1 #ifndef _HFI1_KERNEL_H 2 #define _HFI1_KERNEL_H 3 /* 4 * Copyright(c) 2015-2018 Intel Corporation. 5 * 6 * This file is provided under a dual BSD/GPLv2 license. When using or 7 * redistributing this file, you may do so under either license. 8 * 9 * GPL LICENSE SUMMARY 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of version 2 of the GNU General Public License as 13 * published by the Free Software Foundation. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * BSD LICENSE 21 * 22 * Redistribution and use in source and binary forms, with or without 23 * modification, are permitted provided that the following conditions 24 * are met: 25 * 26 * - Redistributions of source code must retain the above copyright 27 * notice, this list of conditions and the following disclaimer. 28 * - Redistributions in binary form must reproduce the above copyright 29 * notice, this list of conditions and the following disclaimer in 30 * the documentation and/or other materials provided with the 31 * distribution. 32 * - Neither the name of Intel Corporation nor the names of its 33 * contributors may be used to endorse or promote products derived 34 * from this software without specific prior written permission. 35 * 36 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 37 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 38 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 39 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 40 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 42 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 43 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 44 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 45 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 46 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 47 * 48 */ 49 50 #include <linux/interrupt.h> 51 #include <linux/pci.h> 52 #include <linux/dma-mapping.h> 53 #include <linux/mutex.h> 54 #include <linux/list.h> 55 #include <linux/scatterlist.h> 56 #include <linux/slab.h> 57 #include <linux/io.h> 58 #include <linux/fs.h> 59 #include <linux/completion.h> 60 #include <linux/kref.h> 61 #include <linux/sched.h> 62 #include <linux/cdev.h> 63 #include <linux/delay.h> 64 #include <linux/kthread.h> 65 #include <linux/i2c.h> 66 #include <linux/i2c-algo-bit.h> 67 #include <linux/xarray.h> 68 #include <rdma/ib_hdrs.h> 69 #include <rdma/opa_addr.h> 70 #include <linux/rhashtable.h> 71 #include <linux/netdevice.h> 72 #include <rdma/rdma_vt.h> 73 74 #include "chip_registers.h" 75 #include "common.h" 76 #include "opfn.h" 77 #include "verbs.h" 78 #include "pio.h" 79 #include "chip.h" 80 #include "mad.h" 81 #include "qsfp.h" 82 #include "platform.h" 83 #include "affinity.h" 84 #include "msix.h" 85 86 /* bumped 1 from s/w major version of TrueScale */ 87 #define HFI1_CHIP_VERS_MAJ 3U 88 89 /* don't care about this except printing */ 90 #define HFI1_CHIP_VERS_MIN 0U 91 92 /* The Organization Unique Identifier (Mfg code), and its position in GUID */ 93 #define HFI1_OUI 0x001175 94 #define HFI1_OUI_LSB 40 95 96 #define DROP_PACKET_OFF 0 97 #define DROP_PACKET_ON 1 98 99 #define NEIGHBOR_TYPE_HFI 0 100 #define NEIGHBOR_TYPE_SWITCH 1 101 102 #define HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES 5 103 104 extern unsigned long hfi1_cap_mask; 105 #define HFI1_CAP_KGET_MASK(mask, cap) ((mask) & HFI1_CAP_##cap) 106 #define HFI1_CAP_UGET_MASK(mask, cap) \ 107 (((mask) >> HFI1_CAP_USER_SHIFT) & HFI1_CAP_##cap) 108 #define HFI1_CAP_KGET(cap) (HFI1_CAP_KGET_MASK(hfi1_cap_mask, cap)) 109 #define HFI1_CAP_UGET(cap) (HFI1_CAP_UGET_MASK(hfi1_cap_mask, cap)) 110 #define HFI1_CAP_IS_KSET(cap) (!!HFI1_CAP_KGET(cap)) 111 #define HFI1_CAP_IS_USET(cap) (!!HFI1_CAP_UGET(cap)) 112 #define HFI1_MISC_GET() ((hfi1_cap_mask >> HFI1_CAP_MISC_SHIFT) & \ 113 HFI1_CAP_MISC_MASK) 114 /* Offline Disabled Reason is 4-bits */ 115 #define HFI1_ODR_MASK(rsn) ((rsn) & OPA_PI_MASK_OFFLINE_REASON) 116 117 /* 118 * Control context is always 0 and handles the error packets. 119 * It also handles the VL15 and multicast packets. 120 */ 121 #define HFI1_CTRL_CTXT 0 122 123 /* 124 * Driver context will store software counters for each of the events 125 * associated with these status registers 126 */ 127 #define NUM_CCE_ERR_STATUS_COUNTERS 41 128 #define NUM_RCV_ERR_STATUS_COUNTERS 64 129 #define NUM_MISC_ERR_STATUS_COUNTERS 13 130 #define NUM_SEND_PIO_ERR_STATUS_COUNTERS 36 131 #define NUM_SEND_DMA_ERR_STATUS_COUNTERS 4 132 #define NUM_SEND_EGRESS_ERR_STATUS_COUNTERS 64 133 #define NUM_SEND_ERR_STATUS_COUNTERS 3 134 #define NUM_SEND_CTXT_ERR_STATUS_COUNTERS 5 135 #define NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS 24 136 137 /* 138 * per driver stats, either not device nor port-specific, or 139 * summed over all of the devices and ports. 140 * They are described by name via ipathfs filesystem, so layout 141 * and number of elements can change without breaking compatibility. 142 * If members are added or deleted hfi1_statnames[] in debugfs.c must 143 * change to match. 144 */ 145 struct hfi1_ib_stats { 146 __u64 sps_ints; /* number of interrupts handled */ 147 __u64 sps_errints; /* number of error interrupts */ 148 __u64 sps_txerrs; /* tx-related packet errors */ 149 __u64 sps_rcverrs; /* non-crc rcv packet errors */ 150 __u64 sps_hwerrs; /* hardware errors reported (parity, etc.) */ 151 __u64 sps_nopiobufs; /* no pio bufs avail from kernel */ 152 __u64 sps_ctxts; /* number of contexts currently open */ 153 __u64 sps_lenerrs; /* number of kernel packets where RHF != LRH len */ 154 __u64 sps_buffull; 155 __u64 sps_hdrfull; 156 }; 157 158 extern struct hfi1_ib_stats hfi1_stats; 159 extern const struct pci_error_handlers hfi1_pci_err_handler; 160 161 extern int num_driver_cntrs; 162 163 /* 164 * First-cut criterion for "device is active" is 165 * two thousand dwords combined Tx, Rx traffic per 166 * 5-second interval. SMA packets are 64 dwords, 167 * and occur "a few per second", presumably each way. 168 */ 169 #define HFI1_TRAFFIC_ACTIVE_THRESHOLD (2000) 170 171 /* 172 * Below contains all data related to a single context (formerly called port). 173 */ 174 175 struct hfi1_opcode_stats_perctx; 176 177 struct ctxt_eager_bufs { 178 struct eager_buffer { 179 void *addr; 180 dma_addr_t dma; 181 ssize_t len; 182 } *buffers; 183 struct { 184 void *addr; 185 dma_addr_t dma; 186 } *rcvtids; 187 u32 size; /* total size of eager buffers */ 188 u32 rcvtid_size; /* size of each eager rcv tid */ 189 u16 count; /* size of buffers array */ 190 u16 numbufs; /* number of buffers allocated */ 191 u16 alloced; /* number of rcvarray entries used */ 192 u16 threshold; /* head update threshold */ 193 }; 194 195 struct exp_tid_set { 196 struct list_head list; 197 u32 count; 198 }; 199 200 struct hfi1_ctxtdata; 201 typedef int (*intr_handler)(struct hfi1_ctxtdata *rcd, int data); 202 typedef void (*rhf_rcv_function_ptr)(struct hfi1_packet *packet); 203 204 struct tid_queue { 205 struct list_head queue_head; 206 /* queue head for QP TID resource waiters */ 207 u32 enqueue; /* count of tid enqueues */ 208 u32 dequeue; /* count of tid dequeues */ 209 }; 210 211 struct hfi1_ctxtdata { 212 /* rcvhdrq base, needs mmap before useful */ 213 void *rcvhdrq; 214 /* kernel virtual address where hdrqtail is updated */ 215 volatile __le64 *rcvhdrtail_kvaddr; 216 /* so functions that need physical port can get it easily */ 217 struct hfi1_pportdata *ppd; 218 /* so file ops can get at unit */ 219 struct hfi1_devdata *dd; 220 /* this receive context's assigned PIO ACK send context */ 221 struct send_context *sc; 222 /* per context recv functions */ 223 const rhf_rcv_function_ptr *rhf_rcv_function_map; 224 /* 225 * The interrupt handler for a particular receive context can vary 226 * throughout it's lifetime. This is not a lock protected data member so 227 * it must be updated atomically and the prev and new value must always 228 * be valid. Worst case is we process an extra interrupt and up to 64 229 * packets with the wrong interrupt handler. 230 */ 231 intr_handler do_interrupt; 232 /** fast handler after autoactive */ 233 intr_handler fast_handler; 234 /** slow handler */ 235 intr_handler slow_handler; 236 /* verbs rx_stats per rcd */ 237 struct hfi1_opcode_stats_perctx *opstats; 238 /* clear interrupt mask */ 239 u64 imask; 240 /* ctxt rcvhdrq head offset */ 241 u32 head; 242 /* number of rcvhdrq entries */ 243 u16 rcvhdrq_cnt; 244 u8 ireg; /* clear interrupt register */ 245 /* receive packet sequence counter */ 246 u8 seq_cnt; 247 /* size of each of the rcvhdrq entries */ 248 u8 rcvhdrqentsize; 249 /* offset of RHF within receive header entry */ 250 u8 rhf_offset; 251 /* dynamic receive available interrupt timeout */ 252 u8 rcvavail_timeout; 253 /* Indicates that this is vnic context */ 254 bool is_vnic; 255 /* vnic queue index this context is mapped to */ 256 u8 vnic_q_idx; 257 /* Is ASPM interrupt supported for this context */ 258 bool aspm_intr_supported; 259 /* ASPM state (enabled/disabled) for this context */ 260 bool aspm_enabled; 261 /* Is ASPM processing enabled for this context (in intr context) */ 262 bool aspm_intr_enable; 263 struct ctxt_eager_bufs egrbufs; 264 /* QPs waiting for context processing */ 265 struct list_head qp_wait_list; 266 /* tid allocation lists */ 267 struct exp_tid_set tid_group_list; 268 struct exp_tid_set tid_used_list; 269 struct exp_tid_set tid_full_list; 270 271 /* Timer for re-enabling ASPM if interrupt activity quiets down */ 272 struct timer_list aspm_timer; 273 /* per-context configuration flags */ 274 unsigned long flags; 275 /* array of tid_groups */ 276 struct tid_group *groups; 277 /* mmap of hdrq, must fit in 44 bits */ 278 dma_addr_t rcvhdrq_dma; 279 dma_addr_t rcvhdrqtailaddr_dma; 280 /* Last interrupt timestamp */ 281 ktime_t aspm_ts_last_intr; 282 /* Last timestamp at which we scheduled a timer for this context */ 283 ktime_t aspm_ts_timer_sched; 284 /* Lock to serialize between intr, timer intr and user threads */ 285 spinlock_t aspm_lock; 286 /* Reference count the base context usage */ 287 struct kref kref; 288 /* numa node of this context */ 289 int numa_id; 290 /* associated msix interrupt. */ 291 s16 msix_intr; 292 /* job key */ 293 u16 jkey; 294 /* number of RcvArray groups for this context. */ 295 u16 rcv_array_groups; 296 /* index of first eager TID entry. */ 297 u16 eager_base; 298 /* number of expected TID entries */ 299 u16 expected_count; 300 /* index of first expected TID entry. */ 301 u16 expected_base; 302 /* Device context index */ 303 u8 ctxt; 304 305 /* PSM Specific fields */ 306 /* lock protecting all Expected TID data */ 307 struct mutex exp_mutex; 308 /* lock protecting all Expected TID data of kernel contexts */ 309 spinlock_t exp_lock; 310 /* Queue for QP's waiting for HW TID flows */ 311 struct tid_queue flow_queue; 312 /* Queue for QP's waiting for HW receive array entries */ 313 struct tid_queue rarr_queue; 314 /* when waiting for rcv or pioavail */ 315 wait_queue_head_t wait; 316 /* uuid from PSM */ 317 u8 uuid[16]; 318 /* same size as task_struct .comm[], command that opened context */ 319 char comm[TASK_COMM_LEN]; 320 /* Bitmask of in use context(s) */ 321 DECLARE_BITMAP(in_use_ctxts, HFI1_MAX_SHARED_CTXTS); 322 /* per-context event flags for fileops/intr communication */ 323 unsigned long event_flags; 324 /* A page of memory for rcvhdrhead, rcvegrhead, rcvegrtail * N */ 325 void *subctxt_uregbase; 326 /* An array of pages for the eager receive buffers * N */ 327 void *subctxt_rcvegrbuf; 328 /* An array of pages for the eager header queue entries * N */ 329 void *subctxt_rcvhdr_base; 330 /* total number of polled urgent packets */ 331 u32 urgent; 332 /* saved total number of polled urgent packets for poll edge trigger */ 333 u32 urgent_poll; 334 /* Type of packets or conditions we want to poll for */ 335 u16 poll_type; 336 /* non-zero if ctxt is being shared. */ 337 u16 subctxt_id; 338 /* The version of the library which opened this ctxt */ 339 u32 userversion; 340 /* 341 * non-zero if ctxt can be shared, and defines the maximum number of 342 * sub-contexts for this device context. 343 */ 344 u8 subctxt_cnt; 345 346 /* Bit mask to track free TID RDMA HW flows */ 347 unsigned long flow_mask; 348 struct tid_flow_state flows[RXE_NUM_TID_FLOWS]; 349 }; 350 351 /** 352 * rcvhdrq_size - return total size in bytes for header queue 353 * @rcd: the receive context 354 * 355 * rcvhdrqentsize is in DWs, so we have to convert to bytes 356 * 357 */ 358 static inline u32 rcvhdrq_size(struct hfi1_ctxtdata *rcd) 359 { 360 return PAGE_ALIGN(rcd->rcvhdrq_cnt * 361 rcd->rcvhdrqentsize * sizeof(u32)); 362 } 363 364 /* 365 * Represents a single packet at a high level. Put commonly computed things in 366 * here so we do not have to keep doing them over and over. The rule of thumb is 367 * if something is used one time to derive some value, store that something in 368 * here. If it is used multiple times, then store the result of that derivation 369 * in here. 370 */ 371 struct hfi1_packet { 372 void *ebuf; 373 void *hdr; 374 void *payload; 375 struct hfi1_ctxtdata *rcd; 376 __le32 *rhf_addr; 377 struct rvt_qp *qp; 378 struct ib_other_headers *ohdr; 379 struct ib_grh *grh; 380 struct opa_16b_mgmt *mgmt; 381 u64 rhf; 382 u32 maxcnt; 383 u32 rhqoff; 384 u32 dlid; 385 u32 slid; 386 u16 tlen; 387 s16 etail; 388 u16 pkey; 389 u8 hlen; 390 u8 numpkt; 391 u8 rsize; 392 u8 updegr; 393 u8 etype; 394 u8 extra_byte; 395 u8 pad; 396 u8 sc; 397 u8 sl; 398 u8 opcode; 399 bool migrated; 400 }; 401 402 /* Packet types */ 403 #define HFI1_PKT_TYPE_9B 0 404 #define HFI1_PKT_TYPE_16B 1 405 406 /* 407 * OPA 16B Header 408 */ 409 #define OPA_16B_L4_MASK 0xFFull 410 #define OPA_16B_SC_MASK 0x1F00000ull 411 #define OPA_16B_SC_SHIFT 20 412 #define OPA_16B_LID_MASK 0xFFFFFull 413 #define OPA_16B_DLID_MASK 0xF000ull 414 #define OPA_16B_DLID_SHIFT 20 415 #define OPA_16B_DLID_HIGH_SHIFT 12 416 #define OPA_16B_SLID_MASK 0xF00ull 417 #define OPA_16B_SLID_SHIFT 20 418 #define OPA_16B_SLID_HIGH_SHIFT 8 419 #define OPA_16B_BECN_MASK 0x80000000ull 420 #define OPA_16B_BECN_SHIFT 31 421 #define OPA_16B_FECN_MASK 0x10000000ull 422 #define OPA_16B_FECN_SHIFT 28 423 #define OPA_16B_L2_MASK 0x60000000ull 424 #define OPA_16B_L2_SHIFT 29 425 #define OPA_16B_PKEY_MASK 0xFFFF0000ull 426 #define OPA_16B_PKEY_SHIFT 16 427 #define OPA_16B_LEN_MASK 0x7FF00000ull 428 #define OPA_16B_LEN_SHIFT 20 429 #define OPA_16B_RC_MASK 0xE000000ull 430 #define OPA_16B_RC_SHIFT 25 431 #define OPA_16B_AGE_MASK 0xFF0000ull 432 #define OPA_16B_AGE_SHIFT 16 433 #define OPA_16B_ENTROPY_MASK 0xFFFFull 434 435 /* 436 * OPA 16B L2/L4 Encodings 437 */ 438 #define OPA_16B_L4_9B 0x00 439 #define OPA_16B_L2_TYPE 0x02 440 #define OPA_16B_L4_FM 0x08 441 #define OPA_16B_L4_IB_LOCAL 0x09 442 #define OPA_16B_L4_IB_GLOBAL 0x0A 443 #define OPA_16B_L4_ETHR OPA_VNIC_L4_ETHR 444 445 /* 446 * OPA 16B Management 447 */ 448 #define OPA_16B_L4_FM_PAD 3 /* fixed 3B pad */ 449 #define OPA_16B_L4_FM_HLEN 24 /* 16B(16) + L4_FM(8) */ 450 451 static inline u8 hfi1_16B_get_l4(struct hfi1_16b_header *hdr) 452 { 453 return (u8)(hdr->lrh[2] & OPA_16B_L4_MASK); 454 } 455 456 static inline u8 hfi1_16B_get_sc(struct hfi1_16b_header *hdr) 457 { 458 return (u8)((hdr->lrh[1] & OPA_16B_SC_MASK) >> OPA_16B_SC_SHIFT); 459 } 460 461 static inline u32 hfi1_16B_get_dlid(struct hfi1_16b_header *hdr) 462 { 463 return (u32)((hdr->lrh[1] & OPA_16B_LID_MASK) | 464 (((hdr->lrh[2] & OPA_16B_DLID_MASK) >> 465 OPA_16B_DLID_HIGH_SHIFT) << OPA_16B_DLID_SHIFT)); 466 } 467 468 static inline u32 hfi1_16B_get_slid(struct hfi1_16b_header *hdr) 469 { 470 return (u32)((hdr->lrh[0] & OPA_16B_LID_MASK) | 471 (((hdr->lrh[2] & OPA_16B_SLID_MASK) >> 472 OPA_16B_SLID_HIGH_SHIFT) << OPA_16B_SLID_SHIFT)); 473 } 474 475 static inline u8 hfi1_16B_get_becn(struct hfi1_16b_header *hdr) 476 { 477 return (u8)((hdr->lrh[0] & OPA_16B_BECN_MASK) >> OPA_16B_BECN_SHIFT); 478 } 479 480 static inline u8 hfi1_16B_get_fecn(struct hfi1_16b_header *hdr) 481 { 482 return (u8)((hdr->lrh[1] & OPA_16B_FECN_MASK) >> OPA_16B_FECN_SHIFT); 483 } 484 485 static inline u8 hfi1_16B_get_l2(struct hfi1_16b_header *hdr) 486 { 487 return (u8)((hdr->lrh[1] & OPA_16B_L2_MASK) >> OPA_16B_L2_SHIFT); 488 } 489 490 static inline u16 hfi1_16B_get_pkey(struct hfi1_16b_header *hdr) 491 { 492 return (u16)((hdr->lrh[2] & OPA_16B_PKEY_MASK) >> OPA_16B_PKEY_SHIFT); 493 } 494 495 static inline u8 hfi1_16B_get_rc(struct hfi1_16b_header *hdr) 496 { 497 return (u8)((hdr->lrh[1] & OPA_16B_RC_MASK) >> OPA_16B_RC_SHIFT); 498 } 499 500 static inline u8 hfi1_16B_get_age(struct hfi1_16b_header *hdr) 501 { 502 return (u8)((hdr->lrh[3] & OPA_16B_AGE_MASK) >> OPA_16B_AGE_SHIFT); 503 } 504 505 static inline u16 hfi1_16B_get_len(struct hfi1_16b_header *hdr) 506 { 507 return (u16)((hdr->lrh[0] & OPA_16B_LEN_MASK) >> OPA_16B_LEN_SHIFT); 508 } 509 510 static inline u16 hfi1_16B_get_entropy(struct hfi1_16b_header *hdr) 511 { 512 return (u16)(hdr->lrh[3] & OPA_16B_ENTROPY_MASK); 513 } 514 515 #define OPA_16B_MAKE_QW(low_dw, high_dw) (((u64)(high_dw) << 32) | (low_dw)) 516 517 /* 518 * BTH 519 */ 520 #define OPA_16B_BTH_PAD_MASK 7 521 static inline u8 hfi1_16B_bth_get_pad(struct ib_other_headers *ohdr) 522 { 523 return (u8)((be32_to_cpu(ohdr->bth[0]) >> IB_BTH_PAD_SHIFT) & 524 OPA_16B_BTH_PAD_MASK); 525 } 526 527 /* 528 * 16B Management 529 */ 530 #define OPA_16B_MGMT_QPN_MASK 0xFFFFFF 531 static inline u32 hfi1_16B_get_dest_qpn(struct opa_16b_mgmt *mgmt) 532 { 533 return be32_to_cpu(mgmt->dest_qpn) & OPA_16B_MGMT_QPN_MASK; 534 } 535 536 static inline u32 hfi1_16B_get_src_qpn(struct opa_16b_mgmt *mgmt) 537 { 538 return be32_to_cpu(mgmt->src_qpn) & OPA_16B_MGMT_QPN_MASK; 539 } 540 541 static inline void hfi1_16B_set_qpn(struct opa_16b_mgmt *mgmt, 542 u32 dest_qp, u32 src_qp) 543 { 544 mgmt->dest_qpn = cpu_to_be32(dest_qp & OPA_16B_MGMT_QPN_MASK); 545 mgmt->src_qpn = cpu_to_be32(src_qp & OPA_16B_MGMT_QPN_MASK); 546 } 547 548 /** 549 * hfi1_get_rc_ohdr - get extended header 550 * @opah - the opaheader 551 */ 552 static inline struct ib_other_headers * 553 hfi1_get_rc_ohdr(struct hfi1_opa_header *opah) 554 { 555 struct ib_other_headers *ohdr; 556 struct ib_header *hdr = NULL; 557 struct hfi1_16b_header *hdr_16b = NULL; 558 559 /* Find out where the BTH is */ 560 if (opah->hdr_type == HFI1_PKT_TYPE_9B) { 561 hdr = &opah->ibh; 562 if (ib_get_lnh(hdr) == HFI1_LRH_BTH) 563 ohdr = &hdr->u.oth; 564 else 565 ohdr = &hdr->u.l.oth; 566 } else { 567 u8 l4; 568 569 hdr_16b = &opah->opah; 570 l4 = hfi1_16B_get_l4(hdr_16b); 571 if (l4 == OPA_16B_L4_IB_LOCAL) 572 ohdr = &hdr_16b->u.oth; 573 else 574 ohdr = &hdr_16b->u.l.oth; 575 } 576 return ohdr; 577 } 578 579 struct rvt_sge_state; 580 581 /* 582 * Get/Set IB link-level config parameters for f_get/set_ib_cfg() 583 * Mostly for MADs that set or query link parameters, also ipath 584 * config interfaces 585 */ 586 #define HFI1_IB_CFG_LIDLMC 0 /* LID (LS16b) and Mask (MS16b) */ 587 #define HFI1_IB_CFG_LWID_DG_ENB 1 /* allowed Link-width downgrade */ 588 #define HFI1_IB_CFG_LWID_ENB 2 /* allowed Link-width */ 589 #define HFI1_IB_CFG_LWID 3 /* currently active Link-width */ 590 #define HFI1_IB_CFG_SPD_ENB 4 /* allowed Link speeds */ 591 #define HFI1_IB_CFG_SPD 5 /* current Link spd */ 592 #define HFI1_IB_CFG_RXPOL_ENB 6 /* Auto-RX-polarity enable */ 593 #define HFI1_IB_CFG_LREV_ENB 7 /* Auto-Lane-reversal enable */ 594 #define HFI1_IB_CFG_LINKLATENCY 8 /* Link Latency (IB1.2 only) */ 595 #define HFI1_IB_CFG_HRTBT 9 /* IB heartbeat off/enable/auto; DDR/QDR only */ 596 #define HFI1_IB_CFG_OP_VLS 10 /* operational VLs */ 597 #define HFI1_IB_CFG_VL_HIGH_CAP 11 /* num of VL high priority weights */ 598 #define HFI1_IB_CFG_VL_LOW_CAP 12 /* num of VL low priority weights */ 599 #define HFI1_IB_CFG_OVERRUN_THRESH 13 /* IB overrun threshold */ 600 #define HFI1_IB_CFG_PHYERR_THRESH 14 /* IB PHY error threshold */ 601 #define HFI1_IB_CFG_LINKDEFAULT 15 /* IB link default (sleep/poll) */ 602 #define HFI1_IB_CFG_PKEYS 16 /* update partition keys */ 603 #define HFI1_IB_CFG_MTU 17 /* update MTU in IBC */ 604 #define HFI1_IB_CFG_VL_HIGH_LIMIT 19 605 #define HFI1_IB_CFG_PMA_TICKS 20 /* PMA sample tick resolution */ 606 #define HFI1_IB_CFG_PORT 21 /* switch port we are connected to */ 607 608 /* 609 * HFI or Host Link States 610 * 611 * These describe the states the driver thinks the logical and physical 612 * states are in. Used as an argument to set_link_state(). Implemented 613 * as bits for easy multi-state checking. The actual state can only be 614 * one. 615 */ 616 #define __HLS_UP_INIT_BP 0 617 #define __HLS_UP_ARMED_BP 1 618 #define __HLS_UP_ACTIVE_BP 2 619 #define __HLS_DN_DOWNDEF_BP 3 /* link down default */ 620 #define __HLS_DN_POLL_BP 4 621 #define __HLS_DN_DISABLE_BP 5 622 #define __HLS_DN_OFFLINE_BP 6 623 #define __HLS_VERIFY_CAP_BP 7 624 #define __HLS_GOING_UP_BP 8 625 #define __HLS_GOING_OFFLINE_BP 9 626 #define __HLS_LINK_COOLDOWN_BP 10 627 628 #define HLS_UP_INIT BIT(__HLS_UP_INIT_BP) 629 #define HLS_UP_ARMED BIT(__HLS_UP_ARMED_BP) 630 #define HLS_UP_ACTIVE BIT(__HLS_UP_ACTIVE_BP) 631 #define HLS_DN_DOWNDEF BIT(__HLS_DN_DOWNDEF_BP) /* link down default */ 632 #define HLS_DN_POLL BIT(__HLS_DN_POLL_BP) 633 #define HLS_DN_DISABLE BIT(__HLS_DN_DISABLE_BP) 634 #define HLS_DN_OFFLINE BIT(__HLS_DN_OFFLINE_BP) 635 #define HLS_VERIFY_CAP BIT(__HLS_VERIFY_CAP_BP) 636 #define HLS_GOING_UP BIT(__HLS_GOING_UP_BP) 637 #define HLS_GOING_OFFLINE BIT(__HLS_GOING_OFFLINE_BP) 638 #define HLS_LINK_COOLDOWN BIT(__HLS_LINK_COOLDOWN_BP) 639 640 #define HLS_UP (HLS_UP_INIT | HLS_UP_ARMED | HLS_UP_ACTIVE) 641 #define HLS_DOWN ~(HLS_UP) 642 643 #define HLS_DEFAULT HLS_DN_POLL 644 645 /* use this MTU size if none other is given */ 646 #define HFI1_DEFAULT_ACTIVE_MTU 10240 647 /* use this MTU size as the default maximum */ 648 #define HFI1_DEFAULT_MAX_MTU 10240 649 /* default partition key */ 650 #define DEFAULT_PKEY 0xffff 651 652 /* 653 * Possible fabric manager config parameters for fm_{get,set}_table() 654 */ 655 #define FM_TBL_VL_HIGH_ARB 1 /* Get/set VL high prio weights */ 656 #define FM_TBL_VL_LOW_ARB 2 /* Get/set VL low prio weights */ 657 #define FM_TBL_BUFFER_CONTROL 3 /* Get/set Buffer Control */ 658 #define FM_TBL_SC2VLNT 4 /* Get/set SC->VLnt */ 659 #define FM_TBL_VL_PREEMPT_ELEMS 5 /* Get (no set) VL preempt elems */ 660 #define FM_TBL_VL_PREEMPT_MATRIX 6 /* Get (no set) VL preempt matrix */ 661 662 /* 663 * Possible "operations" for f_rcvctrl(ppd, op, ctxt) 664 * these are bits so they can be combined, e.g. 665 * HFI1_RCVCTRL_INTRAVAIL_ENB | HFI1_RCVCTRL_CTXT_ENB 666 */ 667 #define HFI1_RCVCTRL_TAILUPD_ENB 0x01 668 #define HFI1_RCVCTRL_TAILUPD_DIS 0x02 669 #define HFI1_RCVCTRL_CTXT_ENB 0x04 670 #define HFI1_RCVCTRL_CTXT_DIS 0x08 671 #define HFI1_RCVCTRL_INTRAVAIL_ENB 0x10 672 #define HFI1_RCVCTRL_INTRAVAIL_DIS 0x20 673 #define HFI1_RCVCTRL_PKEY_ENB 0x40 /* Note, default is enabled */ 674 #define HFI1_RCVCTRL_PKEY_DIS 0x80 675 #define HFI1_RCVCTRL_TIDFLOW_ENB 0x0400 676 #define HFI1_RCVCTRL_TIDFLOW_DIS 0x0800 677 #define HFI1_RCVCTRL_ONE_PKT_EGR_ENB 0x1000 678 #define HFI1_RCVCTRL_ONE_PKT_EGR_DIS 0x2000 679 #define HFI1_RCVCTRL_NO_RHQ_DROP_ENB 0x4000 680 #define HFI1_RCVCTRL_NO_RHQ_DROP_DIS 0x8000 681 #define HFI1_RCVCTRL_NO_EGR_DROP_ENB 0x10000 682 #define HFI1_RCVCTRL_NO_EGR_DROP_DIS 0x20000 683 #define HFI1_RCVCTRL_URGENT_ENB 0x40000 684 #define HFI1_RCVCTRL_URGENT_DIS 0x80000 685 686 /* partition enforcement flags */ 687 #define HFI1_PART_ENFORCE_IN 0x1 688 #define HFI1_PART_ENFORCE_OUT 0x2 689 690 /* how often we check for synthetic counter wrap around */ 691 #define SYNTH_CNT_TIME 3 692 693 /* Counter flags */ 694 #define CNTR_NORMAL 0x0 /* Normal counters, just read register */ 695 #define CNTR_SYNTH 0x1 /* Synthetic counters, saturate at all 1s */ 696 #define CNTR_DISABLED 0x2 /* Disable this counter */ 697 #define CNTR_32BIT 0x4 /* Simulate 64 bits for this counter */ 698 #define CNTR_VL 0x8 /* Per VL counter */ 699 #define CNTR_SDMA 0x10 700 #define CNTR_INVALID_VL -1 /* Specifies invalid VL */ 701 #define CNTR_MODE_W 0x0 702 #define CNTR_MODE_R 0x1 703 704 /* VLs Supported/Operational */ 705 #define HFI1_MIN_VLS_SUPPORTED 1 706 #define HFI1_MAX_VLS_SUPPORTED 8 707 708 #define HFI1_GUIDS_PER_PORT 5 709 #define HFI1_PORT_GUID_INDEX 0 710 711 static inline void incr_cntr64(u64 *cntr) 712 { 713 if (*cntr < (u64)-1LL) 714 (*cntr)++; 715 } 716 717 static inline void incr_cntr32(u32 *cntr) 718 { 719 if (*cntr < (u32)-1LL) 720 (*cntr)++; 721 } 722 723 #define MAX_NAME_SIZE 64 724 struct hfi1_msix_entry { 725 enum irq_type type; 726 int irq; 727 void *arg; 728 cpumask_t mask; 729 struct irq_affinity_notify notify; 730 }; 731 732 struct hfi1_msix_info { 733 /* lock to synchronize in_use_msix access */ 734 spinlock_t msix_lock; 735 DECLARE_BITMAP(in_use_msix, CCE_NUM_MSIX_VECTORS); 736 struct hfi1_msix_entry *msix_entries; 737 u16 max_requested; 738 }; 739 740 /* per-SL CCA information */ 741 struct cca_timer { 742 struct hrtimer hrtimer; 743 struct hfi1_pportdata *ppd; /* read-only */ 744 int sl; /* read-only */ 745 u16 ccti; /* read/write - current value of CCTI */ 746 }; 747 748 struct link_down_reason { 749 /* 750 * SMA-facing value. Should be set from .latest when 751 * HLS_UP_* -> HLS_DN_* transition actually occurs. 752 */ 753 u8 sma; 754 u8 latest; 755 }; 756 757 enum { 758 LO_PRIO_TABLE, 759 HI_PRIO_TABLE, 760 MAX_PRIO_TABLE 761 }; 762 763 struct vl_arb_cache { 764 /* protect vl arb cache */ 765 spinlock_t lock; 766 struct ib_vl_weight_elem table[VL_ARB_TABLE_SIZE]; 767 }; 768 769 /* 770 * The structure below encapsulates data relevant to a physical IB Port. 771 * Current chips support only one such port, but the separation 772 * clarifies things a bit. Note that to conform to IB conventions, 773 * port-numbers are one-based. The first or only port is port1. 774 */ 775 struct hfi1_pportdata { 776 struct hfi1_ibport ibport_data; 777 778 struct hfi1_devdata *dd; 779 struct kobject pport_cc_kobj; 780 struct kobject sc2vl_kobj; 781 struct kobject sl2sc_kobj; 782 struct kobject vl2mtu_kobj; 783 784 /* PHY support */ 785 struct qsfp_data qsfp_info; 786 /* Values for SI tuning of SerDes */ 787 u32 port_type; 788 u32 tx_preset_eq; 789 u32 tx_preset_noeq; 790 u32 rx_preset; 791 u8 local_atten; 792 u8 remote_atten; 793 u8 default_atten; 794 u8 max_power_class; 795 796 /* did we read platform config from scratch registers? */ 797 bool config_from_scratch; 798 799 /* GUIDs for this interface, in host order, guids[0] is a port guid */ 800 u64 guids[HFI1_GUIDS_PER_PORT]; 801 802 /* GUID for peer interface, in host order */ 803 u64 neighbor_guid; 804 805 /* up or down physical link state */ 806 u32 linkup; 807 808 /* 809 * this address is mapped read-only into user processes so they can 810 * get status cheaply, whenever they want. One qword of status per port 811 */ 812 u64 *statusp; 813 814 /* SendDMA related entries */ 815 816 struct workqueue_struct *hfi1_wq; 817 struct workqueue_struct *link_wq; 818 819 /* move out of interrupt context */ 820 struct work_struct link_vc_work; 821 struct work_struct link_up_work; 822 struct work_struct link_down_work; 823 struct work_struct sma_message_work; 824 struct work_struct freeze_work; 825 struct work_struct link_downgrade_work; 826 struct work_struct link_bounce_work; 827 struct delayed_work start_link_work; 828 /* host link state variables */ 829 struct mutex hls_lock; 830 u32 host_link_state; 831 832 /* these are the "32 bit" regs */ 833 834 u32 ibmtu; /* The MTU programmed for this unit */ 835 /* 836 * Current max size IB packet (in bytes) including IB headers, that 837 * we can send. Changes when ibmtu changes. 838 */ 839 u32 ibmaxlen; 840 u32 current_egress_rate; /* units [10^6 bits/sec] */ 841 /* LID programmed for this instance */ 842 u32 lid; 843 /* list of pkeys programmed; 0 if not set */ 844 u16 pkeys[MAX_PKEY_VALUES]; 845 u16 link_width_supported; 846 u16 link_width_downgrade_supported; 847 u16 link_speed_supported; 848 u16 link_width_enabled; 849 u16 link_width_downgrade_enabled; 850 u16 link_speed_enabled; 851 u16 link_width_active; 852 u16 link_width_downgrade_tx_active; 853 u16 link_width_downgrade_rx_active; 854 u16 link_speed_active; 855 u8 vls_supported; 856 u8 vls_operational; 857 u8 actual_vls_operational; 858 /* LID mask control */ 859 u8 lmc; 860 /* Rx Polarity inversion (compensate for ~tx on partner) */ 861 u8 rx_pol_inv; 862 863 u8 hw_pidx; /* physical port index */ 864 u8 port; /* IB port number and index into dd->pports - 1 */ 865 /* type of neighbor node */ 866 u8 neighbor_type; 867 u8 neighbor_normal; 868 u8 neighbor_fm_security; /* 1 if firmware checking is disabled */ 869 u8 neighbor_port_number; 870 u8 is_sm_config_started; 871 u8 offline_disabled_reason; 872 u8 is_active_optimize_enabled; 873 u8 driver_link_ready; /* driver ready for active link */ 874 u8 link_enabled; /* link enabled? */ 875 u8 linkinit_reason; 876 u8 local_tx_rate; /* rate given to 8051 firmware */ 877 u8 qsfp_retry_count; 878 879 /* placeholders for IB MAD packet settings */ 880 u8 overrun_threshold; 881 u8 phy_error_threshold; 882 unsigned int is_link_down_queued; 883 884 /* Used to override LED behavior for things like maintenance beaconing*/ 885 /* 886 * Alternates per phase of blink 887 * [0] holds LED off duration, [1] holds LED on duration 888 */ 889 unsigned long led_override_vals[2]; 890 u8 led_override_phase; /* LSB picks from vals[] */ 891 atomic_t led_override_timer_active; 892 /* Used to flash LEDs in override mode */ 893 struct timer_list led_override_timer; 894 895 u32 sm_trap_qp; 896 u32 sa_qp; 897 898 /* 899 * cca_timer_lock protects access to the per-SL cca_timer 900 * structures (specifically the ccti member). 901 */ 902 spinlock_t cca_timer_lock ____cacheline_aligned_in_smp; 903 struct cca_timer cca_timer[OPA_MAX_SLS]; 904 905 /* List of congestion control table entries */ 906 struct ib_cc_table_entry_shadow ccti_entries[CC_TABLE_SHADOW_MAX]; 907 908 /* congestion entries, each entry corresponding to a SL */ 909 struct opa_congestion_setting_entry_shadow 910 congestion_entries[OPA_MAX_SLS]; 911 912 /* 913 * cc_state_lock protects (write) access to the per-port 914 * struct cc_state. 915 */ 916 spinlock_t cc_state_lock ____cacheline_aligned_in_smp; 917 918 struct cc_state __rcu *cc_state; 919 920 /* Total number of congestion control table entries */ 921 u16 total_cct_entry; 922 923 /* Bit map identifying service level */ 924 u32 cc_sl_control_map; 925 926 /* CA's max number of 64 entry units in the congestion control table */ 927 u8 cc_max_table_entries; 928 929 /* 930 * begin congestion log related entries 931 * cc_log_lock protects all congestion log related data 932 */ 933 spinlock_t cc_log_lock ____cacheline_aligned_in_smp; 934 u8 threshold_cong_event_map[OPA_MAX_SLS / 8]; 935 u16 threshold_event_counter; 936 struct opa_hfi1_cong_log_event_internal cc_events[OPA_CONG_LOG_ELEMS]; 937 int cc_log_idx; /* index for logging events */ 938 int cc_mad_idx; /* index for reporting events */ 939 /* end congestion log related entries */ 940 941 struct vl_arb_cache vl_arb_cache[MAX_PRIO_TABLE]; 942 943 /* port relative counter buffer */ 944 u64 *cntrs; 945 /* port relative synthetic counter buffer */ 946 u64 *scntrs; 947 /* port_xmit_discards are synthesized from different egress errors */ 948 u64 port_xmit_discards; 949 u64 port_xmit_discards_vl[C_VL_COUNT]; 950 u64 port_xmit_constraint_errors; 951 u64 port_rcv_constraint_errors; 952 /* count of 'link_err' interrupts from DC */ 953 u64 link_downed; 954 /* number of times link retrained successfully */ 955 u64 link_up; 956 /* number of times a link unknown frame was reported */ 957 u64 unknown_frame_count; 958 /* port_ltp_crc_mode is returned in 'portinfo' MADs */ 959 u16 port_ltp_crc_mode; 960 /* port_crc_mode_enabled is the crc we support */ 961 u8 port_crc_mode_enabled; 962 /* mgmt_allowed is also returned in 'portinfo' MADs */ 963 u8 mgmt_allowed; 964 u8 part_enforce; /* partition enforcement flags */ 965 struct link_down_reason local_link_down_reason; 966 struct link_down_reason neigh_link_down_reason; 967 /* Value to be sent to link peer on LinkDown .*/ 968 u8 remote_link_down_reason; 969 /* Error events that will cause a port bounce. */ 970 u32 port_error_action; 971 struct work_struct linkstate_active_work; 972 /* Does this port need to prescan for FECNs */ 973 bool cc_prescan; 974 /* 975 * Sample sendWaitCnt & sendWaitVlCnt during link transition 976 * and counter request. 977 */ 978 u64 port_vl_xmit_wait_last[C_VL_COUNT + 1]; 979 u16 prev_link_width; 980 u64 vl_xmit_flit_cnt[C_VL_COUNT + 1]; 981 }; 982 983 typedef void (*opcode_handler)(struct hfi1_packet *packet); 984 typedef void (*hfi1_make_req)(struct rvt_qp *qp, 985 struct hfi1_pkt_state *ps, 986 struct rvt_swqe *wqe); 987 extern const rhf_rcv_function_ptr normal_rhf_rcv_functions[]; 988 989 990 /* return values for the RHF receive functions */ 991 #define RHF_RCV_CONTINUE 0 /* keep going */ 992 #define RHF_RCV_DONE 1 /* stop, this packet processed */ 993 #define RHF_RCV_REPROCESS 2 /* stop. retain this packet */ 994 995 struct rcv_array_data { 996 u16 ngroups; 997 u16 nctxt_extra; 998 u8 group_size; 999 }; 1000 1001 struct per_vl_data { 1002 u16 mtu; 1003 struct send_context *sc; 1004 }; 1005 1006 /* 16 to directly index */ 1007 #define PER_VL_SEND_CONTEXTS 16 1008 1009 struct err_info_rcvport { 1010 u8 status_and_code; 1011 u64 packet_flit1; 1012 u64 packet_flit2; 1013 }; 1014 1015 struct err_info_constraint { 1016 u8 status; 1017 u16 pkey; 1018 u32 slid; 1019 }; 1020 1021 struct hfi1_temp { 1022 unsigned int curr; /* current temperature */ 1023 unsigned int lo_lim; /* low temperature limit */ 1024 unsigned int hi_lim; /* high temperature limit */ 1025 unsigned int crit_lim; /* critical temperature limit */ 1026 u8 triggers; /* temperature triggers */ 1027 }; 1028 1029 struct hfi1_i2c_bus { 1030 struct hfi1_devdata *controlling_dd; /* current controlling device */ 1031 struct i2c_adapter adapter; /* bus details */ 1032 struct i2c_algo_bit_data algo; /* bus algorithm details */ 1033 int num; /* bus number, 0 or 1 */ 1034 }; 1035 1036 /* common data between shared ASIC HFIs */ 1037 struct hfi1_asic_data { 1038 struct hfi1_devdata *dds[2]; /* back pointers */ 1039 struct mutex asic_resource_mutex; 1040 struct hfi1_i2c_bus *i2c_bus0; 1041 struct hfi1_i2c_bus *i2c_bus1; 1042 }; 1043 1044 /* sizes for both the QP and RSM map tables */ 1045 #define NUM_MAP_ENTRIES 256 1046 #define NUM_MAP_REGS 32 1047 1048 /* 1049 * Number of VNIC contexts used. Ensure it is less than or equal to 1050 * max queues supported by VNIC (HFI1_VNIC_MAX_QUEUE). 1051 */ 1052 #define HFI1_NUM_VNIC_CTXT 8 1053 1054 /* Number of VNIC RSM entries */ 1055 #define NUM_VNIC_MAP_ENTRIES 8 1056 1057 /* Virtual NIC information */ 1058 struct hfi1_vnic_data { 1059 struct hfi1_ctxtdata *ctxt[HFI1_NUM_VNIC_CTXT]; 1060 struct kmem_cache *txreq_cache; 1061 struct xarray vesws; 1062 u8 num_vports; 1063 u8 rmt_start; 1064 u8 num_ctxt; 1065 }; 1066 1067 struct hfi1_vnic_vport_info; 1068 1069 /* device data struct now contains only "general per-device" info. 1070 * fields related to a physical IB port are in a hfi1_pportdata struct. 1071 */ 1072 struct sdma_engine; 1073 struct sdma_vl_map; 1074 1075 #define BOARD_VERS_MAX 96 /* how long the version string can be */ 1076 #define SERIAL_MAX 16 /* length of the serial number */ 1077 1078 typedef int (*send_routine)(struct rvt_qp *, struct hfi1_pkt_state *, u64); 1079 struct hfi1_devdata { 1080 struct hfi1_ibdev verbs_dev; /* must be first */ 1081 /* pointers to related structs for this device */ 1082 /* pci access data structure */ 1083 struct pci_dev *pcidev; 1084 struct cdev user_cdev; 1085 struct cdev diag_cdev; 1086 struct cdev ui_cdev; 1087 struct device *user_device; 1088 struct device *diag_device; 1089 struct device *ui_device; 1090 1091 /* first mapping up to RcvArray */ 1092 u8 __iomem *kregbase1; 1093 resource_size_t physaddr; 1094 1095 /* second uncached mapping from RcvArray to pio send buffers */ 1096 u8 __iomem *kregbase2; 1097 /* for detecting offset above kregbase2 address */ 1098 u32 base2_start; 1099 1100 /* Per VL data. Enough for all VLs but not all elements are set/used. */ 1101 struct per_vl_data vld[PER_VL_SEND_CONTEXTS]; 1102 /* send context data */ 1103 struct send_context_info *send_contexts; 1104 /* map hardware send contexts to software index */ 1105 u8 *hw_to_sw; 1106 /* spinlock for allocating and releasing send context resources */ 1107 spinlock_t sc_lock; 1108 /* lock for pio_map */ 1109 spinlock_t pio_map_lock; 1110 /* Send Context initialization lock. */ 1111 spinlock_t sc_init_lock; 1112 /* lock for sdma_map */ 1113 spinlock_t sde_map_lock; 1114 /* array of kernel send contexts */ 1115 struct send_context **kernel_send_context; 1116 /* array of vl maps */ 1117 struct pio_vl_map __rcu *pio_map; 1118 /* default flags to last descriptor */ 1119 u64 default_desc1; 1120 1121 /* fields common to all SDMA engines */ 1122 1123 volatile __le64 *sdma_heads_dma; /* DMA'ed by chip */ 1124 dma_addr_t sdma_heads_phys; 1125 void *sdma_pad_dma; /* DMA'ed by chip */ 1126 dma_addr_t sdma_pad_phys; 1127 /* for deallocation */ 1128 size_t sdma_heads_size; 1129 /* num used */ 1130 u32 num_sdma; 1131 /* array of engines sized by num_sdma */ 1132 struct sdma_engine *per_sdma; 1133 /* array of vl maps */ 1134 struct sdma_vl_map __rcu *sdma_map; 1135 /* SPC freeze waitqueue and variable */ 1136 wait_queue_head_t sdma_unfreeze_wq; 1137 atomic_t sdma_unfreeze_count; 1138 1139 u32 lcb_access_count; /* count of LCB users */ 1140 1141 /* common data between shared ASIC HFIs in this OS */ 1142 struct hfi1_asic_data *asic_data; 1143 1144 /* mem-mapped pointer to base of PIO buffers */ 1145 void __iomem *piobase; 1146 /* 1147 * write-combining mem-mapped pointer to base of RcvArray 1148 * memory. 1149 */ 1150 void __iomem *rcvarray_wc; 1151 /* 1152 * credit return base - a per-NUMA range of DMA address that 1153 * the chip will use to update the per-context free counter 1154 */ 1155 struct credit_return_base *cr_base; 1156 1157 /* send context numbers and sizes for each type */ 1158 struct sc_config_sizes sc_sizes[SC_MAX]; 1159 1160 char *boardname; /* human readable board info */ 1161 1162 u64 ctx0_seq_drop; 1163 1164 /* reset value */ 1165 u64 z_int_counter; 1166 u64 z_rcv_limit; 1167 u64 z_send_schedule; 1168 1169 u64 __percpu *send_schedule; 1170 /* number of reserved contexts for VNIC usage */ 1171 u16 num_vnic_contexts; 1172 /* number of receive contexts in use by the driver */ 1173 u32 num_rcv_contexts; 1174 /* number of pio send contexts in use by the driver */ 1175 u32 num_send_contexts; 1176 /* 1177 * number of ctxts available for PSM open 1178 */ 1179 u32 freectxts; 1180 /* total number of available user/PSM contexts */ 1181 u32 num_user_contexts; 1182 /* base receive interrupt timeout, in CSR units */ 1183 u32 rcv_intr_timeout_csr; 1184 1185 spinlock_t sendctrl_lock; /* protect changes to SendCtrl */ 1186 spinlock_t rcvctrl_lock; /* protect changes to RcvCtrl */ 1187 spinlock_t uctxt_lock; /* protect rcd changes */ 1188 struct mutex dc8051_lock; /* exclusive access to 8051 */ 1189 struct workqueue_struct *update_cntr_wq; 1190 struct work_struct update_cntr_work; 1191 /* exclusive access to 8051 memory */ 1192 spinlock_t dc8051_memlock; 1193 int dc8051_timed_out; /* remember if the 8051 timed out */ 1194 /* 1195 * A page that will hold event notification bitmaps for all 1196 * contexts. This page will be mapped into all processes. 1197 */ 1198 unsigned long *events; 1199 /* 1200 * per unit status, see also portdata statusp 1201 * mapped read-only into user processes so they can get unit and 1202 * IB link status cheaply 1203 */ 1204 struct hfi1_status *status; 1205 1206 /* revision register shadow */ 1207 u64 revision; 1208 /* Base GUID for device (network order) */ 1209 u64 base_guid; 1210 1211 /* both sides of the PCIe link are gen3 capable */ 1212 u8 link_gen3_capable; 1213 u8 dc_shutdown; 1214 /* localbus width (1, 2,4,8,16,32) from config space */ 1215 u32 lbus_width; 1216 /* localbus speed in MHz */ 1217 u32 lbus_speed; 1218 int unit; /* unit # of this chip */ 1219 int node; /* home node of this chip */ 1220 1221 /* save these PCI fields to restore after a reset */ 1222 u32 pcibar0; 1223 u32 pcibar1; 1224 u32 pci_rom; 1225 u16 pci_command; 1226 u16 pcie_devctl; 1227 u16 pcie_lnkctl; 1228 u16 pcie_devctl2; 1229 u32 pci_msix0; 1230 u32 pci_tph2; 1231 1232 /* 1233 * ASCII serial number, from flash, large enough for original 1234 * all digit strings, and longer serial number format 1235 */ 1236 u8 serial[SERIAL_MAX]; 1237 /* human readable board version */ 1238 u8 boardversion[BOARD_VERS_MAX]; 1239 u8 lbus_info[32]; /* human readable localbus info */ 1240 /* chip major rev, from CceRevision */ 1241 u8 majrev; 1242 /* chip minor rev, from CceRevision */ 1243 u8 minrev; 1244 /* hardware ID */ 1245 u8 hfi1_id; 1246 /* implementation code */ 1247 u8 icode; 1248 /* vAU of this device */ 1249 u8 vau; 1250 /* vCU of this device */ 1251 u8 vcu; 1252 /* link credits of this device */ 1253 u16 link_credits; 1254 /* initial vl15 credits to use */ 1255 u16 vl15_init; 1256 1257 /* 1258 * Cached value for vl15buf, read during verify cap interrupt. VL15 1259 * credits are to be kept at 0 and set when handling the link-up 1260 * interrupt. This removes the possibility of receiving VL15 MAD 1261 * packets before this HFI is ready. 1262 */ 1263 u16 vl15buf_cached; 1264 1265 /* Misc small ints */ 1266 u8 n_krcv_queues; 1267 u8 qos_shift; 1268 1269 u16 irev; /* implementation revision */ 1270 u32 dc8051_ver; /* 8051 firmware version */ 1271 1272 spinlock_t hfi1_diag_trans_lock; /* protect diag observer ops */ 1273 struct platform_config platform_config; 1274 struct platform_config_cache pcfg_cache; 1275 1276 struct diag_client *diag_client; 1277 1278 /* general interrupt: mask of handled interrupts */ 1279 u64 gi_mask[CCE_NUM_INT_CSRS]; 1280 1281 struct rcv_array_data rcv_entries; 1282 1283 /* cycle length of PS* counters in HW (in picoseconds) */ 1284 u16 psxmitwait_check_rate; 1285 1286 /* 1287 * 64 bit synthetic counters 1288 */ 1289 struct timer_list synth_stats_timer; 1290 1291 /* MSI-X information */ 1292 struct hfi1_msix_info msix_info; 1293 1294 /* 1295 * device counters 1296 */ 1297 char *cntrnames; 1298 size_t cntrnameslen; 1299 size_t ndevcntrs; 1300 u64 *cntrs; 1301 u64 *scntrs; 1302 1303 /* 1304 * remembered values for synthetic counters 1305 */ 1306 u64 last_tx; 1307 u64 last_rx; 1308 1309 /* 1310 * per-port counters 1311 */ 1312 size_t nportcntrs; 1313 char *portcntrnames; 1314 size_t portcntrnameslen; 1315 1316 struct err_info_rcvport err_info_rcvport; 1317 struct err_info_constraint err_info_rcv_constraint; 1318 struct err_info_constraint err_info_xmit_constraint; 1319 1320 atomic_t drop_packet; 1321 bool do_drop; 1322 u8 err_info_uncorrectable; 1323 u8 err_info_fmconfig; 1324 1325 /* 1326 * Software counters for the status bits defined by the 1327 * associated error status registers 1328 */ 1329 u64 cce_err_status_cnt[NUM_CCE_ERR_STATUS_COUNTERS]; 1330 u64 rcv_err_status_cnt[NUM_RCV_ERR_STATUS_COUNTERS]; 1331 u64 misc_err_status_cnt[NUM_MISC_ERR_STATUS_COUNTERS]; 1332 u64 send_pio_err_status_cnt[NUM_SEND_PIO_ERR_STATUS_COUNTERS]; 1333 u64 send_dma_err_status_cnt[NUM_SEND_DMA_ERR_STATUS_COUNTERS]; 1334 u64 send_egress_err_status_cnt[NUM_SEND_EGRESS_ERR_STATUS_COUNTERS]; 1335 u64 send_err_status_cnt[NUM_SEND_ERR_STATUS_COUNTERS]; 1336 1337 /* Software counter that spans all contexts */ 1338 u64 sw_ctxt_err_status_cnt[NUM_SEND_CTXT_ERR_STATUS_COUNTERS]; 1339 /* Software counter that spans all DMA engines */ 1340 u64 sw_send_dma_eng_err_status_cnt[ 1341 NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS]; 1342 /* Software counter that aggregates all cce_err_status errors */ 1343 u64 sw_cce_err_status_aggregate; 1344 /* Software counter that aggregates all bypass packet rcv errors */ 1345 u64 sw_rcv_bypass_packet_errors; 1346 1347 /* Save the enabled LCB error bits */ 1348 u64 lcb_err_en; 1349 struct cpu_mask_set *comp_vect; 1350 int *comp_vect_mappings; 1351 u32 comp_vect_possible_cpus; 1352 1353 /* 1354 * Capability to have different send engines simply by changing a 1355 * pointer value. 1356 */ 1357 send_routine process_pio_send ____cacheline_aligned_in_smp; 1358 send_routine process_dma_send; 1359 void (*pio_inline_send)(struct hfi1_devdata *dd, struct pio_buf *pbuf, 1360 u64 pbc, const void *from, size_t count); 1361 int (*process_vnic_dma_send)(struct hfi1_devdata *dd, u8 q_idx, 1362 struct hfi1_vnic_vport_info *vinfo, 1363 struct sk_buff *skb, u64 pbc, u8 plen); 1364 /* hfi1_pportdata, points to array of (physical) port-specific 1365 * data structs, indexed by pidx (0..n-1) 1366 */ 1367 struct hfi1_pportdata *pport; 1368 /* receive context data */ 1369 struct hfi1_ctxtdata **rcd; 1370 u64 __percpu *int_counter; 1371 /* verbs tx opcode stats */ 1372 struct hfi1_opcode_stats_perctx __percpu *tx_opstats; 1373 /* device (not port) flags, basically device capabilities */ 1374 u16 flags; 1375 /* Number of physical ports available */ 1376 u8 num_pports; 1377 /* Lowest context number which can be used by user processes or VNIC */ 1378 u8 first_dyn_alloc_ctxt; 1379 /* adding a new field here would make it part of this cacheline */ 1380 1381 /* seqlock for sc2vl */ 1382 seqlock_t sc2vl_lock ____cacheline_aligned_in_smp; 1383 u64 sc2vl[4]; 1384 u64 __percpu *rcv_limit; 1385 /* adding a new field here would make it part of this cacheline */ 1386 1387 /* OUI comes from the HW. Used everywhere as 3 separate bytes. */ 1388 u8 oui1; 1389 u8 oui2; 1390 u8 oui3; 1391 1392 /* Timer and counter used to detect RcvBufOvflCnt changes */ 1393 struct timer_list rcverr_timer; 1394 1395 wait_queue_head_t event_queue; 1396 1397 /* receive context tail dummy address */ 1398 __le64 *rcvhdrtail_dummy_kvaddr; 1399 dma_addr_t rcvhdrtail_dummy_dma; 1400 1401 u32 rcv_ovfl_cnt; 1402 /* Serialize ASPM enable/disable between multiple verbs contexts */ 1403 spinlock_t aspm_lock; 1404 /* Number of verbs contexts which have disabled ASPM */ 1405 atomic_t aspm_disabled_cnt; 1406 /* Keeps track of user space clients */ 1407 atomic_t user_refcount; 1408 /* Used to wait for outstanding user space clients before dev removal */ 1409 struct completion user_comp; 1410 1411 bool eprom_available; /* true if EPROM is available for this device */ 1412 bool aspm_supported; /* Does HW support ASPM */ 1413 bool aspm_enabled; /* ASPM state: enabled/disabled */ 1414 struct rhashtable *sdma_rht; 1415 1416 struct kobject kobj; 1417 1418 /* vnic data */ 1419 struct hfi1_vnic_data vnic; 1420 /* Lock to protect IRQ SRC register access */ 1421 spinlock_t irq_src_lock; 1422 }; 1423 1424 static inline bool hfi1_vnic_is_rsm_full(struct hfi1_devdata *dd, int spare) 1425 { 1426 return (dd->vnic.rmt_start + spare) > NUM_MAP_ENTRIES; 1427 } 1428 1429 /* 8051 firmware version helper */ 1430 #define dc8051_ver(a, b, c) ((a) << 16 | (b) << 8 | (c)) 1431 #define dc8051_ver_maj(a) (((a) & 0xff0000) >> 16) 1432 #define dc8051_ver_min(a) (((a) & 0x00ff00) >> 8) 1433 #define dc8051_ver_patch(a) ((a) & 0x0000ff) 1434 1435 /* f_put_tid types */ 1436 #define PT_EXPECTED 0 1437 #define PT_EAGER 1 1438 #define PT_INVALID_FLUSH 2 1439 #define PT_INVALID 3 1440 1441 struct tid_rb_node; 1442 struct mmu_rb_node; 1443 struct mmu_rb_handler; 1444 1445 /* Private data for file operations */ 1446 struct hfi1_filedata { 1447 struct hfi1_devdata *dd; 1448 struct hfi1_ctxtdata *uctxt; 1449 struct hfi1_user_sdma_comp_q *cq; 1450 struct hfi1_user_sdma_pkt_q *pq; 1451 u16 subctxt; 1452 /* for cpu affinity; -1 if none */ 1453 int rec_cpu_num; 1454 u32 tid_n_pinned; 1455 bool use_mn; 1456 struct tid_rb_node **entry_to_rb; 1457 spinlock_t tid_lock; /* protect tid_[limit,used] counters */ 1458 u32 tid_limit; 1459 u32 tid_used; 1460 u32 *invalid_tids; 1461 u32 invalid_tid_idx; 1462 /* protect invalid_tids array and invalid_tid_idx */ 1463 spinlock_t invalid_lock; 1464 struct mm_struct *mm; 1465 }; 1466 1467 extern struct xarray hfi1_dev_table; 1468 struct hfi1_devdata *hfi1_lookup(int unit); 1469 1470 static inline unsigned long uctxt_offset(struct hfi1_ctxtdata *uctxt) 1471 { 1472 return (uctxt->ctxt - uctxt->dd->first_dyn_alloc_ctxt) * 1473 HFI1_MAX_SHARED_CTXTS; 1474 } 1475 1476 int hfi1_init(struct hfi1_devdata *dd, int reinit); 1477 int hfi1_count_active_units(void); 1478 1479 int hfi1_diag_add(struct hfi1_devdata *dd); 1480 void hfi1_diag_remove(struct hfi1_devdata *dd); 1481 void handle_linkup_change(struct hfi1_devdata *dd, u32 linkup); 1482 1483 void handle_user_interrupt(struct hfi1_ctxtdata *rcd); 1484 1485 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd); 1486 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd); 1487 int hfi1_create_kctxts(struct hfi1_devdata *dd); 1488 int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa, 1489 struct hfi1_ctxtdata **rcd); 1490 void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd); 1491 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd, 1492 struct hfi1_devdata *dd, u8 hw_pidx, u8 port); 1493 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd); 1494 int hfi1_rcd_put(struct hfi1_ctxtdata *rcd); 1495 int hfi1_rcd_get(struct hfi1_ctxtdata *rcd); 1496 struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd, 1497 u16 ctxt); 1498 struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt); 1499 int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread); 1500 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread); 1501 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread); 1502 void set_all_slowpath(struct hfi1_devdata *dd); 1503 1504 extern const struct pci_device_id hfi1_pci_tbl[]; 1505 void hfi1_make_ud_req_9B(struct rvt_qp *qp, 1506 struct hfi1_pkt_state *ps, 1507 struct rvt_swqe *wqe); 1508 1509 void hfi1_make_ud_req_16B(struct rvt_qp *qp, 1510 struct hfi1_pkt_state *ps, 1511 struct rvt_swqe *wqe); 1512 1513 /* receive packet handler dispositions */ 1514 #define RCV_PKT_OK 0x0 /* keep going */ 1515 #define RCV_PKT_LIMIT 0x1 /* stop, hit limit, start thread */ 1516 #define RCV_PKT_DONE 0x2 /* stop, no more packets detected */ 1517 1518 /** 1519 * hfi1_rcd_head - add accessor for rcd head 1520 * @rcd: the context 1521 */ 1522 static inline u32 hfi1_rcd_head(struct hfi1_ctxtdata *rcd) 1523 { 1524 return rcd->head; 1525 } 1526 1527 /** 1528 * hfi1_set_rcd_head - add accessor for rcd head 1529 * @rcd: the context 1530 * @head: the new head 1531 */ 1532 static inline void hfi1_set_rcd_head(struct hfi1_ctxtdata *rcd, u32 head) 1533 { 1534 rcd->head = head; 1535 } 1536 1537 /* calculate the current RHF address */ 1538 static inline __le32 *get_rhf_addr(struct hfi1_ctxtdata *rcd) 1539 { 1540 return (__le32 *)rcd->rcvhdrq + rcd->head + rcd->rhf_offset; 1541 } 1542 1543 /* return DMA_RTAIL configuration */ 1544 static inline bool get_dma_rtail_setting(struct hfi1_ctxtdata *rcd) 1545 { 1546 return !!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL); 1547 } 1548 1549 /** 1550 * hfi1_seq_incr_wrap - wrapping increment for sequence 1551 * @seq: the current sequence number 1552 * 1553 * Returns: the incremented seq 1554 */ 1555 static inline u8 hfi1_seq_incr_wrap(u8 seq) 1556 { 1557 if (++seq > RHF_MAX_SEQ) 1558 seq = 1; 1559 return seq; 1560 } 1561 1562 /** 1563 * hfi1_seq_cnt - return seq_cnt member 1564 * @rcd: the receive context 1565 * 1566 * Return seq_cnt member 1567 */ 1568 static inline u8 hfi1_seq_cnt(struct hfi1_ctxtdata *rcd) 1569 { 1570 return rcd->seq_cnt; 1571 } 1572 1573 /** 1574 * hfi1_set_seq_cnt - return seq_cnt member 1575 * @rcd: the receive context 1576 * 1577 * Return seq_cnt member 1578 */ 1579 static inline void hfi1_set_seq_cnt(struct hfi1_ctxtdata *rcd, u8 cnt) 1580 { 1581 rcd->seq_cnt = cnt; 1582 } 1583 1584 /** 1585 * last_rcv_seq - is last 1586 * @rcd: the receive context 1587 * @seq: sequence 1588 * 1589 * return true if last packet 1590 */ 1591 static inline bool last_rcv_seq(struct hfi1_ctxtdata *rcd, u32 seq) 1592 { 1593 return seq != rcd->seq_cnt; 1594 } 1595 1596 /** 1597 * rcd_seq_incr - increment context sequence number 1598 * @rcd: the receive context 1599 * @seq: the current sequence number 1600 * 1601 * Returns: true if the this was the last packet 1602 */ 1603 static inline bool hfi1_seq_incr(struct hfi1_ctxtdata *rcd, u32 seq) 1604 { 1605 rcd->seq_cnt = hfi1_seq_incr_wrap(rcd->seq_cnt); 1606 return last_rcv_seq(rcd, seq); 1607 } 1608 1609 /** 1610 * get_hdrqentsize - return hdrq entry size 1611 * @rcd: the receive context 1612 */ 1613 static inline u8 get_hdrqentsize(struct hfi1_ctxtdata *rcd) 1614 { 1615 return rcd->rcvhdrqentsize; 1616 } 1617 1618 /** 1619 * get_hdrq_cnt - return hdrq count 1620 * @rcd: the receive context 1621 */ 1622 static inline u16 get_hdrq_cnt(struct hfi1_ctxtdata *rcd) 1623 { 1624 return rcd->rcvhdrq_cnt; 1625 } 1626 1627 /** 1628 * hfi1_is_slowpath - check if this context is slow path 1629 * @rcd: the receive context 1630 */ 1631 static inline bool hfi1_is_slowpath(struct hfi1_ctxtdata *rcd) 1632 { 1633 return rcd->do_interrupt == rcd->slow_handler; 1634 } 1635 1636 /** 1637 * hfi1_is_fastpath - check if this context is fast path 1638 * @rcd: the receive context 1639 */ 1640 static inline bool hfi1_is_fastpath(struct hfi1_ctxtdata *rcd) 1641 { 1642 if (rcd->ctxt == HFI1_CTRL_CTXT) 1643 return false; 1644 1645 return rcd->do_interrupt == rcd->fast_handler; 1646 } 1647 1648 /** 1649 * hfi1_set_fast - change to the fast handler 1650 * @rcd: the receive context 1651 */ 1652 static inline void hfi1_set_fast(struct hfi1_ctxtdata *rcd) 1653 { 1654 if (unlikely(!rcd)) 1655 return; 1656 if (unlikely(!hfi1_is_fastpath(rcd))) 1657 rcd->do_interrupt = rcd->fast_handler; 1658 } 1659 1660 int hfi1_reset_device(int); 1661 1662 void receive_interrupt_work(struct work_struct *work); 1663 1664 /* extract service channel from header and rhf */ 1665 static inline int hfi1_9B_get_sc5(struct ib_header *hdr, u64 rhf) 1666 { 1667 return ib_get_sc(hdr) | ((!!(rhf_dc_info(rhf))) << 4); 1668 } 1669 1670 #define HFI1_JKEY_WIDTH 16 1671 #define HFI1_JKEY_MASK (BIT(16) - 1) 1672 #define HFI1_ADMIN_JKEY_RANGE 32 1673 1674 /* 1675 * J_KEYs are split and allocated in the following groups: 1676 * 0 - 31 - users with administrator privileges 1677 * 32 - 63 - kernel protocols using KDETH packets 1678 * 64 - 65535 - all other users using KDETH packets 1679 */ 1680 static inline u16 generate_jkey(kuid_t uid) 1681 { 1682 u16 jkey = from_kuid(current_user_ns(), uid) & HFI1_JKEY_MASK; 1683 1684 if (capable(CAP_SYS_ADMIN)) 1685 jkey &= HFI1_ADMIN_JKEY_RANGE - 1; 1686 else if (jkey < 64) 1687 jkey |= BIT(HFI1_JKEY_WIDTH - 1); 1688 1689 return jkey; 1690 } 1691 1692 /* 1693 * active_egress_rate 1694 * 1695 * returns the active egress rate in units of [10^6 bits/sec] 1696 */ 1697 static inline u32 active_egress_rate(struct hfi1_pportdata *ppd) 1698 { 1699 u16 link_speed = ppd->link_speed_active; 1700 u16 link_width = ppd->link_width_active; 1701 u32 egress_rate; 1702 1703 if (link_speed == OPA_LINK_SPEED_25G) 1704 egress_rate = 25000; 1705 else /* assume OPA_LINK_SPEED_12_5G */ 1706 egress_rate = 12500; 1707 1708 switch (link_width) { 1709 case OPA_LINK_WIDTH_4X: 1710 egress_rate *= 4; 1711 break; 1712 case OPA_LINK_WIDTH_3X: 1713 egress_rate *= 3; 1714 break; 1715 case OPA_LINK_WIDTH_2X: 1716 egress_rate *= 2; 1717 break; 1718 default: 1719 /* assume IB_WIDTH_1X */ 1720 break; 1721 } 1722 1723 return egress_rate; 1724 } 1725 1726 /* 1727 * egress_cycles 1728 * 1729 * Returns the number of 'fabric clock cycles' to egress a packet 1730 * of length 'len' bytes, at 'rate' Mbit/s. Since the fabric clock 1731 * rate is (approximately) 805 MHz, the units of the returned value 1732 * are (1/805 MHz). 1733 */ 1734 static inline u32 egress_cycles(u32 len, u32 rate) 1735 { 1736 u32 cycles; 1737 1738 /* 1739 * cycles is: 1740 * 1741 * (length) [bits] / (rate) [bits/sec] 1742 * --------------------------------------------------- 1743 * fabric_clock_period == 1 /(805 * 10^6) [cycles/sec] 1744 */ 1745 1746 cycles = len * 8; /* bits */ 1747 cycles *= 805; 1748 cycles /= rate; 1749 1750 return cycles; 1751 } 1752 1753 void set_link_ipg(struct hfi1_pportdata *ppd); 1754 void process_becn(struct hfi1_pportdata *ppd, u8 sl, u32 rlid, u32 lqpn, 1755 u32 rqpn, u8 svc_type); 1756 void return_cnp(struct hfi1_ibport *ibp, struct rvt_qp *qp, u32 remote_qpn, 1757 u16 pkey, u32 slid, u32 dlid, u8 sc5, 1758 const struct ib_grh *old_grh); 1759 void return_cnp_16B(struct hfi1_ibport *ibp, struct rvt_qp *qp, 1760 u32 remote_qpn, u16 pkey, u32 slid, u32 dlid, 1761 u8 sc5, const struct ib_grh *old_grh); 1762 typedef void (*hfi1_handle_cnp)(struct hfi1_ibport *ibp, struct rvt_qp *qp, 1763 u32 remote_qpn, u16 pkey, u32 slid, u32 dlid, 1764 u8 sc5, const struct ib_grh *old_grh); 1765 1766 #define PKEY_CHECK_INVALID -1 1767 int egress_pkey_check(struct hfi1_pportdata *ppd, u32 slid, u16 pkey, 1768 u8 sc5, int8_t s_pkey_index); 1769 1770 #define PACKET_EGRESS_TIMEOUT 350 1771 static inline void pause_for_credit_return(struct hfi1_devdata *dd) 1772 { 1773 /* Pause at least 1us, to ensure chip returns all credits */ 1774 u32 usec = cclock_to_ns(dd, PACKET_EGRESS_TIMEOUT) / 1000; 1775 1776 udelay(usec ? usec : 1); 1777 } 1778 1779 /** 1780 * sc_to_vlt() reverse lookup sc to vl 1781 * @dd - devdata 1782 * @sc5 - 5 bit sc 1783 */ 1784 static inline u8 sc_to_vlt(struct hfi1_devdata *dd, u8 sc5) 1785 { 1786 unsigned seq; 1787 u8 rval; 1788 1789 if (sc5 >= OPA_MAX_SCS) 1790 return (u8)(0xff); 1791 1792 do { 1793 seq = read_seqbegin(&dd->sc2vl_lock); 1794 rval = *(((u8 *)dd->sc2vl) + sc5); 1795 } while (read_seqretry(&dd->sc2vl_lock, seq)); 1796 1797 return rval; 1798 } 1799 1800 #define PKEY_MEMBER_MASK 0x8000 1801 #define PKEY_LOW_15_MASK 0x7fff 1802 1803 /* 1804 * ingress_pkey_matches_entry - return 1 if the pkey matches ent (ent 1805 * being an entry from the ingress partition key table), return 0 1806 * otherwise. Use the matching criteria for ingress partition keys 1807 * specified in the OPAv1 spec., section 9.10.14. 1808 */ 1809 static inline int ingress_pkey_matches_entry(u16 pkey, u16 ent) 1810 { 1811 u16 mkey = pkey & PKEY_LOW_15_MASK; 1812 u16 ment = ent & PKEY_LOW_15_MASK; 1813 1814 if (mkey == ment) { 1815 /* 1816 * If pkey[15] is clear (limited partition member), 1817 * is bit 15 in the corresponding table element 1818 * clear (limited member)? 1819 */ 1820 if (!(pkey & PKEY_MEMBER_MASK)) 1821 return !!(ent & PKEY_MEMBER_MASK); 1822 return 1; 1823 } 1824 return 0; 1825 } 1826 1827 /* 1828 * ingress_pkey_table_search - search the entire pkey table for 1829 * an entry which matches 'pkey'. return 0 if a match is found, 1830 * and 1 otherwise. 1831 */ 1832 static int ingress_pkey_table_search(struct hfi1_pportdata *ppd, u16 pkey) 1833 { 1834 int i; 1835 1836 for (i = 0; i < MAX_PKEY_VALUES; i++) { 1837 if (ingress_pkey_matches_entry(pkey, ppd->pkeys[i])) 1838 return 0; 1839 } 1840 return 1; 1841 } 1842 1843 /* 1844 * ingress_pkey_table_fail - record a failure of ingress pkey validation, 1845 * i.e., increment port_rcv_constraint_errors for the port, and record 1846 * the 'error info' for this failure. 1847 */ 1848 static void ingress_pkey_table_fail(struct hfi1_pportdata *ppd, u16 pkey, 1849 u32 slid) 1850 { 1851 struct hfi1_devdata *dd = ppd->dd; 1852 1853 incr_cntr64(&ppd->port_rcv_constraint_errors); 1854 if (!(dd->err_info_rcv_constraint.status & OPA_EI_STATUS_SMASK)) { 1855 dd->err_info_rcv_constraint.status |= OPA_EI_STATUS_SMASK; 1856 dd->err_info_rcv_constraint.slid = slid; 1857 dd->err_info_rcv_constraint.pkey = pkey; 1858 } 1859 } 1860 1861 /* 1862 * ingress_pkey_check - Return 0 if the ingress pkey is valid, return 1 1863 * otherwise. Use the criteria in the OPAv1 spec, section 9.10.14. idx 1864 * is a hint as to the best place in the partition key table to begin 1865 * searching. This function should not be called on the data path because 1866 * of performance reasons. On datapath pkey check is expected to be done 1867 * by HW and rcv_pkey_check function should be called instead. 1868 */ 1869 static inline int ingress_pkey_check(struct hfi1_pportdata *ppd, u16 pkey, 1870 u8 sc5, u8 idx, u32 slid, bool force) 1871 { 1872 if (!(force) && !(ppd->part_enforce & HFI1_PART_ENFORCE_IN)) 1873 return 0; 1874 1875 /* If SC15, pkey[0:14] must be 0x7fff */ 1876 if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK)) 1877 goto bad; 1878 1879 /* Is the pkey = 0x0, or 0x8000? */ 1880 if ((pkey & PKEY_LOW_15_MASK) == 0) 1881 goto bad; 1882 1883 /* The most likely matching pkey has index 'idx' */ 1884 if (ingress_pkey_matches_entry(pkey, ppd->pkeys[idx])) 1885 return 0; 1886 1887 /* no match - try the whole table */ 1888 if (!ingress_pkey_table_search(ppd, pkey)) 1889 return 0; 1890 1891 bad: 1892 ingress_pkey_table_fail(ppd, pkey, slid); 1893 return 1; 1894 } 1895 1896 /* 1897 * rcv_pkey_check - Return 0 if the ingress pkey is valid, return 1 1898 * otherwise. It only ensures pkey is vlid for QP0. This function 1899 * should be called on the data path instead of ingress_pkey_check 1900 * as on data path, pkey check is done by HW (except for QP0). 1901 */ 1902 static inline int rcv_pkey_check(struct hfi1_pportdata *ppd, u16 pkey, 1903 u8 sc5, u16 slid) 1904 { 1905 if (!(ppd->part_enforce & HFI1_PART_ENFORCE_IN)) 1906 return 0; 1907 1908 /* If SC15, pkey[0:14] must be 0x7fff */ 1909 if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK)) 1910 goto bad; 1911 1912 return 0; 1913 bad: 1914 ingress_pkey_table_fail(ppd, pkey, slid); 1915 return 1; 1916 } 1917 1918 /* MTU handling */ 1919 1920 /* MTU enumeration, 256-4k match IB */ 1921 #define OPA_MTU_0 0 1922 #define OPA_MTU_256 1 1923 #define OPA_MTU_512 2 1924 #define OPA_MTU_1024 3 1925 #define OPA_MTU_2048 4 1926 #define OPA_MTU_4096 5 1927 1928 u32 lrh_max_header_bytes(struct hfi1_devdata *dd); 1929 int mtu_to_enum(u32 mtu, int default_if_bad); 1930 u16 enum_to_mtu(int mtu); 1931 static inline int valid_ib_mtu(unsigned int mtu) 1932 { 1933 return mtu == 256 || mtu == 512 || 1934 mtu == 1024 || mtu == 2048 || 1935 mtu == 4096; 1936 } 1937 1938 static inline int valid_opa_max_mtu(unsigned int mtu) 1939 { 1940 return mtu >= 2048 && 1941 (valid_ib_mtu(mtu) || mtu == 8192 || mtu == 10240); 1942 } 1943 1944 int set_mtu(struct hfi1_pportdata *ppd); 1945 1946 int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc); 1947 void hfi1_disable_after_error(struct hfi1_devdata *dd); 1948 int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit); 1949 int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encode); 1950 1951 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t); 1952 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t); 1953 1954 void set_up_vau(struct hfi1_devdata *dd, u8 vau); 1955 void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf); 1956 void reset_link_credits(struct hfi1_devdata *dd); 1957 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu); 1958 1959 int set_buffer_control(struct hfi1_pportdata *ppd, struct buffer_control *bc); 1960 1961 static inline struct hfi1_devdata *dd_from_ppd(struct hfi1_pportdata *ppd) 1962 { 1963 return ppd->dd; 1964 } 1965 1966 static inline struct hfi1_devdata *dd_from_dev(struct hfi1_ibdev *dev) 1967 { 1968 return container_of(dev, struct hfi1_devdata, verbs_dev); 1969 } 1970 1971 static inline struct hfi1_devdata *dd_from_ibdev(struct ib_device *ibdev) 1972 { 1973 return dd_from_dev(to_idev(ibdev)); 1974 } 1975 1976 static inline struct hfi1_pportdata *ppd_from_ibp(struct hfi1_ibport *ibp) 1977 { 1978 return container_of(ibp, struct hfi1_pportdata, ibport_data); 1979 } 1980 1981 static inline struct hfi1_ibdev *dev_from_rdi(struct rvt_dev_info *rdi) 1982 { 1983 return container_of(rdi, struct hfi1_ibdev, rdi); 1984 } 1985 1986 static inline struct hfi1_ibport *to_iport(struct ib_device *ibdev, u8 port) 1987 { 1988 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 1989 unsigned pidx = port - 1; /* IB number port from 1, hdw from 0 */ 1990 1991 WARN_ON(pidx >= dd->num_pports); 1992 return &dd->pport[pidx].ibport_data; 1993 } 1994 1995 static inline struct hfi1_ibport *rcd_to_iport(struct hfi1_ctxtdata *rcd) 1996 { 1997 return &rcd->ppd->ibport_data; 1998 } 1999 2000 /** 2001 * hfi1_may_ecn - Check whether FECN or BECN processing should be done 2002 * @pkt: the packet to be evaluated 2003 * 2004 * Check whether the FECN or BECN bits in the packet's header are 2005 * enabled, depending on packet type. 2006 * 2007 * This function only checks for FECN and BECN bits. Additional checks 2008 * are done in the slowpath (hfi1_process_ecn_slowpath()) in order to 2009 * ensure correct handling. 2010 */ 2011 static inline bool hfi1_may_ecn(struct hfi1_packet *pkt) 2012 { 2013 bool fecn, becn; 2014 2015 if (pkt->etype == RHF_RCV_TYPE_BYPASS) { 2016 fecn = hfi1_16B_get_fecn(pkt->hdr); 2017 becn = hfi1_16B_get_becn(pkt->hdr); 2018 } else { 2019 fecn = ib_bth_get_fecn(pkt->ohdr); 2020 becn = ib_bth_get_becn(pkt->ohdr); 2021 } 2022 return fecn || becn; 2023 } 2024 2025 bool hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt, 2026 bool prescan); 2027 static inline bool process_ecn(struct rvt_qp *qp, struct hfi1_packet *pkt) 2028 { 2029 bool do_work; 2030 2031 do_work = hfi1_may_ecn(pkt); 2032 if (unlikely(do_work)) 2033 return hfi1_process_ecn_slowpath(qp, pkt, false); 2034 return false; 2035 } 2036 2037 /* 2038 * Return the indexed PKEY from the port PKEY table. 2039 */ 2040 static inline u16 hfi1_get_pkey(struct hfi1_ibport *ibp, unsigned index) 2041 { 2042 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 2043 u16 ret; 2044 2045 if (index >= ARRAY_SIZE(ppd->pkeys)) 2046 ret = 0; 2047 else 2048 ret = ppd->pkeys[index]; 2049 2050 return ret; 2051 } 2052 2053 /* 2054 * Return the indexed GUID from the port GUIDs table. 2055 */ 2056 static inline __be64 get_sguid(struct hfi1_ibport *ibp, unsigned int index) 2057 { 2058 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 2059 2060 WARN_ON(index >= HFI1_GUIDS_PER_PORT); 2061 return cpu_to_be64(ppd->guids[index]); 2062 } 2063 2064 /* 2065 * Called by readers of cc_state only, must call under rcu_read_lock(). 2066 */ 2067 static inline struct cc_state *get_cc_state(struct hfi1_pportdata *ppd) 2068 { 2069 return rcu_dereference(ppd->cc_state); 2070 } 2071 2072 /* 2073 * Called by writers of cc_state only, must call under cc_state_lock. 2074 */ 2075 static inline 2076 struct cc_state *get_cc_state_protected(struct hfi1_pportdata *ppd) 2077 { 2078 return rcu_dereference_protected(ppd->cc_state, 2079 lockdep_is_held(&ppd->cc_state_lock)); 2080 } 2081 2082 /* 2083 * values for dd->flags (_device_ related flags) 2084 */ 2085 #define HFI1_INITTED 0x1 /* chip and driver up and initted */ 2086 #define HFI1_PRESENT 0x2 /* chip accesses can be done */ 2087 #define HFI1_FROZEN 0x4 /* chip in SPC freeze */ 2088 #define HFI1_HAS_SDMA_TIMEOUT 0x8 2089 #define HFI1_HAS_SEND_DMA 0x10 /* Supports Send DMA */ 2090 #define HFI1_FORCED_FREEZE 0x80 /* driver forced freeze mode */ 2091 #define HFI1_SHUTDOWN 0x100 /* device is shutting down */ 2092 2093 /* IB dword length mask in PBC (lower 11 bits); same for all chips */ 2094 #define HFI1_PBC_LENGTH_MASK ((1 << 11) - 1) 2095 2096 /* ctxt_flag bit offsets */ 2097 /* base context has not finished initializing */ 2098 #define HFI1_CTXT_BASE_UNINIT 1 2099 /* base context initaliation failed */ 2100 #define HFI1_CTXT_BASE_FAILED 2 2101 /* waiting for a packet to arrive */ 2102 #define HFI1_CTXT_WAITING_RCV 3 2103 /* waiting for an urgent packet to arrive */ 2104 #define HFI1_CTXT_WAITING_URG 4 2105 2106 /* free up any allocated data at closes */ 2107 int hfi1_init_dd(struct hfi1_devdata *dd); 2108 void hfi1_free_devdata(struct hfi1_devdata *dd); 2109 2110 /* LED beaconing functions */ 2111 void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon, 2112 unsigned int timeoff); 2113 void shutdown_led_override(struct hfi1_pportdata *ppd); 2114 2115 #define HFI1_CREDIT_RETURN_RATE (100) 2116 2117 /* 2118 * The number of words for the KDETH protocol field. If this is 2119 * larger then the actual field used, then part of the payload 2120 * will be in the header. 2121 * 2122 * Optimally, we want this sized so that a typical case will 2123 * use full cache lines. The typical local KDETH header would 2124 * be: 2125 * 2126 * Bytes Field 2127 * 8 LRH 2128 * 12 BHT 2129 * ?? KDETH 2130 * 8 RHF 2131 * --- 2132 * 28 + KDETH 2133 * 2134 * For a 64-byte cache line, KDETH would need to be 36 bytes or 9 DWORDS 2135 */ 2136 #define DEFAULT_RCVHDRSIZE 9 2137 2138 /* 2139 * Maximal header byte count: 2140 * 2141 * Bytes Field 2142 * 8 LRH 2143 * 40 GRH (optional) 2144 * 12 BTH 2145 * ?? KDETH 2146 * 8 RHF 2147 * --- 2148 * 68 + KDETH 2149 * 2150 * We also want to maintain a cache line alignment to assist DMA'ing 2151 * of the header bytes. Round up to a good size. 2152 */ 2153 #define DEFAULT_RCVHDR_ENTSIZE 32 2154 2155 bool hfi1_can_pin_pages(struct hfi1_devdata *dd, struct mm_struct *mm, 2156 u32 nlocked, u32 npages); 2157 int hfi1_acquire_user_pages(struct mm_struct *mm, unsigned long vaddr, 2158 size_t npages, bool writable, struct page **pages); 2159 void hfi1_release_user_pages(struct mm_struct *mm, struct page **p, 2160 size_t npages, bool dirty); 2161 2162 /** 2163 * hfi1_rcvhdrtail_kvaddr - return tail kvaddr 2164 * @rcd - the receive context 2165 */ 2166 static inline __le64 *hfi1_rcvhdrtail_kvaddr(const struct hfi1_ctxtdata *rcd) 2167 { 2168 return (__le64 *)rcd->rcvhdrtail_kvaddr; 2169 } 2170 2171 static inline void clear_rcvhdrtail(const struct hfi1_ctxtdata *rcd) 2172 { 2173 u64 *kv = (u64 *)hfi1_rcvhdrtail_kvaddr(rcd); 2174 2175 if (kv) 2176 *kv = 0ULL; 2177 } 2178 2179 static inline u32 get_rcvhdrtail(const struct hfi1_ctxtdata *rcd) 2180 { 2181 /* 2182 * volatile because it's a DMA target from the chip, routine is 2183 * inlined, and don't want register caching or reordering. 2184 */ 2185 return (u32)le64_to_cpu(*hfi1_rcvhdrtail_kvaddr(rcd)); 2186 } 2187 2188 static inline bool hfi1_packet_present(struct hfi1_ctxtdata *rcd) 2189 { 2190 if (likely(!rcd->rcvhdrtail_kvaddr)) { 2191 u32 seq = rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))); 2192 2193 return !last_rcv_seq(rcd, seq); 2194 } 2195 return hfi1_rcd_head(rcd) != get_rcvhdrtail(rcd); 2196 } 2197 2198 /* 2199 * sysfs interface. 2200 */ 2201 2202 extern const char ib_hfi1_version[]; 2203 extern const struct attribute_group ib_hfi1_attr_group; 2204 2205 int hfi1_device_create(struct hfi1_devdata *dd); 2206 void hfi1_device_remove(struct hfi1_devdata *dd); 2207 2208 int hfi1_create_port_files(struct ib_device *ibdev, u8 port_num, 2209 struct kobject *kobj); 2210 int hfi1_verbs_register_sysfs(struct hfi1_devdata *dd); 2211 void hfi1_verbs_unregister_sysfs(struct hfi1_devdata *dd); 2212 /* Hook for sysfs read of QSFP */ 2213 int qsfp_dump(struct hfi1_pportdata *ppd, char *buf, int len); 2214 2215 int hfi1_pcie_init(struct hfi1_devdata *dd); 2216 void hfi1_pcie_cleanup(struct pci_dev *pdev); 2217 int hfi1_pcie_ddinit(struct hfi1_devdata *dd, struct pci_dev *pdev); 2218 void hfi1_pcie_ddcleanup(struct hfi1_devdata *); 2219 int pcie_speeds(struct hfi1_devdata *dd); 2220 int restore_pci_variables(struct hfi1_devdata *dd); 2221 int save_pci_variables(struct hfi1_devdata *dd); 2222 int do_pcie_gen3_transition(struct hfi1_devdata *dd); 2223 void tune_pcie_caps(struct hfi1_devdata *dd); 2224 int parse_platform_config(struct hfi1_devdata *dd); 2225 int get_platform_config_field(struct hfi1_devdata *dd, 2226 enum platform_config_table_type_encoding 2227 table_type, int table_index, int field_index, 2228 u32 *data, u32 len); 2229 2230 struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi); 2231 2232 /* 2233 * Flush write combining store buffers (if present) and perform a write 2234 * barrier. 2235 */ 2236 static inline void flush_wc(void) 2237 { 2238 asm volatile("sfence" : : : "memory"); 2239 } 2240 2241 void handle_eflags(struct hfi1_packet *packet); 2242 void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd); 2243 2244 /* global module parameter variables */ 2245 extern unsigned int hfi1_max_mtu; 2246 extern unsigned int hfi1_cu; 2247 extern unsigned int user_credit_return_threshold; 2248 extern int num_user_contexts; 2249 extern unsigned long n_krcvqs; 2250 extern uint krcvqs[]; 2251 extern int krcvqsset; 2252 extern uint kdeth_qp; 2253 extern uint loopback; 2254 extern uint quick_linkup; 2255 extern uint rcv_intr_timeout; 2256 extern uint rcv_intr_count; 2257 extern uint rcv_intr_dynamic; 2258 extern ushort link_crc_mask; 2259 2260 extern struct mutex hfi1_mutex; 2261 2262 /* Number of seconds before our card status check... */ 2263 #define STATUS_TIMEOUT 60 2264 2265 #define DRIVER_NAME "hfi1" 2266 #define HFI1_USER_MINOR_BASE 0 2267 #define HFI1_TRACE_MINOR 127 2268 #define HFI1_NMINORS 255 2269 2270 #define PCI_VENDOR_ID_INTEL 0x8086 2271 #define PCI_DEVICE_ID_INTEL0 0x24f0 2272 #define PCI_DEVICE_ID_INTEL1 0x24f1 2273 2274 #define HFI1_PKT_USER_SC_INTEGRITY \ 2275 (SEND_CTXT_CHECK_ENABLE_DISALLOW_NON_KDETH_PACKETS_SMASK \ 2276 | SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK \ 2277 | SEND_CTXT_CHECK_ENABLE_DISALLOW_BYPASS_SMASK \ 2278 | SEND_CTXT_CHECK_ENABLE_DISALLOW_GRH_SMASK) 2279 2280 #define HFI1_PKT_KERNEL_SC_INTEGRITY \ 2281 (SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK) 2282 2283 static inline u64 hfi1_pkt_default_send_ctxt_mask(struct hfi1_devdata *dd, 2284 u16 ctxt_type) 2285 { 2286 u64 base_sc_integrity; 2287 2288 /* No integrity checks if HFI1_CAP_NO_INTEGRITY is set */ 2289 if (HFI1_CAP_IS_KSET(NO_INTEGRITY)) 2290 return 0; 2291 2292 base_sc_integrity = 2293 SEND_CTXT_CHECK_ENABLE_DISALLOW_BYPASS_BAD_PKT_LEN_SMASK 2294 | SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK 2295 | SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_LONG_BYPASS_PACKETS_SMASK 2296 | SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_LONG_IB_PACKETS_SMASK 2297 | SEND_CTXT_CHECK_ENABLE_DISALLOW_BAD_PKT_LEN_SMASK 2298 #ifndef CONFIG_FAULT_INJECTION 2299 | SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_TEST_SMASK 2300 #endif 2301 | SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_SMALL_BYPASS_PACKETS_SMASK 2302 | SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_SMALL_IB_PACKETS_SMASK 2303 | SEND_CTXT_CHECK_ENABLE_DISALLOW_RAW_IPV6_SMASK 2304 | SEND_CTXT_CHECK_ENABLE_DISALLOW_RAW_SMASK 2305 | SEND_CTXT_CHECK_ENABLE_CHECK_BYPASS_VL_MAPPING_SMASK 2306 | SEND_CTXT_CHECK_ENABLE_CHECK_VL_MAPPING_SMASK 2307 | SEND_CTXT_CHECK_ENABLE_CHECK_OPCODE_SMASK 2308 | SEND_CTXT_CHECK_ENABLE_CHECK_SLID_SMASK 2309 | SEND_CTXT_CHECK_ENABLE_CHECK_VL_SMASK 2310 | SEND_CTXT_CHECK_ENABLE_CHECK_ENABLE_SMASK; 2311 2312 if (ctxt_type == SC_USER) 2313 base_sc_integrity |= 2314 #ifndef CONFIG_FAULT_INJECTION 2315 SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_TEST_SMASK | 2316 #endif 2317 HFI1_PKT_USER_SC_INTEGRITY; 2318 else if (ctxt_type != SC_KERNEL) 2319 base_sc_integrity |= HFI1_PKT_KERNEL_SC_INTEGRITY; 2320 2321 /* turn on send-side job key checks if !A0 */ 2322 if (!is_ax(dd)) 2323 base_sc_integrity |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK; 2324 2325 return base_sc_integrity; 2326 } 2327 2328 static inline u64 hfi1_pkt_base_sdma_integrity(struct hfi1_devdata *dd) 2329 { 2330 u64 base_sdma_integrity; 2331 2332 /* No integrity checks if HFI1_CAP_NO_INTEGRITY is set */ 2333 if (HFI1_CAP_IS_KSET(NO_INTEGRITY)) 2334 return 0; 2335 2336 base_sdma_integrity = 2337 SEND_DMA_CHECK_ENABLE_DISALLOW_BYPASS_BAD_PKT_LEN_SMASK 2338 | SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_LONG_BYPASS_PACKETS_SMASK 2339 | SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_LONG_IB_PACKETS_SMASK 2340 | SEND_DMA_CHECK_ENABLE_DISALLOW_BAD_PKT_LEN_SMASK 2341 | SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_SMALL_BYPASS_PACKETS_SMASK 2342 | SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_SMALL_IB_PACKETS_SMASK 2343 | SEND_DMA_CHECK_ENABLE_DISALLOW_RAW_IPV6_SMASK 2344 | SEND_DMA_CHECK_ENABLE_DISALLOW_RAW_SMASK 2345 | SEND_DMA_CHECK_ENABLE_CHECK_BYPASS_VL_MAPPING_SMASK 2346 | SEND_DMA_CHECK_ENABLE_CHECK_VL_MAPPING_SMASK 2347 | SEND_DMA_CHECK_ENABLE_CHECK_OPCODE_SMASK 2348 | SEND_DMA_CHECK_ENABLE_CHECK_SLID_SMASK 2349 | SEND_DMA_CHECK_ENABLE_CHECK_VL_SMASK 2350 | SEND_DMA_CHECK_ENABLE_CHECK_ENABLE_SMASK; 2351 2352 if (!HFI1_CAP_IS_KSET(STATIC_RATE_CTRL)) 2353 base_sdma_integrity |= 2354 SEND_DMA_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK; 2355 2356 /* turn on send-side job key checks if !A0 */ 2357 if (!is_ax(dd)) 2358 base_sdma_integrity |= 2359 SEND_DMA_CHECK_ENABLE_CHECK_JOB_KEY_SMASK; 2360 2361 return base_sdma_integrity; 2362 } 2363 2364 #define dd_dev_emerg(dd, fmt, ...) \ 2365 dev_emerg(&(dd)->pcidev->dev, "%s: " fmt, \ 2366 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__) 2367 2368 #define dd_dev_err(dd, fmt, ...) \ 2369 dev_err(&(dd)->pcidev->dev, "%s: " fmt, \ 2370 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__) 2371 2372 #define dd_dev_err_ratelimited(dd, fmt, ...) \ 2373 dev_err_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \ 2374 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), \ 2375 ##__VA_ARGS__) 2376 2377 #define dd_dev_warn(dd, fmt, ...) \ 2378 dev_warn(&(dd)->pcidev->dev, "%s: " fmt, \ 2379 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__) 2380 2381 #define dd_dev_warn_ratelimited(dd, fmt, ...) \ 2382 dev_warn_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \ 2383 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), \ 2384 ##__VA_ARGS__) 2385 2386 #define dd_dev_info(dd, fmt, ...) \ 2387 dev_info(&(dd)->pcidev->dev, "%s: " fmt, \ 2388 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__) 2389 2390 #define dd_dev_info_ratelimited(dd, fmt, ...) \ 2391 dev_info_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \ 2392 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), \ 2393 ##__VA_ARGS__) 2394 2395 #define dd_dev_dbg(dd, fmt, ...) \ 2396 dev_dbg(&(dd)->pcidev->dev, "%s: " fmt, \ 2397 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__) 2398 2399 #define hfi1_dev_porterr(dd, port, fmt, ...) \ 2400 dev_err(&(dd)->pcidev->dev, "%s: port %u: " fmt, \ 2401 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), (port), ##__VA_ARGS__) 2402 2403 /* 2404 * this is used for formatting hw error messages... 2405 */ 2406 struct hfi1_hwerror_msgs { 2407 u64 mask; 2408 const char *msg; 2409 size_t sz; 2410 }; 2411 2412 /* in intr.c... */ 2413 void hfi1_format_hwerrors(u64 hwerrs, 2414 const struct hfi1_hwerror_msgs *hwerrmsgs, 2415 size_t nhwerrmsgs, char *msg, size_t lmsg); 2416 2417 #define USER_OPCODE_CHECK_VAL 0xC0 2418 #define USER_OPCODE_CHECK_MASK 0xC0 2419 #define OPCODE_CHECK_VAL_DISABLED 0x0 2420 #define OPCODE_CHECK_MASK_DISABLED 0x0 2421 2422 static inline void hfi1_reset_cpu_counters(struct hfi1_devdata *dd) 2423 { 2424 struct hfi1_pportdata *ppd; 2425 int i; 2426 2427 dd->z_int_counter = get_all_cpu_total(dd->int_counter); 2428 dd->z_rcv_limit = get_all_cpu_total(dd->rcv_limit); 2429 dd->z_send_schedule = get_all_cpu_total(dd->send_schedule); 2430 2431 ppd = (struct hfi1_pportdata *)(dd + 1); 2432 for (i = 0; i < dd->num_pports; i++, ppd++) { 2433 ppd->ibport_data.rvp.z_rc_acks = 2434 get_all_cpu_total(ppd->ibport_data.rvp.rc_acks); 2435 ppd->ibport_data.rvp.z_rc_qacks = 2436 get_all_cpu_total(ppd->ibport_data.rvp.rc_qacks); 2437 } 2438 } 2439 2440 /* Control LED state */ 2441 static inline void setextled(struct hfi1_devdata *dd, u32 on) 2442 { 2443 if (on) 2444 write_csr(dd, DCC_CFG_LED_CNTRL, 0x1F); 2445 else 2446 write_csr(dd, DCC_CFG_LED_CNTRL, 0x10); 2447 } 2448 2449 /* return the i2c resource given the target */ 2450 static inline u32 i2c_target(u32 target) 2451 { 2452 return target ? CR_I2C2 : CR_I2C1; 2453 } 2454 2455 /* return the i2c chain chip resource that this HFI uses for QSFP */ 2456 static inline u32 qsfp_resource(struct hfi1_devdata *dd) 2457 { 2458 return i2c_target(dd->hfi1_id); 2459 } 2460 2461 /* Is this device integrated or discrete? */ 2462 static inline bool is_integrated(struct hfi1_devdata *dd) 2463 { 2464 return dd->pcidev->device == PCI_DEVICE_ID_INTEL1; 2465 } 2466 2467 /** 2468 * hfi1_need_drop - detect need for drop 2469 * @dd: - the device 2470 * 2471 * In some cases, the first packet needs to be dropped. 2472 * 2473 * Return true is the current packet needs to be dropped and false otherwise. 2474 */ 2475 static inline bool hfi1_need_drop(struct hfi1_devdata *dd) 2476 { 2477 if (unlikely(dd->do_drop && 2478 atomic_xchg(&dd->drop_packet, DROP_PACKET_OFF) == 2479 DROP_PACKET_ON)) { 2480 dd->do_drop = false; 2481 return true; 2482 } 2483 return false; 2484 } 2485 2486 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp); 2487 2488 #define DD_DEV_ENTRY(dd) __string(dev, dev_name(&(dd)->pcidev->dev)) 2489 #define DD_DEV_ASSIGN(dd) __assign_str(dev, dev_name(&(dd)->pcidev->dev)) 2490 2491 static inline void hfi1_update_ah_attr(struct ib_device *ibdev, 2492 struct rdma_ah_attr *attr) 2493 { 2494 struct hfi1_pportdata *ppd; 2495 struct hfi1_ibport *ibp; 2496 u32 dlid = rdma_ah_get_dlid(attr); 2497 2498 /* 2499 * Kernel clients may not have setup GRH information 2500 * Set that here. 2501 */ 2502 ibp = to_iport(ibdev, rdma_ah_get_port_num(attr)); 2503 ppd = ppd_from_ibp(ibp); 2504 if ((((dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) || 2505 (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE))) && 2506 (dlid != be32_to_cpu(OPA_LID_PERMISSIVE)) && 2507 (dlid != be16_to_cpu(IB_LID_PERMISSIVE)) && 2508 (!(rdma_ah_get_ah_flags(attr) & IB_AH_GRH))) || 2509 (rdma_ah_get_make_grd(attr))) { 2510 rdma_ah_set_ah_flags(attr, IB_AH_GRH); 2511 rdma_ah_set_interface_id(attr, OPA_MAKE_ID(dlid)); 2512 rdma_ah_set_subnet_prefix(attr, ibp->rvp.gid_prefix); 2513 } 2514 } 2515 2516 /* 2517 * hfi1_check_mcast- Check if the given lid is 2518 * in the OPA multicast range. 2519 * 2520 * The LID might either reside in ah.dlid or might be 2521 * in the GRH of the address handle as DGID if extended 2522 * addresses are in use. 2523 */ 2524 static inline bool hfi1_check_mcast(u32 lid) 2525 { 2526 return ((lid >= opa_get_mcast_base(OPA_MCAST_NR)) && 2527 (lid != be32_to_cpu(OPA_LID_PERMISSIVE))); 2528 } 2529 2530 #define opa_get_lid(lid, format) \ 2531 __opa_get_lid(lid, OPA_PORT_PACKET_FORMAT_##format) 2532 2533 /* Convert a lid to a specific lid space */ 2534 static inline u32 __opa_get_lid(u32 lid, u8 format) 2535 { 2536 bool is_mcast = hfi1_check_mcast(lid); 2537 2538 switch (format) { 2539 case OPA_PORT_PACKET_FORMAT_8B: 2540 case OPA_PORT_PACKET_FORMAT_10B: 2541 if (is_mcast) 2542 return (lid - opa_get_mcast_base(OPA_MCAST_NR) + 2543 0xF0000); 2544 return lid & 0xFFFFF; 2545 case OPA_PORT_PACKET_FORMAT_16B: 2546 if (is_mcast) 2547 return (lid - opa_get_mcast_base(OPA_MCAST_NR) + 2548 0xF00000); 2549 return lid & 0xFFFFFF; 2550 case OPA_PORT_PACKET_FORMAT_9B: 2551 if (is_mcast) 2552 return (lid - 2553 opa_get_mcast_base(OPA_MCAST_NR) + 2554 be16_to_cpu(IB_MULTICAST_LID_BASE)); 2555 else 2556 return lid & 0xFFFF; 2557 default: 2558 return lid; 2559 } 2560 } 2561 2562 /* Return true if the given lid is the OPA 16B multicast range */ 2563 static inline bool hfi1_is_16B_mcast(u32 lid) 2564 { 2565 return ((lid >= 2566 opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR), 16B)) && 2567 (lid != opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))); 2568 } 2569 2570 static inline void hfi1_make_opa_lid(struct rdma_ah_attr *attr) 2571 { 2572 const struct ib_global_route *grh = rdma_ah_read_grh(attr); 2573 u32 dlid = rdma_ah_get_dlid(attr); 2574 2575 /* Modify ah_attr.dlid to be in the 32 bit LID space. 2576 * This is how the address will be laid out: 2577 * Assuming MCAST_NR to be 4, 2578 * 32 bit permissive LID = 0xFFFFFFFF 2579 * Multicast LID range = 0xFFFFFFFE to 0xF0000000 2580 * Unicast LID range = 0xEFFFFFFF to 1 2581 * Invalid LID = 0 2582 */ 2583 if (ib_is_opa_gid(&grh->dgid)) 2584 dlid = opa_get_lid_from_gid(&grh->dgid); 2585 else if ((dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) && 2586 (dlid != be16_to_cpu(IB_LID_PERMISSIVE)) && 2587 (dlid != be32_to_cpu(OPA_LID_PERMISSIVE))) 2588 dlid = dlid - be16_to_cpu(IB_MULTICAST_LID_BASE) + 2589 opa_get_mcast_base(OPA_MCAST_NR); 2590 else if (dlid == be16_to_cpu(IB_LID_PERMISSIVE)) 2591 dlid = be32_to_cpu(OPA_LID_PERMISSIVE); 2592 2593 rdma_ah_set_dlid(attr, dlid); 2594 } 2595 2596 static inline u8 hfi1_get_packet_type(u32 lid) 2597 { 2598 /* 9B if lid > 0xF0000000 */ 2599 if (lid >= opa_get_mcast_base(OPA_MCAST_NR)) 2600 return HFI1_PKT_TYPE_9B; 2601 2602 /* 16B if lid > 0xC000 */ 2603 if (lid >= opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR), 9B)) 2604 return HFI1_PKT_TYPE_16B; 2605 2606 return HFI1_PKT_TYPE_9B; 2607 } 2608 2609 static inline bool hfi1_get_hdr_type(u32 lid, struct rdma_ah_attr *attr) 2610 { 2611 /* 2612 * If there was an incoming 16B packet with permissive 2613 * LIDs, OPA GIDs would have been programmed when those 2614 * packets were received. A 16B packet will have to 2615 * be sent in response to that packet. Return a 16B 2616 * header type if that's the case. 2617 */ 2618 if (rdma_ah_get_dlid(attr) == be32_to_cpu(OPA_LID_PERMISSIVE)) 2619 return (ib_is_opa_gid(&rdma_ah_read_grh(attr)->dgid)) ? 2620 HFI1_PKT_TYPE_16B : HFI1_PKT_TYPE_9B; 2621 2622 /* 2623 * Return a 16B header type if either the the destination 2624 * or source lid is extended. 2625 */ 2626 if (hfi1_get_packet_type(rdma_ah_get_dlid(attr)) == HFI1_PKT_TYPE_16B) 2627 return HFI1_PKT_TYPE_16B; 2628 2629 return hfi1_get_packet_type(lid); 2630 } 2631 2632 static inline void hfi1_make_ext_grh(struct hfi1_packet *packet, 2633 struct ib_grh *grh, u32 slid, 2634 u32 dlid) 2635 { 2636 struct hfi1_ibport *ibp = &packet->rcd->ppd->ibport_data; 2637 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 2638 2639 if (!ibp) 2640 return; 2641 2642 grh->hop_limit = 1; 2643 grh->sgid.global.subnet_prefix = ibp->rvp.gid_prefix; 2644 if (slid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B)) 2645 grh->sgid.global.interface_id = 2646 OPA_MAKE_ID(be32_to_cpu(OPA_LID_PERMISSIVE)); 2647 else 2648 grh->sgid.global.interface_id = OPA_MAKE_ID(slid); 2649 2650 /* 2651 * Upper layers (like mad) may compare the dgid in the 2652 * wc that is obtained here with the sgid_index in 2653 * the wr. Since sgid_index in wr is always 0 for 2654 * extended lids, set the dgid here to the default 2655 * IB gid. 2656 */ 2657 grh->dgid.global.subnet_prefix = ibp->rvp.gid_prefix; 2658 grh->dgid.global.interface_id = 2659 cpu_to_be64(ppd->guids[HFI1_PORT_GUID_INDEX]); 2660 } 2661 2662 static inline int hfi1_get_16b_padding(u32 hdr_size, u32 payload) 2663 { 2664 return -(hdr_size + payload + (SIZE_OF_CRC << 2) + 2665 SIZE_OF_LT) & 0x7; 2666 } 2667 2668 static inline void hfi1_make_ib_hdr(struct ib_header *hdr, 2669 u16 lrh0, u16 len, 2670 u16 dlid, u16 slid) 2671 { 2672 hdr->lrh[0] = cpu_to_be16(lrh0); 2673 hdr->lrh[1] = cpu_to_be16(dlid); 2674 hdr->lrh[2] = cpu_to_be16(len); 2675 hdr->lrh[3] = cpu_to_be16(slid); 2676 } 2677 2678 static inline void hfi1_make_16b_hdr(struct hfi1_16b_header *hdr, 2679 u32 slid, u32 dlid, 2680 u16 len, u16 pkey, 2681 bool becn, bool fecn, u8 l4, 2682 u8 sc) 2683 { 2684 u32 lrh0 = 0; 2685 u32 lrh1 = 0x40000000; 2686 u32 lrh2 = 0; 2687 u32 lrh3 = 0; 2688 2689 lrh0 = (lrh0 & ~OPA_16B_BECN_MASK) | (becn << OPA_16B_BECN_SHIFT); 2690 lrh0 = (lrh0 & ~OPA_16B_LEN_MASK) | (len << OPA_16B_LEN_SHIFT); 2691 lrh0 = (lrh0 & ~OPA_16B_LID_MASK) | (slid & OPA_16B_LID_MASK); 2692 lrh1 = (lrh1 & ~OPA_16B_FECN_MASK) | (fecn << OPA_16B_FECN_SHIFT); 2693 lrh1 = (lrh1 & ~OPA_16B_SC_MASK) | (sc << OPA_16B_SC_SHIFT); 2694 lrh1 = (lrh1 & ~OPA_16B_LID_MASK) | (dlid & OPA_16B_LID_MASK); 2695 lrh2 = (lrh2 & ~OPA_16B_SLID_MASK) | 2696 ((slid >> OPA_16B_SLID_SHIFT) << OPA_16B_SLID_HIGH_SHIFT); 2697 lrh2 = (lrh2 & ~OPA_16B_DLID_MASK) | 2698 ((dlid >> OPA_16B_DLID_SHIFT) << OPA_16B_DLID_HIGH_SHIFT); 2699 lrh2 = (lrh2 & ~OPA_16B_PKEY_MASK) | ((u32)pkey << OPA_16B_PKEY_SHIFT); 2700 lrh2 = (lrh2 & ~OPA_16B_L4_MASK) | l4; 2701 2702 hdr->lrh[0] = lrh0; 2703 hdr->lrh[1] = lrh1; 2704 hdr->lrh[2] = lrh2; 2705 hdr->lrh[3] = lrh3; 2706 } 2707 #endif /* _HFI1_KERNEL_H */ 2708