xref: /openbmc/linux/drivers/infiniband/hw/hfi1/init.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 /*
2  * Copyright(c) 2015 - 2018 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <linux/pci.h>
49 #include <linux/netdevice.h>
50 #include <linux/vmalloc.h>
51 #include <linux/delay.h>
52 #include <linux/xarray.h>
53 #include <linux/module.h>
54 #include <linux/printk.h>
55 #include <linux/hrtimer.h>
56 #include <linux/bitmap.h>
57 #include <linux/numa.h>
58 #include <rdma/rdma_vt.h>
59 
60 #include "hfi.h"
61 #include "device.h"
62 #include "common.h"
63 #include "trace.h"
64 #include "mad.h"
65 #include "sdma.h"
66 #include "debugfs.h"
67 #include "verbs.h"
68 #include "aspm.h"
69 #include "affinity.h"
70 #include "vnic.h"
71 #include "exp_rcv.h"
72 
73 #undef pr_fmt
74 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
75 
76 /*
77  * min buffers we want to have per context, after driver
78  */
79 #define HFI1_MIN_USER_CTXT_BUFCNT 7
80 
81 #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
82 #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */
83 
84 #define NUM_IB_PORTS 1
85 
86 /*
87  * Number of user receive contexts we are configured to use (to allow for more
88  * pio buffers per ctxt, etc.)  Zero means use one user context per CPU.
89  */
90 int num_user_contexts = -1;
91 module_param_named(num_user_contexts, num_user_contexts, int, 0444);
92 MODULE_PARM_DESC(
93 	num_user_contexts, "Set max number of user contexts to use (default: -1 will use the real (non-HT) CPU count)");
94 
95 uint krcvqs[RXE_NUM_DATA_VL];
96 int krcvqsset;
97 module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO);
98 MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL");
99 
100 /* computed based on above array */
101 unsigned long n_krcvqs;
102 
103 static unsigned hfi1_rcvarr_split = 25;
104 module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
105 MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");
106 
107 static uint eager_buffer_size = (8 << 20); /* 8MB */
108 module_param(eager_buffer_size, uint, S_IRUGO);
109 MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 8MB");
110 
111 static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
112 module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
113 MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");
114 
115 static uint hfi1_hdrq_entsize = 32;
116 module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, 0444);
117 MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B, 32 - 128B (default)");
118 
119 unsigned int user_credit_return_threshold = 33;	/* default is 33% */
120 module_param(user_credit_return_threshold, uint, S_IRUGO);
121 MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");
122 
123 DEFINE_XARRAY_FLAGS(hfi1_dev_table, XA_FLAGS_ALLOC | XA_FLAGS_LOCK_IRQ);
124 
125 static int hfi1_create_kctxt(struct hfi1_devdata *dd,
126 			     struct hfi1_pportdata *ppd)
127 {
128 	struct hfi1_ctxtdata *rcd;
129 	int ret;
130 
131 	/* Control context has to be always 0 */
132 	BUILD_BUG_ON(HFI1_CTRL_CTXT != 0);
133 
134 	ret = hfi1_create_ctxtdata(ppd, dd->node, &rcd);
135 	if (ret < 0) {
136 		dd_dev_err(dd, "Kernel receive context allocation failed\n");
137 		return ret;
138 	}
139 
140 	/*
141 	 * Set up the kernel context flags here and now because they use
142 	 * default values for all receive side memories.  User contexts will
143 	 * be handled as they are created.
144 	 */
145 	rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
146 		HFI1_CAP_KGET(NODROP_RHQ_FULL) |
147 		HFI1_CAP_KGET(NODROP_EGR_FULL) |
148 		HFI1_CAP_KGET(DMA_RTAIL);
149 
150 	/* Control context must use DMA_RTAIL */
151 	if (rcd->ctxt == HFI1_CTRL_CTXT)
152 		rcd->flags |= HFI1_CAP_DMA_RTAIL;
153 	rcd->fast_handler = get_dma_rtail_setting(rcd) ?
154 				handle_receive_interrupt_dma_rtail :
155 				handle_receive_interrupt_nodma_rtail;
156 	rcd->slow_handler = handle_receive_interrupt;
157 
158 	hfi1_set_seq_cnt(rcd, 1);
159 
160 	rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node);
161 	if (!rcd->sc) {
162 		dd_dev_err(dd, "Kernel send context allocation failed\n");
163 		return -ENOMEM;
164 	}
165 	hfi1_init_ctxt(rcd->sc);
166 
167 	return 0;
168 }
169 
170 /*
171  * Create the receive context array and one or more kernel contexts
172  */
173 int hfi1_create_kctxts(struct hfi1_devdata *dd)
174 {
175 	u16 i;
176 	int ret;
177 
178 	dd->rcd = kcalloc_node(dd->num_rcv_contexts, sizeof(*dd->rcd),
179 			       GFP_KERNEL, dd->node);
180 	if (!dd->rcd)
181 		return -ENOMEM;
182 
183 	for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
184 		ret = hfi1_create_kctxt(dd, dd->pport);
185 		if (ret)
186 			goto bail;
187 	}
188 
189 	return 0;
190 bail:
191 	for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i)
192 		hfi1_free_ctxt(dd->rcd[i]);
193 
194 	/* All the contexts should be freed, free the array */
195 	kfree(dd->rcd);
196 	dd->rcd = NULL;
197 	return ret;
198 }
199 
200 /*
201  * Helper routines for the receive context reference count (rcd and uctxt).
202  */
203 static void hfi1_rcd_init(struct hfi1_ctxtdata *rcd)
204 {
205 	kref_init(&rcd->kref);
206 }
207 
208 /**
209  * hfi1_rcd_free - When reference is zero clean up.
210  * @kref: pointer to an initialized rcd data structure
211  *
212  */
213 static void hfi1_rcd_free(struct kref *kref)
214 {
215 	unsigned long flags;
216 	struct hfi1_ctxtdata *rcd =
217 		container_of(kref, struct hfi1_ctxtdata, kref);
218 
219 	spin_lock_irqsave(&rcd->dd->uctxt_lock, flags);
220 	rcd->dd->rcd[rcd->ctxt] = NULL;
221 	spin_unlock_irqrestore(&rcd->dd->uctxt_lock, flags);
222 
223 	hfi1_free_ctxtdata(rcd->dd, rcd);
224 
225 	kfree(rcd);
226 }
227 
228 /**
229  * hfi1_rcd_put - decrement reference for rcd
230  * @rcd: pointer to an initialized rcd data structure
231  *
232  * Use this to put a reference after the init.
233  */
234 int hfi1_rcd_put(struct hfi1_ctxtdata *rcd)
235 {
236 	if (rcd)
237 		return kref_put(&rcd->kref, hfi1_rcd_free);
238 
239 	return 0;
240 }
241 
242 /**
243  * hfi1_rcd_get - increment reference for rcd
244  * @rcd: pointer to an initialized rcd data structure
245  *
246  * Use this to get a reference after the init.
247  *
248  * Return : reflect kref_get_unless_zero(), which returns non-zero on
249  * increment, otherwise 0.
250  */
251 int hfi1_rcd_get(struct hfi1_ctxtdata *rcd)
252 {
253 	return kref_get_unless_zero(&rcd->kref);
254 }
255 
256 /**
257  * allocate_rcd_index - allocate an rcd index from the rcd array
258  * @dd: pointer to a valid devdata structure
259  * @rcd: rcd data structure to assign
260  * @index: pointer to index that is allocated
261  *
262  * Find an empty index in the rcd array, and assign the given rcd to it.
263  * If the array is full, we are EBUSY.
264  *
265  */
266 static int allocate_rcd_index(struct hfi1_devdata *dd,
267 			      struct hfi1_ctxtdata *rcd, u16 *index)
268 {
269 	unsigned long flags;
270 	u16 ctxt;
271 
272 	spin_lock_irqsave(&dd->uctxt_lock, flags);
273 	for (ctxt = 0; ctxt < dd->num_rcv_contexts; ctxt++)
274 		if (!dd->rcd[ctxt])
275 			break;
276 
277 	if (ctxt < dd->num_rcv_contexts) {
278 		rcd->ctxt = ctxt;
279 		dd->rcd[ctxt] = rcd;
280 		hfi1_rcd_init(rcd);
281 	}
282 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
283 
284 	if (ctxt >= dd->num_rcv_contexts)
285 		return -EBUSY;
286 
287 	*index = ctxt;
288 
289 	return 0;
290 }
291 
292 /**
293  * hfi1_rcd_get_by_index_safe - validate the ctxt index before accessing the
294  * array
295  * @dd: pointer to a valid devdata structure
296  * @ctxt: the index of an possilbe rcd
297  *
298  * This is a wrapper for hfi1_rcd_get_by_index() to validate that the given
299  * ctxt index is valid.
300  *
301  * The caller is responsible for making the _put().
302  *
303  */
304 struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd,
305 						 u16 ctxt)
306 {
307 	if (ctxt < dd->num_rcv_contexts)
308 		return hfi1_rcd_get_by_index(dd, ctxt);
309 
310 	return NULL;
311 }
312 
313 /**
314  * hfi1_rcd_get_by_index
315  * @dd: pointer to a valid devdata structure
316  * @ctxt: the index of an possilbe rcd
317  *
318  * We need to protect access to the rcd array.  If access is needed to
319  * one or more index, get the protecting spinlock and then increment the
320  * kref.
321  *
322  * The caller is responsible for making the _put().
323  *
324  */
325 struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt)
326 {
327 	unsigned long flags;
328 	struct hfi1_ctxtdata *rcd = NULL;
329 
330 	spin_lock_irqsave(&dd->uctxt_lock, flags);
331 	if (dd->rcd[ctxt]) {
332 		rcd = dd->rcd[ctxt];
333 		if (!hfi1_rcd_get(rcd))
334 			rcd = NULL;
335 	}
336 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
337 
338 	return rcd;
339 }
340 
341 /*
342  * Common code for user and kernel context create and setup.
343  * NOTE: the initial kref is done here (hf1_rcd_init()).
344  */
345 int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa,
346 			 struct hfi1_ctxtdata **context)
347 {
348 	struct hfi1_devdata *dd = ppd->dd;
349 	struct hfi1_ctxtdata *rcd;
350 	unsigned kctxt_ngroups = 0;
351 	u32 base;
352 
353 	if (dd->rcv_entries.nctxt_extra >
354 	    dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt)
355 		kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
356 			 (dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt));
357 	rcd = kzalloc_node(sizeof(*rcd), GFP_KERNEL, numa);
358 	if (rcd) {
359 		u32 rcvtids, max_entries;
360 		u16 ctxt;
361 		int ret;
362 
363 		ret = allocate_rcd_index(dd, rcd, &ctxt);
364 		if (ret) {
365 			*context = NULL;
366 			kfree(rcd);
367 			return ret;
368 		}
369 
370 		INIT_LIST_HEAD(&rcd->qp_wait_list);
371 		hfi1_exp_tid_group_init(rcd);
372 		rcd->ppd = ppd;
373 		rcd->dd = dd;
374 		rcd->numa_id = numa;
375 		rcd->rcv_array_groups = dd->rcv_entries.ngroups;
376 		rcd->rhf_rcv_function_map = normal_rhf_rcv_functions;
377 
378 		mutex_init(&rcd->exp_mutex);
379 		spin_lock_init(&rcd->exp_lock);
380 		INIT_LIST_HEAD(&rcd->flow_queue.queue_head);
381 		INIT_LIST_HEAD(&rcd->rarr_queue.queue_head);
382 
383 		hfi1_cdbg(PROC, "setting up context %u\n", rcd->ctxt);
384 
385 		/*
386 		 * Calculate the context's RcvArray entry starting point.
387 		 * We do this here because we have to take into account all
388 		 * the RcvArray entries that previous context would have
389 		 * taken and we have to account for any extra groups assigned
390 		 * to the static (kernel) or dynamic (vnic/user) contexts.
391 		 */
392 		if (ctxt < dd->first_dyn_alloc_ctxt) {
393 			if (ctxt < kctxt_ngroups) {
394 				base = ctxt * (dd->rcv_entries.ngroups + 1);
395 				rcd->rcv_array_groups++;
396 			} else {
397 				base = kctxt_ngroups +
398 					(ctxt * dd->rcv_entries.ngroups);
399 			}
400 		} else {
401 			u16 ct = ctxt - dd->first_dyn_alloc_ctxt;
402 
403 			base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
404 				kctxt_ngroups);
405 			if (ct < dd->rcv_entries.nctxt_extra) {
406 				base += ct * (dd->rcv_entries.ngroups + 1);
407 				rcd->rcv_array_groups++;
408 			} else {
409 				base += dd->rcv_entries.nctxt_extra +
410 					(ct * dd->rcv_entries.ngroups);
411 			}
412 		}
413 		rcd->eager_base = base * dd->rcv_entries.group_size;
414 
415 		rcd->rcvhdrq_cnt = rcvhdrcnt;
416 		rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
417 		rcd->rhf_offset =
418 			rcd->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
419 		/*
420 		 * Simple Eager buffer allocation: we have already pre-allocated
421 		 * the number of RcvArray entry groups. Each ctxtdata structure
422 		 * holds the number of groups for that context.
423 		 *
424 		 * To follow CSR requirements and maintain cacheline alignment,
425 		 * make sure all sizes and bases are multiples of group_size.
426 		 *
427 		 * The expected entry count is what is left after assigning
428 		 * eager.
429 		 */
430 		max_entries = rcd->rcv_array_groups *
431 			dd->rcv_entries.group_size;
432 		rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
433 		rcd->egrbufs.count = round_down(rcvtids,
434 						dd->rcv_entries.group_size);
435 		if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
436 			dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
437 				   rcd->ctxt);
438 			rcd->egrbufs.count = MAX_EAGER_ENTRIES;
439 		}
440 		hfi1_cdbg(PROC,
441 			  "ctxt%u: max Eager buffer RcvArray entries: %u\n",
442 			  rcd->ctxt, rcd->egrbufs.count);
443 
444 		/*
445 		 * Allocate array that will hold the eager buffer accounting
446 		 * data.
447 		 * This will allocate the maximum possible buffer count based
448 		 * on the value of the RcvArray split parameter.
449 		 * The resulting value will be rounded down to the closest
450 		 * multiple of dd->rcv_entries.group_size.
451 		 */
452 		rcd->egrbufs.buffers =
453 			kcalloc_node(rcd->egrbufs.count,
454 				     sizeof(*rcd->egrbufs.buffers),
455 				     GFP_KERNEL, numa);
456 		if (!rcd->egrbufs.buffers)
457 			goto bail;
458 		rcd->egrbufs.rcvtids =
459 			kcalloc_node(rcd->egrbufs.count,
460 				     sizeof(*rcd->egrbufs.rcvtids),
461 				     GFP_KERNEL, numa);
462 		if (!rcd->egrbufs.rcvtids)
463 			goto bail;
464 		rcd->egrbufs.size = eager_buffer_size;
465 		/*
466 		 * The size of the buffers programmed into the RcvArray
467 		 * entries needs to be big enough to handle the highest
468 		 * MTU supported.
469 		 */
470 		if (rcd->egrbufs.size < hfi1_max_mtu) {
471 			rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu);
472 			hfi1_cdbg(PROC,
473 				  "ctxt%u: eager bufs size too small. Adjusting to %u\n",
474 				    rcd->ctxt, rcd->egrbufs.size);
475 		}
476 		rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;
477 
478 		/* Applicable only for statically created kernel contexts */
479 		if (ctxt < dd->first_dyn_alloc_ctxt) {
480 			rcd->opstats = kzalloc_node(sizeof(*rcd->opstats),
481 						    GFP_KERNEL, numa);
482 			if (!rcd->opstats)
483 				goto bail;
484 
485 			/* Initialize TID flow generations for the context */
486 			hfi1_kern_init_ctxt_generations(rcd);
487 		}
488 
489 		*context = rcd;
490 		return 0;
491 	}
492 
493 bail:
494 	*context = NULL;
495 	hfi1_free_ctxt(rcd);
496 	return -ENOMEM;
497 }
498 
499 /**
500  * hfi1_free_ctxt
501  * @rcd: pointer to an initialized rcd data structure
502  *
503  * This wrapper is the free function that matches hfi1_create_ctxtdata().
504  * When a context is done being used (kernel or user), this function is called
505  * for the "final" put to match the kref init from hf1i_create_ctxtdata().
506  * Other users of the context do a get/put sequence to make sure that the
507  * structure isn't removed while in use.
508  */
509 void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd)
510 {
511 	hfi1_rcd_put(rcd);
512 }
513 
514 /*
515  * Select the largest ccti value over all SLs to determine the intra-
516  * packet gap for the link.
517  *
518  * called with cca_timer_lock held (to protect access to cca_timer
519  * array), and rcu_read_lock() (to protect access to cc_state).
520  */
521 void set_link_ipg(struct hfi1_pportdata *ppd)
522 {
523 	struct hfi1_devdata *dd = ppd->dd;
524 	struct cc_state *cc_state;
525 	int i;
526 	u16 cce, ccti_limit, max_ccti = 0;
527 	u16 shift, mult;
528 	u64 src;
529 	u32 current_egress_rate; /* Mbits /sec */
530 	u32 max_pkt_time;
531 	/*
532 	 * max_pkt_time is the maximum packet egress time in units
533 	 * of the fabric clock period 1/(805 MHz).
534 	 */
535 
536 	cc_state = get_cc_state(ppd);
537 
538 	if (!cc_state)
539 		/*
540 		 * This should _never_ happen - rcu_read_lock() is held,
541 		 * and set_link_ipg() should not be called if cc_state
542 		 * is NULL.
543 		 */
544 		return;
545 
546 	for (i = 0; i < OPA_MAX_SLS; i++) {
547 		u16 ccti = ppd->cca_timer[i].ccti;
548 
549 		if (ccti > max_ccti)
550 			max_ccti = ccti;
551 	}
552 
553 	ccti_limit = cc_state->cct.ccti_limit;
554 	if (max_ccti > ccti_limit)
555 		max_ccti = ccti_limit;
556 
557 	cce = cc_state->cct.entries[max_ccti].entry;
558 	shift = (cce & 0xc000) >> 14;
559 	mult = (cce & 0x3fff);
560 
561 	current_egress_rate = active_egress_rate(ppd);
562 
563 	max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate);
564 
565 	src = (max_pkt_time >> shift) * mult;
566 
567 	src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
568 	src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;
569 
570 	write_csr(dd, SEND_STATIC_RATE_CONTROL, src);
571 }
572 
573 static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
574 {
575 	struct cca_timer *cca_timer;
576 	struct hfi1_pportdata *ppd;
577 	int sl;
578 	u16 ccti_timer, ccti_min;
579 	struct cc_state *cc_state;
580 	unsigned long flags;
581 	enum hrtimer_restart ret = HRTIMER_NORESTART;
582 
583 	cca_timer = container_of(t, struct cca_timer, hrtimer);
584 	ppd = cca_timer->ppd;
585 	sl = cca_timer->sl;
586 
587 	rcu_read_lock();
588 
589 	cc_state = get_cc_state(ppd);
590 
591 	if (!cc_state) {
592 		rcu_read_unlock();
593 		return HRTIMER_NORESTART;
594 	}
595 
596 	/*
597 	 * 1) decrement ccti for SL
598 	 * 2) calculate IPG for link (set_link_ipg())
599 	 * 3) restart timer, unless ccti is at min value
600 	 */
601 
602 	ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
603 	ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
604 
605 	spin_lock_irqsave(&ppd->cca_timer_lock, flags);
606 
607 	if (cca_timer->ccti > ccti_min) {
608 		cca_timer->ccti--;
609 		set_link_ipg(ppd);
610 	}
611 
612 	if (cca_timer->ccti > ccti_min) {
613 		unsigned long nsec = 1024 * ccti_timer;
614 		/* ccti_timer is in units of 1.024 usec */
615 		hrtimer_forward_now(t, ns_to_ktime(nsec));
616 		ret = HRTIMER_RESTART;
617 	}
618 
619 	spin_unlock_irqrestore(&ppd->cca_timer_lock, flags);
620 	rcu_read_unlock();
621 	return ret;
622 }
623 
624 /*
625  * Common code for initializing the physical port structure.
626  */
627 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
628 			 struct hfi1_devdata *dd, u8 hw_pidx, u8 port)
629 {
630 	int i;
631 	uint default_pkey_idx;
632 	struct cc_state *cc_state;
633 
634 	ppd->dd = dd;
635 	ppd->hw_pidx = hw_pidx;
636 	ppd->port = port; /* IB port number, not index */
637 	ppd->prev_link_width = LINK_WIDTH_DEFAULT;
638 	/*
639 	 * There are C_VL_COUNT number of PortVLXmitWait counters.
640 	 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
641 	 */
642 	for (i = 0; i < C_VL_COUNT + 1; i++) {
643 		ppd->port_vl_xmit_wait_last[i] = 0;
644 		ppd->vl_xmit_flit_cnt[i] = 0;
645 	}
646 
647 	default_pkey_idx = 1;
648 
649 	ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
650 	ppd->part_enforce |= HFI1_PART_ENFORCE_IN;
651 
652 	if (loopback) {
653 		dd_dev_err(dd, "Faking data partition 0x8001 in idx %u\n",
654 			   !default_pkey_idx);
655 		ppd->pkeys[!default_pkey_idx] = 0x8001;
656 	}
657 
658 	INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
659 	INIT_WORK(&ppd->link_up_work, handle_link_up);
660 	INIT_WORK(&ppd->link_down_work, handle_link_down);
661 	INIT_WORK(&ppd->freeze_work, handle_freeze);
662 	INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
663 	INIT_WORK(&ppd->sma_message_work, handle_sma_message);
664 	INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
665 	INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link);
666 	INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work);
667 	INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event);
668 
669 	mutex_init(&ppd->hls_lock);
670 	spin_lock_init(&ppd->qsfp_info.qsfp_lock);
671 
672 	ppd->qsfp_info.ppd = ppd;
673 	ppd->sm_trap_qp = 0x0;
674 	ppd->sa_qp = 0x1;
675 
676 	ppd->hfi1_wq = NULL;
677 
678 	spin_lock_init(&ppd->cca_timer_lock);
679 
680 	for (i = 0; i < OPA_MAX_SLS; i++) {
681 		hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
682 			     HRTIMER_MODE_REL);
683 		ppd->cca_timer[i].ppd = ppd;
684 		ppd->cca_timer[i].sl = i;
685 		ppd->cca_timer[i].ccti = 0;
686 		ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
687 	}
688 
689 	ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;
690 
691 	spin_lock_init(&ppd->cc_state_lock);
692 	spin_lock_init(&ppd->cc_log_lock);
693 	cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL);
694 	RCU_INIT_POINTER(ppd->cc_state, cc_state);
695 	if (!cc_state)
696 		goto bail;
697 	return;
698 
699 bail:
700 	dd_dev_err(dd, "Congestion Control Agent disabled for port %d\n", port);
701 }
702 
703 /*
704  * Do initialization for device that is only needed on
705  * first detect, not on resets.
706  */
707 static int loadtime_init(struct hfi1_devdata *dd)
708 {
709 	return 0;
710 }
711 
712 /**
713  * init_after_reset - re-initialize after a reset
714  * @dd: the hfi1_ib device
715  *
716  * sanity check at least some of the values after reset, and
717  * ensure no receive or transmit (explicitly, in case reset
718  * failed
719  */
720 static int init_after_reset(struct hfi1_devdata *dd)
721 {
722 	int i;
723 	struct hfi1_ctxtdata *rcd;
724 	/*
725 	 * Ensure chip does no sends or receives, tail updates, or
726 	 * pioavail updates while we re-initialize.  This is mostly
727 	 * for the driver data structures, not chip registers.
728 	 */
729 	for (i = 0; i < dd->num_rcv_contexts; i++) {
730 		rcd = hfi1_rcd_get_by_index(dd, i);
731 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
732 			     HFI1_RCVCTRL_INTRAVAIL_DIS |
733 			     HFI1_RCVCTRL_TAILUPD_DIS, rcd);
734 		hfi1_rcd_put(rcd);
735 	}
736 	pio_send_control(dd, PSC_GLOBAL_DISABLE);
737 	for (i = 0; i < dd->num_send_contexts; i++)
738 		sc_disable(dd->send_contexts[i].sc);
739 
740 	return 0;
741 }
742 
743 static void enable_chip(struct hfi1_devdata *dd)
744 {
745 	struct hfi1_ctxtdata *rcd;
746 	u32 rcvmask;
747 	u16 i;
748 
749 	/* enable PIO send */
750 	pio_send_control(dd, PSC_GLOBAL_ENABLE);
751 
752 	/*
753 	 * Enable kernel ctxts' receive and receive interrupt.
754 	 * Other ctxts done as user opens and initializes them.
755 	 */
756 	for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
757 		rcd = hfi1_rcd_get_by_index(dd, i);
758 		if (!rcd)
759 			continue;
760 		rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
761 		rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
762 			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
763 		if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
764 			rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
765 		if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_RHQ_FULL))
766 			rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
767 		if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_EGR_FULL))
768 			rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
769 		if (HFI1_CAP_IS_KSET(TID_RDMA))
770 			rcvmask |= HFI1_RCVCTRL_TIDFLOW_ENB;
771 		hfi1_rcvctrl(dd, rcvmask, rcd);
772 		sc_enable(rcd->sc);
773 		hfi1_rcd_put(rcd);
774 	}
775 }
776 
777 /**
778  * create_workqueues - create per port workqueues
779  * @dd: the hfi1_ib device
780  */
781 static int create_workqueues(struct hfi1_devdata *dd)
782 {
783 	int pidx;
784 	struct hfi1_pportdata *ppd;
785 
786 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
787 		ppd = dd->pport + pidx;
788 		if (!ppd->hfi1_wq) {
789 			ppd->hfi1_wq =
790 				alloc_workqueue(
791 				    "hfi%d_%d",
792 				    WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE |
793 				    WQ_MEM_RECLAIM,
794 				    HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES,
795 				    dd->unit, pidx);
796 			if (!ppd->hfi1_wq)
797 				goto wq_error;
798 		}
799 		if (!ppd->link_wq) {
800 			/*
801 			 * Make the link workqueue single-threaded to enforce
802 			 * serialization.
803 			 */
804 			ppd->link_wq =
805 				alloc_workqueue(
806 				    "hfi_link_%d_%d",
807 				    WQ_SYSFS | WQ_MEM_RECLAIM | WQ_UNBOUND,
808 				    1, /* max_active */
809 				    dd->unit, pidx);
810 			if (!ppd->link_wq)
811 				goto wq_error;
812 		}
813 	}
814 	return 0;
815 wq_error:
816 	pr_err("alloc_workqueue failed for port %d\n", pidx + 1);
817 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
818 		ppd = dd->pport + pidx;
819 		if (ppd->hfi1_wq) {
820 			destroy_workqueue(ppd->hfi1_wq);
821 			ppd->hfi1_wq = NULL;
822 		}
823 		if (ppd->link_wq) {
824 			destroy_workqueue(ppd->link_wq);
825 			ppd->link_wq = NULL;
826 		}
827 	}
828 	return -ENOMEM;
829 }
830 
831 /**
832  * enable_general_intr() - Enable the IRQs that will be handled by the
833  * general interrupt handler.
834  * @dd: valid devdata
835  *
836  */
837 static void enable_general_intr(struct hfi1_devdata *dd)
838 {
839 	set_intr_bits(dd, CCE_ERR_INT, MISC_ERR_INT, true);
840 	set_intr_bits(dd, PIO_ERR_INT, TXE_ERR_INT, true);
841 	set_intr_bits(dd, IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END, true);
842 	set_intr_bits(dd, PBC_INT, GPIO_ASSERT_INT, true);
843 	set_intr_bits(dd, TCRIT_INT, TCRIT_INT, true);
844 	set_intr_bits(dd, IS_DC_START, IS_DC_END, true);
845 	set_intr_bits(dd, IS_SENDCREDIT_START, IS_SENDCREDIT_END, true);
846 }
847 
848 /**
849  * hfi1_init - do the actual initialization sequence on the chip
850  * @dd: the hfi1_ib device
851  * @reinit: re-initializing, so don't allocate new memory
852  *
853  * Do the actual initialization sequence on the chip.  This is done
854  * both from the init routine called from the PCI infrastructure, and
855  * when we reset the chip, or detect that it was reset internally,
856  * or it's administratively re-enabled.
857  *
858  * Memory allocation here and in called routines is only done in
859  * the first case (reinit == 0).  We have to be careful, because even
860  * without memory allocation, we need to re-write all the chip registers
861  * TIDs, etc. after the reset or enable has completed.
862  */
863 int hfi1_init(struct hfi1_devdata *dd, int reinit)
864 {
865 	int ret = 0, pidx, lastfail = 0;
866 	unsigned long len;
867 	u16 i;
868 	struct hfi1_ctxtdata *rcd;
869 	struct hfi1_pportdata *ppd;
870 
871 	/* Set up send low level handlers */
872 	dd->process_pio_send = hfi1_verbs_send_pio;
873 	dd->process_dma_send = hfi1_verbs_send_dma;
874 	dd->pio_inline_send = pio_copy;
875 	dd->process_vnic_dma_send = hfi1_vnic_send_dma;
876 
877 	if (is_ax(dd)) {
878 		atomic_set(&dd->drop_packet, DROP_PACKET_ON);
879 		dd->do_drop = true;
880 	} else {
881 		atomic_set(&dd->drop_packet, DROP_PACKET_OFF);
882 		dd->do_drop = false;
883 	}
884 
885 	/* make sure the link is not "up" */
886 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
887 		ppd = dd->pport + pidx;
888 		ppd->linkup = 0;
889 	}
890 
891 	if (reinit)
892 		ret = init_after_reset(dd);
893 	else
894 		ret = loadtime_init(dd);
895 	if (ret)
896 		goto done;
897 
898 	/* allocate dummy tail memory for all receive contexts */
899 	dd->rcvhdrtail_dummy_kvaddr = dma_alloc_coherent(&dd->pcidev->dev,
900 							 sizeof(u64),
901 							 &dd->rcvhdrtail_dummy_dma,
902 							 GFP_KERNEL);
903 
904 	if (!dd->rcvhdrtail_dummy_kvaddr) {
905 		dd_dev_err(dd, "cannot allocate dummy tail memory\n");
906 		ret = -ENOMEM;
907 		goto done;
908 	}
909 
910 	/* dd->rcd can be NULL if early initialization failed */
911 	for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) {
912 		/*
913 		 * Set up the (kernel) rcvhdr queue and egr TIDs.  If doing
914 		 * re-init, the simplest way to handle this is to free
915 		 * existing, and re-allocate.
916 		 * Need to re-create rest of ctxt 0 ctxtdata as well.
917 		 */
918 		rcd = hfi1_rcd_get_by_index(dd, i);
919 		if (!rcd)
920 			continue;
921 
922 		rcd->do_interrupt = &handle_receive_interrupt;
923 
924 		lastfail = hfi1_create_rcvhdrq(dd, rcd);
925 		if (!lastfail)
926 			lastfail = hfi1_setup_eagerbufs(rcd);
927 		if (!lastfail)
928 			lastfail = hfi1_kern_exp_rcv_init(rcd, reinit);
929 		if (lastfail) {
930 			dd_dev_err(dd,
931 				   "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
932 			ret = lastfail;
933 		}
934 		/* enable IRQ */
935 		hfi1_rcd_put(rcd);
936 	}
937 
938 	/* Allocate enough memory for user event notification. */
939 	len = PAGE_ALIGN(chip_rcv_contexts(dd) * HFI1_MAX_SHARED_CTXTS *
940 			 sizeof(*dd->events));
941 	dd->events = vmalloc_user(len);
942 	if (!dd->events)
943 		dd_dev_err(dd, "Failed to allocate user events page\n");
944 	/*
945 	 * Allocate a page for device and port status.
946 	 * Page will be shared amongst all user processes.
947 	 */
948 	dd->status = vmalloc_user(PAGE_SIZE);
949 	if (!dd->status)
950 		dd_dev_err(dd, "Failed to allocate dev status page\n");
951 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
952 		ppd = dd->pport + pidx;
953 		if (dd->status)
954 			/* Currently, we only have one port */
955 			ppd->statusp = &dd->status->port;
956 
957 		set_mtu(ppd);
958 	}
959 
960 	/* enable chip even if we have an error, so we can debug cause */
961 	enable_chip(dd);
962 
963 done:
964 	/*
965 	 * Set status even if port serdes is not initialized
966 	 * so that diags will work.
967 	 */
968 	if (dd->status)
969 		dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
970 			HFI1_STATUS_INITTED;
971 	if (!ret) {
972 		/* enable all interrupts from the chip */
973 		enable_general_intr(dd);
974 		init_qsfp_int(dd);
975 
976 		/* chip is OK for user apps; mark it as initialized */
977 		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
978 			ppd = dd->pport + pidx;
979 
980 			/*
981 			 * start the serdes - must be after interrupts are
982 			 * enabled so we are notified when the link goes up
983 			 */
984 			lastfail = bringup_serdes(ppd);
985 			if (lastfail)
986 				dd_dev_info(dd,
987 					    "Failed to bring up port %u\n",
988 					    ppd->port);
989 
990 			/*
991 			 * Set status even if port serdes is not initialized
992 			 * so that diags will work.
993 			 */
994 			if (ppd->statusp)
995 				*ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
996 							HFI1_STATUS_INITTED;
997 			if (!ppd->link_speed_enabled)
998 				continue;
999 		}
1000 	}
1001 
1002 	/* if ret is non-zero, we probably should do some cleanup here... */
1003 	return ret;
1004 }
1005 
1006 struct hfi1_devdata *hfi1_lookup(int unit)
1007 {
1008 	return xa_load(&hfi1_dev_table, unit);
1009 }
1010 
1011 /*
1012  * Stop the timers during unit shutdown, or after an error late
1013  * in initialization.
1014  */
1015 static void stop_timers(struct hfi1_devdata *dd)
1016 {
1017 	struct hfi1_pportdata *ppd;
1018 	int pidx;
1019 
1020 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1021 		ppd = dd->pport + pidx;
1022 		if (ppd->led_override_timer.function) {
1023 			del_timer_sync(&ppd->led_override_timer);
1024 			atomic_set(&ppd->led_override_timer_active, 0);
1025 		}
1026 	}
1027 }
1028 
1029 /**
1030  * shutdown_device - shut down a device
1031  * @dd: the hfi1_ib device
1032  *
1033  * This is called to make the device quiet when we are about to
1034  * unload the driver, and also when the device is administratively
1035  * disabled.   It does not free any data structures.
1036  * Everything it does has to be setup again by hfi1_init(dd, 1)
1037  */
1038 static void shutdown_device(struct hfi1_devdata *dd)
1039 {
1040 	struct hfi1_pportdata *ppd;
1041 	struct hfi1_ctxtdata *rcd;
1042 	unsigned pidx;
1043 	int i;
1044 
1045 	if (dd->flags & HFI1_SHUTDOWN)
1046 		return;
1047 	dd->flags |= HFI1_SHUTDOWN;
1048 
1049 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1050 		ppd = dd->pport + pidx;
1051 
1052 		ppd->linkup = 0;
1053 		if (ppd->statusp)
1054 			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
1055 					   HFI1_STATUS_IB_READY);
1056 	}
1057 	dd->flags &= ~HFI1_INITTED;
1058 
1059 	/* mask and clean up interrupts */
1060 	set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, false);
1061 	msix_clean_up_interrupts(dd);
1062 
1063 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1064 		ppd = dd->pport + pidx;
1065 		for (i = 0; i < dd->num_rcv_contexts; i++) {
1066 			rcd = hfi1_rcd_get_by_index(dd, i);
1067 			hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
1068 				     HFI1_RCVCTRL_CTXT_DIS |
1069 				     HFI1_RCVCTRL_INTRAVAIL_DIS |
1070 				     HFI1_RCVCTRL_PKEY_DIS |
1071 				     HFI1_RCVCTRL_ONE_PKT_EGR_DIS, rcd);
1072 			hfi1_rcd_put(rcd);
1073 		}
1074 		/*
1075 		 * Gracefully stop all sends allowing any in progress to
1076 		 * trickle out first.
1077 		 */
1078 		for (i = 0; i < dd->num_send_contexts; i++)
1079 			sc_flush(dd->send_contexts[i].sc);
1080 	}
1081 
1082 	/*
1083 	 * Enough for anything that's going to trickle out to have actually
1084 	 * done so.
1085 	 */
1086 	udelay(20);
1087 
1088 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1089 		ppd = dd->pport + pidx;
1090 
1091 		/* disable all contexts */
1092 		for (i = 0; i < dd->num_send_contexts; i++)
1093 			sc_disable(dd->send_contexts[i].sc);
1094 		/* disable the send device */
1095 		pio_send_control(dd, PSC_GLOBAL_DISABLE);
1096 
1097 		shutdown_led_override(ppd);
1098 
1099 		/*
1100 		 * Clear SerdesEnable.
1101 		 * We can't count on interrupts since we are stopping.
1102 		 */
1103 		hfi1_quiet_serdes(ppd);
1104 
1105 		if (ppd->hfi1_wq) {
1106 			destroy_workqueue(ppd->hfi1_wq);
1107 			ppd->hfi1_wq = NULL;
1108 		}
1109 		if (ppd->link_wq) {
1110 			destroy_workqueue(ppd->link_wq);
1111 			ppd->link_wq = NULL;
1112 		}
1113 	}
1114 	sdma_exit(dd);
1115 }
1116 
1117 /**
1118  * hfi1_free_ctxtdata - free a context's allocated data
1119  * @dd: the hfi1_ib device
1120  * @rcd: the ctxtdata structure
1121  *
1122  * free up any allocated data for a context
1123  * It should never change any chip state, or global driver state.
1124  */
1125 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1126 {
1127 	u32 e;
1128 
1129 	if (!rcd)
1130 		return;
1131 
1132 	if (rcd->rcvhdrq) {
1133 		dma_free_coherent(&dd->pcidev->dev, rcvhdrq_size(rcd),
1134 				  rcd->rcvhdrq, rcd->rcvhdrq_dma);
1135 		rcd->rcvhdrq = NULL;
1136 		if (hfi1_rcvhdrtail_kvaddr(rcd)) {
1137 			dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
1138 					  (void *)hfi1_rcvhdrtail_kvaddr(rcd),
1139 					  rcd->rcvhdrqtailaddr_dma);
1140 			rcd->rcvhdrtail_kvaddr = NULL;
1141 		}
1142 	}
1143 
1144 	/* all the RcvArray entries should have been cleared by now */
1145 	kfree(rcd->egrbufs.rcvtids);
1146 	rcd->egrbufs.rcvtids = NULL;
1147 
1148 	for (e = 0; e < rcd->egrbufs.alloced; e++) {
1149 		if (rcd->egrbufs.buffers[e].dma)
1150 			dma_free_coherent(&dd->pcidev->dev,
1151 					  rcd->egrbufs.buffers[e].len,
1152 					  rcd->egrbufs.buffers[e].addr,
1153 					  rcd->egrbufs.buffers[e].dma);
1154 	}
1155 	kfree(rcd->egrbufs.buffers);
1156 	rcd->egrbufs.alloced = 0;
1157 	rcd->egrbufs.buffers = NULL;
1158 
1159 	sc_free(rcd->sc);
1160 	rcd->sc = NULL;
1161 
1162 	vfree(rcd->subctxt_uregbase);
1163 	vfree(rcd->subctxt_rcvegrbuf);
1164 	vfree(rcd->subctxt_rcvhdr_base);
1165 	kfree(rcd->opstats);
1166 
1167 	rcd->subctxt_uregbase = NULL;
1168 	rcd->subctxt_rcvegrbuf = NULL;
1169 	rcd->subctxt_rcvhdr_base = NULL;
1170 	rcd->opstats = NULL;
1171 }
1172 
1173 /*
1174  * Release our hold on the shared asic data.  If we are the last one,
1175  * return the structure to be finalized outside the lock.  Must be
1176  * holding hfi1_dev_table lock.
1177  */
1178 static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd)
1179 {
1180 	struct hfi1_asic_data *ad;
1181 	int other;
1182 
1183 	if (!dd->asic_data)
1184 		return NULL;
1185 	dd->asic_data->dds[dd->hfi1_id] = NULL;
1186 	other = dd->hfi1_id ? 0 : 1;
1187 	ad = dd->asic_data;
1188 	dd->asic_data = NULL;
1189 	/* return NULL if the other dd still has a link */
1190 	return ad->dds[other] ? NULL : ad;
1191 }
1192 
1193 static void finalize_asic_data(struct hfi1_devdata *dd,
1194 			       struct hfi1_asic_data *ad)
1195 {
1196 	clean_up_i2c(dd, ad);
1197 	kfree(ad);
1198 }
1199 
1200 /**
1201  * hfi1_clean_devdata - cleans up per-unit data structure
1202  * @dd: pointer to a valid devdata structure
1203  *
1204  * It cleans up all data structures set up by
1205  * by hfi1_alloc_devdata().
1206  */
1207 static void hfi1_clean_devdata(struct hfi1_devdata *dd)
1208 {
1209 	struct hfi1_asic_data *ad;
1210 	unsigned long flags;
1211 
1212 	xa_lock_irqsave(&hfi1_dev_table, flags);
1213 	__xa_erase(&hfi1_dev_table, dd->unit);
1214 	ad = release_asic_data(dd);
1215 	xa_unlock_irqrestore(&hfi1_dev_table, flags);
1216 
1217 	finalize_asic_data(dd, ad);
1218 	free_platform_config(dd);
1219 	rcu_barrier(); /* wait for rcu callbacks to complete */
1220 	free_percpu(dd->int_counter);
1221 	free_percpu(dd->rcv_limit);
1222 	free_percpu(dd->send_schedule);
1223 	free_percpu(dd->tx_opstats);
1224 	dd->int_counter   = NULL;
1225 	dd->rcv_limit     = NULL;
1226 	dd->send_schedule = NULL;
1227 	dd->tx_opstats    = NULL;
1228 	kfree(dd->comp_vect);
1229 	dd->comp_vect = NULL;
1230 	sdma_clean(dd, dd->num_sdma);
1231 	rvt_dealloc_device(&dd->verbs_dev.rdi);
1232 }
1233 
1234 static void __hfi1_free_devdata(struct kobject *kobj)
1235 {
1236 	struct hfi1_devdata *dd =
1237 		container_of(kobj, struct hfi1_devdata, kobj);
1238 
1239 	hfi1_clean_devdata(dd);
1240 }
1241 
1242 static struct kobj_type hfi1_devdata_type = {
1243 	.release = __hfi1_free_devdata,
1244 };
1245 
1246 void hfi1_free_devdata(struct hfi1_devdata *dd)
1247 {
1248 	kobject_put(&dd->kobj);
1249 }
1250 
1251 /**
1252  * hfi1_alloc_devdata - Allocate our primary per-unit data structure.
1253  * @pdev: Valid PCI device
1254  * @extra: How many bytes to alloc past the default
1255  *
1256  * Must be done via verbs allocator, because the verbs cleanup process
1257  * both does cleanup and free of the data structure.
1258  * "extra" is for chip-specific data.
1259  */
1260 static struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev,
1261 					       size_t extra)
1262 {
1263 	struct hfi1_devdata *dd;
1264 	int ret, nports;
1265 
1266 	/* extra is * number of ports */
1267 	nports = extra / sizeof(struct hfi1_pportdata);
1268 
1269 	dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra,
1270 						     nports);
1271 	if (!dd)
1272 		return ERR_PTR(-ENOMEM);
1273 	dd->num_pports = nports;
1274 	dd->pport = (struct hfi1_pportdata *)(dd + 1);
1275 	dd->pcidev = pdev;
1276 	pci_set_drvdata(pdev, dd);
1277 	dd->node = NUMA_NO_NODE;
1278 
1279 	ret = xa_alloc_irq(&hfi1_dev_table, &dd->unit, dd, xa_limit_32b,
1280 			GFP_KERNEL);
1281 	if (ret < 0) {
1282 		dev_err(&pdev->dev,
1283 			"Could not allocate unit ID: error %d\n", -ret);
1284 		goto bail;
1285 	}
1286 	rvt_set_ibdev_name(&dd->verbs_dev.rdi, "%s_%d", class_name(), dd->unit);
1287 
1288 	/*
1289 	 * Initialize all locks for the device. This needs to be as early as
1290 	 * possible so locks are usable.
1291 	 */
1292 	spin_lock_init(&dd->sc_lock);
1293 	spin_lock_init(&dd->sendctrl_lock);
1294 	spin_lock_init(&dd->rcvctrl_lock);
1295 	spin_lock_init(&dd->uctxt_lock);
1296 	spin_lock_init(&dd->hfi1_diag_trans_lock);
1297 	spin_lock_init(&dd->sc_init_lock);
1298 	spin_lock_init(&dd->dc8051_memlock);
1299 	seqlock_init(&dd->sc2vl_lock);
1300 	spin_lock_init(&dd->sde_map_lock);
1301 	spin_lock_init(&dd->pio_map_lock);
1302 	mutex_init(&dd->dc8051_lock);
1303 	init_waitqueue_head(&dd->event_queue);
1304 	spin_lock_init(&dd->irq_src_lock);
1305 
1306 	dd->int_counter = alloc_percpu(u64);
1307 	if (!dd->int_counter) {
1308 		ret = -ENOMEM;
1309 		goto bail;
1310 	}
1311 
1312 	dd->rcv_limit = alloc_percpu(u64);
1313 	if (!dd->rcv_limit) {
1314 		ret = -ENOMEM;
1315 		goto bail;
1316 	}
1317 
1318 	dd->send_schedule = alloc_percpu(u64);
1319 	if (!dd->send_schedule) {
1320 		ret = -ENOMEM;
1321 		goto bail;
1322 	}
1323 
1324 	dd->tx_opstats = alloc_percpu(struct hfi1_opcode_stats_perctx);
1325 	if (!dd->tx_opstats) {
1326 		ret = -ENOMEM;
1327 		goto bail;
1328 	}
1329 
1330 	dd->comp_vect = kzalloc(sizeof(*dd->comp_vect), GFP_KERNEL);
1331 	if (!dd->comp_vect) {
1332 		ret = -ENOMEM;
1333 		goto bail;
1334 	}
1335 
1336 	kobject_init(&dd->kobj, &hfi1_devdata_type);
1337 	return dd;
1338 
1339 bail:
1340 	hfi1_clean_devdata(dd);
1341 	return ERR_PTR(ret);
1342 }
1343 
1344 /*
1345  * Called from freeze mode handlers, and from PCI error
1346  * reporting code.  Should be paranoid about state of
1347  * system and data structures.
1348  */
1349 void hfi1_disable_after_error(struct hfi1_devdata *dd)
1350 {
1351 	if (dd->flags & HFI1_INITTED) {
1352 		u32 pidx;
1353 
1354 		dd->flags &= ~HFI1_INITTED;
1355 		if (dd->pport)
1356 			for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1357 				struct hfi1_pportdata *ppd;
1358 
1359 				ppd = dd->pport + pidx;
1360 				if (dd->flags & HFI1_PRESENT)
1361 					set_link_state(ppd, HLS_DN_DISABLE);
1362 
1363 				if (ppd->statusp)
1364 					*ppd->statusp &= ~HFI1_STATUS_IB_READY;
1365 			}
1366 	}
1367 
1368 	/*
1369 	 * Mark as having had an error for driver, and also
1370 	 * for /sys and status word mapped to user programs.
1371 	 * This marks unit as not usable, until reset.
1372 	 */
1373 	if (dd->status)
1374 		dd->status->dev |= HFI1_STATUS_HWERROR;
1375 }
1376 
1377 static void remove_one(struct pci_dev *);
1378 static int init_one(struct pci_dev *, const struct pci_device_id *);
1379 static void shutdown_one(struct pci_dev *);
1380 
1381 #define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: "
1382 #define PFX DRIVER_NAME ": "
1383 
1384 const struct pci_device_id hfi1_pci_tbl[] = {
1385 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
1386 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
1387 	{ 0, }
1388 };
1389 
1390 MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);
1391 
1392 static struct pci_driver hfi1_pci_driver = {
1393 	.name = DRIVER_NAME,
1394 	.probe = init_one,
1395 	.remove = remove_one,
1396 	.shutdown = shutdown_one,
1397 	.id_table = hfi1_pci_tbl,
1398 	.err_handler = &hfi1_pci_err_handler,
1399 };
1400 
1401 static void __init compute_krcvqs(void)
1402 {
1403 	int i;
1404 
1405 	for (i = 0; i < krcvqsset; i++)
1406 		n_krcvqs += krcvqs[i];
1407 }
1408 
1409 /*
1410  * Do all the generic driver unit- and chip-independent memory
1411  * allocation and initialization.
1412  */
1413 static int __init hfi1_mod_init(void)
1414 {
1415 	int ret;
1416 
1417 	ret = dev_init();
1418 	if (ret)
1419 		goto bail;
1420 
1421 	ret = node_affinity_init();
1422 	if (ret)
1423 		goto bail;
1424 
1425 	/* validate max MTU before any devices start */
1426 	if (!valid_opa_max_mtu(hfi1_max_mtu)) {
1427 		pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
1428 		       hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
1429 		hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
1430 	}
1431 	/* valid CUs run from 1-128 in powers of 2 */
1432 	if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu))
1433 		hfi1_cu = 1;
1434 	/* valid credit return threshold is 0-100, variable is unsigned */
1435 	if (user_credit_return_threshold > 100)
1436 		user_credit_return_threshold = 100;
1437 
1438 	compute_krcvqs();
1439 	/*
1440 	 * sanitize receive interrupt count, time must wait until after
1441 	 * the hardware type is known
1442 	 */
1443 	if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
1444 		rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
1445 	/* reject invalid combinations */
1446 	if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
1447 		pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
1448 		rcv_intr_count = 1;
1449 	}
1450 	if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
1451 		/*
1452 		 * Avoid indefinite packet delivery by requiring a timeout
1453 		 * if count is > 1.
1454 		 */
1455 		pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
1456 		rcv_intr_timeout = 1;
1457 	}
1458 	if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
1459 		/*
1460 		 * The dynamic algorithm expects a non-zero timeout
1461 		 * and a count > 1.
1462 		 */
1463 		pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
1464 		rcv_intr_dynamic = 0;
1465 	}
1466 
1467 	/* sanitize link CRC options */
1468 	link_crc_mask &= SUPPORTED_CRCS;
1469 
1470 	ret = opfn_init();
1471 	if (ret < 0) {
1472 		pr_err("Failed to allocate opfn_wq");
1473 		goto bail_dev;
1474 	}
1475 
1476 	/*
1477 	 * These must be called before the driver is registered with
1478 	 * the PCI subsystem.
1479 	 */
1480 	hfi1_dbg_init();
1481 	ret = pci_register_driver(&hfi1_pci_driver);
1482 	if (ret < 0) {
1483 		pr_err("Unable to register driver: error %d\n", -ret);
1484 		goto bail_dev;
1485 	}
1486 	goto bail; /* all OK */
1487 
1488 bail_dev:
1489 	hfi1_dbg_exit();
1490 	dev_cleanup();
1491 bail:
1492 	return ret;
1493 }
1494 
1495 module_init(hfi1_mod_init);
1496 
1497 /*
1498  * Do the non-unit driver cleanup, memory free, etc. at unload.
1499  */
1500 static void __exit hfi1_mod_cleanup(void)
1501 {
1502 	pci_unregister_driver(&hfi1_pci_driver);
1503 	opfn_exit();
1504 	node_affinity_destroy_all();
1505 	hfi1_dbg_exit();
1506 
1507 	WARN_ON(!xa_empty(&hfi1_dev_table));
1508 	dispose_firmware();	/* asymmetric with obtain_firmware() */
1509 	dev_cleanup();
1510 }
1511 
1512 module_exit(hfi1_mod_cleanup);
1513 
1514 /* this can only be called after a successful initialization */
1515 static void cleanup_device_data(struct hfi1_devdata *dd)
1516 {
1517 	int ctxt;
1518 	int pidx;
1519 
1520 	/* users can't do anything more with chip */
1521 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1522 		struct hfi1_pportdata *ppd = &dd->pport[pidx];
1523 		struct cc_state *cc_state;
1524 		int i;
1525 
1526 		if (ppd->statusp)
1527 			*ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;
1528 
1529 		for (i = 0; i < OPA_MAX_SLS; i++)
1530 			hrtimer_cancel(&ppd->cca_timer[i].hrtimer);
1531 
1532 		spin_lock(&ppd->cc_state_lock);
1533 		cc_state = get_cc_state_protected(ppd);
1534 		RCU_INIT_POINTER(ppd->cc_state, NULL);
1535 		spin_unlock(&ppd->cc_state_lock);
1536 
1537 		if (cc_state)
1538 			kfree_rcu(cc_state, rcu);
1539 	}
1540 
1541 	free_credit_return(dd);
1542 
1543 	if (dd->rcvhdrtail_dummy_kvaddr) {
1544 		dma_free_coherent(&dd->pcidev->dev, sizeof(u64),
1545 				  (void *)dd->rcvhdrtail_dummy_kvaddr,
1546 				  dd->rcvhdrtail_dummy_dma);
1547 		dd->rcvhdrtail_dummy_kvaddr = NULL;
1548 	}
1549 
1550 	/*
1551 	 * Free any resources still in use (usually just kernel contexts)
1552 	 * at unload; we do for ctxtcnt, because that's what we allocate.
1553 	 */
1554 	for (ctxt = 0; dd->rcd && ctxt < dd->num_rcv_contexts; ctxt++) {
1555 		struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
1556 
1557 		if (rcd) {
1558 			hfi1_free_ctxt_rcv_groups(rcd);
1559 			hfi1_free_ctxt(rcd);
1560 		}
1561 	}
1562 
1563 	kfree(dd->rcd);
1564 	dd->rcd = NULL;
1565 
1566 	free_pio_map(dd);
1567 	/* must follow rcv context free - need to remove rcv's hooks */
1568 	for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
1569 		sc_free(dd->send_contexts[ctxt].sc);
1570 	dd->num_send_contexts = 0;
1571 	kfree(dd->send_contexts);
1572 	dd->send_contexts = NULL;
1573 	kfree(dd->hw_to_sw);
1574 	dd->hw_to_sw = NULL;
1575 	kfree(dd->boardname);
1576 	vfree(dd->events);
1577 	vfree(dd->status);
1578 }
1579 
1580 /*
1581  * Clean up on unit shutdown, or error during unit load after
1582  * successful initialization.
1583  */
1584 static void postinit_cleanup(struct hfi1_devdata *dd)
1585 {
1586 	hfi1_start_cleanup(dd);
1587 	hfi1_comp_vectors_clean_up(dd);
1588 	hfi1_dev_affinity_clean_up(dd);
1589 
1590 	hfi1_pcie_ddcleanup(dd);
1591 	hfi1_pcie_cleanup(dd->pcidev);
1592 
1593 	cleanup_device_data(dd);
1594 
1595 	hfi1_free_devdata(dd);
1596 }
1597 
1598 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1599 {
1600 	int ret = 0, j, pidx, initfail;
1601 	struct hfi1_devdata *dd;
1602 	struct hfi1_pportdata *ppd;
1603 
1604 	/* First, lock the non-writable module parameters */
1605 	HFI1_CAP_LOCK();
1606 
1607 	/* Validate dev ids */
1608 	if (!(ent->device == PCI_DEVICE_ID_INTEL0 ||
1609 	      ent->device == PCI_DEVICE_ID_INTEL1)) {
1610 		dev_err(&pdev->dev, "Failing on unknown Intel deviceid 0x%x\n",
1611 			ent->device);
1612 		ret = -ENODEV;
1613 		goto bail;
1614 	}
1615 
1616 	/* Allocate the dd so we can get to work */
1617 	dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
1618 				sizeof(struct hfi1_pportdata));
1619 	if (IS_ERR(dd)) {
1620 		ret = PTR_ERR(dd);
1621 		goto bail;
1622 	}
1623 
1624 	/* Validate some global module parameters */
1625 	ret = hfi1_validate_rcvhdrcnt(dd, rcvhdrcnt);
1626 	if (ret)
1627 		goto bail;
1628 
1629 	/* use the encoding function as a sanitization check */
1630 	if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) {
1631 		dd_dev_err(dd, "Invalid HdrQ Entry size %u\n",
1632 			   hfi1_hdrq_entsize);
1633 		ret = -EINVAL;
1634 		goto bail;
1635 	}
1636 
1637 	/* The receive eager buffer size must be set before the receive
1638 	 * contexts are created.
1639 	 *
1640 	 * Set the eager buffer size.  Validate that it falls in a range
1641 	 * allowed by the hardware - all powers of 2 between the min and
1642 	 * max.  The maximum valid MTU is within the eager buffer range
1643 	 * so we do not need to cap the max_mtu by an eager buffer size
1644 	 * setting.
1645 	 */
1646 	if (eager_buffer_size) {
1647 		if (!is_power_of_2(eager_buffer_size))
1648 			eager_buffer_size =
1649 				roundup_pow_of_two(eager_buffer_size);
1650 		eager_buffer_size =
1651 			clamp_val(eager_buffer_size,
1652 				  MIN_EAGER_BUFFER * 8,
1653 				  MAX_EAGER_BUFFER_TOTAL);
1654 		dd_dev_info(dd, "Eager buffer size %u\n",
1655 			    eager_buffer_size);
1656 	} else {
1657 		dd_dev_err(dd, "Invalid Eager buffer size of 0\n");
1658 		ret = -EINVAL;
1659 		goto bail;
1660 	}
1661 
1662 	/* restrict value of hfi1_rcvarr_split */
1663 	hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);
1664 
1665 	ret = hfi1_pcie_init(dd);
1666 	if (ret)
1667 		goto bail;
1668 
1669 	/*
1670 	 * Do device-specific initialization, function table setup, dd
1671 	 * allocation, etc.
1672 	 */
1673 	ret = hfi1_init_dd(dd);
1674 	if (ret)
1675 		goto clean_bail; /* error already printed */
1676 
1677 	ret = create_workqueues(dd);
1678 	if (ret)
1679 		goto clean_bail;
1680 
1681 	/* do the generic initialization */
1682 	initfail = hfi1_init(dd, 0);
1683 
1684 	/* setup vnic */
1685 	hfi1_vnic_setup(dd);
1686 
1687 	ret = hfi1_register_ib_device(dd);
1688 
1689 	/*
1690 	 * Now ready for use.  this should be cleared whenever we
1691 	 * detect a reset, or initiate one.  If earlier failure,
1692 	 * we still create devices, so diags, etc. can be used
1693 	 * to determine cause of problem.
1694 	 */
1695 	if (!initfail && !ret) {
1696 		dd->flags |= HFI1_INITTED;
1697 		/* create debufs files after init and ib register */
1698 		hfi1_dbg_ibdev_init(&dd->verbs_dev);
1699 	}
1700 
1701 	j = hfi1_device_create(dd);
1702 	if (j)
1703 		dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
1704 
1705 	if (initfail || ret) {
1706 		msix_clean_up_interrupts(dd);
1707 		stop_timers(dd);
1708 		flush_workqueue(ib_wq);
1709 		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1710 			hfi1_quiet_serdes(dd->pport + pidx);
1711 			ppd = dd->pport + pidx;
1712 			if (ppd->hfi1_wq) {
1713 				destroy_workqueue(ppd->hfi1_wq);
1714 				ppd->hfi1_wq = NULL;
1715 			}
1716 			if (ppd->link_wq) {
1717 				destroy_workqueue(ppd->link_wq);
1718 				ppd->link_wq = NULL;
1719 			}
1720 		}
1721 		if (!j)
1722 			hfi1_device_remove(dd);
1723 		if (!ret)
1724 			hfi1_unregister_ib_device(dd);
1725 		hfi1_vnic_cleanup(dd);
1726 		postinit_cleanup(dd);
1727 		if (initfail)
1728 			ret = initfail;
1729 		goto bail;	/* everything already cleaned */
1730 	}
1731 
1732 	sdma_start(dd);
1733 
1734 	return 0;
1735 
1736 clean_bail:
1737 	hfi1_pcie_cleanup(pdev);
1738 bail:
1739 	return ret;
1740 }
1741 
1742 static void wait_for_clients(struct hfi1_devdata *dd)
1743 {
1744 	/*
1745 	 * Remove the device init value and complete the device if there is
1746 	 * no clients or wait for active clients to finish.
1747 	 */
1748 	if (atomic_dec_and_test(&dd->user_refcount))
1749 		complete(&dd->user_comp);
1750 
1751 	wait_for_completion(&dd->user_comp);
1752 }
1753 
1754 static void remove_one(struct pci_dev *pdev)
1755 {
1756 	struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1757 
1758 	/* close debugfs files before ib unregister */
1759 	hfi1_dbg_ibdev_exit(&dd->verbs_dev);
1760 
1761 	/* remove the /dev hfi1 interface */
1762 	hfi1_device_remove(dd);
1763 
1764 	/* wait for existing user space clients to finish */
1765 	wait_for_clients(dd);
1766 
1767 	/* unregister from IB core */
1768 	hfi1_unregister_ib_device(dd);
1769 
1770 	/* cleanup vnic */
1771 	hfi1_vnic_cleanup(dd);
1772 
1773 	/*
1774 	 * Disable the IB link, disable interrupts on the device,
1775 	 * clear dma engines, etc.
1776 	 */
1777 	shutdown_device(dd);
1778 
1779 	stop_timers(dd);
1780 
1781 	/* wait until all of our (qsfp) queue_work() calls complete */
1782 	flush_workqueue(ib_wq);
1783 
1784 	postinit_cleanup(dd);
1785 }
1786 
1787 static void shutdown_one(struct pci_dev *pdev)
1788 {
1789 	struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1790 
1791 	shutdown_device(dd);
1792 }
1793 
1794 /**
1795  * hfi1_create_rcvhdrq - create a receive header queue
1796  * @dd: the hfi1_ib device
1797  * @rcd: the context data
1798  *
1799  * This must be contiguous memory (from an i/o perspective), and must be
1800  * DMA'able (which means for some systems, it will go through an IOMMU,
1801  * or be forced into a low address range).
1802  */
1803 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1804 {
1805 	unsigned amt;
1806 
1807 	if (!rcd->rcvhdrq) {
1808 		gfp_t gfp_flags;
1809 
1810 		amt = rcvhdrq_size(rcd);
1811 
1812 		if (rcd->ctxt < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
1813 			gfp_flags = GFP_KERNEL;
1814 		else
1815 			gfp_flags = GFP_USER;
1816 		rcd->rcvhdrq = dma_alloc_coherent(&dd->pcidev->dev, amt,
1817 						  &rcd->rcvhdrq_dma,
1818 						  gfp_flags | __GFP_COMP);
1819 
1820 		if (!rcd->rcvhdrq) {
1821 			dd_dev_err(dd,
1822 				   "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
1823 				   amt, rcd->ctxt);
1824 			goto bail;
1825 		}
1826 
1827 		if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ||
1828 		    HFI1_CAP_UGET_MASK(rcd->flags, DMA_RTAIL)) {
1829 			rcd->rcvhdrtail_kvaddr = dma_alloc_coherent(&dd->pcidev->dev,
1830 								    PAGE_SIZE,
1831 								    &rcd->rcvhdrqtailaddr_dma,
1832 								    gfp_flags);
1833 			if (!rcd->rcvhdrtail_kvaddr)
1834 				goto bail_free;
1835 		}
1836 	}
1837 
1838 	set_hdrq_regs(rcd->dd, rcd->ctxt, rcd->rcvhdrqentsize,
1839 		      rcd->rcvhdrq_cnt);
1840 
1841 	return 0;
1842 
1843 bail_free:
1844 	dd_dev_err(dd,
1845 		   "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
1846 		   rcd->ctxt);
1847 	dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
1848 			  rcd->rcvhdrq_dma);
1849 	rcd->rcvhdrq = NULL;
1850 bail:
1851 	return -ENOMEM;
1852 }
1853 
1854 /**
1855  * allocate eager buffers, both kernel and user contexts.
1856  * @rcd: the context we are setting up.
1857  *
1858  * Allocate the eager TID buffers and program them into hip.
1859  * They are no longer completely contiguous, we do multiple allocation
1860  * calls.  Otherwise we get the OOM code involved, by asking for too
1861  * much per call, with disastrous results on some kernels.
1862  */
1863 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
1864 {
1865 	struct hfi1_devdata *dd = rcd->dd;
1866 	u32 max_entries, egrtop, alloced_bytes = 0;
1867 	gfp_t gfp_flags;
1868 	u16 order, idx = 0;
1869 	int ret = 0;
1870 	u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);
1871 
1872 	/*
1873 	 * GFP_USER, but without GFP_FS, so buffer cache can be
1874 	 * coalesced (we hope); otherwise, even at order 4,
1875 	 * heavy filesystem activity makes these fail, and we can
1876 	 * use compound pages.
1877 	 */
1878 	gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP;
1879 
1880 	/*
1881 	 * The minimum size of the eager buffers is a groups of MTU-sized
1882 	 * buffers.
1883 	 * The global eager_buffer_size parameter is checked against the
1884 	 * theoretical lower limit of the value. Here, we check against the
1885 	 * MTU.
1886 	 */
1887 	if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
1888 		rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
1889 	/*
1890 	 * If using one-pkt-per-egr-buffer, lower the eager buffer
1891 	 * size to the max MTU (page-aligned).
1892 	 */
1893 	if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
1894 		rcd->egrbufs.rcvtid_size = round_mtu;
1895 
1896 	/*
1897 	 * Eager buffers sizes of 1MB or less require smaller TID sizes
1898 	 * to satisfy the "multiple of 8 RcvArray entries" requirement.
1899 	 */
1900 	if (rcd->egrbufs.size <= (1 << 20))
1901 		rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
1902 			rounddown_pow_of_two(rcd->egrbufs.size / 8));
1903 
1904 	while (alloced_bytes < rcd->egrbufs.size &&
1905 	       rcd->egrbufs.alloced < rcd->egrbufs.count) {
1906 		rcd->egrbufs.buffers[idx].addr =
1907 			dma_alloc_coherent(&dd->pcidev->dev,
1908 					   rcd->egrbufs.rcvtid_size,
1909 					   &rcd->egrbufs.buffers[idx].dma,
1910 					   gfp_flags);
1911 		if (rcd->egrbufs.buffers[idx].addr) {
1912 			rcd->egrbufs.buffers[idx].len =
1913 				rcd->egrbufs.rcvtid_size;
1914 			rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
1915 				rcd->egrbufs.buffers[idx].addr;
1916 			rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma =
1917 				rcd->egrbufs.buffers[idx].dma;
1918 			rcd->egrbufs.alloced++;
1919 			alloced_bytes += rcd->egrbufs.rcvtid_size;
1920 			idx++;
1921 		} else {
1922 			u32 new_size, i, j;
1923 			u64 offset = 0;
1924 
1925 			/*
1926 			 * Fail the eager buffer allocation if:
1927 			 *   - we are already using the lowest acceptable size
1928 			 *   - we are using one-pkt-per-egr-buffer (this implies
1929 			 *     that we are accepting only one size)
1930 			 */
1931 			if (rcd->egrbufs.rcvtid_size == round_mtu ||
1932 			    !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
1933 				dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
1934 					   rcd->ctxt);
1935 				ret = -ENOMEM;
1936 				goto bail_rcvegrbuf_phys;
1937 			}
1938 
1939 			new_size = rcd->egrbufs.rcvtid_size / 2;
1940 
1941 			/*
1942 			 * If the first attempt to allocate memory failed, don't
1943 			 * fail everything but continue with the next lower
1944 			 * size.
1945 			 */
1946 			if (idx == 0) {
1947 				rcd->egrbufs.rcvtid_size = new_size;
1948 				continue;
1949 			}
1950 
1951 			/*
1952 			 * Re-partition already allocated buffers to a smaller
1953 			 * size.
1954 			 */
1955 			rcd->egrbufs.alloced = 0;
1956 			for (i = 0, j = 0, offset = 0; j < idx; i++) {
1957 				if (i >= rcd->egrbufs.count)
1958 					break;
1959 				rcd->egrbufs.rcvtids[i].dma =
1960 					rcd->egrbufs.buffers[j].dma + offset;
1961 				rcd->egrbufs.rcvtids[i].addr =
1962 					rcd->egrbufs.buffers[j].addr + offset;
1963 				rcd->egrbufs.alloced++;
1964 				if ((rcd->egrbufs.buffers[j].dma + offset +
1965 				     new_size) ==
1966 				    (rcd->egrbufs.buffers[j].dma +
1967 				     rcd->egrbufs.buffers[j].len)) {
1968 					j++;
1969 					offset = 0;
1970 				} else {
1971 					offset += new_size;
1972 				}
1973 			}
1974 			rcd->egrbufs.rcvtid_size = new_size;
1975 		}
1976 	}
1977 	rcd->egrbufs.numbufs = idx;
1978 	rcd->egrbufs.size = alloced_bytes;
1979 
1980 	hfi1_cdbg(PROC,
1981 		  "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %uKB\n",
1982 		  rcd->ctxt, rcd->egrbufs.alloced,
1983 		  rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024);
1984 
1985 	/*
1986 	 * Set the contexts rcv array head update threshold to the closest
1987 	 * power of 2 (so we can use a mask instead of modulo) below half
1988 	 * the allocated entries.
1989 	 */
1990 	rcd->egrbufs.threshold =
1991 		rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
1992 	/*
1993 	 * Compute the expected RcvArray entry base. This is done after
1994 	 * allocating the eager buffers in order to maximize the
1995 	 * expected RcvArray entries for the context.
1996 	 */
1997 	max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
1998 	egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
1999 	rcd->expected_count = max_entries - egrtop;
2000 	if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
2001 		rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;
2002 
2003 	rcd->expected_base = rcd->eager_base + egrtop;
2004 	hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n",
2005 		  rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
2006 		  rcd->eager_base, rcd->expected_base);
2007 
2008 	if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) {
2009 		hfi1_cdbg(PROC,
2010 			  "ctxt%u: current Eager buffer size is invalid %u\n",
2011 			  rcd->ctxt, rcd->egrbufs.rcvtid_size);
2012 		ret = -EINVAL;
2013 		goto bail_rcvegrbuf_phys;
2014 	}
2015 
2016 	for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
2017 		hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER,
2018 			     rcd->egrbufs.rcvtids[idx].dma, order);
2019 		cond_resched();
2020 	}
2021 
2022 	return 0;
2023 
2024 bail_rcvegrbuf_phys:
2025 	for (idx = 0; idx < rcd->egrbufs.alloced &&
2026 	     rcd->egrbufs.buffers[idx].addr;
2027 	     idx++) {
2028 		dma_free_coherent(&dd->pcidev->dev,
2029 				  rcd->egrbufs.buffers[idx].len,
2030 				  rcd->egrbufs.buffers[idx].addr,
2031 				  rcd->egrbufs.buffers[idx].dma);
2032 		rcd->egrbufs.buffers[idx].addr = NULL;
2033 		rcd->egrbufs.buffers[idx].dma = 0;
2034 		rcd->egrbufs.buffers[idx].len = 0;
2035 	}
2036 
2037 	return ret;
2038 }
2039