1 /*
2  * Copyright(c) 2015 - 2017 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <linux/firmware.h>
49 #include <linux/mutex.h>
50 #include <linux/module.h>
51 #include <linux/delay.h>
52 #include <linux/crc32.h>
53 
54 #include "hfi.h"
55 #include "trace.h"
56 
57 /*
58  * Make it easy to toggle firmware file name and if it gets loaded by
59  * editing the following. This may be something we do while in development
60  * but not necessarily something a user would ever need to use.
61  */
62 #define DEFAULT_FW_8051_NAME_FPGA "hfi_dc8051.bin"
63 #define DEFAULT_FW_8051_NAME_ASIC "hfi1_dc8051.fw"
64 #define DEFAULT_FW_FABRIC_NAME "hfi1_fabric.fw"
65 #define DEFAULT_FW_SBUS_NAME "hfi1_sbus.fw"
66 #define DEFAULT_FW_PCIE_NAME "hfi1_pcie.fw"
67 #define DEFAULT_PLATFORM_CONFIG_NAME "hfi1_platform.dat"
68 #define ALT_FW_8051_NAME_ASIC "hfi1_dc8051_d.fw"
69 #define ALT_FW_FABRIC_NAME "hfi1_fabric_d.fw"
70 #define ALT_FW_SBUS_NAME "hfi1_sbus_d.fw"
71 #define ALT_FW_PCIE_NAME "hfi1_pcie_d.fw"
72 
73 static uint fw_8051_load = 1;
74 static uint fw_fabric_serdes_load = 1;
75 static uint fw_pcie_serdes_load = 1;
76 static uint fw_sbus_load = 1;
77 
78 /*
79  * Access required in platform.c
80  * Maintains state of whether the platform config was fetched via the
81  * fallback option
82  */
83 uint platform_config_load;
84 
85 /* Firmware file names get set in hfi1_firmware_init() based on the above */
86 static char *fw_8051_name;
87 static char *fw_fabric_serdes_name;
88 static char *fw_sbus_name;
89 static char *fw_pcie_serdes_name;
90 static char *platform_config_name;
91 
92 #define SBUS_MAX_POLL_COUNT 100
93 #define SBUS_COUNTER(reg, name) \
94 	(((reg) >> ASIC_STS_SBUS_COUNTERS_##name##_CNT_SHIFT) & \
95 	 ASIC_STS_SBUS_COUNTERS_##name##_CNT_MASK)
96 
97 /*
98  * Firmware security header.
99  */
100 struct css_header {
101 	u32 module_type;
102 	u32 header_len;
103 	u32 header_version;
104 	u32 module_id;
105 	u32 module_vendor;
106 	u32 date;		/* BCD yyyymmdd */
107 	u32 size;		/* in DWORDs */
108 	u32 key_size;		/* in DWORDs */
109 	u32 modulus_size;	/* in DWORDs */
110 	u32 exponent_size;	/* in DWORDs */
111 	u32 reserved[22];
112 };
113 
114 /* expected field values */
115 #define CSS_MODULE_TYPE	   0x00000006
116 #define CSS_HEADER_LEN	   0x000000a1
117 #define CSS_HEADER_VERSION 0x00010000
118 #define CSS_MODULE_VENDOR  0x00008086
119 
120 #define KEY_SIZE      256
121 #define MU_SIZE		8
122 #define EXPONENT_SIZE	4
123 
124 /* the file itself */
125 struct firmware_file {
126 	struct css_header css_header;
127 	u8 modulus[KEY_SIZE];
128 	u8 exponent[EXPONENT_SIZE];
129 	u8 signature[KEY_SIZE];
130 	u8 firmware[];
131 };
132 
133 struct augmented_firmware_file {
134 	struct css_header css_header;
135 	u8 modulus[KEY_SIZE];
136 	u8 exponent[EXPONENT_SIZE];
137 	u8 signature[KEY_SIZE];
138 	u8 r2[KEY_SIZE];
139 	u8 mu[MU_SIZE];
140 	u8 firmware[];
141 };
142 
143 /* augmented file size difference */
144 #define AUGMENT_SIZE (sizeof(struct augmented_firmware_file) - \
145 						sizeof(struct firmware_file))
146 
147 struct firmware_details {
148 	/* Linux core piece */
149 	const struct firmware *fw;
150 
151 	struct css_header *css_header;
152 	u8 *firmware_ptr;		/* pointer to binary data */
153 	u32 firmware_len;		/* length in bytes */
154 	u8 *modulus;			/* pointer to the modulus */
155 	u8 *exponent;			/* pointer to the exponent */
156 	u8 *signature;			/* pointer to the signature */
157 	u8 *r2;				/* pointer to r2 */
158 	u8 *mu;				/* pointer to mu */
159 	struct augmented_firmware_file dummy_header;
160 };
161 
162 /*
163  * The mutex protects fw_state, fw_err, and all of the firmware_details
164  * variables.
165  */
166 static DEFINE_MUTEX(fw_mutex);
167 enum fw_state {
168 	FW_EMPTY,
169 	FW_TRY,
170 	FW_FINAL,
171 	FW_ERR
172 };
173 
174 static enum fw_state fw_state = FW_EMPTY;
175 static int fw_err;
176 static struct firmware_details fw_8051;
177 static struct firmware_details fw_fabric;
178 static struct firmware_details fw_pcie;
179 static struct firmware_details fw_sbus;
180 static const struct firmware *platform_config;
181 
182 /* flags for turn_off_spicos() */
183 #define SPICO_SBUS   0x1
184 #define SPICO_FABRIC 0x2
185 #define ENABLE_SPICO_SMASK 0x1
186 
187 /* security block commands */
188 #define RSA_CMD_INIT  0x1
189 #define RSA_CMD_START 0x2
190 
191 /* security block status */
192 #define RSA_STATUS_IDLE   0x0
193 #define RSA_STATUS_ACTIVE 0x1
194 #define RSA_STATUS_DONE   0x2
195 #define RSA_STATUS_FAILED 0x3
196 
197 /* RSA engine timeout, in ms */
198 #define RSA_ENGINE_TIMEOUT 100 /* ms */
199 
200 /* hardware mutex timeout, in ms */
201 #define HM_TIMEOUT 10 /* ms */
202 
203 /* 8051 memory access timeout, in us */
204 #define DC8051_ACCESS_TIMEOUT 100 /* us */
205 
206 /* the number of fabric SerDes on the SBus */
207 #define NUM_FABRIC_SERDES 4
208 
209 /* ASIC_STS_SBUS_RESULT.RESULT_CODE value */
210 #define SBUS_READ_COMPLETE 0x4
211 
212 /* SBus fabric SerDes addresses, one set per HFI */
213 static const u8 fabric_serdes_addrs[2][NUM_FABRIC_SERDES] = {
214 	{ 0x01, 0x02, 0x03, 0x04 },
215 	{ 0x28, 0x29, 0x2a, 0x2b }
216 };
217 
218 /* SBus PCIe SerDes addresses, one set per HFI */
219 static const u8 pcie_serdes_addrs[2][NUM_PCIE_SERDES] = {
220 	{ 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16,
221 	  0x18, 0x1a, 0x1c, 0x1e, 0x20, 0x22, 0x24, 0x26 },
222 	{ 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d,
223 	  0x3f, 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d }
224 };
225 
226 /* SBus PCIe PCS addresses, one set per HFI */
227 const u8 pcie_pcs_addrs[2][NUM_PCIE_SERDES] = {
228 	{ 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17,
229 	  0x19, 0x1b, 0x1d, 0x1f, 0x21, 0x23, 0x25, 0x27 },
230 	{ 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
231 	  0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e }
232 };
233 
234 /* SBus fabric SerDes broadcast addresses, one per HFI */
235 static const u8 fabric_serdes_broadcast[2] = { 0xe4, 0xe5 };
236 static const u8 all_fabric_serdes_broadcast = 0xe1;
237 
238 /* SBus PCIe SerDes broadcast addresses, one per HFI */
239 const u8 pcie_serdes_broadcast[2] = { 0xe2, 0xe3 };
240 static const u8 all_pcie_serdes_broadcast = 0xe0;
241 
242 static const u32 platform_config_table_limits[PLATFORM_CONFIG_TABLE_MAX] = {
243 	0,
244 	SYSTEM_TABLE_MAX,
245 	PORT_TABLE_MAX,
246 	RX_PRESET_TABLE_MAX,
247 	TX_PRESET_TABLE_MAX,
248 	QSFP_ATTEN_TABLE_MAX,
249 	VARIABLE_SETTINGS_TABLE_MAX
250 };
251 
252 /* forwards */
253 static void dispose_one_firmware(struct firmware_details *fdet);
254 static int load_fabric_serdes_firmware(struct hfi1_devdata *dd,
255 				       struct firmware_details *fdet);
256 static void dump_fw_version(struct hfi1_devdata *dd);
257 
258 /*
259  * Read a single 64-bit value from 8051 data memory.
260  *
261  * Expects:
262  * o caller to have already set up data read, no auto increment
263  * o caller to turn off read enable when finished
264  *
265  * The address argument is a byte offset.  Bits 0:2 in the address are
266  * ignored - i.e. the hardware will always do aligned 8-byte reads as if
267  * the lower bits are zero.
268  *
269  * Return 0 on success, -ENXIO on a read error (timeout).
270  */
271 static int __read_8051_data(struct hfi1_devdata *dd, u32 addr, u64 *result)
272 {
273 	u64 reg;
274 	int count;
275 
276 	/* step 1: set the address, clear enable */
277 	reg = (addr & DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK)
278 			<< DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT;
279 	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, reg);
280 	/* step 2: enable */
281 	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL,
282 		  reg | DC_DC8051_CFG_RAM_ACCESS_CTRL_READ_ENA_SMASK);
283 
284 	/* wait until ACCESS_COMPLETED is set */
285 	count = 0;
286 	while ((read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_STATUS)
287 		    & DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK)
288 		    == 0) {
289 		count++;
290 		if (count > DC8051_ACCESS_TIMEOUT) {
291 			dd_dev_err(dd, "timeout reading 8051 data\n");
292 			return -ENXIO;
293 		}
294 		ndelay(10);
295 	}
296 
297 	/* gather the data */
298 	*result = read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_RD_DATA);
299 
300 	return 0;
301 }
302 
303 /*
304  * Read 8051 data starting at addr, for len bytes.  Will read in 8-byte chunks.
305  * Return 0 on success, -errno on error.
306  */
307 int read_8051_data(struct hfi1_devdata *dd, u32 addr, u32 len, u64 *result)
308 {
309 	unsigned long flags;
310 	u32 done;
311 	int ret = 0;
312 
313 	spin_lock_irqsave(&dd->dc8051_memlock, flags);
314 
315 	/* data read set-up, no auto-increment */
316 	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, 0);
317 
318 	for (done = 0; done < len; addr += 8, done += 8, result++) {
319 		ret = __read_8051_data(dd, addr, result);
320 		if (ret)
321 			break;
322 	}
323 
324 	/* turn off read enable */
325 	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, 0);
326 
327 	spin_unlock_irqrestore(&dd->dc8051_memlock, flags);
328 
329 	return ret;
330 }
331 
332 /*
333  * Write data or code to the 8051 code or data RAM.
334  */
335 static int write_8051(struct hfi1_devdata *dd, int code, u32 start,
336 		      const u8 *data, u32 len)
337 {
338 	u64 reg;
339 	u32 offset;
340 	int aligned, count;
341 
342 	/* check alignment */
343 	aligned = ((unsigned long)data & 0x7) == 0;
344 
345 	/* write set-up */
346 	reg = (code ? DC_DC8051_CFG_RAM_ACCESS_SETUP_RAM_SEL_SMASK : 0ull)
347 		| DC_DC8051_CFG_RAM_ACCESS_SETUP_AUTO_INCR_ADDR_SMASK;
348 	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, reg);
349 
350 	reg = ((start & DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK)
351 			<< DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT)
352 		| DC_DC8051_CFG_RAM_ACCESS_CTRL_WRITE_ENA_SMASK;
353 	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, reg);
354 
355 	/* write */
356 	for (offset = 0; offset < len; offset += 8) {
357 		int bytes = len - offset;
358 
359 		if (bytes < 8) {
360 			reg = 0;
361 			memcpy(&reg, &data[offset], bytes);
362 		} else if (aligned) {
363 			reg = *(u64 *)&data[offset];
364 		} else {
365 			memcpy(&reg, &data[offset], 8);
366 		}
367 		write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_WR_DATA, reg);
368 
369 		/* wait until ACCESS_COMPLETED is set */
370 		count = 0;
371 		while ((read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_STATUS)
372 		    & DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK)
373 		    == 0) {
374 			count++;
375 			if (count > DC8051_ACCESS_TIMEOUT) {
376 				dd_dev_err(dd, "timeout writing 8051 data\n");
377 				return -ENXIO;
378 			}
379 			udelay(1);
380 		}
381 	}
382 
383 	/* turn off write access, auto increment (also sets to data access) */
384 	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, 0);
385 	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, 0);
386 
387 	return 0;
388 }
389 
390 /* return 0 if values match, non-zero and complain otherwise */
391 static int invalid_header(struct hfi1_devdata *dd, const char *what,
392 			  u32 actual, u32 expected)
393 {
394 	if (actual == expected)
395 		return 0;
396 
397 	dd_dev_err(dd,
398 		   "invalid firmware header field %s: expected 0x%x, actual 0x%x\n",
399 		   what, expected, actual);
400 	return 1;
401 }
402 
403 /*
404  * Verify that the static fields in the CSS header match.
405  */
406 static int verify_css_header(struct hfi1_devdata *dd, struct css_header *css)
407 {
408 	/* verify CSS header fields (most sizes are in DW, so add /4) */
409 	if (invalid_header(dd, "module_type", css->module_type,
410 			   CSS_MODULE_TYPE) ||
411 	    invalid_header(dd, "header_len", css->header_len,
412 			   (sizeof(struct firmware_file) / 4)) ||
413 	    invalid_header(dd, "header_version", css->header_version,
414 			   CSS_HEADER_VERSION) ||
415 	    invalid_header(dd, "module_vendor", css->module_vendor,
416 			   CSS_MODULE_VENDOR) ||
417 	    invalid_header(dd, "key_size", css->key_size, KEY_SIZE / 4) ||
418 	    invalid_header(dd, "modulus_size", css->modulus_size,
419 			   KEY_SIZE / 4) ||
420 	    invalid_header(dd, "exponent_size", css->exponent_size,
421 			   EXPONENT_SIZE / 4)) {
422 		return -EINVAL;
423 	}
424 	return 0;
425 }
426 
427 /*
428  * Make sure there are at least some bytes after the prefix.
429  */
430 static int payload_check(struct hfi1_devdata *dd, const char *name,
431 			 long file_size, long prefix_size)
432 {
433 	/* make sure we have some payload */
434 	if (prefix_size >= file_size) {
435 		dd_dev_err(dd,
436 			   "firmware \"%s\", size %ld, must be larger than %ld bytes\n",
437 			   name, file_size, prefix_size);
438 		return -EINVAL;
439 	}
440 
441 	return 0;
442 }
443 
444 /*
445  * Request the firmware from the system.  Extract the pieces and fill in
446  * fdet.  If successful, the caller will need to call dispose_one_firmware().
447  * Returns 0 on success, -ERRNO on error.
448  */
449 static int obtain_one_firmware(struct hfi1_devdata *dd, const char *name,
450 			       struct firmware_details *fdet)
451 {
452 	struct css_header *css;
453 	int ret;
454 
455 	memset(fdet, 0, sizeof(*fdet));
456 
457 	ret = request_firmware(&fdet->fw, name, &dd->pcidev->dev);
458 	if (ret) {
459 		dd_dev_warn(dd, "cannot find firmware \"%s\", err %d\n",
460 			    name, ret);
461 		return ret;
462 	}
463 
464 	/* verify the firmware */
465 	if (fdet->fw->size < sizeof(struct css_header)) {
466 		dd_dev_err(dd, "firmware \"%s\" is too small\n", name);
467 		ret = -EINVAL;
468 		goto done;
469 	}
470 	css = (struct css_header *)fdet->fw->data;
471 
472 	hfi1_cdbg(FIRMWARE, "Firmware %s details:", name);
473 	hfi1_cdbg(FIRMWARE, "file size: 0x%lx bytes", fdet->fw->size);
474 	hfi1_cdbg(FIRMWARE, "CSS structure:");
475 	hfi1_cdbg(FIRMWARE, "  module_type    0x%x", css->module_type);
476 	hfi1_cdbg(FIRMWARE, "  header_len     0x%03x (0x%03x bytes)",
477 		  css->header_len, 4 * css->header_len);
478 	hfi1_cdbg(FIRMWARE, "  header_version 0x%x", css->header_version);
479 	hfi1_cdbg(FIRMWARE, "  module_id      0x%x", css->module_id);
480 	hfi1_cdbg(FIRMWARE, "  module_vendor  0x%x", css->module_vendor);
481 	hfi1_cdbg(FIRMWARE, "  date           0x%x", css->date);
482 	hfi1_cdbg(FIRMWARE, "  size           0x%03x (0x%03x bytes)",
483 		  css->size, 4 * css->size);
484 	hfi1_cdbg(FIRMWARE, "  key_size       0x%03x (0x%03x bytes)",
485 		  css->key_size, 4 * css->key_size);
486 	hfi1_cdbg(FIRMWARE, "  modulus_size   0x%03x (0x%03x bytes)",
487 		  css->modulus_size, 4 * css->modulus_size);
488 	hfi1_cdbg(FIRMWARE, "  exponent_size  0x%03x (0x%03x bytes)",
489 		  css->exponent_size, 4 * css->exponent_size);
490 	hfi1_cdbg(FIRMWARE, "firmware size: 0x%lx bytes",
491 		  fdet->fw->size - sizeof(struct firmware_file));
492 
493 	/*
494 	 * If the file does not have a valid CSS header, fail.
495 	 * Otherwise, check the CSS size field for an expected size.
496 	 * The augmented file has r2 and mu inserted after the header
497 	 * was generated, so there will be a known difference between
498 	 * the CSS header size and the actual file size.  Use this
499 	 * difference to identify an augmented file.
500 	 *
501 	 * Note: css->size is in DWORDs, multiply by 4 to get bytes.
502 	 */
503 	ret = verify_css_header(dd, css);
504 	if (ret) {
505 		dd_dev_info(dd, "Invalid CSS header for \"%s\"\n", name);
506 	} else if ((css->size * 4) == fdet->fw->size) {
507 		/* non-augmented firmware file */
508 		struct firmware_file *ff = (struct firmware_file *)
509 							fdet->fw->data;
510 
511 		/* make sure there are bytes in the payload */
512 		ret = payload_check(dd, name, fdet->fw->size,
513 				    sizeof(struct firmware_file));
514 		if (ret == 0) {
515 			fdet->css_header = css;
516 			fdet->modulus = ff->modulus;
517 			fdet->exponent = ff->exponent;
518 			fdet->signature = ff->signature;
519 			fdet->r2 = fdet->dummy_header.r2; /* use dummy space */
520 			fdet->mu = fdet->dummy_header.mu; /* use dummy space */
521 			fdet->firmware_ptr = ff->firmware;
522 			fdet->firmware_len = fdet->fw->size -
523 						sizeof(struct firmware_file);
524 			/*
525 			 * Header does not include r2 and mu - generate here.
526 			 * For now, fail.
527 			 */
528 			dd_dev_err(dd, "driver is unable to validate firmware without r2 and mu (not in firmware file)\n");
529 			ret = -EINVAL;
530 		}
531 	} else if ((css->size * 4) + AUGMENT_SIZE == fdet->fw->size) {
532 		/* augmented firmware file */
533 		struct augmented_firmware_file *aff =
534 			(struct augmented_firmware_file *)fdet->fw->data;
535 
536 		/* make sure there are bytes in the payload */
537 		ret = payload_check(dd, name, fdet->fw->size,
538 				    sizeof(struct augmented_firmware_file));
539 		if (ret == 0) {
540 			fdet->css_header = css;
541 			fdet->modulus = aff->modulus;
542 			fdet->exponent = aff->exponent;
543 			fdet->signature = aff->signature;
544 			fdet->r2 = aff->r2;
545 			fdet->mu = aff->mu;
546 			fdet->firmware_ptr = aff->firmware;
547 			fdet->firmware_len = fdet->fw->size -
548 					sizeof(struct augmented_firmware_file);
549 		}
550 	} else {
551 		/* css->size check failed */
552 		dd_dev_err(dd,
553 			   "invalid firmware header field size: expected 0x%lx or 0x%lx, actual 0x%x\n",
554 			   fdet->fw->size / 4,
555 			   (fdet->fw->size - AUGMENT_SIZE) / 4,
556 			   css->size);
557 
558 		ret = -EINVAL;
559 	}
560 
561 done:
562 	/* if returning an error, clean up after ourselves */
563 	if (ret)
564 		dispose_one_firmware(fdet);
565 	return ret;
566 }
567 
568 static void dispose_one_firmware(struct firmware_details *fdet)
569 {
570 	release_firmware(fdet->fw);
571 	/* erase all previous information */
572 	memset(fdet, 0, sizeof(*fdet));
573 }
574 
575 /*
576  * Obtain the 4 firmwares from the OS.  All must be obtained at once or not
577  * at all.  If called with the firmware state in FW_TRY, use alternate names.
578  * On exit, this routine will have set the firmware state to one of FW_TRY,
579  * FW_FINAL, or FW_ERR.
580  *
581  * Must be holding fw_mutex.
582  */
583 static void __obtain_firmware(struct hfi1_devdata *dd)
584 {
585 	int err = 0;
586 
587 	if (fw_state == FW_FINAL)	/* nothing more to obtain */
588 		return;
589 	if (fw_state == FW_ERR)		/* already in error */
590 		return;
591 
592 	/* fw_state is FW_EMPTY or FW_TRY */
593 retry:
594 	if (fw_state == FW_TRY) {
595 		/*
596 		 * We tried the original and it failed.  Move to the
597 		 * alternate.
598 		 */
599 		dd_dev_warn(dd, "using alternate firmware names\n");
600 		/*
601 		 * Let others run.  Some systems, when missing firmware, does
602 		 * something that holds for 30 seconds.  If we do that twice
603 		 * in a row it triggers task blocked warning.
604 		 */
605 		cond_resched();
606 		if (fw_8051_load)
607 			dispose_one_firmware(&fw_8051);
608 		if (fw_fabric_serdes_load)
609 			dispose_one_firmware(&fw_fabric);
610 		if (fw_sbus_load)
611 			dispose_one_firmware(&fw_sbus);
612 		if (fw_pcie_serdes_load)
613 			dispose_one_firmware(&fw_pcie);
614 		fw_8051_name = ALT_FW_8051_NAME_ASIC;
615 		fw_fabric_serdes_name = ALT_FW_FABRIC_NAME;
616 		fw_sbus_name = ALT_FW_SBUS_NAME;
617 		fw_pcie_serdes_name = ALT_FW_PCIE_NAME;
618 	}
619 
620 	if (fw_sbus_load) {
621 		err = obtain_one_firmware(dd, fw_sbus_name, &fw_sbus);
622 		if (err)
623 			goto done;
624 	}
625 
626 	if (fw_pcie_serdes_load) {
627 		err = obtain_one_firmware(dd, fw_pcie_serdes_name, &fw_pcie);
628 		if (err)
629 			goto done;
630 	}
631 
632 	if (fw_fabric_serdes_load) {
633 		err = obtain_one_firmware(dd, fw_fabric_serdes_name,
634 					  &fw_fabric);
635 		if (err)
636 			goto done;
637 	}
638 
639 	if (fw_8051_load) {
640 		err = obtain_one_firmware(dd, fw_8051_name, &fw_8051);
641 		if (err)
642 			goto done;
643 	}
644 
645 done:
646 	if (err) {
647 		/* oops, had problems obtaining a firmware */
648 		if (fw_state == FW_EMPTY && dd->icode == ICODE_RTL_SILICON) {
649 			/* retry with alternate (RTL only) */
650 			fw_state = FW_TRY;
651 			goto retry;
652 		}
653 		dd_dev_err(dd, "unable to obtain working firmware\n");
654 		fw_state = FW_ERR;
655 		fw_err = -ENOENT;
656 	} else {
657 		/* success */
658 		if (fw_state == FW_EMPTY &&
659 		    dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
660 			fw_state = FW_TRY;	/* may retry later */
661 		else
662 			fw_state = FW_FINAL;	/* cannot try again */
663 	}
664 }
665 
666 /*
667  * Called by all HFIs when loading their firmware - i.e. device probe time.
668  * The first one will do the actual firmware load.  Use a mutex to resolve
669  * any possible race condition.
670  *
671  * The call to this routine cannot be moved to driver load because the kernel
672  * call request_firmware() requires a device which is only available after
673  * the first device probe.
674  */
675 static int obtain_firmware(struct hfi1_devdata *dd)
676 {
677 	unsigned long timeout;
678 	int err = 0;
679 
680 	mutex_lock(&fw_mutex);
681 
682 	/* 40s delay due to long delay on missing firmware on some systems */
683 	timeout = jiffies + msecs_to_jiffies(40000);
684 	while (fw_state == FW_TRY) {
685 		/*
686 		 * Another device is trying the firmware.  Wait until it
687 		 * decides what works (or not).
688 		 */
689 		if (time_after(jiffies, timeout)) {
690 			/* waited too long */
691 			dd_dev_err(dd, "Timeout waiting for firmware try");
692 			fw_state = FW_ERR;
693 			fw_err = -ETIMEDOUT;
694 			break;
695 		}
696 		mutex_unlock(&fw_mutex);
697 		msleep(20);	/* arbitrary delay */
698 		mutex_lock(&fw_mutex);
699 	}
700 	/* not in FW_TRY state */
701 
702 	if (fw_state == FW_FINAL) {
703 		if (platform_config) {
704 			dd->platform_config.data = platform_config->data;
705 			dd->platform_config.size = platform_config->size;
706 		}
707 		goto done;	/* already acquired */
708 	} else if (fw_state == FW_ERR) {
709 		goto done;	/* already tried and failed */
710 	}
711 	/* fw_state is FW_EMPTY */
712 
713 	/* set fw_state to FW_TRY, FW_FINAL, or FW_ERR, and fw_err */
714 	__obtain_firmware(dd);
715 
716 	if (platform_config_load) {
717 		platform_config = NULL;
718 		err = request_firmware(&platform_config, platform_config_name,
719 				       &dd->pcidev->dev);
720 		if (err) {
721 			platform_config = NULL;
722 			dd_dev_err(dd,
723 				   "%s: No default platform config file found\n",
724 				   __func__);
725 			goto done;
726 		}
727 		dd->platform_config.data = platform_config->data;
728 		dd->platform_config.size = platform_config->size;
729 	}
730 
731 done:
732 	mutex_unlock(&fw_mutex);
733 
734 	return fw_err;
735 }
736 
737 /*
738  * Called when the driver unloads.  The timing is asymmetric with its
739  * counterpart, obtain_firmware().  If called at device remove time,
740  * then it is conceivable that another device could probe while the
741  * firmware is being disposed.  The mutexes can be moved to do that
742  * safely, but then the firmware would be requested from the OS multiple
743  * times.
744  *
745  * No mutex is needed as the driver is unloading and there cannot be any
746  * other callers.
747  */
748 void dispose_firmware(void)
749 {
750 	dispose_one_firmware(&fw_8051);
751 	dispose_one_firmware(&fw_fabric);
752 	dispose_one_firmware(&fw_pcie);
753 	dispose_one_firmware(&fw_sbus);
754 
755 	release_firmware(platform_config);
756 	platform_config = NULL;
757 
758 	/* retain the error state, otherwise revert to empty */
759 	if (fw_state != FW_ERR)
760 		fw_state = FW_EMPTY;
761 }
762 
763 /*
764  * Called with the result of a firmware download.
765  *
766  * Return 1 to retry loading the firmware, 0 to stop.
767  */
768 static int retry_firmware(struct hfi1_devdata *dd, int load_result)
769 {
770 	int retry;
771 
772 	mutex_lock(&fw_mutex);
773 
774 	if (load_result == 0) {
775 		/*
776 		 * The load succeeded, so expect all others to do the same.
777 		 * Do not retry again.
778 		 */
779 		if (fw_state == FW_TRY)
780 			fw_state = FW_FINAL;
781 		retry = 0;	/* do NOT retry */
782 	} else if (fw_state == FW_TRY) {
783 		/* load failed, obtain alternate firmware */
784 		__obtain_firmware(dd);
785 		retry = (fw_state == FW_FINAL);
786 	} else {
787 		/* else in FW_FINAL or FW_ERR, no retry in either case */
788 		retry = 0;
789 	}
790 
791 	mutex_unlock(&fw_mutex);
792 	return retry;
793 }
794 
795 /*
796  * Write a block of data to a given array CSR.  All calls will be in
797  * multiples of 8 bytes.
798  */
799 static void write_rsa_data(struct hfi1_devdata *dd, int what,
800 			   const u8 *data, int nbytes)
801 {
802 	int qw_size = nbytes / 8;
803 	int i;
804 
805 	if (((unsigned long)data & 0x7) == 0) {
806 		/* aligned */
807 		u64 *ptr = (u64 *)data;
808 
809 		for (i = 0; i < qw_size; i++, ptr++)
810 			write_csr(dd, what + (8 * i), *ptr);
811 	} else {
812 		/* not aligned */
813 		for (i = 0; i < qw_size; i++, data += 8) {
814 			u64 value;
815 
816 			memcpy(&value, data, 8);
817 			write_csr(dd, what + (8 * i), value);
818 		}
819 	}
820 }
821 
822 /*
823  * Write a block of data to a given CSR as a stream of writes.  All calls will
824  * be in multiples of 8 bytes.
825  */
826 static void write_streamed_rsa_data(struct hfi1_devdata *dd, int what,
827 				    const u8 *data, int nbytes)
828 {
829 	u64 *ptr = (u64 *)data;
830 	int qw_size = nbytes / 8;
831 
832 	for (; qw_size > 0; qw_size--, ptr++)
833 		write_csr(dd, what, *ptr);
834 }
835 
836 /*
837  * Download the signature and start the RSA mechanism.  Wait for
838  * RSA_ENGINE_TIMEOUT before giving up.
839  */
840 static int run_rsa(struct hfi1_devdata *dd, const char *who,
841 		   const u8 *signature)
842 {
843 	unsigned long timeout;
844 	u64 reg;
845 	u32 status;
846 	int ret = 0;
847 
848 	/* write the signature */
849 	write_rsa_data(dd, MISC_CFG_RSA_SIGNATURE, signature, KEY_SIZE);
850 
851 	/* initialize RSA */
852 	write_csr(dd, MISC_CFG_RSA_CMD, RSA_CMD_INIT);
853 
854 	/*
855 	 * Make sure the engine is idle and insert a delay between the two
856 	 * writes to MISC_CFG_RSA_CMD.
857 	 */
858 	status = (read_csr(dd, MISC_CFG_FW_CTRL)
859 			   & MISC_CFG_FW_CTRL_RSA_STATUS_SMASK)
860 			     >> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT;
861 	if (status != RSA_STATUS_IDLE) {
862 		dd_dev_err(dd, "%s security engine not idle - giving up\n",
863 			   who);
864 		return -EBUSY;
865 	}
866 
867 	/* start RSA */
868 	write_csr(dd, MISC_CFG_RSA_CMD, RSA_CMD_START);
869 
870 	/*
871 	 * Look for the result.
872 	 *
873 	 * The RSA engine is hooked up to two MISC errors.  The driver
874 	 * masks these errors as they do not respond to the standard
875 	 * error "clear down" mechanism.  Look for these errors here and
876 	 * clear them when possible.  This routine will exit with the
877 	 * errors of the current run still set.
878 	 *
879 	 * MISC_FW_AUTH_FAILED_ERR
880 	 *	Firmware authorization failed.  This can be cleared by
881 	 *	re-initializing the RSA engine, then clearing the status bit.
882 	 *	Do not re-init the RSA angine immediately after a successful
883 	 *	run - this will reset the current authorization.
884 	 *
885 	 * MISC_KEY_MISMATCH_ERR
886 	 *	Key does not match.  The only way to clear this is to load
887 	 *	a matching key then clear the status bit.  If this error
888 	 *	is raised, it will persist outside of this routine until a
889 	 *	matching key is loaded.
890 	 */
891 	timeout = msecs_to_jiffies(RSA_ENGINE_TIMEOUT) + jiffies;
892 	while (1) {
893 		status = (read_csr(dd, MISC_CFG_FW_CTRL)
894 			   & MISC_CFG_FW_CTRL_RSA_STATUS_SMASK)
895 			     >> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT;
896 
897 		if (status == RSA_STATUS_IDLE) {
898 			/* should not happen */
899 			dd_dev_err(dd, "%s firmware security bad idle state\n",
900 				   who);
901 			ret = -EINVAL;
902 			break;
903 		} else if (status == RSA_STATUS_DONE) {
904 			/* finished successfully */
905 			break;
906 		} else if (status == RSA_STATUS_FAILED) {
907 			/* finished unsuccessfully */
908 			ret = -EINVAL;
909 			break;
910 		}
911 		/* else still active */
912 
913 		if (time_after(jiffies, timeout)) {
914 			/*
915 			 * Timed out while active.  We can't reset the engine
916 			 * if it is stuck active, but run through the
917 			 * error code to see what error bits are set.
918 			 */
919 			dd_dev_err(dd, "%s firmware security time out\n", who);
920 			ret = -ETIMEDOUT;
921 			break;
922 		}
923 
924 		msleep(20);
925 	}
926 
927 	/*
928 	 * Arrive here on success or failure.  Clear all RSA engine
929 	 * errors.  All current errors will stick - the RSA logic is keeping
930 	 * error high.  All previous errors will clear - the RSA logic
931 	 * is not keeping the error high.
932 	 */
933 	write_csr(dd, MISC_ERR_CLEAR,
934 		  MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK |
935 		  MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK);
936 	/*
937 	 * All that is left are the current errors.  Print warnings on
938 	 * authorization failure details, if any.  Firmware authorization
939 	 * can be retried, so these are only warnings.
940 	 */
941 	reg = read_csr(dd, MISC_ERR_STATUS);
942 	if (ret) {
943 		if (reg & MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK)
944 			dd_dev_warn(dd, "%s firmware authorization failed\n",
945 				    who);
946 		if (reg & MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK)
947 			dd_dev_warn(dd, "%s firmware key mismatch\n", who);
948 	}
949 
950 	return ret;
951 }
952 
953 static void load_security_variables(struct hfi1_devdata *dd,
954 				    struct firmware_details *fdet)
955 {
956 	/* Security variables a.  Write the modulus */
957 	write_rsa_data(dd, MISC_CFG_RSA_MODULUS, fdet->modulus, KEY_SIZE);
958 	/* Security variables b.  Write the r2 */
959 	write_rsa_data(dd, MISC_CFG_RSA_R2, fdet->r2, KEY_SIZE);
960 	/* Security variables c.  Write the mu */
961 	write_rsa_data(dd, MISC_CFG_RSA_MU, fdet->mu, MU_SIZE);
962 	/* Security variables d.  Write the header */
963 	write_streamed_rsa_data(dd, MISC_CFG_SHA_PRELOAD,
964 				(u8 *)fdet->css_header,
965 				sizeof(struct css_header));
966 }
967 
968 /* return the 8051 firmware state */
969 static inline u32 get_firmware_state(struct hfi1_devdata *dd)
970 {
971 	u64 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
972 
973 	return (reg >> DC_DC8051_STS_CUR_STATE_FIRMWARE_SHIFT)
974 				& DC_DC8051_STS_CUR_STATE_FIRMWARE_MASK;
975 }
976 
977 /*
978  * Wait until the firmware is up and ready to take host requests.
979  * Return 0 on success, -ETIMEDOUT on timeout.
980  */
981 int wait_fm_ready(struct hfi1_devdata *dd, u32 mstimeout)
982 {
983 	unsigned long timeout;
984 
985 	/* in the simulator, the fake 8051 is always ready */
986 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
987 		return 0;
988 
989 	timeout = msecs_to_jiffies(mstimeout) + jiffies;
990 	while (1) {
991 		if (get_firmware_state(dd) == 0xa0)	/* ready */
992 			return 0;
993 		if (time_after(jiffies, timeout))	/* timed out */
994 			return -ETIMEDOUT;
995 		usleep_range(1950, 2050); /* sleep 2ms-ish */
996 	}
997 }
998 
999 /*
1000  * Load the 8051 firmware.
1001  */
1002 static int load_8051_firmware(struct hfi1_devdata *dd,
1003 			      struct firmware_details *fdet)
1004 {
1005 	u64 reg;
1006 	int ret;
1007 	u8 ver_major;
1008 	u8 ver_minor;
1009 	u8 ver_patch;
1010 
1011 	/*
1012 	 * DC Reset sequence
1013 	 * Load DC 8051 firmware
1014 	 */
1015 	/*
1016 	 * DC reset step 1: Reset DC8051
1017 	 */
1018 	reg = DC_DC8051_CFG_RST_M8051W_SMASK
1019 		| DC_DC8051_CFG_RST_CRAM_SMASK
1020 		| DC_DC8051_CFG_RST_DRAM_SMASK
1021 		| DC_DC8051_CFG_RST_IRAM_SMASK
1022 		| DC_DC8051_CFG_RST_SFR_SMASK;
1023 	write_csr(dd, DC_DC8051_CFG_RST, reg);
1024 
1025 	/*
1026 	 * DC reset step 2 (optional): Load 8051 data memory with link
1027 	 * configuration
1028 	 */
1029 
1030 	/*
1031 	 * DC reset step 3: Load DC8051 firmware
1032 	 */
1033 	/* release all but the core reset */
1034 	reg = DC_DC8051_CFG_RST_M8051W_SMASK;
1035 	write_csr(dd, DC_DC8051_CFG_RST, reg);
1036 
1037 	/* Firmware load step 1 */
1038 	load_security_variables(dd, fdet);
1039 
1040 	/*
1041 	 * Firmware load step 2.  Clear MISC_CFG_FW_CTRL.FW_8051_LOADED
1042 	 */
1043 	write_csr(dd, MISC_CFG_FW_CTRL, 0);
1044 
1045 	/* Firmware load steps 3-5 */
1046 	ret = write_8051(dd, 1/*code*/, 0, fdet->firmware_ptr,
1047 			 fdet->firmware_len);
1048 	if (ret)
1049 		return ret;
1050 
1051 	/*
1052 	 * DC reset step 4. Host starts the DC8051 firmware
1053 	 */
1054 	/*
1055 	 * Firmware load step 6.  Set MISC_CFG_FW_CTRL.FW_8051_LOADED
1056 	 */
1057 	write_csr(dd, MISC_CFG_FW_CTRL, MISC_CFG_FW_CTRL_FW_8051_LOADED_SMASK);
1058 
1059 	/* Firmware load steps 7-10 */
1060 	ret = run_rsa(dd, "8051", fdet->signature);
1061 	if (ret)
1062 		return ret;
1063 
1064 	/* clear all reset bits, releasing the 8051 */
1065 	write_csr(dd, DC_DC8051_CFG_RST, 0ull);
1066 
1067 	/*
1068 	 * DC reset step 5. Wait for firmware to be ready to accept host
1069 	 * requests.
1070 	 */
1071 	ret = wait_fm_ready(dd, TIMEOUT_8051_START);
1072 	if (ret) { /* timed out */
1073 		dd_dev_err(dd, "8051 start timeout, current state 0x%x\n",
1074 			   get_firmware_state(dd));
1075 		return -ETIMEDOUT;
1076 	}
1077 
1078 	read_misc_status(dd, &ver_major, &ver_minor, &ver_patch);
1079 	dd_dev_info(dd, "8051 firmware version %d.%d.%d\n",
1080 		    (int)ver_major, (int)ver_minor, (int)ver_patch);
1081 	dd->dc8051_ver = dc8051_ver(ver_major, ver_minor, ver_patch);
1082 
1083 	return 0;
1084 }
1085 
1086 /*
1087  * Write the SBus request register
1088  *
1089  * No need for masking - the arguments are sized exactly.
1090  */
1091 void sbus_request(struct hfi1_devdata *dd,
1092 		  u8 receiver_addr, u8 data_addr, u8 command, u32 data_in)
1093 {
1094 	write_csr(dd, ASIC_CFG_SBUS_REQUEST,
1095 		  ((u64)data_in << ASIC_CFG_SBUS_REQUEST_DATA_IN_SHIFT) |
1096 		  ((u64)command << ASIC_CFG_SBUS_REQUEST_COMMAND_SHIFT) |
1097 		  ((u64)data_addr << ASIC_CFG_SBUS_REQUEST_DATA_ADDR_SHIFT) |
1098 		  ((u64)receiver_addr <<
1099 		   ASIC_CFG_SBUS_REQUEST_RECEIVER_ADDR_SHIFT));
1100 }
1101 
1102 /*
1103  * Read a value from the SBus.
1104  *
1105  * Requires the caller to be in fast mode
1106  */
1107 static u32 sbus_read(struct hfi1_devdata *dd, u8 receiver_addr, u8 data_addr,
1108 		     u32 data_in)
1109 {
1110 	u64 reg;
1111 	int retries;
1112 	int success = 0;
1113 	u32 result = 0;
1114 	u32 result_code = 0;
1115 
1116 	sbus_request(dd, receiver_addr, data_addr, READ_SBUS_RECEIVER, data_in);
1117 
1118 	for (retries = 0; retries < 100; retries++) {
1119 		usleep_range(1000, 1200); /* arbitrary */
1120 		reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1121 		result_code = (reg >> ASIC_STS_SBUS_RESULT_RESULT_CODE_SHIFT)
1122 				& ASIC_STS_SBUS_RESULT_RESULT_CODE_MASK;
1123 		if (result_code != SBUS_READ_COMPLETE)
1124 			continue;
1125 
1126 		success = 1;
1127 		result = (reg >> ASIC_STS_SBUS_RESULT_DATA_OUT_SHIFT)
1128 			   & ASIC_STS_SBUS_RESULT_DATA_OUT_MASK;
1129 		break;
1130 	}
1131 
1132 	if (!success) {
1133 		dd_dev_err(dd, "%s: read failed, result code 0x%x\n", __func__,
1134 			   result_code);
1135 	}
1136 
1137 	return result;
1138 }
1139 
1140 /*
1141  * Turn off the SBus and fabric serdes spicos.
1142  *
1143  * + Must be called with Sbus fast mode turned on.
1144  * + Must be called after fabric serdes broadcast is set up.
1145  * + Must be called before the 8051 is loaded - assumes 8051 is not loaded
1146  *   when using MISC_CFG_FW_CTRL.
1147  */
1148 static void turn_off_spicos(struct hfi1_devdata *dd, int flags)
1149 {
1150 	/* only needed on A0 */
1151 	if (!is_ax(dd))
1152 		return;
1153 
1154 	dd_dev_info(dd, "Turning off spicos:%s%s\n",
1155 		    flags & SPICO_SBUS ? " SBus" : "",
1156 		    flags & SPICO_FABRIC ? " fabric" : "");
1157 
1158 	write_csr(dd, MISC_CFG_FW_CTRL, ENABLE_SPICO_SMASK);
1159 	/* disable SBus spico */
1160 	if (flags & SPICO_SBUS)
1161 		sbus_request(dd, SBUS_MASTER_BROADCAST, 0x01,
1162 			     WRITE_SBUS_RECEIVER, 0x00000040);
1163 
1164 	/* disable the fabric serdes spicos */
1165 	if (flags & SPICO_FABRIC)
1166 		sbus_request(dd, fabric_serdes_broadcast[dd->hfi1_id],
1167 			     0x07, WRITE_SBUS_RECEIVER, 0x00000000);
1168 	write_csr(dd, MISC_CFG_FW_CTRL, 0);
1169 }
1170 
1171 /*
1172  * Reset all of the fabric serdes for this HFI in preparation to take the
1173  * link to Polling.
1174  *
1175  * To do a reset, we need to write to to the serdes registers.  Unfortunately,
1176  * the fabric serdes download to the other HFI on the ASIC will have turned
1177  * off the firmware validation on this HFI.  This means we can't write to the
1178  * registers to reset the serdes.  Work around this by performing a complete
1179  * re-download and validation of the fabric serdes firmware.  This, as a
1180  * by-product, will reset the serdes.  NOTE: the re-download requires that
1181  * the 8051 be in the Offline state.  I.e. not actively trying to use the
1182  * serdes.  This routine is called at the point where the link is Offline and
1183  * is getting ready to go to Polling.
1184  */
1185 void fabric_serdes_reset(struct hfi1_devdata *dd)
1186 {
1187 	int ret;
1188 
1189 	if (!fw_fabric_serdes_load)
1190 		return;
1191 
1192 	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
1193 	if (ret) {
1194 		dd_dev_err(dd,
1195 			   "Cannot acquire SBus resource to reset fabric SerDes - perhaps you should reboot\n");
1196 		return;
1197 	}
1198 	set_sbus_fast_mode(dd);
1199 
1200 	if (is_ax(dd)) {
1201 		/* A0 serdes do not work with a re-download */
1202 		u8 ra = fabric_serdes_broadcast[dd->hfi1_id];
1203 
1204 		/* place SerDes in reset and disable SPICO */
1205 		sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000011);
1206 		/* wait 100 refclk cycles @ 156.25MHz => 640ns */
1207 		udelay(1);
1208 		/* remove SerDes reset */
1209 		sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000010);
1210 		/* turn SPICO enable on */
1211 		sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000002);
1212 	} else {
1213 		turn_off_spicos(dd, SPICO_FABRIC);
1214 		/*
1215 		 * No need for firmware retry - what to download has already
1216 		 * been decided.
1217 		 * No need to pay attention to the load return - the only
1218 		 * failure is a validation failure, which has already been
1219 		 * checked by the initial download.
1220 		 */
1221 		(void)load_fabric_serdes_firmware(dd, &fw_fabric);
1222 	}
1223 
1224 	clear_sbus_fast_mode(dd);
1225 	release_chip_resource(dd, CR_SBUS);
1226 }
1227 
1228 /* Access to the SBus in this routine should probably be serialized */
1229 int sbus_request_slow(struct hfi1_devdata *dd,
1230 		      u8 receiver_addr, u8 data_addr, u8 command, u32 data_in)
1231 {
1232 	u64 reg, count = 0;
1233 
1234 	/* make sure fast mode is clear */
1235 	clear_sbus_fast_mode(dd);
1236 
1237 	sbus_request(dd, receiver_addr, data_addr, command, data_in);
1238 	write_csr(dd, ASIC_CFG_SBUS_EXECUTE,
1239 		  ASIC_CFG_SBUS_EXECUTE_EXECUTE_SMASK);
1240 	/* Wait for both DONE and RCV_DATA_VALID to go high */
1241 	reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1242 	while (!((reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) &&
1243 		 (reg & ASIC_STS_SBUS_RESULT_RCV_DATA_VALID_SMASK))) {
1244 		if (count++ >= SBUS_MAX_POLL_COUNT) {
1245 			u64 counts = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1246 			/*
1247 			 * If the loop has timed out, we are OK if DONE bit
1248 			 * is set and RCV_DATA_VALID and EXECUTE counters
1249 			 * are the same. If not, we cannot proceed.
1250 			 */
1251 			if ((reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) &&
1252 			    (SBUS_COUNTER(counts, RCV_DATA_VALID) ==
1253 			     SBUS_COUNTER(counts, EXECUTE)))
1254 				break;
1255 			return -ETIMEDOUT;
1256 		}
1257 		udelay(1);
1258 		reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1259 	}
1260 	count = 0;
1261 	write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0);
1262 	/* Wait for DONE to clear after EXECUTE is cleared */
1263 	reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1264 	while (reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) {
1265 		if (count++ >= SBUS_MAX_POLL_COUNT)
1266 			return -ETIME;
1267 		udelay(1);
1268 		reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1269 	}
1270 	return 0;
1271 }
1272 
1273 static int load_fabric_serdes_firmware(struct hfi1_devdata *dd,
1274 				       struct firmware_details *fdet)
1275 {
1276 	int i, err;
1277 	const u8 ra = fabric_serdes_broadcast[dd->hfi1_id]; /* receiver addr */
1278 
1279 	dd_dev_info(dd, "Downloading fabric firmware\n");
1280 
1281 	/* step 1: load security variables */
1282 	load_security_variables(dd, fdet);
1283 	/* step 2: place SerDes in reset and disable SPICO */
1284 	sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000011);
1285 	/* wait 100 refclk cycles @ 156.25MHz => 640ns */
1286 	udelay(1);
1287 	/* step 3:  remove SerDes reset */
1288 	sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000010);
1289 	/* step 4: assert IMEM override */
1290 	sbus_request(dd, ra, 0x00, WRITE_SBUS_RECEIVER, 0x40000000);
1291 	/* step 5: download SerDes machine code */
1292 	for (i = 0; i < fdet->firmware_len; i += 4) {
1293 		sbus_request(dd, ra, 0x0a, WRITE_SBUS_RECEIVER,
1294 			     *(u32 *)&fdet->firmware_ptr[i]);
1295 	}
1296 	/* step 6: IMEM override off */
1297 	sbus_request(dd, ra, 0x00, WRITE_SBUS_RECEIVER, 0x00000000);
1298 	/* step 7: turn ECC on */
1299 	sbus_request(dd, ra, 0x0b, WRITE_SBUS_RECEIVER, 0x000c0000);
1300 
1301 	/* steps 8-11: run the RSA engine */
1302 	err = run_rsa(dd, "fabric serdes", fdet->signature);
1303 	if (err)
1304 		return err;
1305 
1306 	/* step 12: turn SPICO enable on */
1307 	sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000002);
1308 	/* step 13: enable core hardware interrupts */
1309 	sbus_request(dd, ra, 0x08, WRITE_SBUS_RECEIVER, 0x00000000);
1310 
1311 	return 0;
1312 }
1313 
1314 static int load_sbus_firmware(struct hfi1_devdata *dd,
1315 			      struct firmware_details *fdet)
1316 {
1317 	int i, err;
1318 	const u8 ra = SBUS_MASTER_BROADCAST; /* receiver address */
1319 
1320 	dd_dev_info(dd, "Downloading SBus firmware\n");
1321 
1322 	/* step 1: load security variables */
1323 	load_security_variables(dd, fdet);
1324 	/* step 2: place SPICO into reset and enable off */
1325 	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x000000c0);
1326 	/* step 3: remove reset, enable off, IMEM_CNTRL_EN on */
1327 	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000240);
1328 	/* step 4: set starting IMEM address for burst download */
1329 	sbus_request(dd, ra, 0x03, WRITE_SBUS_RECEIVER, 0x80000000);
1330 	/* step 5: download the SBus Master machine code */
1331 	for (i = 0; i < fdet->firmware_len; i += 4) {
1332 		sbus_request(dd, ra, 0x14, WRITE_SBUS_RECEIVER,
1333 			     *(u32 *)&fdet->firmware_ptr[i]);
1334 	}
1335 	/* step 6: set IMEM_CNTL_EN off */
1336 	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000040);
1337 	/* step 7: turn ECC on */
1338 	sbus_request(dd, ra, 0x16, WRITE_SBUS_RECEIVER, 0x000c0000);
1339 
1340 	/* steps 8-11: run the RSA engine */
1341 	err = run_rsa(dd, "SBus", fdet->signature);
1342 	if (err)
1343 		return err;
1344 
1345 	/* step 12: set SPICO_ENABLE on */
1346 	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000140);
1347 
1348 	return 0;
1349 }
1350 
1351 static int load_pcie_serdes_firmware(struct hfi1_devdata *dd,
1352 				     struct firmware_details *fdet)
1353 {
1354 	int i;
1355 	const u8 ra = SBUS_MASTER_BROADCAST; /* receiver address */
1356 
1357 	dd_dev_info(dd, "Downloading PCIe firmware\n");
1358 
1359 	/* step 1: load security variables */
1360 	load_security_variables(dd, fdet);
1361 	/* step 2: assert single step (halts the SBus Master spico) */
1362 	sbus_request(dd, ra, 0x05, WRITE_SBUS_RECEIVER, 0x00000001);
1363 	/* step 3: enable XDMEM access */
1364 	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000d40);
1365 	/* step 4: load firmware into SBus Master XDMEM */
1366 	/*
1367 	 * NOTE: the dmem address, write_en, and wdata are all pre-packed,
1368 	 * we only need to pick up the bytes and write them
1369 	 */
1370 	for (i = 0; i < fdet->firmware_len; i += 4) {
1371 		sbus_request(dd, ra, 0x04, WRITE_SBUS_RECEIVER,
1372 			     *(u32 *)&fdet->firmware_ptr[i]);
1373 	}
1374 	/* step 5: disable XDMEM access */
1375 	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000140);
1376 	/* step 6: allow SBus Spico to run */
1377 	sbus_request(dd, ra, 0x05, WRITE_SBUS_RECEIVER, 0x00000000);
1378 
1379 	/*
1380 	 * steps 7-11: run RSA, if it succeeds, firmware is available to
1381 	 * be swapped
1382 	 */
1383 	return run_rsa(dd, "PCIe serdes", fdet->signature);
1384 }
1385 
1386 /*
1387  * Set the given broadcast values on the given list of devices.
1388  */
1389 static void set_serdes_broadcast(struct hfi1_devdata *dd, u8 bg1, u8 bg2,
1390 				 const u8 *addrs, int count)
1391 {
1392 	while (--count >= 0) {
1393 		/*
1394 		 * Set BROADCAST_GROUP_1 and BROADCAST_GROUP_2, leave
1395 		 * defaults for everything else.  Do not read-modify-write,
1396 		 * per instruction from the manufacturer.
1397 		 *
1398 		 * Register 0xfd:
1399 		 *	bits    what
1400 		 *	-----	---------------------------------
1401 		 *	  0	IGNORE_BROADCAST  (default 0)
1402 		 *	11:4	BROADCAST_GROUP_1 (default 0xff)
1403 		 *	23:16	BROADCAST_GROUP_2 (default 0xff)
1404 		 */
1405 		sbus_request(dd, addrs[count], 0xfd, WRITE_SBUS_RECEIVER,
1406 			     (u32)bg1 << 4 | (u32)bg2 << 16);
1407 	}
1408 }
1409 
1410 int acquire_hw_mutex(struct hfi1_devdata *dd)
1411 {
1412 	unsigned long timeout;
1413 	int try = 0;
1414 	u8 mask = 1 << dd->hfi1_id;
1415 	u8 user;
1416 
1417 retry:
1418 	timeout = msecs_to_jiffies(HM_TIMEOUT) + jiffies;
1419 	while (1) {
1420 		write_csr(dd, ASIC_CFG_MUTEX, mask);
1421 		user = (u8)read_csr(dd, ASIC_CFG_MUTEX);
1422 		if (user == mask)
1423 			return 0; /* success */
1424 		if (time_after(jiffies, timeout))
1425 			break; /* timed out */
1426 		msleep(20);
1427 	}
1428 
1429 	/* timed out */
1430 	dd_dev_err(dd,
1431 		   "Unable to acquire hardware mutex, mutex mask %u, my mask %u (%s)\n",
1432 		   (u32)user, (u32)mask, (try == 0) ? "retrying" : "giving up");
1433 
1434 	if (try == 0) {
1435 		/* break mutex and retry */
1436 		write_csr(dd, ASIC_CFG_MUTEX, 0);
1437 		try++;
1438 		goto retry;
1439 	}
1440 
1441 	return -EBUSY;
1442 }
1443 
1444 void release_hw_mutex(struct hfi1_devdata *dd)
1445 {
1446 	write_csr(dd, ASIC_CFG_MUTEX, 0);
1447 }
1448 
1449 /* return the given resource bit(s) as a mask for the given HFI */
1450 static inline u64 resource_mask(u32 hfi1_id, u32 resource)
1451 {
1452 	return ((u64)resource) << (hfi1_id ? CR_DYN_SHIFT : 0);
1453 }
1454 
1455 static void fail_mutex_acquire_message(struct hfi1_devdata *dd,
1456 				       const char *func)
1457 {
1458 	dd_dev_err(dd,
1459 		   "%s: hardware mutex stuck - suggest rebooting the machine\n",
1460 		   func);
1461 }
1462 
1463 /*
1464  * Acquire access to a chip resource.
1465  *
1466  * Return 0 on success, -EBUSY if resource busy, -EIO if mutex acquire failed.
1467  */
1468 static int __acquire_chip_resource(struct hfi1_devdata *dd, u32 resource)
1469 {
1470 	u64 scratch0, all_bits, my_bit;
1471 	int ret;
1472 
1473 	if (resource & CR_DYN_MASK) {
1474 		/* a dynamic resource is in use if either HFI has set the bit */
1475 		if (dd->pcidev->device == PCI_DEVICE_ID_INTEL0 &&
1476 		    (resource & (CR_I2C1 | CR_I2C2))) {
1477 			/* discrete devices must serialize across both chains */
1478 			all_bits = resource_mask(0, CR_I2C1 | CR_I2C2) |
1479 					resource_mask(1, CR_I2C1 | CR_I2C2);
1480 		} else {
1481 			all_bits = resource_mask(0, resource) |
1482 						resource_mask(1, resource);
1483 		}
1484 		my_bit = resource_mask(dd->hfi1_id, resource);
1485 	} else {
1486 		/* non-dynamic resources are not split between HFIs */
1487 		all_bits = resource;
1488 		my_bit = resource;
1489 	}
1490 
1491 	/* lock against other callers within the driver wanting a resource */
1492 	mutex_lock(&dd->asic_data->asic_resource_mutex);
1493 
1494 	ret = acquire_hw_mutex(dd);
1495 	if (ret) {
1496 		fail_mutex_acquire_message(dd, __func__);
1497 		ret = -EIO;
1498 		goto done;
1499 	}
1500 
1501 	scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1502 	if (scratch0 & all_bits) {
1503 		ret = -EBUSY;
1504 	} else {
1505 		write_csr(dd, ASIC_CFG_SCRATCH, scratch0 | my_bit);
1506 		/* force write to be visible to other HFI on another OS */
1507 		(void)read_csr(dd, ASIC_CFG_SCRATCH);
1508 	}
1509 
1510 	release_hw_mutex(dd);
1511 
1512 done:
1513 	mutex_unlock(&dd->asic_data->asic_resource_mutex);
1514 	return ret;
1515 }
1516 
1517 /*
1518  * Acquire access to a chip resource, wait up to mswait milliseconds for
1519  * the resource to become available.
1520  *
1521  * Return 0 on success, -EBUSY if busy (even after wait), -EIO if mutex
1522  * acquire failed.
1523  */
1524 int acquire_chip_resource(struct hfi1_devdata *dd, u32 resource, u32 mswait)
1525 {
1526 	unsigned long timeout;
1527 	int ret;
1528 
1529 	timeout = jiffies + msecs_to_jiffies(mswait);
1530 	while (1) {
1531 		ret = __acquire_chip_resource(dd, resource);
1532 		if (ret != -EBUSY)
1533 			return ret;
1534 		/* resource is busy, check our timeout */
1535 		if (time_after_eq(jiffies, timeout))
1536 			return -EBUSY;
1537 		usleep_range(80, 120);	/* arbitrary delay */
1538 	}
1539 }
1540 
1541 /*
1542  * Release access to a chip resource
1543  */
1544 void release_chip_resource(struct hfi1_devdata *dd, u32 resource)
1545 {
1546 	u64 scratch0, bit;
1547 
1548 	/* only dynamic resources should ever be cleared */
1549 	if (!(resource & CR_DYN_MASK)) {
1550 		dd_dev_err(dd, "%s: invalid resource 0x%x\n", __func__,
1551 			   resource);
1552 		return;
1553 	}
1554 	bit = resource_mask(dd->hfi1_id, resource);
1555 
1556 	/* lock against other callers within the driver wanting a resource */
1557 	mutex_lock(&dd->asic_data->asic_resource_mutex);
1558 
1559 	if (acquire_hw_mutex(dd)) {
1560 		fail_mutex_acquire_message(dd, __func__);
1561 		goto done;
1562 	}
1563 
1564 	scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1565 	if ((scratch0 & bit) != 0) {
1566 		scratch0 &= ~bit;
1567 		write_csr(dd, ASIC_CFG_SCRATCH, scratch0);
1568 		/* force write to be visible to other HFI on another OS */
1569 		(void)read_csr(dd, ASIC_CFG_SCRATCH);
1570 	} else {
1571 		dd_dev_warn(dd, "%s: id %d, resource 0x%x: bit not set\n",
1572 			    __func__, dd->hfi1_id, resource);
1573 	}
1574 
1575 	release_hw_mutex(dd);
1576 
1577 done:
1578 	mutex_unlock(&dd->asic_data->asic_resource_mutex);
1579 }
1580 
1581 /*
1582  * Return true if resource is set, false otherwise.  Print a warning
1583  * if not set and a function is supplied.
1584  */
1585 bool check_chip_resource(struct hfi1_devdata *dd, u32 resource,
1586 			 const char *func)
1587 {
1588 	u64 scratch0, bit;
1589 
1590 	if (resource & CR_DYN_MASK)
1591 		bit = resource_mask(dd->hfi1_id, resource);
1592 	else
1593 		bit = resource;
1594 
1595 	scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1596 	if ((scratch0 & bit) == 0) {
1597 		if (func)
1598 			dd_dev_warn(dd,
1599 				    "%s: id %d, resource 0x%x, not acquired!\n",
1600 				    func, dd->hfi1_id, resource);
1601 		return false;
1602 	}
1603 	return true;
1604 }
1605 
1606 static void clear_chip_resources(struct hfi1_devdata *dd, const char *func)
1607 {
1608 	u64 scratch0;
1609 
1610 	/* lock against other callers within the driver wanting a resource */
1611 	mutex_lock(&dd->asic_data->asic_resource_mutex);
1612 
1613 	if (acquire_hw_mutex(dd)) {
1614 		fail_mutex_acquire_message(dd, func);
1615 		goto done;
1616 	}
1617 
1618 	/* clear all dynamic access bits for this HFI */
1619 	scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1620 	scratch0 &= ~resource_mask(dd->hfi1_id, CR_DYN_MASK);
1621 	write_csr(dd, ASIC_CFG_SCRATCH, scratch0);
1622 	/* force write to be visible to other HFI on another OS */
1623 	(void)read_csr(dd, ASIC_CFG_SCRATCH);
1624 
1625 	release_hw_mutex(dd);
1626 
1627 done:
1628 	mutex_unlock(&dd->asic_data->asic_resource_mutex);
1629 }
1630 
1631 void init_chip_resources(struct hfi1_devdata *dd)
1632 {
1633 	/* clear any holds left by us */
1634 	clear_chip_resources(dd, __func__);
1635 }
1636 
1637 void finish_chip_resources(struct hfi1_devdata *dd)
1638 {
1639 	/* clear any holds left by us */
1640 	clear_chip_resources(dd, __func__);
1641 }
1642 
1643 void set_sbus_fast_mode(struct hfi1_devdata *dd)
1644 {
1645 	write_csr(dd, ASIC_CFG_SBUS_EXECUTE,
1646 		  ASIC_CFG_SBUS_EXECUTE_FAST_MODE_SMASK);
1647 }
1648 
1649 void clear_sbus_fast_mode(struct hfi1_devdata *dd)
1650 {
1651 	u64 reg, count = 0;
1652 
1653 	reg = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1654 	while (SBUS_COUNTER(reg, EXECUTE) !=
1655 	       SBUS_COUNTER(reg, RCV_DATA_VALID)) {
1656 		if (count++ >= SBUS_MAX_POLL_COUNT)
1657 			break;
1658 		udelay(1);
1659 		reg = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1660 	}
1661 	write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0);
1662 }
1663 
1664 int load_firmware(struct hfi1_devdata *dd)
1665 {
1666 	int ret;
1667 
1668 	if (fw_fabric_serdes_load) {
1669 		ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
1670 		if (ret)
1671 			return ret;
1672 
1673 		set_sbus_fast_mode(dd);
1674 
1675 		set_serdes_broadcast(dd, all_fabric_serdes_broadcast,
1676 				     fabric_serdes_broadcast[dd->hfi1_id],
1677 				     fabric_serdes_addrs[dd->hfi1_id],
1678 				     NUM_FABRIC_SERDES);
1679 		turn_off_spicos(dd, SPICO_FABRIC);
1680 		do {
1681 			ret = load_fabric_serdes_firmware(dd, &fw_fabric);
1682 		} while (retry_firmware(dd, ret));
1683 
1684 		clear_sbus_fast_mode(dd);
1685 		release_chip_resource(dd, CR_SBUS);
1686 		if (ret)
1687 			return ret;
1688 	}
1689 
1690 	if (fw_8051_load) {
1691 		do {
1692 			ret = load_8051_firmware(dd, &fw_8051);
1693 		} while (retry_firmware(dd, ret));
1694 		if (ret)
1695 			return ret;
1696 	}
1697 
1698 	dump_fw_version(dd);
1699 	return 0;
1700 }
1701 
1702 int hfi1_firmware_init(struct hfi1_devdata *dd)
1703 {
1704 	/* only RTL can use these */
1705 	if (dd->icode != ICODE_RTL_SILICON) {
1706 		fw_fabric_serdes_load = 0;
1707 		fw_pcie_serdes_load = 0;
1708 		fw_sbus_load = 0;
1709 	}
1710 
1711 	/* no 8051 or QSFP on simulator */
1712 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
1713 		fw_8051_load = 0;
1714 		platform_config_load = 0;
1715 	}
1716 
1717 	if (!fw_8051_name) {
1718 		if (dd->icode == ICODE_RTL_SILICON)
1719 			fw_8051_name = DEFAULT_FW_8051_NAME_ASIC;
1720 		else
1721 			fw_8051_name = DEFAULT_FW_8051_NAME_FPGA;
1722 	}
1723 	if (!fw_fabric_serdes_name)
1724 		fw_fabric_serdes_name = DEFAULT_FW_FABRIC_NAME;
1725 	if (!fw_sbus_name)
1726 		fw_sbus_name = DEFAULT_FW_SBUS_NAME;
1727 	if (!fw_pcie_serdes_name)
1728 		fw_pcie_serdes_name = DEFAULT_FW_PCIE_NAME;
1729 	if (!platform_config_name)
1730 		platform_config_name = DEFAULT_PLATFORM_CONFIG_NAME;
1731 
1732 	return obtain_firmware(dd);
1733 }
1734 
1735 /*
1736  * This function is a helper function for parse_platform_config(...) and
1737  * does not check for validity of the platform configuration cache
1738  * (because we know it is invalid as we are building up the cache).
1739  * As such, this should not be called from anywhere other than
1740  * parse_platform_config
1741  */
1742 static int check_meta_version(struct hfi1_devdata *dd, u32 *system_table)
1743 {
1744 	u32 meta_ver, meta_ver_meta, ver_start, ver_len, mask;
1745 	struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
1746 
1747 	if (!system_table)
1748 		return -EINVAL;
1749 
1750 	meta_ver_meta =
1751 	*(pcfgcache->config_tables[PLATFORM_CONFIG_SYSTEM_TABLE].table_metadata
1752 	+ SYSTEM_TABLE_META_VERSION);
1753 
1754 	mask = ((1 << METADATA_TABLE_FIELD_START_LEN_BITS) - 1);
1755 	ver_start = meta_ver_meta & mask;
1756 
1757 	meta_ver_meta >>= METADATA_TABLE_FIELD_LEN_SHIFT;
1758 
1759 	mask = ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS) - 1);
1760 	ver_len = meta_ver_meta & mask;
1761 
1762 	ver_start /= 8;
1763 	meta_ver = *((u8 *)system_table + ver_start) & ((1 << ver_len) - 1);
1764 
1765 	if (meta_ver < 5) {
1766 		dd_dev_info(
1767 			dd, "%s:Please update platform config\n", __func__);
1768 		return -EINVAL;
1769 	}
1770 	return 0;
1771 }
1772 
1773 int parse_platform_config(struct hfi1_devdata *dd)
1774 {
1775 	struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
1776 	u32 *ptr = NULL;
1777 	u32 header1 = 0, header2 = 0, magic_num = 0, crc = 0, file_length = 0;
1778 	u32 record_idx = 0, table_type = 0, table_length_dwords = 0;
1779 	int ret = -EINVAL; /* assume failure */
1780 
1781 	/*
1782 	 * For integrated devices that did not fall back to the default file,
1783 	 * the SI tuning information for active channels is acquired from the
1784 	 * scratch register bitmap, thus there is no platform config to parse.
1785 	 * Skip parsing in these situations.
1786 	 */
1787 	if (is_integrated(dd) && !platform_config_load)
1788 		return 0;
1789 
1790 	if (!dd->platform_config.data) {
1791 		dd_dev_err(dd, "%s: Missing config file\n", __func__);
1792 		goto bail;
1793 	}
1794 	ptr = (u32 *)dd->platform_config.data;
1795 
1796 	magic_num = *ptr;
1797 	ptr++;
1798 	if (magic_num != PLATFORM_CONFIG_MAGIC_NUM) {
1799 		dd_dev_err(dd, "%s: Bad config file\n", __func__);
1800 		goto bail;
1801 	}
1802 
1803 	/* Field is file size in DWORDs */
1804 	file_length = (*ptr) * 4;
1805 	ptr++;
1806 
1807 	if (file_length > dd->platform_config.size) {
1808 		dd_dev_info(dd, "%s:File claims to be larger than read size\n",
1809 			    __func__);
1810 		goto bail;
1811 	} else if (file_length < dd->platform_config.size) {
1812 		dd_dev_info(dd,
1813 			    "%s:File claims to be smaller than read size, continuing\n",
1814 			    __func__);
1815 	}
1816 	/* exactly equal, perfection */
1817 
1818 	/*
1819 	 * In both cases where we proceed, using the self-reported file length
1820 	 * is the safer option
1821 	 */
1822 	while (ptr < (u32 *)(dd->platform_config.data + file_length)) {
1823 		header1 = *ptr;
1824 		header2 = *(ptr + 1);
1825 		if (header1 != ~header2) {
1826 			dd_dev_err(dd, "%s: Failed validation at offset %ld\n",
1827 				   __func__, (ptr - (u32 *)
1828 					      dd->platform_config.data));
1829 			goto bail;
1830 		}
1831 
1832 		record_idx = *ptr &
1833 			((1 << PLATFORM_CONFIG_HEADER_RECORD_IDX_LEN_BITS) - 1);
1834 
1835 		table_length_dwords = (*ptr >>
1836 				PLATFORM_CONFIG_HEADER_TABLE_LENGTH_SHIFT) &
1837 		      ((1 << PLATFORM_CONFIG_HEADER_TABLE_LENGTH_LEN_BITS) - 1);
1838 
1839 		table_type = (*ptr >> PLATFORM_CONFIG_HEADER_TABLE_TYPE_SHIFT) &
1840 			((1 << PLATFORM_CONFIG_HEADER_TABLE_TYPE_LEN_BITS) - 1);
1841 
1842 		/* Done with this set of headers */
1843 		ptr += 2;
1844 
1845 		if (record_idx) {
1846 			/* data table */
1847 			switch (table_type) {
1848 			case PLATFORM_CONFIG_SYSTEM_TABLE:
1849 				pcfgcache->config_tables[table_type].num_table =
1850 									1;
1851 				ret = check_meta_version(dd, ptr);
1852 				if (ret)
1853 					goto bail;
1854 				break;
1855 			case PLATFORM_CONFIG_PORT_TABLE:
1856 				pcfgcache->config_tables[table_type].num_table =
1857 									2;
1858 				break;
1859 			case PLATFORM_CONFIG_RX_PRESET_TABLE:
1860 				/* fall through */
1861 			case PLATFORM_CONFIG_TX_PRESET_TABLE:
1862 				/* fall through */
1863 			case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1864 				/* fall through */
1865 			case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1866 				pcfgcache->config_tables[table_type].num_table =
1867 							table_length_dwords;
1868 				break;
1869 			default:
1870 				dd_dev_err(dd,
1871 					   "%s: Unknown data table %d, offset %ld\n",
1872 					   __func__, table_type,
1873 					   (ptr - (u32 *)
1874 					    dd->platform_config.data));
1875 				goto bail; /* We don't trust this file now */
1876 			}
1877 			pcfgcache->config_tables[table_type].table = ptr;
1878 		} else {
1879 			/* metadata table */
1880 			switch (table_type) {
1881 			case PLATFORM_CONFIG_SYSTEM_TABLE:
1882 				/* fall through */
1883 			case PLATFORM_CONFIG_PORT_TABLE:
1884 				/* fall through */
1885 			case PLATFORM_CONFIG_RX_PRESET_TABLE:
1886 				/* fall through */
1887 			case PLATFORM_CONFIG_TX_PRESET_TABLE:
1888 				/* fall through */
1889 			case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1890 				/* fall through */
1891 			case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1892 				break;
1893 			default:
1894 				dd_dev_err(dd,
1895 					   "%s: Unknown meta table %d, offset %ld\n",
1896 					   __func__, table_type,
1897 					   (ptr -
1898 					    (u32 *)dd->platform_config.data));
1899 				goto bail; /* We don't trust this file now */
1900 			}
1901 			pcfgcache->config_tables[table_type].table_metadata =
1902 									ptr;
1903 		}
1904 
1905 		/* Calculate and check table crc */
1906 		crc = crc32_le(~(u32)0, (unsigned char const *)ptr,
1907 			       (table_length_dwords * 4));
1908 		crc ^= ~(u32)0;
1909 
1910 		/* Jump the table */
1911 		ptr += table_length_dwords;
1912 		if (crc != *ptr) {
1913 			dd_dev_err(dd, "%s: Failed CRC check at offset %ld\n",
1914 				   __func__, (ptr -
1915 				   (u32 *)dd->platform_config.data));
1916 			goto bail;
1917 		}
1918 		/* Jump the CRC DWORD */
1919 		ptr++;
1920 	}
1921 
1922 	pcfgcache->cache_valid = 1;
1923 	return 0;
1924 bail:
1925 	memset(pcfgcache, 0, sizeof(struct platform_config_cache));
1926 	return ret;
1927 }
1928 
1929 static void get_integrated_platform_config_field(
1930 		struct hfi1_devdata *dd,
1931 		enum platform_config_table_type_encoding table_type,
1932 		int field_index, u32 *data)
1933 {
1934 	struct hfi1_pportdata *ppd = dd->pport;
1935 	u8 *cache = ppd->qsfp_info.cache;
1936 	u32 tx_preset = 0;
1937 
1938 	switch (table_type) {
1939 	case PLATFORM_CONFIG_SYSTEM_TABLE:
1940 		if (field_index == SYSTEM_TABLE_QSFP_POWER_CLASS_MAX)
1941 			*data = ppd->max_power_class;
1942 		else if (field_index == SYSTEM_TABLE_QSFP_ATTENUATION_DEFAULT_25G)
1943 			*data = ppd->default_atten;
1944 		break;
1945 	case PLATFORM_CONFIG_PORT_TABLE:
1946 		if (field_index == PORT_TABLE_PORT_TYPE)
1947 			*data = ppd->port_type;
1948 		else if (field_index == PORT_TABLE_LOCAL_ATTEN_25G)
1949 			*data = ppd->local_atten;
1950 		else if (field_index == PORT_TABLE_REMOTE_ATTEN_25G)
1951 			*data = ppd->remote_atten;
1952 		break;
1953 	case PLATFORM_CONFIG_RX_PRESET_TABLE:
1954 		if (field_index == RX_PRESET_TABLE_QSFP_RX_CDR_APPLY)
1955 			*data = (ppd->rx_preset & QSFP_RX_CDR_APPLY_SMASK) >>
1956 				QSFP_RX_CDR_APPLY_SHIFT;
1957 		else if (field_index == RX_PRESET_TABLE_QSFP_RX_EMP_APPLY)
1958 			*data = (ppd->rx_preset & QSFP_RX_EMP_APPLY_SMASK) >>
1959 				QSFP_RX_EMP_APPLY_SHIFT;
1960 		else if (field_index == RX_PRESET_TABLE_QSFP_RX_AMP_APPLY)
1961 			*data = (ppd->rx_preset & QSFP_RX_AMP_APPLY_SMASK) >>
1962 				QSFP_RX_AMP_APPLY_SHIFT;
1963 		else if (field_index == RX_PRESET_TABLE_QSFP_RX_CDR)
1964 			*data = (ppd->rx_preset & QSFP_RX_CDR_SMASK) >>
1965 				QSFP_RX_CDR_SHIFT;
1966 		else if (field_index == RX_PRESET_TABLE_QSFP_RX_EMP)
1967 			*data = (ppd->rx_preset & QSFP_RX_EMP_SMASK) >>
1968 				QSFP_RX_EMP_SHIFT;
1969 		else if (field_index == RX_PRESET_TABLE_QSFP_RX_AMP)
1970 			*data = (ppd->rx_preset & QSFP_RX_AMP_SMASK) >>
1971 				QSFP_RX_AMP_SHIFT;
1972 		break;
1973 	case PLATFORM_CONFIG_TX_PRESET_TABLE:
1974 		if (cache[QSFP_EQ_INFO_OFFS] & 0x4)
1975 			tx_preset = ppd->tx_preset_eq;
1976 		else
1977 			tx_preset = ppd->tx_preset_noeq;
1978 		if (field_index == TX_PRESET_TABLE_PRECUR)
1979 			*data = (tx_preset & TX_PRECUR_SMASK) >>
1980 				TX_PRECUR_SHIFT;
1981 		else if (field_index == TX_PRESET_TABLE_ATTN)
1982 			*data = (tx_preset & TX_ATTN_SMASK) >>
1983 				TX_ATTN_SHIFT;
1984 		else if (field_index == TX_PRESET_TABLE_POSTCUR)
1985 			*data = (tx_preset & TX_POSTCUR_SMASK) >>
1986 				TX_POSTCUR_SHIFT;
1987 		else if (field_index == TX_PRESET_TABLE_QSFP_TX_CDR_APPLY)
1988 			*data = (tx_preset & QSFP_TX_CDR_APPLY_SMASK) >>
1989 				QSFP_TX_CDR_APPLY_SHIFT;
1990 		else if (field_index == TX_PRESET_TABLE_QSFP_TX_EQ_APPLY)
1991 			*data = (tx_preset & QSFP_TX_EQ_APPLY_SMASK) >>
1992 				QSFP_TX_EQ_APPLY_SHIFT;
1993 		else if (field_index == TX_PRESET_TABLE_QSFP_TX_CDR)
1994 			*data = (tx_preset & QSFP_TX_CDR_SMASK) >>
1995 				QSFP_TX_CDR_SHIFT;
1996 		else if (field_index == TX_PRESET_TABLE_QSFP_TX_EQ)
1997 			*data = (tx_preset & QSFP_TX_EQ_SMASK) >>
1998 				QSFP_TX_EQ_SHIFT;
1999 		break;
2000 	case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
2001 	case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
2002 	default:
2003 		break;
2004 	}
2005 }
2006 
2007 static int get_platform_fw_field_metadata(struct hfi1_devdata *dd, int table,
2008 					  int field, u32 *field_len_bits,
2009 					  u32 *field_start_bits)
2010 {
2011 	struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
2012 	u32 *src_ptr = NULL;
2013 
2014 	if (!pcfgcache->cache_valid)
2015 		return -EINVAL;
2016 
2017 	switch (table) {
2018 	case PLATFORM_CONFIG_SYSTEM_TABLE:
2019 		/* fall through */
2020 	case PLATFORM_CONFIG_PORT_TABLE:
2021 		/* fall through */
2022 	case PLATFORM_CONFIG_RX_PRESET_TABLE:
2023 		/* fall through */
2024 	case PLATFORM_CONFIG_TX_PRESET_TABLE:
2025 		/* fall through */
2026 	case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
2027 		/* fall through */
2028 	case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
2029 		if (field && field < platform_config_table_limits[table])
2030 			src_ptr =
2031 			pcfgcache->config_tables[table].table_metadata + field;
2032 		break;
2033 	default:
2034 		dd_dev_info(dd, "%s: Unknown table\n", __func__);
2035 		break;
2036 	}
2037 
2038 	if (!src_ptr)
2039 		return -EINVAL;
2040 
2041 	if (field_start_bits)
2042 		*field_start_bits = *src_ptr &
2043 		      ((1 << METADATA_TABLE_FIELD_START_LEN_BITS) - 1);
2044 
2045 	if (field_len_bits)
2046 		*field_len_bits = (*src_ptr >> METADATA_TABLE_FIELD_LEN_SHIFT)
2047 		       & ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS) - 1);
2048 
2049 	return 0;
2050 }
2051 
2052 /* This is the central interface to getting data out of the platform config
2053  * file. It depends on parse_platform_config() having populated the
2054  * platform_config_cache in hfi1_devdata, and checks the cache_valid member to
2055  * validate the sanity of the cache.
2056  *
2057  * The non-obvious parameters:
2058  * @table_index: Acts as a look up key into which instance of the tables the
2059  * relevant field is fetched from.
2060  *
2061  * This applies to the data tables that have multiple instances. The port table
2062  * is an exception to this rule as each HFI only has one port and thus the
2063  * relevant table can be distinguished by hfi_id.
2064  *
2065  * @data: pointer to memory that will be populated with the field requested.
2066  * @len: length of memory pointed by @data in bytes.
2067  */
2068 int get_platform_config_field(struct hfi1_devdata *dd,
2069 			      enum platform_config_table_type_encoding
2070 			      table_type, int table_index, int field_index,
2071 			      u32 *data, u32 len)
2072 {
2073 	int ret = 0, wlen = 0, seek = 0;
2074 	u32 field_len_bits = 0, field_start_bits = 0, *src_ptr = NULL;
2075 	struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
2076 
2077 	if (data)
2078 		memset(data, 0, len);
2079 	else
2080 		return -EINVAL;
2081 
2082 	if (is_integrated(dd) && !platform_config_load) {
2083 		/*
2084 		 * Use saved configuration from ppd for integrated platforms
2085 		 */
2086 		get_integrated_platform_config_field(dd, table_type,
2087 						     field_index, data);
2088 		return 0;
2089 	}
2090 
2091 	ret = get_platform_fw_field_metadata(dd, table_type, field_index,
2092 					     &field_len_bits,
2093 					     &field_start_bits);
2094 	if (ret)
2095 		return -EINVAL;
2096 
2097 	/* Convert length to bits */
2098 	len *= 8;
2099 
2100 	/* Our metadata function checked cache_valid and field_index for us */
2101 	switch (table_type) {
2102 	case PLATFORM_CONFIG_SYSTEM_TABLE:
2103 		src_ptr = pcfgcache->config_tables[table_type].table;
2104 
2105 		if (field_index != SYSTEM_TABLE_QSFP_POWER_CLASS_MAX) {
2106 			if (len < field_len_bits)
2107 				return -EINVAL;
2108 
2109 			seek = field_start_bits / 8;
2110 			wlen = field_len_bits / 8;
2111 
2112 			src_ptr = (u32 *)((u8 *)src_ptr + seek);
2113 
2114 			/*
2115 			 * We expect the field to be byte aligned and whole byte
2116 			 * lengths if we are here
2117 			 */
2118 			memcpy(data, src_ptr, wlen);
2119 			return 0;
2120 		}
2121 		break;
2122 	case PLATFORM_CONFIG_PORT_TABLE:
2123 		/* Port table is 4 DWORDS */
2124 		src_ptr = dd->hfi1_id ?
2125 			pcfgcache->config_tables[table_type].table + 4 :
2126 			pcfgcache->config_tables[table_type].table;
2127 		break;
2128 	case PLATFORM_CONFIG_RX_PRESET_TABLE:
2129 		/* fall through */
2130 	case PLATFORM_CONFIG_TX_PRESET_TABLE:
2131 		/* fall through */
2132 	case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
2133 		/* fall through */
2134 	case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
2135 		src_ptr = pcfgcache->config_tables[table_type].table;
2136 
2137 		if (table_index <
2138 			pcfgcache->config_tables[table_type].num_table)
2139 			src_ptr += table_index;
2140 		else
2141 			src_ptr = NULL;
2142 		break;
2143 	default:
2144 		dd_dev_info(dd, "%s: Unknown table\n", __func__);
2145 		break;
2146 	}
2147 
2148 	if (!src_ptr || len < field_len_bits)
2149 		return -EINVAL;
2150 
2151 	src_ptr += (field_start_bits / 32);
2152 	*data = (*src_ptr >> (field_start_bits % 32)) &
2153 			((1 << field_len_bits) - 1);
2154 
2155 	return 0;
2156 }
2157 
2158 /*
2159  * Download the firmware needed for the Gen3 PCIe SerDes.  An update
2160  * to the SBus firmware is needed before updating the PCIe firmware.
2161  *
2162  * Note: caller must be holding the SBus resource.
2163  */
2164 int load_pcie_firmware(struct hfi1_devdata *dd)
2165 {
2166 	int ret = 0;
2167 
2168 	/* both firmware loads below use the SBus */
2169 	set_sbus_fast_mode(dd);
2170 
2171 	if (fw_sbus_load) {
2172 		turn_off_spicos(dd, SPICO_SBUS);
2173 		do {
2174 			ret = load_sbus_firmware(dd, &fw_sbus);
2175 		} while (retry_firmware(dd, ret));
2176 		if (ret)
2177 			goto done;
2178 	}
2179 
2180 	if (fw_pcie_serdes_load) {
2181 		dd_dev_info(dd, "Setting PCIe SerDes broadcast\n");
2182 		set_serdes_broadcast(dd, all_pcie_serdes_broadcast,
2183 				     pcie_serdes_broadcast[dd->hfi1_id],
2184 				     pcie_serdes_addrs[dd->hfi1_id],
2185 				     NUM_PCIE_SERDES);
2186 		do {
2187 			ret = load_pcie_serdes_firmware(dd, &fw_pcie);
2188 		} while (retry_firmware(dd, ret));
2189 		if (ret)
2190 			goto done;
2191 	}
2192 
2193 done:
2194 	clear_sbus_fast_mode(dd);
2195 
2196 	return ret;
2197 }
2198 
2199 /*
2200  * Read the GUID from the hardware, store it in dd.
2201  */
2202 void read_guid(struct hfi1_devdata *dd)
2203 {
2204 	/* Take the DC out of reset to get a valid GUID value */
2205 	write_csr(dd, CCE_DC_CTRL, 0);
2206 	(void)read_csr(dd, CCE_DC_CTRL);
2207 
2208 	dd->base_guid = read_csr(dd, DC_DC8051_CFG_LOCAL_GUID);
2209 	dd_dev_info(dd, "GUID %llx",
2210 		    (unsigned long long)dd->base_guid);
2211 }
2212 
2213 /* read and display firmware version info */
2214 static void dump_fw_version(struct hfi1_devdata *dd)
2215 {
2216 	u32 pcie_vers[NUM_PCIE_SERDES];
2217 	u32 fabric_vers[NUM_FABRIC_SERDES];
2218 	u32 sbus_vers;
2219 	int i;
2220 	int all_same;
2221 	int ret;
2222 	u8 rcv_addr;
2223 
2224 	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
2225 	if (ret) {
2226 		dd_dev_err(dd, "Unable to acquire SBus to read firmware versions\n");
2227 		return;
2228 	}
2229 
2230 	/* set fast mode */
2231 	set_sbus_fast_mode(dd);
2232 
2233 	/* read version for SBus Master */
2234 	sbus_request(dd, SBUS_MASTER_BROADCAST, 0x02, WRITE_SBUS_RECEIVER, 0);
2235 	sbus_request(dd, SBUS_MASTER_BROADCAST, 0x07, WRITE_SBUS_RECEIVER, 0x1);
2236 	/* wait for interrupt to be processed */
2237 	usleep_range(10000, 11000);
2238 	sbus_vers = sbus_read(dd, SBUS_MASTER_BROADCAST, 0x08, 0x1);
2239 	dd_dev_info(dd, "SBus Master firmware version 0x%08x\n", sbus_vers);
2240 
2241 	/* read version for PCIe SerDes */
2242 	all_same = 1;
2243 	pcie_vers[0] = 0;
2244 	for (i = 0; i < NUM_PCIE_SERDES; i++) {
2245 		rcv_addr = pcie_serdes_addrs[dd->hfi1_id][i];
2246 		sbus_request(dd, rcv_addr, 0x03, WRITE_SBUS_RECEIVER, 0);
2247 		/* wait for interrupt to be processed */
2248 		usleep_range(10000, 11000);
2249 		pcie_vers[i] = sbus_read(dd, rcv_addr, 0x04, 0x0);
2250 		if (i > 0 && pcie_vers[0] != pcie_vers[i])
2251 			all_same = 0;
2252 	}
2253 
2254 	if (all_same) {
2255 		dd_dev_info(dd, "PCIe SerDes firmware version 0x%x\n",
2256 			    pcie_vers[0]);
2257 	} else {
2258 		dd_dev_warn(dd, "PCIe SerDes do not have the same firmware version\n");
2259 		for (i = 0; i < NUM_PCIE_SERDES; i++) {
2260 			dd_dev_info(dd,
2261 				    "PCIe SerDes lane %d firmware version 0x%x\n",
2262 				    i, pcie_vers[i]);
2263 		}
2264 	}
2265 
2266 	/* read version for fabric SerDes */
2267 	all_same = 1;
2268 	fabric_vers[0] = 0;
2269 	for (i = 0; i < NUM_FABRIC_SERDES; i++) {
2270 		rcv_addr = fabric_serdes_addrs[dd->hfi1_id][i];
2271 		sbus_request(dd, rcv_addr, 0x03, WRITE_SBUS_RECEIVER, 0);
2272 		/* wait for interrupt to be processed */
2273 		usleep_range(10000, 11000);
2274 		fabric_vers[i] = sbus_read(dd, rcv_addr, 0x04, 0x0);
2275 		if (i > 0 && fabric_vers[0] != fabric_vers[i])
2276 			all_same = 0;
2277 	}
2278 
2279 	if (all_same) {
2280 		dd_dev_info(dd, "Fabric SerDes firmware version 0x%x\n",
2281 			    fabric_vers[0]);
2282 	} else {
2283 		dd_dev_warn(dd, "Fabric SerDes do not have the same firmware version\n");
2284 		for (i = 0; i < NUM_FABRIC_SERDES; i++) {
2285 			dd_dev_info(dd,
2286 				    "Fabric SerDes lane %d firmware version 0x%x\n",
2287 				    i, fabric_vers[i]);
2288 		}
2289 	}
2290 
2291 	clear_sbus_fast_mode(dd);
2292 	release_chip_resource(dd, CR_SBUS);
2293 }
2294