xref: /openbmc/linux/drivers/infiniband/hw/hfi1/hfi.h (revision c127f98ba9aba1818a6ca3a1da5a24653a10d966)
1 #ifndef _HFI1_KERNEL_H
2 #define _HFI1_KERNEL_H
3 /*
4  * Copyright(c) 2015-2017 Intel Corporation.
5  *
6  * This file is provided under a dual BSD/GPLv2 license.  When using or
7  * redistributing this file, you may do so under either license.
8  *
9  * GPL LICENSE SUMMARY
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of version 2 of the GNU General Public License as
13  * published by the Free Software Foundation.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * BSD LICENSE
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  *
26  *  - Redistributions of source code must retain the above copyright
27  *    notice, this list of conditions and the following disclaimer.
28  *  - Redistributions in binary form must reproduce the above copyright
29  *    notice, this list of conditions and the following disclaimer in
30  *    the documentation and/or other materials provided with the
31  *    distribution.
32  *  - Neither the name of Intel Corporation nor the names of its
33  *    contributors may be used to endorse or promote products derived
34  *    from this software without specific prior written permission.
35  *
36  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
37  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
38  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
39  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
40  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
42  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
43  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
44  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
45  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
46  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
47  *
48  */
49 
50 #include <linux/interrupt.h>
51 #include <linux/pci.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/mutex.h>
54 #include <linux/list.h>
55 #include <linux/scatterlist.h>
56 #include <linux/slab.h>
57 #include <linux/idr.h>
58 #include <linux/io.h>
59 #include <linux/fs.h>
60 #include <linux/completion.h>
61 #include <linux/kref.h>
62 #include <linux/sched.h>
63 #include <linux/cdev.h>
64 #include <linux/delay.h>
65 #include <linux/kthread.h>
66 #include <linux/i2c.h>
67 #include <linux/i2c-algo-bit.h>
68 #include <rdma/ib_hdrs.h>
69 #include <rdma/opa_addr.h>
70 #include <linux/rhashtable.h>
71 #include <linux/netdevice.h>
72 #include <rdma/rdma_vt.h>
73 #include <rdma/opa_addr.h>
74 
75 #include "chip_registers.h"
76 #include "common.h"
77 #include "verbs.h"
78 #include "pio.h"
79 #include "chip.h"
80 #include "mad.h"
81 #include "qsfp.h"
82 #include "platform.h"
83 #include "affinity.h"
84 
85 /* bumped 1 from s/w major version of TrueScale */
86 #define HFI1_CHIP_VERS_MAJ 3U
87 
88 /* don't care about this except printing */
89 #define HFI1_CHIP_VERS_MIN 0U
90 
91 /* The Organization Unique Identifier (Mfg code), and its position in GUID */
92 #define HFI1_OUI 0x001175
93 #define HFI1_OUI_LSB 40
94 
95 #define DROP_PACKET_OFF		0
96 #define DROP_PACKET_ON		1
97 
98 #define NEIGHBOR_TYPE_HFI		0
99 #define NEIGHBOR_TYPE_SWITCH	1
100 
101 extern unsigned long hfi1_cap_mask;
102 #define HFI1_CAP_KGET_MASK(mask, cap) ((mask) & HFI1_CAP_##cap)
103 #define HFI1_CAP_UGET_MASK(mask, cap) \
104 	(((mask) >> HFI1_CAP_USER_SHIFT) & HFI1_CAP_##cap)
105 #define HFI1_CAP_KGET(cap) (HFI1_CAP_KGET_MASK(hfi1_cap_mask, cap))
106 #define HFI1_CAP_UGET(cap) (HFI1_CAP_UGET_MASK(hfi1_cap_mask, cap))
107 #define HFI1_CAP_IS_KSET(cap) (!!HFI1_CAP_KGET(cap))
108 #define HFI1_CAP_IS_USET(cap) (!!HFI1_CAP_UGET(cap))
109 #define HFI1_MISC_GET() ((hfi1_cap_mask >> HFI1_CAP_MISC_SHIFT) & \
110 			HFI1_CAP_MISC_MASK)
111 /* Offline Disabled Reason is 4-bits */
112 #define HFI1_ODR_MASK(rsn) ((rsn) & OPA_PI_MASK_OFFLINE_REASON)
113 
114 /*
115  * Control context is always 0 and handles the error packets.
116  * It also handles the VL15 and multicast packets.
117  */
118 #define HFI1_CTRL_CTXT    0
119 
120 /*
121  * Driver context will store software counters for each of the events
122  * associated with these status registers
123  */
124 #define NUM_CCE_ERR_STATUS_COUNTERS 41
125 #define NUM_RCV_ERR_STATUS_COUNTERS 64
126 #define NUM_MISC_ERR_STATUS_COUNTERS 13
127 #define NUM_SEND_PIO_ERR_STATUS_COUNTERS 36
128 #define NUM_SEND_DMA_ERR_STATUS_COUNTERS 4
129 #define NUM_SEND_EGRESS_ERR_STATUS_COUNTERS 64
130 #define NUM_SEND_ERR_STATUS_COUNTERS 3
131 #define NUM_SEND_CTXT_ERR_STATUS_COUNTERS 5
132 #define NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS 24
133 
134 /*
135  * per driver stats, either not device nor port-specific, or
136  * summed over all of the devices and ports.
137  * They are described by name via ipathfs filesystem, so layout
138  * and number of elements can change without breaking compatibility.
139  * If members are added or deleted hfi1_statnames[] in debugfs.c must
140  * change to match.
141  */
142 struct hfi1_ib_stats {
143 	__u64 sps_ints; /* number of interrupts handled */
144 	__u64 sps_errints; /* number of error interrupts */
145 	__u64 sps_txerrs; /* tx-related packet errors */
146 	__u64 sps_rcverrs; /* non-crc rcv packet errors */
147 	__u64 sps_hwerrs; /* hardware errors reported (parity, etc.) */
148 	__u64 sps_nopiobufs; /* no pio bufs avail from kernel */
149 	__u64 sps_ctxts; /* number of contexts currently open */
150 	__u64 sps_lenerrs; /* number of kernel packets where RHF != LRH len */
151 	__u64 sps_buffull;
152 	__u64 sps_hdrfull;
153 };
154 
155 extern struct hfi1_ib_stats hfi1_stats;
156 extern const struct pci_error_handlers hfi1_pci_err_handler;
157 
158 /*
159  * First-cut criterion for "device is active" is
160  * two thousand dwords combined Tx, Rx traffic per
161  * 5-second interval. SMA packets are 64 dwords,
162  * and occur "a few per second", presumably each way.
163  */
164 #define HFI1_TRAFFIC_ACTIVE_THRESHOLD (2000)
165 
166 /*
167  * Below contains all data related to a single context (formerly called port).
168  */
169 
170 struct hfi1_opcode_stats_perctx;
171 
172 struct ctxt_eager_bufs {
173 	ssize_t size;            /* total size of eager buffers */
174 	u32 count;               /* size of buffers array */
175 	u32 numbufs;             /* number of buffers allocated */
176 	u32 alloced;             /* number of rcvarray entries used */
177 	u32 rcvtid_size;         /* size of each eager rcv tid */
178 	u32 threshold;           /* head update threshold */
179 	struct eager_buffer {
180 		void *addr;
181 		dma_addr_t dma;
182 		ssize_t len;
183 	} *buffers;
184 	struct {
185 		void *addr;
186 		dma_addr_t dma;
187 	} *rcvtids;
188 };
189 
190 struct exp_tid_set {
191 	struct list_head list;
192 	u32 count;
193 };
194 
195 struct hfi1_ctxtdata {
196 	/* shadow the ctxt's RcvCtrl register */
197 	u64 rcvctrl;
198 	/* rcvhdrq base, needs mmap before useful */
199 	void *rcvhdrq;
200 	/* kernel virtual address where hdrqtail is updated */
201 	volatile __le64 *rcvhdrtail_kvaddr;
202 	/* when waiting for rcv or pioavail */
203 	wait_queue_head_t wait;
204 	/* rcvhdrq size (for freeing) */
205 	size_t rcvhdrq_size;
206 	/* number of rcvhdrq entries */
207 	u16 rcvhdrq_cnt;
208 	/* size of each of the rcvhdrq entries */
209 	u16 rcvhdrqentsize;
210 	/* mmap of hdrq, must fit in 44 bits */
211 	dma_addr_t rcvhdrq_dma;
212 	dma_addr_t rcvhdrqtailaddr_dma;
213 	struct ctxt_eager_bufs egrbufs;
214 	/* this receive context's assigned PIO ACK send context */
215 	struct send_context *sc;
216 
217 	/* dynamic receive available interrupt timeout */
218 	u32 rcvavail_timeout;
219 	/* Reference count the base context usage */
220 	struct kref kref;
221 
222 	/* Device context index */
223 	u16 ctxt;
224 	/*
225 	 * non-zero if ctxt can be shared, and defines the maximum number of
226 	 * sub-contexts for this device context.
227 	 */
228 	u16 subctxt_cnt;
229 	/* non-zero if ctxt is being shared. */
230 	u16 subctxt_id;
231 	u8 uuid[16];
232 	/* job key */
233 	u16 jkey;
234 	/* number of RcvArray groups for this context. */
235 	u32 rcv_array_groups;
236 	/* index of first eager TID entry. */
237 	u32 eager_base;
238 	/* number of expected TID entries */
239 	u32 expected_count;
240 	/* index of first expected TID entry. */
241 	u32 expected_base;
242 
243 	struct exp_tid_set tid_group_list;
244 	struct exp_tid_set tid_used_list;
245 	struct exp_tid_set tid_full_list;
246 
247 	/* lock protecting all Expected TID data */
248 	struct mutex exp_lock;
249 	/* per-context configuration flags */
250 	unsigned long flags;
251 	/* per-context event flags for fileops/intr communication */
252 	unsigned long event_flags;
253 	/* total number of polled urgent packets */
254 	u32 urgent;
255 	/* saved total number of polled urgent packets for poll edge trigger */
256 	u32 urgent_poll;
257 	/* same size as task_struct .comm[], command that opened context */
258 	char comm[TASK_COMM_LEN];
259 	/* so file ops can get at unit */
260 	struct hfi1_devdata *dd;
261 	/* so functions that need physical port can get it easily */
262 	struct hfi1_pportdata *ppd;
263 	/* associated msix interrupt */
264 	u32 msix_intr;
265 	/* A page of memory for rcvhdrhead, rcvegrhead, rcvegrtail * N */
266 	void *subctxt_uregbase;
267 	/* An array of pages for the eager receive buffers * N */
268 	void *subctxt_rcvegrbuf;
269 	/* An array of pages for the eager header queue entries * N */
270 	void *subctxt_rcvhdr_base;
271 	/* Bitmask of in use context(s) */
272 	DECLARE_BITMAP(in_use_ctxts, HFI1_MAX_SHARED_CTXTS);
273 	/* The version of the library which opened this ctxt */
274 	u32 userversion;
275 	/* Type of packets or conditions we want to poll for */
276 	u16 poll_type;
277 	/* receive packet sequence counter */
278 	u8 seq_cnt;
279 	/* ctxt rcvhdrq head offset */
280 	u32 head;
281 	/* QPs waiting for context processing */
282 	struct list_head qp_wait_list;
283 	/* interrupt handling */
284 	u64 imask;	/* clear interrupt mask */
285 	int ireg;	/* clear interrupt register */
286 	unsigned numa_id; /* numa node of this context */
287 	/* verbs rx_stats per rcd */
288 	struct hfi1_opcode_stats_perctx *opstats;
289 
290 	/* Is ASPM interrupt supported for this context */
291 	bool aspm_intr_supported;
292 	/* ASPM state (enabled/disabled) for this context */
293 	bool aspm_enabled;
294 	/* Timer for re-enabling ASPM if interrupt activity quietens down */
295 	struct timer_list aspm_timer;
296 	/* Lock to serialize between intr, timer intr and user threads */
297 	spinlock_t aspm_lock;
298 	/* Is ASPM processing enabled for this context (in intr context) */
299 	bool aspm_intr_enable;
300 	/* Last interrupt timestamp */
301 	ktime_t aspm_ts_last_intr;
302 	/* Last timestamp at which we scheduled a timer for this context */
303 	ktime_t aspm_ts_timer_sched;
304 
305 	/*
306 	 * The interrupt handler for a particular receive context can vary
307 	 * throughout it's lifetime. This is not a lock protected data member so
308 	 * it must be updated atomically and the prev and new value must always
309 	 * be valid. Worst case is we process an extra interrupt and up to 64
310 	 * packets with the wrong interrupt handler.
311 	 */
312 	int (*do_interrupt)(struct hfi1_ctxtdata *rcd, int threaded);
313 
314 	/* Indicates that this is vnic context */
315 	bool is_vnic;
316 
317 	/* vnic queue index this context is mapped to */
318 	u8 vnic_q_idx;
319 };
320 
321 /*
322  * Represents a single packet at a high level. Put commonly computed things in
323  * here so we do not have to keep doing them over and over. The rule of thumb is
324  * if something is used one time to derive some value, store that something in
325  * here. If it is used multiple times, then store the result of that derivation
326  * in here.
327  */
328 struct hfi1_packet {
329 	void *ebuf;
330 	void *hdr;
331 	void *payload;
332 	struct hfi1_ctxtdata *rcd;
333 	__le32 *rhf_addr;
334 	struct rvt_qp *qp;
335 	struct ib_other_headers *ohdr;
336 	struct ib_grh *grh;
337 	u64 rhf;
338 	u32 maxcnt;
339 	u32 rhqoff;
340 	u32 dlid;
341 	u32 slid;
342 	u16 tlen;
343 	s16 etail;
344 	u8 hlen;
345 	u8 numpkt;
346 	u8 rsize;
347 	u8 updegr;
348 	u8 etype;
349 	u8 extra_byte;
350 	u8 pad;
351 	u8 sc;
352 	u8 sl;
353 	u8 opcode;
354 	bool becn;
355 	bool fecn;
356 };
357 
358 /* Packet types */
359 #define HFI1_PKT_TYPE_9B  0
360 #define HFI1_PKT_TYPE_16B 1
361 
362 /*
363  * OPA 16B Header
364  */
365 #define OPA_16B_L4_MASK		0xFFull
366 #define OPA_16B_SC_MASK		0x1F00000ull
367 #define OPA_16B_SC_SHIFT	20
368 #define OPA_16B_LID_MASK	0xFFFFFull
369 #define OPA_16B_DLID_MASK	0xF000ull
370 #define OPA_16B_DLID_SHIFT	20
371 #define OPA_16B_DLID_HIGH_SHIFT	12
372 #define OPA_16B_SLID_MASK	0xF00ull
373 #define OPA_16B_SLID_SHIFT	20
374 #define OPA_16B_SLID_HIGH_SHIFT	8
375 #define OPA_16B_BECN_MASK       0x80000000ull
376 #define OPA_16B_BECN_SHIFT      31
377 #define OPA_16B_FECN_MASK       0x10000000ull
378 #define OPA_16B_FECN_SHIFT      28
379 #define OPA_16B_L2_MASK		0x60000000ull
380 #define OPA_16B_L2_SHIFT	29
381 #define OPA_16B_PKEY_MASK	0xFFFF0000ull
382 #define OPA_16B_PKEY_SHIFT	16
383 #define OPA_16B_LEN_MASK	0x7FF00000ull
384 #define OPA_16B_LEN_SHIFT	20
385 #define OPA_16B_RC_MASK		0xE000000ull
386 #define OPA_16B_RC_SHIFT	25
387 #define OPA_16B_AGE_MASK	0xFF0000ull
388 #define OPA_16B_AGE_SHIFT	16
389 #define OPA_16B_ENTROPY_MASK	0xFFFFull
390 
391 /*
392  * OPA 16B L2/L4 Encodings
393  */
394 #define OPA_16B_L4_9B		0x00
395 #define OPA_16B_L2_TYPE		0x02
396 #define OPA_16B_L4_IB_LOCAL	0x09
397 #define OPA_16B_L4_IB_GLOBAL	0x0A
398 #define OPA_16B_L4_ETHR		OPA_VNIC_L4_ETHR
399 
400 static inline u8 hfi1_16B_get_l4(struct hfi1_16b_header *hdr)
401 {
402 	return (u8)(hdr->lrh[2] & OPA_16B_L4_MASK);
403 }
404 
405 static inline u8 hfi1_16B_get_sc(struct hfi1_16b_header *hdr)
406 {
407 	return (u8)((hdr->lrh[1] & OPA_16B_SC_MASK) >> OPA_16B_SC_SHIFT);
408 }
409 
410 static inline u32 hfi1_16B_get_dlid(struct hfi1_16b_header *hdr)
411 {
412 	return (u32)((hdr->lrh[1] & OPA_16B_LID_MASK) |
413 		     (((hdr->lrh[2] & OPA_16B_DLID_MASK) >>
414 		     OPA_16B_DLID_HIGH_SHIFT) << OPA_16B_DLID_SHIFT));
415 }
416 
417 static inline u32 hfi1_16B_get_slid(struct hfi1_16b_header *hdr)
418 {
419 	return (u32)((hdr->lrh[0] & OPA_16B_LID_MASK) |
420 		     (((hdr->lrh[2] & OPA_16B_SLID_MASK) >>
421 		     OPA_16B_SLID_HIGH_SHIFT) << OPA_16B_SLID_SHIFT));
422 }
423 
424 static inline u8 hfi1_16B_get_becn(struct hfi1_16b_header *hdr)
425 {
426 	return (u8)((hdr->lrh[0] & OPA_16B_BECN_MASK) >> OPA_16B_BECN_SHIFT);
427 }
428 
429 static inline u8 hfi1_16B_get_fecn(struct hfi1_16b_header *hdr)
430 {
431 	return (u8)((hdr->lrh[1] & OPA_16B_FECN_MASK) >> OPA_16B_FECN_SHIFT);
432 }
433 
434 static inline u8 hfi1_16B_get_l2(struct hfi1_16b_header *hdr)
435 {
436 	return (u8)((hdr->lrh[1] & OPA_16B_L2_MASK) >> OPA_16B_L2_SHIFT);
437 }
438 
439 static inline u16 hfi1_16B_get_pkey(struct hfi1_16b_header *hdr)
440 {
441 	return (u16)((hdr->lrh[2] & OPA_16B_PKEY_MASK) >> OPA_16B_PKEY_SHIFT);
442 }
443 
444 static inline u8 hfi1_16B_get_rc(struct hfi1_16b_header *hdr)
445 {
446 	return (u8)((hdr->lrh[1] & OPA_16B_RC_MASK) >> OPA_16B_RC_SHIFT);
447 }
448 
449 static inline u8 hfi1_16B_get_age(struct hfi1_16b_header *hdr)
450 {
451 	return (u8)((hdr->lrh[3] & OPA_16B_AGE_MASK) >> OPA_16B_AGE_SHIFT);
452 }
453 
454 static inline u16 hfi1_16B_get_len(struct hfi1_16b_header *hdr)
455 {
456 	return (u16)((hdr->lrh[0] & OPA_16B_LEN_MASK) >> OPA_16B_LEN_SHIFT);
457 }
458 
459 static inline u16 hfi1_16B_get_entropy(struct hfi1_16b_header *hdr)
460 {
461 	return (u16)(hdr->lrh[3] & OPA_16B_ENTROPY_MASK);
462 }
463 
464 #define OPA_16B_MAKE_QW(low_dw, high_dw) (((u64)(high_dw) << 32) | (low_dw))
465 
466 /*
467  * BTH
468  */
469 #define OPA_16B_BTH_PAD_MASK	7
470 static inline u8 hfi1_16B_bth_get_pad(struct ib_other_headers *ohdr)
471 {
472 	return (u8)((be32_to_cpu(ohdr->bth[0]) >> IB_BTH_PAD_SHIFT) &
473 		   OPA_16B_BTH_PAD_MASK);
474 }
475 
476 struct rvt_sge_state;
477 
478 /*
479  * Get/Set IB link-level config parameters for f_get/set_ib_cfg()
480  * Mostly for MADs that set or query link parameters, also ipath
481  * config interfaces
482  */
483 #define HFI1_IB_CFG_LIDLMC 0 /* LID (LS16b) and Mask (MS16b) */
484 #define HFI1_IB_CFG_LWID_DG_ENB 1 /* allowed Link-width downgrade */
485 #define HFI1_IB_CFG_LWID_ENB 2 /* allowed Link-width */
486 #define HFI1_IB_CFG_LWID 3 /* currently active Link-width */
487 #define HFI1_IB_CFG_SPD_ENB 4 /* allowed Link speeds */
488 #define HFI1_IB_CFG_SPD 5 /* current Link spd */
489 #define HFI1_IB_CFG_RXPOL_ENB 6 /* Auto-RX-polarity enable */
490 #define HFI1_IB_CFG_LREV_ENB 7 /* Auto-Lane-reversal enable */
491 #define HFI1_IB_CFG_LINKLATENCY 8 /* Link Latency (IB1.2 only) */
492 #define HFI1_IB_CFG_HRTBT 9 /* IB heartbeat off/enable/auto; DDR/QDR only */
493 #define HFI1_IB_CFG_OP_VLS 10 /* operational VLs */
494 #define HFI1_IB_CFG_VL_HIGH_CAP 11 /* num of VL high priority weights */
495 #define HFI1_IB_CFG_VL_LOW_CAP 12 /* num of VL low priority weights */
496 #define HFI1_IB_CFG_OVERRUN_THRESH 13 /* IB overrun threshold */
497 #define HFI1_IB_CFG_PHYERR_THRESH 14 /* IB PHY error threshold */
498 #define HFI1_IB_CFG_LINKDEFAULT 15 /* IB link default (sleep/poll) */
499 #define HFI1_IB_CFG_PKEYS 16 /* update partition keys */
500 #define HFI1_IB_CFG_MTU 17 /* update MTU in IBC */
501 #define HFI1_IB_CFG_VL_HIGH_LIMIT 19
502 #define HFI1_IB_CFG_PMA_TICKS 20 /* PMA sample tick resolution */
503 #define HFI1_IB_CFG_PORT 21 /* switch port we are connected to */
504 
505 /*
506  * HFI or Host Link States
507  *
508  * These describe the states the driver thinks the logical and physical
509  * states are in.  Used as an argument to set_link_state().  Implemented
510  * as bits for easy multi-state checking.  The actual state can only be
511  * one.
512  */
513 #define __HLS_UP_INIT_BP	0
514 #define __HLS_UP_ARMED_BP	1
515 #define __HLS_UP_ACTIVE_BP	2
516 #define __HLS_DN_DOWNDEF_BP	3	/* link down default */
517 #define __HLS_DN_POLL_BP	4
518 #define __HLS_DN_DISABLE_BP	5
519 #define __HLS_DN_OFFLINE_BP	6
520 #define __HLS_VERIFY_CAP_BP	7
521 #define __HLS_GOING_UP_BP	8
522 #define __HLS_GOING_OFFLINE_BP  9
523 #define __HLS_LINK_COOLDOWN_BP 10
524 
525 #define HLS_UP_INIT	  BIT(__HLS_UP_INIT_BP)
526 #define HLS_UP_ARMED	  BIT(__HLS_UP_ARMED_BP)
527 #define HLS_UP_ACTIVE	  BIT(__HLS_UP_ACTIVE_BP)
528 #define HLS_DN_DOWNDEF	  BIT(__HLS_DN_DOWNDEF_BP) /* link down default */
529 #define HLS_DN_POLL	  BIT(__HLS_DN_POLL_BP)
530 #define HLS_DN_DISABLE	  BIT(__HLS_DN_DISABLE_BP)
531 #define HLS_DN_OFFLINE	  BIT(__HLS_DN_OFFLINE_BP)
532 #define HLS_VERIFY_CAP	  BIT(__HLS_VERIFY_CAP_BP)
533 #define HLS_GOING_UP	  BIT(__HLS_GOING_UP_BP)
534 #define HLS_GOING_OFFLINE BIT(__HLS_GOING_OFFLINE_BP)
535 #define HLS_LINK_COOLDOWN BIT(__HLS_LINK_COOLDOWN_BP)
536 
537 #define HLS_UP (HLS_UP_INIT | HLS_UP_ARMED | HLS_UP_ACTIVE)
538 #define HLS_DOWN ~(HLS_UP)
539 
540 #define HLS_DEFAULT HLS_DN_POLL
541 
542 /* use this MTU size if none other is given */
543 #define HFI1_DEFAULT_ACTIVE_MTU 10240
544 /* use this MTU size as the default maximum */
545 #define HFI1_DEFAULT_MAX_MTU 10240
546 /* default partition key */
547 #define DEFAULT_PKEY 0xffff
548 
549 /*
550  * Possible fabric manager config parameters for fm_{get,set}_table()
551  */
552 #define FM_TBL_VL_HIGH_ARB		1 /* Get/set VL high prio weights */
553 #define FM_TBL_VL_LOW_ARB		2 /* Get/set VL low prio weights */
554 #define FM_TBL_BUFFER_CONTROL		3 /* Get/set Buffer Control */
555 #define FM_TBL_SC2VLNT			4 /* Get/set SC->VLnt */
556 #define FM_TBL_VL_PREEMPT_ELEMS		5 /* Get (no set) VL preempt elems */
557 #define FM_TBL_VL_PREEMPT_MATRIX	6 /* Get (no set) VL preempt matrix */
558 
559 /*
560  * Possible "operations" for f_rcvctrl(ppd, op, ctxt)
561  * these are bits so they can be combined, e.g.
562  * HFI1_RCVCTRL_INTRAVAIL_ENB | HFI1_RCVCTRL_CTXT_ENB
563  */
564 #define HFI1_RCVCTRL_TAILUPD_ENB 0x01
565 #define HFI1_RCVCTRL_TAILUPD_DIS 0x02
566 #define HFI1_RCVCTRL_CTXT_ENB 0x04
567 #define HFI1_RCVCTRL_CTXT_DIS 0x08
568 #define HFI1_RCVCTRL_INTRAVAIL_ENB 0x10
569 #define HFI1_RCVCTRL_INTRAVAIL_DIS 0x20
570 #define HFI1_RCVCTRL_PKEY_ENB 0x40  /* Note, default is enabled */
571 #define HFI1_RCVCTRL_PKEY_DIS 0x80
572 #define HFI1_RCVCTRL_TIDFLOW_ENB 0x0400
573 #define HFI1_RCVCTRL_TIDFLOW_DIS 0x0800
574 #define HFI1_RCVCTRL_ONE_PKT_EGR_ENB 0x1000
575 #define HFI1_RCVCTRL_ONE_PKT_EGR_DIS 0x2000
576 #define HFI1_RCVCTRL_NO_RHQ_DROP_ENB 0x4000
577 #define HFI1_RCVCTRL_NO_RHQ_DROP_DIS 0x8000
578 #define HFI1_RCVCTRL_NO_EGR_DROP_ENB 0x10000
579 #define HFI1_RCVCTRL_NO_EGR_DROP_DIS 0x20000
580 
581 /* partition enforcement flags */
582 #define HFI1_PART_ENFORCE_IN	0x1
583 #define HFI1_PART_ENFORCE_OUT	0x2
584 
585 /* how often we check for synthetic counter wrap around */
586 #define SYNTH_CNT_TIME 3
587 
588 /* Counter flags */
589 #define CNTR_NORMAL		0x0 /* Normal counters, just read register */
590 #define CNTR_SYNTH		0x1 /* Synthetic counters, saturate at all 1s */
591 #define CNTR_DISABLED		0x2 /* Disable this counter */
592 #define CNTR_32BIT		0x4 /* Simulate 64 bits for this counter */
593 #define CNTR_VL			0x8 /* Per VL counter */
594 #define CNTR_SDMA              0x10
595 #define CNTR_INVALID_VL		-1  /* Specifies invalid VL */
596 #define CNTR_MODE_W		0x0
597 #define CNTR_MODE_R		0x1
598 
599 /* VLs Supported/Operational */
600 #define HFI1_MIN_VLS_SUPPORTED 1
601 #define HFI1_MAX_VLS_SUPPORTED 8
602 
603 #define HFI1_GUIDS_PER_PORT  5
604 #define HFI1_PORT_GUID_INDEX 0
605 
606 static inline void incr_cntr64(u64 *cntr)
607 {
608 	if (*cntr < (u64)-1LL)
609 		(*cntr)++;
610 }
611 
612 static inline void incr_cntr32(u32 *cntr)
613 {
614 	if (*cntr < (u32)-1LL)
615 		(*cntr)++;
616 }
617 
618 #define MAX_NAME_SIZE 64
619 struct hfi1_msix_entry {
620 	enum irq_type type;
621 	int irq;
622 	void *arg;
623 	cpumask_t mask;
624 	struct irq_affinity_notify notify;
625 };
626 
627 /* per-SL CCA information */
628 struct cca_timer {
629 	struct hrtimer hrtimer;
630 	struct hfi1_pportdata *ppd; /* read-only */
631 	int sl; /* read-only */
632 	u16 ccti; /* read/write - current value of CCTI */
633 };
634 
635 struct link_down_reason {
636 	/*
637 	 * SMA-facing value.  Should be set from .latest when
638 	 * HLS_UP_* -> HLS_DN_* transition actually occurs.
639 	 */
640 	u8 sma;
641 	u8 latest;
642 };
643 
644 enum {
645 	LO_PRIO_TABLE,
646 	HI_PRIO_TABLE,
647 	MAX_PRIO_TABLE
648 };
649 
650 struct vl_arb_cache {
651 	/* protect vl arb cache */
652 	spinlock_t lock;
653 	struct ib_vl_weight_elem table[VL_ARB_TABLE_SIZE];
654 };
655 
656 /*
657  * The structure below encapsulates data relevant to a physical IB Port.
658  * Current chips support only one such port, but the separation
659  * clarifies things a bit. Note that to conform to IB conventions,
660  * port-numbers are one-based. The first or only port is port1.
661  */
662 struct hfi1_pportdata {
663 	struct hfi1_ibport ibport_data;
664 
665 	struct hfi1_devdata *dd;
666 	struct kobject pport_cc_kobj;
667 	struct kobject sc2vl_kobj;
668 	struct kobject sl2sc_kobj;
669 	struct kobject vl2mtu_kobj;
670 
671 	/* PHY support */
672 	struct qsfp_data qsfp_info;
673 	/* Values for SI tuning of SerDes */
674 	u32 port_type;
675 	u32 tx_preset_eq;
676 	u32 tx_preset_noeq;
677 	u32 rx_preset;
678 	u8  local_atten;
679 	u8  remote_atten;
680 	u8  default_atten;
681 	u8  max_power_class;
682 
683 	/* did we read platform config from scratch registers? */
684 	bool config_from_scratch;
685 
686 	/* GUIDs for this interface, in host order, guids[0] is a port guid */
687 	u64 guids[HFI1_GUIDS_PER_PORT];
688 
689 	/* GUID for peer interface, in host order */
690 	u64 neighbor_guid;
691 
692 	/* up or down physical link state */
693 	u32 linkup;
694 
695 	/*
696 	 * this address is mapped read-only into user processes so they can
697 	 * get status cheaply, whenever they want.  One qword of status per port
698 	 */
699 	u64 *statusp;
700 
701 	/* SendDMA related entries */
702 
703 	struct workqueue_struct *hfi1_wq;
704 	struct workqueue_struct *link_wq;
705 
706 	/* move out of interrupt context */
707 	struct work_struct link_vc_work;
708 	struct work_struct link_up_work;
709 	struct work_struct link_down_work;
710 	struct work_struct sma_message_work;
711 	struct work_struct freeze_work;
712 	struct work_struct link_downgrade_work;
713 	struct work_struct link_bounce_work;
714 	struct delayed_work start_link_work;
715 	/* host link state variables */
716 	struct mutex hls_lock;
717 	u32 host_link_state;
718 
719 	/* these are the "32 bit" regs */
720 
721 	u32 ibmtu; /* The MTU programmed for this unit */
722 	/*
723 	 * Current max size IB packet (in bytes) including IB headers, that
724 	 * we can send. Changes when ibmtu changes.
725 	 */
726 	u32 ibmaxlen;
727 	u32 current_egress_rate; /* units [10^6 bits/sec] */
728 	/* LID programmed for this instance */
729 	u32 lid;
730 	/* list of pkeys programmed; 0 if not set */
731 	u16 pkeys[MAX_PKEY_VALUES];
732 	u16 link_width_supported;
733 	u16 link_width_downgrade_supported;
734 	u16 link_speed_supported;
735 	u16 link_width_enabled;
736 	u16 link_width_downgrade_enabled;
737 	u16 link_speed_enabled;
738 	u16 link_width_active;
739 	u16 link_width_downgrade_tx_active;
740 	u16 link_width_downgrade_rx_active;
741 	u16 link_speed_active;
742 	u8 vls_supported;
743 	u8 vls_operational;
744 	u8 actual_vls_operational;
745 	/* LID mask control */
746 	u8 lmc;
747 	/* Rx Polarity inversion (compensate for ~tx on partner) */
748 	u8 rx_pol_inv;
749 
750 	u8 hw_pidx;     /* physical port index */
751 	u8 port;        /* IB port number and index into dd->pports - 1 */
752 	/* type of neighbor node */
753 	u8 neighbor_type;
754 	u8 neighbor_normal;
755 	u8 neighbor_fm_security; /* 1 if firmware checking is disabled */
756 	u8 neighbor_port_number;
757 	u8 is_sm_config_started;
758 	u8 offline_disabled_reason;
759 	u8 is_active_optimize_enabled;
760 	u8 driver_link_ready;	/* driver ready for active link */
761 	u8 link_enabled;	/* link enabled? */
762 	u8 linkinit_reason;
763 	u8 local_tx_rate;	/* rate given to 8051 firmware */
764 	u8 qsfp_retry_count;
765 
766 	/* placeholders for IB MAD packet settings */
767 	u8 overrun_threshold;
768 	u8 phy_error_threshold;
769 	unsigned int is_link_down_queued;
770 
771 	/* Used to override LED behavior for things like maintenance beaconing*/
772 	/*
773 	 * Alternates per phase of blink
774 	 * [0] holds LED off duration, [1] holds LED on duration
775 	 */
776 	unsigned long led_override_vals[2];
777 	u8 led_override_phase; /* LSB picks from vals[] */
778 	atomic_t led_override_timer_active;
779 	/* Used to flash LEDs in override mode */
780 	struct timer_list led_override_timer;
781 
782 	u32 sm_trap_qp;
783 	u32 sa_qp;
784 
785 	/*
786 	 * cca_timer_lock protects access to the per-SL cca_timer
787 	 * structures (specifically the ccti member).
788 	 */
789 	spinlock_t cca_timer_lock ____cacheline_aligned_in_smp;
790 	struct cca_timer cca_timer[OPA_MAX_SLS];
791 
792 	/* List of congestion control table entries */
793 	struct ib_cc_table_entry_shadow ccti_entries[CC_TABLE_SHADOW_MAX];
794 
795 	/* congestion entries, each entry corresponding to a SL */
796 	struct opa_congestion_setting_entry_shadow
797 		congestion_entries[OPA_MAX_SLS];
798 
799 	/*
800 	 * cc_state_lock protects (write) access to the per-port
801 	 * struct cc_state.
802 	 */
803 	spinlock_t cc_state_lock ____cacheline_aligned_in_smp;
804 
805 	struct cc_state __rcu *cc_state;
806 
807 	/* Total number of congestion control table entries */
808 	u16 total_cct_entry;
809 
810 	/* Bit map identifying service level */
811 	u32 cc_sl_control_map;
812 
813 	/* CA's max number of 64 entry units in the congestion control table */
814 	u8 cc_max_table_entries;
815 
816 	/*
817 	 * begin congestion log related entries
818 	 * cc_log_lock protects all congestion log related data
819 	 */
820 	spinlock_t cc_log_lock ____cacheline_aligned_in_smp;
821 	u8 threshold_cong_event_map[OPA_MAX_SLS / 8];
822 	u16 threshold_event_counter;
823 	struct opa_hfi1_cong_log_event_internal cc_events[OPA_CONG_LOG_ELEMS];
824 	int cc_log_idx; /* index for logging events */
825 	int cc_mad_idx; /* index for reporting events */
826 	/* end congestion log related entries */
827 
828 	struct vl_arb_cache vl_arb_cache[MAX_PRIO_TABLE];
829 
830 	/* port relative counter buffer */
831 	u64 *cntrs;
832 	/* port relative synthetic counter buffer */
833 	u64 *scntrs;
834 	/* port_xmit_discards are synthesized from different egress errors */
835 	u64 port_xmit_discards;
836 	u64 port_xmit_discards_vl[C_VL_COUNT];
837 	u64 port_xmit_constraint_errors;
838 	u64 port_rcv_constraint_errors;
839 	/* count of 'link_err' interrupts from DC */
840 	u64 link_downed;
841 	/* number of times link retrained successfully */
842 	u64 link_up;
843 	/* number of times a link unknown frame was reported */
844 	u64 unknown_frame_count;
845 	/* port_ltp_crc_mode is returned in 'portinfo' MADs */
846 	u16 port_ltp_crc_mode;
847 	/* port_crc_mode_enabled is the crc we support */
848 	u8 port_crc_mode_enabled;
849 	/* mgmt_allowed is also returned in 'portinfo' MADs */
850 	u8 mgmt_allowed;
851 	u8 part_enforce; /* partition enforcement flags */
852 	struct link_down_reason local_link_down_reason;
853 	struct link_down_reason neigh_link_down_reason;
854 	/* Value to be sent to link peer on LinkDown .*/
855 	u8 remote_link_down_reason;
856 	/* Error events that will cause a port bounce. */
857 	u32 port_error_action;
858 	struct work_struct linkstate_active_work;
859 	/* Does this port need to prescan for FECNs */
860 	bool cc_prescan;
861 };
862 
863 typedef int (*rhf_rcv_function_ptr)(struct hfi1_packet *packet);
864 
865 typedef void (*opcode_handler)(struct hfi1_packet *packet);
866 typedef void (*hfi1_make_req)(struct rvt_qp *qp,
867 			      struct hfi1_pkt_state *ps,
868 			      struct rvt_swqe *wqe);
869 
870 
871 /* return values for the RHF receive functions */
872 #define RHF_RCV_CONTINUE  0	/* keep going */
873 #define RHF_RCV_DONE	  1	/* stop, this packet processed */
874 #define RHF_RCV_REPROCESS 2	/* stop. retain this packet */
875 
876 struct rcv_array_data {
877 	u8 group_size;
878 	u16 ngroups;
879 	u16 nctxt_extra;
880 };
881 
882 struct per_vl_data {
883 	u16 mtu;
884 	struct send_context *sc;
885 };
886 
887 /* 16 to directly index */
888 #define PER_VL_SEND_CONTEXTS 16
889 
890 struct err_info_rcvport {
891 	u8 status_and_code;
892 	u64 packet_flit1;
893 	u64 packet_flit2;
894 };
895 
896 struct err_info_constraint {
897 	u8 status;
898 	u16 pkey;
899 	u32 slid;
900 };
901 
902 struct hfi1_temp {
903 	unsigned int curr;       /* current temperature */
904 	unsigned int lo_lim;     /* low temperature limit */
905 	unsigned int hi_lim;     /* high temperature limit */
906 	unsigned int crit_lim;   /* critical temperature limit */
907 	u8 triggers;      /* temperature triggers */
908 };
909 
910 struct hfi1_i2c_bus {
911 	struct hfi1_devdata *controlling_dd; /* current controlling device */
912 	struct i2c_adapter adapter;	/* bus details */
913 	struct i2c_algo_bit_data algo;	/* bus algorithm details */
914 	int num;			/* bus number, 0 or 1 */
915 };
916 
917 /* common data between shared ASIC HFIs */
918 struct hfi1_asic_data {
919 	struct hfi1_devdata *dds[2];	/* back pointers */
920 	struct mutex asic_resource_mutex;
921 	struct hfi1_i2c_bus *i2c_bus0;
922 	struct hfi1_i2c_bus *i2c_bus1;
923 };
924 
925 /* sizes for both the QP and RSM map tables */
926 #define NUM_MAP_ENTRIES	 256
927 #define NUM_MAP_REGS      32
928 
929 /*
930  * Number of VNIC contexts used. Ensure it is less than or equal to
931  * max queues supported by VNIC (HFI1_VNIC_MAX_QUEUE).
932  */
933 #define HFI1_NUM_VNIC_CTXT   8
934 
935 /* Number of VNIC RSM entries */
936 #define NUM_VNIC_MAP_ENTRIES 8
937 
938 /* Virtual NIC information */
939 struct hfi1_vnic_data {
940 	struct hfi1_ctxtdata *ctxt[HFI1_NUM_VNIC_CTXT];
941 	struct kmem_cache *txreq_cache;
942 	u8 num_vports;
943 	struct idr vesw_idr;
944 	u8 rmt_start;
945 	u8 num_ctxt;
946 	u32 msix_idx;
947 };
948 
949 struct hfi1_vnic_vport_info;
950 
951 /* device data struct now contains only "general per-device" info.
952  * fields related to a physical IB port are in a hfi1_pportdata struct.
953  */
954 struct sdma_engine;
955 struct sdma_vl_map;
956 
957 #define BOARD_VERS_MAX 96 /* how long the version string can be */
958 #define SERIAL_MAX 16 /* length of the serial number */
959 
960 typedef int (*send_routine)(struct rvt_qp *, struct hfi1_pkt_state *, u64);
961 struct hfi1_devdata {
962 	struct hfi1_ibdev verbs_dev;     /* must be first */
963 	struct list_head list;
964 	/* pointers to related structs for this device */
965 	/* pci access data structure */
966 	struct pci_dev *pcidev;
967 	struct cdev user_cdev;
968 	struct cdev diag_cdev;
969 	struct cdev ui_cdev;
970 	struct device *user_device;
971 	struct device *diag_device;
972 	struct device *ui_device;
973 
974 	/* first mapping up to RcvArray */
975 	u8 __iomem *kregbase1;
976 	resource_size_t physaddr;
977 
978 	/* second uncached mapping from RcvArray to pio send buffers */
979 	u8 __iomem *kregbase2;
980 	/* for detecting offset above kregbase2 address */
981 	u32 base2_start;
982 
983 	/* Per VL data. Enough for all VLs but not all elements are set/used. */
984 	struct per_vl_data vld[PER_VL_SEND_CONTEXTS];
985 	/* send context data */
986 	struct send_context_info *send_contexts;
987 	/* map hardware send contexts to software index */
988 	u8 *hw_to_sw;
989 	/* spinlock for allocating and releasing send context resources */
990 	spinlock_t sc_lock;
991 	/* lock for pio_map */
992 	spinlock_t pio_map_lock;
993 	/* Send Context initialization lock. */
994 	spinlock_t sc_init_lock;
995 	/* lock for sdma_map */
996 	spinlock_t                          sde_map_lock;
997 	/* array of kernel send contexts */
998 	struct send_context **kernel_send_context;
999 	/* array of vl maps */
1000 	struct pio_vl_map __rcu *pio_map;
1001 	/* default flags to last descriptor */
1002 	u64 default_desc1;
1003 
1004 	/* fields common to all SDMA engines */
1005 
1006 	volatile __le64                    *sdma_heads_dma; /* DMA'ed by chip */
1007 	dma_addr_t                          sdma_heads_phys;
1008 	void                               *sdma_pad_dma; /* DMA'ed by chip */
1009 	dma_addr_t                          sdma_pad_phys;
1010 	/* for deallocation */
1011 	size_t                              sdma_heads_size;
1012 	/* number from the chip */
1013 	u32                                 chip_sdma_engines;
1014 	/* num used */
1015 	u32                                 num_sdma;
1016 	/* array of engines sized by num_sdma */
1017 	struct sdma_engine                 *per_sdma;
1018 	/* array of vl maps */
1019 	struct sdma_vl_map __rcu           *sdma_map;
1020 	/* SPC freeze waitqueue and variable */
1021 	wait_queue_head_t		  sdma_unfreeze_wq;
1022 	atomic_t			  sdma_unfreeze_count;
1023 
1024 	u32 lcb_access_count;		/* count of LCB users */
1025 
1026 	/* common data between shared ASIC HFIs in this OS */
1027 	struct hfi1_asic_data *asic_data;
1028 
1029 	/* mem-mapped pointer to base of PIO buffers */
1030 	void __iomem *piobase;
1031 	/*
1032 	 * write-combining mem-mapped pointer to base of RcvArray
1033 	 * memory.
1034 	 */
1035 	void __iomem *rcvarray_wc;
1036 	/*
1037 	 * credit return base - a per-NUMA range of DMA address that
1038 	 * the chip will use to update the per-context free counter
1039 	 */
1040 	struct credit_return_base *cr_base;
1041 
1042 	/* send context numbers and sizes for each type */
1043 	struct sc_config_sizes sc_sizes[SC_MAX];
1044 
1045 	char *boardname; /* human readable board info */
1046 
1047 	/* reset value */
1048 	u64 z_int_counter;
1049 	u64 z_rcv_limit;
1050 	u64 z_send_schedule;
1051 
1052 	u64 __percpu *send_schedule;
1053 	/* number of reserved contexts for VNIC usage */
1054 	u16 num_vnic_contexts;
1055 	/* number of receive contexts in use by the driver */
1056 	u32 num_rcv_contexts;
1057 	/* number of pio send contexts in use by the driver */
1058 	u32 num_send_contexts;
1059 	/*
1060 	 * number of ctxts available for PSM open
1061 	 */
1062 	u32 freectxts;
1063 	/* total number of available user/PSM contexts */
1064 	u32 num_user_contexts;
1065 	/* base receive interrupt timeout, in CSR units */
1066 	u32 rcv_intr_timeout_csr;
1067 
1068 	u32 freezelen; /* max length of freezemsg */
1069 	u64 __iomem *egrtidbase;
1070 	spinlock_t sendctrl_lock; /* protect changes to SendCtrl */
1071 	spinlock_t rcvctrl_lock; /* protect changes to RcvCtrl */
1072 	spinlock_t uctxt_lock; /* protect rcd changes */
1073 	struct mutex dc8051_lock; /* exclusive access to 8051 */
1074 	struct workqueue_struct *update_cntr_wq;
1075 	struct work_struct update_cntr_work;
1076 	/* exclusive access to 8051 memory */
1077 	spinlock_t dc8051_memlock;
1078 	int dc8051_timed_out;	/* remember if the 8051 timed out */
1079 	/*
1080 	 * A page that will hold event notification bitmaps for all
1081 	 * contexts. This page will be mapped into all processes.
1082 	 */
1083 	unsigned long *events;
1084 	/*
1085 	 * per unit status, see also portdata statusp
1086 	 * mapped read-only into user processes so they can get unit and
1087 	 * IB link status cheaply
1088 	 */
1089 	struct hfi1_status *status;
1090 
1091 	/* revision register shadow */
1092 	u64 revision;
1093 	/* Base GUID for device (network order) */
1094 	u64 base_guid;
1095 
1096 	/* these are the "32 bit" regs */
1097 
1098 	/* value we put in kr_rcvhdrsize */
1099 	u32 rcvhdrsize;
1100 	/* number of receive contexts the chip supports */
1101 	u32 chip_rcv_contexts;
1102 	/* number of receive array entries */
1103 	u32 chip_rcv_array_count;
1104 	/* number of PIO send contexts the chip supports */
1105 	u32 chip_send_contexts;
1106 	/* number of bytes in the PIO memory buffer */
1107 	u32 chip_pio_mem_size;
1108 	/* number of bytes in the SDMA memory buffer */
1109 	u32 chip_sdma_mem_size;
1110 
1111 	/* size of each rcvegrbuffer */
1112 	u32 rcvegrbufsize;
1113 	/* log2 of above */
1114 	u16 rcvegrbufsize_shift;
1115 	/* both sides of the PCIe link are gen3 capable */
1116 	u8 link_gen3_capable;
1117 	u8 dc_shutdown;
1118 	/* localbus width (1, 2,4,8,16,32) from config space  */
1119 	u32 lbus_width;
1120 	/* localbus speed in MHz */
1121 	u32 lbus_speed;
1122 	int unit; /* unit # of this chip */
1123 	int node; /* home node of this chip */
1124 
1125 	/* save these PCI fields to restore after a reset */
1126 	u32 pcibar0;
1127 	u32 pcibar1;
1128 	u32 pci_rom;
1129 	u16 pci_command;
1130 	u16 pcie_devctl;
1131 	u16 pcie_lnkctl;
1132 	u16 pcie_devctl2;
1133 	u32 pci_msix0;
1134 	u32 pci_tph2;
1135 
1136 	/*
1137 	 * ASCII serial number, from flash, large enough for original
1138 	 * all digit strings, and longer serial number format
1139 	 */
1140 	u8 serial[SERIAL_MAX];
1141 	/* human readable board version */
1142 	u8 boardversion[BOARD_VERS_MAX];
1143 	u8 lbus_info[32]; /* human readable localbus info */
1144 	/* chip major rev, from CceRevision */
1145 	u8 majrev;
1146 	/* chip minor rev, from CceRevision */
1147 	u8 minrev;
1148 	/* hardware ID */
1149 	u8 hfi1_id;
1150 	/* implementation code */
1151 	u8 icode;
1152 	/* vAU of this device */
1153 	u8 vau;
1154 	/* vCU of this device */
1155 	u8 vcu;
1156 	/* link credits of this device */
1157 	u16 link_credits;
1158 	/* initial vl15 credits to use */
1159 	u16 vl15_init;
1160 
1161 	/*
1162 	 * Cached value for vl15buf, read during verify cap interrupt. VL15
1163 	 * credits are to be kept at 0 and set when handling the link-up
1164 	 * interrupt. This removes the possibility of receiving VL15 MAD
1165 	 * packets before this HFI is ready.
1166 	 */
1167 	u16 vl15buf_cached;
1168 
1169 	/* Misc small ints */
1170 	u8 n_krcv_queues;
1171 	u8 qos_shift;
1172 
1173 	u16 irev;	/* implementation revision */
1174 	u32 dc8051_ver; /* 8051 firmware version */
1175 
1176 	spinlock_t hfi1_diag_trans_lock; /* protect diag observer ops */
1177 	struct platform_config platform_config;
1178 	struct platform_config_cache pcfg_cache;
1179 
1180 	struct diag_client *diag_client;
1181 
1182 	/* MSI-X information */
1183 	struct hfi1_msix_entry *msix_entries;
1184 	u32 num_msix_entries;
1185 	u32 first_dyn_msix_idx;
1186 
1187 	/* INTx information */
1188 	u32 requested_intx_irq;		/* did we request one? */
1189 
1190 	/* general interrupt: mask of handled interrupts */
1191 	u64 gi_mask[CCE_NUM_INT_CSRS];
1192 
1193 	struct rcv_array_data rcv_entries;
1194 
1195 	/* cycle length of PS* counters in HW (in picoseconds) */
1196 	u16 psxmitwait_check_rate;
1197 
1198 	/*
1199 	 * 64 bit synthetic counters
1200 	 */
1201 	struct timer_list synth_stats_timer;
1202 
1203 	/*
1204 	 * device counters
1205 	 */
1206 	char *cntrnames;
1207 	size_t cntrnameslen;
1208 	size_t ndevcntrs;
1209 	u64 *cntrs;
1210 	u64 *scntrs;
1211 
1212 	/*
1213 	 * remembered values for synthetic counters
1214 	 */
1215 	u64 last_tx;
1216 	u64 last_rx;
1217 
1218 	/*
1219 	 * per-port counters
1220 	 */
1221 	size_t nportcntrs;
1222 	char *portcntrnames;
1223 	size_t portcntrnameslen;
1224 
1225 	struct err_info_rcvport err_info_rcvport;
1226 	struct err_info_constraint err_info_rcv_constraint;
1227 	struct err_info_constraint err_info_xmit_constraint;
1228 
1229 	atomic_t drop_packet;
1230 	u8 do_drop;
1231 	u8 err_info_uncorrectable;
1232 	u8 err_info_fmconfig;
1233 
1234 	/*
1235 	 * Software counters for the status bits defined by the
1236 	 * associated error status registers
1237 	 */
1238 	u64 cce_err_status_cnt[NUM_CCE_ERR_STATUS_COUNTERS];
1239 	u64 rcv_err_status_cnt[NUM_RCV_ERR_STATUS_COUNTERS];
1240 	u64 misc_err_status_cnt[NUM_MISC_ERR_STATUS_COUNTERS];
1241 	u64 send_pio_err_status_cnt[NUM_SEND_PIO_ERR_STATUS_COUNTERS];
1242 	u64 send_dma_err_status_cnt[NUM_SEND_DMA_ERR_STATUS_COUNTERS];
1243 	u64 send_egress_err_status_cnt[NUM_SEND_EGRESS_ERR_STATUS_COUNTERS];
1244 	u64 send_err_status_cnt[NUM_SEND_ERR_STATUS_COUNTERS];
1245 
1246 	/* Software counter that spans all contexts */
1247 	u64 sw_ctxt_err_status_cnt[NUM_SEND_CTXT_ERR_STATUS_COUNTERS];
1248 	/* Software counter that spans all DMA engines */
1249 	u64 sw_send_dma_eng_err_status_cnt[
1250 		NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS];
1251 	/* Software counter that aggregates all cce_err_status errors */
1252 	u64 sw_cce_err_status_aggregate;
1253 	/* Software counter that aggregates all bypass packet rcv errors */
1254 	u64 sw_rcv_bypass_packet_errors;
1255 	/* receive interrupt function */
1256 	rhf_rcv_function_ptr normal_rhf_rcv_functions[8];
1257 
1258 	/* Save the enabled LCB error bits */
1259 	u64 lcb_err_en;
1260 
1261 	/*
1262 	 * Capability to have different send engines simply by changing a
1263 	 * pointer value.
1264 	 */
1265 	send_routine process_pio_send ____cacheline_aligned_in_smp;
1266 	send_routine process_dma_send;
1267 	void (*pio_inline_send)(struct hfi1_devdata *dd, struct pio_buf *pbuf,
1268 				u64 pbc, const void *from, size_t count);
1269 	int (*process_vnic_dma_send)(struct hfi1_devdata *dd, u8 q_idx,
1270 				     struct hfi1_vnic_vport_info *vinfo,
1271 				     struct sk_buff *skb, u64 pbc, u8 plen);
1272 	/* hfi1_pportdata, points to array of (physical) port-specific
1273 	 * data structs, indexed by pidx (0..n-1)
1274 	 */
1275 	struct hfi1_pportdata *pport;
1276 	/* receive context data */
1277 	struct hfi1_ctxtdata **rcd;
1278 	u64 __percpu *int_counter;
1279 	/* verbs tx opcode stats */
1280 	struct hfi1_opcode_stats_perctx __percpu *tx_opstats;
1281 	/* device (not port) flags, basically device capabilities */
1282 	u16 flags;
1283 	/* Number of physical ports available */
1284 	u8 num_pports;
1285 	/* Lowest context number which can be used by user processes or VNIC */
1286 	u8 first_dyn_alloc_ctxt;
1287 	/* adding a new field here would make it part of this cacheline */
1288 
1289 	/* seqlock for sc2vl */
1290 	seqlock_t sc2vl_lock ____cacheline_aligned_in_smp;
1291 	u64 sc2vl[4];
1292 	/* receive interrupt functions */
1293 	rhf_rcv_function_ptr *rhf_rcv_function_map;
1294 	u64 __percpu *rcv_limit;
1295 	u16 rhf_offset; /* offset of RHF within receive header entry */
1296 	/* adding a new field here would make it part of this cacheline */
1297 
1298 	/* OUI comes from the HW. Used everywhere as 3 separate bytes. */
1299 	u8 oui1;
1300 	u8 oui2;
1301 	u8 oui3;
1302 
1303 	/* Timer and counter used to detect RcvBufOvflCnt changes */
1304 	struct timer_list rcverr_timer;
1305 
1306 	wait_queue_head_t event_queue;
1307 
1308 	/* receive context tail dummy address */
1309 	__le64 *rcvhdrtail_dummy_kvaddr;
1310 	dma_addr_t rcvhdrtail_dummy_dma;
1311 
1312 	u32 rcv_ovfl_cnt;
1313 	/* Serialize ASPM enable/disable between multiple verbs contexts */
1314 	spinlock_t aspm_lock;
1315 	/* Number of verbs contexts which have disabled ASPM */
1316 	atomic_t aspm_disabled_cnt;
1317 	/* Keeps track of user space clients */
1318 	atomic_t user_refcount;
1319 	/* Used to wait for outstanding user space clients before dev removal */
1320 	struct completion user_comp;
1321 
1322 	bool eprom_available;	/* true if EPROM is available for this device */
1323 	bool aspm_supported;	/* Does HW support ASPM */
1324 	bool aspm_enabled;	/* ASPM state: enabled/disabled */
1325 	struct rhashtable *sdma_rht;
1326 
1327 	struct kobject kobj;
1328 
1329 	/* vnic data */
1330 	struct hfi1_vnic_data vnic;
1331 };
1332 
1333 static inline bool hfi1_vnic_is_rsm_full(struct hfi1_devdata *dd, int spare)
1334 {
1335 	return (dd->vnic.rmt_start + spare) > NUM_MAP_ENTRIES;
1336 }
1337 
1338 /* 8051 firmware version helper */
1339 #define dc8051_ver(a, b, c) ((a) << 16 | (b) << 8 | (c))
1340 #define dc8051_ver_maj(a) (((a) & 0xff0000) >> 16)
1341 #define dc8051_ver_min(a) (((a) & 0x00ff00) >> 8)
1342 #define dc8051_ver_patch(a) ((a) & 0x0000ff)
1343 
1344 /* f_put_tid types */
1345 #define PT_EXPECTED       0
1346 #define PT_EAGER          1
1347 #define PT_INVALID_FLUSH  2
1348 #define PT_INVALID        3
1349 
1350 struct tid_rb_node;
1351 struct mmu_rb_node;
1352 struct mmu_rb_handler;
1353 
1354 /* Private data for file operations */
1355 struct hfi1_filedata {
1356 	struct hfi1_devdata *dd;
1357 	struct hfi1_ctxtdata *uctxt;
1358 	struct hfi1_user_sdma_comp_q *cq;
1359 	struct hfi1_user_sdma_pkt_q *pq;
1360 	u16 subctxt;
1361 	/* for cpu affinity; -1 if none */
1362 	int rec_cpu_num;
1363 	u32 tid_n_pinned;
1364 	struct mmu_rb_handler *handler;
1365 	struct tid_rb_node **entry_to_rb;
1366 	spinlock_t tid_lock; /* protect tid_[limit,used] counters */
1367 	u32 tid_limit;
1368 	u32 tid_used;
1369 	u32 *invalid_tids;
1370 	u32 invalid_tid_idx;
1371 	/* protect invalid_tids array and invalid_tid_idx */
1372 	spinlock_t invalid_lock;
1373 	struct mm_struct *mm;
1374 };
1375 
1376 extern struct list_head hfi1_dev_list;
1377 extern spinlock_t hfi1_devs_lock;
1378 struct hfi1_devdata *hfi1_lookup(int unit);
1379 
1380 static inline unsigned long uctxt_offset(struct hfi1_ctxtdata *uctxt)
1381 {
1382 	return (uctxt->ctxt - uctxt->dd->first_dyn_alloc_ctxt) *
1383 		HFI1_MAX_SHARED_CTXTS;
1384 }
1385 
1386 int hfi1_init(struct hfi1_devdata *dd, int reinit);
1387 int hfi1_count_active_units(void);
1388 
1389 int hfi1_diag_add(struct hfi1_devdata *dd);
1390 void hfi1_diag_remove(struct hfi1_devdata *dd);
1391 void handle_linkup_change(struct hfi1_devdata *dd, u32 linkup);
1392 
1393 void handle_user_interrupt(struct hfi1_ctxtdata *rcd);
1394 
1395 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd);
1396 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd);
1397 int hfi1_create_kctxts(struct hfi1_devdata *dd);
1398 int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa,
1399 			 struct hfi1_ctxtdata **rcd);
1400 void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd);
1401 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
1402 			 struct hfi1_devdata *dd, u8 hw_pidx, u8 port);
1403 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd);
1404 int hfi1_rcd_put(struct hfi1_ctxtdata *rcd);
1405 void hfi1_rcd_get(struct hfi1_ctxtdata *rcd);
1406 struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd,
1407 						 u16 ctxt);
1408 struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt);
1409 int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread);
1410 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread);
1411 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread);
1412 void set_all_slowpath(struct hfi1_devdata *dd);
1413 void hfi1_vnic_synchronize_irq(struct hfi1_devdata *dd);
1414 void hfi1_set_vnic_msix_info(struct hfi1_ctxtdata *rcd);
1415 void hfi1_reset_vnic_msix_info(struct hfi1_ctxtdata *rcd);
1416 
1417 extern const struct pci_device_id hfi1_pci_tbl[];
1418 void hfi1_make_ud_req_9B(struct rvt_qp *qp,
1419 			 struct hfi1_pkt_state *ps,
1420 			 struct rvt_swqe *wqe);
1421 
1422 void hfi1_make_ud_req_16B(struct rvt_qp *qp,
1423 			  struct hfi1_pkt_state *ps,
1424 			  struct rvt_swqe *wqe);
1425 
1426 /* receive packet handler dispositions */
1427 #define RCV_PKT_OK      0x0 /* keep going */
1428 #define RCV_PKT_LIMIT   0x1 /* stop, hit limit, start thread */
1429 #define RCV_PKT_DONE    0x2 /* stop, no more packets detected */
1430 
1431 /* calculate the current RHF address */
1432 static inline __le32 *get_rhf_addr(struct hfi1_ctxtdata *rcd)
1433 {
1434 	return (__le32 *)rcd->rcvhdrq + rcd->head + rcd->dd->rhf_offset;
1435 }
1436 
1437 int hfi1_reset_device(int);
1438 
1439 void receive_interrupt_work(struct work_struct *work);
1440 
1441 /* extract service channel from header and rhf */
1442 static inline int hfi1_9B_get_sc5(struct ib_header *hdr, u64 rhf)
1443 {
1444 	return ib_get_sc(hdr) | ((!!(rhf_dc_info(rhf))) << 4);
1445 }
1446 
1447 #define HFI1_JKEY_WIDTH       16
1448 #define HFI1_JKEY_MASK        (BIT(16) - 1)
1449 #define HFI1_ADMIN_JKEY_RANGE 32
1450 
1451 /*
1452  * J_KEYs are split and allocated in the following groups:
1453  *   0 - 31    - users with administrator privileges
1454  *  32 - 63    - kernel protocols using KDETH packets
1455  *  64 - 65535 - all other users using KDETH packets
1456  */
1457 static inline u16 generate_jkey(kuid_t uid)
1458 {
1459 	u16 jkey = from_kuid(current_user_ns(), uid) & HFI1_JKEY_MASK;
1460 
1461 	if (capable(CAP_SYS_ADMIN))
1462 		jkey &= HFI1_ADMIN_JKEY_RANGE - 1;
1463 	else if (jkey < 64)
1464 		jkey |= BIT(HFI1_JKEY_WIDTH - 1);
1465 
1466 	return jkey;
1467 }
1468 
1469 /*
1470  * active_egress_rate
1471  *
1472  * returns the active egress rate in units of [10^6 bits/sec]
1473  */
1474 static inline u32 active_egress_rate(struct hfi1_pportdata *ppd)
1475 {
1476 	u16 link_speed = ppd->link_speed_active;
1477 	u16 link_width = ppd->link_width_active;
1478 	u32 egress_rate;
1479 
1480 	if (link_speed == OPA_LINK_SPEED_25G)
1481 		egress_rate = 25000;
1482 	else /* assume OPA_LINK_SPEED_12_5G */
1483 		egress_rate = 12500;
1484 
1485 	switch (link_width) {
1486 	case OPA_LINK_WIDTH_4X:
1487 		egress_rate *= 4;
1488 		break;
1489 	case OPA_LINK_WIDTH_3X:
1490 		egress_rate *= 3;
1491 		break;
1492 	case OPA_LINK_WIDTH_2X:
1493 		egress_rate *= 2;
1494 		break;
1495 	default:
1496 		/* assume IB_WIDTH_1X */
1497 		break;
1498 	}
1499 
1500 	return egress_rate;
1501 }
1502 
1503 /*
1504  * egress_cycles
1505  *
1506  * Returns the number of 'fabric clock cycles' to egress a packet
1507  * of length 'len' bytes, at 'rate' Mbit/s. Since the fabric clock
1508  * rate is (approximately) 805 MHz, the units of the returned value
1509  * are (1/805 MHz).
1510  */
1511 static inline u32 egress_cycles(u32 len, u32 rate)
1512 {
1513 	u32 cycles;
1514 
1515 	/*
1516 	 * cycles is:
1517 	 *
1518 	 *          (length) [bits] / (rate) [bits/sec]
1519 	 *  ---------------------------------------------------
1520 	 *  fabric_clock_period == 1 /(805 * 10^6) [cycles/sec]
1521 	 */
1522 
1523 	cycles = len * 8; /* bits */
1524 	cycles *= 805;
1525 	cycles /= rate;
1526 
1527 	return cycles;
1528 }
1529 
1530 void set_link_ipg(struct hfi1_pportdata *ppd);
1531 void process_becn(struct hfi1_pportdata *ppd, u8 sl, u32 rlid, u32 lqpn,
1532 		  u32 rqpn, u8 svc_type);
1533 void return_cnp(struct hfi1_ibport *ibp, struct rvt_qp *qp, u32 remote_qpn,
1534 		u32 pkey, u32 slid, u32 dlid, u8 sc5,
1535 		const struct ib_grh *old_grh);
1536 void return_cnp_16B(struct hfi1_ibport *ibp, struct rvt_qp *qp,
1537 		    u32 remote_qpn, u32 pkey, u32 slid, u32 dlid,
1538 		    u8 sc5, const struct ib_grh *old_grh);
1539 typedef void (*hfi1_handle_cnp)(struct hfi1_ibport *ibp, struct rvt_qp *qp,
1540 				u32 remote_qpn, u32 pkey, u32 slid, u32 dlid,
1541 				u8 sc5, const struct ib_grh *old_grh);
1542 
1543 #define PKEY_CHECK_INVALID -1
1544 int egress_pkey_check(struct hfi1_pportdata *ppd, u32 slid, u16 pkey,
1545 		      u8 sc5, int8_t s_pkey_index);
1546 
1547 #define PACKET_EGRESS_TIMEOUT 350
1548 static inline void pause_for_credit_return(struct hfi1_devdata *dd)
1549 {
1550 	/* Pause at least 1us, to ensure chip returns all credits */
1551 	u32 usec = cclock_to_ns(dd, PACKET_EGRESS_TIMEOUT) / 1000;
1552 
1553 	udelay(usec ? usec : 1);
1554 }
1555 
1556 /**
1557  * sc_to_vlt() reverse lookup sc to vl
1558  * @dd - devdata
1559  * @sc5 - 5 bit sc
1560  */
1561 static inline u8 sc_to_vlt(struct hfi1_devdata *dd, u8 sc5)
1562 {
1563 	unsigned seq;
1564 	u8 rval;
1565 
1566 	if (sc5 >= OPA_MAX_SCS)
1567 		return (u8)(0xff);
1568 
1569 	do {
1570 		seq = read_seqbegin(&dd->sc2vl_lock);
1571 		rval = *(((u8 *)dd->sc2vl) + sc5);
1572 	} while (read_seqretry(&dd->sc2vl_lock, seq));
1573 
1574 	return rval;
1575 }
1576 
1577 #define PKEY_MEMBER_MASK 0x8000
1578 #define PKEY_LOW_15_MASK 0x7fff
1579 
1580 /*
1581  * ingress_pkey_matches_entry - return 1 if the pkey matches ent (ent
1582  * being an entry from the ingress partition key table), return 0
1583  * otherwise. Use the matching criteria for ingress partition keys
1584  * specified in the OPAv1 spec., section 9.10.14.
1585  */
1586 static inline int ingress_pkey_matches_entry(u16 pkey, u16 ent)
1587 {
1588 	u16 mkey = pkey & PKEY_LOW_15_MASK;
1589 	u16 ment = ent & PKEY_LOW_15_MASK;
1590 
1591 	if (mkey == ment) {
1592 		/*
1593 		 * If pkey[15] is clear (limited partition member),
1594 		 * is bit 15 in the corresponding table element
1595 		 * clear (limited member)?
1596 		 */
1597 		if (!(pkey & PKEY_MEMBER_MASK))
1598 			return !!(ent & PKEY_MEMBER_MASK);
1599 		return 1;
1600 	}
1601 	return 0;
1602 }
1603 
1604 /*
1605  * ingress_pkey_table_search - search the entire pkey table for
1606  * an entry which matches 'pkey'. return 0 if a match is found,
1607  * and 1 otherwise.
1608  */
1609 static int ingress_pkey_table_search(struct hfi1_pportdata *ppd, u16 pkey)
1610 {
1611 	int i;
1612 
1613 	for (i = 0; i < MAX_PKEY_VALUES; i++) {
1614 		if (ingress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1615 			return 0;
1616 	}
1617 	return 1;
1618 }
1619 
1620 /*
1621  * ingress_pkey_table_fail - record a failure of ingress pkey validation,
1622  * i.e., increment port_rcv_constraint_errors for the port, and record
1623  * the 'error info' for this failure.
1624  */
1625 static void ingress_pkey_table_fail(struct hfi1_pportdata *ppd, u16 pkey,
1626 				    u16 slid)
1627 {
1628 	struct hfi1_devdata *dd = ppd->dd;
1629 
1630 	incr_cntr64(&ppd->port_rcv_constraint_errors);
1631 	if (!(dd->err_info_rcv_constraint.status & OPA_EI_STATUS_SMASK)) {
1632 		dd->err_info_rcv_constraint.status |= OPA_EI_STATUS_SMASK;
1633 		dd->err_info_rcv_constraint.slid = slid;
1634 		dd->err_info_rcv_constraint.pkey = pkey;
1635 	}
1636 }
1637 
1638 /*
1639  * ingress_pkey_check - Return 0 if the ingress pkey is valid, return 1
1640  * otherwise. Use the criteria in the OPAv1 spec, section 9.10.14. idx
1641  * is a hint as to the best place in the partition key table to begin
1642  * searching. This function should not be called on the data path because
1643  * of performance reasons. On datapath pkey check is expected to be done
1644  * by HW and rcv_pkey_check function should be called instead.
1645  */
1646 static inline int ingress_pkey_check(struct hfi1_pportdata *ppd, u16 pkey,
1647 				     u8 sc5, u8 idx, u32 slid, bool force)
1648 {
1649 	if (!(force) && !(ppd->part_enforce & HFI1_PART_ENFORCE_IN))
1650 		return 0;
1651 
1652 	/* If SC15, pkey[0:14] must be 0x7fff */
1653 	if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1654 		goto bad;
1655 
1656 	/* Is the pkey = 0x0, or 0x8000? */
1657 	if ((pkey & PKEY_LOW_15_MASK) == 0)
1658 		goto bad;
1659 
1660 	/* The most likely matching pkey has index 'idx' */
1661 	if (ingress_pkey_matches_entry(pkey, ppd->pkeys[idx]))
1662 		return 0;
1663 
1664 	/* no match - try the whole table */
1665 	if (!ingress_pkey_table_search(ppd, pkey))
1666 		return 0;
1667 
1668 bad:
1669 	ingress_pkey_table_fail(ppd, pkey, slid);
1670 	return 1;
1671 }
1672 
1673 /*
1674  * rcv_pkey_check - Return 0 if the ingress pkey is valid, return 1
1675  * otherwise. It only ensures pkey is vlid for QP0. This function
1676  * should be called on the data path instead of ingress_pkey_check
1677  * as on data path, pkey check is done by HW (except for QP0).
1678  */
1679 static inline int rcv_pkey_check(struct hfi1_pportdata *ppd, u16 pkey,
1680 				 u8 sc5, u16 slid)
1681 {
1682 	if (!(ppd->part_enforce & HFI1_PART_ENFORCE_IN))
1683 		return 0;
1684 
1685 	/* If SC15, pkey[0:14] must be 0x7fff */
1686 	if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1687 		goto bad;
1688 
1689 	return 0;
1690 bad:
1691 	ingress_pkey_table_fail(ppd, pkey, slid);
1692 	return 1;
1693 }
1694 
1695 /* MTU handling */
1696 
1697 /* MTU enumeration, 256-4k match IB */
1698 #define OPA_MTU_0     0
1699 #define OPA_MTU_256   1
1700 #define OPA_MTU_512   2
1701 #define OPA_MTU_1024  3
1702 #define OPA_MTU_2048  4
1703 #define OPA_MTU_4096  5
1704 
1705 u32 lrh_max_header_bytes(struct hfi1_devdata *dd);
1706 int mtu_to_enum(u32 mtu, int default_if_bad);
1707 u16 enum_to_mtu(int mtu);
1708 static inline int valid_ib_mtu(unsigned int mtu)
1709 {
1710 	return mtu == 256 || mtu == 512 ||
1711 		mtu == 1024 || mtu == 2048 ||
1712 		mtu == 4096;
1713 }
1714 
1715 static inline int valid_opa_max_mtu(unsigned int mtu)
1716 {
1717 	return mtu >= 2048 &&
1718 		(valid_ib_mtu(mtu) || mtu == 8192 || mtu == 10240);
1719 }
1720 
1721 int set_mtu(struct hfi1_pportdata *ppd);
1722 
1723 int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc);
1724 void hfi1_disable_after_error(struct hfi1_devdata *dd);
1725 int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit);
1726 int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encode);
1727 
1728 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t);
1729 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t);
1730 
1731 void set_up_vau(struct hfi1_devdata *dd, u8 vau);
1732 void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf);
1733 void reset_link_credits(struct hfi1_devdata *dd);
1734 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu);
1735 
1736 int set_buffer_control(struct hfi1_pportdata *ppd, struct buffer_control *bc);
1737 
1738 static inline struct hfi1_devdata *dd_from_ppd(struct hfi1_pportdata *ppd)
1739 {
1740 	return ppd->dd;
1741 }
1742 
1743 static inline struct hfi1_devdata *dd_from_dev(struct hfi1_ibdev *dev)
1744 {
1745 	return container_of(dev, struct hfi1_devdata, verbs_dev);
1746 }
1747 
1748 static inline struct hfi1_devdata *dd_from_ibdev(struct ib_device *ibdev)
1749 {
1750 	return dd_from_dev(to_idev(ibdev));
1751 }
1752 
1753 static inline struct hfi1_pportdata *ppd_from_ibp(struct hfi1_ibport *ibp)
1754 {
1755 	return container_of(ibp, struct hfi1_pportdata, ibport_data);
1756 }
1757 
1758 static inline struct hfi1_ibdev *dev_from_rdi(struct rvt_dev_info *rdi)
1759 {
1760 	return container_of(rdi, struct hfi1_ibdev, rdi);
1761 }
1762 
1763 static inline struct hfi1_ibport *to_iport(struct ib_device *ibdev, u8 port)
1764 {
1765 	struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1766 	unsigned pidx = port - 1; /* IB number port from 1, hdw from 0 */
1767 
1768 	WARN_ON(pidx >= dd->num_pports);
1769 	return &dd->pport[pidx].ibport_data;
1770 }
1771 
1772 static inline struct hfi1_ibport *rcd_to_iport(struct hfi1_ctxtdata *rcd)
1773 {
1774 	return &rcd->ppd->ibport_data;
1775 }
1776 
1777 void hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt,
1778 			       bool do_cnp);
1779 static inline bool process_ecn(struct rvt_qp *qp, struct hfi1_packet *pkt,
1780 			       bool do_cnp)
1781 {
1782 	struct ib_other_headers *ohdr = pkt->ohdr;
1783 
1784 	u32 bth1;
1785 	bool becn = false;
1786 	bool fecn = false;
1787 
1788 	if (pkt->etype == RHF_RCV_TYPE_BYPASS) {
1789 		fecn = hfi1_16B_get_fecn(pkt->hdr);
1790 		becn = hfi1_16B_get_becn(pkt->hdr);
1791 	} else {
1792 		bth1 = be32_to_cpu(ohdr->bth[1]);
1793 		fecn = bth1 & IB_FECN_SMASK;
1794 		becn = bth1 & IB_BECN_SMASK;
1795 	}
1796 	if (unlikely(fecn || becn)) {
1797 		hfi1_process_ecn_slowpath(qp, pkt, do_cnp);
1798 		return fecn;
1799 	}
1800 	return false;
1801 }
1802 
1803 /*
1804  * Return the indexed PKEY from the port PKEY table.
1805  */
1806 static inline u16 hfi1_get_pkey(struct hfi1_ibport *ibp, unsigned index)
1807 {
1808 	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1809 	u16 ret;
1810 
1811 	if (index >= ARRAY_SIZE(ppd->pkeys))
1812 		ret = 0;
1813 	else
1814 		ret = ppd->pkeys[index];
1815 
1816 	return ret;
1817 }
1818 
1819 /*
1820  * Return the indexed GUID from the port GUIDs table.
1821  */
1822 static inline __be64 get_sguid(struct hfi1_ibport *ibp, unsigned int index)
1823 {
1824 	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1825 
1826 	WARN_ON(index >= HFI1_GUIDS_PER_PORT);
1827 	return cpu_to_be64(ppd->guids[index]);
1828 }
1829 
1830 /*
1831  * Called by readers of cc_state only, must call under rcu_read_lock().
1832  */
1833 static inline struct cc_state *get_cc_state(struct hfi1_pportdata *ppd)
1834 {
1835 	return rcu_dereference(ppd->cc_state);
1836 }
1837 
1838 /*
1839  * Called by writers of cc_state only,  must call under cc_state_lock.
1840  */
1841 static inline
1842 struct cc_state *get_cc_state_protected(struct hfi1_pportdata *ppd)
1843 {
1844 	return rcu_dereference_protected(ppd->cc_state,
1845 					 lockdep_is_held(&ppd->cc_state_lock));
1846 }
1847 
1848 /*
1849  * values for dd->flags (_device_ related flags)
1850  */
1851 #define HFI1_INITTED           0x1    /* chip and driver up and initted */
1852 #define HFI1_PRESENT           0x2    /* chip accesses can be done */
1853 #define HFI1_FROZEN            0x4    /* chip in SPC freeze */
1854 #define HFI1_HAS_SDMA_TIMEOUT  0x8
1855 #define HFI1_HAS_SEND_DMA      0x10   /* Supports Send DMA */
1856 #define HFI1_FORCED_FREEZE     0x80   /* driver forced freeze mode */
1857 
1858 /* IB dword length mask in PBC (lower 11 bits); same for all chips */
1859 #define HFI1_PBC_LENGTH_MASK                     ((1 << 11) - 1)
1860 
1861 /* ctxt_flag bit offsets */
1862 		/* base context has not finished initializing */
1863 #define HFI1_CTXT_BASE_UNINIT 1
1864 		/* base context initaliation failed */
1865 #define HFI1_CTXT_BASE_FAILED 2
1866 		/* waiting for a packet to arrive */
1867 #define HFI1_CTXT_WAITING_RCV 3
1868 		/* waiting for an urgent packet to arrive */
1869 #define HFI1_CTXT_WAITING_URG 4
1870 
1871 /* free up any allocated data at closes */
1872 struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev,
1873 				  const struct pci_device_id *ent);
1874 void hfi1_free_devdata(struct hfi1_devdata *dd);
1875 struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev, size_t extra);
1876 
1877 /* LED beaconing functions */
1878 void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon,
1879 			     unsigned int timeoff);
1880 void shutdown_led_override(struct hfi1_pportdata *ppd);
1881 
1882 #define HFI1_CREDIT_RETURN_RATE (100)
1883 
1884 /*
1885  * The number of words for the KDETH protocol field.  If this is
1886  * larger then the actual field used, then part of the payload
1887  * will be in the header.
1888  *
1889  * Optimally, we want this sized so that a typical case will
1890  * use full cache lines.  The typical local KDETH header would
1891  * be:
1892  *
1893  *	Bytes	Field
1894  *	  8	LRH
1895  *	 12	BHT
1896  *	 ??	KDETH
1897  *	  8	RHF
1898  *	---
1899  *	 28 + KDETH
1900  *
1901  * For a 64-byte cache line, KDETH would need to be 36 bytes or 9 DWORDS
1902  */
1903 #define DEFAULT_RCVHDRSIZE 9
1904 
1905 /*
1906  * Maximal header byte count:
1907  *
1908  *	Bytes	Field
1909  *	  8	LRH
1910  *	 40	GRH (optional)
1911  *	 12	BTH
1912  *	 ??	KDETH
1913  *	  8	RHF
1914  *	---
1915  *	 68 + KDETH
1916  *
1917  * We also want to maintain a cache line alignment to assist DMA'ing
1918  * of the header bytes.  Round up to a good size.
1919  */
1920 #define DEFAULT_RCVHDR_ENTSIZE 32
1921 
1922 bool hfi1_can_pin_pages(struct hfi1_devdata *dd, struct mm_struct *mm,
1923 			u32 nlocked, u32 npages);
1924 int hfi1_acquire_user_pages(struct mm_struct *mm, unsigned long vaddr,
1925 			    size_t npages, bool writable, struct page **pages);
1926 void hfi1_release_user_pages(struct mm_struct *mm, struct page **p,
1927 			     size_t npages, bool dirty);
1928 
1929 static inline void clear_rcvhdrtail(const struct hfi1_ctxtdata *rcd)
1930 {
1931 	*((u64 *)rcd->rcvhdrtail_kvaddr) = 0ULL;
1932 }
1933 
1934 static inline u32 get_rcvhdrtail(const struct hfi1_ctxtdata *rcd)
1935 {
1936 	/*
1937 	 * volatile because it's a DMA target from the chip, routine is
1938 	 * inlined, and don't want register caching or reordering.
1939 	 */
1940 	return (u32)le64_to_cpu(*rcd->rcvhdrtail_kvaddr);
1941 }
1942 
1943 /*
1944  * sysfs interface.
1945  */
1946 
1947 extern const char ib_hfi1_version[];
1948 
1949 int hfi1_device_create(struct hfi1_devdata *dd);
1950 void hfi1_device_remove(struct hfi1_devdata *dd);
1951 
1952 int hfi1_create_port_files(struct ib_device *ibdev, u8 port_num,
1953 			   struct kobject *kobj);
1954 int hfi1_verbs_register_sysfs(struct hfi1_devdata *dd);
1955 void hfi1_verbs_unregister_sysfs(struct hfi1_devdata *dd);
1956 /* Hook for sysfs read of QSFP */
1957 int qsfp_dump(struct hfi1_pportdata *ppd, char *buf, int len);
1958 
1959 int hfi1_pcie_init(struct pci_dev *pdev, const struct pci_device_id *ent);
1960 void hfi1_pcie_cleanup(struct pci_dev *pdev);
1961 int hfi1_pcie_ddinit(struct hfi1_devdata *dd, struct pci_dev *pdev);
1962 void hfi1_pcie_ddcleanup(struct hfi1_devdata *);
1963 int pcie_speeds(struct hfi1_devdata *dd);
1964 int request_msix(struct hfi1_devdata *dd, u32 msireq);
1965 int restore_pci_variables(struct hfi1_devdata *dd);
1966 int save_pci_variables(struct hfi1_devdata *dd);
1967 int do_pcie_gen3_transition(struct hfi1_devdata *dd);
1968 int parse_platform_config(struct hfi1_devdata *dd);
1969 int get_platform_config_field(struct hfi1_devdata *dd,
1970 			      enum platform_config_table_type_encoding
1971 			      table_type, int table_index, int field_index,
1972 			      u32 *data, u32 len);
1973 
1974 const char *get_unit_name(int unit);
1975 const char *get_card_name(struct rvt_dev_info *rdi);
1976 struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi);
1977 
1978 /*
1979  * Flush write combining store buffers (if present) and perform a write
1980  * barrier.
1981  */
1982 static inline void flush_wc(void)
1983 {
1984 	asm volatile("sfence" : : : "memory");
1985 }
1986 
1987 void handle_eflags(struct hfi1_packet *packet);
1988 int process_receive_ib(struct hfi1_packet *packet);
1989 int process_receive_bypass(struct hfi1_packet *packet);
1990 int process_receive_error(struct hfi1_packet *packet);
1991 int kdeth_process_expected(struct hfi1_packet *packet);
1992 int kdeth_process_eager(struct hfi1_packet *packet);
1993 int process_receive_invalid(struct hfi1_packet *packet);
1994 void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd);
1995 
1996 /* global module parameter variables */
1997 extern unsigned int hfi1_max_mtu;
1998 extern unsigned int hfi1_cu;
1999 extern unsigned int user_credit_return_threshold;
2000 extern int num_user_contexts;
2001 extern unsigned long n_krcvqs;
2002 extern uint krcvqs[];
2003 extern int krcvqsset;
2004 extern uint kdeth_qp;
2005 extern uint loopback;
2006 extern uint quick_linkup;
2007 extern uint rcv_intr_timeout;
2008 extern uint rcv_intr_count;
2009 extern uint rcv_intr_dynamic;
2010 extern ushort link_crc_mask;
2011 
2012 extern struct mutex hfi1_mutex;
2013 
2014 /* Number of seconds before our card status check...  */
2015 #define STATUS_TIMEOUT 60
2016 
2017 #define DRIVER_NAME		"hfi1"
2018 #define HFI1_USER_MINOR_BASE     0
2019 #define HFI1_TRACE_MINOR         127
2020 #define HFI1_NMINORS             255
2021 
2022 #define PCI_VENDOR_ID_INTEL 0x8086
2023 #define PCI_DEVICE_ID_INTEL0 0x24f0
2024 #define PCI_DEVICE_ID_INTEL1 0x24f1
2025 
2026 #define HFI1_PKT_USER_SC_INTEGRITY					    \
2027 	(SEND_CTXT_CHECK_ENABLE_DISALLOW_NON_KDETH_PACKETS_SMASK	    \
2028 	| SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK		\
2029 	| SEND_CTXT_CHECK_ENABLE_DISALLOW_BYPASS_SMASK		    \
2030 	| SEND_CTXT_CHECK_ENABLE_DISALLOW_GRH_SMASK)
2031 
2032 #define HFI1_PKT_KERNEL_SC_INTEGRITY					    \
2033 	(SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK)
2034 
2035 static inline u64 hfi1_pkt_default_send_ctxt_mask(struct hfi1_devdata *dd,
2036 						  u16 ctxt_type)
2037 {
2038 	u64 base_sc_integrity;
2039 
2040 	/* No integrity checks if HFI1_CAP_NO_INTEGRITY is set */
2041 	if (HFI1_CAP_IS_KSET(NO_INTEGRITY))
2042 		return 0;
2043 
2044 	base_sc_integrity =
2045 	SEND_CTXT_CHECK_ENABLE_DISALLOW_BYPASS_BAD_PKT_LEN_SMASK
2046 	| SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK
2047 	| SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_LONG_BYPASS_PACKETS_SMASK
2048 	| SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_LONG_IB_PACKETS_SMASK
2049 	| SEND_CTXT_CHECK_ENABLE_DISALLOW_BAD_PKT_LEN_SMASK
2050 	| SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_TEST_SMASK
2051 	| SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_SMALL_BYPASS_PACKETS_SMASK
2052 	| SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_SMALL_IB_PACKETS_SMASK
2053 	| SEND_CTXT_CHECK_ENABLE_DISALLOW_RAW_IPV6_SMASK
2054 	| SEND_CTXT_CHECK_ENABLE_DISALLOW_RAW_SMASK
2055 	| SEND_CTXT_CHECK_ENABLE_CHECK_BYPASS_VL_MAPPING_SMASK
2056 	| SEND_CTXT_CHECK_ENABLE_CHECK_VL_MAPPING_SMASK
2057 	| SEND_CTXT_CHECK_ENABLE_CHECK_OPCODE_SMASK
2058 	| SEND_CTXT_CHECK_ENABLE_CHECK_SLID_SMASK
2059 	| SEND_CTXT_CHECK_ENABLE_CHECK_VL_SMASK
2060 	| SEND_CTXT_CHECK_ENABLE_CHECK_ENABLE_SMASK;
2061 
2062 	if (ctxt_type == SC_USER)
2063 		base_sc_integrity |= HFI1_PKT_USER_SC_INTEGRITY;
2064 	else
2065 		base_sc_integrity |= HFI1_PKT_KERNEL_SC_INTEGRITY;
2066 
2067 	/* turn on send-side job key checks if !A0 */
2068 	if (!is_ax(dd))
2069 		base_sc_integrity |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
2070 
2071 	return base_sc_integrity;
2072 }
2073 
2074 static inline u64 hfi1_pkt_base_sdma_integrity(struct hfi1_devdata *dd)
2075 {
2076 	u64 base_sdma_integrity;
2077 
2078 	/* No integrity checks if HFI1_CAP_NO_INTEGRITY is set */
2079 	if (HFI1_CAP_IS_KSET(NO_INTEGRITY))
2080 		return 0;
2081 
2082 	base_sdma_integrity =
2083 	SEND_DMA_CHECK_ENABLE_DISALLOW_BYPASS_BAD_PKT_LEN_SMASK
2084 	| SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_LONG_BYPASS_PACKETS_SMASK
2085 	| SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_LONG_IB_PACKETS_SMASK
2086 	| SEND_DMA_CHECK_ENABLE_DISALLOW_BAD_PKT_LEN_SMASK
2087 	| SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_SMALL_BYPASS_PACKETS_SMASK
2088 	| SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_SMALL_IB_PACKETS_SMASK
2089 	| SEND_DMA_CHECK_ENABLE_DISALLOW_RAW_IPV6_SMASK
2090 	| SEND_DMA_CHECK_ENABLE_DISALLOW_RAW_SMASK
2091 	| SEND_DMA_CHECK_ENABLE_CHECK_BYPASS_VL_MAPPING_SMASK
2092 	| SEND_DMA_CHECK_ENABLE_CHECK_VL_MAPPING_SMASK
2093 	| SEND_DMA_CHECK_ENABLE_CHECK_OPCODE_SMASK
2094 	| SEND_DMA_CHECK_ENABLE_CHECK_SLID_SMASK
2095 	| SEND_DMA_CHECK_ENABLE_CHECK_VL_SMASK
2096 	| SEND_DMA_CHECK_ENABLE_CHECK_ENABLE_SMASK;
2097 
2098 	if (!HFI1_CAP_IS_KSET(STATIC_RATE_CTRL))
2099 		base_sdma_integrity |=
2100 		SEND_DMA_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK;
2101 
2102 	/* turn on send-side job key checks if !A0 */
2103 	if (!is_ax(dd))
2104 		base_sdma_integrity |=
2105 			SEND_DMA_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
2106 
2107 	return base_sdma_integrity;
2108 }
2109 
2110 /*
2111  * hfi1_early_err is used (only!) to print early errors before devdata is
2112  * allocated, or when dd->pcidev may not be valid, and at the tail end of
2113  * cleanup when devdata may have been freed, etc.  hfi1_dev_porterr is
2114  * the same as dd_dev_err, but is used when the message really needs
2115  * the IB port# to be definitive as to what's happening..
2116  */
2117 #define hfi1_early_err(dev, fmt, ...) \
2118 	dev_err(dev, fmt, ##__VA_ARGS__)
2119 
2120 #define hfi1_early_info(dev, fmt, ...) \
2121 	dev_info(dev, fmt, ##__VA_ARGS__)
2122 
2123 #define dd_dev_emerg(dd, fmt, ...) \
2124 	dev_emerg(&(dd)->pcidev->dev, "%s: " fmt, \
2125 		  get_unit_name((dd)->unit), ##__VA_ARGS__)
2126 
2127 #define dd_dev_err(dd, fmt, ...) \
2128 	dev_err(&(dd)->pcidev->dev, "%s: " fmt, \
2129 			get_unit_name((dd)->unit), ##__VA_ARGS__)
2130 
2131 #define dd_dev_err_ratelimited(dd, fmt, ...) \
2132 	dev_err_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \
2133 			get_unit_name((dd)->unit), ##__VA_ARGS__)
2134 
2135 #define dd_dev_warn(dd, fmt, ...) \
2136 	dev_warn(&(dd)->pcidev->dev, "%s: " fmt, \
2137 			get_unit_name((dd)->unit), ##__VA_ARGS__)
2138 
2139 #define dd_dev_warn_ratelimited(dd, fmt, ...) \
2140 	dev_warn_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \
2141 			get_unit_name((dd)->unit), ##__VA_ARGS__)
2142 
2143 #define dd_dev_info(dd, fmt, ...) \
2144 	dev_info(&(dd)->pcidev->dev, "%s: " fmt, \
2145 			get_unit_name((dd)->unit), ##__VA_ARGS__)
2146 
2147 #define dd_dev_info_ratelimited(dd, fmt, ...) \
2148 	dev_info_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \
2149 			get_unit_name((dd)->unit), ##__VA_ARGS__)
2150 
2151 #define dd_dev_dbg(dd, fmt, ...) \
2152 	dev_dbg(&(dd)->pcidev->dev, "%s: " fmt, \
2153 		get_unit_name((dd)->unit), ##__VA_ARGS__)
2154 
2155 #define hfi1_dev_porterr(dd, port, fmt, ...) \
2156 	dev_err(&(dd)->pcidev->dev, "%s: port %u: " fmt, \
2157 			get_unit_name((dd)->unit), (port), ##__VA_ARGS__)
2158 
2159 /*
2160  * this is used for formatting hw error messages...
2161  */
2162 struct hfi1_hwerror_msgs {
2163 	u64 mask;
2164 	const char *msg;
2165 	size_t sz;
2166 };
2167 
2168 /* in intr.c... */
2169 void hfi1_format_hwerrors(u64 hwerrs,
2170 			  const struct hfi1_hwerror_msgs *hwerrmsgs,
2171 			  size_t nhwerrmsgs, char *msg, size_t lmsg);
2172 
2173 #define USER_OPCODE_CHECK_VAL 0xC0
2174 #define USER_OPCODE_CHECK_MASK 0xC0
2175 #define OPCODE_CHECK_VAL_DISABLED 0x0
2176 #define OPCODE_CHECK_MASK_DISABLED 0x0
2177 
2178 static inline void hfi1_reset_cpu_counters(struct hfi1_devdata *dd)
2179 {
2180 	struct hfi1_pportdata *ppd;
2181 	int i;
2182 
2183 	dd->z_int_counter = get_all_cpu_total(dd->int_counter);
2184 	dd->z_rcv_limit = get_all_cpu_total(dd->rcv_limit);
2185 	dd->z_send_schedule = get_all_cpu_total(dd->send_schedule);
2186 
2187 	ppd = (struct hfi1_pportdata *)(dd + 1);
2188 	for (i = 0; i < dd->num_pports; i++, ppd++) {
2189 		ppd->ibport_data.rvp.z_rc_acks =
2190 			get_all_cpu_total(ppd->ibport_data.rvp.rc_acks);
2191 		ppd->ibport_data.rvp.z_rc_qacks =
2192 			get_all_cpu_total(ppd->ibport_data.rvp.rc_qacks);
2193 	}
2194 }
2195 
2196 /* Control LED state */
2197 static inline void setextled(struct hfi1_devdata *dd, u32 on)
2198 {
2199 	if (on)
2200 		write_csr(dd, DCC_CFG_LED_CNTRL, 0x1F);
2201 	else
2202 		write_csr(dd, DCC_CFG_LED_CNTRL, 0x10);
2203 }
2204 
2205 /* return the i2c resource given the target */
2206 static inline u32 i2c_target(u32 target)
2207 {
2208 	return target ? CR_I2C2 : CR_I2C1;
2209 }
2210 
2211 /* return the i2c chain chip resource that this HFI uses for QSFP */
2212 static inline u32 qsfp_resource(struct hfi1_devdata *dd)
2213 {
2214 	return i2c_target(dd->hfi1_id);
2215 }
2216 
2217 /* Is this device integrated or discrete? */
2218 static inline bool is_integrated(struct hfi1_devdata *dd)
2219 {
2220 	return dd->pcidev->device == PCI_DEVICE_ID_INTEL1;
2221 }
2222 
2223 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp);
2224 
2225 #define DD_DEV_ENTRY(dd)       __string(dev, dev_name(&(dd)->pcidev->dev))
2226 #define DD_DEV_ASSIGN(dd)      __assign_str(dev, dev_name(&(dd)->pcidev->dev))
2227 
2228 static inline void hfi1_update_ah_attr(struct ib_device *ibdev,
2229 				       struct rdma_ah_attr *attr)
2230 {
2231 	struct hfi1_pportdata *ppd;
2232 	struct hfi1_ibport *ibp;
2233 	u32 dlid = rdma_ah_get_dlid(attr);
2234 
2235 	/*
2236 	 * Kernel clients may not have setup GRH information
2237 	 * Set that here.
2238 	 */
2239 	ibp = to_iport(ibdev, rdma_ah_get_port_num(attr));
2240 	ppd = ppd_from_ibp(ibp);
2241 	if ((((dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) ||
2242 	      (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE))) &&
2243 	    (dlid != be32_to_cpu(OPA_LID_PERMISSIVE)) &&
2244 	    (dlid != be16_to_cpu(IB_LID_PERMISSIVE)) &&
2245 	    (!(rdma_ah_get_ah_flags(attr) & IB_AH_GRH))) ||
2246 	    (rdma_ah_get_make_grd(attr))) {
2247 		rdma_ah_set_ah_flags(attr, IB_AH_GRH);
2248 		rdma_ah_set_interface_id(attr, OPA_MAKE_ID(dlid));
2249 		rdma_ah_set_subnet_prefix(attr, ibp->rvp.gid_prefix);
2250 	}
2251 }
2252 
2253 /*
2254  * hfi1_check_mcast- Check if the given lid is
2255  * in the OPA multicast range.
2256  *
2257  * The LID might either reside in ah.dlid or might be
2258  * in the GRH of the address handle as DGID if extended
2259  * addresses are in use.
2260  */
2261 static inline bool hfi1_check_mcast(u32 lid)
2262 {
2263 	return ((lid >= opa_get_mcast_base(OPA_MCAST_NR)) &&
2264 		(lid != be32_to_cpu(OPA_LID_PERMISSIVE)));
2265 }
2266 
2267 #define opa_get_lid(lid, format)	\
2268 	__opa_get_lid(lid, OPA_PORT_PACKET_FORMAT_##format)
2269 
2270 /* Convert a lid to a specific lid space */
2271 static inline u32 __opa_get_lid(u32 lid, u8 format)
2272 {
2273 	bool is_mcast = hfi1_check_mcast(lid);
2274 
2275 	switch (format) {
2276 	case OPA_PORT_PACKET_FORMAT_8B:
2277 	case OPA_PORT_PACKET_FORMAT_10B:
2278 		if (is_mcast)
2279 			return (lid - opa_get_mcast_base(OPA_MCAST_NR) +
2280 				0xF0000);
2281 		return lid & 0xFFFFF;
2282 	case OPA_PORT_PACKET_FORMAT_16B:
2283 		if (is_mcast)
2284 			return (lid - opa_get_mcast_base(OPA_MCAST_NR) +
2285 				0xF00000);
2286 		return lid & 0xFFFFFF;
2287 	case OPA_PORT_PACKET_FORMAT_9B:
2288 		if (is_mcast)
2289 			return (lid -
2290 				opa_get_mcast_base(OPA_MCAST_NR) +
2291 				be16_to_cpu(IB_MULTICAST_LID_BASE));
2292 		else
2293 			return lid & 0xFFFF;
2294 	default:
2295 		return lid;
2296 	}
2297 }
2298 
2299 /* Return true if the given lid is the OPA 16B multicast range */
2300 static inline bool hfi1_is_16B_mcast(u32 lid)
2301 {
2302 	return ((lid >=
2303 		opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR), 16B)) &&
2304 		(lid != opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B)));
2305 }
2306 
2307 static inline void hfi1_make_opa_lid(struct rdma_ah_attr *attr)
2308 {
2309 	const struct ib_global_route *grh = rdma_ah_read_grh(attr);
2310 	u32 dlid = rdma_ah_get_dlid(attr);
2311 
2312 	/* Modify ah_attr.dlid to be in the 32 bit LID space.
2313 	 * This is how the address will be laid out:
2314 	 * Assuming MCAST_NR to be 4,
2315 	 * 32 bit permissive LID = 0xFFFFFFFF
2316 	 * Multicast LID range = 0xFFFFFFFE to 0xF0000000
2317 	 * Unicast LID range = 0xEFFFFFFF to 1
2318 	 * Invalid LID = 0
2319 	 */
2320 	if (ib_is_opa_gid(&grh->dgid))
2321 		dlid = opa_get_lid_from_gid(&grh->dgid);
2322 	else if ((dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
2323 		 (dlid != be16_to_cpu(IB_LID_PERMISSIVE)) &&
2324 		 (dlid != be32_to_cpu(OPA_LID_PERMISSIVE)))
2325 		dlid = dlid - be16_to_cpu(IB_MULTICAST_LID_BASE) +
2326 			opa_get_mcast_base(OPA_MCAST_NR);
2327 	else if (dlid == be16_to_cpu(IB_LID_PERMISSIVE))
2328 		dlid = be32_to_cpu(OPA_LID_PERMISSIVE);
2329 
2330 	rdma_ah_set_dlid(attr, dlid);
2331 }
2332 
2333 static inline u8 hfi1_get_packet_type(u32 lid)
2334 {
2335 	/* 9B if lid > 0xF0000000 */
2336 	if (lid >= opa_get_mcast_base(OPA_MCAST_NR))
2337 		return HFI1_PKT_TYPE_9B;
2338 
2339 	/* 16B if lid > 0xC000 */
2340 	if (lid >= opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR), 9B))
2341 		return HFI1_PKT_TYPE_16B;
2342 
2343 	return HFI1_PKT_TYPE_9B;
2344 }
2345 
2346 static inline bool hfi1_get_hdr_type(u32 lid, struct rdma_ah_attr *attr)
2347 {
2348 	/*
2349 	 * If there was an incoming 16B packet with permissive
2350 	 * LIDs, OPA GIDs would have been programmed when those
2351 	 * packets were received. A 16B packet will have to
2352 	 * be sent in response to that packet. Return a 16B
2353 	 * header type if that's the case.
2354 	 */
2355 	if (rdma_ah_get_dlid(attr) == be32_to_cpu(OPA_LID_PERMISSIVE))
2356 		return (ib_is_opa_gid(&rdma_ah_read_grh(attr)->dgid)) ?
2357 			HFI1_PKT_TYPE_16B : HFI1_PKT_TYPE_9B;
2358 
2359 	/*
2360 	 * Return a 16B header type if either the the destination
2361 	 * or source lid is extended.
2362 	 */
2363 	if (hfi1_get_packet_type(rdma_ah_get_dlid(attr)) == HFI1_PKT_TYPE_16B)
2364 		return HFI1_PKT_TYPE_16B;
2365 
2366 	return hfi1_get_packet_type(lid);
2367 }
2368 
2369 static inline void hfi1_make_ext_grh(struct hfi1_packet *packet,
2370 				     struct ib_grh *grh, u32 slid,
2371 				     u32 dlid)
2372 {
2373 	struct hfi1_ibport *ibp = &packet->rcd->ppd->ibport_data;
2374 	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
2375 
2376 	if (!ibp)
2377 		return;
2378 
2379 	grh->hop_limit = 1;
2380 	grh->sgid.global.subnet_prefix = ibp->rvp.gid_prefix;
2381 	if (slid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))
2382 		grh->sgid.global.interface_id =
2383 			OPA_MAKE_ID(be32_to_cpu(OPA_LID_PERMISSIVE));
2384 	else
2385 		grh->sgid.global.interface_id = OPA_MAKE_ID(slid);
2386 
2387 	/*
2388 	 * Upper layers (like mad) may compare the dgid in the
2389 	 * wc that is obtained here with the sgid_index in
2390 	 * the wr. Since sgid_index in wr is always 0 for
2391 	 * extended lids, set the dgid here to the default
2392 	 * IB gid.
2393 	 */
2394 	grh->dgid.global.subnet_prefix = ibp->rvp.gid_prefix;
2395 	grh->dgid.global.interface_id =
2396 		cpu_to_be64(ppd->guids[HFI1_PORT_GUID_INDEX]);
2397 }
2398 
2399 static inline int hfi1_get_16b_padding(u32 hdr_size, u32 payload)
2400 {
2401 	return -(hdr_size + payload + (SIZE_OF_CRC << 2) +
2402 		     SIZE_OF_LT) & 0x7;
2403 }
2404 
2405 static inline void hfi1_make_ib_hdr(struct ib_header *hdr,
2406 				    u16 lrh0, u16 len,
2407 				    u16 dlid, u16 slid)
2408 {
2409 	hdr->lrh[0] = cpu_to_be16(lrh0);
2410 	hdr->lrh[1] = cpu_to_be16(dlid);
2411 	hdr->lrh[2] = cpu_to_be16(len);
2412 	hdr->lrh[3] = cpu_to_be16(slid);
2413 }
2414 
2415 static inline void hfi1_make_16b_hdr(struct hfi1_16b_header *hdr,
2416 				     u32 slid, u32 dlid,
2417 				     u16 len, u16 pkey,
2418 				     u8 becn, u8 fecn, u8 l4,
2419 				     u8 sc)
2420 {
2421 	u32 lrh0 = 0;
2422 	u32 lrh1 = 0x40000000;
2423 	u32 lrh2 = 0;
2424 	u32 lrh3 = 0;
2425 
2426 	lrh0 = (lrh0 & ~OPA_16B_BECN_MASK) | (becn << OPA_16B_BECN_SHIFT);
2427 	lrh0 = (lrh0 & ~OPA_16B_LEN_MASK) | (len << OPA_16B_LEN_SHIFT);
2428 	lrh0 = (lrh0 & ~OPA_16B_LID_MASK)  | (slid & OPA_16B_LID_MASK);
2429 	lrh1 = (lrh1 & ~OPA_16B_FECN_MASK) | (fecn << OPA_16B_FECN_SHIFT);
2430 	lrh1 = (lrh1 & ~OPA_16B_SC_MASK) | (sc << OPA_16B_SC_SHIFT);
2431 	lrh1 = (lrh1 & ~OPA_16B_LID_MASK) | (dlid & OPA_16B_LID_MASK);
2432 	lrh2 = (lrh2 & ~OPA_16B_SLID_MASK) |
2433 		((slid >> OPA_16B_SLID_SHIFT) << OPA_16B_SLID_HIGH_SHIFT);
2434 	lrh2 = (lrh2 & ~OPA_16B_DLID_MASK) |
2435 		((dlid >> OPA_16B_DLID_SHIFT) << OPA_16B_DLID_HIGH_SHIFT);
2436 	lrh2 = (lrh2 & ~OPA_16B_PKEY_MASK) | (pkey << OPA_16B_PKEY_SHIFT);
2437 	lrh2 = (lrh2 & ~OPA_16B_L4_MASK) | l4;
2438 
2439 	hdr->lrh[0] = lrh0;
2440 	hdr->lrh[1] = lrh1;
2441 	hdr->lrh[2] = lrh2;
2442 	hdr->lrh[3] = lrh3;
2443 }
2444 #endif                          /* _HFI1_KERNEL_H */
2445