1 #ifndef _HFI1_KERNEL_H 2 #define _HFI1_KERNEL_H 3 /* 4 * Copyright(c) 2015-2018 Intel Corporation. 5 * 6 * This file is provided under a dual BSD/GPLv2 license. When using or 7 * redistributing this file, you may do so under either license. 8 * 9 * GPL LICENSE SUMMARY 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of version 2 of the GNU General Public License as 13 * published by the Free Software Foundation. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * BSD LICENSE 21 * 22 * Redistribution and use in source and binary forms, with or without 23 * modification, are permitted provided that the following conditions 24 * are met: 25 * 26 * - Redistributions of source code must retain the above copyright 27 * notice, this list of conditions and the following disclaimer. 28 * - Redistributions in binary form must reproduce the above copyright 29 * notice, this list of conditions and the following disclaimer in 30 * the documentation and/or other materials provided with the 31 * distribution. 32 * - Neither the name of Intel Corporation nor the names of its 33 * contributors may be used to endorse or promote products derived 34 * from this software without specific prior written permission. 35 * 36 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 37 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 38 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 39 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 40 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 42 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 43 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 44 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 45 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 46 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 47 * 48 */ 49 50 #include <linux/interrupt.h> 51 #include <linux/pci.h> 52 #include <linux/dma-mapping.h> 53 #include <linux/mutex.h> 54 #include <linux/list.h> 55 #include <linux/scatterlist.h> 56 #include <linux/slab.h> 57 #include <linux/io.h> 58 #include <linux/fs.h> 59 #include <linux/completion.h> 60 #include <linux/kref.h> 61 #include <linux/sched.h> 62 #include <linux/cdev.h> 63 #include <linux/delay.h> 64 #include <linux/kthread.h> 65 #include <linux/i2c.h> 66 #include <linux/i2c-algo-bit.h> 67 #include <linux/xarray.h> 68 #include <rdma/ib_hdrs.h> 69 #include <rdma/opa_addr.h> 70 #include <linux/rhashtable.h> 71 #include <linux/netdevice.h> 72 #include <rdma/rdma_vt.h> 73 74 #include "chip_registers.h" 75 #include "common.h" 76 #include "opfn.h" 77 #include "verbs.h" 78 #include "pio.h" 79 #include "chip.h" 80 #include "mad.h" 81 #include "qsfp.h" 82 #include "platform.h" 83 #include "affinity.h" 84 #include "msix.h" 85 86 /* bumped 1 from s/w major version of TrueScale */ 87 #define HFI1_CHIP_VERS_MAJ 3U 88 89 /* don't care about this except printing */ 90 #define HFI1_CHIP_VERS_MIN 0U 91 92 /* The Organization Unique Identifier (Mfg code), and its position in GUID */ 93 #define HFI1_OUI 0x001175 94 #define HFI1_OUI_LSB 40 95 96 #define DROP_PACKET_OFF 0 97 #define DROP_PACKET_ON 1 98 99 #define NEIGHBOR_TYPE_HFI 0 100 #define NEIGHBOR_TYPE_SWITCH 1 101 102 #define HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES 5 103 104 extern unsigned long hfi1_cap_mask; 105 #define HFI1_CAP_KGET_MASK(mask, cap) ((mask) & HFI1_CAP_##cap) 106 #define HFI1_CAP_UGET_MASK(mask, cap) \ 107 (((mask) >> HFI1_CAP_USER_SHIFT) & HFI1_CAP_##cap) 108 #define HFI1_CAP_KGET(cap) (HFI1_CAP_KGET_MASK(hfi1_cap_mask, cap)) 109 #define HFI1_CAP_UGET(cap) (HFI1_CAP_UGET_MASK(hfi1_cap_mask, cap)) 110 #define HFI1_CAP_IS_KSET(cap) (!!HFI1_CAP_KGET(cap)) 111 #define HFI1_CAP_IS_USET(cap) (!!HFI1_CAP_UGET(cap)) 112 #define HFI1_MISC_GET() ((hfi1_cap_mask >> HFI1_CAP_MISC_SHIFT) & \ 113 HFI1_CAP_MISC_MASK) 114 /* Offline Disabled Reason is 4-bits */ 115 #define HFI1_ODR_MASK(rsn) ((rsn) & OPA_PI_MASK_OFFLINE_REASON) 116 117 /* 118 * Control context is always 0 and handles the error packets. 119 * It also handles the VL15 and multicast packets. 120 */ 121 #define HFI1_CTRL_CTXT 0 122 123 /* 124 * Driver context will store software counters for each of the events 125 * associated with these status registers 126 */ 127 #define NUM_CCE_ERR_STATUS_COUNTERS 41 128 #define NUM_RCV_ERR_STATUS_COUNTERS 64 129 #define NUM_MISC_ERR_STATUS_COUNTERS 13 130 #define NUM_SEND_PIO_ERR_STATUS_COUNTERS 36 131 #define NUM_SEND_DMA_ERR_STATUS_COUNTERS 4 132 #define NUM_SEND_EGRESS_ERR_STATUS_COUNTERS 64 133 #define NUM_SEND_ERR_STATUS_COUNTERS 3 134 #define NUM_SEND_CTXT_ERR_STATUS_COUNTERS 5 135 #define NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS 24 136 137 /* 138 * per driver stats, either not device nor port-specific, or 139 * summed over all of the devices and ports. 140 * They are described by name via ipathfs filesystem, so layout 141 * and number of elements can change without breaking compatibility. 142 * If members are added or deleted hfi1_statnames[] in debugfs.c must 143 * change to match. 144 */ 145 struct hfi1_ib_stats { 146 __u64 sps_ints; /* number of interrupts handled */ 147 __u64 sps_errints; /* number of error interrupts */ 148 __u64 sps_txerrs; /* tx-related packet errors */ 149 __u64 sps_rcverrs; /* non-crc rcv packet errors */ 150 __u64 sps_hwerrs; /* hardware errors reported (parity, etc.) */ 151 __u64 sps_nopiobufs; /* no pio bufs avail from kernel */ 152 __u64 sps_ctxts; /* number of contexts currently open */ 153 __u64 sps_lenerrs; /* number of kernel packets where RHF != LRH len */ 154 __u64 sps_buffull; 155 __u64 sps_hdrfull; 156 }; 157 158 extern struct hfi1_ib_stats hfi1_stats; 159 extern const struct pci_error_handlers hfi1_pci_err_handler; 160 161 extern int num_driver_cntrs; 162 163 /* 164 * First-cut criterion for "device is active" is 165 * two thousand dwords combined Tx, Rx traffic per 166 * 5-second interval. SMA packets are 64 dwords, 167 * and occur "a few per second", presumably each way. 168 */ 169 #define HFI1_TRAFFIC_ACTIVE_THRESHOLD (2000) 170 171 /* 172 * Below contains all data related to a single context (formerly called port). 173 */ 174 175 struct hfi1_opcode_stats_perctx; 176 177 struct ctxt_eager_bufs { 178 struct eager_buffer { 179 void *addr; 180 dma_addr_t dma; 181 ssize_t len; 182 } *buffers; 183 struct { 184 void *addr; 185 dma_addr_t dma; 186 } *rcvtids; 187 u32 size; /* total size of eager buffers */ 188 u32 rcvtid_size; /* size of each eager rcv tid */ 189 u16 count; /* size of buffers array */ 190 u16 numbufs; /* number of buffers allocated */ 191 u16 alloced; /* number of rcvarray entries used */ 192 u16 threshold; /* head update threshold */ 193 }; 194 195 struct exp_tid_set { 196 struct list_head list; 197 u32 count; 198 }; 199 200 struct hfi1_ctxtdata; 201 typedef int (*intr_handler)(struct hfi1_ctxtdata *rcd, int data); 202 typedef void (*rhf_rcv_function_ptr)(struct hfi1_packet *packet); 203 204 struct tid_queue { 205 struct list_head queue_head; 206 /* queue head for QP TID resource waiters */ 207 u32 enqueue; /* count of tid enqueues */ 208 u32 dequeue; /* count of tid dequeues */ 209 }; 210 211 struct hfi1_ctxtdata { 212 /* rcvhdrq base, needs mmap before useful */ 213 void *rcvhdrq; 214 /* kernel virtual address where hdrqtail is updated */ 215 volatile __le64 *rcvhdrtail_kvaddr; 216 /* so functions that need physical port can get it easily */ 217 struct hfi1_pportdata *ppd; 218 /* so file ops can get at unit */ 219 struct hfi1_devdata *dd; 220 /* this receive context's assigned PIO ACK send context */ 221 struct send_context *sc; 222 /* per context recv functions */ 223 const rhf_rcv_function_ptr *rhf_rcv_function_map; 224 /* 225 * The interrupt handler for a particular receive context can vary 226 * throughout it's lifetime. This is not a lock protected data member so 227 * it must be updated atomically and the prev and new value must always 228 * be valid. Worst case is we process an extra interrupt and up to 64 229 * packets with the wrong interrupt handler. 230 */ 231 intr_handler do_interrupt; 232 /** fast handler after autoactive */ 233 intr_handler fast_handler; 234 /** slow handler */ 235 intr_handler slow_handler; 236 /* verbs rx_stats per rcd */ 237 struct hfi1_opcode_stats_perctx *opstats; 238 /* clear interrupt mask */ 239 u64 imask; 240 /* ctxt rcvhdrq head offset */ 241 u32 head; 242 /* number of rcvhdrq entries */ 243 u16 rcvhdrq_cnt; 244 u8 ireg; /* clear interrupt register */ 245 /* receive packet sequence counter */ 246 u8 seq_cnt; 247 /* size of each of the rcvhdrq entries */ 248 u8 rcvhdrqentsize; 249 /* offset of RHF within receive header entry */ 250 u8 rhf_offset; 251 /* dynamic receive available interrupt timeout */ 252 u8 rcvavail_timeout; 253 /* Indicates that this is vnic context */ 254 bool is_vnic; 255 /* vnic queue index this context is mapped to */ 256 u8 vnic_q_idx; 257 /* Is ASPM interrupt supported for this context */ 258 bool aspm_intr_supported; 259 /* ASPM state (enabled/disabled) for this context */ 260 bool aspm_enabled; 261 /* Is ASPM processing enabled for this context (in intr context) */ 262 bool aspm_intr_enable; 263 struct ctxt_eager_bufs egrbufs; 264 /* QPs waiting for context processing */ 265 struct list_head qp_wait_list; 266 /* tid allocation lists */ 267 struct exp_tid_set tid_group_list; 268 struct exp_tid_set tid_used_list; 269 struct exp_tid_set tid_full_list; 270 271 /* Timer for re-enabling ASPM if interrupt activity quiets down */ 272 struct timer_list aspm_timer; 273 /* per-context configuration flags */ 274 unsigned long flags; 275 /* array of tid_groups */ 276 struct tid_group *groups; 277 /* mmap of hdrq, must fit in 44 bits */ 278 dma_addr_t rcvhdrq_dma; 279 dma_addr_t rcvhdrqtailaddr_dma; 280 /* Last interrupt timestamp */ 281 ktime_t aspm_ts_last_intr; 282 /* Last timestamp at which we scheduled a timer for this context */ 283 ktime_t aspm_ts_timer_sched; 284 /* Lock to serialize between intr, timer intr and user threads */ 285 spinlock_t aspm_lock; 286 /* Reference count the base context usage */ 287 struct kref kref; 288 /* numa node of this context */ 289 int numa_id; 290 /* associated msix interrupt. */ 291 s16 msix_intr; 292 /* job key */ 293 u16 jkey; 294 /* number of RcvArray groups for this context. */ 295 u16 rcv_array_groups; 296 /* index of first eager TID entry. */ 297 u16 eager_base; 298 /* number of expected TID entries */ 299 u16 expected_count; 300 /* index of first expected TID entry. */ 301 u16 expected_base; 302 /* Device context index */ 303 u8 ctxt; 304 305 /* PSM Specific fields */ 306 /* lock protecting all Expected TID data */ 307 struct mutex exp_mutex; 308 /* lock protecting all Expected TID data of kernel contexts */ 309 spinlock_t exp_lock; 310 /* Queue for QP's waiting for HW TID flows */ 311 struct tid_queue flow_queue; 312 /* Queue for QP's waiting for HW receive array entries */ 313 struct tid_queue rarr_queue; 314 /* when waiting for rcv or pioavail */ 315 wait_queue_head_t wait; 316 /* uuid from PSM */ 317 u8 uuid[16]; 318 /* same size as task_struct .comm[], command that opened context */ 319 char comm[TASK_COMM_LEN]; 320 /* Bitmask of in use context(s) */ 321 DECLARE_BITMAP(in_use_ctxts, HFI1_MAX_SHARED_CTXTS); 322 /* per-context event flags for fileops/intr communication */ 323 unsigned long event_flags; 324 /* A page of memory for rcvhdrhead, rcvegrhead, rcvegrtail * N */ 325 void *subctxt_uregbase; 326 /* An array of pages for the eager receive buffers * N */ 327 void *subctxt_rcvegrbuf; 328 /* An array of pages for the eager header queue entries * N */ 329 void *subctxt_rcvhdr_base; 330 /* total number of polled urgent packets */ 331 u32 urgent; 332 /* saved total number of polled urgent packets for poll edge trigger */ 333 u32 urgent_poll; 334 /* Type of packets or conditions we want to poll for */ 335 u16 poll_type; 336 /* non-zero if ctxt is being shared. */ 337 u16 subctxt_id; 338 /* The version of the library which opened this ctxt */ 339 u32 userversion; 340 /* 341 * non-zero if ctxt can be shared, and defines the maximum number of 342 * sub-contexts for this device context. 343 */ 344 u8 subctxt_cnt; 345 346 /* Bit mask to track free TID RDMA HW flows */ 347 unsigned long flow_mask; 348 struct tid_flow_state flows[RXE_NUM_TID_FLOWS]; 349 }; 350 351 /** 352 * rcvhdrq_size - return total size in bytes for header queue 353 * @rcd: the receive context 354 * 355 * rcvhdrqentsize is in DWs, so we have to convert to bytes 356 * 357 */ 358 static inline u32 rcvhdrq_size(struct hfi1_ctxtdata *rcd) 359 { 360 return PAGE_ALIGN(rcd->rcvhdrq_cnt * 361 rcd->rcvhdrqentsize * sizeof(u32)); 362 } 363 364 /* 365 * Represents a single packet at a high level. Put commonly computed things in 366 * here so we do not have to keep doing them over and over. The rule of thumb is 367 * if something is used one time to derive some value, store that something in 368 * here. If it is used multiple times, then store the result of that derivation 369 * in here. 370 */ 371 struct hfi1_packet { 372 void *ebuf; 373 void *hdr; 374 void *payload; 375 struct hfi1_ctxtdata *rcd; 376 __le32 *rhf_addr; 377 struct rvt_qp *qp; 378 struct ib_other_headers *ohdr; 379 struct ib_grh *grh; 380 struct opa_16b_mgmt *mgmt; 381 u64 rhf; 382 u32 maxcnt; 383 u32 rhqoff; 384 u32 dlid; 385 u32 slid; 386 u16 tlen; 387 s16 etail; 388 u16 pkey; 389 u8 hlen; 390 u8 numpkt; 391 u8 rsize; 392 u8 updegr; 393 u8 etype; 394 u8 extra_byte; 395 u8 pad; 396 u8 sc; 397 u8 sl; 398 u8 opcode; 399 bool migrated; 400 }; 401 402 /* Packet types */ 403 #define HFI1_PKT_TYPE_9B 0 404 #define HFI1_PKT_TYPE_16B 1 405 406 /* 407 * OPA 16B Header 408 */ 409 #define OPA_16B_L4_MASK 0xFFull 410 #define OPA_16B_SC_MASK 0x1F00000ull 411 #define OPA_16B_SC_SHIFT 20 412 #define OPA_16B_LID_MASK 0xFFFFFull 413 #define OPA_16B_DLID_MASK 0xF000ull 414 #define OPA_16B_DLID_SHIFT 20 415 #define OPA_16B_DLID_HIGH_SHIFT 12 416 #define OPA_16B_SLID_MASK 0xF00ull 417 #define OPA_16B_SLID_SHIFT 20 418 #define OPA_16B_SLID_HIGH_SHIFT 8 419 #define OPA_16B_BECN_MASK 0x80000000ull 420 #define OPA_16B_BECN_SHIFT 31 421 #define OPA_16B_FECN_MASK 0x10000000ull 422 #define OPA_16B_FECN_SHIFT 28 423 #define OPA_16B_L2_MASK 0x60000000ull 424 #define OPA_16B_L2_SHIFT 29 425 #define OPA_16B_PKEY_MASK 0xFFFF0000ull 426 #define OPA_16B_PKEY_SHIFT 16 427 #define OPA_16B_LEN_MASK 0x7FF00000ull 428 #define OPA_16B_LEN_SHIFT 20 429 #define OPA_16B_RC_MASK 0xE000000ull 430 #define OPA_16B_RC_SHIFT 25 431 #define OPA_16B_AGE_MASK 0xFF0000ull 432 #define OPA_16B_AGE_SHIFT 16 433 #define OPA_16B_ENTROPY_MASK 0xFFFFull 434 435 /* 436 * OPA 16B L2/L4 Encodings 437 */ 438 #define OPA_16B_L4_9B 0x00 439 #define OPA_16B_L2_TYPE 0x02 440 #define OPA_16B_L4_FM 0x08 441 #define OPA_16B_L4_IB_LOCAL 0x09 442 #define OPA_16B_L4_IB_GLOBAL 0x0A 443 #define OPA_16B_L4_ETHR OPA_VNIC_L4_ETHR 444 445 /* 446 * OPA 16B Management 447 */ 448 #define OPA_16B_L4_FM_PAD 3 /* fixed 3B pad */ 449 #define OPA_16B_L4_FM_HLEN 24 /* 16B(16) + L4_FM(8) */ 450 451 static inline u8 hfi1_16B_get_l4(struct hfi1_16b_header *hdr) 452 { 453 return (u8)(hdr->lrh[2] & OPA_16B_L4_MASK); 454 } 455 456 static inline u8 hfi1_16B_get_sc(struct hfi1_16b_header *hdr) 457 { 458 return (u8)((hdr->lrh[1] & OPA_16B_SC_MASK) >> OPA_16B_SC_SHIFT); 459 } 460 461 static inline u32 hfi1_16B_get_dlid(struct hfi1_16b_header *hdr) 462 { 463 return (u32)((hdr->lrh[1] & OPA_16B_LID_MASK) | 464 (((hdr->lrh[2] & OPA_16B_DLID_MASK) >> 465 OPA_16B_DLID_HIGH_SHIFT) << OPA_16B_DLID_SHIFT)); 466 } 467 468 static inline u32 hfi1_16B_get_slid(struct hfi1_16b_header *hdr) 469 { 470 return (u32)((hdr->lrh[0] & OPA_16B_LID_MASK) | 471 (((hdr->lrh[2] & OPA_16B_SLID_MASK) >> 472 OPA_16B_SLID_HIGH_SHIFT) << OPA_16B_SLID_SHIFT)); 473 } 474 475 static inline u8 hfi1_16B_get_becn(struct hfi1_16b_header *hdr) 476 { 477 return (u8)((hdr->lrh[0] & OPA_16B_BECN_MASK) >> OPA_16B_BECN_SHIFT); 478 } 479 480 static inline u8 hfi1_16B_get_fecn(struct hfi1_16b_header *hdr) 481 { 482 return (u8)((hdr->lrh[1] & OPA_16B_FECN_MASK) >> OPA_16B_FECN_SHIFT); 483 } 484 485 static inline u8 hfi1_16B_get_l2(struct hfi1_16b_header *hdr) 486 { 487 return (u8)((hdr->lrh[1] & OPA_16B_L2_MASK) >> OPA_16B_L2_SHIFT); 488 } 489 490 static inline u16 hfi1_16B_get_pkey(struct hfi1_16b_header *hdr) 491 { 492 return (u16)((hdr->lrh[2] & OPA_16B_PKEY_MASK) >> OPA_16B_PKEY_SHIFT); 493 } 494 495 static inline u8 hfi1_16B_get_rc(struct hfi1_16b_header *hdr) 496 { 497 return (u8)((hdr->lrh[1] & OPA_16B_RC_MASK) >> OPA_16B_RC_SHIFT); 498 } 499 500 static inline u8 hfi1_16B_get_age(struct hfi1_16b_header *hdr) 501 { 502 return (u8)((hdr->lrh[3] & OPA_16B_AGE_MASK) >> OPA_16B_AGE_SHIFT); 503 } 504 505 static inline u16 hfi1_16B_get_len(struct hfi1_16b_header *hdr) 506 { 507 return (u16)((hdr->lrh[0] & OPA_16B_LEN_MASK) >> OPA_16B_LEN_SHIFT); 508 } 509 510 static inline u16 hfi1_16B_get_entropy(struct hfi1_16b_header *hdr) 511 { 512 return (u16)(hdr->lrh[3] & OPA_16B_ENTROPY_MASK); 513 } 514 515 #define OPA_16B_MAKE_QW(low_dw, high_dw) (((u64)(high_dw) << 32) | (low_dw)) 516 517 /* 518 * BTH 519 */ 520 #define OPA_16B_BTH_PAD_MASK 7 521 static inline u8 hfi1_16B_bth_get_pad(struct ib_other_headers *ohdr) 522 { 523 return (u8)((be32_to_cpu(ohdr->bth[0]) >> IB_BTH_PAD_SHIFT) & 524 OPA_16B_BTH_PAD_MASK); 525 } 526 527 /* 528 * 16B Management 529 */ 530 #define OPA_16B_MGMT_QPN_MASK 0xFFFFFF 531 static inline u32 hfi1_16B_get_dest_qpn(struct opa_16b_mgmt *mgmt) 532 { 533 return be32_to_cpu(mgmt->dest_qpn) & OPA_16B_MGMT_QPN_MASK; 534 } 535 536 static inline u32 hfi1_16B_get_src_qpn(struct opa_16b_mgmt *mgmt) 537 { 538 return be32_to_cpu(mgmt->src_qpn) & OPA_16B_MGMT_QPN_MASK; 539 } 540 541 static inline void hfi1_16B_set_qpn(struct opa_16b_mgmt *mgmt, 542 u32 dest_qp, u32 src_qp) 543 { 544 mgmt->dest_qpn = cpu_to_be32(dest_qp & OPA_16B_MGMT_QPN_MASK); 545 mgmt->src_qpn = cpu_to_be32(src_qp & OPA_16B_MGMT_QPN_MASK); 546 } 547 548 /** 549 * hfi1_get_rc_ohdr - get extended header 550 * @opah - the opaheader 551 */ 552 static inline struct ib_other_headers * 553 hfi1_get_rc_ohdr(struct hfi1_opa_header *opah) 554 { 555 struct ib_other_headers *ohdr; 556 struct ib_header *hdr = NULL; 557 struct hfi1_16b_header *hdr_16b = NULL; 558 559 /* Find out where the BTH is */ 560 if (opah->hdr_type == HFI1_PKT_TYPE_9B) { 561 hdr = &opah->ibh; 562 if (ib_get_lnh(hdr) == HFI1_LRH_BTH) 563 ohdr = &hdr->u.oth; 564 else 565 ohdr = &hdr->u.l.oth; 566 } else { 567 u8 l4; 568 569 hdr_16b = &opah->opah; 570 l4 = hfi1_16B_get_l4(hdr_16b); 571 if (l4 == OPA_16B_L4_IB_LOCAL) 572 ohdr = &hdr_16b->u.oth; 573 else 574 ohdr = &hdr_16b->u.l.oth; 575 } 576 return ohdr; 577 } 578 579 struct rvt_sge_state; 580 581 /* 582 * Get/Set IB link-level config parameters for f_get/set_ib_cfg() 583 * Mostly for MADs that set or query link parameters, also ipath 584 * config interfaces 585 */ 586 #define HFI1_IB_CFG_LIDLMC 0 /* LID (LS16b) and Mask (MS16b) */ 587 #define HFI1_IB_CFG_LWID_DG_ENB 1 /* allowed Link-width downgrade */ 588 #define HFI1_IB_CFG_LWID_ENB 2 /* allowed Link-width */ 589 #define HFI1_IB_CFG_LWID 3 /* currently active Link-width */ 590 #define HFI1_IB_CFG_SPD_ENB 4 /* allowed Link speeds */ 591 #define HFI1_IB_CFG_SPD 5 /* current Link spd */ 592 #define HFI1_IB_CFG_RXPOL_ENB 6 /* Auto-RX-polarity enable */ 593 #define HFI1_IB_CFG_LREV_ENB 7 /* Auto-Lane-reversal enable */ 594 #define HFI1_IB_CFG_LINKLATENCY 8 /* Link Latency (IB1.2 only) */ 595 #define HFI1_IB_CFG_HRTBT 9 /* IB heartbeat off/enable/auto; DDR/QDR only */ 596 #define HFI1_IB_CFG_OP_VLS 10 /* operational VLs */ 597 #define HFI1_IB_CFG_VL_HIGH_CAP 11 /* num of VL high priority weights */ 598 #define HFI1_IB_CFG_VL_LOW_CAP 12 /* num of VL low priority weights */ 599 #define HFI1_IB_CFG_OVERRUN_THRESH 13 /* IB overrun threshold */ 600 #define HFI1_IB_CFG_PHYERR_THRESH 14 /* IB PHY error threshold */ 601 #define HFI1_IB_CFG_LINKDEFAULT 15 /* IB link default (sleep/poll) */ 602 #define HFI1_IB_CFG_PKEYS 16 /* update partition keys */ 603 #define HFI1_IB_CFG_MTU 17 /* update MTU in IBC */ 604 #define HFI1_IB_CFG_VL_HIGH_LIMIT 19 605 #define HFI1_IB_CFG_PMA_TICKS 20 /* PMA sample tick resolution */ 606 #define HFI1_IB_CFG_PORT 21 /* switch port we are connected to */ 607 608 /* 609 * HFI or Host Link States 610 * 611 * These describe the states the driver thinks the logical and physical 612 * states are in. Used as an argument to set_link_state(). Implemented 613 * as bits for easy multi-state checking. The actual state can only be 614 * one. 615 */ 616 #define __HLS_UP_INIT_BP 0 617 #define __HLS_UP_ARMED_BP 1 618 #define __HLS_UP_ACTIVE_BP 2 619 #define __HLS_DN_DOWNDEF_BP 3 /* link down default */ 620 #define __HLS_DN_POLL_BP 4 621 #define __HLS_DN_DISABLE_BP 5 622 #define __HLS_DN_OFFLINE_BP 6 623 #define __HLS_VERIFY_CAP_BP 7 624 #define __HLS_GOING_UP_BP 8 625 #define __HLS_GOING_OFFLINE_BP 9 626 #define __HLS_LINK_COOLDOWN_BP 10 627 628 #define HLS_UP_INIT BIT(__HLS_UP_INIT_BP) 629 #define HLS_UP_ARMED BIT(__HLS_UP_ARMED_BP) 630 #define HLS_UP_ACTIVE BIT(__HLS_UP_ACTIVE_BP) 631 #define HLS_DN_DOWNDEF BIT(__HLS_DN_DOWNDEF_BP) /* link down default */ 632 #define HLS_DN_POLL BIT(__HLS_DN_POLL_BP) 633 #define HLS_DN_DISABLE BIT(__HLS_DN_DISABLE_BP) 634 #define HLS_DN_OFFLINE BIT(__HLS_DN_OFFLINE_BP) 635 #define HLS_VERIFY_CAP BIT(__HLS_VERIFY_CAP_BP) 636 #define HLS_GOING_UP BIT(__HLS_GOING_UP_BP) 637 #define HLS_GOING_OFFLINE BIT(__HLS_GOING_OFFLINE_BP) 638 #define HLS_LINK_COOLDOWN BIT(__HLS_LINK_COOLDOWN_BP) 639 640 #define HLS_UP (HLS_UP_INIT | HLS_UP_ARMED | HLS_UP_ACTIVE) 641 #define HLS_DOWN ~(HLS_UP) 642 643 #define HLS_DEFAULT HLS_DN_POLL 644 645 /* use this MTU size if none other is given */ 646 #define HFI1_DEFAULT_ACTIVE_MTU 10240 647 /* use this MTU size as the default maximum */ 648 #define HFI1_DEFAULT_MAX_MTU 10240 649 /* default partition key */ 650 #define DEFAULT_PKEY 0xffff 651 652 /* 653 * Possible fabric manager config parameters for fm_{get,set}_table() 654 */ 655 #define FM_TBL_VL_HIGH_ARB 1 /* Get/set VL high prio weights */ 656 #define FM_TBL_VL_LOW_ARB 2 /* Get/set VL low prio weights */ 657 #define FM_TBL_BUFFER_CONTROL 3 /* Get/set Buffer Control */ 658 #define FM_TBL_SC2VLNT 4 /* Get/set SC->VLnt */ 659 #define FM_TBL_VL_PREEMPT_ELEMS 5 /* Get (no set) VL preempt elems */ 660 #define FM_TBL_VL_PREEMPT_MATRIX 6 /* Get (no set) VL preempt matrix */ 661 662 /* 663 * Possible "operations" for f_rcvctrl(ppd, op, ctxt) 664 * these are bits so they can be combined, e.g. 665 * HFI1_RCVCTRL_INTRAVAIL_ENB | HFI1_RCVCTRL_CTXT_ENB 666 */ 667 #define HFI1_RCVCTRL_TAILUPD_ENB 0x01 668 #define HFI1_RCVCTRL_TAILUPD_DIS 0x02 669 #define HFI1_RCVCTRL_CTXT_ENB 0x04 670 #define HFI1_RCVCTRL_CTXT_DIS 0x08 671 #define HFI1_RCVCTRL_INTRAVAIL_ENB 0x10 672 #define HFI1_RCVCTRL_INTRAVAIL_DIS 0x20 673 #define HFI1_RCVCTRL_PKEY_ENB 0x40 /* Note, default is enabled */ 674 #define HFI1_RCVCTRL_PKEY_DIS 0x80 675 #define HFI1_RCVCTRL_TIDFLOW_ENB 0x0400 676 #define HFI1_RCVCTRL_TIDFLOW_DIS 0x0800 677 #define HFI1_RCVCTRL_ONE_PKT_EGR_ENB 0x1000 678 #define HFI1_RCVCTRL_ONE_PKT_EGR_DIS 0x2000 679 #define HFI1_RCVCTRL_NO_RHQ_DROP_ENB 0x4000 680 #define HFI1_RCVCTRL_NO_RHQ_DROP_DIS 0x8000 681 #define HFI1_RCVCTRL_NO_EGR_DROP_ENB 0x10000 682 #define HFI1_RCVCTRL_NO_EGR_DROP_DIS 0x20000 683 #define HFI1_RCVCTRL_URGENT_ENB 0x40000 684 #define HFI1_RCVCTRL_URGENT_DIS 0x80000 685 686 /* partition enforcement flags */ 687 #define HFI1_PART_ENFORCE_IN 0x1 688 #define HFI1_PART_ENFORCE_OUT 0x2 689 690 /* how often we check for synthetic counter wrap around */ 691 #define SYNTH_CNT_TIME 3 692 693 /* Counter flags */ 694 #define CNTR_NORMAL 0x0 /* Normal counters, just read register */ 695 #define CNTR_SYNTH 0x1 /* Synthetic counters, saturate at all 1s */ 696 #define CNTR_DISABLED 0x2 /* Disable this counter */ 697 #define CNTR_32BIT 0x4 /* Simulate 64 bits for this counter */ 698 #define CNTR_VL 0x8 /* Per VL counter */ 699 #define CNTR_SDMA 0x10 700 #define CNTR_INVALID_VL -1 /* Specifies invalid VL */ 701 #define CNTR_MODE_W 0x0 702 #define CNTR_MODE_R 0x1 703 704 /* VLs Supported/Operational */ 705 #define HFI1_MIN_VLS_SUPPORTED 1 706 #define HFI1_MAX_VLS_SUPPORTED 8 707 708 #define HFI1_GUIDS_PER_PORT 5 709 #define HFI1_PORT_GUID_INDEX 0 710 711 static inline void incr_cntr64(u64 *cntr) 712 { 713 if (*cntr < (u64)-1LL) 714 (*cntr)++; 715 } 716 717 static inline void incr_cntr32(u32 *cntr) 718 { 719 if (*cntr < (u32)-1LL) 720 (*cntr)++; 721 } 722 723 #define MAX_NAME_SIZE 64 724 struct hfi1_msix_entry { 725 enum irq_type type; 726 int irq; 727 void *arg; 728 cpumask_t mask; 729 struct irq_affinity_notify notify; 730 }; 731 732 struct hfi1_msix_info { 733 /* lock to synchronize in_use_msix access */ 734 spinlock_t msix_lock; 735 DECLARE_BITMAP(in_use_msix, CCE_NUM_MSIX_VECTORS); 736 struct hfi1_msix_entry *msix_entries; 737 u16 max_requested; 738 }; 739 740 /* per-SL CCA information */ 741 struct cca_timer { 742 struct hrtimer hrtimer; 743 struct hfi1_pportdata *ppd; /* read-only */ 744 int sl; /* read-only */ 745 u16 ccti; /* read/write - current value of CCTI */ 746 }; 747 748 struct link_down_reason { 749 /* 750 * SMA-facing value. Should be set from .latest when 751 * HLS_UP_* -> HLS_DN_* transition actually occurs. 752 */ 753 u8 sma; 754 u8 latest; 755 }; 756 757 enum { 758 LO_PRIO_TABLE, 759 HI_PRIO_TABLE, 760 MAX_PRIO_TABLE 761 }; 762 763 struct vl_arb_cache { 764 /* protect vl arb cache */ 765 spinlock_t lock; 766 struct ib_vl_weight_elem table[VL_ARB_TABLE_SIZE]; 767 }; 768 769 /* 770 * The structure below encapsulates data relevant to a physical IB Port. 771 * Current chips support only one such port, but the separation 772 * clarifies things a bit. Note that to conform to IB conventions, 773 * port-numbers are one-based. The first or only port is port1. 774 */ 775 struct hfi1_pportdata { 776 struct hfi1_ibport ibport_data; 777 778 struct hfi1_devdata *dd; 779 struct kobject pport_cc_kobj; 780 struct kobject sc2vl_kobj; 781 struct kobject sl2sc_kobj; 782 struct kobject vl2mtu_kobj; 783 784 /* PHY support */ 785 struct qsfp_data qsfp_info; 786 /* Values for SI tuning of SerDes */ 787 u32 port_type; 788 u32 tx_preset_eq; 789 u32 tx_preset_noeq; 790 u32 rx_preset; 791 u8 local_atten; 792 u8 remote_atten; 793 u8 default_atten; 794 u8 max_power_class; 795 796 /* did we read platform config from scratch registers? */ 797 bool config_from_scratch; 798 799 /* GUIDs for this interface, in host order, guids[0] is a port guid */ 800 u64 guids[HFI1_GUIDS_PER_PORT]; 801 802 /* GUID for peer interface, in host order */ 803 u64 neighbor_guid; 804 805 /* up or down physical link state */ 806 u32 linkup; 807 808 /* 809 * this address is mapped read-only into user processes so they can 810 * get status cheaply, whenever they want. One qword of status per port 811 */ 812 u64 *statusp; 813 814 /* SendDMA related entries */ 815 816 struct workqueue_struct *hfi1_wq; 817 struct workqueue_struct *link_wq; 818 819 /* move out of interrupt context */ 820 struct work_struct link_vc_work; 821 struct work_struct link_up_work; 822 struct work_struct link_down_work; 823 struct work_struct sma_message_work; 824 struct work_struct freeze_work; 825 struct work_struct link_downgrade_work; 826 struct work_struct link_bounce_work; 827 struct delayed_work start_link_work; 828 /* host link state variables */ 829 struct mutex hls_lock; 830 u32 host_link_state; 831 832 /* these are the "32 bit" regs */ 833 834 u32 ibmtu; /* The MTU programmed for this unit */ 835 /* 836 * Current max size IB packet (in bytes) including IB headers, that 837 * we can send. Changes when ibmtu changes. 838 */ 839 u32 ibmaxlen; 840 u32 current_egress_rate; /* units [10^6 bits/sec] */ 841 /* LID programmed for this instance */ 842 u32 lid; 843 /* list of pkeys programmed; 0 if not set */ 844 u16 pkeys[MAX_PKEY_VALUES]; 845 u16 link_width_supported; 846 u16 link_width_downgrade_supported; 847 u16 link_speed_supported; 848 u16 link_width_enabled; 849 u16 link_width_downgrade_enabled; 850 u16 link_speed_enabled; 851 u16 link_width_active; 852 u16 link_width_downgrade_tx_active; 853 u16 link_width_downgrade_rx_active; 854 u16 link_speed_active; 855 u8 vls_supported; 856 u8 vls_operational; 857 u8 actual_vls_operational; 858 /* LID mask control */ 859 u8 lmc; 860 /* Rx Polarity inversion (compensate for ~tx on partner) */ 861 u8 rx_pol_inv; 862 863 u8 hw_pidx; /* physical port index */ 864 u8 port; /* IB port number and index into dd->pports - 1 */ 865 /* type of neighbor node */ 866 u8 neighbor_type; 867 u8 neighbor_normal; 868 u8 neighbor_fm_security; /* 1 if firmware checking is disabled */ 869 u8 neighbor_port_number; 870 u8 is_sm_config_started; 871 u8 offline_disabled_reason; 872 u8 is_active_optimize_enabled; 873 u8 driver_link_ready; /* driver ready for active link */ 874 u8 link_enabled; /* link enabled? */ 875 u8 linkinit_reason; 876 u8 local_tx_rate; /* rate given to 8051 firmware */ 877 u8 qsfp_retry_count; 878 879 /* placeholders for IB MAD packet settings */ 880 u8 overrun_threshold; 881 u8 phy_error_threshold; 882 unsigned int is_link_down_queued; 883 884 /* Used to override LED behavior for things like maintenance beaconing*/ 885 /* 886 * Alternates per phase of blink 887 * [0] holds LED off duration, [1] holds LED on duration 888 */ 889 unsigned long led_override_vals[2]; 890 u8 led_override_phase; /* LSB picks from vals[] */ 891 atomic_t led_override_timer_active; 892 /* Used to flash LEDs in override mode */ 893 struct timer_list led_override_timer; 894 895 u32 sm_trap_qp; 896 u32 sa_qp; 897 898 /* 899 * cca_timer_lock protects access to the per-SL cca_timer 900 * structures (specifically the ccti member). 901 */ 902 spinlock_t cca_timer_lock ____cacheline_aligned_in_smp; 903 struct cca_timer cca_timer[OPA_MAX_SLS]; 904 905 /* List of congestion control table entries */ 906 struct ib_cc_table_entry_shadow ccti_entries[CC_TABLE_SHADOW_MAX]; 907 908 /* congestion entries, each entry corresponding to a SL */ 909 struct opa_congestion_setting_entry_shadow 910 congestion_entries[OPA_MAX_SLS]; 911 912 /* 913 * cc_state_lock protects (write) access to the per-port 914 * struct cc_state. 915 */ 916 spinlock_t cc_state_lock ____cacheline_aligned_in_smp; 917 918 struct cc_state __rcu *cc_state; 919 920 /* Total number of congestion control table entries */ 921 u16 total_cct_entry; 922 923 /* Bit map identifying service level */ 924 u32 cc_sl_control_map; 925 926 /* CA's max number of 64 entry units in the congestion control table */ 927 u8 cc_max_table_entries; 928 929 /* 930 * begin congestion log related entries 931 * cc_log_lock protects all congestion log related data 932 */ 933 spinlock_t cc_log_lock ____cacheline_aligned_in_smp; 934 u8 threshold_cong_event_map[OPA_MAX_SLS / 8]; 935 u16 threshold_event_counter; 936 struct opa_hfi1_cong_log_event_internal cc_events[OPA_CONG_LOG_ELEMS]; 937 int cc_log_idx; /* index for logging events */ 938 int cc_mad_idx; /* index for reporting events */ 939 /* end congestion log related entries */ 940 941 struct vl_arb_cache vl_arb_cache[MAX_PRIO_TABLE]; 942 943 /* port relative counter buffer */ 944 u64 *cntrs; 945 /* port relative synthetic counter buffer */ 946 u64 *scntrs; 947 /* port_xmit_discards are synthesized from different egress errors */ 948 u64 port_xmit_discards; 949 u64 port_xmit_discards_vl[C_VL_COUNT]; 950 u64 port_xmit_constraint_errors; 951 u64 port_rcv_constraint_errors; 952 /* count of 'link_err' interrupts from DC */ 953 u64 link_downed; 954 /* number of times link retrained successfully */ 955 u64 link_up; 956 /* number of times a link unknown frame was reported */ 957 u64 unknown_frame_count; 958 /* port_ltp_crc_mode is returned in 'portinfo' MADs */ 959 u16 port_ltp_crc_mode; 960 /* port_crc_mode_enabled is the crc we support */ 961 u8 port_crc_mode_enabled; 962 /* mgmt_allowed is also returned in 'portinfo' MADs */ 963 u8 mgmt_allowed; 964 u8 part_enforce; /* partition enforcement flags */ 965 struct link_down_reason local_link_down_reason; 966 struct link_down_reason neigh_link_down_reason; 967 /* Value to be sent to link peer on LinkDown .*/ 968 u8 remote_link_down_reason; 969 /* Error events that will cause a port bounce. */ 970 u32 port_error_action; 971 struct work_struct linkstate_active_work; 972 /* Does this port need to prescan for FECNs */ 973 bool cc_prescan; 974 /* 975 * Sample sendWaitCnt & sendWaitVlCnt during link transition 976 * and counter request. 977 */ 978 u64 port_vl_xmit_wait_last[C_VL_COUNT + 1]; 979 u16 prev_link_width; 980 u64 vl_xmit_flit_cnt[C_VL_COUNT + 1]; 981 }; 982 983 typedef void (*opcode_handler)(struct hfi1_packet *packet); 984 typedef void (*hfi1_make_req)(struct rvt_qp *qp, 985 struct hfi1_pkt_state *ps, 986 struct rvt_swqe *wqe); 987 extern const rhf_rcv_function_ptr normal_rhf_rcv_functions[]; 988 989 990 /* return values for the RHF receive functions */ 991 #define RHF_RCV_CONTINUE 0 /* keep going */ 992 #define RHF_RCV_DONE 1 /* stop, this packet processed */ 993 #define RHF_RCV_REPROCESS 2 /* stop. retain this packet */ 994 995 struct rcv_array_data { 996 u16 ngroups; 997 u16 nctxt_extra; 998 u8 group_size; 999 }; 1000 1001 struct per_vl_data { 1002 u16 mtu; 1003 struct send_context *sc; 1004 }; 1005 1006 /* 16 to directly index */ 1007 #define PER_VL_SEND_CONTEXTS 16 1008 1009 struct err_info_rcvport { 1010 u8 status_and_code; 1011 u64 packet_flit1; 1012 u64 packet_flit2; 1013 }; 1014 1015 struct err_info_constraint { 1016 u8 status; 1017 u16 pkey; 1018 u32 slid; 1019 }; 1020 1021 struct hfi1_temp { 1022 unsigned int curr; /* current temperature */ 1023 unsigned int lo_lim; /* low temperature limit */ 1024 unsigned int hi_lim; /* high temperature limit */ 1025 unsigned int crit_lim; /* critical temperature limit */ 1026 u8 triggers; /* temperature triggers */ 1027 }; 1028 1029 struct hfi1_i2c_bus { 1030 struct hfi1_devdata *controlling_dd; /* current controlling device */ 1031 struct i2c_adapter adapter; /* bus details */ 1032 struct i2c_algo_bit_data algo; /* bus algorithm details */ 1033 int num; /* bus number, 0 or 1 */ 1034 }; 1035 1036 /* common data between shared ASIC HFIs */ 1037 struct hfi1_asic_data { 1038 struct hfi1_devdata *dds[2]; /* back pointers */ 1039 struct mutex asic_resource_mutex; 1040 struct hfi1_i2c_bus *i2c_bus0; 1041 struct hfi1_i2c_bus *i2c_bus1; 1042 }; 1043 1044 /* sizes for both the QP and RSM map tables */ 1045 #define NUM_MAP_ENTRIES 256 1046 #define NUM_MAP_REGS 32 1047 1048 /* 1049 * Number of VNIC contexts used. Ensure it is less than or equal to 1050 * max queues supported by VNIC (HFI1_VNIC_MAX_QUEUE). 1051 */ 1052 #define HFI1_NUM_VNIC_CTXT 8 1053 1054 /* Number of VNIC RSM entries */ 1055 #define NUM_VNIC_MAP_ENTRIES 8 1056 1057 /* Virtual NIC information */ 1058 struct hfi1_vnic_data { 1059 struct hfi1_ctxtdata *ctxt[HFI1_NUM_VNIC_CTXT]; 1060 struct kmem_cache *txreq_cache; 1061 struct xarray vesws; 1062 u8 num_vports; 1063 u8 rmt_start; 1064 u8 num_ctxt; 1065 }; 1066 1067 struct hfi1_vnic_vport_info; 1068 1069 /* device data struct now contains only "general per-device" info. 1070 * fields related to a physical IB port are in a hfi1_pportdata struct. 1071 */ 1072 struct sdma_engine; 1073 struct sdma_vl_map; 1074 1075 #define BOARD_VERS_MAX 96 /* how long the version string can be */ 1076 #define SERIAL_MAX 16 /* length of the serial number */ 1077 1078 typedef int (*send_routine)(struct rvt_qp *, struct hfi1_pkt_state *, u64); 1079 struct hfi1_devdata { 1080 struct hfi1_ibdev verbs_dev; /* must be first */ 1081 /* pointers to related structs for this device */ 1082 /* pci access data structure */ 1083 struct pci_dev *pcidev; 1084 struct cdev user_cdev; 1085 struct cdev diag_cdev; 1086 struct cdev ui_cdev; 1087 struct device *user_device; 1088 struct device *diag_device; 1089 struct device *ui_device; 1090 1091 /* first mapping up to RcvArray */ 1092 u8 __iomem *kregbase1; 1093 resource_size_t physaddr; 1094 1095 /* second uncached mapping from RcvArray to pio send buffers */ 1096 u8 __iomem *kregbase2; 1097 /* for detecting offset above kregbase2 address */ 1098 u32 base2_start; 1099 1100 /* Per VL data. Enough for all VLs but not all elements are set/used. */ 1101 struct per_vl_data vld[PER_VL_SEND_CONTEXTS]; 1102 /* send context data */ 1103 struct send_context_info *send_contexts; 1104 /* map hardware send contexts to software index */ 1105 u8 *hw_to_sw; 1106 /* spinlock for allocating and releasing send context resources */ 1107 spinlock_t sc_lock; 1108 /* lock for pio_map */ 1109 spinlock_t pio_map_lock; 1110 /* Send Context initialization lock. */ 1111 spinlock_t sc_init_lock; 1112 /* lock for sdma_map */ 1113 spinlock_t sde_map_lock; 1114 /* array of kernel send contexts */ 1115 struct send_context **kernel_send_context; 1116 /* array of vl maps */ 1117 struct pio_vl_map __rcu *pio_map; 1118 /* default flags to last descriptor */ 1119 u64 default_desc1; 1120 1121 /* fields common to all SDMA engines */ 1122 1123 volatile __le64 *sdma_heads_dma; /* DMA'ed by chip */ 1124 dma_addr_t sdma_heads_phys; 1125 void *sdma_pad_dma; /* DMA'ed by chip */ 1126 dma_addr_t sdma_pad_phys; 1127 /* for deallocation */ 1128 size_t sdma_heads_size; 1129 /* num used */ 1130 u32 num_sdma; 1131 /* array of engines sized by num_sdma */ 1132 struct sdma_engine *per_sdma; 1133 /* array of vl maps */ 1134 struct sdma_vl_map __rcu *sdma_map; 1135 /* SPC freeze waitqueue and variable */ 1136 wait_queue_head_t sdma_unfreeze_wq; 1137 atomic_t sdma_unfreeze_count; 1138 1139 u32 lcb_access_count; /* count of LCB users */ 1140 1141 /* common data between shared ASIC HFIs in this OS */ 1142 struct hfi1_asic_data *asic_data; 1143 1144 /* mem-mapped pointer to base of PIO buffers */ 1145 void __iomem *piobase; 1146 /* 1147 * write-combining mem-mapped pointer to base of RcvArray 1148 * memory. 1149 */ 1150 void __iomem *rcvarray_wc; 1151 /* 1152 * credit return base - a per-NUMA range of DMA address that 1153 * the chip will use to update the per-context free counter 1154 */ 1155 struct credit_return_base *cr_base; 1156 1157 /* send context numbers and sizes for each type */ 1158 struct sc_config_sizes sc_sizes[SC_MAX]; 1159 1160 char *boardname; /* human readable board info */ 1161 1162 u64 ctx0_seq_drop; 1163 1164 /* reset value */ 1165 u64 z_int_counter; 1166 u64 z_rcv_limit; 1167 u64 z_send_schedule; 1168 1169 u64 __percpu *send_schedule; 1170 /* number of reserved contexts for VNIC usage */ 1171 u16 num_vnic_contexts; 1172 /* number of receive contexts in use by the driver */ 1173 u32 num_rcv_contexts; 1174 /* number of pio send contexts in use by the driver */ 1175 u32 num_send_contexts; 1176 /* 1177 * number of ctxts available for PSM open 1178 */ 1179 u32 freectxts; 1180 /* total number of available user/PSM contexts */ 1181 u32 num_user_contexts; 1182 /* base receive interrupt timeout, in CSR units */ 1183 u32 rcv_intr_timeout_csr; 1184 1185 spinlock_t sendctrl_lock; /* protect changes to SendCtrl */ 1186 spinlock_t rcvctrl_lock; /* protect changes to RcvCtrl */ 1187 spinlock_t uctxt_lock; /* protect rcd changes */ 1188 struct mutex dc8051_lock; /* exclusive access to 8051 */ 1189 struct workqueue_struct *update_cntr_wq; 1190 struct work_struct update_cntr_work; 1191 /* exclusive access to 8051 memory */ 1192 spinlock_t dc8051_memlock; 1193 int dc8051_timed_out; /* remember if the 8051 timed out */ 1194 /* 1195 * A page that will hold event notification bitmaps for all 1196 * contexts. This page will be mapped into all processes. 1197 */ 1198 unsigned long *events; 1199 /* 1200 * per unit status, see also portdata statusp 1201 * mapped read-only into user processes so they can get unit and 1202 * IB link status cheaply 1203 */ 1204 struct hfi1_status *status; 1205 1206 /* revision register shadow */ 1207 u64 revision; 1208 /* Base GUID for device (network order) */ 1209 u64 base_guid; 1210 1211 /* both sides of the PCIe link are gen3 capable */ 1212 u8 link_gen3_capable; 1213 u8 dc_shutdown; 1214 /* localbus width (1, 2,4,8,16,32) from config space */ 1215 u32 lbus_width; 1216 /* localbus speed in MHz */ 1217 u32 lbus_speed; 1218 int unit; /* unit # of this chip */ 1219 int node; /* home node of this chip */ 1220 1221 /* save these PCI fields to restore after a reset */ 1222 u32 pcibar0; 1223 u32 pcibar1; 1224 u32 pci_rom; 1225 u16 pci_command; 1226 u16 pcie_devctl; 1227 u16 pcie_lnkctl; 1228 u16 pcie_devctl2; 1229 u32 pci_msix0; 1230 u32 pci_tph2; 1231 1232 /* 1233 * ASCII serial number, from flash, large enough for original 1234 * all digit strings, and longer serial number format 1235 */ 1236 u8 serial[SERIAL_MAX]; 1237 /* human readable board version */ 1238 u8 boardversion[BOARD_VERS_MAX]; 1239 u8 lbus_info[32]; /* human readable localbus info */ 1240 /* chip major rev, from CceRevision */ 1241 u8 majrev; 1242 /* chip minor rev, from CceRevision */ 1243 u8 minrev; 1244 /* hardware ID */ 1245 u8 hfi1_id; 1246 /* implementation code */ 1247 u8 icode; 1248 /* vAU of this device */ 1249 u8 vau; 1250 /* vCU of this device */ 1251 u8 vcu; 1252 /* link credits of this device */ 1253 u16 link_credits; 1254 /* initial vl15 credits to use */ 1255 u16 vl15_init; 1256 1257 /* 1258 * Cached value for vl15buf, read during verify cap interrupt. VL15 1259 * credits are to be kept at 0 and set when handling the link-up 1260 * interrupt. This removes the possibility of receiving VL15 MAD 1261 * packets before this HFI is ready. 1262 */ 1263 u16 vl15buf_cached; 1264 1265 /* Misc small ints */ 1266 u8 n_krcv_queues; 1267 u8 qos_shift; 1268 1269 u16 irev; /* implementation revision */ 1270 u32 dc8051_ver; /* 8051 firmware version */ 1271 1272 spinlock_t hfi1_diag_trans_lock; /* protect diag observer ops */ 1273 struct platform_config platform_config; 1274 struct platform_config_cache pcfg_cache; 1275 1276 struct diag_client *diag_client; 1277 1278 /* general interrupt: mask of handled interrupts */ 1279 u64 gi_mask[CCE_NUM_INT_CSRS]; 1280 1281 struct rcv_array_data rcv_entries; 1282 1283 /* cycle length of PS* counters in HW (in picoseconds) */ 1284 u16 psxmitwait_check_rate; 1285 1286 /* 1287 * 64 bit synthetic counters 1288 */ 1289 struct timer_list synth_stats_timer; 1290 1291 /* MSI-X information */ 1292 struct hfi1_msix_info msix_info; 1293 1294 /* 1295 * device counters 1296 */ 1297 char *cntrnames; 1298 size_t cntrnameslen; 1299 size_t ndevcntrs; 1300 u64 *cntrs; 1301 u64 *scntrs; 1302 1303 /* 1304 * remembered values for synthetic counters 1305 */ 1306 u64 last_tx; 1307 u64 last_rx; 1308 1309 /* 1310 * per-port counters 1311 */ 1312 size_t nportcntrs; 1313 char *portcntrnames; 1314 size_t portcntrnameslen; 1315 1316 struct err_info_rcvport err_info_rcvport; 1317 struct err_info_constraint err_info_rcv_constraint; 1318 struct err_info_constraint err_info_xmit_constraint; 1319 1320 atomic_t drop_packet; 1321 bool do_drop; 1322 u8 err_info_uncorrectable; 1323 u8 err_info_fmconfig; 1324 1325 /* 1326 * Software counters for the status bits defined by the 1327 * associated error status registers 1328 */ 1329 u64 cce_err_status_cnt[NUM_CCE_ERR_STATUS_COUNTERS]; 1330 u64 rcv_err_status_cnt[NUM_RCV_ERR_STATUS_COUNTERS]; 1331 u64 misc_err_status_cnt[NUM_MISC_ERR_STATUS_COUNTERS]; 1332 u64 send_pio_err_status_cnt[NUM_SEND_PIO_ERR_STATUS_COUNTERS]; 1333 u64 send_dma_err_status_cnt[NUM_SEND_DMA_ERR_STATUS_COUNTERS]; 1334 u64 send_egress_err_status_cnt[NUM_SEND_EGRESS_ERR_STATUS_COUNTERS]; 1335 u64 send_err_status_cnt[NUM_SEND_ERR_STATUS_COUNTERS]; 1336 1337 /* Software counter that spans all contexts */ 1338 u64 sw_ctxt_err_status_cnt[NUM_SEND_CTXT_ERR_STATUS_COUNTERS]; 1339 /* Software counter that spans all DMA engines */ 1340 u64 sw_send_dma_eng_err_status_cnt[ 1341 NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS]; 1342 /* Software counter that aggregates all cce_err_status errors */ 1343 u64 sw_cce_err_status_aggregate; 1344 /* Software counter that aggregates all bypass packet rcv errors */ 1345 u64 sw_rcv_bypass_packet_errors; 1346 1347 /* Save the enabled LCB error bits */ 1348 u64 lcb_err_en; 1349 struct cpu_mask_set *comp_vect; 1350 int *comp_vect_mappings; 1351 u32 comp_vect_possible_cpus; 1352 1353 /* 1354 * Capability to have different send engines simply by changing a 1355 * pointer value. 1356 */ 1357 send_routine process_pio_send ____cacheline_aligned_in_smp; 1358 send_routine process_dma_send; 1359 void (*pio_inline_send)(struct hfi1_devdata *dd, struct pio_buf *pbuf, 1360 u64 pbc, const void *from, size_t count); 1361 int (*process_vnic_dma_send)(struct hfi1_devdata *dd, u8 q_idx, 1362 struct hfi1_vnic_vport_info *vinfo, 1363 struct sk_buff *skb, u64 pbc, u8 plen); 1364 /* hfi1_pportdata, points to array of (physical) port-specific 1365 * data structs, indexed by pidx (0..n-1) 1366 */ 1367 struct hfi1_pportdata *pport; 1368 /* receive context data */ 1369 struct hfi1_ctxtdata **rcd; 1370 u64 __percpu *int_counter; 1371 /* verbs tx opcode stats */ 1372 struct hfi1_opcode_stats_perctx __percpu *tx_opstats; 1373 /* device (not port) flags, basically device capabilities */ 1374 u16 flags; 1375 /* Number of physical ports available */ 1376 u8 num_pports; 1377 /* Lowest context number which can be used by user processes or VNIC */ 1378 u8 first_dyn_alloc_ctxt; 1379 /* adding a new field here would make it part of this cacheline */ 1380 1381 /* seqlock for sc2vl */ 1382 seqlock_t sc2vl_lock ____cacheline_aligned_in_smp; 1383 u64 sc2vl[4]; 1384 u64 __percpu *rcv_limit; 1385 /* adding a new field here would make it part of this cacheline */ 1386 1387 /* OUI comes from the HW. Used everywhere as 3 separate bytes. */ 1388 u8 oui1; 1389 u8 oui2; 1390 u8 oui3; 1391 1392 /* Timer and counter used to detect RcvBufOvflCnt changes */ 1393 struct timer_list rcverr_timer; 1394 1395 wait_queue_head_t event_queue; 1396 1397 /* receive context tail dummy address */ 1398 __le64 *rcvhdrtail_dummy_kvaddr; 1399 dma_addr_t rcvhdrtail_dummy_dma; 1400 1401 u32 rcv_ovfl_cnt; 1402 /* Serialize ASPM enable/disable between multiple verbs contexts */ 1403 spinlock_t aspm_lock; 1404 /* Number of verbs contexts which have disabled ASPM */ 1405 atomic_t aspm_disabled_cnt; 1406 /* Keeps track of user space clients */ 1407 atomic_t user_refcount; 1408 /* Used to wait for outstanding user space clients before dev removal */ 1409 struct completion user_comp; 1410 1411 bool eprom_available; /* true if EPROM is available for this device */ 1412 bool aspm_supported; /* Does HW support ASPM */ 1413 bool aspm_enabled; /* ASPM state: enabled/disabled */ 1414 struct rhashtable *sdma_rht; 1415 1416 struct kobject kobj; 1417 1418 /* vnic data */ 1419 struct hfi1_vnic_data vnic; 1420 /* Lock to protect IRQ SRC register access */ 1421 spinlock_t irq_src_lock; 1422 }; 1423 1424 static inline bool hfi1_vnic_is_rsm_full(struct hfi1_devdata *dd, int spare) 1425 { 1426 return (dd->vnic.rmt_start + spare) > NUM_MAP_ENTRIES; 1427 } 1428 1429 /* 8051 firmware version helper */ 1430 #define dc8051_ver(a, b, c) ((a) << 16 | (b) << 8 | (c)) 1431 #define dc8051_ver_maj(a) (((a) & 0xff0000) >> 16) 1432 #define dc8051_ver_min(a) (((a) & 0x00ff00) >> 8) 1433 #define dc8051_ver_patch(a) ((a) & 0x0000ff) 1434 1435 /* f_put_tid types */ 1436 #define PT_EXPECTED 0 1437 #define PT_EAGER 1 1438 #define PT_INVALID_FLUSH 2 1439 #define PT_INVALID 3 1440 1441 struct tid_rb_node; 1442 struct mmu_rb_node; 1443 struct mmu_rb_handler; 1444 1445 /* Private data for file operations */ 1446 struct hfi1_filedata { 1447 struct srcu_struct pq_srcu; 1448 struct hfi1_devdata *dd; 1449 struct hfi1_ctxtdata *uctxt; 1450 struct hfi1_user_sdma_comp_q *cq; 1451 /* update side lock for SRCU */ 1452 spinlock_t pq_rcu_lock; 1453 struct hfi1_user_sdma_pkt_q __rcu *pq; 1454 u16 subctxt; 1455 /* for cpu affinity; -1 if none */ 1456 int rec_cpu_num; 1457 u32 tid_n_pinned; 1458 bool use_mn; 1459 struct tid_rb_node **entry_to_rb; 1460 spinlock_t tid_lock; /* protect tid_[limit,used] counters */ 1461 u32 tid_limit; 1462 u32 tid_used; 1463 u32 *invalid_tids; 1464 u32 invalid_tid_idx; 1465 /* protect invalid_tids array and invalid_tid_idx */ 1466 spinlock_t invalid_lock; 1467 struct mm_struct *mm; 1468 }; 1469 1470 extern struct xarray hfi1_dev_table; 1471 struct hfi1_devdata *hfi1_lookup(int unit); 1472 1473 static inline unsigned long uctxt_offset(struct hfi1_ctxtdata *uctxt) 1474 { 1475 return (uctxt->ctxt - uctxt->dd->first_dyn_alloc_ctxt) * 1476 HFI1_MAX_SHARED_CTXTS; 1477 } 1478 1479 int hfi1_init(struct hfi1_devdata *dd, int reinit); 1480 int hfi1_count_active_units(void); 1481 1482 int hfi1_diag_add(struct hfi1_devdata *dd); 1483 void hfi1_diag_remove(struct hfi1_devdata *dd); 1484 void handle_linkup_change(struct hfi1_devdata *dd, u32 linkup); 1485 1486 void handle_user_interrupt(struct hfi1_ctxtdata *rcd); 1487 1488 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd); 1489 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd); 1490 int hfi1_create_kctxts(struct hfi1_devdata *dd); 1491 int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa, 1492 struct hfi1_ctxtdata **rcd); 1493 void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd); 1494 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd, 1495 struct hfi1_devdata *dd, u8 hw_pidx, u8 port); 1496 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd); 1497 int hfi1_rcd_put(struct hfi1_ctxtdata *rcd); 1498 int hfi1_rcd_get(struct hfi1_ctxtdata *rcd); 1499 struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd, 1500 u16 ctxt); 1501 struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt); 1502 int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread); 1503 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread); 1504 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread); 1505 void set_all_slowpath(struct hfi1_devdata *dd); 1506 1507 extern const struct pci_device_id hfi1_pci_tbl[]; 1508 void hfi1_make_ud_req_9B(struct rvt_qp *qp, 1509 struct hfi1_pkt_state *ps, 1510 struct rvt_swqe *wqe); 1511 1512 void hfi1_make_ud_req_16B(struct rvt_qp *qp, 1513 struct hfi1_pkt_state *ps, 1514 struct rvt_swqe *wqe); 1515 1516 /* receive packet handler dispositions */ 1517 #define RCV_PKT_OK 0x0 /* keep going */ 1518 #define RCV_PKT_LIMIT 0x1 /* stop, hit limit, start thread */ 1519 #define RCV_PKT_DONE 0x2 /* stop, no more packets detected */ 1520 1521 /** 1522 * hfi1_rcd_head - add accessor for rcd head 1523 * @rcd: the context 1524 */ 1525 static inline u32 hfi1_rcd_head(struct hfi1_ctxtdata *rcd) 1526 { 1527 return rcd->head; 1528 } 1529 1530 /** 1531 * hfi1_set_rcd_head - add accessor for rcd head 1532 * @rcd: the context 1533 * @head: the new head 1534 */ 1535 static inline void hfi1_set_rcd_head(struct hfi1_ctxtdata *rcd, u32 head) 1536 { 1537 rcd->head = head; 1538 } 1539 1540 /* calculate the current RHF address */ 1541 static inline __le32 *get_rhf_addr(struct hfi1_ctxtdata *rcd) 1542 { 1543 return (__le32 *)rcd->rcvhdrq + rcd->head + rcd->rhf_offset; 1544 } 1545 1546 /* return DMA_RTAIL configuration */ 1547 static inline bool get_dma_rtail_setting(struct hfi1_ctxtdata *rcd) 1548 { 1549 return !!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL); 1550 } 1551 1552 /** 1553 * hfi1_seq_incr_wrap - wrapping increment for sequence 1554 * @seq: the current sequence number 1555 * 1556 * Returns: the incremented seq 1557 */ 1558 static inline u8 hfi1_seq_incr_wrap(u8 seq) 1559 { 1560 if (++seq > RHF_MAX_SEQ) 1561 seq = 1; 1562 return seq; 1563 } 1564 1565 /** 1566 * hfi1_seq_cnt - return seq_cnt member 1567 * @rcd: the receive context 1568 * 1569 * Return seq_cnt member 1570 */ 1571 static inline u8 hfi1_seq_cnt(struct hfi1_ctxtdata *rcd) 1572 { 1573 return rcd->seq_cnt; 1574 } 1575 1576 /** 1577 * hfi1_set_seq_cnt - return seq_cnt member 1578 * @rcd: the receive context 1579 * 1580 * Return seq_cnt member 1581 */ 1582 static inline void hfi1_set_seq_cnt(struct hfi1_ctxtdata *rcd, u8 cnt) 1583 { 1584 rcd->seq_cnt = cnt; 1585 } 1586 1587 /** 1588 * last_rcv_seq - is last 1589 * @rcd: the receive context 1590 * @seq: sequence 1591 * 1592 * return true if last packet 1593 */ 1594 static inline bool last_rcv_seq(struct hfi1_ctxtdata *rcd, u32 seq) 1595 { 1596 return seq != rcd->seq_cnt; 1597 } 1598 1599 /** 1600 * rcd_seq_incr - increment context sequence number 1601 * @rcd: the receive context 1602 * @seq: the current sequence number 1603 * 1604 * Returns: true if the this was the last packet 1605 */ 1606 static inline bool hfi1_seq_incr(struct hfi1_ctxtdata *rcd, u32 seq) 1607 { 1608 rcd->seq_cnt = hfi1_seq_incr_wrap(rcd->seq_cnt); 1609 return last_rcv_seq(rcd, seq); 1610 } 1611 1612 /** 1613 * get_hdrqentsize - return hdrq entry size 1614 * @rcd: the receive context 1615 */ 1616 static inline u8 get_hdrqentsize(struct hfi1_ctxtdata *rcd) 1617 { 1618 return rcd->rcvhdrqentsize; 1619 } 1620 1621 /** 1622 * get_hdrq_cnt - return hdrq count 1623 * @rcd: the receive context 1624 */ 1625 static inline u16 get_hdrq_cnt(struct hfi1_ctxtdata *rcd) 1626 { 1627 return rcd->rcvhdrq_cnt; 1628 } 1629 1630 /** 1631 * hfi1_is_slowpath - check if this context is slow path 1632 * @rcd: the receive context 1633 */ 1634 static inline bool hfi1_is_slowpath(struct hfi1_ctxtdata *rcd) 1635 { 1636 return rcd->do_interrupt == rcd->slow_handler; 1637 } 1638 1639 /** 1640 * hfi1_is_fastpath - check if this context is fast path 1641 * @rcd: the receive context 1642 */ 1643 static inline bool hfi1_is_fastpath(struct hfi1_ctxtdata *rcd) 1644 { 1645 if (rcd->ctxt == HFI1_CTRL_CTXT) 1646 return false; 1647 1648 return rcd->do_interrupt == rcd->fast_handler; 1649 } 1650 1651 /** 1652 * hfi1_set_fast - change to the fast handler 1653 * @rcd: the receive context 1654 */ 1655 static inline void hfi1_set_fast(struct hfi1_ctxtdata *rcd) 1656 { 1657 if (unlikely(!rcd)) 1658 return; 1659 if (unlikely(!hfi1_is_fastpath(rcd))) 1660 rcd->do_interrupt = rcd->fast_handler; 1661 } 1662 1663 int hfi1_reset_device(int); 1664 1665 void receive_interrupt_work(struct work_struct *work); 1666 1667 /* extract service channel from header and rhf */ 1668 static inline int hfi1_9B_get_sc5(struct ib_header *hdr, u64 rhf) 1669 { 1670 return ib_get_sc(hdr) | ((!!(rhf_dc_info(rhf))) << 4); 1671 } 1672 1673 #define HFI1_JKEY_WIDTH 16 1674 #define HFI1_JKEY_MASK (BIT(16) - 1) 1675 #define HFI1_ADMIN_JKEY_RANGE 32 1676 1677 /* 1678 * J_KEYs are split and allocated in the following groups: 1679 * 0 - 31 - users with administrator privileges 1680 * 32 - 63 - kernel protocols using KDETH packets 1681 * 64 - 65535 - all other users using KDETH packets 1682 */ 1683 static inline u16 generate_jkey(kuid_t uid) 1684 { 1685 u16 jkey = from_kuid(current_user_ns(), uid) & HFI1_JKEY_MASK; 1686 1687 if (capable(CAP_SYS_ADMIN)) 1688 jkey &= HFI1_ADMIN_JKEY_RANGE - 1; 1689 else if (jkey < 64) 1690 jkey |= BIT(HFI1_JKEY_WIDTH - 1); 1691 1692 return jkey; 1693 } 1694 1695 /* 1696 * active_egress_rate 1697 * 1698 * returns the active egress rate in units of [10^6 bits/sec] 1699 */ 1700 static inline u32 active_egress_rate(struct hfi1_pportdata *ppd) 1701 { 1702 u16 link_speed = ppd->link_speed_active; 1703 u16 link_width = ppd->link_width_active; 1704 u32 egress_rate; 1705 1706 if (link_speed == OPA_LINK_SPEED_25G) 1707 egress_rate = 25000; 1708 else /* assume OPA_LINK_SPEED_12_5G */ 1709 egress_rate = 12500; 1710 1711 switch (link_width) { 1712 case OPA_LINK_WIDTH_4X: 1713 egress_rate *= 4; 1714 break; 1715 case OPA_LINK_WIDTH_3X: 1716 egress_rate *= 3; 1717 break; 1718 case OPA_LINK_WIDTH_2X: 1719 egress_rate *= 2; 1720 break; 1721 default: 1722 /* assume IB_WIDTH_1X */ 1723 break; 1724 } 1725 1726 return egress_rate; 1727 } 1728 1729 /* 1730 * egress_cycles 1731 * 1732 * Returns the number of 'fabric clock cycles' to egress a packet 1733 * of length 'len' bytes, at 'rate' Mbit/s. Since the fabric clock 1734 * rate is (approximately) 805 MHz, the units of the returned value 1735 * are (1/805 MHz). 1736 */ 1737 static inline u32 egress_cycles(u32 len, u32 rate) 1738 { 1739 u32 cycles; 1740 1741 /* 1742 * cycles is: 1743 * 1744 * (length) [bits] / (rate) [bits/sec] 1745 * --------------------------------------------------- 1746 * fabric_clock_period == 1 /(805 * 10^6) [cycles/sec] 1747 */ 1748 1749 cycles = len * 8; /* bits */ 1750 cycles *= 805; 1751 cycles /= rate; 1752 1753 return cycles; 1754 } 1755 1756 void set_link_ipg(struct hfi1_pportdata *ppd); 1757 void process_becn(struct hfi1_pportdata *ppd, u8 sl, u32 rlid, u32 lqpn, 1758 u32 rqpn, u8 svc_type); 1759 void return_cnp(struct hfi1_ibport *ibp, struct rvt_qp *qp, u32 remote_qpn, 1760 u16 pkey, u32 slid, u32 dlid, u8 sc5, 1761 const struct ib_grh *old_grh); 1762 void return_cnp_16B(struct hfi1_ibport *ibp, struct rvt_qp *qp, 1763 u32 remote_qpn, u16 pkey, u32 slid, u32 dlid, 1764 u8 sc5, const struct ib_grh *old_grh); 1765 typedef void (*hfi1_handle_cnp)(struct hfi1_ibport *ibp, struct rvt_qp *qp, 1766 u32 remote_qpn, u16 pkey, u32 slid, u32 dlid, 1767 u8 sc5, const struct ib_grh *old_grh); 1768 1769 #define PKEY_CHECK_INVALID -1 1770 int egress_pkey_check(struct hfi1_pportdata *ppd, u32 slid, u16 pkey, 1771 u8 sc5, int8_t s_pkey_index); 1772 1773 #define PACKET_EGRESS_TIMEOUT 350 1774 static inline void pause_for_credit_return(struct hfi1_devdata *dd) 1775 { 1776 /* Pause at least 1us, to ensure chip returns all credits */ 1777 u32 usec = cclock_to_ns(dd, PACKET_EGRESS_TIMEOUT) / 1000; 1778 1779 udelay(usec ? usec : 1); 1780 } 1781 1782 /** 1783 * sc_to_vlt() reverse lookup sc to vl 1784 * @dd - devdata 1785 * @sc5 - 5 bit sc 1786 */ 1787 static inline u8 sc_to_vlt(struct hfi1_devdata *dd, u8 sc5) 1788 { 1789 unsigned seq; 1790 u8 rval; 1791 1792 if (sc5 >= OPA_MAX_SCS) 1793 return (u8)(0xff); 1794 1795 do { 1796 seq = read_seqbegin(&dd->sc2vl_lock); 1797 rval = *(((u8 *)dd->sc2vl) + sc5); 1798 } while (read_seqretry(&dd->sc2vl_lock, seq)); 1799 1800 return rval; 1801 } 1802 1803 #define PKEY_MEMBER_MASK 0x8000 1804 #define PKEY_LOW_15_MASK 0x7fff 1805 1806 /* 1807 * ingress_pkey_matches_entry - return 1 if the pkey matches ent (ent 1808 * being an entry from the ingress partition key table), return 0 1809 * otherwise. Use the matching criteria for ingress partition keys 1810 * specified in the OPAv1 spec., section 9.10.14. 1811 */ 1812 static inline int ingress_pkey_matches_entry(u16 pkey, u16 ent) 1813 { 1814 u16 mkey = pkey & PKEY_LOW_15_MASK; 1815 u16 ment = ent & PKEY_LOW_15_MASK; 1816 1817 if (mkey == ment) { 1818 /* 1819 * If pkey[15] is clear (limited partition member), 1820 * is bit 15 in the corresponding table element 1821 * clear (limited member)? 1822 */ 1823 if (!(pkey & PKEY_MEMBER_MASK)) 1824 return !!(ent & PKEY_MEMBER_MASK); 1825 return 1; 1826 } 1827 return 0; 1828 } 1829 1830 /* 1831 * ingress_pkey_table_search - search the entire pkey table for 1832 * an entry which matches 'pkey'. return 0 if a match is found, 1833 * and 1 otherwise. 1834 */ 1835 static int ingress_pkey_table_search(struct hfi1_pportdata *ppd, u16 pkey) 1836 { 1837 int i; 1838 1839 for (i = 0; i < MAX_PKEY_VALUES; i++) { 1840 if (ingress_pkey_matches_entry(pkey, ppd->pkeys[i])) 1841 return 0; 1842 } 1843 return 1; 1844 } 1845 1846 /* 1847 * ingress_pkey_table_fail - record a failure of ingress pkey validation, 1848 * i.e., increment port_rcv_constraint_errors for the port, and record 1849 * the 'error info' for this failure. 1850 */ 1851 static void ingress_pkey_table_fail(struct hfi1_pportdata *ppd, u16 pkey, 1852 u32 slid) 1853 { 1854 struct hfi1_devdata *dd = ppd->dd; 1855 1856 incr_cntr64(&ppd->port_rcv_constraint_errors); 1857 if (!(dd->err_info_rcv_constraint.status & OPA_EI_STATUS_SMASK)) { 1858 dd->err_info_rcv_constraint.status |= OPA_EI_STATUS_SMASK; 1859 dd->err_info_rcv_constraint.slid = slid; 1860 dd->err_info_rcv_constraint.pkey = pkey; 1861 } 1862 } 1863 1864 /* 1865 * ingress_pkey_check - Return 0 if the ingress pkey is valid, return 1 1866 * otherwise. Use the criteria in the OPAv1 spec, section 9.10.14. idx 1867 * is a hint as to the best place in the partition key table to begin 1868 * searching. This function should not be called on the data path because 1869 * of performance reasons. On datapath pkey check is expected to be done 1870 * by HW and rcv_pkey_check function should be called instead. 1871 */ 1872 static inline int ingress_pkey_check(struct hfi1_pportdata *ppd, u16 pkey, 1873 u8 sc5, u8 idx, u32 slid, bool force) 1874 { 1875 if (!(force) && !(ppd->part_enforce & HFI1_PART_ENFORCE_IN)) 1876 return 0; 1877 1878 /* If SC15, pkey[0:14] must be 0x7fff */ 1879 if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK)) 1880 goto bad; 1881 1882 /* Is the pkey = 0x0, or 0x8000? */ 1883 if ((pkey & PKEY_LOW_15_MASK) == 0) 1884 goto bad; 1885 1886 /* The most likely matching pkey has index 'idx' */ 1887 if (ingress_pkey_matches_entry(pkey, ppd->pkeys[idx])) 1888 return 0; 1889 1890 /* no match - try the whole table */ 1891 if (!ingress_pkey_table_search(ppd, pkey)) 1892 return 0; 1893 1894 bad: 1895 ingress_pkey_table_fail(ppd, pkey, slid); 1896 return 1; 1897 } 1898 1899 /* 1900 * rcv_pkey_check - Return 0 if the ingress pkey is valid, return 1 1901 * otherwise. It only ensures pkey is vlid for QP0. This function 1902 * should be called on the data path instead of ingress_pkey_check 1903 * as on data path, pkey check is done by HW (except for QP0). 1904 */ 1905 static inline int rcv_pkey_check(struct hfi1_pportdata *ppd, u16 pkey, 1906 u8 sc5, u16 slid) 1907 { 1908 if (!(ppd->part_enforce & HFI1_PART_ENFORCE_IN)) 1909 return 0; 1910 1911 /* If SC15, pkey[0:14] must be 0x7fff */ 1912 if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK)) 1913 goto bad; 1914 1915 return 0; 1916 bad: 1917 ingress_pkey_table_fail(ppd, pkey, slid); 1918 return 1; 1919 } 1920 1921 /* MTU handling */ 1922 1923 /* MTU enumeration, 256-4k match IB */ 1924 #define OPA_MTU_0 0 1925 #define OPA_MTU_256 1 1926 #define OPA_MTU_512 2 1927 #define OPA_MTU_1024 3 1928 #define OPA_MTU_2048 4 1929 #define OPA_MTU_4096 5 1930 1931 u32 lrh_max_header_bytes(struct hfi1_devdata *dd); 1932 int mtu_to_enum(u32 mtu, int default_if_bad); 1933 u16 enum_to_mtu(int mtu); 1934 static inline int valid_ib_mtu(unsigned int mtu) 1935 { 1936 return mtu == 256 || mtu == 512 || 1937 mtu == 1024 || mtu == 2048 || 1938 mtu == 4096; 1939 } 1940 1941 static inline int valid_opa_max_mtu(unsigned int mtu) 1942 { 1943 return mtu >= 2048 && 1944 (valid_ib_mtu(mtu) || mtu == 8192 || mtu == 10240); 1945 } 1946 1947 int set_mtu(struct hfi1_pportdata *ppd); 1948 1949 int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc); 1950 void hfi1_disable_after_error(struct hfi1_devdata *dd); 1951 int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit); 1952 int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encode); 1953 1954 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t); 1955 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t); 1956 1957 void set_up_vau(struct hfi1_devdata *dd, u8 vau); 1958 void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf); 1959 void reset_link_credits(struct hfi1_devdata *dd); 1960 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu); 1961 1962 int set_buffer_control(struct hfi1_pportdata *ppd, struct buffer_control *bc); 1963 1964 static inline struct hfi1_devdata *dd_from_ppd(struct hfi1_pportdata *ppd) 1965 { 1966 return ppd->dd; 1967 } 1968 1969 static inline struct hfi1_devdata *dd_from_dev(struct hfi1_ibdev *dev) 1970 { 1971 return container_of(dev, struct hfi1_devdata, verbs_dev); 1972 } 1973 1974 static inline struct hfi1_devdata *dd_from_ibdev(struct ib_device *ibdev) 1975 { 1976 return dd_from_dev(to_idev(ibdev)); 1977 } 1978 1979 static inline struct hfi1_pportdata *ppd_from_ibp(struct hfi1_ibport *ibp) 1980 { 1981 return container_of(ibp, struct hfi1_pportdata, ibport_data); 1982 } 1983 1984 static inline struct hfi1_ibdev *dev_from_rdi(struct rvt_dev_info *rdi) 1985 { 1986 return container_of(rdi, struct hfi1_ibdev, rdi); 1987 } 1988 1989 static inline struct hfi1_ibport *to_iport(struct ib_device *ibdev, u8 port) 1990 { 1991 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 1992 unsigned pidx = port - 1; /* IB number port from 1, hdw from 0 */ 1993 1994 WARN_ON(pidx >= dd->num_pports); 1995 return &dd->pport[pidx].ibport_data; 1996 } 1997 1998 static inline struct hfi1_ibport *rcd_to_iport(struct hfi1_ctxtdata *rcd) 1999 { 2000 return &rcd->ppd->ibport_data; 2001 } 2002 2003 /** 2004 * hfi1_may_ecn - Check whether FECN or BECN processing should be done 2005 * @pkt: the packet to be evaluated 2006 * 2007 * Check whether the FECN or BECN bits in the packet's header are 2008 * enabled, depending on packet type. 2009 * 2010 * This function only checks for FECN and BECN bits. Additional checks 2011 * are done in the slowpath (hfi1_process_ecn_slowpath()) in order to 2012 * ensure correct handling. 2013 */ 2014 static inline bool hfi1_may_ecn(struct hfi1_packet *pkt) 2015 { 2016 bool fecn, becn; 2017 2018 if (pkt->etype == RHF_RCV_TYPE_BYPASS) { 2019 fecn = hfi1_16B_get_fecn(pkt->hdr); 2020 becn = hfi1_16B_get_becn(pkt->hdr); 2021 } else { 2022 fecn = ib_bth_get_fecn(pkt->ohdr); 2023 becn = ib_bth_get_becn(pkt->ohdr); 2024 } 2025 return fecn || becn; 2026 } 2027 2028 bool hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt, 2029 bool prescan); 2030 static inline bool process_ecn(struct rvt_qp *qp, struct hfi1_packet *pkt) 2031 { 2032 bool do_work; 2033 2034 do_work = hfi1_may_ecn(pkt); 2035 if (unlikely(do_work)) 2036 return hfi1_process_ecn_slowpath(qp, pkt, false); 2037 return false; 2038 } 2039 2040 /* 2041 * Return the indexed PKEY from the port PKEY table. 2042 */ 2043 static inline u16 hfi1_get_pkey(struct hfi1_ibport *ibp, unsigned index) 2044 { 2045 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 2046 u16 ret; 2047 2048 if (index >= ARRAY_SIZE(ppd->pkeys)) 2049 ret = 0; 2050 else 2051 ret = ppd->pkeys[index]; 2052 2053 return ret; 2054 } 2055 2056 /* 2057 * Return the indexed GUID from the port GUIDs table. 2058 */ 2059 static inline __be64 get_sguid(struct hfi1_ibport *ibp, unsigned int index) 2060 { 2061 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 2062 2063 WARN_ON(index >= HFI1_GUIDS_PER_PORT); 2064 return cpu_to_be64(ppd->guids[index]); 2065 } 2066 2067 /* 2068 * Called by readers of cc_state only, must call under rcu_read_lock(). 2069 */ 2070 static inline struct cc_state *get_cc_state(struct hfi1_pportdata *ppd) 2071 { 2072 return rcu_dereference(ppd->cc_state); 2073 } 2074 2075 /* 2076 * Called by writers of cc_state only, must call under cc_state_lock. 2077 */ 2078 static inline 2079 struct cc_state *get_cc_state_protected(struct hfi1_pportdata *ppd) 2080 { 2081 return rcu_dereference_protected(ppd->cc_state, 2082 lockdep_is_held(&ppd->cc_state_lock)); 2083 } 2084 2085 /* 2086 * values for dd->flags (_device_ related flags) 2087 */ 2088 #define HFI1_INITTED 0x1 /* chip and driver up and initted */ 2089 #define HFI1_PRESENT 0x2 /* chip accesses can be done */ 2090 #define HFI1_FROZEN 0x4 /* chip in SPC freeze */ 2091 #define HFI1_HAS_SDMA_TIMEOUT 0x8 2092 #define HFI1_HAS_SEND_DMA 0x10 /* Supports Send DMA */ 2093 #define HFI1_FORCED_FREEZE 0x80 /* driver forced freeze mode */ 2094 #define HFI1_SHUTDOWN 0x100 /* device is shutting down */ 2095 2096 /* IB dword length mask in PBC (lower 11 bits); same for all chips */ 2097 #define HFI1_PBC_LENGTH_MASK ((1 << 11) - 1) 2098 2099 /* ctxt_flag bit offsets */ 2100 /* base context has not finished initializing */ 2101 #define HFI1_CTXT_BASE_UNINIT 1 2102 /* base context initaliation failed */ 2103 #define HFI1_CTXT_BASE_FAILED 2 2104 /* waiting for a packet to arrive */ 2105 #define HFI1_CTXT_WAITING_RCV 3 2106 /* waiting for an urgent packet to arrive */ 2107 #define HFI1_CTXT_WAITING_URG 4 2108 2109 /* free up any allocated data at closes */ 2110 int hfi1_init_dd(struct hfi1_devdata *dd); 2111 void hfi1_free_devdata(struct hfi1_devdata *dd); 2112 2113 /* LED beaconing functions */ 2114 void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon, 2115 unsigned int timeoff); 2116 void shutdown_led_override(struct hfi1_pportdata *ppd); 2117 2118 #define HFI1_CREDIT_RETURN_RATE (100) 2119 2120 /* 2121 * The number of words for the KDETH protocol field. If this is 2122 * larger then the actual field used, then part of the payload 2123 * will be in the header. 2124 * 2125 * Optimally, we want this sized so that a typical case will 2126 * use full cache lines. The typical local KDETH header would 2127 * be: 2128 * 2129 * Bytes Field 2130 * 8 LRH 2131 * 12 BHT 2132 * ?? KDETH 2133 * 8 RHF 2134 * --- 2135 * 28 + KDETH 2136 * 2137 * For a 64-byte cache line, KDETH would need to be 36 bytes or 9 DWORDS 2138 */ 2139 #define DEFAULT_RCVHDRSIZE 9 2140 2141 /* 2142 * Maximal header byte count: 2143 * 2144 * Bytes Field 2145 * 8 LRH 2146 * 40 GRH (optional) 2147 * 12 BTH 2148 * ?? KDETH 2149 * 8 RHF 2150 * --- 2151 * 68 + KDETH 2152 * 2153 * We also want to maintain a cache line alignment to assist DMA'ing 2154 * of the header bytes. Round up to a good size. 2155 */ 2156 #define DEFAULT_RCVHDR_ENTSIZE 32 2157 2158 bool hfi1_can_pin_pages(struct hfi1_devdata *dd, struct mm_struct *mm, 2159 u32 nlocked, u32 npages); 2160 int hfi1_acquire_user_pages(struct mm_struct *mm, unsigned long vaddr, 2161 size_t npages, bool writable, struct page **pages); 2162 void hfi1_release_user_pages(struct mm_struct *mm, struct page **p, 2163 size_t npages, bool dirty); 2164 2165 /** 2166 * hfi1_rcvhdrtail_kvaddr - return tail kvaddr 2167 * @rcd - the receive context 2168 */ 2169 static inline __le64 *hfi1_rcvhdrtail_kvaddr(const struct hfi1_ctxtdata *rcd) 2170 { 2171 return (__le64 *)rcd->rcvhdrtail_kvaddr; 2172 } 2173 2174 static inline void clear_rcvhdrtail(const struct hfi1_ctxtdata *rcd) 2175 { 2176 u64 *kv = (u64 *)hfi1_rcvhdrtail_kvaddr(rcd); 2177 2178 if (kv) 2179 *kv = 0ULL; 2180 } 2181 2182 static inline u32 get_rcvhdrtail(const struct hfi1_ctxtdata *rcd) 2183 { 2184 /* 2185 * volatile because it's a DMA target from the chip, routine is 2186 * inlined, and don't want register caching or reordering. 2187 */ 2188 return (u32)le64_to_cpu(*hfi1_rcvhdrtail_kvaddr(rcd)); 2189 } 2190 2191 static inline bool hfi1_packet_present(struct hfi1_ctxtdata *rcd) 2192 { 2193 if (likely(!rcd->rcvhdrtail_kvaddr)) { 2194 u32 seq = rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))); 2195 2196 return !last_rcv_seq(rcd, seq); 2197 } 2198 return hfi1_rcd_head(rcd) != get_rcvhdrtail(rcd); 2199 } 2200 2201 /* 2202 * sysfs interface. 2203 */ 2204 2205 extern const char ib_hfi1_version[]; 2206 extern const struct attribute_group ib_hfi1_attr_group; 2207 2208 int hfi1_device_create(struct hfi1_devdata *dd); 2209 void hfi1_device_remove(struct hfi1_devdata *dd); 2210 2211 int hfi1_create_port_files(struct ib_device *ibdev, u8 port_num, 2212 struct kobject *kobj); 2213 int hfi1_verbs_register_sysfs(struct hfi1_devdata *dd); 2214 void hfi1_verbs_unregister_sysfs(struct hfi1_devdata *dd); 2215 /* Hook for sysfs read of QSFP */ 2216 int qsfp_dump(struct hfi1_pportdata *ppd, char *buf, int len); 2217 2218 int hfi1_pcie_init(struct hfi1_devdata *dd); 2219 void hfi1_pcie_cleanup(struct pci_dev *pdev); 2220 int hfi1_pcie_ddinit(struct hfi1_devdata *dd, struct pci_dev *pdev); 2221 void hfi1_pcie_ddcleanup(struct hfi1_devdata *); 2222 int pcie_speeds(struct hfi1_devdata *dd); 2223 int restore_pci_variables(struct hfi1_devdata *dd); 2224 int save_pci_variables(struct hfi1_devdata *dd); 2225 int do_pcie_gen3_transition(struct hfi1_devdata *dd); 2226 void tune_pcie_caps(struct hfi1_devdata *dd); 2227 int parse_platform_config(struct hfi1_devdata *dd); 2228 int get_platform_config_field(struct hfi1_devdata *dd, 2229 enum platform_config_table_type_encoding 2230 table_type, int table_index, int field_index, 2231 u32 *data, u32 len); 2232 2233 struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi); 2234 2235 /* 2236 * Flush write combining store buffers (if present) and perform a write 2237 * barrier. 2238 */ 2239 static inline void flush_wc(void) 2240 { 2241 asm volatile("sfence" : : : "memory"); 2242 } 2243 2244 void handle_eflags(struct hfi1_packet *packet); 2245 void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd); 2246 2247 /* global module parameter variables */ 2248 extern unsigned int hfi1_max_mtu; 2249 extern unsigned int hfi1_cu; 2250 extern unsigned int user_credit_return_threshold; 2251 extern int num_user_contexts; 2252 extern unsigned long n_krcvqs; 2253 extern uint krcvqs[]; 2254 extern int krcvqsset; 2255 extern uint kdeth_qp; 2256 extern uint loopback; 2257 extern uint quick_linkup; 2258 extern uint rcv_intr_timeout; 2259 extern uint rcv_intr_count; 2260 extern uint rcv_intr_dynamic; 2261 extern ushort link_crc_mask; 2262 2263 extern struct mutex hfi1_mutex; 2264 2265 /* Number of seconds before our card status check... */ 2266 #define STATUS_TIMEOUT 60 2267 2268 #define DRIVER_NAME "hfi1" 2269 #define HFI1_USER_MINOR_BASE 0 2270 #define HFI1_TRACE_MINOR 127 2271 #define HFI1_NMINORS 255 2272 2273 #define PCI_VENDOR_ID_INTEL 0x8086 2274 #define PCI_DEVICE_ID_INTEL0 0x24f0 2275 #define PCI_DEVICE_ID_INTEL1 0x24f1 2276 2277 #define HFI1_PKT_USER_SC_INTEGRITY \ 2278 (SEND_CTXT_CHECK_ENABLE_DISALLOW_NON_KDETH_PACKETS_SMASK \ 2279 | SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK \ 2280 | SEND_CTXT_CHECK_ENABLE_DISALLOW_BYPASS_SMASK \ 2281 | SEND_CTXT_CHECK_ENABLE_DISALLOW_GRH_SMASK) 2282 2283 #define HFI1_PKT_KERNEL_SC_INTEGRITY \ 2284 (SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK) 2285 2286 static inline u64 hfi1_pkt_default_send_ctxt_mask(struct hfi1_devdata *dd, 2287 u16 ctxt_type) 2288 { 2289 u64 base_sc_integrity; 2290 2291 /* No integrity checks if HFI1_CAP_NO_INTEGRITY is set */ 2292 if (HFI1_CAP_IS_KSET(NO_INTEGRITY)) 2293 return 0; 2294 2295 base_sc_integrity = 2296 SEND_CTXT_CHECK_ENABLE_DISALLOW_BYPASS_BAD_PKT_LEN_SMASK 2297 | SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK 2298 | SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_LONG_BYPASS_PACKETS_SMASK 2299 | SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_LONG_IB_PACKETS_SMASK 2300 | SEND_CTXT_CHECK_ENABLE_DISALLOW_BAD_PKT_LEN_SMASK 2301 #ifndef CONFIG_FAULT_INJECTION 2302 | SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_TEST_SMASK 2303 #endif 2304 | SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_SMALL_BYPASS_PACKETS_SMASK 2305 | SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_SMALL_IB_PACKETS_SMASK 2306 | SEND_CTXT_CHECK_ENABLE_DISALLOW_RAW_IPV6_SMASK 2307 | SEND_CTXT_CHECK_ENABLE_DISALLOW_RAW_SMASK 2308 | SEND_CTXT_CHECK_ENABLE_CHECK_BYPASS_VL_MAPPING_SMASK 2309 | SEND_CTXT_CHECK_ENABLE_CHECK_VL_MAPPING_SMASK 2310 | SEND_CTXT_CHECK_ENABLE_CHECK_OPCODE_SMASK 2311 | SEND_CTXT_CHECK_ENABLE_CHECK_SLID_SMASK 2312 | SEND_CTXT_CHECK_ENABLE_CHECK_VL_SMASK 2313 | SEND_CTXT_CHECK_ENABLE_CHECK_ENABLE_SMASK; 2314 2315 if (ctxt_type == SC_USER) 2316 base_sc_integrity |= 2317 #ifndef CONFIG_FAULT_INJECTION 2318 SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_TEST_SMASK | 2319 #endif 2320 HFI1_PKT_USER_SC_INTEGRITY; 2321 else if (ctxt_type != SC_KERNEL) 2322 base_sc_integrity |= HFI1_PKT_KERNEL_SC_INTEGRITY; 2323 2324 /* turn on send-side job key checks if !A0 */ 2325 if (!is_ax(dd)) 2326 base_sc_integrity |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK; 2327 2328 return base_sc_integrity; 2329 } 2330 2331 static inline u64 hfi1_pkt_base_sdma_integrity(struct hfi1_devdata *dd) 2332 { 2333 u64 base_sdma_integrity; 2334 2335 /* No integrity checks if HFI1_CAP_NO_INTEGRITY is set */ 2336 if (HFI1_CAP_IS_KSET(NO_INTEGRITY)) 2337 return 0; 2338 2339 base_sdma_integrity = 2340 SEND_DMA_CHECK_ENABLE_DISALLOW_BYPASS_BAD_PKT_LEN_SMASK 2341 | SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_LONG_BYPASS_PACKETS_SMASK 2342 | SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_LONG_IB_PACKETS_SMASK 2343 | SEND_DMA_CHECK_ENABLE_DISALLOW_BAD_PKT_LEN_SMASK 2344 | SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_SMALL_BYPASS_PACKETS_SMASK 2345 | SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_SMALL_IB_PACKETS_SMASK 2346 | SEND_DMA_CHECK_ENABLE_DISALLOW_RAW_IPV6_SMASK 2347 | SEND_DMA_CHECK_ENABLE_DISALLOW_RAW_SMASK 2348 | SEND_DMA_CHECK_ENABLE_CHECK_BYPASS_VL_MAPPING_SMASK 2349 | SEND_DMA_CHECK_ENABLE_CHECK_VL_MAPPING_SMASK 2350 | SEND_DMA_CHECK_ENABLE_CHECK_OPCODE_SMASK 2351 | SEND_DMA_CHECK_ENABLE_CHECK_SLID_SMASK 2352 | SEND_DMA_CHECK_ENABLE_CHECK_VL_SMASK 2353 | SEND_DMA_CHECK_ENABLE_CHECK_ENABLE_SMASK; 2354 2355 if (!HFI1_CAP_IS_KSET(STATIC_RATE_CTRL)) 2356 base_sdma_integrity |= 2357 SEND_DMA_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK; 2358 2359 /* turn on send-side job key checks if !A0 */ 2360 if (!is_ax(dd)) 2361 base_sdma_integrity |= 2362 SEND_DMA_CHECK_ENABLE_CHECK_JOB_KEY_SMASK; 2363 2364 return base_sdma_integrity; 2365 } 2366 2367 #define dd_dev_emerg(dd, fmt, ...) \ 2368 dev_emerg(&(dd)->pcidev->dev, "%s: " fmt, \ 2369 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__) 2370 2371 #define dd_dev_err(dd, fmt, ...) \ 2372 dev_err(&(dd)->pcidev->dev, "%s: " fmt, \ 2373 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__) 2374 2375 #define dd_dev_err_ratelimited(dd, fmt, ...) \ 2376 dev_err_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \ 2377 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), \ 2378 ##__VA_ARGS__) 2379 2380 #define dd_dev_warn(dd, fmt, ...) \ 2381 dev_warn(&(dd)->pcidev->dev, "%s: " fmt, \ 2382 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__) 2383 2384 #define dd_dev_warn_ratelimited(dd, fmt, ...) \ 2385 dev_warn_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \ 2386 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), \ 2387 ##__VA_ARGS__) 2388 2389 #define dd_dev_info(dd, fmt, ...) \ 2390 dev_info(&(dd)->pcidev->dev, "%s: " fmt, \ 2391 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__) 2392 2393 #define dd_dev_info_ratelimited(dd, fmt, ...) \ 2394 dev_info_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \ 2395 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), \ 2396 ##__VA_ARGS__) 2397 2398 #define dd_dev_dbg(dd, fmt, ...) \ 2399 dev_dbg(&(dd)->pcidev->dev, "%s: " fmt, \ 2400 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__) 2401 2402 #define hfi1_dev_porterr(dd, port, fmt, ...) \ 2403 dev_err(&(dd)->pcidev->dev, "%s: port %u: " fmt, \ 2404 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), (port), ##__VA_ARGS__) 2405 2406 /* 2407 * this is used for formatting hw error messages... 2408 */ 2409 struct hfi1_hwerror_msgs { 2410 u64 mask; 2411 const char *msg; 2412 size_t sz; 2413 }; 2414 2415 /* in intr.c... */ 2416 void hfi1_format_hwerrors(u64 hwerrs, 2417 const struct hfi1_hwerror_msgs *hwerrmsgs, 2418 size_t nhwerrmsgs, char *msg, size_t lmsg); 2419 2420 #define USER_OPCODE_CHECK_VAL 0xC0 2421 #define USER_OPCODE_CHECK_MASK 0xC0 2422 #define OPCODE_CHECK_VAL_DISABLED 0x0 2423 #define OPCODE_CHECK_MASK_DISABLED 0x0 2424 2425 static inline void hfi1_reset_cpu_counters(struct hfi1_devdata *dd) 2426 { 2427 struct hfi1_pportdata *ppd; 2428 int i; 2429 2430 dd->z_int_counter = get_all_cpu_total(dd->int_counter); 2431 dd->z_rcv_limit = get_all_cpu_total(dd->rcv_limit); 2432 dd->z_send_schedule = get_all_cpu_total(dd->send_schedule); 2433 2434 ppd = (struct hfi1_pportdata *)(dd + 1); 2435 for (i = 0; i < dd->num_pports; i++, ppd++) { 2436 ppd->ibport_data.rvp.z_rc_acks = 2437 get_all_cpu_total(ppd->ibport_data.rvp.rc_acks); 2438 ppd->ibport_data.rvp.z_rc_qacks = 2439 get_all_cpu_total(ppd->ibport_data.rvp.rc_qacks); 2440 } 2441 } 2442 2443 /* Control LED state */ 2444 static inline void setextled(struct hfi1_devdata *dd, u32 on) 2445 { 2446 if (on) 2447 write_csr(dd, DCC_CFG_LED_CNTRL, 0x1F); 2448 else 2449 write_csr(dd, DCC_CFG_LED_CNTRL, 0x10); 2450 } 2451 2452 /* return the i2c resource given the target */ 2453 static inline u32 i2c_target(u32 target) 2454 { 2455 return target ? CR_I2C2 : CR_I2C1; 2456 } 2457 2458 /* return the i2c chain chip resource that this HFI uses for QSFP */ 2459 static inline u32 qsfp_resource(struct hfi1_devdata *dd) 2460 { 2461 return i2c_target(dd->hfi1_id); 2462 } 2463 2464 /* Is this device integrated or discrete? */ 2465 static inline bool is_integrated(struct hfi1_devdata *dd) 2466 { 2467 return dd->pcidev->device == PCI_DEVICE_ID_INTEL1; 2468 } 2469 2470 /** 2471 * hfi1_need_drop - detect need for drop 2472 * @dd: - the device 2473 * 2474 * In some cases, the first packet needs to be dropped. 2475 * 2476 * Return true is the current packet needs to be dropped and false otherwise. 2477 */ 2478 static inline bool hfi1_need_drop(struct hfi1_devdata *dd) 2479 { 2480 if (unlikely(dd->do_drop && 2481 atomic_xchg(&dd->drop_packet, DROP_PACKET_OFF) == 2482 DROP_PACKET_ON)) { 2483 dd->do_drop = false; 2484 return true; 2485 } 2486 return false; 2487 } 2488 2489 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp); 2490 2491 #define DD_DEV_ENTRY(dd) __string(dev, dev_name(&(dd)->pcidev->dev)) 2492 #define DD_DEV_ASSIGN(dd) __assign_str(dev, dev_name(&(dd)->pcidev->dev)) 2493 2494 static inline void hfi1_update_ah_attr(struct ib_device *ibdev, 2495 struct rdma_ah_attr *attr) 2496 { 2497 struct hfi1_pportdata *ppd; 2498 struct hfi1_ibport *ibp; 2499 u32 dlid = rdma_ah_get_dlid(attr); 2500 2501 /* 2502 * Kernel clients may not have setup GRH information 2503 * Set that here. 2504 */ 2505 ibp = to_iport(ibdev, rdma_ah_get_port_num(attr)); 2506 ppd = ppd_from_ibp(ibp); 2507 if ((((dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) || 2508 (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE))) && 2509 (dlid != be32_to_cpu(OPA_LID_PERMISSIVE)) && 2510 (dlid != be16_to_cpu(IB_LID_PERMISSIVE)) && 2511 (!(rdma_ah_get_ah_flags(attr) & IB_AH_GRH))) || 2512 (rdma_ah_get_make_grd(attr))) { 2513 rdma_ah_set_ah_flags(attr, IB_AH_GRH); 2514 rdma_ah_set_interface_id(attr, OPA_MAKE_ID(dlid)); 2515 rdma_ah_set_subnet_prefix(attr, ibp->rvp.gid_prefix); 2516 } 2517 } 2518 2519 /* 2520 * hfi1_check_mcast- Check if the given lid is 2521 * in the OPA multicast range. 2522 * 2523 * The LID might either reside in ah.dlid or might be 2524 * in the GRH of the address handle as DGID if extended 2525 * addresses are in use. 2526 */ 2527 static inline bool hfi1_check_mcast(u32 lid) 2528 { 2529 return ((lid >= opa_get_mcast_base(OPA_MCAST_NR)) && 2530 (lid != be32_to_cpu(OPA_LID_PERMISSIVE))); 2531 } 2532 2533 #define opa_get_lid(lid, format) \ 2534 __opa_get_lid(lid, OPA_PORT_PACKET_FORMAT_##format) 2535 2536 /* Convert a lid to a specific lid space */ 2537 static inline u32 __opa_get_lid(u32 lid, u8 format) 2538 { 2539 bool is_mcast = hfi1_check_mcast(lid); 2540 2541 switch (format) { 2542 case OPA_PORT_PACKET_FORMAT_8B: 2543 case OPA_PORT_PACKET_FORMAT_10B: 2544 if (is_mcast) 2545 return (lid - opa_get_mcast_base(OPA_MCAST_NR) + 2546 0xF0000); 2547 return lid & 0xFFFFF; 2548 case OPA_PORT_PACKET_FORMAT_16B: 2549 if (is_mcast) 2550 return (lid - opa_get_mcast_base(OPA_MCAST_NR) + 2551 0xF00000); 2552 return lid & 0xFFFFFF; 2553 case OPA_PORT_PACKET_FORMAT_9B: 2554 if (is_mcast) 2555 return (lid - 2556 opa_get_mcast_base(OPA_MCAST_NR) + 2557 be16_to_cpu(IB_MULTICAST_LID_BASE)); 2558 else 2559 return lid & 0xFFFF; 2560 default: 2561 return lid; 2562 } 2563 } 2564 2565 /* Return true if the given lid is the OPA 16B multicast range */ 2566 static inline bool hfi1_is_16B_mcast(u32 lid) 2567 { 2568 return ((lid >= 2569 opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR), 16B)) && 2570 (lid != opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))); 2571 } 2572 2573 static inline void hfi1_make_opa_lid(struct rdma_ah_attr *attr) 2574 { 2575 const struct ib_global_route *grh = rdma_ah_read_grh(attr); 2576 u32 dlid = rdma_ah_get_dlid(attr); 2577 2578 /* Modify ah_attr.dlid to be in the 32 bit LID space. 2579 * This is how the address will be laid out: 2580 * Assuming MCAST_NR to be 4, 2581 * 32 bit permissive LID = 0xFFFFFFFF 2582 * Multicast LID range = 0xFFFFFFFE to 0xF0000000 2583 * Unicast LID range = 0xEFFFFFFF to 1 2584 * Invalid LID = 0 2585 */ 2586 if (ib_is_opa_gid(&grh->dgid)) 2587 dlid = opa_get_lid_from_gid(&grh->dgid); 2588 else if ((dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) && 2589 (dlid != be16_to_cpu(IB_LID_PERMISSIVE)) && 2590 (dlid != be32_to_cpu(OPA_LID_PERMISSIVE))) 2591 dlid = dlid - be16_to_cpu(IB_MULTICAST_LID_BASE) + 2592 opa_get_mcast_base(OPA_MCAST_NR); 2593 else if (dlid == be16_to_cpu(IB_LID_PERMISSIVE)) 2594 dlid = be32_to_cpu(OPA_LID_PERMISSIVE); 2595 2596 rdma_ah_set_dlid(attr, dlid); 2597 } 2598 2599 static inline u8 hfi1_get_packet_type(u32 lid) 2600 { 2601 /* 9B if lid > 0xF0000000 */ 2602 if (lid >= opa_get_mcast_base(OPA_MCAST_NR)) 2603 return HFI1_PKT_TYPE_9B; 2604 2605 /* 16B if lid > 0xC000 */ 2606 if (lid >= opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR), 9B)) 2607 return HFI1_PKT_TYPE_16B; 2608 2609 return HFI1_PKT_TYPE_9B; 2610 } 2611 2612 static inline bool hfi1_get_hdr_type(u32 lid, struct rdma_ah_attr *attr) 2613 { 2614 /* 2615 * If there was an incoming 16B packet with permissive 2616 * LIDs, OPA GIDs would have been programmed when those 2617 * packets were received. A 16B packet will have to 2618 * be sent in response to that packet. Return a 16B 2619 * header type if that's the case. 2620 */ 2621 if (rdma_ah_get_dlid(attr) == be32_to_cpu(OPA_LID_PERMISSIVE)) 2622 return (ib_is_opa_gid(&rdma_ah_read_grh(attr)->dgid)) ? 2623 HFI1_PKT_TYPE_16B : HFI1_PKT_TYPE_9B; 2624 2625 /* 2626 * Return a 16B header type if either the the destination 2627 * or source lid is extended. 2628 */ 2629 if (hfi1_get_packet_type(rdma_ah_get_dlid(attr)) == HFI1_PKT_TYPE_16B) 2630 return HFI1_PKT_TYPE_16B; 2631 2632 return hfi1_get_packet_type(lid); 2633 } 2634 2635 static inline void hfi1_make_ext_grh(struct hfi1_packet *packet, 2636 struct ib_grh *grh, u32 slid, 2637 u32 dlid) 2638 { 2639 struct hfi1_ibport *ibp = &packet->rcd->ppd->ibport_data; 2640 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 2641 2642 if (!ibp) 2643 return; 2644 2645 grh->hop_limit = 1; 2646 grh->sgid.global.subnet_prefix = ibp->rvp.gid_prefix; 2647 if (slid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B)) 2648 grh->sgid.global.interface_id = 2649 OPA_MAKE_ID(be32_to_cpu(OPA_LID_PERMISSIVE)); 2650 else 2651 grh->sgid.global.interface_id = OPA_MAKE_ID(slid); 2652 2653 /* 2654 * Upper layers (like mad) may compare the dgid in the 2655 * wc that is obtained here with the sgid_index in 2656 * the wr. Since sgid_index in wr is always 0 for 2657 * extended lids, set the dgid here to the default 2658 * IB gid. 2659 */ 2660 grh->dgid.global.subnet_prefix = ibp->rvp.gid_prefix; 2661 grh->dgid.global.interface_id = 2662 cpu_to_be64(ppd->guids[HFI1_PORT_GUID_INDEX]); 2663 } 2664 2665 static inline int hfi1_get_16b_padding(u32 hdr_size, u32 payload) 2666 { 2667 return -(hdr_size + payload + (SIZE_OF_CRC << 2) + 2668 SIZE_OF_LT) & 0x7; 2669 } 2670 2671 static inline void hfi1_make_ib_hdr(struct ib_header *hdr, 2672 u16 lrh0, u16 len, 2673 u16 dlid, u16 slid) 2674 { 2675 hdr->lrh[0] = cpu_to_be16(lrh0); 2676 hdr->lrh[1] = cpu_to_be16(dlid); 2677 hdr->lrh[2] = cpu_to_be16(len); 2678 hdr->lrh[3] = cpu_to_be16(slid); 2679 } 2680 2681 static inline void hfi1_make_16b_hdr(struct hfi1_16b_header *hdr, 2682 u32 slid, u32 dlid, 2683 u16 len, u16 pkey, 2684 bool becn, bool fecn, u8 l4, 2685 u8 sc) 2686 { 2687 u32 lrh0 = 0; 2688 u32 lrh1 = 0x40000000; 2689 u32 lrh2 = 0; 2690 u32 lrh3 = 0; 2691 2692 lrh0 = (lrh0 & ~OPA_16B_BECN_MASK) | (becn << OPA_16B_BECN_SHIFT); 2693 lrh0 = (lrh0 & ~OPA_16B_LEN_MASK) | (len << OPA_16B_LEN_SHIFT); 2694 lrh0 = (lrh0 & ~OPA_16B_LID_MASK) | (slid & OPA_16B_LID_MASK); 2695 lrh1 = (lrh1 & ~OPA_16B_FECN_MASK) | (fecn << OPA_16B_FECN_SHIFT); 2696 lrh1 = (lrh1 & ~OPA_16B_SC_MASK) | (sc << OPA_16B_SC_SHIFT); 2697 lrh1 = (lrh1 & ~OPA_16B_LID_MASK) | (dlid & OPA_16B_LID_MASK); 2698 lrh2 = (lrh2 & ~OPA_16B_SLID_MASK) | 2699 ((slid >> OPA_16B_SLID_SHIFT) << OPA_16B_SLID_HIGH_SHIFT); 2700 lrh2 = (lrh2 & ~OPA_16B_DLID_MASK) | 2701 ((dlid >> OPA_16B_DLID_SHIFT) << OPA_16B_DLID_HIGH_SHIFT); 2702 lrh2 = (lrh2 & ~OPA_16B_PKEY_MASK) | ((u32)pkey << OPA_16B_PKEY_SHIFT); 2703 lrh2 = (lrh2 & ~OPA_16B_L4_MASK) | l4; 2704 2705 hdr->lrh[0] = lrh0; 2706 hdr->lrh[1] = lrh1; 2707 hdr->lrh[2] = lrh2; 2708 hdr->lrh[3] = lrh3; 2709 } 2710 #endif /* _HFI1_KERNEL_H */ 2711