1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
2 /*
3  * Copyright(c) 2015 - 2017 Intel Corporation.
4  */
5 
6 #include <linux/firmware.h>
7 #include <linux/mutex.h>
8 #include <linux/module.h>
9 #include <linux/delay.h>
10 #include <linux/crc32.h>
11 
12 #include "hfi.h"
13 #include "trace.h"
14 
15 /*
16  * Make it easy to toggle firmware file name and if it gets loaded by
17  * editing the following. This may be something we do while in development
18  * but not necessarily something a user would ever need to use.
19  */
20 #define DEFAULT_FW_8051_NAME_FPGA "hfi_dc8051.bin"
21 #define DEFAULT_FW_8051_NAME_ASIC "hfi1_dc8051.fw"
22 #define DEFAULT_FW_FABRIC_NAME "hfi1_fabric.fw"
23 #define DEFAULT_FW_SBUS_NAME "hfi1_sbus.fw"
24 #define DEFAULT_FW_PCIE_NAME "hfi1_pcie.fw"
25 #define ALT_FW_8051_NAME_ASIC "hfi1_dc8051_d.fw"
26 #define ALT_FW_FABRIC_NAME "hfi1_fabric_d.fw"
27 #define ALT_FW_SBUS_NAME "hfi1_sbus_d.fw"
28 #define ALT_FW_PCIE_NAME "hfi1_pcie_d.fw"
29 
30 MODULE_FIRMWARE(DEFAULT_FW_8051_NAME_ASIC);
31 MODULE_FIRMWARE(DEFAULT_FW_FABRIC_NAME);
32 MODULE_FIRMWARE(DEFAULT_FW_SBUS_NAME);
33 MODULE_FIRMWARE(DEFAULT_FW_PCIE_NAME);
34 
35 static uint fw_8051_load = 1;
36 static uint fw_fabric_serdes_load = 1;
37 static uint fw_pcie_serdes_load = 1;
38 static uint fw_sbus_load = 1;
39 
40 /* Firmware file names get set in hfi1_firmware_init() based on the above */
41 static char *fw_8051_name;
42 static char *fw_fabric_serdes_name;
43 static char *fw_sbus_name;
44 static char *fw_pcie_serdes_name;
45 
46 #define SBUS_MAX_POLL_COUNT 100
47 #define SBUS_COUNTER(reg, name) \
48 	(((reg) >> ASIC_STS_SBUS_COUNTERS_##name##_CNT_SHIFT) & \
49 	 ASIC_STS_SBUS_COUNTERS_##name##_CNT_MASK)
50 
51 /*
52  * Firmware security header.
53  */
54 struct css_header {
55 	u32 module_type;
56 	u32 header_len;
57 	u32 header_version;
58 	u32 module_id;
59 	u32 module_vendor;
60 	u32 date;		/* BCD yyyymmdd */
61 	u32 size;		/* in DWORDs */
62 	u32 key_size;		/* in DWORDs */
63 	u32 modulus_size;	/* in DWORDs */
64 	u32 exponent_size;	/* in DWORDs */
65 	u32 reserved[22];
66 };
67 
68 /* expected field values */
69 #define CSS_MODULE_TYPE	   0x00000006
70 #define CSS_HEADER_LEN	   0x000000a1
71 #define CSS_HEADER_VERSION 0x00010000
72 #define CSS_MODULE_VENDOR  0x00008086
73 
74 #define KEY_SIZE      256
75 #define MU_SIZE		8
76 #define EXPONENT_SIZE	4
77 
78 /* size of platform configuration partition */
79 #define MAX_PLATFORM_CONFIG_FILE_SIZE 4096
80 
81 /* size of file of plaform configuration encoded in format version 4 */
82 #define PLATFORM_CONFIG_FORMAT_4_FILE_SIZE 528
83 
84 /* the file itself */
85 struct firmware_file {
86 	struct css_header css_header;
87 	u8 modulus[KEY_SIZE];
88 	u8 exponent[EXPONENT_SIZE];
89 	u8 signature[KEY_SIZE];
90 	u8 firmware[];
91 };
92 
93 struct augmented_firmware_file {
94 	struct css_header css_header;
95 	u8 modulus[KEY_SIZE];
96 	u8 exponent[EXPONENT_SIZE];
97 	u8 signature[KEY_SIZE];
98 	u8 r2[KEY_SIZE];
99 	u8 mu[MU_SIZE];
100 	u8 firmware[];
101 };
102 
103 /* augmented file size difference */
104 #define AUGMENT_SIZE (sizeof(struct augmented_firmware_file) - \
105 						sizeof(struct firmware_file))
106 
107 struct firmware_details {
108 	/* Linux core piece */
109 	const struct firmware *fw;
110 
111 	struct css_header *css_header;
112 	u8 *firmware_ptr;		/* pointer to binary data */
113 	u32 firmware_len;		/* length in bytes */
114 	u8 *modulus;			/* pointer to the modulus */
115 	u8 *exponent;			/* pointer to the exponent */
116 	u8 *signature;			/* pointer to the signature */
117 	u8 *r2;				/* pointer to r2 */
118 	u8 *mu;				/* pointer to mu */
119 	struct augmented_firmware_file dummy_header;
120 };
121 
122 /*
123  * The mutex protects fw_state, fw_err, and all of the firmware_details
124  * variables.
125  */
126 static DEFINE_MUTEX(fw_mutex);
127 enum fw_state {
128 	FW_EMPTY,
129 	FW_TRY,
130 	FW_FINAL,
131 	FW_ERR
132 };
133 
134 static enum fw_state fw_state = FW_EMPTY;
135 static int fw_err;
136 static struct firmware_details fw_8051;
137 static struct firmware_details fw_fabric;
138 static struct firmware_details fw_pcie;
139 static struct firmware_details fw_sbus;
140 
141 /* flags for turn_off_spicos() */
142 #define SPICO_SBUS   0x1
143 #define SPICO_FABRIC 0x2
144 #define ENABLE_SPICO_SMASK 0x1
145 
146 /* security block commands */
147 #define RSA_CMD_INIT  0x1
148 #define RSA_CMD_START 0x2
149 
150 /* security block status */
151 #define RSA_STATUS_IDLE   0x0
152 #define RSA_STATUS_ACTIVE 0x1
153 #define RSA_STATUS_DONE   0x2
154 #define RSA_STATUS_FAILED 0x3
155 
156 /* RSA engine timeout, in ms */
157 #define RSA_ENGINE_TIMEOUT 100 /* ms */
158 
159 /* hardware mutex timeout, in ms */
160 #define HM_TIMEOUT 10 /* ms */
161 
162 /* 8051 memory access timeout, in us */
163 #define DC8051_ACCESS_TIMEOUT 100 /* us */
164 
165 /* the number of fabric SerDes on the SBus */
166 #define NUM_FABRIC_SERDES 4
167 
168 /* ASIC_STS_SBUS_RESULT.RESULT_CODE value */
169 #define SBUS_READ_COMPLETE 0x4
170 
171 /* SBus fabric SerDes addresses, one set per HFI */
172 static const u8 fabric_serdes_addrs[2][NUM_FABRIC_SERDES] = {
173 	{ 0x01, 0x02, 0x03, 0x04 },
174 	{ 0x28, 0x29, 0x2a, 0x2b }
175 };
176 
177 /* SBus PCIe SerDes addresses, one set per HFI */
178 static const u8 pcie_serdes_addrs[2][NUM_PCIE_SERDES] = {
179 	{ 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16,
180 	  0x18, 0x1a, 0x1c, 0x1e, 0x20, 0x22, 0x24, 0x26 },
181 	{ 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d,
182 	  0x3f, 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d }
183 };
184 
185 /* SBus PCIe PCS addresses, one set per HFI */
186 const u8 pcie_pcs_addrs[2][NUM_PCIE_SERDES] = {
187 	{ 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17,
188 	  0x19, 0x1b, 0x1d, 0x1f, 0x21, 0x23, 0x25, 0x27 },
189 	{ 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
190 	  0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e }
191 };
192 
193 /* SBus fabric SerDes broadcast addresses, one per HFI */
194 static const u8 fabric_serdes_broadcast[2] = { 0xe4, 0xe5 };
195 static const u8 all_fabric_serdes_broadcast = 0xe1;
196 
197 /* SBus PCIe SerDes broadcast addresses, one per HFI */
198 const u8 pcie_serdes_broadcast[2] = { 0xe2, 0xe3 };
199 static const u8 all_pcie_serdes_broadcast = 0xe0;
200 
201 static const u32 platform_config_table_limits[PLATFORM_CONFIG_TABLE_MAX] = {
202 	0,
203 	SYSTEM_TABLE_MAX,
204 	PORT_TABLE_MAX,
205 	RX_PRESET_TABLE_MAX,
206 	TX_PRESET_TABLE_MAX,
207 	QSFP_ATTEN_TABLE_MAX,
208 	VARIABLE_SETTINGS_TABLE_MAX
209 };
210 
211 /* forwards */
212 static void dispose_one_firmware(struct firmware_details *fdet);
213 static int load_fabric_serdes_firmware(struct hfi1_devdata *dd,
214 				       struct firmware_details *fdet);
215 static void dump_fw_version(struct hfi1_devdata *dd);
216 
217 /*
218  * Read a single 64-bit value from 8051 data memory.
219  *
220  * Expects:
221  * o caller to have already set up data read, no auto increment
222  * o caller to turn off read enable when finished
223  *
224  * The address argument is a byte offset.  Bits 0:2 in the address are
225  * ignored - i.e. the hardware will always do aligned 8-byte reads as if
226  * the lower bits are zero.
227  *
228  * Return 0 on success, -ENXIO on a read error (timeout).
229  */
230 static int __read_8051_data(struct hfi1_devdata *dd, u32 addr, u64 *result)
231 {
232 	u64 reg;
233 	int count;
234 
235 	/* step 1: set the address, clear enable */
236 	reg = (addr & DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK)
237 			<< DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT;
238 	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, reg);
239 	/* step 2: enable */
240 	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL,
241 		  reg | DC_DC8051_CFG_RAM_ACCESS_CTRL_READ_ENA_SMASK);
242 
243 	/* wait until ACCESS_COMPLETED is set */
244 	count = 0;
245 	while ((read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_STATUS)
246 		    & DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK)
247 		    == 0) {
248 		count++;
249 		if (count > DC8051_ACCESS_TIMEOUT) {
250 			dd_dev_err(dd, "timeout reading 8051 data\n");
251 			return -ENXIO;
252 		}
253 		ndelay(10);
254 	}
255 
256 	/* gather the data */
257 	*result = read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_RD_DATA);
258 
259 	return 0;
260 }
261 
262 /*
263  * Read 8051 data starting at addr, for len bytes.  Will read in 8-byte chunks.
264  * Return 0 on success, -errno on error.
265  */
266 int read_8051_data(struct hfi1_devdata *dd, u32 addr, u32 len, u64 *result)
267 {
268 	unsigned long flags;
269 	u32 done;
270 	int ret = 0;
271 
272 	spin_lock_irqsave(&dd->dc8051_memlock, flags);
273 
274 	/* data read set-up, no auto-increment */
275 	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, 0);
276 
277 	for (done = 0; done < len; addr += 8, done += 8, result++) {
278 		ret = __read_8051_data(dd, addr, result);
279 		if (ret)
280 			break;
281 	}
282 
283 	/* turn off read enable */
284 	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, 0);
285 
286 	spin_unlock_irqrestore(&dd->dc8051_memlock, flags);
287 
288 	return ret;
289 }
290 
291 /*
292  * Write data or code to the 8051 code or data RAM.
293  */
294 static int write_8051(struct hfi1_devdata *dd, int code, u32 start,
295 		      const u8 *data, u32 len)
296 {
297 	u64 reg;
298 	u32 offset;
299 	int aligned, count;
300 
301 	/* check alignment */
302 	aligned = ((unsigned long)data & 0x7) == 0;
303 
304 	/* write set-up */
305 	reg = (code ? DC_DC8051_CFG_RAM_ACCESS_SETUP_RAM_SEL_SMASK : 0ull)
306 		| DC_DC8051_CFG_RAM_ACCESS_SETUP_AUTO_INCR_ADDR_SMASK;
307 	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, reg);
308 
309 	reg = ((start & DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK)
310 			<< DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT)
311 		| DC_DC8051_CFG_RAM_ACCESS_CTRL_WRITE_ENA_SMASK;
312 	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, reg);
313 
314 	/* write */
315 	for (offset = 0; offset < len; offset += 8) {
316 		int bytes = len - offset;
317 
318 		if (bytes < 8) {
319 			reg = 0;
320 			memcpy(&reg, &data[offset], bytes);
321 		} else if (aligned) {
322 			reg = *(u64 *)&data[offset];
323 		} else {
324 			memcpy(&reg, &data[offset], 8);
325 		}
326 		write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_WR_DATA, reg);
327 
328 		/* wait until ACCESS_COMPLETED is set */
329 		count = 0;
330 		while ((read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_STATUS)
331 		    & DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK)
332 		    == 0) {
333 			count++;
334 			if (count > DC8051_ACCESS_TIMEOUT) {
335 				dd_dev_err(dd, "timeout writing 8051 data\n");
336 				return -ENXIO;
337 			}
338 			udelay(1);
339 		}
340 	}
341 
342 	/* turn off write access, auto increment (also sets to data access) */
343 	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, 0);
344 	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, 0);
345 
346 	return 0;
347 }
348 
349 /* return 0 if values match, non-zero and complain otherwise */
350 static int invalid_header(struct hfi1_devdata *dd, const char *what,
351 			  u32 actual, u32 expected)
352 {
353 	if (actual == expected)
354 		return 0;
355 
356 	dd_dev_err(dd,
357 		   "invalid firmware header field %s: expected 0x%x, actual 0x%x\n",
358 		   what, expected, actual);
359 	return 1;
360 }
361 
362 /*
363  * Verify that the static fields in the CSS header match.
364  */
365 static int verify_css_header(struct hfi1_devdata *dd, struct css_header *css)
366 {
367 	/* verify CSS header fields (most sizes are in DW, so add /4) */
368 	if (invalid_header(dd, "module_type", css->module_type,
369 			   CSS_MODULE_TYPE) ||
370 	    invalid_header(dd, "header_len", css->header_len,
371 			   (sizeof(struct firmware_file) / 4)) ||
372 	    invalid_header(dd, "header_version", css->header_version,
373 			   CSS_HEADER_VERSION) ||
374 	    invalid_header(dd, "module_vendor", css->module_vendor,
375 			   CSS_MODULE_VENDOR) ||
376 	    invalid_header(dd, "key_size", css->key_size, KEY_SIZE / 4) ||
377 	    invalid_header(dd, "modulus_size", css->modulus_size,
378 			   KEY_SIZE / 4) ||
379 	    invalid_header(dd, "exponent_size", css->exponent_size,
380 			   EXPONENT_SIZE / 4)) {
381 		return -EINVAL;
382 	}
383 	return 0;
384 }
385 
386 /*
387  * Make sure there are at least some bytes after the prefix.
388  */
389 static int payload_check(struct hfi1_devdata *dd, const char *name,
390 			 long file_size, long prefix_size)
391 {
392 	/* make sure we have some payload */
393 	if (prefix_size >= file_size) {
394 		dd_dev_err(dd,
395 			   "firmware \"%s\", size %ld, must be larger than %ld bytes\n",
396 			   name, file_size, prefix_size);
397 		return -EINVAL;
398 	}
399 
400 	return 0;
401 }
402 
403 /*
404  * Request the firmware from the system.  Extract the pieces and fill in
405  * fdet.  If successful, the caller will need to call dispose_one_firmware().
406  * Returns 0 on success, -ERRNO on error.
407  */
408 static int obtain_one_firmware(struct hfi1_devdata *dd, const char *name,
409 			       struct firmware_details *fdet)
410 {
411 	struct css_header *css;
412 	int ret;
413 
414 	memset(fdet, 0, sizeof(*fdet));
415 
416 	ret = request_firmware(&fdet->fw, name, &dd->pcidev->dev);
417 	if (ret) {
418 		dd_dev_warn(dd, "cannot find firmware \"%s\", err %d\n",
419 			    name, ret);
420 		return ret;
421 	}
422 
423 	/* verify the firmware */
424 	if (fdet->fw->size < sizeof(struct css_header)) {
425 		dd_dev_err(dd, "firmware \"%s\" is too small\n", name);
426 		ret = -EINVAL;
427 		goto done;
428 	}
429 	css = (struct css_header *)fdet->fw->data;
430 
431 	hfi1_cdbg(FIRMWARE, "Firmware %s details:", name);
432 	hfi1_cdbg(FIRMWARE, "file size: 0x%lx bytes", fdet->fw->size);
433 	hfi1_cdbg(FIRMWARE, "CSS structure:");
434 	hfi1_cdbg(FIRMWARE, "  module_type    0x%x", css->module_type);
435 	hfi1_cdbg(FIRMWARE, "  header_len     0x%03x (0x%03x bytes)",
436 		  css->header_len, 4 * css->header_len);
437 	hfi1_cdbg(FIRMWARE, "  header_version 0x%x", css->header_version);
438 	hfi1_cdbg(FIRMWARE, "  module_id      0x%x", css->module_id);
439 	hfi1_cdbg(FIRMWARE, "  module_vendor  0x%x", css->module_vendor);
440 	hfi1_cdbg(FIRMWARE, "  date           0x%x", css->date);
441 	hfi1_cdbg(FIRMWARE, "  size           0x%03x (0x%03x bytes)",
442 		  css->size, 4 * css->size);
443 	hfi1_cdbg(FIRMWARE, "  key_size       0x%03x (0x%03x bytes)",
444 		  css->key_size, 4 * css->key_size);
445 	hfi1_cdbg(FIRMWARE, "  modulus_size   0x%03x (0x%03x bytes)",
446 		  css->modulus_size, 4 * css->modulus_size);
447 	hfi1_cdbg(FIRMWARE, "  exponent_size  0x%03x (0x%03x bytes)",
448 		  css->exponent_size, 4 * css->exponent_size);
449 	hfi1_cdbg(FIRMWARE, "firmware size: 0x%lx bytes",
450 		  fdet->fw->size - sizeof(struct firmware_file));
451 
452 	/*
453 	 * If the file does not have a valid CSS header, fail.
454 	 * Otherwise, check the CSS size field for an expected size.
455 	 * The augmented file has r2 and mu inserted after the header
456 	 * was generated, so there will be a known difference between
457 	 * the CSS header size and the actual file size.  Use this
458 	 * difference to identify an augmented file.
459 	 *
460 	 * Note: css->size is in DWORDs, multiply by 4 to get bytes.
461 	 */
462 	ret = verify_css_header(dd, css);
463 	if (ret) {
464 		dd_dev_info(dd, "Invalid CSS header for \"%s\"\n", name);
465 	} else if ((css->size * 4) == fdet->fw->size) {
466 		/* non-augmented firmware file */
467 		struct firmware_file *ff = (struct firmware_file *)
468 							fdet->fw->data;
469 
470 		/* make sure there are bytes in the payload */
471 		ret = payload_check(dd, name, fdet->fw->size,
472 				    sizeof(struct firmware_file));
473 		if (ret == 0) {
474 			fdet->css_header = css;
475 			fdet->modulus = ff->modulus;
476 			fdet->exponent = ff->exponent;
477 			fdet->signature = ff->signature;
478 			fdet->r2 = fdet->dummy_header.r2; /* use dummy space */
479 			fdet->mu = fdet->dummy_header.mu; /* use dummy space */
480 			fdet->firmware_ptr = ff->firmware;
481 			fdet->firmware_len = fdet->fw->size -
482 						sizeof(struct firmware_file);
483 			/*
484 			 * Header does not include r2 and mu - generate here.
485 			 * For now, fail.
486 			 */
487 			dd_dev_err(dd, "driver is unable to validate firmware without r2 and mu (not in firmware file)\n");
488 			ret = -EINVAL;
489 		}
490 	} else if ((css->size * 4) + AUGMENT_SIZE == fdet->fw->size) {
491 		/* augmented firmware file */
492 		struct augmented_firmware_file *aff =
493 			(struct augmented_firmware_file *)fdet->fw->data;
494 
495 		/* make sure there are bytes in the payload */
496 		ret = payload_check(dd, name, fdet->fw->size,
497 				    sizeof(struct augmented_firmware_file));
498 		if (ret == 0) {
499 			fdet->css_header = css;
500 			fdet->modulus = aff->modulus;
501 			fdet->exponent = aff->exponent;
502 			fdet->signature = aff->signature;
503 			fdet->r2 = aff->r2;
504 			fdet->mu = aff->mu;
505 			fdet->firmware_ptr = aff->firmware;
506 			fdet->firmware_len = fdet->fw->size -
507 					sizeof(struct augmented_firmware_file);
508 		}
509 	} else {
510 		/* css->size check failed */
511 		dd_dev_err(dd,
512 			   "invalid firmware header field size: expected 0x%lx or 0x%lx, actual 0x%x\n",
513 			   fdet->fw->size / 4,
514 			   (fdet->fw->size - AUGMENT_SIZE) / 4,
515 			   css->size);
516 
517 		ret = -EINVAL;
518 	}
519 
520 done:
521 	/* if returning an error, clean up after ourselves */
522 	if (ret)
523 		dispose_one_firmware(fdet);
524 	return ret;
525 }
526 
527 static void dispose_one_firmware(struct firmware_details *fdet)
528 {
529 	release_firmware(fdet->fw);
530 	/* erase all previous information */
531 	memset(fdet, 0, sizeof(*fdet));
532 }
533 
534 /*
535  * Obtain the 4 firmwares from the OS.  All must be obtained at once or not
536  * at all.  If called with the firmware state in FW_TRY, use alternate names.
537  * On exit, this routine will have set the firmware state to one of FW_TRY,
538  * FW_FINAL, or FW_ERR.
539  *
540  * Must be holding fw_mutex.
541  */
542 static void __obtain_firmware(struct hfi1_devdata *dd)
543 {
544 	int err = 0;
545 
546 	if (fw_state == FW_FINAL)	/* nothing more to obtain */
547 		return;
548 	if (fw_state == FW_ERR)		/* already in error */
549 		return;
550 
551 	/* fw_state is FW_EMPTY or FW_TRY */
552 retry:
553 	if (fw_state == FW_TRY) {
554 		/*
555 		 * We tried the original and it failed.  Move to the
556 		 * alternate.
557 		 */
558 		dd_dev_warn(dd, "using alternate firmware names\n");
559 		/*
560 		 * Let others run.  Some systems, when missing firmware, does
561 		 * something that holds for 30 seconds.  If we do that twice
562 		 * in a row it triggers task blocked warning.
563 		 */
564 		cond_resched();
565 		if (fw_8051_load)
566 			dispose_one_firmware(&fw_8051);
567 		if (fw_fabric_serdes_load)
568 			dispose_one_firmware(&fw_fabric);
569 		if (fw_sbus_load)
570 			dispose_one_firmware(&fw_sbus);
571 		if (fw_pcie_serdes_load)
572 			dispose_one_firmware(&fw_pcie);
573 		fw_8051_name = ALT_FW_8051_NAME_ASIC;
574 		fw_fabric_serdes_name = ALT_FW_FABRIC_NAME;
575 		fw_sbus_name = ALT_FW_SBUS_NAME;
576 		fw_pcie_serdes_name = ALT_FW_PCIE_NAME;
577 
578 		/*
579 		 * Add a delay before obtaining and loading debug firmware.
580 		 * Authorization will fail if the delay between firmware
581 		 * authorization events is shorter than 50us. Add 100us to
582 		 * make a delay time safe.
583 		 */
584 		usleep_range(100, 120);
585 	}
586 
587 	if (fw_sbus_load) {
588 		err = obtain_one_firmware(dd, fw_sbus_name, &fw_sbus);
589 		if (err)
590 			goto done;
591 	}
592 
593 	if (fw_pcie_serdes_load) {
594 		err = obtain_one_firmware(dd, fw_pcie_serdes_name, &fw_pcie);
595 		if (err)
596 			goto done;
597 	}
598 
599 	if (fw_fabric_serdes_load) {
600 		err = obtain_one_firmware(dd, fw_fabric_serdes_name,
601 					  &fw_fabric);
602 		if (err)
603 			goto done;
604 	}
605 
606 	if (fw_8051_load) {
607 		err = obtain_one_firmware(dd, fw_8051_name, &fw_8051);
608 		if (err)
609 			goto done;
610 	}
611 
612 done:
613 	if (err) {
614 		/* oops, had problems obtaining a firmware */
615 		if (fw_state == FW_EMPTY && dd->icode == ICODE_RTL_SILICON) {
616 			/* retry with alternate (RTL only) */
617 			fw_state = FW_TRY;
618 			goto retry;
619 		}
620 		dd_dev_err(dd, "unable to obtain working firmware\n");
621 		fw_state = FW_ERR;
622 		fw_err = -ENOENT;
623 	} else {
624 		/* success */
625 		if (fw_state == FW_EMPTY &&
626 		    dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
627 			fw_state = FW_TRY;	/* may retry later */
628 		else
629 			fw_state = FW_FINAL;	/* cannot try again */
630 	}
631 }
632 
633 /*
634  * Called by all HFIs when loading their firmware - i.e. device probe time.
635  * The first one will do the actual firmware load.  Use a mutex to resolve
636  * any possible race condition.
637  *
638  * The call to this routine cannot be moved to driver load because the kernel
639  * call request_firmware() requires a device which is only available after
640  * the first device probe.
641  */
642 static int obtain_firmware(struct hfi1_devdata *dd)
643 {
644 	unsigned long timeout;
645 
646 	mutex_lock(&fw_mutex);
647 
648 	/* 40s delay due to long delay on missing firmware on some systems */
649 	timeout = jiffies + msecs_to_jiffies(40000);
650 	while (fw_state == FW_TRY) {
651 		/*
652 		 * Another device is trying the firmware.  Wait until it
653 		 * decides what works (or not).
654 		 */
655 		if (time_after(jiffies, timeout)) {
656 			/* waited too long */
657 			dd_dev_err(dd, "Timeout waiting for firmware try");
658 			fw_state = FW_ERR;
659 			fw_err = -ETIMEDOUT;
660 			break;
661 		}
662 		mutex_unlock(&fw_mutex);
663 		msleep(20);	/* arbitrary delay */
664 		mutex_lock(&fw_mutex);
665 	}
666 	/* not in FW_TRY state */
667 
668 	/* set fw_state to FW_TRY, FW_FINAL, or FW_ERR, and fw_err */
669 	if (fw_state == FW_EMPTY)
670 		__obtain_firmware(dd);
671 
672 	mutex_unlock(&fw_mutex);
673 	return fw_err;
674 }
675 
676 /*
677  * Called when the driver unloads.  The timing is asymmetric with its
678  * counterpart, obtain_firmware().  If called at device remove time,
679  * then it is conceivable that another device could probe while the
680  * firmware is being disposed.  The mutexes can be moved to do that
681  * safely, but then the firmware would be requested from the OS multiple
682  * times.
683  *
684  * No mutex is needed as the driver is unloading and there cannot be any
685  * other callers.
686  */
687 void dispose_firmware(void)
688 {
689 	dispose_one_firmware(&fw_8051);
690 	dispose_one_firmware(&fw_fabric);
691 	dispose_one_firmware(&fw_pcie);
692 	dispose_one_firmware(&fw_sbus);
693 
694 	/* retain the error state, otherwise revert to empty */
695 	if (fw_state != FW_ERR)
696 		fw_state = FW_EMPTY;
697 }
698 
699 /*
700  * Called with the result of a firmware download.
701  *
702  * Return 1 to retry loading the firmware, 0 to stop.
703  */
704 static int retry_firmware(struct hfi1_devdata *dd, int load_result)
705 {
706 	int retry;
707 
708 	mutex_lock(&fw_mutex);
709 
710 	if (load_result == 0) {
711 		/*
712 		 * The load succeeded, so expect all others to do the same.
713 		 * Do not retry again.
714 		 */
715 		if (fw_state == FW_TRY)
716 			fw_state = FW_FINAL;
717 		retry = 0;	/* do NOT retry */
718 	} else if (fw_state == FW_TRY) {
719 		/* load failed, obtain alternate firmware */
720 		__obtain_firmware(dd);
721 		retry = (fw_state == FW_FINAL);
722 	} else {
723 		/* else in FW_FINAL or FW_ERR, no retry in either case */
724 		retry = 0;
725 	}
726 
727 	mutex_unlock(&fw_mutex);
728 	return retry;
729 }
730 
731 /*
732  * Write a block of data to a given array CSR.  All calls will be in
733  * multiples of 8 bytes.
734  */
735 static void write_rsa_data(struct hfi1_devdata *dd, int what,
736 			   const u8 *data, int nbytes)
737 {
738 	int qw_size = nbytes / 8;
739 	int i;
740 
741 	if (((unsigned long)data & 0x7) == 0) {
742 		/* aligned */
743 		u64 *ptr = (u64 *)data;
744 
745 		for (i = 0; i < qw_size; i++, ptr++)
746 			write_csr(dd, what + (8 * i), *ptr);
747 	} else {
748 		/* not aligned */
749 		for (i = 0; i < qw_size; i++, data += 8) {
750 			u64 value;
751 
752 			memcpy(&value, data, 8);
753 			write_csr(dd, what + (8 * i), value);
754 		}
755 	}
756 }
757 
758 /*
759  * Write a block of data to a given CSR as a stream of writes.  All calls will
760  * be in multiples of 8 bytes.
761  */
762 static void write_streamed_rsa_data(struct hfi1_devdata *dd, int what,
763 				    const u8 *data, int nbytes)
764 {
765 	u64 *ptr = (u64 *)data;
766 	int qw_size = nbytes / 8;
767 
768 	for (; qw_size > 0; qw_size--, ptr++)
769 		write_csr(dd, what, *ptr);
770 }
771 
772 /*
773  * Download the signature and start the RSA mechanism.  Wait for
774  * RSA_ENGINE_TIMEOUT before giving up.
775  */
776 static int run_rsa(struct hfi1_devdata *dd, const char *who,
777 		   const u8 *signature)
778 {
779 	unsigned long timeout;
780 	u64 reg;
781 	u32 status;
782 	int ret = 0;
783 
784 	/* write the signature */
785 	write_rsa_data(dd, MISC_CFG_RSA_SIGNATURE, signature, KEY_SIZE);
786 
787 	/* initialize RSA */
788 	write_csr(dd, MISC_CFG_RSA_CMD, RSA_CMD_INIT);
789 
790 	/*
791 	 * Make sure the engine is idle and insert a delay between the two
792 	 * writes to MISC_CFG_RSA_CMD.
793 	 */
794 	status = (read_csr(dd, MISC_CFG_FW_CTRL)
795 			   & MISC_CFG_FW_CTRL_RSA_STATUS_SMASK)
796 			     >> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT;
797 	if (status != RSA_STATUS_IDLE) {
798 		dd_dev_err(dd, "%s security engine not idle - giving up\n",
799 			   who);
800 		return -EBUSY;
801 	}
802 
803 	/* start RSA */
804 	write_csr(dd, MISC_CFG_RSA_CMD, RSA_CMD_START);
805 
806 	/*
807 	 * Look for the result.
808 	 *
809 	 * The RSA engine is hooked up to two MISC errors.  The driver
810 	 * masks these errors as they do not respond to the standard
811 	 * error "clear down" mechanism.  Look for these errors here and
812 	 * clear them when possible.  This routine will exit with the
813 	 * errors of the current run still set.
814 	 *
815 	 * MISC_FW_AUTH_FAILED_ERR
816 	 *	Firmware authorization failed.  This can be cleared by
817 	 *	re-initializing the RSA engine, then clearing the status bit.
818 	 *	Do not re-init the RSA angine immediately after a successful
819 	 *	run - this will reset the current authorization.
820 	 *
821 	 * MISC_KEY_MISMATCH_ERR
822 	 *	Key does not match.  The only way to clear this is to load
823 	 *	a matching key then clear the status bit.  If this error
824 	 *	is raised, it will persist outside of this routine until a
825 	 *	matching key is loaded.
826 	 */
827 	timeout = msecs_to_jiffies(RSA_ENGINE_TIMEOUT) + jiffies;
828 	while (1) {
829 		status = (read_csr(dd, MISC_CFG_FW_CTRL)
830 			   & MISC_CFG_FW_CTRL_RSA_STATUS_SMASK)
831 			     >> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT;
832 
833 		if (status == RSA_STATUS_IDLE) {
834 			/* should not happen */
835 			dd_dev_err(dd, "%s firmware security bad idle state\n",
836 				   who);
837 			ret = -EINVAL;
838 			break;
839 		} else if (status == RSA_STATUS_DONE) {
840 			/* finished successfully */
841 			break;
842 		} else if (status == RSA_STATUS_FAILED) {
843 			/* finished unsuccessfully */
844 			ret = -EINVAL;
845 			break;
846 		}
847 		/* else still active */
848 
849 		if (time_after(jiffies, timeout)) {
850 			/*
851 			 * Timed out while active.  We can't reset the engine
852 			 * if it is stuck active, but run through the
853 			 * error code to see what error bits are set.
854 			 */
855 			dd_dev_err(dd, "%s firmware security time out\n", who);
856 			ret = -ETIMEDOUT;
857 			break;
858 		}
859 
860 		msleep(20);
861 	}
862 
863 	/*
864 	 * Arrive here on success or failure.  Clear all RSA engine
865 	 * errors.  All current errors will stick - the RSA logic is keeping
866 	 * error high.  All previous errors will clear - the RSA logic
867 	 * is not keeping the error high.
868 	 */
869 	write_csr(dd, MISC_ERR_CLEAR,
870 		  MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK |
871 		  MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK);
872 	/*
873 	 * All that is left are the current errors.  Print warnings on
874 	 * authorization failure details, if any.  Firmware authorization
875 	 * can be retried, so these are only warnings.
876 	 */
877 	reg = read_csr(dd, MISC_ERR_STATUS);
878 	if (ret) {
879 		if (reg & MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK)
880 			dd_dev_warn(dd, "%s firmware authorization failed\n",
881 				    who);
882 		if (reg & MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK)
883 			dd_dev_warn(dd, "%s firmware key mismatch\n", who);
884 	}
885 
886 	return ret;
887 }
888 
889 static void load_security_variables(struct hfi1_devdata *dd,
890 				    struct firmware_details *fdet)
891 {
892 	/* Security variables a.  Write the modulus */
893 	write_rsa_data(dd, MISC_CFG_RSA_MODULUS, fdet->modulus, KEY_SIZE);
894 	/* Security variables b.  Write the r2 */
895 	write_rsa_data(dd, MISC_CFG_RSA_R2, fdet->r2, KEY_SIZE);
896 	/* Security variables c.  Write the mu */
897 	write_rsa_data(dd, MISC_CFG_RSA_MU, fdet->mu, MU_SIZE);
898 	/* Security variables d.  Write the header */
899 	write_streamed_rsa_data(dd, MISC_CFG_SHA_PRELOAD,
900 				(u8 *)fdet->css_header,
901 				sizeof(struct css_header));
902 }
903 
904 /* return the 8051 firmware state */
905 static inline u32 get_firmware_state(struct hfi1_devdata *dd)
906 {
907 	u64 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
908 
909 	return (reg >> DC_DC8051_STS_CUR_STATE_FIRMWARE_SHIFT)
910 				& DC_DC8051_STS_CUR_STATE_FIRMWARE_MASK;
911 }
912 
913 /*
914  * Wait until the firmware is up and ready to take host requests.
915  * Return 0 on success, -ETIMEDOUT on timeout.
916  */
917 int wait_fm_ready(struct hfi1_devdata *dd, u32 mstimeout)
918 {
919 	unsigned long timeout;
920 
921 	/* in the simulator, the fake 8051 is always ready */
922 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
923 		return 0;
924 
925 	timeout = msecs_to_jiffies(mstimeout) + jiffies;
926 	while (1) {
927 		if (get_firmware_state(dd) == 0xa0)	/* ready */
928 			return 0;
929 		if (time_after(jiffies, timeout))	/* timed out */
930 			return -ETIMEDOUT;
931 		usleep_range(1950, 2050); /* sleep 2ms-ish */
932 	}
933 }
934 
935 /*
936  * Load the 8051 firmware.
937  */
938 static int load_8051_firmware(struct hfi1_devdata *dd,
939 			      struct firmware_details *fdet)
940 {
941 	u64 reg;
942 	int ret;
943 	u8 ver_major;
944 	u8 ver_minor;
945 	u8 ver_patch;
946 
947 	/*
948 	 * DC Reset sequence
949 	 * Load DC 8051 firmware
950 	 */
951 	/*
952 	 * DC reset step 1: Reset DC8051
953 	 */
954 	reg = DC_DC8051_CFG_RST_M8051W_SMASK
955 		| DC_DC8051_CFG_RST_CRAM_SMASK
956 		| DC_DC8051_CFG_RST_DRAM_SMASK
957 		| DC_DC8051_CFG_RST_IRAM_SMASK
958 		| DC_DC8051_CFG_RST_SFR_SMASK;
959 	write_csr(dd, DC_DC8051_CFG_RST, reg);
960 
961 	/*
962 	 * DC reset step 2 (optional): Load 8051 data memory with link
963 	 * configuration
964 	 */
965 
966 	/*
967 	 * DC reset step 3: Load DC8051 firmware
968 	 */
969 	/* release all but the core reset */
970 	reg = DC_DC8051_CFG_RST_M8051W_SMASK;
971 	write_csr(dd, DC_DC8051_CFG_RST, reg);
972 
973 	/* Firmware load step 1 */
974 	load_security_variables(dd, fdet);
975 
976 	/*
977 	 * Firmware load step 2.  Clear MISC_CFG_FW_CTRL.FW_8051_LOADED
978 	 */
979 	write_csr(dd, MISC_CFG_FW_CTRL, 0);
980 
981 	/* Firmware load steps 3-5 */
982 	ret = write_8051(dd, 1/*code*/, 0, fdet->firmware_ptr,
983 			 fdet->firmware_len);
984 	if (ret)
985 		return ret;
986 
987 	/*
988 	 * DC reset step 4. Host starts the DC8051 firmware
989 	 */
990 	/*
991 	 * Firmware load step 6.  Set MISC_CFG_FW_CTRL.FW_8051_LOADED
992 	 */
993 	write_csr(dd, MISC_CFG_FW_CTRL, MISC_CFG_FW_CTRL_FW_8051_LOADED_SMASK);
994 
995 	/* Firmware load steps 7-10 */
996 	ret = run_rsa(dd, "8051", fdet->signature);
997 	if (ret)
998 		return ret;
999 
1000 	/* clear all reset bits, releasing the 8051 */
1001 	write_csr(dd, DC_DC8051_CFG_RST, 0ull);
1002 
1003 	/*
1004 	 * DC reset step 5. Wait for firmware to be ready to accept host
1005 	 * requests.
1006 	 */
1007 	ret = wait_fm_ready(dd, TIMEOUT_8051_START);
1008 	if (ret) { /* timed out */
1009 		dd_dev_err(dd, "8051 start timeout, current state 0x%x\n",
1010 			   get_firmware_state(dd));
1011 		return -ETIMEDOUT;
1012 	}
1013 
1014 	read_misc_status(dd, &ver_major, &ver_minor, &ver_patch);
1015 	dd_dev_info(dd, "8051 firmware version %d.%d.%d\n",
1016 		    (int)ver_major, (int)ver_minor, (int)ver_patch);
1017 	dd->dc8051_ver = dc8051_ver(ver_major, ver_minor, ver_patch);
1018 	ret = write_host_interface_version(dd, HOST_INTERFACE_VERSION);
1019 	if (ret != HCMD_SUCCESS) {
1020 		dd_dev_err(dd,
1021 			   "Failed to set host interface version, return 0x%x\n",
1022 			   ret);
1023 		return -EIO;
1024 	}
1025 
1026 	return 0;
1027 }
1028 
1029 /*
1030  * Write the SBus request register
1031  *
1032  * No need for masking - the arguments are sized exactly.
1033  */
1034 void sbus_request(struct hfi1_devdata *dd,
1035 		  u8 receiver_addr, u8 data_addr, u8 command, u32 data_in)
1036 {
1037 	write_csr(dd, ASIC_CFG_SBUS_REQUEST,
1038 		  ((u64)data_in << ASIC_CFG_SBUS_REQUEST_DATA_IN_SHIFT) |
1039 		  ((u64)command << ASIC_CFG_SBUS_REQUEST_COMMAND_SHIFT) |
1040 		  ((u64)data_addr << ASIC_CFG_SBUS_REQUEST_DATA_ADDR_SHIFT) |
1041 		  ((u64)receiver_addr <<
1042 		   ASIC_CFG_SBUS_REQUEST_RECEIVER_ADDR_SHIFT));
1043 }
1044 
1045 /*
1046  * Read a value from the SBus.
1047  *
1048  * Requires the caller to be in fast mode
1049  */
1050 static u32 sbus_read(struct hfi1_devdata *dd, u8 receiver_addr, u8 data_addr,
1051 		     u32 data_in)
1052 {
1053 	u64 reg;
1054 	int retries;
1055 	int success = 0;
1056 	u32 result = 0;
1057 	u32 result_code = 0;
1058 
1059 	sbus_request(dd, receiver_addr, data_addr, READ_SBUS_RECEIVER, data_in);
1060 
1061 	for (retries = 0; retries < 100; retries++) {
1062 		usleep_range(1000, 1200); /* arbitrary */
1063 		reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1064 		result_code = (reg >> ASIC_STS_SBUS_RESULT_RESULT_CODE_SHIFT)
1065 				& ASIC_STS_SBUS_RESULT_RESULT_CODE_MASK;
1066 		if (result_code != SBUS_READ_COMPLETE)
1067 			continue;
1068 
1069 		success = 1;
1070 		result = (reg >> ASIC_STS_SBUS_RESULT_DATA_OUT_SHIFT)
1071 			   & ASIC_STS_SBUS_RESULT_DATA_OUT_MASK;
1072 		break;
1073 	}
1074 
1075 	if (!success) {
1076 		dd_dev_err(dd, "%s: read failed, result code 0x%x\n", __func__,
1077 			   result_code);
1078 	}
1079 
1080 	return result;
1081 }
1082 
1083 /*
1084  * Turn off the SBus and fabric serdes spicos.
1085  *
1086  * + Must be called with Sbus fast mode turned on.
1087  * + Must be called after fabric serdes broadcast is set up.
1088  * + Must be called before the 8051 is loaded - assumes 8051 is not loaded
1089  *   when using MISC_CFG_FW_CTRL.
1090  */
1091 static void turn_off_spicos(struct hfi1_devdata *dd, int flags)
1092 {
1093 	/* only needed on A0 */
1094 	if (!is_ax(dd))
1095 		return;
1096 
1097 	dd_dev_info(dd, "Turning off spicos:%s%s\n",
1098 		    flags & SPICO_SBUS ? " SBus" : "",
1099 		    flags & SPICO_FABRIC ? " fabric" : "");
1100 
1101 	write_csr(dd, MISC_CFG_FW_CTRL, ENABLE_SPICO_SMASK);
1102 	/* disable SBus spico */
1103 	if (flags & SPICO_SBUS)
1104 		sbus_request(dd, SBUS_MASTER_BROADCAST, 0x01,
1105 			     WRITE_SBUS_RECEIVER, 0x00000040);
1106 
1107 	/* disable the fabric serdes spicos */
1108 	if (flags & SPICO_FABRIC)
1109 		sbus_request(dd, fabric_serdes_broadcast[dd->hfi1_id],
1110 			     0x07, WRITE_SBUS_RECEIVER, 0x00000000);
1111 	write_csr(dd, MISC_CFG_FW_CTRL, 0);
1112 }
1113 
1114 /*
1115  * Reset all of the fabric serdes for this HFI in preparation to take the
1116  * link to Polling.
1117  *
1118  * To do a reset, we need to write to to the serdes registers.  Unfortunately,
1119  * the fabric serdes download to the other HFI on the ASIC will have turned
1120  * off the firmware validation on this HFI.  This means we can't write to the
1121  * registers to reset the serdes.  Work around this by performing a complete
1122  * re-download and validation of the fabric serdes firmware.  This, as a
1123  * by-product, will reset the serdes.  NOTE: the re-download requires that
1124  * the 8051 be in the Offline state.  I.e. not actively trying to use the
1125  * serdes.  This routine is called at the point where the link is Offline and
1126  * is getting ready to go to Polling.
1127  */
1128 void fabric_serdes_reset(struct hfi1_devdata *dd)
1129 {
1130 	int ret;
1131 
1132 	if (!fw_fabric_serdes_load)
1133 		return;
1134 
1135 	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
1136 	if (ret) {
1137 		dd_dev_err(dd,
1138 			   "Cannot acquire SBus resource to reset fabric SerDes - perhaps you should reboot\n");
1139 		return;
1140 	}
1141 	set_sbus_fast_mode(dd);
1142 
1143 	if (is_ax(dd)) {
1144 		/* A0 serdes do not work with a re-download */
1145 		u8 ra = fabric_serdes_broadcast[dd->hfi1_id];
1146 
1147 		/* place SerDes in reset and disable SPICO */
1148 		sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000011);
1149 		/* wait 100 refclk cycles @ 156.25MHz => 640ns */
1150 		udelay(1);
1151 		/* remove SerDes reset */
1152 		sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000010);
1153 		/* turn SPICO enable on */
1154 		sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000002);
1155 	} else {
1156 		turn_off_spicos(dd, SPICO_FABRIC);
1157 		/*
1158 		 * No need for firmware retry - what to download has already
1159 		 * been decided.
1160 		 * No need to pay attention to the load return - the only
1161 		 * failure is a validation failure, which has already been
1162 		 * checked by the initial download.
1163 		 */
1164 		(void)load_fabric_serdes_firmware(dd, &fw_fabric);
1165 	}
1166 
1167 	clear_sbus_fast_mode(dd);
1168 	release_chip_resource(dd, CR_SBUS);
1169 }
1170 
1171 /* Access to the SBus in this routine should probably be serialized */
1172 int sbus_request_slow(struct hfi1_devdata *dd,
1173 		      u8 receiver_addr, u8 data_addr, u8 command, u32 data_in)
1174 {
1175 	u64 reg, count = 0;
1176 
1177 	/* make sure fast mode is clear */
1178 	clear_sbus_fast_mode(dd);
1179 
1180 	sbus_request(dd, receiver_addr, data_addr, command, data_in);
1181 	write_csr(dd, ASIC_CFG_SBUS_EXECUTE,
1182 		  ASIC_CFG_SBUS_EXECUTE_EXECUTE_SMASK);
1183 	/* Wait for both DONE and RCV_DATA_VALID to go high */
1184 	reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1185 	while (!((reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) &&
1186 		 (reg & ASIC_STS_SBUS_RESULT_RCV_DATA_VALID_SMASK))) {
1187 		if (count++ >= SBUS_MAX_POLL_COUNT) {
1188 			u64 counts = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1189 			/*
1190 			 * If the loop has timed out, we are OK if DONE bit
1191 			 * is set and RCV_DATA_VALID and EXECUTE counters
1192 			 * are the same. If not, we cannot proceed.
1193 			 */
1194 			if ((reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) &&
1195 			    (SBUS_COUNTER(counts, RCV_DATA_VALID) ==
1196 			     SBUS_COUNTER(counts, EXECUTE)))
1197 				break;
1198 			return -ETIMEDOUT;
1199 		}
1200 		udelay(1);
1201 		reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1202 	}
1203 	count = 0;
1204 	write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0);
1205 	/* Wait for DONE to clear after EXECUTE is cleared */
1206 	reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1207 	while (reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) {
1208 		if (count++ >= SBUS_MAX_POLL_COUNT)
1209 			return -ETIME;
1210 		udelay(1);
1211 		reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1212 	}
1213 	return 0;
1214 }
1215 
1216 static int load_fabric_serdes_firmware(struct hfi1_devdata *dd,
1217 				       struct firmware_details *fdet)
1218 {
1219 	int i, err;
1220 	const u8 ra = fabric_serdes_broadcast[dd->hfi1_id]; /* receiver addr */
1221 
1222 	dd_dev_info(dd, "Downloading fabric firmware\n");
1223 
1224 	/* step 1: load security variables */
1225 	load_security_variables(dd, fdet);
1226 	/* step 2: place SerDes in reset and disable SPICO */
1227 	sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000011);
1228 	/* wait 100 refclk cycles @ 156.25MHz => 640ns */
1229 	udelay(1);
1230 	/* step 3:  remove SerDes reset */
1231 	sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000010);
1232 	/* step 4: assert IMEM override */
1233 	sbus_request(dd, ra, 0x00, WRITE_SBUS_RECEIVER, 0x40000000);
1234 	/* step 5: download SerDes machine code */
1235 	for (i = 0; i < fdet->firmware_len; i += 4) {
1236 		sbus_request(dd, ra, 0x0a, WRITE_SBUS_RECEIVER,
1237 			     *(u32 *)&fdet->firmware_ptr[i]);
1238 	}
1239 	/* step 6: IMEM override off */
1240 	sbus_request(dd, ra, 0x00, WRITE_SBUS_RECEIVER, 0x00000000);
1241 	/* step 7: turn ECC on */
1242 	sbus_request(dd, ra, 0x0b, WRITE_SBUS_RECEIVER, 0x000c0000);
1243 
1244 	/* steps 8-11: run the RSA engine */
1245 	err = run_rsa(dd, "fabric serdes", fdet->signature);
1246 	if (err)
1247 		return err;
1248 
1249 	/* step 12: turn SPICO enable on */
1250 	sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000002);
1251 	/* step 13: enable core hardware interrupts */
1252 	sbus_request(dd, ra, 0x08, WRITE_SBUS_RECEIVER, 0x00000000);
1253 
1254 	return 0;
1255 }
1256 
1257 static int load_sbus_firmware(struct hfi1_devdata *dd,
1258 			      struct firmware_details *fdet)
1259 {
1260 	int i, err;
1261 	const u8 ra = SBUS_MASTER_BROADCAST; /* receiver address */
1262 
1263 	dd_dev_info(dd, "Downloading SBus firmware\n");
1264 
1265 	/* step 1: load security variables */
1266 	load_security_variables(dd, fdet);
1267 	/* step 2: place SPICO into reset and enable off */
1268 	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x000000c0);
1269 	/* step 3: remove reset, enable off, IMEM_CNTRL_EN on */
1270 	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000240);
1271 	/* step 4: set starting IMEM address for burst download */
1272 	sbus_request(dd, ra, 0x03, WRITE_SBUS_RECEIVER, 0x80000000);
1273 	/* step 5: download the SBus Master machine code */
1274 	for (i = 0; i < fdet->firmware_len; i += 4) {
1275 		sbus_request(dd, ra, 0x14, WRITE_SBUS_RECEIVER,
1276 			     *(u32 *)&fdet->firmware_ptr[i]);
1277 	}
1278 	/* step 6: set IMEM_CNTL_EN off */
1279 	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000040);
1280 	/* step 7: turn ECC on */
1281 	sbus_request(dd, ra, 0x16, WRITE_SBUS_RECEIVER, 0x000c0000);
1282 
1283 	/* steps 8-11: run the RSA engine */
1284 	err = run_rsa(dd, "SBus", fdet->signature);
1285 	if (err)
1286 		return err;
1287 
1288 	/* step 12: set SPICO_ENABLE on */
1289 	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000140);
1290 
1291 	return 0;
1292 }
1293 
1294 static int load_pcie_serdes_firmware(struct hfi1_devdata *dd,
1295 				     struct firmware_details *fdet)
1296 {
1297 	int i;
1298 	const u8 ra = SBUS_MASTER_BROADCAST; /* receiver address */
1299 
1300 	dd_dev_info(dd, "Downloading PCIe firmware\n");
1301 
1302 	/* step 1: load security variables */
1303 	load_security_variables(dd, fdet);
1304 	/* step 2: assert single step (halts the SBus Master spico) */
1305 	sbus_request(dd, ra, 0x05, WRITE_SBUS_RECEIVER, 0x00000001);
1306 	/* step 3: enable XDMEM access */
1307 	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000d40);
1308 	/* step 4: load firmware into SBus Master XDMEM */
1309 	/*
1310 	 * NOTE: the dmem address, write_en, and wdata are all pre-packed,
1311 	 * we only need to pick up the bytes and write them
1312 	 */
1313 	for (i = 0; i < fdet->firmware_len; i += 4) {
1314 		sbus_request(dd, ra, 0x04, WRITE_SBUS_RECEIVER,
1315 			     *(u32 *)&fdet->firmware_ptr[i]);
1316 	}
1317 	/* step 5: disable XDMEM access */
1318 	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000140);
1319 	/* step 6: allow SBus Spico to run */
1320 	sbus_request(dd, ra, 0x05, WRITE_SBUS_RECEIVER, 0x00000000);
1321 
1322 	/*
1323 	 * steps 7-11: run RSA, if it succeeds, firmware is available to
1324 	 * be swapped
1325 	 */
1326 	return run_rsa(dd, "PCIe serdes", fdet->signature);
1327 }
1328 
1329 /*
1330  * Set the given broadcast values on the given list of devices.
1331  */
1332 static void set_serdes_broadcast(struct hfi1_devdata *dd, u8 bg1, u8 bg2,
1333 				 const u8 *addrs, int count)
1334 {
1335 	while (--count >= 0) {
1336 		/*
1337 		 * Set BROADCAST_GROUP_1 and BROADCAST_GROUP_2, leave
1338 		 * defaults for everything else.  Do not read-modify-write,
1339 		 * per instruction from the manufacturer.
1340 		 *
1341 		 * Register 0xfd:
1342 		 *	bits    what
1343 		 *	-----	---------------------------------
1344 		 *	  0	IGNORE_BROADCAST  (default 0)
1345 		 *	11:4	BROADCAST_GROUP_1 (default 0xff)
1346 		 *	23:16	BROADCAST_GROUP_2 (default 0xff)
1347 		 */
1348 		sbus_request(dd, addrs[count], 0xfd, WRITE_SBUS_RECEIVER,
1349 			     (u32)bg1 << 4 | (u32)bg2 << 16);
1350 	}
1351 }
1352 
1353 int acquire_hw_mutex(struct hfi1_devdata *dd)
1354 {
1355 	unsigned long timeout;
1356 	int try = 0;
1357 	u8 mask = 1 << dd->hfi1_id;
1358 	u8 user = (u8)read_csr(dd, ASIC_CFG_MUTEX);
1359 
1360 	if (user == mask) {
1361 		dd_dev_info(dd,
1362 			    "Hardware mutex already acquired, mutex mask %u\n",
1363 			    (u32)mask);
1364 		return 0;
1365 	}
1366 
1367 retry:
1368 	timeout = msecs_to_jiffies(HM_TIMEOUT) + jiffies;
1369 	while (1) {
1370 		write_csr(dd, ASIC_CFG_MUTEX, mask);
1371 		user = (u8)read_csr(dd, ASIC_CFG_MUTEX);
1372 		if (user == mask)
1373 			return 0; /* success */
1374 		if (time_after(jiffies, timeout))
1375 			break; /* timed out */
1376 		msleep(20);
1377 	}
1378 
1379 	/* timed out */
1380 	dd_dev_err(dd,
1381 		   "Unable to acquire hardware mutex, mutex mask %u, my mask %u (%s)\n",
1382 		   (u32)user, (u32)mask, (try == 0) ? "retrying" : "giving up");
1383 
1384 	if (try == 0) {
1385 		/* break mutex and retry */
1386 		write_csr(dd, ASIC_CFG_MUTEX, 0);
1387 		try++;
1388 		goto retry;
1389 	}
1390 
1391 	return -EBUSY;
1392 }
1393 
1394 void release_hw_mutex(struct hfi1_devdata *dd)
1395 {
1396 	u8 mask = 1 << dd->hfi1_id;
1397 	u8 user = (u8)read_csr(dd, ASIC_CFG_MUTEX);
1398 
1399 	if (user != mask)
1400 		dd_dev_warn(dd,
1401 			    "Unable to release hardware mutex, mutex mask %u, my mask %u\n",
1402 			    (u32)user, (u32)mask);
1403 	else
1404 		write_csr(dd, ASIC_CFG_MUTEX, 0);
1405 }
1406 
1407 /* return the given resource bit(s) as a mask for the given HFI */
1408 static inline u64 resource_mask(u32 hfi1_id, u32 resource)
1409 {
1410 	return ((u64)resource) << (hfi1_id ? CR_DYN_SHIFT : 0);
1411 }
1412 
1413 static void fail_mutex_acquire_message(struct hfi1_devdata *dd,
1414 				       const char *func)
1415 {
1416 	dd_dev_err(dd,
1417 		   "%s: hardware mutex stuck - suggest rebooting the machine\n",
1418 		   func);
1419 }
1420 
1421 /*
1422  * Acquire access to a chip resource.
1423  *
1424  * Return 0 on success, -EBUSY if resource busy, -EIO if mutex acquire failed.
1425  */
1426 static int __acquire_chip_resource(struct hfi1_devdata *dd, u32 resource)
1427 {
1428 	u64 scratch0, all_bits, my_bit;
1429 	int ret;
1430 
1431 	if (resource & CR_DYN_MASK) {
1432 		/* a dynamic resource is in use if either HFI has set the bit */
1433 		if (dd->pcidev->device == PCI_DEVICE_ID_INTEL0 &&
1434 		    (resource & (CR_I2C1 | CR_I2C2))) {
1435 			/* discrete devices must serialize across both chains */
1436 			all_bits = resource_mask(0, CR_I2C1 | CR_I2C2) |
1437 					resource_mask(1, CR_I2C1 | CR_I2C2);
1438 		} else {
1439 			all_bits = resource_mask(0, resource) |
1440 						resource_mask(1, resource);
1441 		}
1442 		my_bit = resource_mask(dd->hfi1_id, resource);
1443 	} else {
1444 		/* non-dynamic resources are not split between HFIs */
1445 		all_bits = resource;
1446 		my_bit = resource;
1447 	}
1448 
1449 	/* lock against other callers within the driver wanting a resource */
1450 	mutex_lock(&dd->asic_data->asic_resource_mutex);
1451 
1452 	ret = acquire_hw_mutex(dd);
1453 	if (ret) {
1454 		fail_mutex_acquire_message(dd, __func__);
1455 		ret = -EIO;
1456 		goto done;
1457 	}
1458 
1459 	scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1460 	if (scratch0 & all_bits) {
1461 		ret = -EBUSY;
1462 	} else {
1463 		write_csr(dd, ASIC_CFG_SCRATCH, scratch0 | my_bit);
1464 		/* force write to be visible to other HFI on another OS */
1465 		(void)read_csr(dd, ASIC_CFG_SCRATCH);
1466 	}
1467 
1468 	release_hw_mutex(dd);
1469 
1470 done:
1471 	mutex_unlock(&dd->asic_data->asic_resource_mutex);
1472 	return ret;
1473 }
1474 
1475 /*
1476  * Acquire access to a chip resource, wait up to mswait milliseconds for
1477  * the resource to become available.
1478  *
1479  * Return 0 on success, -EBUSY if busy (even after wait), -EIO if mutex
1480  * acquire failed.
1481  */
1482 int acquire_chip_resource(struct hfi1_devdata *dd, u32 resource, u32 mswait)
1483 {
1484 	unsigned long timeout;
1485 	int ret;
1486 
1487 	timeout = jiffies + msecs_to_jiffies(mswait);
1488 	while (1) {
1489 		ret = __acquire_chip_resource(dd, resource);
1490 		if (ret != -EBUSY)
1491 			return ret;
1492 		/* resource is busy, check our timeout */
1493 		if (time_after_eq(jiffies, timeout))
1494 			return -EBUSY;
1495 		usleep_range(80, 120);	/* arbitrary delay */
1496 	}
1497 }
1498 
1499 /*
1500  * Release access to a chip resource
1501  */
1502 void release_chip_resource(struct hfi1_devdata *dd, u32 resource)
1503 {
1504 	u64 scratch0, bit;
1505 
1506 	/* only dynamic resources should ever be cleared */
1507 	if (!(resource & CR_DYN_MASK)) {
1508 		dd_dev_err(dd, "%s: invalid resource 0x%x\n", __func__,
1509 			   resource);
1510 		return;
1511 	}
1512 	bit = resource_mask(dd->hfi1_id, resource);
1513 
1514 	/* lock against other callers within the driver wanting a resource */
1515 	mutex_lock(&dd->asic_data->asic_resource_mutex);
1516 
1517 	if (acquire_hw_mutex(dd)) {
1518 		fail_mutex_acquire_message(dd, __func__);
1519 		goto done;
1520 	}
1521 
1522 	scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1523 	if ((scratch0 & bit) != 0) {
1524 		scratch0 &= ~bit;
1525 		write_csr(dd, ASIC_CFG_SCRATCH, scratch0);
1526 		/* force write to be visible to other HFI on another OS */
1527 		(void)read_csr(dd, ASIC_CFG_SCRATCH);
1528 	} else {
1529 		dd_dev_warn(dd, "%s: id %d, resource 0x%x: bit not set\n",
1530 			    __func__, dd->hfi1_id, resource);
1531 	}
1532 
1533 	release_hw_mutex(dd);
1534 
1535 done:
1536 	mutex_unlock(&dd->asic_data->asic_resource_mutex);
1537 }
1538 
1539 /*
1540  * Return true if resource is set, false otherwise.  Print a warning
1541  * if not set and a function is supplied.
1542  */
1543 bool check_chip_resource(struct hfi1_devdata *dd, u32 resource,
1544 			 const char *func)
1545 {
1546 	u64 scratch0, bit;
1547 
1548 	if (resource & CR_DYN_MASK)
1549 		bit = resource_mask(dd->hfi1_id, resource);
1550 	else
1551 		bit = resource;
1552 
1553 	scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1554 	if ((scratch0 & bit) == 0) {
1555 		if (func)
1556 			dd_dev_warn(dd,
1557 				    "%s: id %d, resource 0x%x, not acquired!\n",
1558 				    func, dd->hfi1_id, resource);
1559 		return false;
1560 	}
1561 	return true;
1562 }
1563 
1564 static void clear_chip_resources(struct hfi1_devdata *dd, const char *func)
1565 {
1566 	u64 scratch0;
1567 
1568 	/* lock against other callers within the driver wanting a resource */
1569 	mutex_lock(&dd->asic_data->asic_resource_mutex);
1570 
1571 	if (acquire_hw_mutex(dd)) {
1572 		fail_mutex_acquire_message(dd, func);
1573 		goto done;
1574 	}
1575 
1576 	/* clear all dynamic access bits for this HFI */
1577 	scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1578 	scratch0 &= ~resource_mask(dd->hfi1_id, CR_DYN_MASK);
1579 	write_csr(dd, ASIC_CFG_SCRATCH, scratch0);
1580 	/* force write to be visible to other HFI on another OS */
1581 	(void)read_csr(dd, ASIC_CFG_SCRATCH);
1582 
1583 	release_hw_mutex(dd);
1584 
1585 done:
1586 	mutex_unlock(&dd->asic_data->asic_resource_mutex);
1587 }
1588 
1589 void init_chip_resources(struct hfi1_devdata *dd)
1590 {
1591 	/* clear any holds left by us */
1592 	clear_chip_resources(dd, __func__);
1593 }
1594 
1595 void finish_chip_resources(struct hfi1_devdata *dd)
1596 {
1597 	/* clear any holds left by us */
1598 	clear_chip_resources(dd, __func__);
1599 }
1600 
1601 void set_sbus_fast_mode(struct hfi1_devdata *dd)
1602 {
1603 	write_csr(dd, ASIC_CFG_SBUS_EXECUTE,
1604 		  ASIC_CFG_SBUS_EXECUTE_FAST_MODE_SMASK);
1605 }
1606 
1607 void clear_sbus_fast_mode(struct hfi1_devdata *dd)
1608 {
1609 	u64 reg, count = 0;
1610 
1611 	reg = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1612 	while (SBUS_COUNTER(reg, EXECUTE) !=
1613 	       SBUS_COUNTER(reg, RCV_DATA_VALID)) {
1614 		if (count++ >= SBUS_MAX_POLL_COUNT)
1615 			break;
1616 		udelay(1);
1617 		reg = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1618 	}
1619 	write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0);
1620 }
1621 
1622 int load_firmware(struct hfi1_devdata *dd)
1623 {
1624 	int ret;
1625 
1626 	if (fw_fabric_serdes_load) {
1627 		ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
1628 		if (ret)
1629 			return ret;
1630 
1631 		set_sbus_fast_mode(dd);
1632 
1633 		set_serdes_broadcast(dd, all_fabric_serdes_broadcast,
1634 				     fabric_serdes_broadcast[dd->hfi1_id],
1635 				     fabric_serdes_addrs[dd->hfi1_id],
1636 				     NUM_FABRIC_SERDES);
1637 		turn_off_spicos(dd, SPICO_FABRIC);
1638 		do {
1639 			ret = load_fabric_serdes_firmware(dd, &fw_fabric);
1640 		} while (retry_firmware(dd, ret));
1641 
1642 		clear_sbus_fast_mode(dd);
1643 		release_chip_resource(dd, CR_SBUS);
1644 		if (ret)
1645 			return ret;
1646 	}
1647 
1648 	if (fw_8051_load) {
1649 		do {
1650 			ret = load_8051_firmware(dd, &fw_8051);
1651 		} while (retry_firmware(dd, ret));
1652 		if (ret)
1653 			return ret;
1654 	}
1655 
1656 	dump_fw_version(dd);
1657 	return 0;
1658 }
1659 
1660 int hfi1_firmware_init(struct hfi1_devdata *dd)
1661 {
1662 	/* only RTL can use these */
1663 	if (dd->icode != ICODE_RTL_SILICON) {
1664 		fw_fabric_serdes_load = 0;
1665 		fw_pcie_serdes_load = 0;
1666 		fw_sbus_load = 0;
1667 	}
1668 
1669 	/* no 8051 or QSFP on simulator */
1670 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
1671 		fw_8051_load = 0;
1672 
1673 	if (!fw_8051_name) {
1674 		if (dd->icode == ICODE_RTL_SILICON)
1675 			fw_8051_name = DEFAULT_FW_8051_NAME_ASIC;
1676 		else
1677 			fw_8051_name = DEFAULT_FW_8051_NAME_FPGA;
1678 	}
1679 	if (!fw_fabric_serdes_name)
1680 		fw_fabric_serdes_name = DEFAULT_FW_FABRIC_NAME;
1681 	if (!fw_sbus_name)
1682 		fw_sbus_name = DEFAULT_FW_SBUS_NAME;
1683 	if (!fw_pcie_serdes_name)
1684 		fw_pcie_serdes_name = DEFAULT_FW_PCIE_NAME;
1685 
1686 	return obtain_firmware(dd);
1687 }
1688 
1689 /*
1690  * This function is a helper function for parse_platform_config(...) and
1691  * does not check for validity of the platform configuration cache
1692  * (because we know it is invalid as we are building up the cache).
1693  * As such, this should not be called from anywhere other than
1694  * parse_platform_config
1695  */
1696 static int check_meta_version(struct hfi1_devdata *dd, u32 *system_table)
1697 {
1698 	u32 meta_ver, meta_ver_meta, ver_start, ver_len, mask;
1699 	struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
1700 
1701 	if (!system_table)
1702 		return -EINVAL;
1703 
1704 	meta_ver_meta =
1705 	*(pcfgcache->config_tables[PLATFORM_CONFIG_SYSTEM_TABLE].table_metadata
1706 	+ SYSTEM_TABLE_META_VERSION);
1707 
1708 	mask = ((1 << METADATA_TABLE_FIELD_START_LEN_BITS) - 1);
1709 	ver_start = meta_ver_meta & mask;
1710 
1711 	meta_ver_meta >>= METADATA_TABLE_FIELD_LEN_SHIFT;
1712 
1713 	mask = ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS) - 1);
1714 	ver_len = meta_ver_meta & mask;
1715 
1716 	ver_start /= 8;
1717 	meta_ver = *((u8 *)system_table + ver_start) & ((1 << ver_len) - 1);
1718 
1719 	if (meta_ver < 4) {
1720 		dd_dev_info(
1721 			dd, "%s:Please update platform config\n", __func__);
1722 		return -EINVAL;
1723 	}
1724 	return 0;
1725 }
1726 
1727 int parse_platform_config(struct hfi1_devdata *dd)
1728 {
1729 	struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
1730 	struct hfi1_pportdata *ppd = dd->pport;
1731 	u32 *ptr = NULL;
1732 	u32 header1 = 0, header2 = 0, magic_num = 0, crc = 0, file_length = 0;
1733 	u32 record_idx = 0, table_type = 0, table_length_dwords = 0;
1734 	int ret = -EINVAL; /* assume failure */
1735 
1736 	/*
1737 	 * For integrated devices that did not fall back to the default file,
1738 	 * the SI tuning information for active channels is acquired from the
1739 	 * scratch register bitmap, thus there is no platform config to parse.
1740 	 * Skip parsing in these situations.
1741 	 */
1742 	if (ppd->config_from_scratch)
1743 		return 0;
1744 
1745 	if (!dd->platform_config.data) {
1746 		dd_dev_err(dd, "%s: Missing config file\n", __func__);
1747 		goto bail;
1748 	}
1749 	ptr = (u32 *)dd->platform_config.data;
1750 
1751 	magic_num = *ptr;
1752 	ptr++;
1753 	if (magic_num != PLATFORM_CONFIG_MAGIC_NUM) {
1754 		dd_dev_err(dd, "%s: Bad config file\n", __func__);
1755 		goto bail;
1756 	}
1757 
1758 	/* Field is file size in DWORDs */
1759 	file_length = (*ptr) * 4;
1760 
1761 	/*
1762 	 * Length can't be larger than partition size. Assume platform
1763 	 * config format version 4 is being used. Interpret the file size
1764 	 * field as header instead by not moving the pointer.
1765 	 */
1766 	if (file_length > MAX_PLATFORM_CONFIG_FILE_SIZE) {
1767 		dd_dev_info(dd,
1768 			    "%s:File length out of bounds, using alternative format\n",
1769 			    __func__);
1770 		file_length = PLATFORM_CONFIG_FORMAT_4_FILE_SIZE;
1771 	} else {
1772 		ptr++;
1773 	}
1774 
1775 	if (file_length > dd->platform_config.size) {
1776 		dd_dev_info(dd, "%s:File claims to be larger than read size\n",
1777 			    __func__);
1778 		goto bail;
1779 	} else if (file_length < dd->platform_config.size) {
1780 		dd_dev_info(dd,
1781 			    "%s:File claims to be smaller than read size, continuing\n",
1782 			    __func__);
1783 	}
1784 	/* exactly equal, perfection */
1785 
1786 	/*
1787 	 * In both cases where we proceed, using the self-reported file length
1788 	 * is the safer option. In case of old format a predefined value is
1789 	 * being used.
1790 	 */
1791 	while (ptr < (u32 *)(dd->platform_config.data + file_length)) {
1792 		header1 = *ptr;
1793 		header2 = *(ptr + 1);
1794 		if (header1 != ~header2) {
1795 			dd_dev_err(dd, "%s: Failed validation at offset %ld\n",
1796 				   __func__, (ptr - (u32 *)
1797 					      dd->platform_config.data));
1798 			goto bail;
1799 		}
1800 
1801 		record_idx = *ptr &
1802 			((1 << PLATFORM_CONFIG_HEADER_RECORD_IDX_LEN_BITS) - 1);
1803 
1804 		table_length_dwords = (*ptr >>
1805 				PLATFORM_CONFIG_HEADER_TABLE_LENGTH_SHIFT) &
1806 		      ((1 << PLATFORM_CONFIG_HEADER_TABLE_LENGTH_LEN_BITS) - 1);
1807 
1808 		table_type = (*ptr >> PLATFORM_CONFIG_HEADER_TABLE_TYPE_SHIFT) &
1809 			((1 << PLATFORM_CONFIG_HEADER_TABLE_TYPE_LEN_BITS) - 1);
1810 
1811 		/* Done with this set of headers */
1812 		ptr += 2;
1813 
1814 		if (record_idx) {
1815 			/* data table */
1816 			switch (table_type) {
1817 			case PLATFORM_CONFIG_SYSTEM_TABLE:
1818 				pcfgcache->config_tables[table_type].num_table =
1819 									1;
1820 				ret = check_meta_version(dd, ptr);
1821 				if (ret)
1822 					goto bail;
1823 				break;
1824 			case PLATFORM_CONFIG_PORT_TABLE:
1825 				pcfgcache->config_tables[table_type].num_table =
1826 									2;
1827 				break;
1828 			case PLATFORM_CONFIG_RX_PRESET_TABLE:
1829 			case PLATFORM_CONFIG_TX_PRESET_TABLE:
1830 			case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1831 			case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1832 				pcfgcache->config_tables[table_type].num_table =
1833 							table_length_dwords;
1834 				break;
1835 			default:
1836 				dd_dev_err(dd,
1837 					   "%s: Unknown data table %d, offset %ld\n",
1838 					   __func__, table_type,
1839 					   (ptr - (u32 *)
1840 					    dd->platform_config.data));
1841 				goto bail; /* We don't trust this file now */
1842 			}
1843 			pcfgcache->config_tables[table_type].table = ptr;
1844 		} else {
1845 			/* metadata table */
1846 			switch (table_type) {
1847 			case PLATFORM_CONFIG_SYSTEM_TABLE:
1848 			case PLATFORM_CONFIG_PORT_TABLE:
1849 			case PLATFORM_CONFIG_RX_PRESET_TABLE:
1850 			case PLATFORM_CONFIG_TX_PRESET_TABLE:
1851 			case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1852 			case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1853 				break;
1854 			default:
1855 				dd_dev_err(dd,
1856 					   "%s: Unknown meta table %d, offset %ld\n",
1857 					   __func__, table_type,
1858 					   (ptr -
1859 					    (u32 *)dd->platform_config.data));
1860 				goto bail; /* We don't trust this file now */
1861 			}
1862 			pcfgcache->config_tables[table_type].table_metadata =
1863 									ptr;
1864 		}
1865 
1866 		/* Calculate and check table crc */
1867 		crc = crc32_le(~(u32)0, (unsigned char const *)ptr,
1868 			       (table_length_dwords * 4));
1869 		crc ^= ~(u32)0;
1870 
1871 		/* Jump the table */
1872 		ptr += table_length_dwords;
1873 		if (crc != *ptr) {
1874 			dd_dev_err(dd, "%s: Failed CRC check at offset %ld\n",
1875 				   __func__, (ptr -
1876 				   (u32 *)dd->platform_config.data));
1877 			ret = -EINVAL;
1878 			goto bail;
1879 		}
1880 		/* Jump the CRC DWORD */
1881 		ptr++;
1882 	}
1883 
1884 	pcfgcache->cache_valid = 1;
1885 	return 0;
1886 bail:
1887 	memset(pcfgcache, 0, sizeof(struct platform_config_cache));
1888 	return ret;
1889 }
1890 
1891 static void get_integrated_platform_config_field(
1892 		struct hfi1_devdata *dd,
1893 		enum platform_config_table_type_encoding table_type,
1894 		int field_index, u32 *data)
1895 {
1896 	struct hfi1_pportdata *ppd = dd->pport;
1897 	u8 *cache = ppd->qsfp_info.cache;
1898 	u32 tx_preset = 0;
1899 
1900 	switch (table_type) {
1901 	case PLATFORM_CONFIG_SYSTEM_TABLE:
1902 		if (field_index == SYSTEM_TABLE_QSFP_POWER_CLASS_MAX)
1903 			*data = ppd->max_power_class;
1904 		else if (field_index == SYSTEM_TABLE_QSFP_ATTENUATION_DEFAULT_25G)
1905 			*data = ppd->default_atten;
1906 		break;
1907 	case PLATFORM_CONFIG_PORT_TABLE:
1908 		if (field_index == PORT_TABLE_PORT_TYPE)
1909 			*data = ppd->port_type;
1910 		else if (field_index == PORT_TABLE_LOCAL_ATTEN_25G)
1911 			*data = ppd->local_atten;
1912 		else if (field_index == PORT_TABLE_REMOTE_ATTEN_25G)
1913 			*data = ppd->remote_atten;
1914 		break;
1915 	case PLATFORM_CONFIG_RX_PRESET_TABLE:
1916 		if (field_index == RX_PRESET_TABLE_QSFP_RX_CDR_APPLY)
1917 			*data = (ppd->rx_preset & QSFP_RX_CDR_APPLY_SMASK) >>
1918 				QSFP_RX_CDR_APPLY_SHIFT;
1919 		else if (field_index == RX_PRESET_TABLE_QSFP_RX_EMP_APPLY)
1920 			*data = (ppd->rx_preset & QSFP_RX_EMP_APPLY_SMASK) >>
1921 				QSFP_RX_EMP_APPLY_SHIFT;
1922 		else if (field_index == RX_PRESET_TABLE_QSFP_RX_AMP_APPLY)
1923 			*data = (ppd->rx_preset & QSFP_RX_AMP_APPLY_SMASK) >>
1924 				QSFP_RX_AMP_APPLY_SHIFT;
1925 		else if (field_index == RX_PRESET_TABLE_QSFP_RX_CDR)
1926 			*data = (ppd->rx_preset & QSFP_RX_CDR_SMASK) >>
1927 				QSFP_RX_CDR_SHIFT;
1928 		else if (field_index == RX_PRESET_TABLE_QSFP_RX_EMP)
1929 			*data = (ppd->rx_preset & QSFP_RX_EMP_SMASK) >>
1930 				QSFP_RX_EMP_SHIFT;
1931 		else if (field_index == RX_PRESET_TABLE_QSFP_RX_AMP)
1932 			*data = (ppd->rx_preset & QSFP_RX_AMP_SMASK) >>
1933 				QSFP_RX_AMP_SHIFT;
1934 		break;
1935 	case PLATFORM_CONFIG_TX_PRESET_TABLE:
1936 		if (cache[QSFP_EQ_INFO_OFFS] & 0x4)
1937 			tx_preset = ppd->tx_preset_eq;
1938 		else
1939 			tx_preset = ppd->tx_preset_noeq;
1940 		if (field_index == TX_PRESET_TABLE_PRECUR)
1941 			*data = (tx_preset & TX_PRECUR_SMASK) >>
1942 				TX_PRECUR_SHIFT;
1943 		else if (field_index == TX_PRESET_TABLE_ATTN)
1944 			*data = (tx_preset & TX_ATTN_SMASK) >>
1945 				TX_ATTN_SHIFT;
1946 		else if (field_index == TX_PRESET_TABLE_POSTCUR)
1947 			*data = (tx_preset & TX_POSTCUR_SMASK) >>
1948 				TX_POSTCUR_SHIFT;
1949 		else if (field_index == TX_PRESET_TABLE_QSFP_TX_CDR_APPLY)
1950 			*data = (tx_preset & QSFP_TX_CDR_APPLY_SMASK) >>
1951 				QSFP_TX_CDR_APPLY_SHIFT;
1952 		else if (field_index == TX_PRESET_TABLE_QSFP_TX_EQ_APPLY)
1953 			*data = (tx_preset & QSFP_TX_EQ_APPLY_SMASK) >>
1954 				QSFP_TX_EQ_APPLY_SHIFT;
1955 		else if (field_index == TX_PRESET_TABLE_QSFP_TX_CDR)
1956 			*data = (tx_preset & QSFP_TX_CDR_SMASK) >>
1957 				QSFP_TX_CDR_SHIFT;
1958 		else if (field_index == TX_PRESET_TABLE_QSFP_TX_EQ)
1959 			*data = (tx_preset & QSFP_TX_EQ_SMASK) >>
1960 				QSFP_TX_EQ_SHIFT;
1961 		break;
1962 	case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1963 	case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1964 	default:
1965 		break;
1966 	}
1967 }
1968 
1969 static int get_platform_fw_field_metadata(struct hfi1_devdata *dd, int table,
1970 					  int field, u32 *field_len_bits,
1971 					  u32 *field_start_bits)
1972 {
1973 	struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
1974 	u32 *src_ptr = NULL;
1975 
1976 	if (!pcfgcache->cache_valid)
1977 		return -EINVAL;
1978 
1979 	switch (table) {
1980 	case PLATFORM_CONFIG_SYSTEM_TABLE:
1981 	case PLATFORM_CONFIG_PORT_TABLE:
1982 	case PLATFORM_CONFIG_RX_PRESET_TABLE:
1983 	case PLATFORM_CONFIG_TX_PRESET_TABLE:
1984 	case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1985 	case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1986 		if (field && field < platform_config_table_limits[table])
1987 			src_ptr =
1988 			pcfgcache->config_tables[table].table_metadata + field;
1989 		break;
1990 	default:
1991 		dd_dev_info(dd, "%s: Unknown table\n", __func__);
1992 		break;
1993 	}
1994 
1995 	if (!src_ptr)
1996 		return -EINVAL;
1997 
1998 	if (field_start_bits)
1999 		*field_start_bits = *src_ptr &
2000 		      ((1 << METADATA_TABLE_FIELD_START_LEN_BITS) - 1);
2001 
2002 	if (field_len_bits)
2003 		*field_len_bits = (*src_ptr >> METADATA_TABLE_FIELD_LEN_SHIFT)
2004 		       & ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS) - 1);
2005 
2006 	return 0;
2007 }
2008 
2009 /* This is the central interface to getting data out of the platform config
2010  * file. It depends on parse_platform_config() having populated the
2011  * platform_config_cache in hfi1_devdata, and checks the cache_valid member to
2012  * validate the sanity of the cache.
2013  *
2014  * The non-obvious parameters:
2015  * @table_index: Acts as a look up key into which instance of the tables the
2016  * relevant field is fetched from.
2017  *
2018  * This applies to the data tables that have multiple instances. The port table
2019  * is an exception to this rule as each HFI only has one port and thus the
2020  * relevant table can be distinguished by hfi_id.
2021  *
2022  * @data: pointer to memory that will be populated with the field requested.
2023  * @len: length of memory pointed by @data in bytes.
2024  */
2025 int get_platform_config_field(struct hfi1_devdata *dd,
2026 			      enum platform_config_table_type_encoding
2027 			      table_type, int table_index, int field_index,
2028 			      u32 *data, u32 len)
2029 {
2030 	int ret = 0, wlen = 0, seek = 0;
2031 	u32 field_len_bits = 0, field_start_bits = 0, *src_ptr = NULL;
2032 	struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
2033 	struct hfi1_pportdata *ppd = dd->pport;
2034 
2035 	if (data)
2036 		memset(data, 0, len);
2037 	else
2038 		return -EINVAL;
2039 
2040 	if (ppd->config_from_scratch) {
2041 		/*
2042 		 * Use saved configuration from ppd for integrated platforms
2043 		 */
2044 		get_integrated_platform_config_field(dd, table_type,
2045 						     field_index, data);
2046 		return 0;
2047 	}
2048 
2049 	ret = get_platform_fw_field_metadata(dd, table_type, field_index,
2050 					     &field_len_bits,
2051 					     &field_start_bits);
2052 	if (ret)
2053 		return -EINVAL;
2054 
2055 	/* Convert length to bits */
2056 	len *= 8;
2057 
2058 	/* Our metadata function checked cache_valid and field_index for us */
2059 	switch (table_type) {
2060 	case PLATFORM_CONFIG_SYSTEM_TABLE:
2061 		src_ptr = pcfgcache->config_tables[table_type].table;
2062 
2063 		if (field_index != SYSTEM_TABLE_QSFP_POWER_CLASS_MAX) {
2064 			if (len < field_len_bits)
2065 				return -EINVAL;
2066 
2067 			seek = field_start_bits / 8;
2068 			wlen = field_len_bits / 8;
2069 
2070 			src_ptr = (u32 *)((u8 *)src_ptr + seek);
2071 
2072 			/*
2073 			 * We expect the field to be byte aligned and whole byte
2074 			 * lengths if we are here
2075 			 */
2076 			memcpy(data, src_ptr, wlen);
2077 			return 0;
2078 		}
2079 		break;
2080 	case PLATFORM_CONFIG_PORT_TABLE:
2081 		/* Port table is 4 DWORDS */
2082 		src_ptr = dd->hfi1_id ?
2083 			pcfgcache->config_tables[table_type].table + 4 :
2084 			pcfgcache->config_tables[table_type].table;
2085 		break;
2086 	case PLATFORM_CONFIG_RX_PRESET_TABLE:
2087 	case PLATFORM_CONFIG_TX_PRESET_TABLE:
2088 	case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
2089 	case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
2090 		src_ptr = pcfgcache->config_tables[table_type].table;
2091 
2092 		if (table_index <
2093 			pcfgcache->config_tables[table_type].num_table)
2094 			src_ptr += table_index;
2095 		else
2096 			src_ptr = NULL;
2097 		break;
2098 	default:
2099 		dd_dev_info(dd, "%s: Unknown table\n", __func__);
2100 		break;
2101 	}
2102 
2103 	if (!src_ptr || len < field_len_bits)
2104 		return -EINVAL;
2105 
2106 	src_ptr += (field_start_bits / 32);
2107 	*data = (*src_ptr >> (field_start_bits % 32)) &
2108 			((1 << field_len_bits) - 1);
2109 
2110 	return 0;
2111 }
2112 
2113 /*
2114  * Download the firmware needed for the Gen3 PCIe SerDes.  An update
2115  * to the SBus firmware is needed before updating the PCIe firmware.
2116  *
2117  * Note: caller must be holding the SBus resource.
2118  */
2119 int load_pcie_firmware(struct hfi1_devdata *dd)
2120 {
2121 	int ret = 0;
2122 
2123 	/* both firmware loads below use the SBus */
2124 	set_sbus_fast_mode(dd);
2125 
2126 	if (fw_sbus_load) {
2127 		turn_off_spicos(dd, SPICO_SBUS);
2128 		do {
2129 			ret = load_sbus_firmware(dd, &fw_sbus);
2130 		} while (retry_firmware(dd, ret));
2131 		if (ret)
2132 			goto done;
2133 	}
2134 
2135 	if (fw_pcie_serdes_load) {
2136 		dd_dev_info(dd, "Setting PCIe SerDes broadcast\n");
2137 		set_serdes_broadcast(dd, all_pcie_serdes_broadcast,
2138 				     pcie_serdes_broadcast[dd->hfi1_id],
2139 				     pcie_serdes_addrs[dd->hfi1_id],
2140 				     NUM_PCIE_SERDES);
2141 		do {
2142 			ret = load_pcie_serdes_firmware(dd, &fw_pcie);
2143 		} while (retry_firmware(dd, ret));
2144 		if (ret)
2145 			goto done;
2146 	}
2147 
2148 done:
2149 	clear_sbus_fast_mode(dd);
2150 
2151 	return ret;
2152 }
2153 
2154 /*
2155  * Read the GUID from the hardware, store it in dd.
2156  */
2157 void read_guid(struct hfi1_devdata *dd)
2158 {
2159 	/* Take the DC out of reset to get a valid GUID value */
2160 	write_csr(dd, CCE_DC_CTRL, 0);
2161 	(void)read_csr(dd, CCE_DC_CTRL);
2162 
2163 	dd->base_guid = read_csr(dd, DC_DC8051_CFG_LOCAL_GUID);
2164 	dd_dev_info(dd, "GUID %llx",
2165 		    (unsigned long long)dd->base_guid);
2166 }
2167 
2168 /* read and display firmware version info */
2169 static void dump_fw_version(struct hfi1_devdata *dd)
2170 {
2171 	u32 pcie_vers[NUM_PCIE_SERDES];
2172 	u32 fabric_vers[NUM_FABRIC_SERDES];
2173 	u32 sbus_vers;
2174 	int i;
2175 	int all_same;
2176 	int ret;
2177 	u8 rcv_addr;
2178 
2179 	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
2180 	if (ret) {
2181 		dd_dev_err(dd, "Unable to acquire SBus to read firmware versions\n");
2182 		return;
2183 	}
2184 
2185 	/* set fast mode */
2186 	set_sbus_fast_mode(dd);
2187 
2188 	/* read version for SBus Master */
2189 	sbus_request(dd, SBUS_MASTER_BROADCAST, 0x02, WRITE_SBUS_RECEIVER, 0);
2190 	sbus_request(dd, SBUS_MASTER_BROADCAST, 0x07, WRITE_SBUS_RECEIVER, 0x1);
2191 	/* wait for interrupt to be processed */
2192 	usleep_range(10000, 11000);
2193 	sbus_vers = sbus_read(dd, SBUS_MASTER_BROADCAST, 0x08, 0x1);
2194 	dd_dev_info(dd, "SBus Master firmware version 0x%08x\n", sbus_vers);
2195 
2196 	/* read version for PCIe SerDes */
2197 	all_same = 1;
2198 	pcie_vers[0] = 0;
2199 	for (i = 0; i < NUM_PCIE_SERDES; i++) {
2200 		rcv_addr = pcie_serdes_addrs[dd->hfi1_id][i];
2201 		sbus_request(dd, rcv_addr, 0x03, WRITE_SBUS_RECEIVER, 0);
2202 		/* wait for interrupt to be processed */
2203 		usleep_range(10000, 11000);
2204 		pcie_vers[i] = sbus_read(dd, rcv_addr, 0x04, 0x0);
2205 		if (i > 0 && pcie_vers[0] != pcie_vers[i])
2206 			all_same = 0;
2207 	}
2208 
2209 	if (all_same) {
2210 		dd_dev_info(dd, "PCIe SerDes firmware version 0x%x\n",
2211 			    pcie_vers[0]);
2212 	} else {
2213 		dd_dev_warn(dd, "PCIe SerDes do not have the same firmware version\n");
2214 		for (i = 0; i < NUM_PCIE_SERDES; i++) {
2215 			dd_dev_info(dd,
2216 				    "PCIe SerDes lane %d firmware version 0x%x\n",
2217 				    i, pcie_vers[i]);
2218 		}
2219 	}
2220 
2221 	/* read version for fabric SerDes */
2222 	all_same = 1;
2223 	fabric_vers[0] = 0;
2224 	for (i = 0; i < NUM_FABRIC_SERDES; i++) {
2225 		rcv_addr = fabric_serdes_addrs[dd->hfi1_id][i];
2226 		sbus_request(dd, rcv_addr, 0x03, WRITE_SBUS_RECEIVER, 0);
2227 		/* wait for interrupt to be processed */
2228 		usleep_range(10000, 11000);
2229 		fabric_vers[i] = sbus_read(dd, rcv_addr, 0x04, 0x0);
2230 		if (i > 0 && fabric_vers[0] != fabric_vers[i])
2231 			all_same = 0;
2232 	}
2233 
2234 	if (all_same) {
2235 		dd_dev_info(dd, "Fabric SerDes firmware version 0x%x\n",
2236 			    fabric_vers[0]);
2237 	} else {
2238 		dd_dev_warn(dd, "Fabric SerDes do not have the same firmware version\n");
2239 		for (i = 0; i < NUM_FABRIC_SERDES; i++) {
2240 			dd_dev_info(dd,
2241 				    "Fabric SerDes lane %d firmware version 0x%x\n",
2242 				    i, fabric_vers[i]);
2243 		}
2244 	}
2245 
2246 	clear_sbus_fast_mode(dd);
2247 	release_chip_resource(dd, CR_SBUS);
2248 }
2249