1 #ifndef _HFI1_KERNEL_H 2 #define _HFI1_KERNEL_H 3 /* 4 * Copyright(c) 2015-2017 Intel Corporation. 5 * 6 * This file is provided under a dual BSD/GPLv2 license. When using or 7 * redistributing this file, you may do so under either license. 8 * 9 * GPL LICENSE SUMMARY 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of version 2 of the GNU General Public License as 13 * published by the Free Software Foundation. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * BSD LICENSE 21 * 22 * Redistribution and use in source and binary forms, with or without 23 * modification, are permitted provided that the following conditions 24 * are met: 25 * 26 * - Redistributions of source code must retain the above copyright 27 * notice, this list of conditions and the following disclaimer. 28 * - Redistributions in binary form must reproduce the above copyright 29 * notice, this list of conditions and the following disclaimer in 30 * the documentation and/or other materials provided with the 31 * distribution. 32 * - Neither the name of Intel Corporation nor the names of its 33 * contributors may be used to endorse or promote products derived 34 * from this software without specific prior written permission. 35 * 36 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 37 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 38 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 39 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 40 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 42 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 43 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 44 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 45 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 46 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 47 * 48 */ 49 50 #include <linux/interrupt.h> 51 #include <linux/pci.h> 52 #include <linux/dma-mapping.h> 53 #include <linux/mutex.h> 54 #include <linux/list.h> 55 #include <linux/scatterlist.h> 56 #include <linux/slab.h> 57 #include <linux/idr.h> 58 #include <linux/io.h> 59 #include <linux/fs.h> 60 #include <linux/completion.h> 61 #include <linux/kref.h> 62 #include <linux/sched.h> 63 #include <linux/cdev.h> 64 #include <linux/delay.h> 65 #include <linux/kthread.h> 66 #include <linux/i2c.h> 67 #include <linux/i2c-algo-bit.h> 68 #include <rdma/ib_hdrs.h> 69 #include <rdma/opa_addr.h> 70 #include <linux/rhashtable.h> 71 #include <linux/netdevice.h> 72 #include <rdma/rdma_vt.h> 73 #include <rdma/opa_addr.h> 74 75 #include "chip_registers.h" 76 #include "common.h" 77 #include "verbs.h" 78 #include "pio.h" 79 #include "chip.h" 80 #include "mad.h" 81 #include "qsfp.h" 82 #include "platform.h" 83 #include "affinity.h" 84 85 /* bumped 1 from s/w major version of TrueScale */ 86 #define HFI1_CHIP_VERS_MAJ 3U 87 88 /* don't care about this except printing */ 89 #define HFI1_CHIP_VERS_MIN 0U 90 91 /* The Organization Unique Identifier (Mfg code), and its position in GUID */ 92 #define HFI1_OUI 0x001175 93 #define HFI1_OUI_LSB 40 94 95 #define DROP_PACKET_OFF 0 96 #define DROP_PACKET_ON 1 97 98 #define NEIGHBOR_TYPE_HFI 0 99 #define NEIGHBOR_TYPE_SWITCH 1 100 101 extern unsigned long hfi1_cap_mask; 102 #define HFI1_CAP_KGET_MASK(mask, cap) ((mask) & HFI1_CAP_##cap) 103 #define HFI1_CAP_UGET_MASK(mask, cap) \ 104 (((mask) >> HFI1_CAP_USER_SHIFT) & HFI1_CAP_##cap) 105 #define HFI1_CAP_KGET(cap) (HFI1_CAP_KGET_MASK(hfi1_cap_mask, cap)) 106 #define HFI1_CAP_UGET(cap) (HFI1_CAP_UGET_MASK(hfi1_cap_mask, cap)) 107 #define HFI1_CAP_IS_KSET(cap) (!!HFI1_CAP_KGET(cap)) 108 #define HFI1_CAP_IS_USET(cap) (!!HFI1_CAP_UGET(cap)) 109 #define HFI1_MISC_GET() ((hfi1_cap_mask >> HFI1_CAP_MISC_SHIFT) & \ 110 HFI1_CAP_MISC_MASK) 111 /* Offline Disabled Reason is 4-bits */ 112 #define HFI1_ODR_MASK(rsn) ((rsn) & OPA_PI_MASK_OFFLINE_REASON) 113 114 /* 115 * Control context is always 0 and handles the error packets. 116 * It also handles the VL15 and multicast packets. 117 */ 118 #define HFI1_CTRL_CTXT 0 119 120 /* 121 * Driver context will store software counters for each of the events 122 * associated with these status registers 123 */ 124 #define NUM_CCE_ERR_STATUS_COUNTERS 41 125 #define NUM_RCV_ERR_STATUS_COUNTERS 64 126 #define NUM_MISC_ERR_STATUS_COUNTERS 13 127 #define NUM_SEND_PIO_ERR_STATUS_COUNTERS 36 128 #define NUM_SEND_DMA_ERR_STATUS_COUNTERS 4 129 #define NUM_SEND_EGRESS_ERR_STATUS_COUNTERS 64 130 #define NUM_SEND_ERR_STATUS_COUNTERS 3 131 #define NUM_SEND_CTXT_ERR_STATUS_COUNTERS 5 132 #define NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS 24 133 134 /* 135 * per driver stats, either not device nor port-specific, or 136 * summed over all of the devices and ports. 137 * They are described by name via ipathfs filesystem, so layout 138 * and number of elements can change without breaking compatibility. 139 * If members are added or deleted hfi1_statnames[] in debugfs.c must 140 * change to match. 141 */ 142 struct hfi1_ib_stats { 143 __u64 sps_ints; /* number of interrupts handled */ 144 __u64 sps_errints; /* number of error interrupts */ 145 __u64 sps_txerrs; /* tx-related packet errors */ 146 __u64 sps_rcverrs; /* non-crc rcv packet errors */ 147 __u64 sps_hwerrs; /* hardware errors reported (parity, etc.) */ 148 __u64 sps_nopiobufs; /* no pio bufs avail from kernel */ 149 __u64 sps_ctxts; /* number of contexts currently open */ 150 __u64 sps_lenerrs; /* number of kernel packets where RHF != LRH len */ 151 __u64 sps_buffull; 152 __u64 sps_hdrfull; 153 }; 154 155 extern struct hfi1_ib_stats hfi1_stats; 156 extern const struct pci_error_handlers hfi1_pci_err_handler; 157 158 /* 159 * First-cut criterion for "device is active" is 160 * two thousand dwords combined Tx, Rx traffic per 161 * 5-second interval. SMA packets are 64 dwords, 162 * and occur "a few per second", presumably each way. 163 */ 164 #define HFI1_TRAFFIC_ACTIVE_THRESHOLD (2000) 165 166 /* 167 * Below contains all data related to a single context (formerly called port). 168 */ 169 170 struct hfi1_opcode_stats_perctx; 171 172 struct ctxt_eager_bufs { 173 ssize_t size; /* total size of eager buffers */ 174 u32 count; /* size of buffers array */ 175 u32 numbufs; /* number of buffers allocated */ 176 u32 alloced; /* number of rcvarray entries used */ 177 u32 rcvtid_size; /* size of each eager rcv tid */ 178 u32 threshold; /* head update threshold */ 179 struct eager_buffer { 180 void *addr; 181 dma_addr_t dma; 182 ssize_t len; 183 } *buffers; 184 struct { 185 void *addr; 186 dma_addr_t dma; 187 } *rcvtids; 188 }; 189 190 struct exp_tid_set { 191 struct list_head list; 192 u32 count; 193 }; 194 195 struct hfi1_ctxtdata { 196 /* shadow the ctxt's RcvCtrl register */ 197 u64 rcvctrl; 198 /* rcvhdrq base, needs mmap before useful */ 199 void *rcvhdrq; 200 /* kernel virtual address where hdrqtail is updated */ 201 volatile __le64 *rcvhdrtail_kvaddr; 202 /* when waiting for rcv or pioavail */ 203 wait_queue_head_t wait; 204 /* rcvhdrq size (for freeing) */ 205 size_t rcvhdrq_size; 206 /* number of rcvhdrq entries */ 207 u16 rcvhdrq_cnt; 208 /* size of each of the rcvhdrq entries */ 209 u16 rcvhdrqentsize; 210 /* mmap of hdrq, must fit in 44 bits */ 211 dma_addr_t rcvhdrq_dma; 212 dma_addr_t rcvhdrqtailaddr_dma; 213 struct ctxt_eager_bufs egrbufs; 214 /* this receive context's assigned PIO ACK send context */ 215 struct send_context *sc; 216 217 /* dynamic receive available interrupt timeout */ 218 u32 rcvavail_timeout; 219 /* Reference count the base context usage */ 220 struct kref kref; 221 222 /* Device context index */ 223 u16 ctxt; 224 /* 225 * non-zero if ctxt can be shared, and defines the maximum number of 226 * sub-contexts for this device context. 227 */ 228 u16 subctxt_cnt; 229 /* non-zero if ctxt is being shared. */ 230 u16 subctxt_id; 231 u8 uuid[16]; 232 /* job key */ 233 u16 jkey; 234 /* number of RcvArray groups for this context. */ 235 u32 rcv_array_groups; 236 /* index of first eager TID entry. */ 237 u32 eager_base; 238 /* number of expected TID entries */ 239 u32 expected_count; 240 /* index of first expected TID entry. */ 241 u32 expected_base; 242 243 struct exp_tid_set tid_group_list; 244 struct exp_tid_set tid_used_list; 245 struct exp_tid_set tid_full_list; 246 247 /* lock protecting all Expected TID data */ 248 struct mutex exp_lock; 249 /* per-context configuration flags */ 250 unsigned long flags; 251 /* per-context event flags for fileops/intr communication */ 252 unsigned long event_flags; 253 /* total number of polled urgent packets */ 254 u32 urgent; 255 /* saved total number of polled urgent packets for poll edge trigger */ 256 u32 urgent_poll; 257 /* same size as task_struct .comm[], command that opened context */ 258 char comm[TASK_COMM_LEN]; 259 /* so file ops can get at unit */ 260 struct hfi1_devdata *dd; 261 /* so functions that need physical port can get it easily */ 262 struct hfi1_pportdata *ppd; 263 /* associated msix interrupt */ 264 u32 msix_intr; 265 /* A page of memory for rcvhdrhead, rcvegrhead, rcvegrtail * N */ 266 void *subctxt_uregbase; 267 /* An array of pages for the eager receive buffers * N */ 268 void *subctxt_rcvegrbuf; 269 /* An array of pages for the eager header queue entries * N */ 270 void *subctxt_rcvhdr_base; 271 /* Bitmask of in use context(s) */ 272 DECLARE_BITMAP(in_use_ctxts, HFI1_MAX_SHARED_CTXTS); 273 /* The version of the library which opened this ctxt */ 274 u32 userversion; 275 /* Type of packets or conditions we want to poll for */ 276 u16 poll_type; 277 /* receive packet sequence counter */ 278 u8 seq_cnt; 279 /* ctxt rcvhdrq head offset */ 280 u32 head; 281 /* QPs waiting for context processing */ 282 struct list_head qp_wait_list; 283 /* interrupt handling */ 284 u64 imask; /* clear interrupt mask */ 285 int ireg; /* clear interrupt register */ 286 unsigned numa_id; /* numa node of this context */ 287 /* verbs rx_stats per rcd */ 288 struct hfi1_opcode_stats_perctx *opstats; 289 290 /* Is ASPM interrupt supported for this context */ 291 bool aspm_intr_supported; 292 /* ASPM state (enabled/disabled) for this context */ 293 bool aspm_enabled; 294 /* Timer for re-enabling ASPM if interrupt activity quietens down */ 295 struct timer_list aspm_timer; 296 /* Lock to serialize between intr, timer intr and user threads */ 297 spinlock_t aspm_lock; 298 /* Is ASPM processing enabled for this context (in intr context) */ 299 bool aspm_intr_enable; 300 /* Last interrupt timestamp */ 301 ktime_t aspm_ts_last_intr; 302 /* Last timestamp at which we scheduled a timer for this context */ 303 ktime_t aspm_ts_timer_sched; 304 305 /* 306 * The interrupt handler for a particular receive context can vary 307 * throughout it's lifetime. This is not a lock protected data member so 308 * it must be updated atomically and the prev and new value must always 309 * be valid. Worst case is we process an extra interrupt and up to 64 310 * packets with the wrong interrupt handler. 311 */ 312 int (*do_interrupt)(struct hfi1_ctxtdata *rcd, int threaded); 313 314 /* Indicates that this is vnic context */ 315 bool is_vnic; 316 317 /* vnic queue index this context is mapped to */ 318 u8 vnic_q_idx; 319 }; 320 321 /* 322 * Represents a single packet at a high level. Put commonly computed things in 323 * here so we do not have to keep doing them over and over. The rule of thumb is 324 * if something is used one time to derive some value, store that something in 325 * here. If it is used multiple times, then store the result of that derivation 326 * in here. 327 */ 328 struct hfi1_packet { 329 void *ebuf; 330 void *hdr; 331 void *payload; 332 struct hfi1_ctxtdata *rcd; 333 __le32 *rhf_addr; 334 struct rvt_qp *qp; 335 struct ib_other_headers *ohdr; 336 struct ib_grh *grh; 337 u64 rhf; 338 u32 maxcnt; 339 u32 rhqoff; 340 u32 dlid; 341 u32 slid; 342 u16 tlen; 343 s16 etail; 344 u16 pkey; 345 u8 hlen; 346 u8 numpkt; 347 u8 rsize; 348 u8 updegr; 349 u8 etype; 350 u8 extra_byte; 351 u8 pad; 352 u8 sc; 353 u8 sl; 354 u8 opcode; 355 bool migrated; 356 }; 357 358 /* Packet types */ 359 #define HFI1_PKT_TYPE_9B 0 360 #define HFI1_PKT_TYPE_16B 1 361 362 /* 363 * OPA 16B Header 364 */ 365 #define OPA_16B_L4_MASK 0xFFull 366 #define OPA_16B_SC_MASK 0x1F00000ull 367 #define OPA_16B_SC_SHIFT 20 368 #define OPA_16B_LID_MASK 0xFFFFFull 369 #define OPA_16B_DLID_MASK 0xF000ull 370 #define OPA_16B_DLID_SHIFT 20 371 #define OPA_16B_DLID_HIGH_SHIFT 12 372 #define OPA_16B_SLID_MASK 0xF00ull 373 #define OPA_16B_SLID_SHIFT 20 374 #define OPA_16B_SLID_HIGH_SHIFT 8 375 #define OPA_16B_BECN_MASK 0x80000000ull 376 #define OPA_16B_BECN_SHIFT 31 377 #define OPA_16B_FECN_MASK 0x10000000ull 378 #define OPA_16B_FECN_SHIFT 28 379 #define OPA_16B_L2_MASK 0x60000000ull 380 #define OPA_16B_L2_SHIFT 29 381 #define OPA_16B_PKEY_MASK 0xFFFF0000ull 382 #define OPA_16B_PKEY_SHIFT 16 383 #define OPA_16B_LEN_MASK 0x7FF00000ull 384 #define OPA_16B_LEN_SHIFT 20 385 #define OPA_16B_RC_MASK 0xE000000ull 386 #define OPA_16B_RC_SHIFT 25 387 #define OPA_16B_AGE_MASK 0xFF0000ull 388 #define OPA_16B_AGE_SHIFT 16 389 #define OPA_16B_ENTROPY_MASK 0xFFFFull 390 391 /* 392 * OPA 16B L2/L4 Encodings 393 */ 394 #define OPA_16B_L4_9B 0x00 395 #define OPA_16B_L2_TYPE 0x02 396 #define OPA_16B_L4_IB_LOCAL 0x09 397 #define OPA_16B_L4_IB_GLOBAL 0x0A 398 #define OPA_16B_L4_ETHR OPA_VNIC_L4_ETHR 399 400 static inline u8 hfi1_16B_get_l4(struct hfi1_16b_header *hdr) 401 { 402 return (u8)(hdr->lrh[2] & OPA_16B_L4_MASK); 403 } 404 405 static inline u8 hfi1_16B_get_sc(struct hfi1_16b_header *hdr) 406 { 407 return (u8)((hdr->lrh[1] & OPA_16B_SC_MASK) >> OPA_16B_SC_SHIFT); 408 } 409 410 static inline u32 hfi1_16B_get_dlid(struct hfi1_16b_header *hdr) 411 { 412 return (u32)((hdr->lrh[1] & OPA_16B_LID_MASK) | 413 (((hdr->lrh[2] & OPA_16B_DLID_MASK) >> 414 OPA_16B_DLID_HIGH_SHIFT) << OPA_16B_DLID_SHIFT)); 415 } 416 417 static inline u32 hfi1_16B_get_slid(struct hfi1_16b_header *hdr) 418 { 419 return (u32)((hdr->lrh[0] & OPA_16B_LID_MASK) | 420 (((hdr->lrh[2] & OPA_16B_SLID_MASK) >> 421 OPA_16B_SLID_HIGH_SHIFT) << OPA_16B_SLID_SHIFT)); 422 } 423 424 static inline u8 hfi1_16B_get_becn(struct hfi1_16b_header *hdr) 425 { 426 return (u8)((hdr->lrh[0] & OPA_16B_BECN_MASK) >> OPA_16B_BECN_SHIFT); 427 } 428 429 static inline u8 hfi1_16B_get_fecn(struct hfi1_16b_header *hdr) 430 { 431 return (u8)((hdr->lrh[1] & OPA_16B_FECN_MASK) >> OPA_16B_FECN_SHIFT); 432 } 433 434 static inline u8 hfi1_16B_get_l2(struct hfi1_16b_header *hdr) 435 { 436 return (u8)((hdr->lrh[1] & OPA_16B_L2_MASK) >> OPA_16B_L2_SHIFT); 437 } 438 439 static inline u16 hfi1_16B_get_pkey(struct hfi1_16b_header *hdr) 440 { 441 return (u16)((hdr->lrh[2] & OPA_16B_PKEY_MASK) >> OPA_16B_PKEY_SHIFT); 442 } 443 444 static inline u8 hfi1_16B_get_rc(struct hfi1_16b_header *hdr) 445 { 446 return (u8)((hdr->lrh[1] & OPA_16B_RC_MASK) >> OPA_16B_RC_SHIFT); 447 } 448 449 static inline u8 hfi1_16B_get_age(struct hfi1_16b_header *hdr) 450 { 451 return (u8)((hdr->lrh[3] & OPA_16B_AGE_MASK) >> OPA_16B_AGE_SHIFT); 452 } 453 454 static inline u16 hfi1_16B_get_len(struct hfi1_16b_header *hdr) 455 { 456 return (u16)((hdr->lrh[0] & OPA_16B_LEN_MASK) >> OPA_16B_LEN_SHIFT); 457 } 458 459 static inline u16 hfi1_16B_get_entropy(struct hfi1_16b_header *hdr) 460 { 461 return (u16)(hdr->lrh[3] & OPA_16B_ENTROPY_MASK); 462 } 463 464 #define OPA_16B_MAKE_QW(low_dw, high_dw) (((u64)(high_dw) << 32) | (low_dw)) 465 466 /* 467 * BTH 468 */ 469 #define OPA_16B_BTH_PAD_MASK 7 470 static inline u8 hfi1_16B_bth_get_pad(struct ib_other_headers *ohdr) 471 { 472 return (u8)((be32_to_cpu(ohdr->bth[0]) >> IB_BTH_PAD_SHIFT) & 473 OPA_16B_BTH_PAD_MASK); 474 } 475 476 struct rvt_sge_state; 477 478 /* 479 * Get/Set IB link-level config parameters for f_get/set_ib_cfg() 480 * Mostly for MADs that set or query link parameters, also ipath 481 * config interfaces 482 */ 483 #define HFI1_IB_CFG_LIDLMC 0 /* LID (LS16b) and Mask (MS16b) */ 484 #define HFI1_IB_CFG_LWID_DG_ENB 1 /* allowed Link-width downgrade */ 485 #define HFI1_IB_CFG_LWID_ENB 2 /* allowed Link-width */ 486 #define HFI1_IB_CFG_LWID 3 /* currently active Link-width */ 487 #define HFI1_IB_CFG_SPD_ENB 4 /* allowed Link speeds */ 488 #define HFI1_IB_CFG_SPD 5 /* current Link spd */ 489 #define HFI1_IB_CFG_RXPOL_ENB 6 /* Auto-RX-polarity enable */ 490 #define HFI1_IB_CFG_LREV_ENB 7 /* Auto-Lane-reversal enable */ 491 #define HFI1_IB_CFG_LINKLATENCY 8 /* Link Latency (IB1.2 only) */ 492 #define HFI1_IB_CFG_HRTBT 9 /* IB heartbeat off/enable/auto; DDR/QDR only */ 493 #define HFI1_IB_CFG_OP_VLS 10 /* operational VLs */ 494 #define HFI1_IB_CFG_VL_HIGH_CAP 11 /* num of VL high priority weights */ 495 #define HFI1_IB_CFG_VL_LOW_CAP 12 /* num of VL low priority weights */ 496 #define HFI1_IB_CFG_OVERRUN_THRESH 13 /* IB overrun threshold */ 497 #define HFI1_IB_CFG_PHYERR_THRESH 14 /* IB PHY error threshold */ 498 #define HFI1_IB_CFG_LINKDEFAULT 15 /* IB link default (sleep/poll) */ 499 #define HFI1_IB_CFG_PKEYS 16 /* update partition keys */ 500 #define HFI1_IB_CFG_MTU 17 /* update MTU in IBC */ 501 #define HFI1_IB_CFG_VL_HIGH_LIMIT 19 502 #define HFI1_IB_CFG_PMA_TICKS 20 /* PMA sample tick resolution */ 503 #define HFI1_IB_CFG_PORT 21 /* switch port we are connected to */ 504 505 /* 506 * HFI or Host Link States 507 * 508 * These describe the states the driver thinks the logical and physical 509 * states are in. Used as an argument to set_link_state(). Implemented 510 * as bits for easy multi-state checking. The actual state can only be 511 * one. 512 */ 513 #define __HLS_UP_INIT_BP 0 514 #define __HLS_UP_ARMED_BP 1 515 #define __HLS_UP_ACTIVE_BP 2 516 #define __HLS_DN_DOWNDEF_BP 3 /* link down default */ 517 #define __HLS_DN_POLL_BP 4 518 #define __HLS_DN_DISABLE_BP 5 519 #define __HLS_DN_OFFLINE_BP 6 520 #define __HLS_VERIFY_CAP_BP 7 521 #define __HLS_GOING_UP_BP 8 522 #define __HLS_GOING_OFFLINE_BP 9 523 #define __HLS_LINK_COOLDOWN_BP 10 524 525 #define HLS_UP_INIT BIT(__HLS_UP_INIT_BP) 526 #define HLS_UP_ARMED BIT(__HLS_UP_ARMED_BP) 527 #define HLS_UP_ACTIVE BIT(__HLS_UP_ACTIVE_BP) 528 #define HLS_DN_DOWNDEF BIT(__HLS_DN_DOWNDEF_BP) /* link down default */ 529 #define HLS_DN_POLL BIT(__HLS_DN_POLL_BP) 530 #define HLS_DN_DISABLE BIT(__HLS_DN_DISABLE_BP) 531 #define HLS_DN_OFFLINE BIT(__HLS_DN_OFFLINE_BP) 532 #define HLS_VERIFY_CAP BIT(__HLS_VERIFY_CAP_BP) 533 #define HLS_GOING_UP BIT(__HLS_GOING_UP_BP) 534 #define HLS_GOING_OFFLINE BIT(__HLS_GOING_OFFLINE_BP) 535 #define HLS_LINK_COOLDOWN BIT(__HLS_LINK_COOLDOWN_BP) 536 537 #define HLS_UP (HLS_UP_INIT | HLS_UP_ARMED | HLS_UP_ACTIVE) 538 #define HLS_DOWN ~(HLS_UP) 539 540 #define HLS_DEFAULT HLS_DN_POLL 541 542 /* use this MTU size if none other is given */ 543 #define HFI1_DEFAULT_ACTIVE_MTU 10240 544 /* use this MTU size as the default maximum */ 545 #define HFI1_DEFAULT_MAX_MTU 10240 546 /* default partition key */ 547 #define DEFAULT_PKEY 0xffff 548 549 /* 550 * Possible fabric manager config parameters for fm_{get,set}_table() 551 */ 552 #define FM_TBL_VL_HIGH_ARB 1 /* Get/set VL high prio weights */ 553 #define FM_TBL_VL_LOW_ARB 2 /* Get/set VL low prio weights */ 554 #define FM_TBL_BUFFER_CONTROL 3 /* Get/set Buffer Control */ 555 #define FM_TBL_SC2VLNT 4 /* Get/set SC->VLnt */ 556 #define FM_TBL_VL_PREEMPT_ELEMS 5 /* Get (no set) VL preempt elems */ 557 #define FM_TBL_VL_PREEMPT_MATRIX 6 /* Get (no set) VL preempt matrix */ 558 559 /* 560 * Possible "operations" for f_rcvctrl(ppd, op, ctxt) 561 * these are bits so they can be combined, e.g. 562 * HFI1_RCVCTRL_INTRAVAIL_ENB | HFI1_RCVCTRL_CTXT_ENB 563 */ 564 #define HFI1_RCVCTRL_TAILUPD_ENB 0x01 565 #define HFI1_RCVCTRL_TAILUPD_DIS 0x02 566 #define HFI1_RCVCTRL_CTXT_ENB 0x04 567 #define HFI1_RCVCTRL_CTXT_DIS 0x08 568 #define HFI1_RCVCTRL_INTRAVAIL_ENB 0x10 569 #define HFI1_RCVCTRL_INTRAVAIL_DIS 0x20 570 #define HFI1_RCVCTRL_PKEY_ENB 0x40 /* Note, default is enabled */ 571 #define HFI1_RCVCTRL_PKEY_DIS 0x80 572 #define HFI1_RCVCTRL_TIDFLOW_ENB 0x0400 573 #define HFI1_RCVCTRL_TIDFLOW_DIS 0x0800 574 #define HFI1_RCVCTRL_ONE_PKT_EGR_ENB 0x1000 575 #define HFI1_RCVCTRL_ONE_PKT_EGR_DIS 0x2000 576 #define HFI1_RCVCTRL_NO_RHQ_DROP_ENB 0x4000 577 #define HFI1_RCVCTRL_NO_RHQ_DROP_DIS 0x8000 578 #define HFI1_RCVCTRL_NO_EGR_DROP_ENB 0x10000 579 #define HFI1_RCVCTRL_NO_EGR_DROP_DIS 0x20000 580 581 /* partition enforcement flags */ 582 #define HFI1_PART_ENFORCE_IN 0x1 583 #define HFI1_PART_ENFORCE_OUT 0x2 584 585 /* how often we check for synthetic counter wrap around */ 586 #define SYNTH_CNT_TIME 3 587 588 /* Counter flags */ 589 #define CNTR_NORMAL 0x0 /* Normal counters, just read register */ 590 #define CNTR_SYNTH 0x1 /* Synthetic counters, saturate at all 1s */ 591 #define CNTR_DISABLED 0x2 /* Disable this counter */ 592 #define CNTR_32BIT 0x4 /* Simulate 64 bits for this counter */ 593 #define CNTR_VL 0x8 /* Per VL counter */ 594 #define CNTR_SDMA 0x10 595 #define CNTR_INVALID_VL -1 /* Specifies invalid VL */ 596 #define CNTR_MODE_W 0x0 597 #define CNTR_MODE_R 0x1 598 599 /* VLs Supported/Operational */ 600 #define HFI1_MIN_VLS_SUPPORTED 1 601 #define HFI1_MAX_VLS_SUPPORTED 8 602 603 #define HFI1_GUIDS_PER_PORT 5 604 #define HFI1_PORT_GUID_INDEX 0 605 606 static inline void incr_cntr64(u64 *cntr) 607 { 608 if (*cntr < (u64)-1LL) 609 (*cntr)++; 610 } 611 612 static inline void incr_cntr32(u32 *cntr) 613 { 614 if (*cntr < (u32)-1LL) 615 (*cntr)++; 616 } 617 618 #define MAX_NAME_SIZE 64 619 struct hfi1_msix_entry { 620 enum irq_type type; 621 int irq; 622 void *arg; 623 cpumask_t mask; 624 struct irq_affinity_notify notify; 625 }; 626 627 /* per-SL CCA information */ 628 struct cca_timer { 629 struct hrtimer hrtimer; 630 struct hfi1_pportdata *ppd; /* read-only */ 631 int sl; /* read-only */ 632 u16 ccti; /* read/write - current value of CCTI */ 633 }; 634 635 struct link_down_reason { 636 /* 637 * SMA-facing value. Should be set from .latest when 638 * HLS_UP_* -> HLS_DN_* transition actually occurs. 639 */ 640 u8 sma; 641 u8 latest; 642 }; 643 644 enum { 645 LO_PRIO_TABLE, 646 HI_PRIO_TABLE, 647 MAX_PRIO_TABLE 648 }; 649 650 struct vl_arb_cache { 651 /* protect vl arb cache */ 652 spinlock_t lock; 653 struct ib_vl_weight_elem table[VL_ARB_TABLE_SIZE]; 654 }; 655 656 /* 657 * The structure below encapsulates data relevant to a physical IB Port. 658 * Current chips support only one such port, but the separation 659 * clarifies things a bit. Note that to conform to IB conventions, 660 * port-numbers are one-based. The first or only port is port1. 661 */ 662 struct hfi1_pportdata { 663 struct hfi1_ibport ibport_data; 664 665 struct hfi1_devdata *dd; 666 struct kobject pport_cc_kobj; 667 struct kobject sc2vl_kobj; 668 struct kobject sl2sc_kobj; 669 struct kobject vl2mtu_kobj; 670 671 /* PHY support */ 672 struct qsfp_data qsfp_info; 673 /* Values for SI tuning of SerDes */ 674 u32 port_type; 675 u32 tx_preset_eq; 676 u32 tx_preset_noeq; 677 u32 rx_preset; 678 u8 local_atten; 679 u8 remote_atten; 680 u8 default_atten; 681 u8 max_power_class; 682 683 /* did we read platform config from scratch registers? */ 684 bool config_from_scratch; 685 686 /* GUIDs for this interface, in host order, guids[0] is a port guid */ 687 u64 guids[HFI1_GUIDS_PER_PORT]; 688 689 /* GUID for peer interface, in host order */ 690 u64 neighbor_guid; 691 692 /* up or down physical link state */ 693 u32 linkup; 694 695 /* 696 * this address is mapped read-only into user processes so they can 697 * get status cheaply, whenever they want. One qword of status per port 698 */ 699 u64 *statusp; 700 701 /* SendDMA related entries */ 702 703 struct workqueue_struct *hfi1_wq; 704 struct workqueue_struct *link_wq; 705 706 /* move out of interrupt context */ 707 struct work_struct link_vc_work; 708 struct work_struct link_up_work; 709 struct work_struct link_down_work; 710 struct work_struct sma_message_work; 711 struct work_struct freeze_work; 712 struct work_struct link_downgrade_work; 713 struct work_struct link_bounce_work; 714 struct delayed_work start_link_work; 715 /* host link state variables */ 716 struct mutex hls_lock; 717 u32 host_link_state; 718 719 /* these are the "32 bit" regs */ 720 721 u32 ibmtu; /* The MTU programmed for this unit */ 722 /* 723 * Current max size IB packet (in bytes) including IB headers, that 724 * we can send. Changes when ibmtu changes. 725 */ 726 u32 ibmaxlen; 727 u32 current_egress_rate; /* units [10^6 bits/sec] */ 728 /* LID programmed for this instance */ 729 u32 lid; 730 /* list of pkeys programmed; 0 if not set */ 731 u16 pkeys[MAX_PKEY_VALUES]; 732 u16 link_width_supported; 733 u16 link_width_downgrade_supported; 734 u16 link_speed_supported; 735 u16 link_width_enabled; 736 u16 link_width_downgrade_enabled; 737 u16 link_speed_enabled; 738 u16 link_width_active; 739 u16 link_width_downgrade_tx_active; 740 u16 link_width_downgrade_rx_active; 741 u16 link_speed_active; 742 u8 vls_supported; 743 u8 vls_operational; 744 u8 actual_vls_operational; 745 /* LID mask control */ 746 u8 lmc; 747 /* Rx Polarity inversion (compensate for ~tx on partner) */ 748 u8 rx_pol_inv; 749 750 u8 hw_pidx; /* physical port index */ 751 u8 port; /* IB port number and index into dd->pports - 1 */ 752 /* type of neighbor node */ 753 u8 neighbor_type; 754 u8 neighbor_normal; 755 u8 neighbor_fm_security; /* 1 if firmware checking is disabled */ 756 u8 neighbor_port_number; 757 u8 is_sm_config_started; 758 u8 offline_disabled_reason; 759 u8 is_active_optimize_enabled; 760 u8 driver_link_ready; /* driver ready for active link */ 761 u8 link_enabled; /* link enabled? */ 762 u8 linkinit_reason; 763 u8 local_tx_rate; /* rate given to 8051 firmware */ 764 u8 qsfp_retry_count; 765 766 /* placeholders for IB MAD packet settings */ 767 u8 overrun_threshold; 768 u8 phy_error_threshold; 769 unsigned int is_link_down_queued; 770 771 /* Used to override LED behavior for things like maintenance beaconing*/ 772 /* 773 * Alternates per phase of blink 774 * [0] holds LED off duration, [1] holds LED on duration 775 */ 776 unsigned long led_override_vals[2]; 777 u8 led_override_phase; /* LSB picks from vals[] */ 778 atomic_t led_override_timer_active; 779 /* Used to flash LEDs in override mode */ 780 struct timer_list led_override_timer; 781 782 u32 sm_trap_qp; 783 u32 sa_qp; 784 785 /* 786 * cca_timer_lock protects access to the per-SL cca_timer 787 * structures (specifically the ccti member). 788 */ 789 spinlock_t cca_timer_lock ____cacheline_aligned_in_smp; 790 struct cca_timer cca_timer[OPA_MAX_SLS]; 791 792 /* List of congestion control table entries */ 793 struct ib_cc_table_entry_shadow ccti_entries[CC_TABLE_SHADOW_MAX]; 794 795 /* congestion entries, each entry corresponding to a SL */ 796 struct opa_congestion_setting_entry_shadow 797 congestion_entries[OPA_MAX_SLS]; 798 799 /* 800 * cc_state_lock protects (write) access to the per-port 801 * struct cc_state. 802 */ 803 spinlock_t cc_state_lock ____cacheline_aligned_in_smp; 804 805 struct cc_state __rcu *cc_state; 806 807 /* Total number of congestion control table entries */ 808 u16 total_cct_entry; 809 810 /* Bit map identifying service level */ 811 u32 cc_sl_control_map; 812 813 /* CA's max number of 64 entry units in the congestion control table */ 814 u8 cc_max_table_entries; 815 816 /* 817 * begin congestion log related entries 818 * cc_log_lock protects all congestion log related data 819 */ 820 spinlock_t cc_log_lock ____cacheline_aligned_in_smp; 821 u8 threshold_cong_event_map[OPA_MAX_SLS / 8]; 822 u16 threshold_event_counter; 823 struct opa_hfi1_cong_log_event_internal cc_events[OPA_CONG_LOG_ELEMS]; 824 int cc_log_idx; /* index for logging events */ 825 int cc_mad_idx; /* index for reporting events */ 826 /* end congestion log related entries */ 827 828 struct vl_arb_cache vl_arb_cache[MAX_PRIO_TABLE]; 829 830 /* port relative counter buffer */ 831 u64 *cntrs; 832 /* port relative synthetic counter buffer */ 833 u64 *scntrs; 834 /* port_xmit_discards are synthesized from different egress errors */ 835 u64 port_xmit_discards; 836 u64 port_xmit_discards_vl[C_VL_COUNT]; 837 u64 port_xmit_constraint_errors; 838 u64 port_rcv_constraint_errors; 839 /* count of 'link_err' interrupts from DC */ 840 u64 link_downed; 841 /* number of times link retrained successfully */ 842 u64 link_up; 843 /* number of times a link unknown frame was reported */ 844 u64 unknown_frame_count; 845 /* port_ltp_crc_mode is returned in 'portinfo' MADs */ 846 u16 port_ltp_crc_mode; 847 /* port_crc_mode_enabled is the crc we support */ 848 u8 port_crc_mode_enabled; 849 /* mgmt_allowed is also returned in 'portinfo' MADs */ 850 u8 mgmt_allowed; 851 u8 part_enforce; /* partition enforcement flags */ 852 struct link_down_reason local_link_down_reason; 853 struct link_down_reason neigh_link_down_reason; 854 /* Value to be sent to link peer on LinkDown .*/ 855 u8 remote_link_down_reason; 856 /* Error events that will cause a port bounce. */ 857 u32 port_error_action; 858 struct work_struct linkstate_active_work; 859 /* Does this port need to prescan for FECNs */ 860 bool cc_prescan; 861 /* 862 * Sample sendWaitCnt & sendWaitVlCnt during link transition 863 * and counter request. 864 */ 865 u64 port_vl_xmit_wait_last[C_VL_COUNT + 1]; 866 u16 prev_link_width; 867 u64 vl_xmit_flit_cnt[C_VL_COUNT + 1]; 868 }; 869 870 typedef int (*rhf_rcv_function_ptr)(struct hfi1_packet *packet); 871 872 typedef void (*opcode_handler)(struct hfi1_packet *packet); 873 typedef void (*hfi1_make_req)(struct rvt_qp *qp, 874 struct hfi1_pkt_state *ps, 875 struct rvt_swqe *wqe); 876 877 878 /* return values for the RHF receive functions */ 879 #define RHF_RCV_CONTINUE 0 /* keep going */ 880 #define RHF_RCV_DONE 1 /* stop, this packet processed */ 881 #define RHF_RCV_REPROCESS 2 /* stop. retain this packet */ 882 883 struct rcv_array_data { 884 u8 group_size; 885 u16 ngroups; 886 u16 nctxt_extra; 887 }; 888 889 struct per_vl_data { 890 u16 mtu; 891 struct send_context *sc; 892 }; 893 894 /* 16 to directly index */ 895 #define PER_VL_SEND_CONTEXTS 16 896 897 struct err_info_rcvport { 898 u8 status_and_code; 899 u64 packet_flit1; 900 u64 packet_flit2; 901 }; 902 903 struct err_info_constraint { 904 u8 status; 905 u16 pkey; 906 u32 slid; 907 }; 908 909 struct hfi1_temp { 910 unsigned int curr; /* current temperature */ 911 unsigned int lo_lim; /* low temperature limit */ 912 unsigned int hi_lim; /* high temperature limit */ 913 unsigned int crit_lim; /* critical temperature limit */ 914 u8 triggers; /* temperature triggers */ 915 }; 916 917 struct hfi1_i2c_bus { 918 struct hfi1_devdata *controlling_dd; /* current controlling device */ 919 struct i2c_adapter adapter; /* bus details */ 920 struct i2c_algo_bit_data algo; /* bus algorithm details */ 921 int num; /* bus number, 0 or 1 */ 922 }; 923 924 /* common data between shared ASIC HFIs */ 925 struct hfi1_asic_data { 926 struct hfi1_devdata *dds[2]; /* back pointers */ 927 struct mutex asic_resource_mutex; 928 struct hfi1_i2c_bus *i2c_bus0; 929 struct hfi1_i2c_bus *i2c_bus1; 930 }; 931 932 /* sizes for both the QP and RSM map tables */ 933 #define NUM_MAP_ENTRIES 256 934 #define NUM_MAP_REGS 32 935 936 /* 937 * Number of VNIC contexts used. Ensure it is less than or equal to 938 * max queues supported by VNIC (HFI1_VNIC_MAX_QUEUE). 939 */ 940 #define HFI1_NUM_VNIC_CTXT 8 941 942 /* Number of VNIC RSM entries */ 943 #define NUM_VNIC_MAP_ENTRIES 8 944 945 /* Virtual NIC information */ 946 struct hfi1_vnic_data { 947 struct hfi1_ctxtdata *ctxt[HFI1_NUM_VNIC_CTXT]; 948 struct kmem_cache *txreq_cache; 949 u8 num_vports; 950 struct idr vesw_idr; 951 u8 rmt_start; 952 u8 num_ctxt; 953 u32 msix_idx; 954 }; 955 956 struct hfi1_vnic_vport_info; 957 958 /* device data struct now contains only "general per-device" info. 959 * fields related to a physical IB port are in a hfi1_pportdata struct. 960 */ 961 struct sdma_engine; 962 struct sdma_vl_map; 963 964 #define BOARD_VERS_MAX 96 /* how long the version string can be */ 965 #define SERIAL_MAX 16 /* length of the serial number */ 966 967 typedef int (*send_routine)(struct rvt_qp *, struct hfi1_pkt_state *, u64); 968 struct hfi1_devdata { 969 struct hfi1_ibdev verbs_dev; /* must be first */ 970 struct list_head list; 971 /* pointers to related structs for this device */ 972 /* pci access data structure */ 973 struct pci_dev *pcidev; 974 struct cdev user_cdev; 975 struct cdev diag_cdev; 976 struct cdev ui_cdev; 977 struct device *user_device; 978 struct device *diag_device; 979 struct device *ui_device; 980 981 /* first mapping up to RcvArray */ 982 u8 __iomem *kregbase1; 983 resource_size_t physaddr; 984 985 /* second uncached mapping from RcvArray to pio send buffers */ 986 u8 __iomem *kregbase2; 987 /* for detecting offset above kregbase2 address */ 988 u32 base2_start; 989 990 /* Per VL data. Enough for all VLs but not all elements are set/used. */ 991 struct per_vl_data vld[PER_VL_SEND_CONTEXTS]; 992 /* send context data */ 993 struct send_context_info *send_contexts; 994 /* map hardware send contexts to software index */ 995 u8 *hw_to_sw; 996 /* spinlock for allocating and releasing send context resources */ 997 spinlock_t sc_lock; 998 /* lock for pio_map */ 999 spinlock_t pio_map_lock; 1000 /* Send Context initialization lock. */ 1001 spinlock_t sc_init_lock; 1002 /* lock for sdma_map */ 1003 spinlock_t sde_map_lock; 1004 /* array of kernel send contexts */ 1005 struct send_context **kernel_send_context; 1006 /* array of vl maps */ 1007 struct pio_vl_map __rcu *pio_map; 1008 /* default flags to last descriptor */ 1009 u64 default_desc1; 1010 1011 /* fields common to all SDMA engines */ 1012 1013 volatile __le64 *sdma_heads_dma; /* DMA'ed by chip */ 1014 dma_addr_t sdma_heads_phys; 1015 void *sdma_pad_dma; /* DMA'ed by chip */ 1016 dma_addr_t sdma_pad_phys; 1017 /* for deallocation */ 1018 size_t sdma_heads_size; 1019 /* number from the chip */ 1020 u32 chip_sdma_engines; 1021 /* num used */ 1022 u32 num_sdma; 1023 /* array of engines sized by num_sdma */ 1024 struct sdma_engine *per_sdma; 1025 /* array of vl maps */ 1026 struct sdma_vl_map __rcu *sdma_map; 1027 /* SPC freeze waitqueue and variable */ 1028 wait_queue_head_t sdma_unfreeze_wq; 1029 atomic_t sdma_unfreeze_count; 1030 1031 u32 lcb_access_count; /* count of LCB users */ 1032 1033 /* common data between shared ASIC HFIs in this OS */ 1034 struct hfi1_asic_data *asic_data; 1035 1036 /* mem-mapped pointer to base of PIO buffers */ 1037 void __iomem *piobase; 1038 /* 1039 * write-combining mem-mapped pointer to base of RcvArray 1040 * memory. 1041 */ 1042 void __iomem *rcvarray_wc; 1043 /* 1044 * credit return base - a per-NUMA range of DMA address that 1045 * the chip will use to update the per-context free counter 1046 */ 1047 struct credit_return_base *cr_base; 1048 1049 /* send context numbers and sizes for each type */ 1050 struct sc_config_sizes sc_sizes[SC_MAX]; 1051 1052 char *boardname; /* human readable board info */ 1053 1054 /* reset value */ 1055 u64 z_int_counter; 1056 u64 z_rcv_limit; 1057 u64 z_send_schedule; 1058 1059 u64 __percpu *send_schedule; 1060 /* number of reserved contexts for VNIC usage */ 1061 u16 num_vnic_contexts; 1062 /* number of receive contexts in use by the driver */ 1063 u32 num_rcv_contexts; 1064 /* number of pio send contexts in use by the driver */ 1065 u32 num_send_contexts; 1066 /* 1067 * number of ctxts available for PSM open 1068 */ 1069 u32 freectxts; 1070 /* total number of available user/PSM contexts */ 1071 u32 num_user_contexts; 1072 /* base receive interrupt timeout, in CSR units */ 1073 u32 rcv_intr_timeout_csr; 1074 1075 u32 freezelen; /* max length of freezemsg */ 1076 u64 __iomem *egrtidbase; 1077 spinlock_t sendctrl_lock; /* protect changes to SendCtrl */ 1078 spinlock_t rcvctrl_lock; /* protect changes to RcvCtrl */ 1079 spinlock_t uctxt_lock; /* protect rcd changes */ 1080 struct mutex dc8051_lock; /* exclusive access to 8051 */ 1081 struct workqueue_struct *update_cntr_wq; 1082 struct work_struct update_cntr_work; 1083 /* exclusive access to 8051 memory */ 1084 spinlock_t dc8051_memlock; 1085 int dc8051_timed_out; /* remember if the 8051 timed out */ 1086 /* 1087 * A page that will hold event notification bitmaps for all 1088 * contexts. This page will be mapped into all processes. 1089 */ 1090 unsigned long *events; 1091 /* 1092 * per unit status, see also portdata statusp 1093 * mapped read-only into user processes so they can get unit and 1094 * IB link status cheaply 1095 */ 1096 struct hfi1_status *status; 1097 1098 /* revision register shadow */ 1099 u64 revision; 1100 /* Base GUID for device (network order) */ 1101 u64 base_guid; 1102 1103 /* these are the "32 bit" regs */ 1104 1105 /* value we put in kr_rcvhdrsize */ 1106 u32 rcvhdrsize; 1107 /* number of receive contexts the chip supports */ 1108 u32 chip_rcv_contexts; 1109 /* number of receive array entries */ 1110 u32 chip_rcv_array_count; 1111 /* number of PIO send contexts the chip supports */ 1112 u32 chip_send_contexts; 1113 /* number of bytes in the PIO memory buffer */ 1114 u32 chip_pio_mem_size; 1115 /* number of bytes in the SDMA memory buffer */ 1116 u32 chip_sdma_mem_size; 1117 1118 /* size of each rcvegrbuffer */ 1119 u32 rcvegrbufsize; 1120 /* log2 of above */ 1121 u16 rcvegrbufsize_shift; 1122 /* both sides of the PCIe link are gen3 capable */ 1123 u8 link_gen3_capable; 1124 u8 dc_shutdown; 1125 /* localbus width (1, 2,4,8,16,32) from config space */ 1126 u32 lbus_width; 1127 /* localbus speed in MHz */ 1128 u32 lbus_speed; 1129 int unit; /* unit # of this chip */ 1130 int node; /* home node of this chip */ 1131 1132 /* save these PCI fields to restore after a reset */ 1133 u32 pcibar0; 1134 u32 pcibar1; 1135 u32 pci_rom; 1136 u16 pci_command; 1137 u16 pcie_devctl; 1138 u16 pcie_lnkctl; 1139 u16 pcie_devctl2; 1140 u32 pci_msix0; 1141 u32 pci_tph2; 1142 1143 /* 1144 * ASCII serial number, from flash, large enough for original 1145 * all digit strings, and longer serial number format 1146 */ 1147 u8 serial[SERIAL_MAX]; 1148 /* human readable board version */ 1149 u8 boardversion[BOARD_VERS_MAX]; 1150 u8 lbus_info[32]; /* human readable localbus info */ 1151 /* chip major rev, from CceRevision */ 1152 u8 majrev; 1153 /* chip minor rev, from CceRevision */ 1154 u8 minrev; 1155 /* hardware ID */ 1156 u8 hfi1_id; 1157 /* implementation code */ 1158 u8 icode; 1159 /* vAU of this device */ 1160 u8 vau; 1161 /* vCU of this device */ 1162 u8 vcu; 1163 /* link credits of this device */ 1164 u16 link_credits; 1165 /* initial vl15 credits to use */ 1166 u16 vl15_init; 1167 1168 /* 1169 * Cached value for vl15buf, read during verify cap interrupt. VL15 1170 * credits are to be kept at 0 and set when handling the link-up 1171 * interrupt. This removes the possibility of receiving VL15 MAD 1172 * packets before this HFI is ready. 1173 */ 1174 u16 vl15buf_cached; 1175 1176 /* Misc small ints */ 1177 u8 n_krcv_queues; 1178 u8 qos_shift; 1179 1180 u16 irev; /* implementation revision */ 1181 u32 dc8051_ver; /* 8051 firmware version */ 1182 1183 spinlock_t hfi1_diag_trans_lock; /* protect diag observer ops */ 1184 struct platform_config platform_config; 1185 struct platform_config_cache pcfg_cache; 1186 1187 struct diag_client *diag_client; 1188 1189 /* MSI-X information */ 1190 struct hfi1_msix_entry *msix_entries; 1191 u32 num_msix_entries; 1192 u32 first_dyn_msix_idx; 1193 1194 /* INTx information */ 1195 u32 requested_intx_irq; /* did we request one? */ 1196 1197 /* general interrupt: mask of handled interrupts */ 1198 u64 gi_mask[CCE_NUM_INT_CSRS]; 1199 1200 struct rcv_array_data rcv_entries; 1201 1202 /* cycle length of PS* counters in HW (in picoseconds) */ 1203 u16 psxmitwait_check_rate; 1204 1205 /* 1206 * 64 bit synthetic counters 1207 */ 1208 struct timer_list synth_stats_timer; 1209 1210 /* 1211 * device counters 1212 */ 1213 char *cntrnames; 1214 size_t cntrnameslen; 1215 size_t ndevcntrs; 1216 u64 *cntrs; 1217 u64 *scntrs; 1218 1219 /* 1220 * remembered values for synthetic counters 1221 */ 1222 u64 last_tx; 1223 u64 last_rx; 1224 1225 /* 1226 * per-port counters 1227 */ 1228 size_t nportcntrs; 1229 char *portcntrnames; 1230 size_t portcntrnameslen; 1231 1232 struct err_info_rcvport err_info_rcvport; 1233 struct err_info_constraint err_info_rcv_constraint; 1234 struct err_info_constraint err_info_xmit_constraint; 1235 1236 atomic_t drop_packet; 1237 u8 do_drop; 1238 u8 err_info_uncorrectable; 1239 u8 err_info_fmconfig; 1240 1241 /* 1242 * Software counters for the status bits defined by the 1243 * associated error status registers 1244 */ 1245 u64 cce_err_status_cnt[NUM_CCE_ERR_STATUS_COUNTERS]; 1246 u64 rcv_err_status_cnt[NUM_RCV_ERR_STATUS_COUNTERS]; 1247 u64 misc_err_status_cnt[NUM_MISC_ERR_STATUS_COUNTERS]; 1248 u64 send_pio_err_status_cnt[NUM_SEND_PIO_ERR_STATUS_COUNTERS]; 1249 u64 send_dma_err_status_cnt[NUM_SEND_DMA_ERR_STATUS_COUNTERS]; 1250 u64 send_egress_err_status_cnt[NUM_SEND_EGRESS_ERR_STATUS_COUNTERS]; 1251 u64 send_err_status_cnt[NUM_SEND_ERR_STATUS_COUNTERS]; 1252 1253 /* Software counter that spans all contexts */ 1254 u64 sw_ctxt_err_status_cnt[NUM_SEND_CTXT_ERR_STATUS_COUNTERS]; 1255 /* Software counter that spans all DMA engines */ 1256 u64 sw_send_dma_eng_err_status_cnt[ 1257 NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS]; 1258 /* Software counter that aggregates all cce_err_status errors */ 1259 u64 sw_cce_err_status_aggregate; 1260 /* Software counter that aggregates all bypass packet rcv errors */ 1261 u64 sw_rcv_bypass_packet_errors; 1262 /* receive interrupt function */ 1263 rhf_rcv_function_ptr normal_rhf_rcv_functions[8]; 1264 1265 /* Save the enabled LCB error bits */ 1266 u64 lcb_err_en; 1267 1268 /* 1269 * Capability to have different send engines simply by changing a 1270 * pointer value. 1271 */ 1272 send_routine process_pio_send ____cacheline_aligned_in_smp; 1273 send_routine process_dma_send; 1274 void (*pio_inline_send)(struct hfi1_devdata *dd, struct pio_buf *pbuf, 1275 u64 pbc, const void *from, size_t count); 1276 int (*process_vnic_dma_send)(struct hfi1_devdata *dd, u8 q_idx, 1277 struct hfi1_vnic_vport_info *vinfo, 1278 struct sk_buff *skb, u64 pbc, u8 plen); 1279 /* hfi1_pportdata, points to array of (physical) port-specific 1280 * data structs, indexed by pidx (0..n-1) 1281 */ 1282 struct hfi1_pportdata *pport; 1283 /* receive context data */ 1284 struct hfi1_ctxtdata **rcd; 1285 u64 __percpu *int_counter; 1286 /* verbs tx opcode stats */ 1287 struct hfi1_opcode_stats_perctx __percpu *tx_opstats; 1288 /* device (not port) flags, basically device capabilities */ 1289 u16 flags; 1290 /* Number of physical ports available */ 1291 u8 num_pports; 1292 /* Lowest context number which can be used by user processes or VNIC */ 1293 u8 first_dyn_alloc_ctxt; 1294 /* adding a new field here would make it part of this cacheline */ 1295 1296 /* seqlock for sc2vl */ 1297 seqlock_t sc2vl_lock ____cacheline_aligned_in_smp; 1298 u64 sc2vl[4]; 1299 /* receive interrupt functions */ 1300 rhf_rcv_function_ptr *rhf_rcv_function_map; 1301 u64 __percpu *rcv_limit; 1302 u16 rhf_offset; /* offset of RHF within receive header entry */ 1303 /* adding a new field here would make it part of this cacheline */ 1304 1305 /* OUI comes from the HW. Used everywhere as 3 separate bytes. */ 1306 u8 oui1; 1307 u8 oui2; 1308 u8 oui3; 1309 1310 /* Timer and counter used to detect RcvBufOvflCnt changes */ 1311 struct timer_list rcverr_timer; 1312 1313 wait_queue_head_t event_queue; 1314 1315 /* receive context tail dummy address */ 1316 __le64 *rcvhdrtail_dummy_kvaddr; 1317 dma_addr_t rcvhdrtail_dummy_dma; 1318 1319 u32 rcv_ovfl_cnt; 1320 /* Serialize ASPM enable/disable between multiple verbs contexts */ 1321 spinlock_t aspm_lock; 1322 /* Number of verbs contexts which have disabled ASPM */ 1323 atomic_t aspm_disabled_cnt; 1324 /* Keeps track of user space clients */ 1325 atomic_t user_refcount; 1326 /* Used to wait for outstanding user space clients before dev removal */ 1327 struct completion user_comp; 1328 1329 bool eprom_available; /* true if EPROM is available for this device */ 1330 bool aspm_supported; /* Does HW support ASPM */ 1331 bool aspm_enabled; /* ASPM state: enabled/disabled */ 1332 struct rhashtable *sdma_rht; 1333 1334 struct kobject kobj; 1335 1336 /* vnic data */ 1337 struct hfi1_vnic_data vnic; 1338 }; 1339 1340 static inline bool hfi1_vnic_is_rsm_full(struct hfi1_devdata *dd, int spare) 1341 { 1342 return (dd->vnic.rmt_start + spare) > NUM_MAP_ENTRIES; 1343 } 1344 1345 /* 8051 firmware version helper */ 1346 #define dc8051_ver(a, b, c) ((a) << 16 | (b) << 8 | (c)) 1347 #define dc8051_ver_maj(a) (((a) & 0xff0000) >> 16) 1348 #define dc8051_ver_min(a) (((a) & 0x00ff00) >> 8) 1349 #define dc8051_ver_patch(a) ((a) & 0x0000ff) 1350 1351 /* f_put_tid types */ 1352 #define PT_EXPECTED 0 1353 #define PT_EAGER 1 1354 #define PT_INVALID_FLUSH 2 1355 #define PT_INVALID 3 1356 1357 struct tid_rb_node; 1358 struct mmu_rb_node; 1359 struct mmu_rb_handler; 1360 1361 /* Private data for file operations */ 1362 struct hfi1_filedata { 1363 struct hfi1_devdata *dd; 1364 struct hfi1_ctxtdata *uctxt; 1365 struct hfi1_user_sdma_comp_q *cq; 1366 struct hfi1_user_sdma_pkt_q *pq; 1367 u16 subctxt; 1368 /* for cpu affinity; -1 if none */ 1369 int rec_cpu_num; 1370 u32 tid_n_pinned; 1371 struct mmu_rb_handler *handler; 1372 struct tid_rb_node **entry_to_rb; 1373 spinlock_t tid_lock; /* protect tid_[limit,used] counters */ 1374 u32 tid_limit; 1375 u32 tid_used; 1376 u32 *invalid_tids; 1377 u32 invalid_tid_idx; 1378 /* protect invalid_tids array and invalid_tid_idx */ 1379 spinlock_t invalid_lock; 1380 struct mm_struct *mm; 1381 }; 1382 1383 extern struct list_head hfi1_dev_list; 1384 extern spinlock_t hfi1_devs_lock; 1385 struct hfi1_devdata *hfi1_lookup(int unit); 1386 1387 static inline unsigned long uctxt_offset(struct hfi1_ctxtdata *uctxt) 1388 { 1389 return (uctxt->ctxt - uctxt->dd->first_dyn_alloc_ctxt) * 1390 HFI1_MAX_SHARED_CTXTS; 1391 } 1392 1393 int hfi1_init(struct hfi1_devdata *dd, int reinit); 1394 int hfi1_count_active_units(void); 1395 1396 int hfi1_diag_add(struct hfi1_devdata *dd); 1397 void hfi1_diag_remove(struct hfi1_devdata *dd); 1398 void handle_linkup_change(struct hfi1_devdata *dd, u32 linkup); 1399 1400 void handle_user_interrupt(struct hfi1_ctxtdata *rcd); 1401 1402 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd); 1403 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd); 1404 int hfi1_create_kctxts(struct hfi1_devdata *dd); 1405 int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa, 1406 struct hfi1_ctxtdata **rcd); 1407 void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd); 1408 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd, 1409 struct hfi1_devdata *dd, u8 hw_pidx, u8 port); 1410 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd); 1411 int hfi1_rcd_put(struct hfi1_ctxtdata *rcd); 1412 void hfi1_rcd_get(struct hfi1_ctxtdata *rcd); 1413 struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd, 1414 u16 ctxt); 1415 struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt); 1416 int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread); 1417 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread); 1418 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread); 1419 void set_all_slowpath(struct hfi1_devdata *dd); 1420 void hfi1_vnic_synchronize_irq(struct hfi1_devdata *dd); 1421 void hfi1_set_vnic_msix_info(struct hfi1_ctxtdata *rcd); 1422 void hfi1_reset_vnic_msix_info(struct hfi1_ctxtdata *rcd); 1423 1424 extern const struct pci_device_id hfi1_pci_tbl[]; 1425 void hfi1_make_ud_req_9B(struct rvt_qp *qp, 1426 struct hfi1_pkt_state *ps, 1427 struct rvt_swqe *wqe); 1428 1429 void hfi1_make_ud_req_16B(struct rvt_qp *qp, 1430 struct hfi1_pkt_state *ps, 1431 struct rvt_swqe *wqe); 1432 1433 /* receive packet handler dispositions */ 1434 #define RCV_PKT_OK 0x0 /* keep going */ 1435 #define RCV_PKT_LIMIT 0x1 /* stop, hit limit, start thread */ 1436 #define RCV_PKT_DONE 0x2 /* stop, no more packets detected */ 1437 1438 /* calculate the current RHF address */ 1439 static inline __le32 *get_rhf_addr(struct hfi1_ctxtdata *rcd) 1440 { 1441 return (__le32 *)rcd->rcvhdrq + rcd->head + rcd->dd->rhf_offset; 1442 } 1443 1444 int hfi1_reset_device(int); 1445 1446 void receive_interrupt_work(struct work_struct *work); 1447 1448 /* extract service channel from header and rhf */ 1449 static inline int hfi1_9B_get_sc5(struct ib_header *hdr, u64 rhf) 1450 { 1451 return ib_get_sc(hdr) | ((!!(rhf_dc_info(rhf))) << 4); 1452 } 1453 1454 #define HFI1_JKEY_WIDTH 16 1455 #define HFI1_JKEY_MASK (BIT(16) - 1) 1456 #define HFI1_ADMIN_JKEY_RANGE 32 1457 1458 /* 1459 * J_KEYs are split and allocated in the following groups: 1460 * 0 - 31 - users with administrator privileges 1461 * 32 - 63 - kernel protocols using KDETH packets 1462 * 64 - 65535 - all other users using KDETH packets 1463 */ 1464 static inline u16 generate_jkey(kuid_t uid) 1465 { 1466 u16 jkey = from_kuid(current_user_ns(), uid) & HFI1_JKEY_MASK; 1467 1468 if (capable(CAP_SYS_ADMIN)) 1469 jkey &= HFI1_ADMIN_JKEY_RANGE - 1; 1470 else if (jkey < 64) 1471 jkey |= BIT(HFI1_JKEY_WIDTH - 1); 1472 1473 return jkey; 1474 } 1475 1476 /* 1477 * active_egress_rate 1478 * 1479 * returns the active egress rate in units of [10^6 bits/sec] 1480 */ 1481 static inline u32 active_egress_rate(struct hfi1_pportdata *ppd) 1482 { 1483 u16 link_speed = ppd->link_speed_active; 1484 u16 link_width = ppd->link_width_active; 1485 u32 egress_rate; 1486 1487 if (link_speed == OPA_LINK_SPEED_25G) 1488 egress_rate = 25000; 1489 else /* assume OPA_LINK_SPEED_12_5G */ 1490 egress_rate = 12500; 1491 1492 switch (link_width) { 1493 case OPA_LINK_WIDTH_4X: 1494 egress_rate *= 4; 1495 break; 1496 case OPA_LINK_WIDTH_3X: 1497 egress_rate *= 3; 1498 break; 1499 case OPA_LINK_WIDTH_2X: 1500 egress_rate *= 2; 1501 break; 1502 default: 1503 /* assume IB_WIDTH_1X */ 1504 break; 1505 } 1506 1507 return egress_rate; 1508 } 1509 1510 /* 1511 * egress_cycles 1512 * 1513 * Returns the number of 'fabric clock cycles' to egress a packet 1514 * of length 'len' bytes, at 'rate' Mbit/s. Since the fabric clock 1515 * rate is (approximately) 805 MHz, the units of the returned value 1516 * are (1/805 MHz). 1517 */ 1518 static inline u32 egress_cycles(u32 len, u32 rate) 1519 { 1520 u32 cycles; 1521 1522 /* 1523 * cycles is: 1524 * 1525 * (length) [bits] / (rate) [bits/sec] 1526 * --------------------------------------------------- 1527 * fabric_clock_period == 1 /(805 * 10^6) [cycles/sec] 1528 */ 1529 1530 cycles = len * 8; /* bits */ 1531 cycles *= 805; 1532 cycles /= rate; 1533 1534 return cycles; 1535 } 1536 1537 void set_link_ipg(struct hfi1_pportdata *ppd); 1538 void process_becn(struct hfi1_pportdata *ppd, u8 sl, u32 rlid, u32 lqpn, 1539 u32 rqpn, u8 svc_type); 1540 void return_cnp(struct hfi1_ibport *ibp, struct rvt_qp *qp, u32 remote_qpn, 1541 u32 pkey, u32 slid, u32 dlid, u8 sc5, 1542 const struct ib_grh *old_grh); 1543 void return_cnp_16B(struct hfi1_ibport *ibp, struct rvt_qp *qp, 1544 u32 remote_qpn, u32 pkey, u32 slid, u32 dlid, 1545 u8 sc5, const struct ib_grh *old_grh); 1546 typedef void (*hfi1_handle_cnp)(struct hfi1_ibport *ibp, struct rvt_qp *qp, 1547 u32 remote_qpn, u32 pkey, u32 slid, u32 dlid, 1548 u8 sc5, const struct ib_grh *old_grh); 1549 1550 #define PKEY_CHECK_INVALID -1 1551 int egress_pkey_check(struct hfi1_pportdata *ppd, u32 slid, u16 pkey, 1552 u8 sc5, int8_t s_pkey_index); 1553 1554 #define PACKET_EGRESS_TIMEOUT 350 1555 static inline void pause_for_credit_return(struct hfi1_devdata *dd) 1556 { 1557 /* Pause at least 1us, to ensure chip returns all credits */ 1558 u32 usec = cclock_to_ns(dd, PACKET_EGRESS_TIMEOUT) / 1000; 1559 1560 udelay(usec ? usec : 1); 1561 } 1562 1563 /** 1564 * sc_to_vlt() reverse lookup sc to vl 1565 * @dd - devdata 1566 * @sc5 - 5 bit sc 1567 */ 1568 static inline u8 sc_to_vlt(struct hfi1_devdata *dd, u8 sc5) 1569 { 1570 unsigned seq; 1571 u8 rval; 1572 1573 if (sc5 >= OPA_MAX_SCS) 1574 return (u8)(0xff); 1575 1576 do { 1577 seq = read_seqbegin(&dd->sc2vl_lock); 1578 rval = *(((u8 *)dd->sc2vl) + sc5); 1579 } while (read_seqretry(&dd->sc2vl_lock, seq)); 1580 1581 return rval; 1582 } 1583 1584 #define PKEY_MEMBER_MASK 0x8000 1585 #define PKEY_LOW_15_MASK 0x7fff 1586 1587 /* 1588 * ingress_pkey_matches_entry - return 1 if the pkey matches ent (ent 1589 * being an entry from the ingress partition key table), return 0 1590 * otherwise. Use the matching criteria for ingress partition keys 1591 * specified in the OPAv1 spec., section 9.10.14. 1592 */ 1593 static inline int ingress_pkey_matches_entry(u16 pkey, u16 ent) 1594 { 1595 u16 mkey = pkey & PKEY_LOW_15_MASK; 1596 u16 ment = ent & PKEY_LOW_15_MASK; 1597 1598 if (mkey == ment) { 1599 /* 1600 * If pkey[15] is clear (limited partition member), 1601 * is bit 15 in the corresponding table element 1602 * clear (limited member)? 1603 */ 1604 if (!(pkey & PKEY_MEMBER_MASK)) 1605 return !!(ent & PKEY_MEMBER_MASK); 1606 return 1; 1607 } 1608 return 0; 1609 } 1610 1611 /* 1612 * ingress_pkey_table_search - search the entire pkey table for 1613 * an entry which matches 'pkey'. return 0 if a match is found, 1614 * and 1 otherwise. 1615 */ 1616 static int ingress_pkey_table_search(struct hfi1_pportdata *ppd, u16 pkey) 1617 { 1618 int i; 1619 1620 for (i = 0; i < MAX_PKEY_VALUES; i++) { 1621 if (ingress_pkey_matches_entry(pkey, ppd->pkeys[i])) 1622 return 0; 1623 } 1624 return 1; 1625 } 1626 1627 /* 1628 * ingress_pkey_table_fail - record a failure of ingress pkey validation, 1629 * i.e., increment port_rcv_constraint_errors for the port, and record 1630 * the 'error info' for this failure. 1631 */ 1632 static void ingress_pkey_table_fail(struct hfi1_pportdata *ppd, u16 pkey, 1633 u32 slid) 1634 { 1635 struct hfi1_devdata *dd = ppd->dd; 1636 1637 incr_cntr64(&ppd->port_rcv_constraint_errors); 1638 if (!(dd->err_info_rcv_constraint.status & OPA_EI_STATUS_SMASK)) { 1639 dd->err_info_rcv_constraint.status |= OPA_EI_STATUS_SMASK; 1640 dd->err_info_rcv_constraint.slid = slid; 1641 dd->err_info_rcv_constraint.pkey = pkey; 1642 } 1643 } 1644 1645 /* 1646 * ingress_pkey_check - Return 0 if the ingress pkey is valid, return 1 1647 * otherwise. Use the criteria in the OPAv1 spec, section 9.10.14. idx 1648 * is a hint as to the best place in the partition key table to begin 1649 * searching. This function should not be called on the data path because 1650 * of performance reasons. On datapath pkey check is expected to be done 1651 * by HW and rcv_pkey_check function should be called instead. 1652 */ 1653 static inline int ingress_pkey_check(struct hfi1_pportdata *ppd, u16 pkey, 1654 u8 sc5, u8 idx, u32 slid, bool force) 1655 { 1656 if (!(force) && !(ppd->part_enforce & HFI1_PART_ENFORCE_IN)) 1657 return 0; 1658 1659 /* If SC15, pkey[0:14] must be 0x7fff */ 1660 if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK)) 1661 goto bad; 1662 1663 /* Is the pkey = 0x0, or 0x8000? */ 1664 if ((pkey & PKEY_LOW_15_MASK) == 0) 1665 goto bad; 1666 1667 /* The most likely matching pkey has index 'idx' */ 1668 if (ingress_pkey_matches_entry(pkey, ppd->pkeys[idx])) 1669 return 0; 1670 1671 /* no match - try the whole table */ 1672 if (!ingress_pkey_table_search(ppd, pkey)) 1673 return 0; 1674 1675 bad: 1676 ingress_pkey_table_fail(ppd, pkey, slid); 1677 return 1; 1678 } 1679 1680 /* 1681 * rcv_pkey_check - Return 0 if the ingress pkey is valid, return 1 1682 * otherwise. It only ensures pkey is vlid for QP0. This function 1683 * should be called on the data path instead of ingress_pkey_check 1684 * as on data path, pkey check is done by HW (except for QP0). 1685 */ 1686 static inline int rcv_pkey_check(struct hfi1_pportdata *ppd, u16 pkey, 1687 u8 sc5, u16 slid) 1688 { 1689 if (!(ppd->part_enforce & HFI1_PART_ENFORCE_IN)) 1690 return 0; 1691 1692 /* If SC15, pkey[0:14] must be 0x7fff */ 1693 if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK)) 1694 goto bad; 1695 1696 return 0; 1697 bad: 1698 ingress_pkey_table_fail(ppd, pkey, slid); 1699 return 1; 1700 } 1701 1702 /* MTU handling */ 1703 1704 /* MTU enumeration, 256-4k match IB */ 1705 #define OPA_MTU_0 0 1706 #define OPA_MTU_256 1 1707 #define OPA_MTU_512 2 1708 #define OPA_MTU_1024 3 1709 #define OPA_MTU_2048 4 1710 #define OPA_MTU_4096 5 1711 1712 u32 lrh_max_header_bytes(struct hfi1_devdata *dd); 1713 int mtu_to_enum(u32 mtu, int default_if_bad); 1714 u16 enum_to_mtu(int mtu); 1715 static inline int valid_ib_mtu(unsigned int mtu) 1716 { 1717 return mtu == 256 || mtu == 512 || 1718 mtu == 1024 || mtu == 2048 || 1719 mtu == 4096; 1720 } 1721 1722 static inline int valid_opa_max_mtu(unsigned int mtu) 1723 { 1724 return mtu >= 2048 && 1725 (valid_ib_mtu(mtu) || mtu == 8192 || mtu == 10240); 1726 } 1727 1728 int set_mtu(struct hfi1_pportdata *ppd); 1729 1730 int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc); 1731 void hfi1_disable_after_error(struct hfi1_devdata *dd); 1732 int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit); 1733 int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encode); 1734 1735 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t); 1736 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t); 1737 1738 void set_up_vau(struct hfi1_devdata *dd, u8 vau); 1739 void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf); 1740 void reset_link_credits(struct hfi1_devdata *dd); 1741 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu); 1742 1743 int set_buffer_control(struct hfi1_pportdata *ppd, struct buffer_control *bc); 1744 1745 static inline struct hfi1_devdata *dd_from_ppd(struct hfi1_pportdata *ppd) 1746 { 1747 return ppd->dd; 1748 } 1749 1750 static inline struct hfi1_devdata *dd_from_dev(struct hfi1_ibdev *dev) 1751 { 1752 return container_of(dev, struct hfi1_devdata, verbs_dev); 1753 } 1754 1755 static inline struct hfi1_devdata *dd_from_ibdev(struct ib_device *ibdev) 1756 { 1757 return dd_from_dev(to_idev(ibdev)); 1758 } 1759 1760 static inline struct hfi1_pportdata *ppd_from_ibp(struct hfi1_ibport *ibp) 1761 { 1762 return container_of(ibp, struct hfi1_pportdata, ibport_data); 1763 } 1764 1765 static inline struct hfi1_ibdev *dev_from_rdi(struct rvt_dev_info *rdi) 1766 { 1767 return container_of(rdi, struct hfi1_ibdev, rdi); 1768 } 1769 1770 static inline struct hfi1_ibport *to_iport(struct ib_device *ibdev, u8 port) 1771 { 1772 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 1773 unsigned pidx = port - 1; /* IB number port from 1, hdw from 0 */ 1774 1775 WARN_ON(pidx >= dd->num_pports); 1776 return &dd->pport[pidx].ibport_data; 1777 } 1778 1779 static inline struct hfi1_ibport *rcd_to_iport(struct hfi1_ctxtdata *rcd) 1780 { 1781 return &rcd->ppd->ibport_data; 1782 } 1783 1784 void hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt, 1785 bool do_cnp); 1786 static inline bool process_ecn(struct rvt_qp *qp, struct hfi1_packet *pkt, 1787 bool do_cnp) 1788 { 1789 bool becn; 1790 bool fecn; 1791 1792 if (pkt->etype == RHF_RCV_TYPE_BYPASS) { 1793 fecn = hfi1_16B_get_fecn(pkt->hdr); 1794 becn = hfi1_16B_get_becn(pkt->hdr); 1795 } else { 1796 fecn = ib_bth_get_fecn(pkt->ohdr); 1797 becn = ib_bth_get_becn(pkt->ohdr); 1798 } 1799 if (unlikely(fecn || becn)) { 1800 hfi1_process_ecn_slowpath(qp, pkt, do_cnp); 1801 return fecn; 1802 } 1803 return false; 1804 } 1805 1806 /* 1807 * Return the indexed PKEY from the port PKEY table. 1808 */ 1809 static inline u16 hfi1_get_pkey(struct hfi1_ibport *ibp, unsigned index) 1810 { 1811 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 1812 u16 ret; 1813 1814 if (index >= ARRAY_SIZE(ppd->pkeys)) 1815 ret = 0; 1816 else 1817 ret = ppd->pkeys[index]; 1818 1819 return ret; 1820 } 1821 1822 /* 1823 * Return the indexed GUID from the port GUIDs table. 1824 */ 1825 static inline __be64 get_sguid(struct hfi1_ibport *ibp, unsigned int index) 1826 { 1827 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 1828 1829 WARN_ON(index >= HFI1_GUIDS_PER_PORT); 1830 return cpu_to_be64(ppd->guids[index]); 1831 } 1832 1833 /* 1834 * Called by readers of cc_state only, must call under rcu_read_lock(). 1835 */ 1836 static inline struct cc_state *get_cc_state(struct hfi1_pportdata *ppd) 1837 { 1838 return rcu_dereference(ppd->cc_state); 1839 } 1840 1841 /* 1842 * Called by writers of cc_state only, must call under cc_state_lock. 1843 */ 1844 static inline 1845 struct cc_state *get_cc_state_protected(struct hfi1_pportdata *ppd) 1846 { 1847 return rcu_dereference_protected(ppd->cc_state, 1848 lockdep_is_held(&ppd->cc_state_lock)); 1849 } 1850 1851 /* 1852 * values for dd->flags (_device_ related flags) 1853 */ 1854 #define HFI1_INITTED 0x1 /* chip and driver up and initted */ 1855 #define HFI1_PRESENT 0x2 /* chip accesses can be done */ 1856 #define HFI1_FROZEN 0x4 /* chip in SPC freeze */ 1857 #define HFI1_HAS_SDMA_TIMEOUT 0x8 1858 #define HFI1_HAS_SEND_DMA 0x10 /* Supports Send DMA */ 1859 #define HFI1_FORCED_FREEZE 0x80 /* driver forced freeze mode */ 1860 1861 /* IB dword length mask in PBC (lower 11 bits); same for all chips */ 1862 #define HFI1_PBC_LENGTH_MASK ((1 << 11) - 1) 1863 1864 /* ctxt_flag bit offsets */ 1865 /* base context has not finished initializing */ 1866 #define HFI1_CTXT_BASE_UNINIT 1 1867 /* base context initaliation failed */ 1868 #define HFI1_CTXT_BASE_FAILED 2 1869 /* waiting for a packet to arrive */ 1870 #define HFI1_CTXT_WAITING_RCV 3 1871 /* waiting for an urgent packet to arrive */ 1872 #define HFI1_CTXT_WAITING_URG 4 1873 1874 /* free up any allocated data at closes */ 1875 struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev, 1876 const struct pci_device_id *ent); 1877 void hfi1_free_devdata(struct hfi1_devdata *dd); 1878 struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev, size_t extra); 1879 1880 /* LED beaconing functions */ 1881 void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon, 1882 unsigned int timeoff); 1883 void shutdown_led_override(struct hfi1_pportdata *ppd); 1884 1885 #define HFI1_CREDIT_RETURN_RATE (100) 1886 1887 /* 1888 * The number of words for the KDETH protocol field. If this is 1889 * larger then the actual field used, then part of the payload 1890 * will be in the header. 1891 * 1892 * Optimally, we want this sized so that a typical case will 1893 * use full cache lines. The typical local KDETH header would 1894 * be: 1895 * 1896 * Bytes Field 1897 * 8 LRH 1898 * 12 BHT 1899 * ?? KDETH 1900 * 8 RHF 1901 * --- 1902 * 28 + KDETH 1903 * 1904 * For a 64-byte cache line, KDETH would need to be 36 bytes or 9 DWORDS 1905 */ 1906 #define DEFAULT_RCVHDRSIZE 9 1907 1908 /* 1909 * Maximal header byte count: 1910 * 1911 * Bytes Field 1912 * 8 LRH 1913 * 40 GRH (optional) 1914 * 12 BTH 1915 * ?? KDETH 1916 * 8 RHF 1917 * --- 1918 * 68 + KDETH 1919 * 1920 * We also want to maintain a cache line alignment to assist DMA'ing 1921 * of the header bytes. Round up to a good size. 1922 */ 1923 #define DEFAULT_RCVHDR_ENTSIZE 32 1924 1925 bool hfi1_can_pin_pages(struct hfi1_devdata *dd, struct mm_struct *mm, 1926 u32 nlocked, u32 npages); 1927 int hfi1_acquire_user_pages(struct mm_struct *mm, unsigned long vaddr, 1928 size_t npages, bool writable, struct page **pages); 1929 void hfi1_release_user_pages(struct mm_struct *mm, struct page **p, 1930 size_t npages, bool dirty); 1931 1932 static inline void clear_rcvhdrtail(const struct hfi1_ctxtdata *rcd) 1933 { 1934 *((u64 *)rcd->rcvhdrtail_kvaddr) = 0ULL; 1935 } 1936 1937 static inline u32 get_rcvhdrtail(const struct hfi1_ctxtdata *rcd) 1938 { 1939 /* 1940 * volatile because it's a DMA target from the chip, routine is 1941 * inlined, and don't want register caching or reordering. 1942 */ 1943 return (u32)le64_to_cpu(*rcd->rcvhdrtail_kvaddr); 1944 } 1945 1946 /* 1947 * sysfs interface. 1948 */ 1949 1950 extern const char ib_hfi1_version[]; 1951 1952 int hfi1_device_create(struct hfi1_devdata *dd); 1953 void hfi1_device_remove(struct hfi1_devdata *dd); 1954 1955 int hfi1_create_port_files(struct ib_device *ibdev, u8 port_num, 1956 struct kobject *kobj); 1957 int hfi1_verbs_register_sysfs(struct hfi1_devdata *dd); 1958 void hfi1_verbs_unregister_sysfs(struct hfi1_devdata *dd); 1959 /* Hook for sysfs read of QSFP */ 1960 int qsfp_dump(struct hfi1_pportdata *ppd, char *buf, int len); 1961 1962 int hfi1_pcie_init(struct pci_dev *pdev, const struct pci_device_id *ent); 1963 void hfi1_clean_up_interrupts(struct hfi1_devdata *dd); 1964 void hfi1_pcie_cleanup(struct pci_dev *pdev); 1965 int hfi1_pcie_ddinit(struct hfi1_devdata *dd, struct pci_dev *pdev); 1966 void hfi1_pcie_ddcleanup(struct hfi1_devdata *); 1967 int pcie_speeds(struct hfi1_devdata *dd); 1968 int request_msix(struct hfi1_devdata *dd, u32 msireq); 1969 int restore_pci_variables(struct hfi1_devdata *dd); 1970 int save_pci_variables(struct hfi1_devdata *dd); 1971 int do_pcie_gen3_transition(struct hfi1_devdata *dd); 1972 int parse_platform_config(struct hfi1_devdata *dd); 1973 int get_platform_config_field(struct hfi1_devdata *dd, 1974 enum platform_config_table_type_encoding 1975 table_type, int table_index, int field_index, 1976 u32 *data, u32 len); 1977 1978 struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi); 1979 1980 /* 1981 * Flush write combining store buffers (if present) and perform a write 1982 * barrier. 1983 */ 1984 static inline void flush_wc(void) 1985 { 1986 asm volatile("sfence" : : : "memory"); 1987 } 1988 1989 void handle_eflags(struct hfi1_packet *packet); 1990 int process_receive_ib(struct hfi1_packet *packet); 1991 int process_receive_bypass(struct hfi1_packet *packet); 1992 int process_receive_error(struct hfi1_packet *packet); 1993 int kdeth_process_expected(struct hfi1_packet *packet); 1994 int kdeth_process_eager(struct hfi1_packet *packet); 1995 int process_receive_invalid(struct hfi1_packet *packet); 1996 void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd); 1997 1998 /* global module parameter variables */ 1999 extern unsigned int hfi1_max_mtu; 2000 extern unsigned int hfi1_cu; 2001 extern unsigned int user_credit_return_threshold; 2002 extern int num_user_contexts; 2003 extern unsigned long n_krcvqs; 2004 extern uint krcvqs[]; 2005 extern int krcvqsset; 2006 extern uint kdeth_qp; 2007 extern uint loopback; 2008 extern uint quick_linkup; 2009 extern uint rcv_intr_timeout; 2010 extern uint rcv_intr_count; 2011 extern uint rcv_intr_dynamic; 2012 extern ushort link_crc_mask; 2013 2014 extern struct mutex hfi1_mutex; 2015 2016 /* Number of seconds before our card status check... */ 2017 #define STATUS_TIMEOUT 60 2018 2019 #define DRIVER_NAME "hfi1" 2020 #define HFI1_USER_MINOR_BASE 0 2021 #define HFI1_TRACE_MINOR 127 2022 #define HFI1_NMINORS 255 2023 2024 #define PCI_VENDOR_ID_INTEL 0x8086 2025 #define PCI_DEVICE_ID_INTEL0 0x24f0 2026 #define PCI_DEVICE_ID_INTEL1 0x24f1 2027 2028 #define HFI1_PKT_USER_SC_INTEGRITY \ 2029 (SEND_CTXT_CHECK_ENABLE_DISALLOW_NON_KDETH_PACKETS_SMASK \ 2030 | SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK \ 2031 | SEND_CTXT_CHECK_ENABLE_DISALLOW_BYPASS_SMASK \ 2032 | SEND_CTXT_CHECK_ENABLE_DISALLOW_GRH_SMASK) 2033 2034 #define HFI1_PKT_KERNEL_SC_INTEGRITY \ 2035 (SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK) 2036 2037 static inline u64 hfi1_pkt_default_send_ctxt_mask(struct hfi1_devdata *dd, 2038 u16 ctxt_type) 2039 { 2040 u64 base_sc_integrity; 2041 2042 /* No integrity checks if HFI1_CAP_NO_INTEGRITY is set */ 2043 if (HFI1_CAP_IS_KSET(NO_INTEGRITY)) 2044 return 0; 2045 2046 base_sc_integrity = 2047 SEND_CTXT_CHECK_ENABLE_DISALLOW_BYPASS_BAD_PKT_LEN_SMASK 2048 | SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK 2049 | SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_LONG_BYPASS_PACKETS_SMASK 2050 | SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_LONG_IB_PACKETS_SMASK 2051 | SEND_CTXT_CHECK_ENABLE_DISALLOW_BAD_PKT_LEN_SMASK 2052 | SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_TEST_SMASK 2053 | SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_SMALL_BYPASS_PACKETS_SMASK 2054 | SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_SMALL_IB_PACKETS_SMASK 2055 | SEND_CTXT_CHECK_ENABLE_DISALLOW_RAW_IPV6_SMASK 2056 | SEND_CTXT_CHECK_ENABLE_DISALLOW_RAW_SMASK 2057 | SEND_CTXT_CHECK_ENABLE_CHECK_BYPASS_VL_MAPPING_SMASK 2058 | SEND_CTXT_CHECK_ENABLE_CHECK_VL_MAPPING_SMASK 2059 | SEND_CTXT_CHECK_ENABLE_CHECK_OPCODE_SMASK 2060 | SEND_CTXT_CHECK_ENABLE_CHECK_SLID_SMASK 2061 | SEND_CTXT_CHECK_ENABLE_CHECK_VL_SMASK 2062 | SEND_CTXT_CHECK_ENABLE_CHECK_ENABLE_SMASK; 2063 2064 if (ctxt_type == SC_USER) 2065 base_sc_integrity |= HFI1_PKT_USER_SC_INTEGRITY; 2066 else 2067 base_sc_integrity |= HFI1_PKT_KERNEL_SC_INTEGRITY; 2068 2069 /* turn on send-side job key checks if !A0 */ 2070 if (!is_ax(dd)) 2071 base_sc_integrity |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK; 2072 2073 return base_sc_integrity; 2074 } 2075 2076 static inline u64 hfi1_pkt_base_sdma_integrity(struct hfi1_devdata *dd) 2077 { 2078 u64 base_sdma_integrity; 2079 2080 /* No integrity checks if HFI1_CAP_NO_INTEGRITY is set */ 2081 if (HFI1_CAP_IS_KSET(NO_INTEGRITY)) 2082 return 0; 2083 2084 base_sdma_integrity = 2085 SEND_DMA_CHECK_ENABLE_DISALLOW_BYPASS_BAD_PKT_LEN_SMASK 2086 | SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_LONG_BYPASS_PACKETS_SMASK 2087 | SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_LONG_IB_PACKETS_SMASK 2088 | SEND_DMA_CHECK_ENABLE_DISALLOW_BAD_PKT_LEN_SMASK 2089 | SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_SMALL_BYPASS_PACKETS_SMASK 2090 | SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_SMALL_IB_PACKETS_SMASK 2091 | SEND_DMA_CHECK_ENABLE_DISALLOW_RAW_IPV6_SMASK 2092 | SEND_DMA_CHECK_ENABLE_DISALLOW_RAW_SMASK 2093 | SEND_DMA_CHECK_ENABLE_CHECK_BYPASS_VL_MAPPING_SMASK 2094 | SEND_DMA_CHECK_ENABLE_CHECK_VL_MAPPING_SMASK 2095 | SEND_DMA_CHECK_ENABLE_CHECK_OPCODE_SMASK 2096 | SEND_DMA_CHECK_ENABLE_CHECK_SLID_SMASK 2097 | SEND_DMA_CHECK_ENABLE_CHECK_VL_SMASK 2098 | SEND_DMA_CHECK_ENABLE_CHECK_ENABLE_SMASK; 2099 2100 if (!HFI1_CAP_IS_KSET(STATIC_RATE_CTRL)) 2101 base_sdma_integrity |= 2102 SEND_DMA_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK; 2103 2104 /* turn on send-side job key checks if !A0 */ 2105 if (!is_ax(dd)) 2106 base_sdma_integrity |= 2107 SEND_DMA_CHECK_ENABLE_CHECK_JOB_KEY_SMASK; 2108 2109 return base_sdma_integrity; 2110 } 2111 2112 /* 2113 * hfi1_early_err is used (only!) to print early errors before devdata is 2114 * allocated, or when dd->pcidev may not be valid, and at the tail end of 2115 * cleanup when devdata may have been freed, etc. hfi1_dev_porterr is 2116 * the same as dd_dev_err, but is used when the message really needs 2117 * the IB port# to be definitive as to what's happening.. 2118 */ 2119 #define hfi1_early_err(dev, fmt, ...) \ 2120 dev_err(dev, fmt, ##__VA_ARGS__) 2121 2122 #define hfi1_early_info(dev, fmt, ...) \ 2123 dev_info(dev, fmt, ##__VA_ARGS__) 2124 2125 #define dd_dev_emerg(dd, fmt, ...) \ 2126 dev_emerg(&(dd)->pcidev->dev, "%s: " fmt, \ 2127 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__) 2128 2129 #define dd_dev_err(dd, fmt, ...) \ 2130 dev_err(&(dd)->pcidev->dev, "%s: " fmt, \ 2131 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__) 2132 2133 #define dd_dev_err_ratelimited(dd, fmt, ...) \ 2134 dev_err_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \ 2135 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), \ 2136 ##__VA_ARGS__) 2137 2138 #define dd_dev_warn(dd, fmt, ...) \ 2139 dev_warn(&(dd)->pcidev->dev, "%s: " fmt, \ 2140 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__) 2141 2142 #define dd_dev_warn_ratelimited(dd, fmt, ...) \ 2143 dev_warn_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \ 2144 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), \ 2145 ##__VA_ARGS__) 2146 2147 #define dd_dev_info(dd, fmt, ...) \ 2148 dev_info(&(dd)->pcidev->dev, "%s: " fmt, \ 2149 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__) 2150 2151 #define dd_dev_info_ratelimited(dd, fmt, ...) \ 2152 dev_info_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \ 2153 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), \ 2154 ##__VA_ARGS__) 2155 2156 #define dd_dev_dbg(dd, fmt, ...) \ 2157 dev_dbg(&(dd)->pcidev->dev, "%s: " fmt, \ 2158 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__) 2159 2160 #define hfi1_dev_porterr(dd, port, fmt, ...) \ 2161 dev_err(&(dd)->pcidev->dev, "%s: port %u: " fmt, \ 2162 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), (port), ##__VA_ARGS__) 2163 2164 /* 2165 * this is used for formatting hw error messages... 2166 */ 2167 struct hfi1_hwerror_msgs { 2168 u64 mask; 2169 const char *msg; 2170 size_t sz; 2171 }; 2172 2173 /* in intr.c... */ 2174 void hfi1_format_hwerrors(u64 hwerrs, 2175 const struct hfi1_hwerror_msgs *hwerrmsgs, 2176 size_t nhwerrmsgs, char *msg, size_t lmsg); 2177 2178 #define USER_OPCODE_CHECK_VAL 0xC0 2179 #define USER_OPCODE_CHECK_MASK 0xC0 2180 #define OPCODE_CHECK_VAL_DISABLED 0x0 2181 #define OPCODE_CHECK_MASK_DISABLED 0x0 2182 2183 static inline void hfi1_reset_cpu_counters(struct hfi1_devdata *dd) 2184 { 2185 struct hfi1_pportdata *ppd; 2186 int i; 2187 2188 dd->z_int_counter = get_all_cpu_total(dd->int_counter); 2189 dd->z_rcv_limit = get_all_cpu_total(dd->rcv_limit); 2190 dd->z_send_schedule = get_all_cpu_total(dd->send_schedule); 2191 2192 ppd = (struct hfi1_pportdata *)(dd + 1); 2193 for (i = 0; i < dd->num_pports; i++, ppd++) { 2194 ppd->ibport_data.rvp.z_rc_acks = 2195 get_all_cpu_total(ppd->ibport_data.rvp.rc_acks); 2196 ppd->ibport_data.rvp.z_rc_qacks = 2197 get_all_cpu_total(ppd->ibport_data.rvp.rc_qacks); 2198 } 2199 } 2200 2201 /* Control LED state */ 2202 static inline void setextled(struct hfi1_devdata *dd, u32 on) 2203 { 2204 if (on) 2205 write_csr(dd, DCC_CFG_LED_CNTRL, 0x1F); 2206 else 2207 write_csr(dd, DCC_CFG_LED_CNTRL, 0x10); 2208 } 2209 2210 /* return the i2c resource given the target */ 2211 static inline u32 i2c_target(u32 target) 2212 { 2213 return target ? CR_I2C2 : CR_I2C1; 2214 } 2215 2216 /* return the i2c chain chip resource that this HFI uses for QSFP */ 2217 static inline u32 qsfp_resource(struct hfi1_devdata *dd) 2218 { 2219 return i2c_target(dd->hfi1_id); 2220 } 2221 2222 /* Is this device integrated or discrete? */ 2223 static inline bool is_integrated(struct hfi1_devdata *dd) 2224 { 2225 return dd->pcidev->device == PCI_DEVICE_ID_INTEL1; 2226 } 2227 2228 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp); 2229 2230 #define DD_DEV_ENTRY(dd) __string(dev, dev_name(&(dd)->pcidev->dev)) 2231 #define DD_DEV_ASSIGN(dd) __assign_str(dev, dev_name(&(dd)->pcidev->dev)) 2232 2233 static inline void hfi1_update_ah_attr(struct ib_device *ibdev, 2234 struct rdma_ah_attr *attr) 2235 { 2236 struct hfi1_pportdata *ppd; 2237 struct hfi1_ibport *ibp; 2238 u32 dlid = rdma_ah_get_dlid(attr); 2239 2240 /* 2241 * Kernel clients may not have setup GRH information 2242 * Set that here. 2243 */ 2244 ibp = to_iport(ibdev, rdma_ah_get_port_num(attr)); 2245 ppd = ppd_from_ibp(ibp); 2246 if ((((dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) || 2247 (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE))) && 2248 (dlid != be32_to_cpu(OPA_LID_PERMISSIVE)) && 2249 (dlid != be16_to_cpu(IB_LID_PERMISSIVE)) && 2250 (!(rdma_ah_get_ah_flags(attr) & IB_AH_GRH))) || 2251 (rdma_ah_get_make_grd(attr))) { 2252 rdma_ah_set_ah_flags(attr, IB_AH_GRH); 2253 rdma_ah_set_interface_id(attr, OPA_MAKE_ID(dlid)); 2254 rdma_ah_set_subnet_prefix(attr, ibp->rvp.gid_prefix); 2255 } 2256 } 2257 2258 /* 2259 * hfi1_check_mcast- Check if the given lid is 2260 * in the OPA multicast range. 2261 * 2262 * The LID might either reside in ah.dlid or might be 2263 * in the GRH of the address handle as DGID if extended 2264 * addresses are in use. 2265 */ 2266 static inline bool hfi1_check_mcast(u32 lid) 2267 { 2268 return ((lid >= opa_get_mcast_base(OPA_MCAST_NR)) && 2269 (lid != be32_to_cpu(OPA_LID_PERMISSIVE))); 2270 } 2271 2272 #define opa_get_lid(lid, format) \ 2273 __opa_get_lid(lid, OPA_PORT_PACKET_FORMAT_##format) 2274 2275 /* Convert a lid to a specific lid space */ 2276 static inline u32 __opa_get_lid(u32 lid, u8 format) 2277 { 2278 bool is_mcast = hfi1_check_mcast(lid); 2279 2280 switch (format) { 2281 case OPA_PORT_PACKET_FORMAT_8B: 2282 case OPA_PORT_PACKET_FORMAT_10B: 2283 if (is_mcast) 2284 return (lid - opa_get_mcast_base(OPA_MCAST_NR) + 2285 0xF0000); 2286 return lid & 0xFFFFF; 2287 case OPA_PORT_PACKET_FORMAT_16B: 2288 if (is_mcast) 2289 return (lid - opa_get_mcast_base(OPA_MCAST_NR) + 2290 0xF00000); 2291 return lid & 0xFFFFFF; 2292 case OPA_PORT_PACKET_FORMAT_9B: 2293 if (is_mcast) 2294 return (lid - 2295 opa_get_mcast_base(OPA_MCAST_NR) + 2296 be16_to_cpu(IB_MULTICAST_LID_BASE)); 2297 else 2298 return lid & 0xFFFF; 2299 default: 2300 return lid; 2301 } 2302 } 2303 2304 /* Return true if the given lid is the OPA 16B multicast range */ 2305 static inline bool hfi1_is_16B_mcast(u32 lid) 2306 { 2307 return ((lid >= 2308 opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR), 16B)) && 2309 (lid != opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))); 2310 } 2311 2312 static inline void hfi1_make_opa_lid(struct rdma_ah_attr *attr) 2313 { 2314 const struct ib_global_route *grh = rdma_ah_read_grh(attr); 2315 u32 dlid = rdma_ah_get_dlid(attr); 2316 2317 /* Modify ah_attr.dlid to be in the 32 bit LID space. 2318 * This is how the address will be laid out: 2319 * Assuming MCAST_NR to be 4, 2320 * 32 bit permissive LID = 0xFFFFFFFF 2321 * Multicast LID range = 0xFFFFFFFE to 0xF0000000 2322 * Unicast LID range = 0xEFFFFFFF to 1 2323 * Invalid LID = 0 2324 */ 2325 if (ib_is_opa_gid(&grh->dgid)) 2326 dlid = opa_get_lid_from_gid(&grh->dgid); 2327 else if ((dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) && 2328 (dlid != be16_to_cpu(IB_LID_PERMISSIVE)) && 2329 (dlid != be32_to_cpu(OPA_LID_PERMISSIVE))) 2330 dlid = dlid - be16_to_cpu(IB_MULTICAST_LID_BASE) + 2331 opa_get_mcast_base(OPA_MCAST_NR); 2332 else if (dlid == be16_to_cpu(IB_LID_PERMISSIVE)) 2333 dlid = be32_to_cpu(OPA_LID_PERMISSIVE); 2334 2335 rdma_ah_set_dlid(attr, dlid); 2336 } 2337 2338 static inline u8 hfi1_get_packet_type(u32 lid) 2339 { 2340 /* 9B if lid > 0xF0000000 */ 2341 if (lid >= opa_get_mcast_base(OPA_MCAST_NR)) 2342 return HFI1_PKT_TYPE_9B; 2343 2344 /* 16B if lid > 0xC000 */ 2345 if (lid >= opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR), 9B)) 2346 return HFI1_PKT_TYPE_16B; 2347 2348 return HFI1_PKT_TYPE_9B; 2349 } 2350 2351 static inline bool hfi1_get_hdr_type(u32 lid, struct rdma_ah_attr *attr) 2352 { 2353 /* 2354 * If there was an incoming 16B packet with permissive 2355 * LIDs, OPA GIDs would have been programmed when those 2356 * packets were received. A 16B packet will have to 2357 * be sent in response to that packet. Return a 16B 2358 * header type if that's the case. 2359 */ 2360 if (rdma_ah_get_dlid(attr) == be32_to_cpu(OPA_LID_PERMISSIVE)) 2361 return (ib_is_opa_gid(&rdma_ah_read_grh(attr)->dgid)) ? 2362 HFI1_PKT_TYPE_16B : HFI1_PKT_TYPE_9B; 2363 2364 /* 2365 * Return a 16B header type if either the the destination 2366 * or source lid is extended. 2367 */ 2368 if (hfi1_get_packet_type(rdma_ah_get_dlid(attr)) == HFI1_PKT_TYPE_16B) 2369 return HFI1_PKT_TYPE_16B; 2370 2371 return hfi1_get_packet_type(lid); 2372 } 2373 2374 static inline void hfi1_make_ext_grh(struct hfi1_packet *packet, 2375 struct ib_grh *grh, u32 slid, 2376 u32 dlid) 2377 { 2378 struct hfi1_ibport *ibp = &packet->rcd->ppd->ibport_data; 2379 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 2380 2381 if (!ibp) 2382 return; 2383 2384 grh->hop_limit = 1; 2385 grh->sgid.global.subnet_prefix = ibp->rvp.gid_prefix; 2386 if (slid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B)) 2387 grh->sgid.global.interface_id = 2388 OPA_MAKE_ID(be32_to_cpu(OPA_LID_PERMISSIVE)); 2389 else 2390 grh->sgid.global.interface_id = OPA_MAKE_ID(slid); 2391 2392 /* 2393 * Upper layers (like mad) may compare the dgid in the 2394 * wc that is obtained here with the sgid_index in 2395 * the wr. Since sgid_index in wr is always 0 for 2396 * extended lids, set the dgid here to the default 2397 * IB gid. 2398 */ 2399 grh->dgid.global.subnet_prefix = ibp->rvp.gid_prefix; 2400 grh->dgid.global.interface_id = 2401 cpu_to_be64(ppd->guids[HFI1_PORT_GUID_INDEX]); 2402 } 2403 2404 static inline int hfi1_get_16b_padding(u32 hdr_size, u32 payload) 2405 { 2406 return -(hdr_size + payload + (SIZE_OF_CRC << 2) + 2407 SIZE_OF_LT) & 0x7; 2408 } 2409 2410 static inline void hfi1_make_ib_hdr(struct ib_header *hdr, 2411 u16 lrh0, u16 len, 2412 u16 dlid, u16 slid) 2413 { 2414 hdr->lrh[0] = cpu_to_be16(lrh0); 2415 hdr->lrh[1] = cpu_to_be16(dlid); 2416 hdr->lrh[2] = cpu_to_be16(len); 2417 hdr->lrh[3] = cpu_to_be16(slid); 2418 } 2419 2420 static inline void hfi1_make_16b_hdr(struct hfi1_16b_header *hdr, 2421 u32 slid, u32 dlid, 2422 u16 len, u16 pkey, 2423 bool becn, bool fecn, u8 l4, 2424 u8 sc) 2425 { 2426 u32 lrh0 = 0; 2427 u32 lrh1 = 0x40000000; 2428 u32 lrh2 = 0; 2429 u32 lrh3 = 0; 2430 2431 lrh0 = (lrh0 & ~OPA_16B_BECN_MASK) | (becn << OPA_16B_BECN_SHIFT); 2432 lrh0 = (lrh0 & ~OPA_16B_LEN_MASK) | (len << OPA_16B_LEN_SHIFT); 2433 lrh0 = (lrh0 & ~OPA_16B_LID_MASK) | (slid & OPA_16B_LID_MASK); 2434 lrh1 = (lrh1 & ~OPA_16B_FECN_MASK) | (fecn << OPA_16B_FECN_SHIFT); 2435 lrh1 = (lrh1 & ~OPA_16B_SC_MASK) | (sc << OPA_16B_SC_SHIFT); 2436 lrh1 = (lrh1 & ~OPA_16B_LID_MASK) | (dlid & OPA_16B_LID_MASK); 2437 lrh2 = (lrh2 & ~OPA_16B_SLID_MASK) | 2438 ((slid >> OPA_16B_SLID_SHIFT) << OPA_16B_SLID_HIGH_SHIFT); 2439 lrh2 = (lrh2 & ~OPA_16B_DLID_MASK) | 2440 ((dlid >> OPA_16B_DLID_SHIFT) << OPA_16B_DLID_HIGH_SHIFT); 2441 lrh2 = (lrh2 & ~OPA_16B_PKEY_MASK) | (pkey << OPA_16B_PKEY_SHIFT); 2442 lrh2 = (lrh2 & ~OPA_16B_L4_MASK) | l4; 2443 2444 hdr->lrh[0] = lrh0; 2445 hdr->lrh[1] = lrh1; 2446 hdr->lrh[2] = lrh2; 2447 hdr->lrh[3] = lrh3; 2448 } 2449 #endif /* _HFI1_KERNEL_H */ 2450