIGN(dd->chip_rcv_contexts * HFI1_MAX_SHARED_CTXTS * 742 sizeof(*dd->events)); 743 dd->events = vmalloc_user(len); 744 if (!dd->events) 745 dd_dev_err(dd, "Failed to allocate user events page\n"); 746 /* 747 * Allocate a page for device and port status. 748 * Page will be shared amongst all user processes. 749 */ 750 dd->status = vmalloc_user(PAGE_SIZE); 751 if (!dd->status) 752 dd_dev_err(dd, "Failed to allocate dev status page\n"); 753 else 754 dd->freezelen = PAGE_SIZE - (sizeof(*dd->status) - 755 sizeof(dd->status->freezemsg)); 756 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 757 ppd = dd->pport + pidx; 758 if (dd->status) 759 /* Currently, we only have one port */ 760 ppd->statusp = &dd->status->port; 761 762 set_mtu(ppd); 763 } 764 765 /* enable chip even if we have an error, so we can debug cause */ 766 enable_chip(dd); 767 768 done: 769 /* 770 * Set status even if port serdes is not initialized 771 * so that diags will work. 772 */ 773 if (dd->status) 774 dd->status->dev |= HFI1_STATUS_CHIP_PRESENT | 775 HFI1_STATUS_INITTED; 776 if (!ret) { 777 /* enable all interrupts from the chip */ 778 set_intr_state(dd, 1); 779 780 /* chip is OK for user apps; mark it as initialized */ 781 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 782 ppd = dd->pport + pidx; 783 784 /* 785 * start the serdes - must be after interrupts are 786 * enabled so we are notified when the link goes up 787 */ 788 lastfail = bringup_serdes(ppd); 789 if (lastfail) 790 dd_dev_info(dd, 791 "Failed to bring up port %u\n", 792 ppd->port); 793 794 /* 795 * Set status even if port serdes is not initialized 796 * so that diags will work. 797 */ 798 if (ppd->statusp) 799 *ppd->statusp |= HFI1_STATUS_CHIP_PRESENT | 800 HFI1_STATUS_INITTED; 801 if (!ppd->link_speed_enabled) 802 continue; 803 } 804 } 805 806 /* if ret is non-zero, we probably should do some cleanup here... */ 807 return ret; 808 } 809 810 static inline struct hfi1_devdata *__hfi1_lookup(int unit) 811 { 812 return idr_find(&hfi1_unit_table, unit); 813 } 814 815 struct hfi1_devdata *hfi1_lookup(int unit) 816 { 817 struct hfi1_devdata *dd; 818 unsigned long flags; 819 820 spin_lock_irqsave(&hfi1_devs_lock, flags); 821 dd = __hfi1_lookup(unit); 822 spin_unlock_irqrestore(&hfi1_devs_lock, flags); 823 824 return dd; 825 } 826 827 /* 828 * Stop the timers during unit shutdown, or after an error late 829 * in initialization. 830 */ 831 static void stop_timers(struct hfi1_devdata *dd) 832 { 833 struct hfi1_pportdata *ppd; 834 int pidx; 835 836 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 837 ppd = dd->pport + pidx; 838 if (ppd->led_override_timer.data) { 839 del_timer_sync(&ppd->led_override_timer); 840 atomic_set(&ppd->led_override_timer_active, 0); 841 } 842 } 843 } 844 845 /** 846 * shutdown_device - shut down a device 847 * @dd: the hfi1_ib device 848 * 849 * This is called to make the device quiet when we are about to 850 * unload the driver, and also when the device is administratively 851 * disabled. It does not free any data structures. 852 * Everything it does has to be setup again by hfi1_init(dd, 1) 853 */ 854 static void shutdown_device(struct hfi1_devdata *dd) 855 { 856 struct hfi1_pportdata *ppd; 857 unsigned pidx; 858 int i; 859 860 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 861 ppd = dd->pport + pidx; 862 863 ppd->linkup = 0; 864 if (ppd->statusp) 865 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF | 866 HFI1_STATUS_IB_READY); 867 } 868 dd->flags &= ~HFI1_INITTED; 869 870 /* mask interrupts, but not errors */ 871 set_intr_state(dd, 0); 872 873 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 874 ppd = dd->pport + pidx; 875 for (i = 0; i < dd->num_rcv_contexts; i++) 876 hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS | 877 HFI1_RCVCTRL_CTXT_DIS | 878 HFI1_RCVCTRL_INTRAVAIL_DIS | 879 HFI1_RCVCTRL_PKEY_DIS | 880 HFI1_RCVCTRL_ONE_PKT_EGR_DIS, i); 881 /* 882 * Gracefully stop all sends allowing any in progress to 883 * trickle out first. 884 */ 885 for (i = 0; i < dd->num_send_contexts; i++) 886 sc_flush(dd->send_contexts[i].sc); 887 } 888 889 /* 890 * Enough for anything that's going to trickle out to have actually 891 * done so. 892 */ 893 udelay(20); 894 895 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 896 ppd = dd->pport + pidx; 897 898 /* disable all contexts */ 899 for (i = 0; i < dd->num_send_contexts; i++) 900 sc_disable(dd->send_contexts[i].sc); 901 /* disable the send device */ 902 pio_send_control(dd, PSC_GLOBAL_DISABLE); 903 904 shutdown_led_override(ppd); 905 906 /* 907 * Clear SerdesEnable. 908 * We can't count on interrupts since we are stopping. 909 */ 910 hfi1_quiet_serdes(ppd); 911 912 if (ppd->hfi1_wq) { 913 destroy_workqueue(ppd->hfi1_wq); 914 ppd->hfi1_wq = NULL; 915 } 916 } 917 sdma_exit(dd); 918 } 919 920 /** 921 * hfi1_free_ctxtdata - free a context's allocated data 922 * @dd: the hfi1_ib device 923 * @rcd: the ctxtdata structure 924 * 925 * free up any allocated data for a context 926 * This should not touch anything that would affect a simultaneous 927 * re-allocation of context data, because it is called after hfi1_mutex 928 * is released (and can be called from reinit as well). 929 * It should never change any chip state, or global driver state. 930 */ 931 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd) 932 { 933 unsigned e; 934 935 if (!rcd) 936 return; 937 938 if (rcd->rcvhdrq) { 939 dma_free_coherent(&dd->pcidev->dev, rcd->rcvhdrq_size, 940 rcd->rcvhdrq, rcd->rcvhdrq_dma); 941 rcd->rcvhdrq = NULL; 942 if (rcd->rcvhdrtail_kvaddr) { 943 dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE, 944 (void *)rcd->rcvhdrtail_kvaddr, 945 rcd->rcvhdrqtailaddr_dma); 946 rcd->rcvhdrtail_kvaddr = NULL; 947 } 948 } 949 950 /* all the RcvArray entries should have been cleared by now */ 951 kfree(rcd->egrbufs.rcvtids); 952 953 for (e = 0; e < rcd->egrbufs.alloced; e++) { 954 if (rcd->egrbufs.buffers[e].dma) 955 dma_free_coherent(&dd->pcidev->dev, 956 rcd->egrbufs.buffers[e].len, 957 rcd->egrbufs.buffers[e].addr, 958 rcd->egrbufs.buffers[e].dma); 959 } 960 kfree(rcd->egrbufs.buffers); 961 962 sc_free(rcd->sc); 963 vfree(rcd->user_event_mask); 964 vfree(rcd->subctxt_uregbase); 965 vfree(rcd->subctxt_rcvegrbuf); 966 vfree(rcd->subctxt_rcvhdr_base); 967 kfree(rcd->opstats); 968 kfree(rcd); 969 } 970 971 /* 972 * Release our hold on the shared asic data. If we are the last one, 973 * return the structure to be finalized outside the lock. Must be 974 * holding hfi1_devs_lock. 975 */ 976 static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd) 977 { 978 struct hfi1_asic_data *ad; 979 int other; 980 981 if (!dd->asic_data) 982 return NULL; 983 dd->asic_data->dds[dd->hfi1_id] = NULL; 984 other = dd->hfi1_id ? 0 : 1; 985 ad = dd->asic_data; 986 dd->asic_data = NULL; 987 /* return NULL if the other dd still has a link */ 988 return ad->dds[other] ? NULL : ad; 989 } 990 991 static void finalize_asic_data(struct hfi1_devdata *dd, 992 struct hfi1_asic_data *ad) 993 { 994 clean_up_i2c(dd, ad); 995 kfree(ad); 996 } 997 998 static void __hfi1_free_devdata(struct kobject *kobj) 999 { 1000 struct hfi1_devdata *dd = 1001 container_of(kobj, struct hfi1_devdata, kobj); 1002 struct hfi1_asic_data *ad; 1003 unsigned long flags; 1004 1005 spin_lock_irqsave(&hfi1_devs_lock, flags); 1006 idr_remove(&hfi1_unit_table, dd->unit); 1007 list_del(&dd->list); 1008 ad = release_asic_data(dd); 1009 spin_unlock_irqrestore(&hfi1_devs_lock, flags); 1010 if (ad) 1011 finalize_asic_data(dd, ad); 1012 free_platform_config(dd); 1013 rcu_barrier(); /* wait for rcu callbacks to complete */ 1014 free_percpu(dd->int_counter); 1015 free_percpu(dd->rcv_limit); 1016 free_percpu(dd->send_schedule); 1017 rvt_dealloc_device(&dd->verbs_dev.rdi); 1018 } 1019 1020 static struct kobj_type hfi1_devdata_type = { 1021 .release = __hfi1_free_devdata, 1022 }; 1023 1024 void hfi1_free_devdata(struct hfi1_devdata *dd) 1025 { 1026 kobject_put(&dd->kobj); 1027 } 1028 1029 /* 1030 * Allocate our primary per-unit data structure. Must be done via verbs 1031 * allocator, because the verbs cleanup process both does cleanup and 1032 * free of the data structure. 1033 * "extra" is for chip-specific data. 1034 * 1035 * Use the idr mechanism to get a unit number for this unit. 1036 */ 1037 struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev, size_t extra) 1038 { 1039 unsigned long flags; 1040 struct hfi1_devdata *dd; 1041 int ret, nports; 1042 1043 /* extra is * number of ports */ 1044 nports = extra / sizeof(struct hfi1_pportdata); 1045 1046 dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra, 1047 nports); 1048 if (!dd) 1049 return ERR_PTR(-ENOMEM); 1050 dd->num_pports = nports; 1051 dd->pport = (struct hfi1_pportdata *)(dd + 1); 1052 1053 INIT_LIST_HEAD(&dd->list); 1054 idr_preload(GFP_KERNEL); 1055 spin_lock_irqsave(&hfi1_devs_lock, flags); 1056 1057 ret = idr_alloc(&hfi1_unit_table, dd, 0, 0, GFP_NOWAIT); 1058 if (ret >= 0) { 1059 dd->unit = ret; 1060 list_add(&dd->list, &hfi1_dev_list); 1061 } 1062 1063 spin_unlock_irqrestore(&hfi1_devs_lock, flags); 1064 idr_preload_end(); 1065 1066 if (ret < 0) { 1067 hfi1_early_err(&pdev->dev, 1068 "Could not allocate unit ID: error %d\n", -ret); 1069 goto bail; 1070 } 1071 /* 1072 * Initialize all locks for the device. This needs to be as early as 1073 * possible so locks are usable. 1074 */ 1075 spin_lock_init(&dd->sc_lock); 1076 spin_lock_init(&dd->sendctrl_lock); 1077 spin_lock_init(&dd->rcvctrl_lock); 1078 spin_lock_init(&dd->uctxt_lock); 1079 spin_lock_init(&dd->hfi1_diag_trans_lock); 1080 spin_lock_init(&dd->sc_init_lock); 1081 spin_lock_init(&dd->dc8051_lock); 1082 spin_lock_init(&dd->dc8051_memlock); 1083 seqlock_init(&dd->sc2vl_lock); 1084 spin_lock_init(&dd->sde_map_lock); 1085 spin_lock_init(&dd->pio_map_lock); 1086 init_waitqueue_head(&dd->event_queue); 1087 1088 dd->int_counter = alloc_percpu(u64); 1089 if (!dd->int_counter) { 1090 ret = -ENOMEM; 1091 hfi1_early_err(&pdev->dev, 1092 "Could not allocate per-cpu int_counter\n"); 1093 goto bail; 1094 } 1095 1096 dd->rcv_limit = alloc_percpu(u64); 1097 if (!dd->rcv_limit) { 1098 ret = -ENOMEM; 1099 hfi1_early_err(&pdev->dev, 1100 "Could not allocate per-cpu rcv_limit\n"); 1101 goto bail; 1102 } 1103 1104 dd->send_schedule = alloc_percpu(u64); 1105 if (!dd->send_schedule) { 1106 ret = -ENOMEM; 1107 hfi1_early_err(&pdev->dev, 1108 "Could not allocate per-cpu int_counter\n"); 1109 goto bail; 1110 } 1111 1112 if (!hfi1_cpulist_count) { 1113 u32 count = num_online_cpus(); 1114 1115 hfi1_cpulist = kcalloc(BITS_TO_LONGS(count), sizeof(long), 1116 GFP_KERNEL); 1117 if (hfi1_cpulist) 1118 hfi1_cpulist_count = count; 1119 else 1120 hfi1_early_err( 1121 &pdev->dev, 1122 "Could not alloc cpulist info, cpu affinity might be wrong\n"); 1123 } 1124 kobject_init(&dd->kobj, &hfi1_devdata_type); 1125 return dd; 1126 1127 bail: 1128 if (!list_empty(&dd->list)) 1129 list_del_init(&dd->list); 1130 rvt_dealloc_device(&dd->verbs_dev.rdi); 1131 return ERR_PTR(ret); 1132 } 1133 1134 /* 1135 * Called from freeze mode handlers, and from PCI error 1136 * reporting code. Should be paranoid about state of 1137 * system and data structures. 1138 */ 1139 void hfi1_disable_after_error(struct hfi1_devdata *dd) 1140 { 1141 if (dd->flags & HFI1_INITTED) { 1142 u32 pidx; 1143 1144 dd->flags &= ~HFI1_INITTED; 1145 if (dd->pport) 1146 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1147 struct hfi1_pportdata *ppd; 1148 1149 ppd = dd->pport + pidx; 1150 if (dd->flags & HFI1_PRESENT) 1151 set_link_state(ppd, HLS_DN_DISABLE); 1152 1153 if (ppd->statusp) 1154 *ppd->statusp &= ~HFI1_STATUS_IB_READY; 1155 } 1156 } 1157 1158 /* 1159 * Mark as having had an error for driver, and also 1160 * for /sys and status word mapped to user programs. 1161 * This marks unit as not usable, until reset. 1162 */ 1163 if (dd->status) 1164 dd->status->dev |= HFI1_STATUS_HWERROR; 1165 } 1166 1167 static void remove_one(struct pci_dev *); 1168 static int init_one(struct pci_dev *, const struct pci_device_id *); 1169 1170 #define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: " 1171 #define PFX DRIVER_NAME ": " 1172 1173 const struct pci_device_id hfi1_pci_tbl[] = { 1174 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) }, 1175 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) }, 1176 { 0, } 1177 }; 1178 1179 MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl); 1180 1181 static struct pci_driver hfi1_pci_driver = { 1182 .name = DRIVER_NAME, 1183 .probe = init_one, 1184 .remove = remove_one, 1185 .id_table = hfi1_pci_tbl, 1186 .err_handler = &hfi1_pci_err_handler, 1187 }; 1188 1189 static void __init compute_krcvqs(void) 1190 { 1191 int i; 1192 1193 for (i = 0; i < krcvqsset; i++) 1194 n_krcvqs += krcvqs[i]; 1195 } 1196 1197 /* 1198 * Do all the generic driver unit- and chip-independent memory 1199 * allocation and initialization. 1200 */ 1201 static int __init hfi1_mod_init(void) 1202 { 1203 int ret; 1204 1205 ret = dev_init(); 1206 if (ret) 1207 goto bail; 1208 1209 ret = node_affinity_init(); 1210 if (ret) 1211 goto bail; 1212 1213 /* validate max MTU before any devices start */ 1214 if (!valid_opa_max_mtu(hfi1_max_mtu)) { 1215 pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n", 1216 hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU); 1217 hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU; 1218 } 1219 /* valid CUs run from 1-128 in powers of 2 */ 1220 if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu)) 1221 hfi1_cu = 1; 1222 /* valid credit return threshold is 0-100, variable is unsigned */ 1223 if (user_credit_return_threshold > 100) 1224 user_credit_return_threshold = 100; 1225 1226 compute_krcvqs(); 1227 /* 1228 * sanitize receive interrupt count, time must wait until after 1229 * the hardware type is known 1230 */ 1231 if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK) 1232 rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK; 1233 /* reject invalid combinations */ 1234 if (rcv_intr_count == 0 && rcv_intr_timeout == 0) { 1235 pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n"); 1236 rcv_intr_count = 1; 1237 } 1238 if (rcv_intr_count > 1 && rcv_intr_timeout == 0) { 1239 /* 1240 * Avoid indefinite packet delivery by requiring a timeout 1241 * if count is > 1. 1242 */ 1243 pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n"); 1244 rcv_intr_timeout = 1; 1245 } 1246 if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) { 1247 /* 1248 * The dynamic algorithm expects a non-zero timeout 1249 * and a count > 1. 1250 */ 1251 pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n"); 1252 rcv_intr_dynamic = 0; 1253 } 1254 1255 /* sanitize link CRC options */ 1256 link_crc_mask &= SUPPORTED_CRCS; 1257 1258 /* 1259 * These must be called before the driver is registered with 1260 * the PCI subsystem. 1261 */ 1262 idr_init(&hfi1_unit_table); 1263 1264 hfi1_dbg_init(); 1265 ret = hfi1_wss_init(); 1266 if (ret < 0) 1267 goto bail_wss; 1268 ret = pci_register_driver(&hfi1_pci_driver); 1269 if (ret < 0) { 1270 pr_err("Unable to register driver: error %d\n", -ret); 1271 goto bail_dev; 1272 } 1273 goto bail; /* all OK */ 1274 1275 bail_dev: 1276 hfi1_wss_exit(); 1277 bail_wss: 1278 hfi1_dbg_exit(); 1279 idr_destroy(&hfi1_unit_table); 1280 dev_cleanup(); 1281 bail: 1282 return ret; 1283 } 1284 1285 module_init(hfi1_mod_init); 1286 1287 /* 1288 * Do the non-unit driver cleanup, memory free, etc. at unload. 1289 */ 1290 static void __exit hfi1_mod_cleanup(void) 1291 { 1292 pci_unregister_driver(&hfi1_pci_driver); 1293 node_affinity_destroy(); 1294 hfi1_wss_exit(); 1295 hfi1_dbg_exit(); 1296 hfi1_cpulist_count = 0; 1297 kfree(hfi1_cpulist); 1298 1299 idr_destroy(&hfi1_unit_table); 1300 dispose_firmware(); /* asymmetric with obtain_firmware() */ 1301 dev_cleanup(); 1302 } 1303 1304 module_exit(hfi1_mod_cleanup); 1305 1306 /* this can only be called after a successful initialization */ 1307 static void cleanup_device_data(struct hfi1_devdata *dd) 1308 { 1309 int ctxt; 1310 int pidx; 1311 struct hfi1_ctxtdata **tmp; 1312 unsigned long flags; 1313 1314 /* users can't do anything more with chip */ 1315 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1316 struct hfi1_pportdata *ppd = &dd->pport[pidx]; 1317 struct cc_state *cc_state; 1318 int i; 1319 1320 if (ppd->statusp) 1321 *ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT; 1322 1323 for (i = 0; i < OPA_MAX_SLS; i++) 1324 hrtimer_cancel(&ppd->cca_timer[i].hrtimer); 1325 1326 spin_lock(&ppd->cc_state_lock); 1327 cc_state = get_cc_state_protected(ppd); 1328 RCU_INIT_POINTER(ppd->cc_state, NULL); 1329 spin_unlock(&ppd->cc_state_lock); 1330 1331 if (cc_state) 1332 kfree_rcu(cc_state, rcu); 1333 } 1334 1335 free_credit_return(dd); 1336 1337 /* 1338 * Free any resources still in use (usually just kernel contexts) 1339 * at unload; we do for ctxtcnt, because that's what we allocate. 1340 * We acquire lock to be really paranoid that rcd isn't being 1341 * accessed from some interrupt-related code (that should not happen, 1342 * but best to be sure). 1343 */ 1344 spin_lock_irqsave(&dd->uctxt_lock, flags); 1345 tmp = dd->rcd; 1346 dd->rcd = NULL; 1347 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 1348 1349 if (dd->rcvhdrtail_dummy_kvaddr) { 1350 dma_free_coherent(&dd->pcidev->dev, sizeof(u64), 1351 (void *)dd->rcvhdrtail_dummy_kvaddr, 1352 dd->rcvhdrtail_dummy_dma); 1353 dd->rcvhdrtail_dummy_kvaddr = NULL; 1354 } 1355 1356 for (ctxt = 0; tmp && ctxt < dd->num_rcv_contexts; ctxt++) { 1357 struct hfi1_ctxtdata *rcd = tmp[ctxt]; 1358 1359 tmp[ctxt] = NULL; /* debugging paranoia */ 1360 if (rcd) { 1361 hfi1_clear_tids(rcd); 1362 hfi1_free_ctxtdata(dd, rcd); 1363 } 1364 } 1365 kfree(tmp); 1366 free_pio_map(dd); 1367 /* must follow rcv context free - need to remove rcv's hooks */ 1368 for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++) 1369 sc_free(dd->send_contexts[ctxt].sc); 1370 dd->num_send_contexts = 0; 1371 kfree(dd->send_contexts); 1372 dd->send_contexts = NULL; 1373 kfree(dd->hw_to_sw); 1374 dd->hw_to_sw = NULL; 1375 kfree(dd->boardname); 1376 vfree(dd->events); 1377 vfree(dd->status); 1378 } 1379 1380 /* 1381 * Clean up on unit shutdown, or error during unit load after 1382 * successful initialization. 1383 */ 1384 static void postinit_cleanup(struct hfi1_devdata *dd) 1385 { 1386 hfi1_start_cleanup(dd); 1387 1388 hfi1_pcie_ddcleanup(dd); 1389 hfi1_pcie_cleanup(dd->pcidev); 1390 1391 cleanup_device_data(dd); 1392 1393 hfi1_free_devdata(dd); 1394 } 1395 1396 static int init_validate_rcvhdrcnt(struct device *dev, uint thecnt) 1397 { 1398 if (thecnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) { 1399 hfi1_early_err(dev, "Receive header queue count too small\n"); 1400 return -EINVAL; 1401 } 1402 1403 if (thecnt > HFI1_MAX_HDRQ_EGRBUF_CNT) { 1404 hfi1_early_err(dev, 1405 "Receive header queue count cannot be greater than %u\n", 1406 HFI1_MAX_HDRQ_EGRBUF_CNT); 1407 return -EINVAL; 1408 } 1409 1410 if (thecnt % HDRQ_INCREMENT) { 1411 hfi1_early_err(dev, "Receive header queue count %d must be divisible by %lu\n", 1412 thecnt, HDRQ_INCREMENT); 1413 return -EINVAL; 1414 } 1415 1416 return 0; 1417 } 1418 1419 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 1420 { 1421 int ret = 0, j, pidx, initfail; 1422 struct hfi1_devdata *dd; 1423 struct hfi1_pportdata *ppd; 1424 1425 /* First, lock the non-writable module parameters */ 1426 HFI1_CAP_LOCK(); 1427 1428 /* Validate some global module parameters */ 1429 ret = init_validate_rcvhdrcnt(&pdev->dev, rcvhdrcnt); 1430 if (ret) 1431 goto bail; 1432 1433 /* use the encoding function as a sanitization check */ 1434 if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) { 1435 hfi1_early_err(&pdev->dev, "Invalid HdrQ Entry size %u\n", 1436 hfi1_hdrq_entsize); 1437 ret = -EINVAL; 1438 goto bail; 1439 } 1440 1441 /* The receive eager buffer size must be set before the receive 1442 * contexts are created. 1443 * 1444 * Set the eager buffer size. Validate that it falls in a range 1445 * allowed by the hardware - all powers of 2 between the min and 1446 * max. The maximum valid MTU is within the eager buffer range 1447 * so we do not need to cap the max_mtu by an eager buffer size 1448 * setting. 1449 */ 1450 if (eager_buffer_size) { 1451 if (!is_power_of_2(eager_buffer_size)) 1452 eager_buffer_size = 1453 roundup_pow_of_two(eager_buffer_size); 1454 eager_buffer_size = 1455 clamp_val(eager_buffer_size, 1456 MIN_EAGER_BUFFER * 8, 1457 MAX_EAGER_BUFFER_TOTAL); 1458 hfi1_early_info(&pdev->dev, "Eager buffer size %u\n", 1459 eager_buffer_size); 1460 } else { 1461 hfi1_early_err(&pdev->dev, "Invalid Eager buffer size of 0\n"); 1462 ret = -EINVAL; 1463 goto bail; 1464 } 1465 1466 /* restrict value of hfi1_rcvarr_split */ 1467 hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100); 1468 1469 ret = hfi1_pcie_init(pdev, ent); 1470 if (ret) 1471 goto bail; 1472 1473 if (!(ent->device == PCI_DEVICE_ID_INTEL0 || 1474 ent->device == PCI_DEVICE_ID_INTEL1)) { 1475 hfi1_early_err(&pdev->dev, 1476 "Failing on unknown Intel deviceid 0x%x\n", 1477 ent->device); 1478 ret = -ENODEV; 1479 goto clean_bail; 1480 } 1481 1482 /* 1483 * Do device-specific initialization, function table setup, dd 1484 * allocation, etc. 1485 */ 1486 dd = hfi1_init_dd(pdev, ent); 1487 1488 if (IS_ERR(dd)) { 1489 ret = PTR_ERR(dd); 1490 goto clean_bail; /* error already printed */ 1491 } 1492 1493 ret = create_workqueues(dd); 1494 if (ret) 1495 goto clean_bail; 1496 1497 /* do the generic initialization */ 1498 initfail = hfi1_init(dd, 0); 1499 1500 ret = hfi1_register_ib_device(dd); 1501 1502 /* 1503 * Now ready for use. this should be cleared whenever we 1504 * detect a reset, or initiate one. If earlier failure, 1505 * we still create devices, so diags, etc. can be used 1506 * to determine cause of problem. 1507 */ 1508 if (!initfail && !ret) { 1509 dd->flags |= HFI1_INITTED; 1510 /* create debufs files after init and ib register */ 1511 hfi1_dbg_ibdev_init(&dd->verbs_dev); 1512 } 1513 1514 j = hfi1_device_create(dd); 1515 if (j) 1516 dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j); 1517 1518 if (initfail || ret) { 1519 stop_timers(dd); 1520 flush_workqueue(ib_wq); 1521 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1522 hfi1_quiet_serdes(dd->pport + pidx); 1523 ppd = dd->pport + pidx; 1524 if (ppd->hfi1_wq) { 1525 destroy_workqueue(ppd->hfi1_wq); 1526 ppd->hfi1_wq = NULL; 1527 } 1528 } 1529 if (!j) 1530 hfi1_device_remove(dd); 1531 if (!ret) 1532 hfi1_unregister_ib_device(dd); 1533 postinit_cleanup(dd); 1534 if (initfail) 1535 ret = initfail; 1536 goto bail; /* everything already cleaned */ 1537 } 1538 1539 sdma_start(dd); 1540 1541 return 0; 1542 1543 clean_bail: 1544 hfi1_pcie_cleanup(pdev); 1545 bail: 1546 return ret; 1547 } 1548 1549 static void wait_for_clients(struct hfi1_devdata *dd) 1550 { 1551 /* 1552 * Remove the device init value and complete the device if there is 1553 * no clients or wait for active clients to finish. 1554 */ 1555 if (atomic_dec_and_test(&dd->user_refcount)) 1556 complete(&dd->user_comp); 1557 1558 wait_for_completion(&dd->user_comp); 1559 } 1560 1561 static void remove_one(struct pci_dev *pdev) 1562 { 1563 struct hfi1_devdata *dd = pci_get_drvdata(pdev); 1564 1565 /* close debugfs files before ib unregister */ 1566 hfi1_dbg_ibdev_exit(&dd->verbs_dev); 1567 1568 /* remove the /dev hfi1 interface */ 1569 hfi1_device_remove(dd); 1570 1571 /* wait for existing user space clients to finish */ 1572 wait_for_clients(dd); 1573 1574 /* unregister from IB core */ 1575 hfi1_unregister_ib_device(dd); 1576 1577 /* 1578 * Disable the IB link, disable interrupts on the device, 1579 * clear dma engines, etc. 1580 */ 1581 shutdown_device(dd); 1582 1583 stop_timers(dd); 1584 1585 /* wait until all of our (qsfp) queue_work() calls complete */ 1586 flush_workqueue(ib_wq); 1587 1588 postinit_cleanup(dd); 1589 } 1590 1591 /** 1592 * hfi1_create_rcvhdrq - create a receive header queue 1593 * @dd: the hfi1_ib device 1594 * @rcd: the context data 1595 * 1596 * This must be contiguous memory (from an i/o perspective), and must be 1597 * DMA'able (which means for some systems, it will go through an IOMMU, 1598 * or be forced into a low address range). 1599 */ 1600 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd) 1601 { 1602 unsigned amt; 1603 u64 reg; 1604 1605 if (!rcd->rcvhdrq) { 1606 dma_addr_t dma_hdrqtail; 1607 gfp_t gfp_flags; 1608 1609 /* 1610 * rcvhdrqentsize is in DWs, so we have to convert to bytes 1611 * (* sizeof(u32)). 1612 */ 1613 amt = PAGE_ALIGN(rcd->rcvhdrq_cnt * rcd->rcvhdrqentsize * 1614 sizeof(u32)); 1615 1616 gfp_flags = (rcd->ctxt >= dd->first_user_ctxt) ? 1617 GFP_USER : GFP_KERNEL; 1618 rcd->rcvhdrq = dma_zalloc_coherent( 1619 &dd->pcidev->dev, amt, &rcd->rcvhdrq_dma, 1620 gfp_flags | __GFP_COMP); 1621 1622 if (!rcd->rcvhdrq) { 1623 dd_dev_err(dd, 1624 "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n", 1625 amt, rcd->ctxt); 1626 goto bail; 1627 } 1628 1629 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) { 1630 rcd->rcvhdrtail_kvaddr = dma_zalloc_coherent( 1631 &dd->pcidev->dev, PAGE_SIZE, &dma_hdrqtail, 1632 gfp_flags); 1633 if (!rcd->rcvhdrtail_kvaddr) 1634 goto bail_free; 1635 rcd->rcvhdrqtailaddr_dma = dma_hdrqtail; 1636 } 1637 1638 rcd->rcvhdrq_size = amt; 1639 } 1640 /* 1641 * These values are per-context: 1642 * RcvHdrCnt 1643 * RcvHdrEntSize 1644 * RcvHdrSize 1645 */ 1646 reg = ((u64)(rcd->rcvhdrq_cnt >> HDRQ_SIZE_SHIFT) 1647 & RCV_HDR_CNT_CNT_MASK) 1648 << RCV_HDR_CNT_CNT_SHIFT; 1649 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_CNT, reg); 1650 reg = (encode_rcv_header_entry_size(rcd->rcvhdrqentsize) 1651 & RCV_HDR_ENT_SIZE_ENT_SIZE_MASK) 1652 << RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT; 1653 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_ENT_SIZE, reg); 1654 reg = (dd->rcvhdrsize & RCV_HDR_SIZE_HDR_SIZE_MASK) 1655 << RCV_HDR_SIZE_HDR_SIZE_SHIFT; 1656 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_SIZE, reg); 1657 1658 /* 1659 * Program dummy tail address for every receive context 1660 * before enabling any receive context 1661 */ 1662 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_TAIL_ADDR, 1663 dd->rcvhdrtail_dummy_dma); 1664 1665 return 0; 1666 1667 bail_free: 1668 dd_dev_err(dd, 1669 "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n", 1670 rcd->ctxt); 1671 vfree(rcd->user_event_mask); 1672 rcd->user_event_mask = NULL; 1673 dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq, 1674 rcd->rcvhdrq_dma); 1675 rcd->rcvhdrq = NULL; 1676 bail: 1677 return -ENOMEM; 1678 } 1679 1680 /** 1681 * allocate eager buffers, both kernel and user contexts. 1682 * @rcd: the context we are setting up. 1683 * 1684 * Allocate the eager TID buffers and program them into hip. 1685 * They are no longer completely contiguous, we do multiple allocation 1686 * calls. Otherwise we get the OOM code involved, by asking for too 1687 * much per call, with disastrous results on some kernels. 1688 */ 1689 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd) 1690 { 1691 struct hfi1_devdata *dd = rcd->dd; 1692 u32 max_entries, egrtop, alloced_bytes = 0, idx = 0; 1693 gfp_t gfp_flags; 1694 u16 order; 1695 int ret = 0; 1696 u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu); 1697 1698 /* 1699 * GFP_USER, but without GFP_FS, so buffer cache can be 1700 * coalesced (we hope); otherwise, even at order 4, 1701 * heavy filesystem activity makes these fail, and we can 1702 * use compound pages. 1703 */ 1704 gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP; 1705 1706 /* 1707 * The minimum size of the eager buffers is a groups of MTU-sized 1708 * buffers. 1709 * The global eager_buffer_size parameter is checked against the 1710 * theoretical lower limit of the value. Here, we check against the 1711 * MTU. 1712 */ 1713 if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size)) 1714 rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size; 1715 /* 1716 * If using one-pkt-per-egr-buffer, lower the eager buffer 1717 * size to the max MTU (page-aligned). 1718 */ 1719 if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) 1720 rcd->egrbufs.rcvtid_size = round_mtu; 1721 1722 /* 1723 * Eager buffers sizes of 1MB or less require smaller TID sizes 1724 * to satisfy the "multiple of 8 RcvArray entries" requirement. 1725 */ 1726 if (rcd->egrbufs.size <= (1 << 20)) 1727 rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu, 1728 rounddown_pow_of_two(rcd->egrbufs.size / 8)); 1729 1730 while (alloced_bytes < rcd->egrbufs.size && 1731 rcd->egrbufs.alloced < rcd->egrbufs.count) { 1732 rcd->egrbufs.buffers[idx].addr = 1733 dma_zalloc_coherent(&dd->pcidev->dev, 1734 rcd->egrbufs.rcvtid_size, 1735 &rcd->egrbufs.buffers[idx].dma, 1736 gfp_flags); 1737 if (rcd->egrbufs.buffers[idx].addr) { 1738 rcd->egrbufs.buffers[idx].len = 1739 rcd->egrbufs.rcvtid_size; 1740 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr = 1741 rcd->egrbufs.buffers[idx].addr; 1742 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma = 1743 rcd->egrbufs.buffers[idx].dma; 1744 rcd->egrbufs.alloced++; 1745 alloced_bytes += rcd->egrbufs.rcvtid_size; 1746 idx++; 1747 } else { 1748 u32 new_size, i, j; 1749 u64 offset = 0; 1750 1751 /* 1752 * Fail the eager buffer allocation if: 1753 * - we are already using the lowest acceptable size 1754 * - we are using one-pkt-per-egr-buffer (this implies 1755 * that we are accepting only one size) 1756 */ 1757 if (rcd->egrbufs.rcvtid_size == round_mtu || 1758 !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) { 1759 dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n", 1760 rcd->ctxt); 1761 goto bail_rcvegrbuf_phys; 1762 } 1763 1764 new_size = rcd->egrbufs.rcvtid_size / 2; 1765 1766 /* 1767 * If the first attempt to allocate memory failed, don't 1768 * fail everything but continue with the next lower 1769 * size. 1770 */ 1771 if (idx == 0) { 1772 rcd->egrbufs.rcvtid_size = new_size; 1773 continue; 1774 } 1775 1776 /* 1777 * Re-partition already allocated buffers to a smaller 1778 * size. 1779 */ 1780 rcd->egrbufs.alloced = 0; 1781 for (i = 0, j = 0, offset = 0; j < idx; i++) { 1782 if (i >= rcd->egrbufs.count) 1783 break; 1784 rcd->egrbufs.rcvtids[i].dma = 1785 rcd->egrbufs.buffers[j].dma + offset; 1786 rcd->egrbufs.rcvtids[i].addr = 1787 rcd->egrbufs.buffers[j].addr + offset; 1788 rcd->egrbufs.alloced++; 1789 if ((rcd->egrbufs.buffers[j].dma + offset + 1790 new_size) == 1791 (rcd->egrbufs.buffers[j].dma + 1792 rcd->egrbufs.buffers[j].len)) { 1793 j++; 1794 offset = 0; 1795 } else { 1796 offset += new_size; 1797 } 1798 } 1799 rcd->egrbufs.rcvtid_size = new_size; 1800 } 1801 } 1802 rcd->egrbufs.numbufs = idx; 1803 rcd->egrbufs.size = alloced_bytes; 1804 1805 hfi1_cdbg(PROC, 1806 "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %zuKB\n", 1807 rcd->ctxt, rcd->egrbufs.alloced, 1808 rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024); 1809 1810 /* 1811 * Set the contexts rcv array head update threshold to the closest 1812 * power of 2 (so we can use a mask instead of modulo) below half 1813 * the allocated entries. 1814 */ 1815 rcd->egrbufs.threshold = 1816 rounddown_pow_of_two(rcd->egrbufs.alloced / 2); 1817 /* 1818 * Compute the expected RcvArray entry base. This is done after 1819 * allocating the eager buffers in order to maximize the 1820 * expected RcvArray entries for the context. 1821 */ 1822 max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size; 1823 egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size); 1824 rcd->expected_count = max_entries - egrtop; 1825 if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2) 1826 rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2; 1827 1828 rcd->expected_base = rcd->eager_base + egrtop; 1829 hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n", 1830 rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count, 1831 rcd->eager_base, rcd->expected_base); 1832 1833 if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) { 1834 hfi1_cdbg(PROC, 1835 "ctxt%u: current Eager buffer size is invalid %u\n", 1836 rcd->ctxt, rcd->egrbufs.rcvtid_size); 1837 ret = -EINVAL; 1838 goto bail; 1839 } 1840 1841 for (idx = 0; idx < rcd->egrbufs.alloced; idx++) { 1842 hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER, 1843 rcd->egrbufs.rcvtids[idx].dma, order); 1844 cond_resched(); 1845 } 1846 goto bail; 1847 1848 bail_rcvegrbuf_phys: 1849 for (idx = 0; idx < rcd->egrbufs.alloced && 1850 rcd->egrbufs.buffers[idx].addr; 1851 idx++) { 1852 dma_free_coherent(&dd->pcidev->dev, 1853 rcd->egrbufs.buffers[idx].len, 1854 rcd->egrbufs.buffers[idx].addr, 1855 rcd->egrbufs.buffers[idx].dma); 1856 rcd->egrbufs.buffers[idx].addr = NULL; 1857 rcd->egrbufs.buffers[idx].dma = 0; 1858 rcd->egrbufs.buffers[idx].len = 0; 1859 } 1860 bail: 1861 return ret; 1862 } 1863