1 /* 2 * Copyright(c) 2015 - 2017 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 #include <linux/firmware.h> 49 #include <linux/mutex.h> 50 #include <linux/module.h> 51 #include <linux/delay.h> 52 #include <linux/crc32.h> 53 54 #include "hfi.h" 55 #include "trace.h" 56 57 /* 58 * Make it easy to toggle firmware file name and if it gets loaded by 59 * editing the following. This may be something we do while in development 60 * but not necessarily something a user would ever need to use. 61 */ 62 #define DEFAULT_FW_8051_NAME_FPGA "hfi_dc8051.bin" 63 #define DEFAULT_FW_8051_NAME_ASIC "hfi1_dc8051.fw" 64 #define DEFAULT_FW_FABRIC_NAME "hfi1_fabric.fw" 65 #define DEFAULT_FW_SBUS_NAME "hfi1_sbus.fw" 66 #define DEFAULT_FW_PCIE_NAME "hfi1_pcie.fw" 67 #define ALT_FW_8051_NAME_ASIC "hfi1_dc8051_d.fw" 68 #define ALT_FW_FABRIC_NAME "hfi1_fabric_d.fw" 69 #define ALT_FW_SBUS_NAME "hfi1_sbus_d.fw" 70 #define ALT_FW_PCIE_NAME "hfi1_pcie_d.fw" 71 72 MODULE_FIRMWARE(DEFAULT_FW_8051_NAME_ASIC); 73 MODULE_FIRMWARE(DEFAULT_FW_FABRIC_NAME); 74 MODULE_FIRMWARE(DEFAULT_FW_SBUS_NAME); 75 MODULE_FIRMWARE(DEFAULT_FW_PCIE_NAME); 76 77 static uint fw_8051_load = 1; 78 static uint fw_fabric_serdes_load = 1; 79 static uint fw_pcie_serdes_load = 1; 80 static uint fw_sbus_load = 1; 81 82 /* Firmware file names get set in hfi1_firmware_init() based on the above */ 83 static char *fw_8051_name; 84 static char *fw_fabric_serdes_name; 85 static char *fw_sbus_name; 86 static char *fw_pcie_serdes_name; 87 88 #define SBUS_MAX_POLL_COUNT 100 89 #define SBUS_COUNTER(reg, name) \ 90 (((reg) >> ASIC_STS_SBUS_COUNTERS_##name##_CNT_SHIFT) & \ 91 ASIC_STS_SBUS_COUNTERS_##name##_CNT_MASK) 92 93 /* 94 * Firmware security header. 95 */ 96 struct css_header { 97 u32 module_type; 98 u32 header_len; 99 u32 header_version; 100 u32 module_id; 101 u32 module_vendor; 102 u32 date; /* BCD yyyymmdd */ 103 u32 size; /* in DWORDs */ 104 u32 key_size; /* in DWORDs */ 105 u32 modulus_size; /* in DWORDs */ 106 u32 exponent_size; /* in DWORDs */ 107 u32 reserved[22]; 108 }; 109 110 /* expected field values */ 111 #define CSS_MODULE_TYPE 0x00000006 112 #define CSS_HEADER_LEN 0x000000a1 113 #define CSS_HEADER_VERSION 0x00010000 114 #define CSS_MODULE_VENDOR 0x00008086 115 116 #define KEY_SIZE 256 117 #define MU_SIZE 8 118 #define EXPONENT_SIZE 4 119 120 /* size of platform configuration partition */ 121 #define MAX_PLATFORM_CONFIG_FILE_SIZE 4096 122 123 /* size of file of plaform configuration encoded in format version 4 */ 124 #define PLATFORM_CONFIG_FORMAT_4_FILE_SIZE 528 125 126 /* the file itself */ 127 struct firmware_file { 128 struct css_header css_header; 129 u8 modulus[KEY_SIZE]; 130 u8 exponent[EXPONENT_SIZE]; 131 u8 signature[KEY_SIZE]; 132 u8 firmware[]; 133 }; 134 135 struct augmented_firmware_file { 136 struct css_header css_header; 137 u8 modulus[KEY_SIZE]; 138 u8 exponent[EXPONENT_SIZE]; 139 u8 signature[KEY_SIZE]; 140 u8 r2[KEY_SIZE]; 141 u8 mu[MU_SIZE]; 142 u8 firmware[]; 143 }; 144 145 /* augmented file size difference */ 146 #define AUGMENT_SIZE (sizeof(struct augmented_firmware_file) - \ 147 sizeof(struct firmware_file)) 148 149 struct firmware_details { 150 /* Linux core piece */ 151 const struct firmware *fw; 152 153 struct css_header *css_header; 154 u8 *firmware_ptr; /* pointer to binary data */ 155 u32 firmware_len; /* length in bytes */ 156 u8 *modulus; /* pointer to the modulus */ 157 u8 *exponent; /* pointer to the exponent */ 158 u8 *signature; /* pointer to the signature */ 159 u8 *r2; /* pointer to r2 */ 160 u8 *mu; /* pointer to mu */ 161 struct augmented_firmware_file dummy_header; 162 }; 163 164 /* 165 * The mutex protects fw_state, fw_err, and all of the firmware_details 166 * variables. 167 */ 168 static DEFINE_MUTEX(fw_mutex); 169 enum fw_state { 170 FW_EMPTY, 171 FW_TRY, 172 FW_FINAL, 173 FW_ERR 174 }; 175 176 static enum fw_state fw_state = FW_EMPTY; 177 static int fw_err; 178 static struct firmware_details fw_8051; 179 static struct firmware_details fw_fabric; 180 static struct firmware_details fw_pcie; 181 static struct firmware_details fw_sbus; 182 183 /* flags for turn_off_spicos() */ 184 #define SPICO_SBUS 0x1 185 #define SPICO_FABRIC 0x2 186 #define ENABLE_SPICO_SMASK 0x1 187 188 /* security block commands */ 189 #define RSA_CMD_INIT 0x1 190 #define RSA_CMD_START 0x2 191 192 /* security block status */ 193 #define RSA_STATUS_IDLE 0x0 194 #define RSA_STATUS_ACTIVE 0x1 195 #define RSA_STATUS_DONE 0x2 196 #define RSA_STATUS_FAILED 0x3 197 198 /* RSA engine timeout, in ms */ 199 #define RSA_ENGINE_TIMEOUT 100 /* ms */ 200 201 /* hardware mutex timeout, in ms */ 202 #define HM_TIMEOUT 10 /* ms */ 203 204 /* 8051 memory access timeout, in us */ 205 #define DC8051_ACCESS_TIMEOUT 100 /* us */ 206 207 /* the number of fabric SerDes on the SBus */ 208 #define NUM_FABRIC_SERDES 4 209 210 /* ASIC_STS_SBUS_RESULT.RESULT_CODE value */ 211 #define SBUS_READ_COMPLETE 0x4 212 213 /* SBus fabric SerDes addresses, one set per HFI */ 214 static const u8 fabric_serdes_addrs[2][NUM_FABRIC_SERDES] = { 215 { 0x01, 0x02, 0x03, 0x04 }, 216 { 0x28, 0x29, 0x2a, 0x2b } 217 }; 218 219 /* SBus PCIe SerDes addresses, one set per HFI */ 220 static const u8 pcie_serdes_addrs[2][NUM_PCIE_SERDES] = { 221 { 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 222 0x18, 0x1a, 0x1c, 0x1e, 0x20, 0x22, 0x24, 0x26 }, 223 { 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d, 224 0x3f, 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d } 225 }; 226 227 /* SBus PCIe PCS addresses, one set per HFI */ 228 const u8 pcie_pcs_addrs[2][NUM_PCIE_SERDES] = { 229 { 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17, 230 0x19, 0x1b, 0x1d, 0x1f, 0x21, 0x23, 0x25, 0x27 }, 231 { 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e, 232 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e } 233 }; 234 235 /* SBus fabric SerDes broadcast addresses, one per HFI */ 236 static const u8 fabric_serdes_broadcast[2] = { 0xe4, 0xe5 }; 237 static const u8 all_fabric_serdes_broadcast = 0xe1; 238 239 /* SBus PCIe SerDes broadcast addresses, one per HFI */ 240 const u8 pcie_serdes_broadcast[2] = { 0xe2, 0xe3 }; 241 static const u8 all_pcie_serdes_broadcast = 0xe0; 242 243 static const u32 platform_config_table_limits[PLATFORM_CONFIG_TABLE_MAX] = { 244 0, 245 SYSTEM_TABLE_MAX, 246 PORT_TABLE_MAX, 247 RX_PRESET_TABLE_MAX, 248 TX_PRESET_TABLE_MAX, 249 QSFP_ATTEN_TABLE_MAX, 250 VARIABLE_SETTINGS_TABLE_MAX 251 }; 252 253 /* forwards */ 254 static void dispose_one_firmware(struct firmware_details *fdet); 255 static int load_fabric_serdes_firmware(struct hfi1_devdata *dd, 256 struct firmware_details *fdet); 257 static void dump_fw_version(struct hfi1_devdata *dd); 258 259 /* 260 * Read a single 64-bit value from 8051 data memory. 261 * 262 * Expects: 263 * o caller to have already set up data read, no auto increment 264 * o caller to turn off read enable when finished 265 * 266 * The address argument is a byte offset. Bits 0:2 in the address are 267 * ignored - i.e. the hardware will always do aligned 8-byte reads as if 268 * the lower bits are zero. 269 * 270 * Return 0 on success, -ENXIO on a read error (timeout). 271 */ 272 static int __read_8051_data(struct hfi1_devdata *dd, u32 addr, u64 *result) 273 { 274 u64 reg; 275 int count; 276 277 /* step 1: set the address, clear enable */ 278 reg = (addr & DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK) 279 << DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT; 280 write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, reg); 281 /* step 2: enable */ 282 write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, 283 reg | DC_DC8051_CFG_RAM_ACCESS_CTRL_READ_ENA_SMASK); 284 285 /* wait until ACCESS_COMPLETED is set */ 286 count = 0; 287 while ((read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_STATUS) 288 & DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK) 289 == 0) { 290 count++; 291 if (count > DC8051_ACCESS_TIMEOUT) { 292 dd_dev_err(dd, "timeout reading 8051 data\n"); 293 return -ENXIO; 294 } 295 ndelay(10); 296 } 297 298 /* gather the data */ 299 *result = read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_RD_DATA); 300 301 return 0; 302 } 303 304 /* 305 * Read 8051 data starting at addr, for len bytes. Will read in 8-byte chunks. 306 * Return 0 on success, -errno on error. 307 */ 308 int read_8051_data(struct hfi1_devdata *dd, u32 addr, u32 len, u64 *result) 309 { 310 unsigned long flags; 311 u32 done; 312 int ret = 0; 313 314 spin_lock_irqsave(&dd->dc8051_memlock, flags); 315 316 /* data read set-up, no auto-increment */ 317 write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, 0); 318 319 for (done = 0; done < len; addr += 8, done += 8, result++) { 320 ret = __read_8051_data(dd, addr, result); 321 if (ret) 322 break; 323 } 324 325 /* turn off read enable */ 326 write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, 0); 327 328 spin_unlock_irqrestore(&dd->dc8051_memlock, flags); 329 330 return ret; 331 } 332 333 /* 334 * Write data or code to the 8051 code or data RAM. 335 */ 336 static int write_8051(struct hfi1_devdata *dd, int code, u32 start, 337 const u8 *data, u32 len) 338 { 339 u64 reg; 340 u32 offset; 341 int aligned, count; 342 343 /* check alignment */ 344 aligned = ((unsigned long)data & 0x7) == 0; 345 346 /* write set-up */ 347 reg = (code ? DC_DC8051_CFG_RAM_ACCESS_SETUP_RAM_SEL_SMASK : 0ull) 348 | DC_DC8051_CFG_RAM_ACCESS_SETUP_AUTO_INCR_ADDR_SMASK; 349 write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, reg); 350 351 reg = ((start & DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK) 352 << DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT) 353 | DC_DC8051_CFG_RAM_ACCESS_CTRL_WRITE_ENA_SMASK; 354 write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, reg); 355 356 /* write */ 357 for (offset = 0; offset < len; offset += 8) { 358 int bytes = len - offset; 359 360 if (bytes < 8) { 361 reg = 0; 362 memcpy(®, &data[offset], bytes); 363 } else if (aligned) { 364 reg = *(u64 *)&data[offset]; 365 } else { 366 memcpy(®, &data[offset], 8); 367 } 368 write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_WR_DATA, reg); 369 370 /* wait until ACCESS_COMPLETED is set */ 371 count = 0; 372 while ((read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_STATUS) 373 & DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK) 374 == 0) { 375 count++; 376 if (count > DC8051_ACCESS_TIMEOUT) { 377 dd_dev_err(dd, "timeout writing 8051 data\n"); 378 return -ENXIO; 379 } 380 udelay(1); 381 } 382 } 383 384 /* turn off write access, auto increment (also sets to data access) */ 385 write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, 0); 386 write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, 0); 387 388 return 0; 389 } 390 391 /* return 0 if values match, non-zero and complain otherwise */ 392 static int invalid_header(struct hfi1_devdata *dd, const char *what, 393 u32 actual, u32 expected) 394 { 395 if (actual == expected) 396 return 0; 397 398 dd_dev_err(dd, 399 "invalid firmware header field %s: expected 0x%x, actual 0x%x\n", 400 what, expected, actual); 401 return 1; 402 } 403 404 /* 405 * Verify that the static fields in the CSS header match. 406 */ 407 static int verify_css_header(struct hfi1_devdata *dd, struct css_header *css) 408 { 409 /* verify CSS header fields (most sizes are in DW, so add /4) */ 410 if (invalid_header(dd, "module_type", css->module_type, 411 CSS_MODULE_TYPE) || 412 invalid_header(dd, "header_len", css->header_len, 413 (sizeof(struct firmware_file) / 4)) || 414 invalid_header(dd, "header_version", css->header_version, 415 CSS_HEADER_VERSION) || 416 invalid_header(dd, "module_vendor", css->module_vendor, 417 CSS_MODULE_VENDOR) || 418 invalid_header(dd, "key_size", css->key_size, KEY_SIZE / 4) || 419 invalid_header(dd, "modulus_size", css->modulus_size, 420 KEY_SIZE / 4) || 421 invalid_header(dd, "exponent_size", css->exponent_size, 422 EXPONENT_SIZE / 4)) { 423 return -EINVAL; 424 } 425 return 0; 426 } 427 428 /* 429 * Make sure there are at least some bytes after the prefix. 430 */ 431 static int payload_check(struct hfi1_devdata *dd, const char *name, 432 long file_size, long prefix_size) 433 { 434 /* make sure we have some payload */ 435 if (prefix_size >= file_size) { 436 dd_dev_err(dd, 437 "firmware \"%s\", size %ld, must be larger than %ld bytes\n", 438 name, file_size, prefix_size); 439 return -EINVAL; 440 } 441 442 return 0; 443 } 444 445 /* 446 * Request the firmware from the system. Extract the pieces and fill in 447 * fdet. If successful, the caller will need to call dispose_one_firmware(). 448 * Returns 0 on success, -ERRNO on error. 449 */ 450 static int obtain_one_firmware(struct hfi1_devdata *dd, const char *name, 451 struct firmware_details *fdet) 452 { 453 struct css_header *css; 454 int ret; 455 456 memset(fdet, 0, sizeof(*fdet)); 457 458 ret = request_firmware(&fdet->fw, name, &dd->pcidev->dev); 459 if (ret) { 460 dd_dev_warn(dd, "cannot find firmware \"%s\", err %d\n", 461 name, ret); 462 return ret; 463 } 464 465 /* verify the firmware */ 466 if (fdet->fw->size < sizeof(struct css_header)) { 467 dd_dev_err(dd, "firmware \"%s\" is too small\n", name); 468 ret = -EINVAL; 469 goto done; 470 } 471 css = (struct css_header *)fdet->fw->data; 472 473 hfi1_cdbg(FIRMWARE, "Firmware %s details:", name); 474 hfi1_cdbg(FIRMWARE, "file size: 0x%lx bytes", fdet->fw->size); 475 hfi1_cdbg(FIRMWARE, "CSS structure:"); 476 hfi1_cdbg(FIRMWARE, " module_type 0x%x", css->module_type); 477 hfi1_cdbg(FIRMWARE, " header_len 0x%03x (0x%03x bytes)", 478 css->header_len, 4 * css->header_len); 479 hfi1_cdbg(FIRMWARE, " header_version 0x%x", css->header_version); 480 hfi1_cdbg(FIRMWARE, " module_id 0x%x", css->module_id); 481 hfi1_cdbg(FIRMWARE, " module_vendor 0x%x", css->module_vendor); 482 hfi1_cdbg(FIRMWARE, " date 0x%x", css->date); 483 hfi1_cdbg(FIRMWARE, " size 0x%03x (0x%03x bytes)", 484 css->size, 4 * css->size); 485 hfi1_cdbg(FIRMWARE, " key_size 0x%03x (0x%03x bytes)", 486 css->key_size, 4 * css->key_size); 487 hfi1_cdbg(FIRMWARE, " modulus_size 0x%03x (0x%03x bytes)", 488 css->modulus_size, 4 * css->modulus_size); 489 hfi1_cdbg(FIRMWARE, " exponent_size 0x%03x (0x%03x bytes)", 490 css->exponent_size, 4 * css->exponent_size); 491 hfi1_cdbg(FIRMWARE, "firmware size: 0x%lx bytes", 492 fdet->fw->size - sizeof(struct firmware_file)); 493 494 /* 495 * If the file does not have a valid CSS header, fail. 496 * Otherwise, check the CSS size field for an expected size. 497 * The augmented file has r2 and mu inserted after the header 498 * was generated, so there will be a known difference between 499 * the CSS header size and the actual file size. Use this 500 * difference to identify an augmented file. 501 * 502 * Note: css->size is in DWORDs, multiply by 4 to get bytes. 503 */ 504 ret = verify_css_header(dd, css); 505 if (ret) { 506 dd_dev_info(dd, "Invalid CSS header for \"%s\"\n", name); 507 } else if ((css->size * 4) == fdet->fw->size) { 508 /* non-augmented firmware file */ 509 struct firmware_file *ff = (struct firmware_file *) 510 fdet->fw->data; 511 512 /* make sure there are bytes in the payload */ 513 ret = payload_check(dd, name, fdet->fw->size, 514 sizeof(struct firmware_file)); 515 if (ret == 0) { 516 fdet->css_header = css; 517 fdet->modulus = ff->modulus; 518 fdet->exponent = ff->exponent; 519 fdet->signature = ff->signature; 520 fdet->r2 = fdet->dummy_header.r2; /* use dummy space */ 521 fdet->mu = fdet->dummy_header.mu; /* use dummy space */ 522 fdet->firmware_ptr = ff->firmware; 523 fdet->firmware_len = fdet->fw->size - 524 sizeof(struct firmware_file); 525 /* 526 * Header does not include r2 and mu - generate here. 527 * For now, fail. 528 */ 529 dd_dev_err(dd, "driver is unable to validate firmware without r2 and mu (not in firmware file)\n"); 530 ret = -EINVAL; 531 } 532 } else if ((css->size * 4) + AUGMENT_SIZE == fdet->fw->size) { 533 /* augmented firmware file */ 534 struct augmented_firmware_file *aff = 535 (struct augmented_firmware_file *)fdet->fw->data; 536 537 /* make sure there are bytes in the payload */ 538 ret = payload_check(dd, name, fdet->fw->size, 539 sizeof(struct augmented_firmware_file)); 540 if (ret == 0) { 541 fdet->css_header = css; 542 fdet->modulus = aff->modulus; 543 fdet->exponent = aff->exponent; 544 fdet->signature = aff->signature; 545 fdet->r2 = aff->r2; 546 fdet->mu = aff->mu; 547 fdet->firmware_ptr = aff->firmware; 548 fdet->firmware_len = fdet->fw->size - 549 sizeof(struct augmented_firmware_file); 550 } 551 } else { 552 /* css->size check failed */ 553 dd_dev_err(dd, 554 "invalid firmware header field size: expected 0x%lx or 0x%lx, actual 0x%x\n", 555 fdet->fw->size / 4, 556 (fdet->fw->size - AUGMENT_SIZE) / 4, 557 css->size); 558 559 ret = -EINVAL; 560 } 561 562 done: 563 /* if returning an error, clean up after ourselves */ 564 if (ret) 565 dispose_one_firmware(fdet); 566 return ret; 567 } 568 569 static void dispose_one_firmware(struct firmware_details *fdet) 570 { 571 release_firmware(fdet->fw); 572 /* erase all previous information */ 573 memset(fdet, 0, sizeof(*fdet)); 574 } 575 576 /* 577 * Obtain the 4 firmwares from the OS. All must be obtained at once or not 578 * at all. If called with the firmware state in FW_TRY, use alternate names. 579 * On exit, this routine will have set the firmware state to one of FW_TRY, 580 * FW_FINAL, or FW_ERR. 581 * 582 * Must be holding fw_mutex. 583 */ 584 static void __obtain_firmware(struct hfi1_devdata *dd) 585 { 586 int err = 0; 587 588 if (fw_state == FW_FINAL) /* nothing more to obtain */ 589 return; 590 if (fw_state == FW_ERR) /* already in error */ 591 return; 592 593 /* fw_state is FW_EMPTY or FW_TRY */ 594 retry: 595 if (fw_state == FW_TRY) { 596 /* 597 * We tried the original and it failed. Move to the 598 * alternate. 599 */ 600 dd_dev_warn(dd, "using alternate firmware names\n"); 601 /* 602 * Let others run. Some systems, when missing firmware, does 603 * something that holds for 30 seconds. If we do that twice 604 * in a row it triggers task blocked warning. 605 */ 606 cond_resched(); 607 if (fw_8051_load) 608 dispose_one_firmware(&fw_8051); 609 if (fw_fabric_serdes_load) 610 dispose_one_firmware(&fw_fabric); 611 if (fw_sbus_load) 612 dispose_one_firmware(&fw_sbus); 613 if (fw_pcie_serdes_load) 614 dispose_one_firmware(&fw_pcie); 615 fw_8051_name = ALT_FW_8051_NAME_ASIC; 616 fw_fabric_serdes_name = ALT_FW_FABRIC_NAME; 617 fw_sbus_name = ALT_FW_SBUS_NAME; 618 fw_pcie_serdes_name = ALT_FW_PCIE_NAME; 619 620 /* 621 * Add a delay before obtaining and loading debug firmware. 622 * Authorization will fail if the delay between firmware 623 * authorization events is shorter than 50us. Add 100us to 624 * make a delay time safe. 625 */ 626 usleep_range(100, 120); 627 } 628 629 if (fw_sbus_load) { 630 err = obtain_one_firmware(dd, fw_sbus_name, &fw_sbus); 631 if (err) 632 goto done; 633 } 634 635 if (fw_pcie_serdes_load) { 636 err = obtain_one_firmware(dd, fw_pcie_serdes_name, &fw_pcie); 637 if (err) 638 goto done; 639 } 640 641 if (fw_fabric_serdes_load) { 642 err = obtain_one_firmware(dd, fw_fabric_serdes_name, 643 &fw_fabric); 644 if (err) 645 goto done; 646 } 647 648 if (fw_8051_load) { 649 err = obtain_one_firmware(dd, fw_8051_name, &fw_8051); 650 if (err) 651 goto done; 652 } 653 654 done: 655 if (err) { 656 /* oops, had problems obtaining a firmware */ 657 if (fw_state == FW_EMPTY && dd->icode == ICODE_RTL_SILICON) { 658 /* retry with alternate (RTL only) */ 659 fw_state = FW_TRY; 660 goto retry; 661 } 662 dd_dev_err(dd, "unable to obtain working firmware\n"); 663 fw_state = FW_ERR; 664 fw_err = -ENOENT; 665 } else { 666 /* success */ 667 if (fw_state == FW_EMPTY && 668 dd->icode != ICODE_FUNCTIONAL_SIMULATOR) 669 fw_state = FW_TRY; /* may retry later */ 670 else 671 fw_state = FW_FINAL; /* cannot try again */ 672 } 673 } 674 675 /* 676 * Called by all HFIs when loading their firmware - i.e. device probe time. 677 * The first one will do the actual firmware load. Use a mutex to resolve 678 * any possible race condition. 679 * 680 * The call to this routine cannot be moved to driver load because the kernel 681 * call request_firmware() requires a device which is only available after 682 * the first device probe. 683 */ 684 static int obtain_firmware(struct hfi1_devdata *dd) 685 { 686 unsigned long timeout; 687 688 mutex_lock(&fw_mutex); 689 690 /* 40s delay due to long delay on missing firmware on some systems */ 691 timeout = jiffies + msecs_to_jiffies(40000); 692 while (fw_state == FW_TRY) { 693 /* 694 * Another device is trying the firmware. Wait until it 695 * decides what works (or not). 696 */ 697 if (time_after(jiffies, timeout)) { 698 /* waited too long */ 699 dd_dev_err(dd, "Timeout waiting for firmware try"); 700 fw_state = FW_ERR; 701 fw_err = -ETIMEDOUT; 702 break; 703 } 704 mutex_unlock(&fw_mutex); 705 msleep(20); /* arbitrary delay */ 706 mutex_lock(&fw_mutex); 707 } 708 /* not in FW_TRY state */ 709 710 /* set fw_state to FW_TRY, FW_FINAL, or FW_ERR, and fw_err */ 711 if (fw_state == FW_EMPTY) 712 __obtain_firmware(dd); 713 714 mutex_unlock(&fw_mutex); 715 return fw_err; 716 } 717 718 /* 719 * Called when the driver unloads. The timing is asymmetric with its 720 * counterpart, obtain_firmware(). If called at device remove time, 721 * then it is conceivable that another device could probe while the 722 * firmware is being disposed. The mutexes can be moved to do that 723 * safely, but then the firmware would be requested from the OS multiple 724 * times. 725 * 726 * No mutex is needed as the driver is unloading and there cannot be any 727 * other callers. 728 */ 729 void dispose_firmware(void) 730 { 731 dispose_one_firmware(&fw_8051); 732 dispose_one_firmware(&fw_fabric); 733 dispose_one_firmware(&fw_pcie); 734 dispose_one_firmware(&fw_sbus); 735 736 /* retain the error state, otherwise revert to empty */ 737 if (fw_state != FW_ERR) 738 fw_state = FW_EMPTY; 739 } 740 741 /* 742 * Called with the result of a firmware download. 743 * 744 * Return 1 to retry loading the firmware, 0 to stop. 745 */ 746 static int retry_firmware(struct hfi1_devdata *dd, int load_result) 747 { 748 int retry; 749 750 mutex_lock(&fw_mutex); 751 752 if (load_result == 0) { 753 /* 754 * The load succeeded, so expect all others to do the same. 755 * Do not retry again. 756 */ 757 if (fw_state == FW_TRY) 758 fw_state = FW_FINAL; 759 retry = 0; /* do NOT retry */ 760 } else if (fw_state == FW_TRY) { 761 /* load failed, obtain alternate firmware */ 762 __obtain_firmware(dd); 763 retry = (fw_state == FW_FINAL); 764 } else { 765 /* else in FW_FINAL or FW_ERR, no retry in either case */ 766 retry = 0; 767 } 768 769 mutex_unlock(&fw_mutex); 770 return retry; 771 } 772 773 /* 774 * Write a block of data to a given array CSR. All calls will be in 775 * multiples of 8 bytes. 776 */ 777 static void write_rsa_data(struct hfi1_devdata *dd, int what, 778 const u8 *data, int nbytes) 779 { 780 int qw_size = nbytes / 8; 781 int i; 782 783 if (((unsigned long)data & 0x7) == 0) { 784 /* aligned */ 785 u64 *ptr = (u64 *)data; 786 787 for (i = 0; i < qw_size; i++, ptr++) 788 write_csr(dd, what + (8 * i), *ptr); 789 } else { 790 /* not aligned */ 791 for (i = 0; i < qw_size; i++, data += 8) { 792 u64 value; 793 794 memcpy(&value, data, 8); 795 write_csr(dd, what + (8 * i), value); 796 } 797 } 798 } 799 800 /* 801 * Write a block of data to a given CSR as a stream of writes. All calls will 802 * be in multiples of 8 bytes. 803 */ 804 static void write_streamed_rsa_data(struct hfi1_devdata *dd, int what, 805 const u8 *data, int nbytes) 806 { 807 u64 *ptr = (u64 *)data; 808 int qw_size = nbytes / 8; 809 810 for (; qw_size > 0; qw_size--, ptr++) 811 write_csr(dd, what, *ptr); 812 } 813 814 /* 815 * Download the signature and start the RSA mechanism. Wait for 816 * RSA_ENGINE_TIMEOUT before giving up. 817 */ 818 static int run_rsa(struct hfi1_devdata *dd, const char *who, 819 const u8 *signature) 820 { 821 unsigned long timeout; 822 u64 reg; 823 u32 status; 824 int ret = 0; 825 826 /* write the signature */ 827 write_rsa_data(dd, MISC_CFG_RSA_SIGNATURE, signature, KEY_SIZE); 828 829 /* initialize RSA */ 830 write_csr(dd, MISC_CFG_RSA_CMD, RSA_CMD_INIT); 831 832 /* 833 * Make sure the engine is idle and insert a delay between the two 834 * writes to MISC_CFG_RSA_CMD. 835 */ 836 status = (read_csr(dd, MISC_CFG_FW_CTRL) 837 & MISC_CFG_FW_CTRL_RSA_STATUS_SMASK) 838 >> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT; 839 if (status != RSA_STATUS_IDLE) { 840 dd_dev_err(dd, "%s security engine not idle - giving up\n", 841 who); 842 return -EBUSY; 843 } 844 845 /* start RSA */ 846 write_csr(dd, MISC_CFG_RSA_CMD, RSA_CMD_START); 847 848 /* 849 * Look for the result. 850 * 851 * The RSA engine is hooked up to two MISC errors. The driver 852 * masks these errors as they do not respond to the standard 853 * error "clear down" mechanism. Look for these errors here and 854 * clear them when possible. This routine will exit with the 855 * errors of the current run still set. 856 * 857 * MISC_FW_AUTH_FAILED_ERR 858 * Firmware authorization failed. This can be cleared by 859 * re-initializing the RSA engine, then clearing the status bit. 860 * Do not re-init the RSA angine immediately after a successful 861 * run - this will reset the current authorization. 862 * 863 * MISC_KEY_MISMATCH_ERR 864 * Key does not match. The only way to clear this is to load 865 * a matching key then clear the status bit. If this error 866 * is raised, it will persist outside of this routine until a 867 * matching key is loaded. 868 */ 869 timeout = msecs_to_jiffies(RSA_ENGINE_TIMEOUT) + jiffies; 870 while (1) { 871 status = (read_csr(dd, MISC_CFG_FW_CTRL) 872 & MISC_CFG_FW_CTRL_RSA_STATUS_SMASK) 873 >> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT; 874 875 if (status == RSA_STATUS_IDLE) { 876 /* should not happen */ 877 dd_dev_err(dd, "%s firmware security bad idle state\n", 878 who); 879 ret = -EINVAL; 880 break; 881 } else if (status == RSA_STATUS_DONE) { 882 /* finished successfully */ 883 break; 884 } else if (status == RSA_STATUS_FAILED) { 885 /* finished unsuccessfully */ 886 ret = -EINVAL; 887 break; 888 } 889 /* else still active */ 890 891 if (time_after(jiffies, timeout)) { 892 /* 893 * Timed out while active. We can't reset the engine 894 * if it is stuck active, but run through the 895 * error code to see what error bits are set. 896 */ 897 dd_dev_err(dd, "%s firmware security time out\n", who); 898 ret = -ETIMEDOUT; 899 break; 900 } 901 902 msleep(20); 903 } 904 905 /* 906 * Arrive here on success or failure. Clear all RSA engine 907 * errors. All current errors will stick - the RSA logic is keeping 908 * error high. All previous errors will clear - the RSA logic 909 * is not keeping the error high. 910 */ 911 write_csr(dd, MISC_ERR_CLEAR, 912 MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK | 913 MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK); 914 /* 915 * All that is left are the current errors. Print warnings on 916 * authorization failure details, if any. Firmware authorization 917 * can be retried, so these are only warnings. 918 */ 919 reg = read_csr(dd, MISC_ERR_STATUS); 920 if (ret) { 921 if (reg & MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK) 922 dd_dev_warn(dd, "%s firmware authorization failed\n", 923 who); 924 if (reg & MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK) 925 dd_dev_warn(dd, "%s firmware key mismatch\n", who); 926 } 927 928 return ret; 929 } 930 931 static void load_security_variables(struct hfi1_devdata *dd, 932 struct firmware_details *fdet) 933 { 934 /* Security variables a. Write the modulus */ 935 write_rsa_data(dd, MISC_CFG_RSA_MODULUS, fdet->modulus, KEY_SIZE); 936 /* Security variables b. Write the r2 */ 937 write_rsa_data(dd, MISC_CFG_RSA_R2, fdet->r2, KEY_SIZE); 938 /* Security variables c. Write the mu */ 939 write_rsa_data(dd, MISC_CFG_RSA_MU, fdet->mu, MU_SIZE); 940 /* Security variables d. Write the header */ 941 write_streamed_rsa_data(dd, MISC_CFG_SHA_PRELOAD, 942 (u8 *)fdet->css_header, 943 sizeof(struct css_header)); 944 } 945 946 /* return the 8051 firmware state */ 947 static inline u32 get_firmware_state(struct hfi1_devdata *dd) 948 { 949 u64 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE); 950 951 return (reg >> DC_DC8051_STS_CUR_STATE_FIRMWARE_SHIFT) 952 & DC_DC8051_STS_CUR_STATE_FIRMWARE_MASK; 953 } 954 955 /* 956 * Wait until the firmware is up and ready to take host requests. 957 * Return 0 on success, -ETIMEDOUT on timeout. 958 */ 959 int wait_fm_ready(struct hfi1_devdata *dd, u32 mstimeout) 960 { 961 unsigned long timeout; 962 963 /* in the simulator, the fake 8051 is always ready */ 964 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) 965 return 0; 966 967 timeout = msecs_to_jiffies(mstimeout) + jiffies; 968 while (1) { 969 if (get_firmware_state(dd) == 0xa0) /* ready */ 970 return 0; 971 if (time_after(jiffies, timeout)) /* timed out */ 972 return -ETIMEDOUT; 973 usleep_range(1950, 2050); /* sleep 2ms-ish */ 974 } 975 } 976 977 /* 978 * Load the 8051 firmware. 979 */ 980 static int load_8051_firmware(struct hfi1_devdata *dd, 981 struct firmware_details *fdet) 982 { 983 u64 reg; 984 int ret; 985 u8 ver_major; 986 u8 ver_minor; 987 u8 ver_patch; 988 989 /* 990 * DC Reset sequence 991 * Load DC 8051 firmware 992 */ 993 /* 994 * DC reset step 1: Reset DC8051 995 */ 996 reg = DC_DC8051_CFG_RST_M8051W_SMASK 997 | DC_DC8051_CFG_RST_CRAM_SMASK 998 | DC_DC8051_CFG_RST_DRAM_SMASK 999 | DC_DC8051_CFG_RST_IRAM_SMASK 1000 | DC_DC8051_CFG_RST_SFR_SMASK; 1001 write_csr(dd, DC_DC8051_CFG_RST, reg); 1002 1003 /* 1004 * DC reset step 2 (optional): Load 8051 data memory with link 1005 * configuration 1006 */ 1007 1008 /* 1009 * DC reset step 3: Load DC8051 firmware 1010 */ 1011 /* release all but the core reset */ 1012 reg = DC_DC8051_CFG_RST_M8051W_SMASK; 1013 write_csr(dd, DC_DC8051_CFG_RST, reg); 1014 1015 /* Firmware load step 1 */ 1016 load_security_variables(dd, fdet); 1017 1018 /* 1019 * Firmware load step 2. Clear MISC_CFG_FW_CTRL.FW_8051_LOADED 1020 */ 1021 write_csr(dd, MISC_CFG_FW_CTRL, 0); 1022 1023 /* Firmware load steps 3-5 */ 1024 ret = write_8051(dd, 1/*code*/, 0, fdet->firmware_ptr, 1025 fdet->firmware_len); 1026 if (ret) 1027 return ret; 1028 1029 /* 1030 * DC reset step 4. Host starts the DC8051 firmware 1031 */ 1032 /* 1033 * Firmware load step 6. Set MISC_CFG_FW_CTRL.FW_8051_LOADED 1034 */ 1035 write_csr(dd, MISC_CFG_FW_CTRL, MISC_CFG_FW_CTRL_FW_8051_LOADED_SMASK); 1036 1037 /* Firmware load steps 7-10 */ 1038 ret = run_rsa(dd, "8051", fdet->signature); 1039 if (ret) 1040 return ret; 1041 1042 /* clear all reset bits, releasing the 8051 */ 1043 write_csr(dd, DC_DC8051_CFG_RST, 0ull); 1044 1045 /* 1046 * DC reset step 5. Wait for firmware to be ready to accept host 1047 * requests. 1048 */ 1049 ret = wait_fm_ready(dd, TIMEOUT_8051_START); 1050 if (ret) { /* timed out */ 1051 dd_dev_err(dd, "8051 start timeout, current state 0x%x\n", 1052 get_firmware_state(dd)); 1053 return -ETIMEDOUT; 1054 } 1055 1056 read_misc_status(dd, &ver_major, &ver_minor, &ver_patch); 1057 dd_dev_info(dd, "8051 firmware version %d.%d.%d\n", 1058 (int)ver_major, (int)ver_minor, (int)ver_patch); 1059 dd->dc8051_ver = dc8051_ver(ver_major, ver_minor, ver_patch); 1060 ret = write_host_interface_version(dd, HOST_INTERFACE_VERSION); 1061 if (ret != HCMD_SUCCESS) { 1062 dd_dev_err(dd, 1063 "Failed to set host interface version, return 0x%x\n", 1064 ret); 1065 return -EIO; 1066 } 1067 1068 return 0; 1069 } 1070 1071 /* 1072 * Write the SBus request register 1073 * 1074 * No need for masking - the arguments are sized exactly. 1075 */ 1076 void sbus_request(struct hfi1_devdata *dd, 1077 u8 receiver_addr, u8 data_addr, u8 command, u32 data_in) 1078 { 1079 write_csr(dd, ASIC_CFG_SBUS_REQUEST, 1080 ((u64)data_in << ASIC_CFG_SBUS_REQUEST_DATA_IN_SHIFT) | 1081 ((u64)command << ASIC_CFG_SBUS_REQUEST_COMMAND_SHIFT) | 1082 ((u64)data_addr << ASIC_CFG_SBUS_REQUEST_DATA_ADDR_SHIFT) | 1083 ((u64)receiver_addr << 1084 ASIC_CFG_SBUS_REQUEST_RECEIVER_ADDR_SHIFT)); 1085 } 1086 1087 /* 1088 * Read a value from the SBus. 1089 * 1090 * Requires the caller to be in fast mode 1091 */ 1092 static u32 sbus_read(struct hfi1_devdata *dd, u8 receiver_addr, u8 data_addr, 1093 u32 data_in) 1094 { 1095 u64 reg; 1096 int retries; 1097 int success = 0; 1098 u32 result = 0; 1099 u32 result_code = 0; 1100 1101 sbus_request(dd, receiver_addr, data_addr, READ_SBUS_RECEIVER, data_in); 1102 1103 for (retries = 0; retries < 100; retries++) { 1104 usleep_range(1000, 1200); /* arbitrary */ 1105 reg = read_csr(dd, ASIC_STS_SBUS_RESULT); 1106 result_code = (reg >> ASIC_STS_SBUS_RESULT_RESULT_CODE_SHIFT) 1107 & ASIC_STS_SBUS_RESULT_RESULT_CODE_MASK; 1108 if (result_code != SBUS_READ_COMPLETE) 1109 continue; 1110 1111 success = 1; 1112 result = (reg >> ASIC_STS_SBUS_RESULT_DATA_OUT_SHIFT) 1113 & ASIC_STS_SBUS_RESULT_DATA_OUT_MASK; 1114 break; 1115 } 1116 1117 if (!success) { 1118 dd_dev_err(dd, "%s: read failed, result code 0x%x\n", __func__, 1119 result_code); 1120 } 1121 1122 return result; 1123 } 1124 1125 /* 1126 * Turn off the SBus and fabric serdes spicos. 1127 * 1128 * + Must be called with Sbus fast mode turned on. 1129 * + Must be called after fabric serdes broadcast is set up. 1130 * + Must be called before the 8051 is loaded - assumes 8051 is not loaded 1131 * when using MISC_CFG_FW_CTRL. 1132 */ 1133 static void turn_off_spicos(struct hfi1_devdata *dd, int flags) 1134 { 1135 /* only needed on A0 */ 1136 if (!is_ax(dd)) 1137 return; 1138 1139 dd_dev_info(dd, "Turning off spicos:%s%s\n", 1140 flags & SPICO_SBUS ? " SBus" : "", 1141 flags & SPICO_FABRIC ? " fabric" : ""); 1142 1143 write_csr(dd, MISC_CFG_FW_CTRL, ENABLE_SPICO_SMASK); 1144 /* disable SBus spico */ 1145 if (flags & SPICO_SBUS) 1146 sbus_request(dd, SBUS_MASTER_BROADCAST, 0x01, 1147 WRITE_SBUS_RECEIVER, 0x00000040); 1148 1149 /* disable the fabric serdes spicos */ 1150 if (flags & SPICO_FABRIC) 1151 sbus_request(dd, fabric_serdes_broadcast[dd->hfi1_id], 1152 0x07, WRITE_SBUS_RECEIVER, 0x00000000); 1153 write_csr(dd, MISC_CFG_FW_CTRL, 0); 1154 } 1155 1156 /* 1157 * Reset all of the fabric serdes for this HFI in preparation to take the 1158 * link to Polling. 1159 * 1160 * To do a reset, we need to write to to the serdes registers. Unfortunately, 1161 * the fabric serdes download to the other HFI on the ASIC will have turned 1162 * off the firmware validation on this HFI. This means we can't write to the 1163 * registers to reset the serdes. Work around this by performing a complete 1164 * re-download and validation of the fabric serdes firmware. This, as a 1165 * by-product, will reset the serdes. NOTE: the re-download requires that 1166 * the 8051 be in the Offline state. I.e. not actively trying to use the 1167 * serdes. This routine is called at the point where the link is Offline and 1168 * is getting ready to go to Polling. 1169 */ 1170 void fabric_serdes_reset(struct hfi1_devdata *dd) 1171 { 1172 int ret; 1173 1174 if (!fw_fabric_serdes_load) 1175 return; 1176 1177 ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT); 1178 if (ret) { 1179 dd_dev_err(dd, 1180 "Cannot acquire SBus resource to reset fabric SerDes - perhaps you should reboot\n"); 1181 return; 1182 } 1183 set_sbus_fast_mode(dd); 1184 1185 if (is_ax(dd)) { 1186 /* A0 serdes do not work with a re-download */ 1187 u8 ra = fabric_serdes_broadcast[dd->hfi1_id]; 1188 1189 /* place SerDes in reset and disable SPICO */ 1190 sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000011); 1191 /* wait 100 refclk cycles @ 156.25MHz => 640ns */ 1192 udelay(1); 1193 /* remove SerDes reset */ 1194 sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000010); 1195 /* turn SPICO enable on */ 1196 sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000002); 1197 } else { 1198 turn_off_spicos(dd, SPICO_FABRIC); 1199 /* 1200 * No need for firmware retry - what to download has already 1201 * been decided. 1202 * No need to pay attention to the load return - the only 1203 * failure is a validation failure, which has already been 1204 * checked by the initial download. 1205 */ 1206 (void)load_fabric_serdes_firmware(dd, &fw_fabric); 1207 } 1208 1209 clear_sbus_fast_mode(dd); 1210 release_chip_resource(dd, CR_SBUS); 1211 } 1212 1213 /* Access to the SBus in this routine should probably be serialized */ 1214 int sbus_request_slow(struct hfi1_devdata *dd, 1215 u8 receiver_addr, u8 data_addr, u8 command, u32 data_in) 1216 { 1217 u64 reg, count = 0; 1218 1219 /* make sure fast mode is clear */ 1220 clear_sbus_fast_mode(dd); 1221 1222 sbus_request(dd, receiver_addr, data_addr, command, data_in); 1223 write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 1224 ASIC_CFG_SBUS_EXECUTE_EXECUTE_SMASK); 1225 /* Wait for both DONE and RCV_DATA_VALID to go high */ 1226 reg = read_csr(dd, ASIC_STS_SBUS_RESULT); 1227 while (!((reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) && 1228 (reg & ASIC_STS_SBUS_RESULT_RCV_DATA_VALID_SMASK))) { 1229 if (count++ >= SBUS_MAX_POLL_COUNT) { 1230 u64 counts = read_csr(dd, ASIC_STS_SBUS_COUNTERS); 1231 /* 1232 * If the loop has timed out, we are OK if DONE bit 1233 * is set and RCV_DATA_VALID and EXECUTE counters 1234 * are the same. If not, we cannot proceed. 1235 */ 1236 if ((reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) && 1237 (SBUS_COUNTER(counts, RCV_DATA_VALID) == 1238 SBUS_COUNTER(counts, EXECUTE))) 1239 break; 1240 return -ETIMEDOUT; 1241 } 1242 udelay(1); 1243 reg = read_csr(dd, ASIC_STS_SBUS_RESULT); 1244 } 1245 count = 0; 1246 write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0); 1247 /* Wait for DONE to clear after EXECUTE is cleared */ 1248 reg = read_csr(dd, ASIC_STS_SBUS_RESULT); 1249 while (reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) { 1250 if (count++ >= SBUS_MAX_POLL_COUNT) 1251 return -ETIME; 1252 udelay(1); 1253 reg = read_csr(dd, ASIC_STS_SBUS_RESULT); 1254 } 1255 return 0; 1256 } 1257 1258 static int load_fabric_serdes_firmware(struct hfi1_devdata *dd, 1259 struct firmware_details *fdet) 1260 { 1261 int i, err; 1262 const u8 ra = fabric_serdes_broadcast[dd->hfi1_id]; /* receiver addr */ 1263 1264 dd_dev_info(dd, "Downloading fabric firmware\n"); 1265 1266 /* step 1: load security variables */ 1267 load_security_variables(dd, fdet); 1268 /* step 2: place SerDes in reset and disable SPICO */ 1269 sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000011); 1270 /* wait 100 refclk cycles @ 156.25MHz => 640ns */ 1271 udelay(1); 1272 /* step 3: remove SerDes reset */ 1273 sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000010); 1274 /* step 4: assert IMEM override */ 1275 sbus_request(dd, ra, 0x00, WRITE_SBUS_RECEIVER, 0x40000000); 1276 /* step 5: download SerDes machine code */ 1277 for (i = 0; i < fdet->firmware_len; i += 4) { 1278 sbus_request(dd, ra, 0x0a, WRITE_SBUS_RECEIVER, 1279 *(u32 *)&fdet->firmware_ptr[i]); 1280 } 1281 /* step 6: IMEM override off */ 1282 sbus_request(dd, ra, 0x00, WRITE_SBUS_RECEIVER, 0x00000000); 1283 /* step 7: turn ECC on */ 1284 sbus_request(dd, ra, 0x0b, WRITE_SBUS_RECEIVER, 0x000c0000); 1285 1286 /* steps 8-11: run the RSA engine */ 1287 err = run_rsa(dd, "fabric serdes", fdet->signature); 1288 if (err) 1289 return err; 1290 1291 /* step 12: turn SPICO enable on */ 1292 sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000002); 1293 /* step 13: enable core hardware interrupts */ 1294 sbus_request(dd, ra, 0x08, WRITE_SBUS_RECEIVER, 0x00000000); 1295 1296 return 0; 1297 } 1298 1299 static int load_sbus_firmware(struct hfi1_devdata *dd, 1300 struct firmware_details *fdet) 1301 { 1302 int i, err; 1303 const u8 ra = SBUS_MASTER_BROADCAST; /* receiver address */ 1304 1305 dd_dev_info(dd, "Downloading SBus firmware\n"); 1306 1307 /* step 1: load security variables */ 1308 load_security_variables(dd, fdet); 1309 /* step 2: place SPICO into reset and enable off */ 1310 sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x000000c0); 1311 /* step 3: remove reset, enable off, IMEM_CNTRL_EN on */ 1312 sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000240); 1313 /* step 4: set starting IMEM address for burst download */ 1314 sbus_request(dd, ra, 0x03, WRITE_SBUS_RECEIVER, 0x80000000); 1315 /* step 5: download the SBus Master machine code */ 1316 for (i = 0; i < fdet->firmware_len; i += 4) { 1317 sbus_request(dd, ra, 0x14, WRITE_SBUS_RECEIVER, 1318 *(u32 *)&fdet->firmware_ptr[i]); 1319 } 1320 /* step 6: set IMEM_CNTL_EN off */ 1321 sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000040); 1322 /* step 7: turn ECC on */ 1323 sbus_request(dd, ra, 0x16, WRITE_SBUS_RECEIVER, 0x000c0000); 1324 1325 /* steps 8-11: run the RSA engine */ 1326 err = run_rsa(dd, "SBus", fdet->signature); 1327 if (err) 1328 return err; 1329 1330 /* step 12: set SPICO_ENABLE on */ 1331 sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000140); 1332 1333 return 0; 1334 } 1335 1336 static int load_pcie_serdes_firmware(struct hfi1_devdata *dd, 1337 struct firmware_details *fdet) 1338 { 1339 int i; 1340 const u8 ra = SBUS_MASTER_BROADCAST; /* receiver address */ 1341 1342 dd_dev_info(dd, "Downloading PCIe firmware\n"); 1343 1344 /* step 1: load security variables */ 1345 load_security_variables(dd, fdet); 1346 /* step 2: assert single step (halts the SBus Master spico) */ 1347 sbus_request(dd, ra, 0x05, WRITE_SBUS_RECEIVER, 0x00000001); 1348 /* step 3: enable XDMEM access */ 1349 sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000d40); 1350 /* step 4: load firmware into SBus Master XDMEM */ 1351 /* 1352 * NOTE: the dmem address, write_en, and wdata are all pre-packed, 1353 * we only need to pick up the bytes and write them 1354 */ 1355 for (i = 0; i < fdet->firmware_len; i += 4) { 1356 sbus_request(dd, ra, 0x04, WRITE_SBUS_RECEIVER, 1357 *(u32 *)&fdet->firmware_ptr[i]); 1358 } 1359 /* step 5: disable XDMEM access */ 1360 sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000140); 1361 /* step 6: allow SBus Spico to run */ 1362 sbus_request(dd, ra, 0x05, WRITE_SBUS_RECEIVER, 0x00000000); 1363 1364 /* 1365 * steps 7-11: run RSA, if it succeeds, firmware is available to 1366 * be swapped 1367 */ 1368 return run_rsa(dd, "PCIe serdes", fdet->signature); 1369 } 1370 1371 /* 1372 * Set the given broadcast values on the given list of devices. 1373 */ 1374 static void set_serdes_broadcast(struct hfi1_devdata *dd, u8 bg1, u8 bg2, 1375 const u8 *addrs, int count) 1376 { 1377 while (--count >= 0) { 1378 /* 1379 * Set BROADCAST_GROUP_1 and BROADCAST_GROUP_2, leave 1380 * defaults for everything else. Do not read-modify-write, 1381 * per instruction from the manufacturer. 1382 * 1383 * Register 0xfd: 1384 * bits what 1385 * ----- --------------------------------- 1386 * 0 IGNORE_BROADCAST (default 0) 1387 * 11:4 BROADCAST_GROUP_1 (default 0xff) 1388 * 23:16 BROADCAST_GROUP_2 (default 0xff) 1389 */ 1390 sbus_request(dd, addrs[count], 0xfd, WRITE_SBUS_RECEIVER, 1391 (u32)bg1 << 4 | (u32)bg2 << 16); 1392 } 1393 } 1394 1395 int acquire_hw_mutex(struct hfi1_devdata *dd) 1396 { 1397 unsigned long timeout; 1398 int try = 0; 1399 u8 mask = 1 << dd->hfi1_id; 1400 u8 user = (u8)read_csr(dd, ASIC_CFG_MUTEX); 1401 1402 if (user == mask) { 1403 dd_dev_info(dd, 1404 "Hardware mutex already acquired, mutex mask %u\n", 1405 (u32)mask); 1406 return 0; 1407 } 1408 1409 retry: 1410 timeout = msecs_to_jiffies(HM_TIMEOUT) + jiffies; 1411 while (1) { 1412 write_csr(dd, ASIC_CFG_MUTEX, mask); 1413 user = (u8)read_csr(dd, ASIC_CFG_MUTEX); 1414 if (user == mask) 1415 return 0; /* success */ 1416 if (time_after(jiffies, timeout)) 1417 break; /* timed out */ 1418 msleep(20); 1419 } 1420 1421 /* timed out */ 1422 dd_dev_err(dd, 1423 "Unable to acquire hardware mutex, mutex mask %u, my mask %u (%s)\n", 1424 (u32)user, (u32)mask, (try == 0) ? "retrying" : "giving up"); 1425 1426 if (try == 0) { 1427 /* break mutex and retry */ 1428 write_csr(dd, ASIC_CFG_MUTEX, 0); 1429 try++; 1430 goto retry; 1431 } 1432 1433 return -EBUSY; 1434 } 1435 1436 void release_hw_mutex(struct hfi1_devdata *dd) 1437 { 1438 u8 mask = 1 << dd->hfi1_id; 1439 u8 user = (u8)read_csr(dd, ASIC_CFG_MUTEX); 1440 1441 if (user != mask) 1442 dd_dev_warn(dd, 1443 "Unable to release hardware mutex, mutex mask %u, my mask %u\n", 1444 (u32)user, (u32)mask); 1445 else 1446 write_csr(dd, ASIC_CFG_MUTEX, 0); 1447 } 1448 1449 /* return the given resource bit(s) as a mask for the given HFI */ 1450 static inline u64 resource_mask(u32 hfi1_id, u32 resource) 1451 { 1452 return ((u64)resource) << (hfi1_id ? CR_DYN_SHIFT : 0); 1453 } 1454 1455 static void fail_mutex_acquire_message(struct hfi1_devdata *dd, 1456 const char *func) 1457 { 1458 dd_dev_err(dd, 1459 "%s: hardware mutex stuck - suggest rebooting the machine\n", 1460 func); 1461 } 1462 1463 /* 1464 * Acquire access to a chip resource. 1465 * 1466 * Return 0 on success, -EBUSY if resource busy, -EIO if mutex acquire failed. 1467 */ 1468 static int __acquire_chip_resource(struct hfi1_devdata *dd, u32 resource) 1469 { 1470 u64 scratch0, all_bits, my_bit; 1471 int ret; 1472 1473 if (resource & CR_DYN_MASK) { 1474 /* a dynamic resource is in use if either HFI has set the bit */ 1475 if (dd->pcidev->device == PCI_DEVICE_ID_INTEL0 && 1476 (resource & (CR_I2C1 | CR_I2C2))) { 1477 /* discrete devices must serialize across both chains */ 1478 all_bits = resource_mask(0, CR_I2C1 | CR_I2C2) | 1479 resource_mask(1, CR_I2C1 | CR_I2C2); 1480 } else { 1481 all_bits = resource_mask(0, resource) | 1482 resource_mask(1, resource); 1483 } 1484 my_bit = resource_mask(dd->hfi1_id, resource); 1485 } else { 1486 /* non-dynamic resources are not split between HFIs */ 1487 all_bits = resource; 1488 my_bit = resource; 1489 } 1490 1491 /* lock against other callers within the driver wanting a resource */ 1492 mutex_lock(&dd->asic_data->asic_resource_mutex); 1493 1494 ret = acquire_hw_mutex(dd); 1495 if (ret) { 1496 fail_mutex_acquire_message(dd, __func__); 1497 ret = -EIO; 1498 goto done; 1499 } 1500 1501 scratch0 = read_csr(dd, ASIC_CFG_SCRATCH); 1502 if (scratch0 & all_bits) { 1503 ret = -EBUSY; 1504 } else { 1505 write_csr(dd, ASIC_CFG_SCRATCH, scratch0 | my_bit); 1506 /* force write to be visible to other HFI on another OS */ 1507 (void)read_csr(dd, ASIC_CFG_SCRATCH); 1508 } 1509 1510 release_hw_mutex(dd); 1511 1512 done: 1513 mutex_unlock(&dd->asic_data->asic_resource_mutex); 1514 return ret; 1515 } 1516 1517 /* 1518 * Acquire access to a chip resource, wait up to mswait milliseconds for 1519 * the resource to become available. 1520 * 1521 * Return 0 on success, -EBUSY if busy (even after wait), -EIO if mutex 1522 * acquire failed. 1523 */ 1524 int acquire_chip_resource(struct hfi1_devdata *dd, u32 resource, u32 mswait) 1525 { 1526 unsigned long timeout; 1527 int ret; 1528 1529 timeout = jiffies + msecs_to_jiffies(mswait); 1530 while (1) { 1531 ret = __acquire_chip_resource(dd, resource); 1532 if (ret != -EBUSY) 1533 return ret; 1534 /* resource is busy, check our timeout */ 1535 if (time_after_eq(jiffies, timeout)) 1536 return -EBUSY; 1537 usleep_range(80, 120); /* arbitrary delay */ 1538 } 1539 } 1540 1541 /* 1542 * Release access to a chip resource 1543 */ 1544 void release_chip_resource(struct hfi1_devdata *dd, u32 resource) 1545 { 1546 u64 scratch0, bit; 1547 1548 /* only dynamic resources should ever be cleared */ 1549 if (!(resource & CR_DYN_MASK)) { 1550 dd_dev_err(dd, "%s: invalid resource 0x%x\n", __func__, 1551 resource); 1552 return; 1553 } 1554 bit = resource_mask(dd->hfi1_id, resource); 1555 1556 /* lock against other callers within the driver wanting a resource */ 1557 mutex_lock(&dd->asic_data->asic_resource_mutex); 1558 1559 if (acquire_hw_mutex(dd)) { 1560 fail_mutex_acquire_message(dd, __func__); 1561 goto done; 1562 } 1563 1564 scratch0 = read_csr(dd, ASIC_CFG_SCRATCH); 1565 if ((scratch0 & bit) != 0) { 1566 scratch0 &= ~bit; 1567 write_csr(dd, ASIC_CFG_SCRATCH, scratch0); 1568 /* force write to be visible to other HFI on another OS */ 1569 (void)read_csr(dd, ASIC_CFG_SCRATCH); 1570 } else { 1571 dd_dev_warn(dd, "%s: id %d, resource 0x%x: bit not set\n", 1572 __func__, dd->hfi1_id, resource); 1573 } 1574 1575 release_hw_mutex(dd); 1576 1577 done: 1578 mutex_unlock(&dd->asic_data->asic_resource_mutex); 1579 } 1580 1581 /* 1582 * Return true if resource is set, false otherwise. Print a warning 1583 * if not set and a function is supplied. 1584 */ 1585 bool check_chip_resource(struct hfi1_devdata *dd, u32 resource, 1586 const char *func) 1587 { 1588 u64 scratch0, bit; 1589 1590 if (resource & CR_DYN_MASK) 1591 bit = resource_mask(dd->hfi1_id, resource); 1592 else 1593 bit = resource; 1594 1595 scratch0 = read_csr(dd, ASIC_CFG_SCRATCH); 1596 if ((scratch0 & bit) == 0) { 1597 if (func) 1598 dd_dev_warn(dd, 1599 "%s: id %d, resource 0x%x, not acquired!\n", 1600 func, dd->hfi1_id, resource); 1601 return false; 1602 } 1603 return true; 1604 } 1605 1606 static void clear_chip_resources(struct hfi1_devdata *dd, const char *func) 1607 { 1608 u64 scratch0; 1609 1610 /* lock against other callers within the driver wanting a resource */ 1611 mutex_lock(&dd->asic_data->asic_resource_mutex); 1612 1613 if (acquire_hw_mutex(dd)) { 1614 fail_mutex_acquire_message(dd, func); 1615 goto done; 1616 } 1617 1618 /* clear all dynamic access bits for this HFI */ 1619 scratch0 = read_csr(dd, ASIC_CFG_SCRATCH); 1620 scratch0 &= ~resource_mask(dd->hfi1_id, CR_DYN_MASK); 1621 write_csr(dd, ASIC_CFG_SCRATCH, scratch0); 1622 /* force write to be visible to other HFI on another OS */ 1623 (void)read_csr(dd, ASIC_CFG_SCRATCH); 1624 1625 release_hw_mutex(dd); 1626 1627 done: 1628 mutex_unlock(&dd->asic_data->asic_resource_mutex); 1629 } 1630 1631 void init_chip_resources(struct hfi1_devdata *dd) 1632 { 1633 /* clear any holds left by us */ 1634 clear_chip_resources(dd, __func__); 1635 } 1636 1637 void finish_chip_resources(struct hfi1_devdata *dd) 1638 { 1639 /* clear any holds left by us */ 1640 clear_chip_resources(dd, __func__); 1641 } 1642 1643 void set_sbus_fast_mode(struct hfi1_devdata *dd) 1644 { 1645 write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 1646 ASIC_CFG_SBUS_EXECUTE_FAST_MODE_SMASK); 1647 } 1648 1649 void clear_sbus_fast_mode(struct hfi1_devdata *dd) 1650 { 1651 u64 reg, count = 0; 1652 1653 reg = read_csr(dd, ASIC_STS_SBUS_COUNTERS); 1654 while (SBUS_COUNTER(reg, EXECUTE) != 1655 SBUS_COUNTER(reg, RCV_DATA_VALID)) { 1656 if (count++ >= SBUS_MAX_POLL_COUNT) 1657 break; 1658 udelay(1); 1659 reg = read_csr(dd, ASIC_STS_SBUS_COUNTERS); 1660 } 1661 write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0); 1662 } 1663 1664 int load_firmware(struct hfi1_devdata *dd) 1665 { 1666 int ret; 1667 1668 if (fw_fabric_serdes_load) { 1669 ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT); 1670 if (ret) 1671 return ret; 1672 1673 set_sbus_fast_mode(dd); 1674 1675 set_serdes_broadcast(dd, all_fabric_serdes_broadcast, 1676 fabric_serdes_broadcast[dd->hfi1_id], 1677 fabric_serdes_addrs[dd->hfi1_id], 1678 NUM_FABRIC_SERDES); 1679 turn_off_spicos(dd, SPICO_FABRIC); 1680 do { 1681 ret = load_fabric_serdes_firmware(dd, &fw_fabric); 1682 } while (retry_firmware(dd, ret)); 1683 1684 clear_sbus_fast_mode(dd); 1685 release_chip_resource(dd, CR_SBUS); 1686 if (ret) 1687 return ret; 1688 } 1689 1690 if (fw_8051_load) { 1691 do { 1692 ret = load_8051_firmware(dd, &fw_8051); 1693 } while (retry_firmware(dd, ret)); 1694 if (ret) 1695 return ret; 1696 } 1697 1698 dump_fw_version(dd); 1699 return 0; 1700 } 1701 1702 int hfi1_firmware_init(struct hfi1_devdata *dd) 1703 { 1704 /* only RTL can use these */ 1705 if (dd->icode != ICODE_RTL_SILICON) { 1706 fw_fabric_serdes_load = 0; 1707 fw_pcie_serdes_load = 0; 1708 fw_sbus_load = 0; 1709 } 1710 1711 /* no 8051 or QSFP on simulator */ 1712 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) 1713 fw_8051_load = 0; 1714 1715 if (!fw_8051_name) { 1716 if (dd->icode == ICODE_RTL_SILICON) 1717 fw_8051_name = DEFAULT_FW_8051_NAME_ASIC; 1718 else 1719 fw_8051_name = DEFAULT_FW_8051_NAME_FPGA; 1720 } 1721 if (!fw_fabric_serdes_name) 1722 fw_fabric_serdes_name = DEFAULT_FW_FABRIC_NAME; 1723 if (!fw_sbus_name) 1724 fw_sbus_name = DEFAULT_FW_SBUS_NAME; 1725 if (!fw_pcie_serdes_name) 1726 fw_pcie_serdes_name = DEFAULT_FW_PCIE_NAME; 1727 1728 return obtain_firmware(dd); 1729 } 1730 1731 /* 1732 * This function is a helper function for parse_platform_config(...) and 1733 * does not check for validity of the platform configuration cache 1734 * (because we know it is invalid as we are building up the cache). 1735 * As such, this should not be called from anywhere other than 1736 * parse_platform_config 1737 */ 1738 static int check_meta_version(struct hfi1_devdata *dd, u32 *system_table) 1739 { 1740 u32 meta_ver, meta_ver_meta, ver_start, ver_len, mask; 1741 struct platform_config_cache *pcfgcache = &dd->pcfg_cache; 1742 1743 if (!system_table) 1744 return -EINVAL; 1745 1746 meta_ver_meta = 1747 *(pcfgcache->config_tables[PLATFORM_CONFIG_SYSTEM_TABLE].table_metadata 1748 + SYSTEM_TABLE_META_VERSION); 1749 1750 mask = ((1 << METADATA_TABLE_FIELD_START_LEN_BITS) - 1); 1751 ver_start = meta_ver_meta & mask; 1752 1753 meta_ver_meta >>= METADATA_TABLE_FIELD_LEN_SHIFT; 1754 1755 mask = ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS) - 1); 1756 ver_len = meta_ver_meta & mask; 1757 1758 ver_start /= 8; 1759 meta_ver = *((u8 *)system_table + ver_start) & ((1 << ver_len) - 1); 1760 1761 if (meta_ver < 4) { 1762 dd_dev_info( 1763 dd, "%s:Please update platform config\n", __func__); 1764 return -EINVAL; 1765 } 1766 return 0; 1767 } 1768 1769 int parse_platform_config(struct hfi1_devdata *dd) 1770 { 1771 struct platform_config_cache *pcfgcache = &dd->pcfg_cache; 1772 struct hfi1_pportdata *ppd = dd->pport; 1773 u32 *ptr = NULL; 1774 u32 header1 = 0, header2 = 0, magic_num = 0, crc = 0, file_length = 0; 1775 u32 record_idx = 0, table_type = 0, table_length_dwords = 0; 1776 int ret = -EINVAL; /* assume failure */ 1777 1778 /* 1779 * For integrated devices that did not fall back to the default file, 1780 * the SI tuning information for active channels is acquired from the 1781 * scratch register bitmap, thus there is no platform config to parse. 1782 * Skip parsing in these situations. 1783 */ 1784 if (ppd->config_from_scratch) 1785 return 0; 1786 1787 if (!dd->platform_config.data) { 1788 dd_dev_err(dd, "%s: Missing config file\n", __func__); 1789 goto bail; 1790 } 1791 ptr = (u32 *)dd->platform_config.data; 1792 1793 magic_num = *ptr; 1794 ptr++; 1795 if (magic_num != PLATFORM_CONFIG_MAGIC_NUM) { 1796 dd_dev_err(dd, "%s: Bad config file\n", __func__); 1797 goto bail; 1798 } 1799 1800 /* Field is file size in DWORDs */ 1801 file_length = (*ptr) * 4; 1802 1803 /* 1804 * Length can't be larger than partition size. Assume platform 1805 * config format version 4 is being used. Interpret the file size 1806 * field as header instead by not moving the pointer. 1807 */ 1808 if (file_length > MAX_PLATFORM_CONFIG_FILE_SIZE) { 1809 dd_dev_info(dd, 1810 "%s:File length out of bounds, using alternative format\n", 1811 __func__); 1812 file_length = PLATFORM_CONFIG_FORMAT_4_FILE_SIZE; 1813 } else { 1814 ptr++; 1815 } 1816 1817 if (file_length > dd->platform_config.size) { 1818 dd_dev_info(dd, "%s:File claims to be larger than read size\n", 1819 __func__); 1820 goto bail; 1821 } else if (file_length < dd->platform_config.size) { 1822 dd_dev_info(dd, 1823 "%s:File claims to be smaller than read size, continuing\n", 1824 __func__); 1825 } 1826 /* exactly equal, perfection */ 1827 1828 /* 1829 * In both cases where we proceed, using the self-reported file length 1830 * is the safer option. In case of old format a predefined value is 1831 * being used. 1832 */ 1833 while (ptr < (u32 *)(dd->platform_config.data + file_length)) { 1834 header1 = *ptr; 1835 header2 = *(ptr + 1); 1836 if (header1 != ~header2) { 1837 dd_dev_err(dd, "%s: Failed validation at offset %ld\n", 1838 __func__, (ptr - (u32 *) 1839 dd->platform_config.data)); 1840 goto bail; 1841 } 1842 1843 record_idx = *ptr & 1844 ((1 << PLATFORM_CONFIG_HEADER_RECORD_IDX_LEN_BITS) - 1); 1845 1846 table_length_dwords = (*ptr >> 1847 PLATFORM_CONFIG_HEADER_TABLE_LENGTH_SHIFT) & 1848 ((1 << PLATFORM_CONFIG_HEADER_TABLE_LENGTH_LEN_BITS) - 1); 1849 1850 table_type = (*ptr >> PLATFORM_CONFIG_HEADER_TABLE_TYPE_SHIFT) & 1851 ((1 << PLATFORM_CONFIG_HEADER_TABLE_TYPE_LEN_BITS) - 1); 1852 1853 /* Done with this set of headers */ 1854 ptr += 2; 1855 1856 if (record_idx) { 1857 /* data table */ 1858 switch (table_type) { 1859 case PLATFORM_CONFIG_SYSTEM_TABLE: 1860 pcfgcache->config_tables[table_type].num_table = 1861 1; 1862 ret = check_meta_version(dd, ptr); 1863 if (ret) 1864 goto bail; 1865 break; 1866 case PLATFORM_CONFIG_PORT_TABLE: 1867 pcfgcache->config_tables[table_type].num_table = 1868 2; 1869 break; 1870 case PLATFORM_CONFIG_RX_PRESET_TABLE: 1871 case PLATFORM_CONFIG_TX_PRESET_TABLE: 1872 case PLATFORM_CONFIG_QSFP_ATTEN_TABLE: 1873 case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE: 1874 pcfgcache->config_tables[table_type].num_table = 1875 table_length_dwords; 1876 break; 1877 default: 1878 dd_dev_err(dd, 1879 "%s: Unknown data table %d, offset %ld\n", 1880 __func__, table_type, 1881 (ptr - (u32 *) 1882 dd->platform_config.data)); 1883 goto bail; /* We don't trust this file now */ 1884 } 1885 pcfgcache->config_tables[table_type].table = ptr; 1886 } else { 1887 /* metadata table */ 1888 switch (table_type) { 1889 case PLATFORM_CONFIG_SYSTEM_TABLE: 1890 case PLATFORM_CONFIG_PORT_TABLE: 1891 case PLATFORM_CONFIG_RX_PRESET_TABLE: 1892 case PLATFORM_CONFIG_TX_PRESET_TABLE: 1893 case PLATFORM_CONFIG_QSFP_ATTEN_TABLE: 1894 case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE: 1895 break; 1896 default: 1897 dd_dev_err(dd, 1898 "%s: Unknown meta table %d, offset %ld\n", 1899 __func__, table_type, 1900 (ptr - 1901 (u32 *)dd->platform_config.data)); 1902 goto bail; /* We don't trust this file now */ 1903 } 1904 pcfgcache->config_tables[table_type].table_metadata = 1905 ptr; 1906 } 1907 1908 /* Calculate and check table crc */ 1909 crc = crc32_le(~(u32)0, (unsigned char const *)ptr, 1910 (table_length_dwords * 4)); 1911 crc ^= ~(u32)0; 1912 1913 /* Jump the table */ 1914 ptr += table_length_dwords; 1915 if (crc != *ptr) { 1916 dd_dev_err(dd, "%s: Failed CRC check at offset %ld\n", 1917 __func__, (ptr - 1918 (u32 *)dd->platform_config.data)); 1919 goto bail; 1920 } 1921 /* Jump the CRC DWORD */ 1922 ptr++; 1923 } 1924 1925 pcfgcache->cache_valid = 1; 1926 return 0; 1927 bail: 1928 memset(pcfgcache, 0, sizeof(struct platform_config_cache)); 1929 return ret; 1930 } 1931 1932 static void get_integrated_platform_config_field( 1933 struct hfi1_devdata *dd, 1934 enum platform_config_table_type_encoding table_type, 1935 int field_index, u32 *data) 1936 { 1937 struct hfi1_pportdata *ppd = dd->pport; 1938 u8 *cache = ppd->qsfp_info.cache; 1939 u32 tx_preset = 0; 1940 1941 switch (table_type) { 1942 case PLATFORM_CONFIG_SYSTEM_TABLE: 1943 if (field_index == SYSTEM_TABLE_QSFP_POWER_CLASS_MAX) 1944 *data = ppd->max_power_class; 1945 else if (field_index == SYSTEM_TABLE_QSFP_ATTENUATION_DEFAULT_25G) 1946 *data = ppd->default_atten; 1947 break; 1948 case PLATFORM_CONFIG_PORT_TABLE: 1949 if (field_index == PORT_TABLE_PORT_TYPE) 1950 *data = ppd->port_type; 1951 else if (field_index == PORT_TABLE_LOCAL_ATTEN_25G) 1952 *data = ppd->local_atten; 1953 else if (field_index == PORT_TABLE_REMOTE_ATTEN_25G) 1954 *data = ppd->remote_atten; 1955 break; 1956 case PLATFORM_CONFIG_RX_PRESET_TABLE: 1957 if (field_index == RX_PRESET_TABLE_QSFP_RX_CDR_APPLY) 1958 *data = (ppd->rx_preset & QSFP_RX_CDR_APPLY_SMASK) >> 1959 QSFP_RX_CDR_APPLY_SHIFT; 1960 else if (field_index == RX_PRESET_TABLE_QSFP_RX_EMP_APPLY) 1961 *data = (ppd->rx_preset & QSFP_RX_EMP_APPLY_SMASK) >> 1962 QSFP_RX_EMP_APPLY_SHIFT; 1963 else if (field_index == RX_PRESET_TABLE_QSFP_RX_AMP_APPLY) 1964 *data = (ppd->rx_preset & QSFP_RX_AMP_APPLY_SMASK) >> 1965 QSFP_RX_AMP_APPLY_SHIFT; 1966 else if (field_index == RX_PRESET_TABLE_QSFP_RX_CDR) 1967 *data = (ppd->rx_preset & QSFP_RX_CDR_SMASK) >> 1968 QSFP_RX_CDR_SHIFT; 1969 else if (field_index == RX_PRESET_TABLE_QSFP_RX_EMP) 1970 *data = (ppd->rx_preset & QSFP_RX_EMP_SMASK) >> 1971 QSFP_RX_EMP_SHIFT; 1972 else if (field_index == RX_PRESET_TABLE_QSFP_RX_AMP) 1973 *data = (ppd->rx_preset & QSFP_RX_AMP_SMASK) >> 1974 QSFP_RX_AMP_SHIFT; 1975 break; 1976 case PLATFORM_CONFIG_TX_PRESET_TABLE: 1977 if (cache[QSFP_EQ_INFO_OFFS] & 0x4) 1978 tx_preset = ppd->tx_preset_eq; 1979 else 1980 tx_preset = ppd->tx_preset_noeq; 1981 if (field_index == TX_PRESET_TABLE_PRECUR) 1982 *data = (tx_preset & TX_PRECUR_SMASK) >> 1983 TX_PRECUR_SHIFT; 1984 else if (field_index == TX_PRESET_TABLE_ATTN) 1985 *data = (tx_preset & TX_ATTN_SMASK) >> 1986 TX_ATTN_SHIFT; 1987 else if (field_index == TX_PRESET_TABLE_POSTCUR) 1988 *data = (tx_preset & TX_POSTCUR_SMASK) >> 1989 TX_POSTCUR_SHIFT; 1990 else if (field_index == TX_PRESET_TABLE_QSFP_TX_CDR_APPLY) 1991 *data = (tx_preset & QSFP_TX_CDR_APPLY_SMASK) >> 1992 QSFP_TX_CDR_APPLY_SHIFT; 1993 else if (field_index == TX_PRESET_TABLE_QSFP_TX_EQ_APPLY) 1994 *data = (tx_preset & QSFP_TX_EQ_APPLY_SMASK) >> 1995 QSFP_TX_EQ_APPLY_SHIFT; 1996 else if (field_index == TX_PRESET_TABLE_QSFP_TX_CDR) 1997 *data = (tx_preset & QSFP_TX_CDR_SMASK) >> 1998 QSFP_TX_CDR_SHIFT; 1999 else if (field_index == TX_PRESET_TABLE_QSFP_TX_EQ) 2000 *data = (tx_preset & QSFP_TX_EQ_SMASK) >> 2001 QSFP_TX_EQ_SHIFT; 2002 break; 2003 case PLATFORM_CONFIG_QSFP_ATTEN_TABLE: 2004 case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE: 2005 default: 2006 break; 2007 } 2008 } 2009 2010 static int get_platform_fw_field_metadata(struct hfi1_devdata *dd, int table, 2011 int field, u32 *field_len_bits, 2012 u32 *field_start_bits) 2013 { 2014 struct platform_config_cache *pcfgcache = &dd->pcfg_cache; 2015 u32 *src_ptr = NULL; 2016 2017 if (!pcfgcache->cache_valid) 2018 return -EINVAL; 2019 2020 switch (table) { 2021 case PLATFORM_CONFIG_SYSTEM_TABLE: 2022 case PLATFORM_CONFIG_PORT_TABLE: 2023 case PLATFORM_CONFIG_RX_PRESET_TABLE: 2024 case PLATFORM_CONFIG_TX_PRESET_TABLE: 2025 case PLATFORM_CONFIG_QSFP_ATTEN_TABLE: 2026 case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE: 2027 if (field && field < platform_config_table_limits[table]) 2028 src_ptr = 2029 pcfgcache->config_tables[table].table_metadata + field; 2030 break; 2031 default: 2032 dd_dev_info(dd, "%s: Unknown table\n", __func__); 2033 break; 2034 } 2035 2036 if (!src_ptr) 2037 return -EINVAL; 2038 2039 if (field_start_bits) 2040 *field_start_bits = *src_ptr & 2041 ((1 << METADATA_TABLE_FIELD_START_LEN_BITS) - 1); 2042 2043 if (field_len_bits) 2044 *field_len_bits = (*src_ptr >> METADATA_TABLE_FIELD_LEN_SHIFT) 2045 & ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS) - 1); 2046 2047 return 0; 2048 } 2049 2050 /* This is the central interface to getting data out of the platform config 2051 * file. It depends on parse_platform_config() having populated the 2052 * platform_config_cache in hfi1_devdata, and checks the cache_valid member to 2053 * validate the sanity of the cache. 2054 * 2055 * The non-obvious parameters: 2056 * @table_index: Acts as a look up key into which instance of the tables the 2057 * relevant field is fetched from. 2058 * 2059 * This applies to the data tables that have multiple instances. The port table 2060 * is an exception to this rule as each HFI only has one port and thus the 2061 * relevant table can be distinguished by hfi_id. 2062 * 2063 * @data: pointer to memory that will be populated with the field requested. 2064 * @len: length of memory pointed by @data in bytes. 2065 */ 2066 int get_platform_config_field(struct hfi1_devdata *dd, 2067 enum platform_config_table_type_encoding 2068 table_type, int table_index, int field_index, 2069 u32 *data, u32 len) 2070 { 2071 int ret = 0, wlen = 0, seek = 0; 2072 u32 field_len_bits = 0, field_start_bits = 0, *src_ptr = NULL; 2073 struct platform_config_cache *pcfgcache = &dd->pcfg_cache; 2074 struct hfi1_pportdata *ppd = dd->pport; 2075 2076 if (data) 2077 memset(data, 0, len); 2078 else 2079 return -EINVAL; 2080 2081 if (ppd->config_from_scratch) { 2082 /* 2083 * Use saved configuration from ppd for integrated platforms 2084 */ 2085 get_integrated_platform_config_field(dd, table_type, 2086 field_index, data); 2087 return 0; 2088 } 2089 2090 ret = get_platform_fw_field_metadata(dd, table_type, field_index, 2091 &field_len_bits, 2092 &field_start_bits); 2093 if (ret) 2094 return -EINVAL; 2095 2096 /* Convert length to bits */ 2097 len *= 8; 2098 2099 /* Our metadata function checked cache_valid and field_index for us */ 2100 switch (table_type) { 2101 case PLATFORM_CONFIG_SYSTEM_TABLE: 2102 src_ptr = pcfgcache->config_tables[table_type].table; 2103 2104 if (field_index != SYSTEM_TABLE_QSFP_POWER_CLASS_MAX) { 2105 if (len < field_len_bits) 2106 return -EINVAL; 2107 2108 seek = field_start_bits / 8; 2109 wlen = field_len_bits / 8; 2110 2111 src_ptr = (u32 *)((u8 *)src_ptr + seek); 2112 2113 /* 2114 * We expect the field to be byte aligned and whole byte 2115 * lengths if we are here 2116 */ 2117 memcpy(data, src_ptr, wlen); 2118 return 0; 2119 } 2120 break; 2121 case PLATFORM_CONFIG_PORT_TABLE: 2122 /* Port table is 4 DWORDS */ 2123 src_ptr = dd->hfi1_id ? 2124 pcfgcache->config_tables[table_type].table + 4 : 2125 pcfgcache->config_tables[table_type].table; 2126 break; 2127 case PLATFORM_CONFIG_RX_PRESET_TABLE: 2128 case PLATFORM_CONFIG_TX_PRESET_TABLE: 2129 case PLATFORM_CONFIG_QSFP_ATTEN_TABLE: 2130 case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE: 2131 src_ptr = pcfgcache->config_tables[table_type].table; 2132 2133 if (table_index < 2134 pcfgcache->config_tables[table_type].num_table) 2135 src_ptr += table_index; 2136 else 2137 src_ptr = NULL; 2138 break; 2139 default: 2140 dd_dev_info(dd, "%s: Unknown table\n", __func__); 2141 break; 2142 } 2143 2144 if (!src_ptr || len < field_len_bits) 2145 return -EINVAL; 2146 2147 src_ptr += (field_start_bits / 32); 2148 *data = (*src_ptr >> (field_start_bits % 32)) & 2149 ((1 << field_len_bits) - 1); 2150 2151 return 0; 2152 } 2153 2154 /* 2155 * Download the firmware needed for the Gen3 PCIe SerDes. An update 2156 * to the SBus firmware is needed before updating the PCIe firmware. 2157 * 2158 * Note: caller must be holding the SBus resource. 2159 */ 2160 int load_pcie_firmware(struct hfi1_devdata *dd) 2161 { 2162 int ret = 0; 2163 2164 /* both firmware loads below use the SBus */ 2165 set_sbus_fast_mode(dd); 2166 2167 if (fw_sbus_load) { 2168 turn_off_spicos(dd, SPICO_SBUS); 2169 do { 2170 ret = load_sbus_firmware(dd, &fw_sbus); 2171 } while (retry_firmware(dd, ret)); 2172 if (ret) 2173 goto done; 2174 } 2175 2176 if (fw_pcie_serdes_load) { 2177 dd_dev_info(dd, "Setting PCIe SerDes broadcast\n"); 2178 set_serdes_broadcast(dd, all_pcie_serdes_broadcast, 2179 pcie_serdes_broadcast[dd->hfi1_id], 2180 pcie_serdes_addrs[dd->hfi1_id], 2181 NUM_PCIE_SERDES); 2182 do { 2183 ret = load_pcie_serdes_firmware(dd, &fw_pcie); 2184 } while (retry_firmware(dd, ret)); 2185 if (ret) 2186 goto done; 2187 } 2188 2189 done: 2190 clear_sbus_fast_mode(dd); 2191 2192 return ret; 2193 } 2194 2195 /* 2196 * Read the GUID from the hardware, store it in dd. 2197 */ 2198 void read_guid(struct hfi1_devdata *dd) 2199 { 2200 /* Take the DC out of reset to get a valid GUID value */ 2201 write_csr(dd, CCE_DC_CTRL, 0); 2202 (void)read_csr(dd, CCE_DC_CTRL); 2203 2204 dd->base_guid = read_csr(dd, DC_DC8051_CFG_LOCAL_GUID); 2205 dd_dev_info(dd, "GUID %llx", 2206 (unsigned long long)dd->base_guid); 2207 } 2208 2209 /* read and display firmware version info */ 2210 static void dump_fw_version(struct hfi1_devdata *dd) 2211 { 2212 u32 pcie_vers[NUM_PCIE_SERDES]; 2213 u32 fabric_vers[NUM_FABRIC_SERDES]; 2214 u32 sbus_vers; 2215 int i; 2216 int all_same; 2217 int ret; 2218 u8 rcv_addr; 2219 2220 ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT); 2221 if (ret) { 2222 dd_dev_err(dd, "Unable to acquire SBus to read firmware versions\n"); 2223 return; 2224 } 2225 2226 /* set fast mode */ 2227 set_sbus_fast_mode(dd); 2228 2229 /* read version for SBus Master */ 2230 sbus_request(dd, SBUS_MASTER_BROADCAST, 0x02, WRITE_SBUS_RECEIVER, 0); 2231 sbus_request(dd, SBUS_MASTER_BROADCAST, 0x07, WRITE_SBUS_RECEIVER, 0x1); 2232 /* wait for interrupt to be processed */ 2233 usleep_range(10000, 11000); 2234 sbus_vers = sbus_read(dd, SBUS_MASTER_BROADCAST, 0x08, 0x1); 2235 dd_dev_info(dd, "SBus Master firmware version 0x%08x\n", sbus_vers); 2236 2237 /* read version for PCIe SerDes */ 2238 all_same = 1; 2239 pcie_vers[0] = 0; 2240 for (i = 0; i < NUM_PCIE_SERDES; i++) { 2241 rcv_addr = pcie_serdes_addrs[dd->hfi1_id][i]; 2242 sbus_request(dd, rcv_addr, 0x03, WRITE_SBUS_RECEIVER, 0); 2243 /* wait for interrupt to be processed */ 2244 usleep_range(10000, 11000); 2245 pcie_vers[i] = sbus_read(dd, rcv_addr, 0x04, 0x0); 2246 if (i > 0 && pcie_vers[0] != pcie_vers[i]) 2247 all_same = 0; 2248 } 2249 2250 if (all_same) { 2251 dd_dev_info(dd, "PCIe SerDes firmware version 0x%x\n", 2252 pcie_vers[0]); 2253 } else { 2254 dd_dev_warn(dd, "PCIe SerDes do not have the same firmware version\n"); 2255 for (i = 0; i < NUM_PCIE_SERDES; i++) { 2256 dd_dev_info(dd, 2257 "PCIe SerDes lane %d firmware version 0x%x\n", 2258 i, pcie_vers[i]); 2259 } 2260 } 2261 2262 /* read version for fabric SerDes */ 2263 all_same = 1; 2264 fabric_vers[0] = 0; 2265 for (i = 0; i < NUM_FABRIC_SERDES; i++) { 2266 rcv_addr = fabric_serdes_addrs[dd->hfi1_id][i]; 2267 sbus_request(dd, rcv_addr, 0x03, WRITE_SBUS_RECEIVER, 0); 2268 /* wait for interrupt to be processed */ 2269 usleep_range(10000, 11000); 2270 fabric_vers[i] = sbus_read(dd, rcv_addr, 0x04, 0x0); 2271 if (i > 0 && fabric_vers[0] != fabric_vers[i]) 2272 all_same = 0; 2273 } 2274 2275 if (all_same) { 2276 dd_dev_info(dd, "Fabric SerDes firmware version 0x%x\n", 2277 fabric_vers[0]); 2278 } else { 2279 dd_dev_warn(dd, "Fabric SerDes do not have the same firmware version\n"); 2280 for (i = 0; i < NUM_FABRIC_SERDES; i++) { 2281 dd_dev_info(dd, 2282 "Fabric SerDes lane %d firmware version 0x%x\n", 2283 i, fabric_vers[i]); 2284 } 2285 } 2286 2287 clear_sbus_fast_mode(dd); 2288 release_chip_resource(dd, CR_SBUS); 2289 } 2290