1 /* 2 * Copyright(c) 2015-2017 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 #include <linux/poll.h> 48 #include <linux/cdev.h> 49 #include <linux/vmalloc.h> 50 #include <linux/io.h> 51 #include <linux/sched/mm.h> 52 #include <linux/bitmap.h> 53 54 #include <rdma/ib.h> 55 56 #include "hfi.h" 57 #include "pio.h" 58 #include "device.h" 59 #include "common.h" 60 #include "trace.h" 61 #include "mmu_rb.h" 62 #include "user_sdma.h" 63 #include "user_exp_rcv.h" 64 #include "aspm.h" 65 66 #undef pr_fmt 67 #define pr_fmt(fmt) DRIVER_NAME ": " fmt 68 69 #define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */ 70 71 /* 72 * File operation functions 73 */ 74 static int hfi1_file_open(struct inode *inode, struct file *fp); 75 static int hfi1_file_close(struct inode *inode, struct file *fp); 76 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from); 77 static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt); 78 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma); 79 80 static u64 kvirt_to_phys(void *addr); 81 static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len); 82 static void init_subctxts(struct hfi1_ctxtdata *uctxt, 83 const struct hfi1_user_info *uinfo); 84 static int init_user_ctxt(struct hfi1_filedata *fd, 85 struct hfi1_ctxtdata *uctxt); 86 static void user_init(struct hfi1_ctxtdata *uctxt); 87 static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len); 88 static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len); 89 static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg, 90 u32 len); 91 static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg, 92 u32 len); 93 static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg, 94 u32 len); 95 static int setup_base_ctxt(struct hfi1_filedata *fd, 96 struct hfi1_ctxtdata *uctxt); 97 static int setup_subctxt(struct hfi1_ctxtdata *uctxt); 98 99 static int find_sub_ctxt(struct hfi1_filedata *fd, 100 const struct hfi1_user_info *uinfo); 101 static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd, 102 struct hfi1_user_info *uinfo, 103 struct hfi1_ctxtdata **cd); 104 static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt); 105 static __poll_t poll_urgent(struct file *fp, struct poll_table_struct *pt); 106 static __poll_t poll_next(struct file *fp, struct poll_table_struct *pt); 107 static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt, 108 unsigned long arg); 109 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg); 110 static int ctxt_reset(struct hfi1_ctxtdata *uctxt); 111 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt, 112 unsigned long arg); 113 static vm_fault_t vma_fault(struct vm_fault *vmf); 114 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd, 115 unsigned long arg); 116 117 static const struct file_operations hfi1_file_ops = { 118 .owner = THIS_MODULE, 119 .write_iter = hfi1_write_iter, 120 .open = hfi1_file_open, 121 .release = hfi1_file_close, 122 .unlocked_ioctl = hfi1_file_ioctl, 123 .poll = hfi1_poll, 124 .mmap = hfi1_file_mmap, 125 .llseek = noop_llseek, 126 }; 127 128 static const struct vm_operations_struct vm_ops = { 129 .fault = vma_fault, 130 }; 131 132 /* 133 * Types of memories mapped into user processes' space 134 */ 135 enum mmap_types { 136 PIO_BUFS = 1, 137 PIO_BUFS_SOP, 138 PIO_CRED, 139 RCV_HDRQ, 140 RCV_EGRBUF, 141 UREGS, 142 EVENTS, 143 STATUS, 144 RTAIL, 145 SUBCTXT_UREGS, 146 SUBCTXT_RCV_HDRQ, 147 SUBCTXT_EGRBUF, 148 SDMA_COMP 149 }; 150 151 /* 152 * Masks and offsets defining the mmap tokens 153 */ 154 #define HFI1_MMAP_OFFSET_MASK 0xfffULL 155 #define HFI1_MMAP_OFFSET_SHIFT 0 156 #define HFI1_MMAP_SUBCTXT_MASK 0xfULL 157 #define HFI1_MMAP_SUBCTXT_SHIFT 12 158 #define HFI1_MMAP_CTXT_MASK 0xffULL 159 #define HFI1_MMAP_CTXT_SHIFT 16 160 #define HFI1_MMAP_TYPE_MASK 0xfULL 161 #define HFI1_MMAP_TYPE_SHIFT 24 162 #define HFI1_MMAP_MAGIC_MASK 0xffffffffULL 163 #define HFI1_MMAP_MAGIC_SHIFT 32 164 165 #define HFI1_MMAP_MAGIC 0xdabbad00 166 167 #define HFI1_MMAP_TOKEN_SET(field, val) \ 168 (((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT) 169 #define HFI1_MMAP_TOKEN_GET(field, token) \ 170 (((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK) 171 #define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr) \ 172 (HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \ 173 HFI1_MMAP_TOKEN_SET(TYPE, type) | \ 174 HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \ 175 HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \ 176 HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr)))) 177 178 #define dbg(fmt, ...) \ 179 pr_info(fmt, ##__VA_ARGS__) 180 181 static inline int is_valid_mmap(u64 token) 182 { 183 return (HFI1_MMAP_TOKEN_GET(MAGIC, token) == HFI1_MMAP_MAGIC); 184 } 185 186 static int hfi1_file_open(struct inode *inode, struct file *fp) 187 { 188 struct hfi1_filedata *fd; 189 struct hfi1_devdata *dd = container_of(inode->i_cdev, 190 struct hfi1_devdata, 191 user_cdev); 192 193 if (!((dd->flags & HFI1_PRESENT) && dd->kregbase1)) 194 return -EINVAL; 195 196 if (!atomic_inc_not_zero(&dd->user_refcount)) 197 return -ENXIO; 198 199 /* The real work is performed later in assign_ctxt() */ 200 201 fd = kzalloc(sizeof(*fd), GFP_KERNEL); 202 203 if (fd) { 204 fd->rec_cpu_num = -1; /* no cpu affinity by default */ 205 fd->mm = current->mm; 206 mmgrab(fd->mm); 207 fd->dd = dd; 208 kobject_get(&fd->dd->kobj); 209 fp->private_data = fd; 210 } else { 211 fp->private_data = NULL; 212 213 if (atomic_dec_and_test(&dd->user_refcount)) 214 complete(&dd->user_comp); 215 216 return -ENOMEM; 217 } 218 219 return 0; 220 } 221 222 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd, 223 unsigned long arg) 224 { 225 struct hfi1_filedata *fd = fp->private_data; 226 struct hfi1_ctxtdata *uctxt = fd->uctxt; 227 int ret = 0; 228 int uval = 0; 229 230 hfi1_cdbg(IOCTL, "IOCTL recv: 0x%x", cmd); 231 if (cmd != HFI1_IOCTL_ASSIGN_CTXT && 232 cmd != HFI1_IOCTL_GET_VERS && 233 !uctxt) 234 return -EINVAL; 235 236 switch (cmd) { 237 case HFI1_IOCTL_ASSIGN_CTXT: 238 ret = assign_ctxt(fd, arg, _IOC_SIZE(cmd)); 239 break; 240 241 case HFI1_IOCTL_CTXT_INFO: 242 ret = get_ctxt_info(fd, arg, _IOC_SIZE(cmd)); 243 break; 244 245 case HFI1_IOCTL_USER_INFO: 246 ret = get_base_info(fd, arg, _IOC_SIZE(cmd)); 247 break; 248 249 case HFI1_IOCTL_CREDIT_UPD: 250 if (uctxt) 251 sc_return_credits(uctxt->sc); 252 break; 253 254 case HFI1_IOCTL_TID_UPDATE: 255 ret = user_exp_rcv_setup(fd, arg, _IOC_SIZE(cmd)); 256 break; 257 258 case HFI1_IOCTL_TID_FREE: 259 ret = user_exp_rcv_clear(fd, arg, _IOC_SIZE(cmd)); 260 break; 261 262 case HFI1_IOCTL_TID_INVAL_READ: 263 ret = user_exp_rcv_invalid(fd, arg, _IOC_SIZE(cmd)); 264 break; 265 266 case HFI1_IOCTL_RECV_CTRL: 267 ret = manage_rcvq(uctxt, fd->subctxt, arg); 268 break; 269 270 case HFI1_IOCTL_POLL_TYPE: 271 if (get_user(uval, (int __user *)arg)) 272 return -EFAULT; 273 uctxt->poll_type = (typeof(uctxt->poll_type))uval; 274 break; 275 276 case HFI1_IOCTL_ACK_EVENT: 277 ret = user_event_ack(uctxt, fd->subctxt, arg); 278 break; 279 280 case HFI1_IOCTL_SET_PKEY: 281 ret = set_ctxt_pkey(uctxt, arg); 282 break; 283 284 case HFI1_IOCTL_CTXT_RESET: 285 ret = ctxt_reset(uctxt); 286 break; 287 288 case HFI1_IOCTL_GET_VERS: 289 uval = HFI1_USER_SWVERSION; 290 if (put_user(uval, (int __user *)arg)) 291 return -EFAULT; 292 break; 293 294 default: 295 return -EINVAL; 296 } 297 298 return ret; 299 } 300 301 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from) 302 { 303 struct hfi1_filedata *fd = kiocb->ki_filp->private_data; 304 struct hfi1_user_sdma_pkt_q *pq = fd->pq; 305 struct hfi1_user_sdma_comp_q *cq = fd->cq; 306 int done = 0, reqs = 0; 307 unsigned long dim = from->nr_segs; 308 309 if (!cq || !pq) 310 return -EIO; 311 312 if (!iter_is_iovec(from) || !dim) 313 return -EINVAL; 314 315 trace_hfi1_sdma_request(fd->dd, fd->uctxt->ctxt, fd->subctxt, dim); 316 317 if (atomic_read(&pq->n_reqs) == pq->n_max_reqs) 318 return -ENOSPC; 319 320 while (dim) { 321 int ret; 322 unsigned long count = 0; 323 324 ret = hfi1_user_sdma_process_request( 325 fd, (struct iovec *)(from->iov + done), 326 dim, &count); 327 if (ret) { 328 reqs = ret; 329 break; 330 } 331 dim -= count; 332 done += count; 333 reqs++; 334 } 335 336 return reqs; 337 } 338 339 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma) 340 { 341 struct hfi1_filedata *fd = fp->private_data; 342 struct hfi1_ctxtdata *uctxt = fd->uctxt; 343 struct hfi1_devdata *dd; 344 unsigned long flags; 345 u64 token = vma->vm_pgoff << PAGE_SHIFT, 346 memaddr = 0; 347 void *memvirt = NULL; 348 u8 subctxt, mapio = 0, vmf = 0, type; 349 ssize_t memlen = 0; 350 int ret = 0; 351 u16 ctxt; 352 353 if (!is_valid_mmap(token) || !uctxt || 354 !(vma->vm_flags & VM_SHARED)) { 355 ret = -EINVAL; 356 goto done; 357 } 358 dd = uctxt->dd; 359 ctxt = HFI1_MMAP_TOKEN_GET(CTXT, token); 360 subctxt = HFI1_MMAP_TOKEN_GET(SUBCTXT, token); 361 type = HFI1_MMAP_TOKEN_GET(TYPE, token); 362 if (ctxt != uctxt->ctxt || subctxt != fd->subctxt) { 363 ret = -EINVAL; 364 goto done; 365 } 366 367 flags = vma->vm_flags; 368 369 switch (type) { 370 case PIO_BUFS: 371 case PIO_BUFS_SOP: 372 memaddr = ((dd->physaddr + TXE_PIO_SEND) + 373 /* chip pio base */ 374 (uctxt->sc->hw_context * BIT(16))) + 375 /* 64K PIO space / ctxt */ 376 (type == PIO_BUFS_SOP ? 377 (TXE_PIO_SIZE / 2) : 0); /* sop? */ 378 /* 379 * Map only the amount allocated to the context, not the 380 * entire available context's PIO space. 381 */ 382 memlen = PAGE_ALIGN(uctxt->sc->credits * PIO_BLOCK_SIZE); 383 flags &= ~VM_MAYREAD; 384 flags |= VM_DONTCOPY | VM_DONTEXPAND; 385 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); 386 mapio = 1; 387 break; 388 case PIO_CRED: 389 if (flags & VM_WRITE) { 390 ret = -EPERM; 391 goto done; 392 } 393 /* 394 * The credit return location for this context could be on the 395 * second or third page allocated for credit returns (if number 396 * of enabled contexts > 64 and 128 respectively). 397 */ 398 memvirt = dd->cr_base[uctxt->numa_id].va; 399 memaddr = virt_to_phys(memvirt) + 400 (((u64)uctxt->sc->hw_free - 401 (u64)dd->cr_base[uctxt->numa_id].va) & PAGE_MASK); 402 memlen = PAGE_SIZE; 403 flags &= ~VM_MAYWRITE; 404 flags |= VM_DONTCOPY | VM_DONTEXPAND; 405 /* 406 * The driver has already allocated memory for credit 407 * returns and programmed it into the chip. Has that 408 * memory been flagged as non-cached? 409 */ 410 /* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */ 411 mapio = 1; 412 break; 413 case RCV_HDRQ: 414 memlen = rcvhdrq_size(uctxt); 415 memvirt = uctxt->rcvhdrq; 416 break; 417 case RCV_EGRBUF: { 418 unsigned long addr; 419 int i; 420 /* 421 * The RcvEgr buffer need to be handled differently 422 * as multiple non-contiguous pages need to be mapped 423 * into the user process. 424 */ 425 memlen = uctxt->egrbufs.size; 426 if ((vma->vm_end - vma->vm_start) != memlen) { 427 dd_dev_err(dd, "Eager buffer map size invalid (%lu != %lu)\n", 428 (vma->vm_end - vma->vm_start), memlen); 429 ret = -EINVAL; 430 goto done; 431 } 432 if (vma->vm_flags & VM_WRITE) { 433 ret = -EPERM; 434 goto done; 435 } 436 vma->vm_flags &= ~VM_MAYWRITE; 437 addr = vma->vm_start; 438 for (i = 0 ; i < uctxt->egrbufs.numbufs; i++) { 439 memlen = uctxt->egrbufs.buffers[i].len; 440 memvirt = uctxt->egrbufs.buffers[i].addr; 441 ret = remap_pfn_range( 442 vma, addr, 443 /* 444 * virt_to_pfn() does the same, but 445 * it's not available on x86_64 446 * when CONFIG_MMU is enabled. 447 */ 448 PFN_DOWN(__pa(memvirt)), 449 memlen, 450 vma->vm_page_prot); 451 if (ret < 0) 452 goto done; 453 addr += memlen; 454 } 455 ret = 0; 456 goto done; 457 } 458 case UREGS: 459 /* 460 * Map only the page that contains this context's user 461 * registers. 462 */ 463 memaddr = (unsigned long) 464 (dd->physaddr + RXE_PER_CONTEXT_USER) 465 + (uctxt->ctxt * RXE_PER_CONTEXT_SIZE); 466 /* 467 * TidFlow table is on the same page as the rest of the 468 * user registers. 469 */ 470 memlen = PAGE_SIZE; 471 flags |= VM_DONTCOPY | VM_DONTEXPAND; 472 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 473 mapio = 1; 474 break; 475 case EVENTS: 476 /* 477 * Use the page where this context's flags are. User level 478 * knows where it's own bitmap is within the page. 479 */ 480 memaddr = (unsigned long) 481 (dd->events + uctxt_offset(uctxt)) & PAGE_MASK; 482 memlen = PAGE_SIZE; 483 /* 484 * v3.7 removes VM_RESERVED but the effect is kept by 485 * using VM_IO. 486 */ 487 flags |= VM_IO | VM_DONTEXPAND; 488 vmf = 1; 489 break; 490 case STATUS: 491 if (flags & VM_WRITE) { 492 ret = -EPERM; 493 goto done; 494 } 495 memaddr = kvirt_to_phys((void *)dd->status); 496 memlen = PAGE_SIZE; 497 flags |= VM_IO | VM_DONTEXPAND; 498 break; 499 case RTAIL: 500 if (!HFI1_CAP_IS_USET(DMA_RTAIL)) { 501 /* 502 * If the memory allocation failed, the context alloc 503 * also would have failed, so we would never get here 504 */ 505 ret = -EINVAL; 506 goto done; 507 } 508 if ((flags & VM_WRITE) || !hfi1_rcvhdrtail_kvaddr(uctxt)) { 509 ret = -EPERM; 510 goto done; 511 } 512 memlen = PAGE_SIZE; 513 memvirt = (void *)hfi1_rcvhdrtail_kvaddr(uctxt); 514 flags &= ~VM_MAYWRITE; 515 break; 516 case SUBCTXT_UREGS: 517 memaddr = (u64)uctxt->subctxt_uregbase; 518 memlen = PAGE_SIZE; 519 flags |= VM_IO | VM_DONTEXPAND; 520 vmf = 1; 521 break; 522 case SUBCTXT_RCV_HDRQ: 523 memaddr = (u64)uctxt->subctxt_rcvhdr_base; 524 memlen = rcvhdrq_size(uctxt) * uctxt->subctxt_cnt; 525 flags |= VM_IO | VM_DONTEXPAND; 526 vmf = 1; 527 break; 528 case SUBCTXT_EGRBUF: 529 memaddr = (u64)uctxt->subctxt_rcvegrbuf; 530 memlen = uctxt->egrbufs.size * uctxt->subctxt_cnt; 531 flags |= VM_IO | VM_DONTEXPAND; 532 flags &= ~VM_MAYWRITE; 533 vmf = 1; 534 break; 535 case SDMA_COMP: { 536 struct hfi1_user_sdma_comp_q *cq = fd->cq; 537 538 if (!cq) { 539 ret = -EFAULT; 540 goto done; 541 } 542 memaddr = (u64)cq->comps; 543 memlen = PAGE_ALIGN(sizeof(*cq->comps) * cq->nentries); 544 flags |= VM_IO | VM_DONTEXPAND; 545 vmf = 1; 546 break; 547 } 548 default: 549 ret = -EINVAL; 550 break; 551 } 552 553 if ((vma->vm_end - vma->vm_start) != memlen) { 554 hfi1_cdbg(PROC, "%u:%u Memory size mismatch %lu:%lu", 555 uctxt->ctxt, fd->subctxt, 556 (vma->vm_end - vma->vm_start), memlen); 557 ret = -EINVAL; 558 goto done; 559 } 560 561 vma->vm_flags = flags; 562 hfi1_cdbg(PROC, 563 "%u:%u type:%u io/vf:%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx\n", 564 ctxt, subctxt, type, mapio, vmf, memaddr, memlen, 565 vma->vm_end - vma->vm_start, vma->vm_flags); 566 if (vmf) { 567 vma->vm_pgoff = PFN_DOWN(memaddr); 568 vma->vm_ops = &vm_ops; 569 ret = 0; 570 } else if (mapio) { 571 ret = io_remap_pfn_range(vma, vma->vm_start, 572 PFN_DOWN(memaddr), 573 memlen, 574 vma->vm_page_prot); 575 } else if (memvirt) { 576 ret = remap_pfn_range(vma, vma->vm_start, 577 PFN_DOWN(__pa(memvirt)), 578 memlen, 579 vma->vm_page_prot); 580 } else { 581 ret = remap_pfn_range(vma, vma->vm_start, 582 PFN_DOWN(memaddr), 583 memlen, 584 vma->vm_page_prot); 585 } 586 done: 587 return ret; 588 } 589 590 /* 591 * Local (non-chip) user memory is not mapped right away but as it is 592 * accessed by the user-level code. 593 */ 594 static vm_fault_t vma_fault(struct vm_fault *vmf) 595 { 596 struct page *page; 597 598 page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT)); 599 if (!page) 600 return VM_FAULT_SIGBUS; 601 602 get_page(page); 603 vmf->page = page; 604 605 return 0; 606 } 607 608 static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt) 609 { 610 struct hfi1_ctxtdata *uctxt; 611 __poll_t pollflag; 612 613 uctxt = ((struct hfi1_filedata *)fp->private_data)->uctxt; 614 if (!uctxt) 615 pollflag = EPOLLERR; 616 else if (uctxt->poll_type == HFI1_POLL_TYPE_URGENT) 617 pollflag = poll_urgent(fp, pt); 618 else if (uctxt->poll_type == HFI1_POLL_TYPE_ANYRCV) 619 pollflag = poll_next(fp, pt); 620 else /* invalid */ 621 pollflag = EPOLLERR; 622 623 return pollflag; 624 } 625 626 static int hfi1_file_close(struct inode *inode, struct file *fp) 627 { 628 struct hfi1_filedata *fdata = fp->private_data; 629 struct hfi1_ctxtdata *uctxt = fdata->uctxt; 630 struct hfi1_devdata *dd = container_of(inode->i_cdev, 631 struct hfi1_devdata, 632 user_cdev); 633 unsigned long flags, *ev; 634 635 fp->private_data = NULL; 636 637 if (!uctxt) 638 goto done; 639 640 hfi1_cdbg(PROC, "closing ctxt %u:%u", uctxt->ctxt, fdata->subctxt); 641 642 flush_wc(); 643 /* drain user sdma queue */ 644 hfi1_user_sdma_free_queues(fdata, uctxt); 645 646 /* release the cpu */ 647 hfi1_put_proc_affinity(fdata->rec_cpu_num); 648 649 /* clean up rcv side */ 650 hfi1_user_exp_rcv_free(fdata); 651 652 /* 653 * fdata->uctxt is used in the above cleanup. It is not ready to be 654 * removed until here. 655 */ 656 fdata->uctxt = NULL; 657 hfi1_rcd_put(uctxt); 658 659 /* 660 * Clear any left over, unhandled events so the next process that 661 * gets this context doesn't get confused. 662 */ 663 ev = dd->events + uctxt_offset(uctxt) + fdata->subctxt; 664 *ev = 0; 665 666 spin_lock_irqsave(&dd->uctxt_lock, flags); 667 __clear_bit(fdata->subctxt, uctxt->in_use_ctxts); 668 if (!bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) { 669 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 670 goto done; 671 } 672 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 673 674 /* 675 * Disable receive context and interrupt available, reset all 676 * RcvCtxtCtrl bits to default values. 677 */ 678 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS | 679 HFI1_RCVCTRL_TIDFLOW_DIS | 680 HFI1_RCVCTRL_INTRAVAIL_DIS | 681 HFI1_RCVCTRL_TAILUPD_DIS | 682 HFI1_RCVCTRL_ONE_PKT_EGR_DIS | 683 HFI1_RCVCTRL_NO_RHQ_DROP_DIS | 684 HFI1_RCVCTRL_NO_EGR_DROP_DIS | 685 HFI1_RCVCTRL_URGENT_DIS, uctxt); 686 /* Clear the context's J_KEY */ 687 hfi1_clear_ctxt_jkey(dd, uctxt); 688 /* 689 * If a send context is allocated, reset context integrity 690 * checks to default and disable the send context. 691 */ 692 if (uctxt->sc) { 693 sc_disable(uctxt->sc); 694 set_pio_integrity(uctxt->sc); 695 } 696 697 hfi1_free_ctxt_rcv_groups(uctxt); 698 hfi1_clear_ctxt_pkey(dd, uctxt); 699 700 uctxt->event_flags = 0; 701 702 deallocate_ctxt(uctxt); 703 done: 704 mmdrop(fdata->mm); 705 kobject_put(&dd->kobj); 706 707 if (atomic_dec_and_test(&dd->user_refcount)) 708 complete(&dd->user_comp); 709 710 kfree(fdata); 711 return 0; 712 } 713 714 /* 715 * Convert kernel *virtual* addresses to physical addresses. 716 * This is used to vmalloc'ed addresses. 717 */ 718 static u64 kvirt_to_phys(void *addr) 719 { 720 struct page *page; 721 u64 paddr = 0; 722 723 page = vmalloc_to_page(addr); 724 if (page) 725 paddr = page_to_pfn(page) << PAGE_SHIFT; 726 727 return paddr; 728 } 729 730 /** 731 * complete_subctxt 732 * @fd: valid filedata pointer 733 * 734 * Sub-context info can only be set up after the base context 735 * has been completed. This is indicated by the clearing of the 736 * HFI1_CTXT_BASE_UINIT bit. 737 * 738 * Wait for the bit to be cleared, and then complete the subcontext 739 * initialization. 740 * 741 */ 742 static int complete_subctxt(struct hfi1_filedata *fd) 743 { 744 int ret; 745 unsigned long flags; 746 747 /* 748 * sub-context info can only be set up after the base context 749 * has been completed. 750 */ 751 ret = wait_event_interruptible( 752 fd->uctxt->wait, 753 !test_bit(HFI1_CTXT_BASE_UNINIT, &fd->uctxt->event_flags)); 754 755 if (test_bit(HFI1_CTXT_BASE_FAILED, &fd->uctxt->event_flags)) 756 ret = -ENOMEM; 757 758 /* Finish the sub-context init */ 759 if (!ret) { 760 fd->rec_cpu_num = hfi1_get_proc_affinity(fd->uctxt->numa_id); 761 ret = init_user_ctxt(fd, fd->uctxt); 762 } 763 764 if (ret) { 765 spin_lock_irqsave(&fd->dd->uctxt_lock, flags); 766 __clear_bit(fd->subctxt, fd->uctxt->in_use_ctxts); 767 spin_unlock_irqrestore(&fd->dd->uctxt_lock, flags); 768 hfi1_rcd_put(fd->uctxt); 769 fd->uctxt = NULL; 770 } 771 772 return ret; 773 } 774 775 static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len) 776 { 777 int ret; 778 unsigned int swmajor; 779 struct hfi1_ctxtdata *uctxt = NULL; 780 struct hfi1_user_info uinfo; 781 782 if (fd->uctxt) 783 return -EINVAL; 784 785 if (sizeof(uinfo) != len) 786 return -EINVAL; 787 788 if (copy_from_user(&uinfo, (void __user *)arg, sizeof(uinfo))) 789 return -EFAULT; 790 791 swmajor = uinfo.userversion >> 16; 792 if (swmajor != HFI1_USER_SWMAJOR) 793 return -ENODEV; 794 795 if (uinfo.subctxt_cnt > HFI1_MAX_SHARED_CTXTS) 796 return -EINVAL; 797 798 /* 799 * Acquire the mutex to protect against multiple creations of what 800 * could be a shared base context. 801 */ 802 mutex_lock(&hfi1_mutex); 803 /* 804 * Get a sub context if available (fd->uctxt will be set). 805 * ret < 0 error, 0 no context, 1 sub-context found 806 */ 807 ret = find_sub_ctxt(fd, &uinfo); 808 809 /* 810 * Allocate a base context if context sharing is not required or a 811 * sub context wasn't found. 812 */ 813 if (!ret) 814 ret = allocate_ctxt(fd, fd->dd, &uinfo, &uctxt); 815 816 mutex_unlock(&hfi1_mutex); 817 818 /* Depending on the context type, finish the appropriate init */ 819 switch (ret) { 820 case 0: 821 ret = setup_base_ctxt(fd, uctxt); 822 if (ret) 823 deallocate_ctxt(uctxt); 824 break; 825 case 1: 826 ret = complete_subctxt(fd); 827 break; 828 default: 829 break; 830 } 831 832 return ret; 833 } 834 835 /** 836 * match_ctxt 837 * @fd: valid filedata pointer 838 * @uinfo: user info to compare base context with 839 * @uctxt: context to compare uinfo to. 840 * 841 * Compare the given context with the given information to see if it 842 * can be used for a sub context. 843 */ 844 static int match_ctxt(struct hfi1_filedata *fd, 845 const struct hfi1_user_info *uinfo, 846 struct hfi1_ctxtdata *uctxt) 847 { 848 struct hfi1_devdata *dd = fd->dd; 849 unsigned long flags; 850 u16 subctxt; 851 852 /* Skip dynamically allocated kernel contexts */ 853 if (uctxt->sc && (uctxt->sc->type == SC_KERNEL)) 854 return 0; 855 856 /* Skip ctxt if it doesn't match the requested one */ 857 if (memcmp(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)) || 858 uctxt->jkey != generate_jkey(current_uid()) || 859 uctxt->subctxt_id != uinfo->subctxt_id || 860 uctxt->subctxt_cnt != uinfo->subctxt_cnt) 861 return 0; 862 863 /* Verify the sharing process matches the base */ 864 if (uctxt->userversion != uinfo->userversion) 865 return -EINVAL; 866 867 /* Find an unused sub context */ 868 spin_lock_irqsave(&dd->uctxt_lock, flags); 869 if (bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) { 870 /* context is being closed, do not use */ 871 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 872 return 0; 873 } 874 875 subctxt = find_first_zero_bit(uctxt->in_use_ctxts, 876 HFI1_MAX_SHARED_CTXTS); 877 if (subctxt >= uctxt->subctxt_cnt) { 878 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 879 return -EBUSY; 880 } 881 882 fd->subctxt = subctxt; 883 __set_bit(fd->subctxt, uctxt->in_use_ctxts); 884 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 885 886 fd->uctxt = uctxt; 887 hfi1_rcd_get(uctxt); 888 889 return 1; 890 } 891 892 /** 893 * find_sub_ctxt 894 * @fd: valid filedata pointer 895 * @uinfo: matching info to use to find a possible context to share. 896 * 897 * The hfi1_mutex must be held when this function is called. It is 898 * necessary to ensure serialized creation of shared contexts. 899 * 900 * Return: 901 * 0 No sub-context found 902 * 1 Subcontext found and allocated 903 * errno EINVAL (incorrect parameters) 904 * EBUSY (all sub contexts in use) 905 */ 906 static int find_sub_ctxt(struct hfi1_filedata *fd, 907 const struct hfi1_user_info *uinfo) 908 { 909 struct hfi1_ctxtdata *uctxt; 910 struct hfi1_devdata *dd = fd->dd; 911 u16 i; 912 int ret; 913 914 if (!uinfo->subctxt_cnt) 915 return 0; 916 917 for (i = dd->first_dyn_alloc_ctxt; i < dd->num_rcv_contexts; i++) { 918 uctxt = hfi1_rcd_get_by_index(dd, i); 919 if (uctxt) { 920 ret = match_ctxt(fd, uinfo, uctxt); 921 hfi1_rcd_put(uctxt); 922 /* value of != 0 will return */ 923 if (ret) 924 return ret; 925 } 926 } 927 928 return 0; 929 } 930 931 static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd, 932 struct hfi1_user_info *uinfo, 933 struct hfi1_ctxtdata **rcd) 934 { 935 struct hfi1_ctxtdata *uctxt; 936 int ret, numa; 937 938 if (dd->flags & HFI1_FROZEN) { 939 /* 940 * Pick an error that is unique from all other errors 941 * that are returned so the user process knows that 942 * it tried to allocate while the SPC was frozen. It 943 * it should be able to retry with success in a short 944 * while. 945 */ 946 return -EIO; 947 } 948 949 if (!dd->freectxts) 950 return -EBUSY; 951 952 /* 953 * If we don't have a NUMA node requested, preference is towards 954 * device NUMA node. 955 */ 956 fd->rec_cpu_num = hfi1_get_proc_affinity(dd->node); 957 if (fd->rec_cpu_num != -1) 958 numa = cpu_to_node(fd->rec_cpu_num); 959 else 960 numa = numa_node_id(); 961 ret = hfi1_create_ctxtdata(dd->pport, numa, &uctxt); 962 if (ret < 0) { 963 dd_dev_err(dd, "user ctxtdata allocation failed\n"); 964 return ret; 965 } 966 hfi1_cdbg(PROC, "[%u:%u] pid %u assigned to CPU %d (NUMA %u)", 967 uctxt->ctxt, fd->subctxt, current->pid, fd->rec_cpu_num, 968 uctxt->numa_id); 969 970 /* 971 * Allocate and enable a PIO send context. 972 */ 973 uctxt->sc = sc_alloc(dd, SC_USER, uctxt->rcvhdrqentsize, dd->node); 974 if (!uctxt->sc) { 975 ret = -ENOMEM; 976 goto ctxdata_free; 977 } 978 hfi1_cdbg(PROC, "allocated send context %u(%u)\n", uctxt->sc->sw_index, 979 uctxt->sc->hw_context); 980 ret = sc_enable(uctxt->sc); 981 if (ret) 982 goto ctxdata_free; 983 984 /* 985 * Setup sub context information if the user-level has requested 986 * sub contexts. 987 * This has to be done here so the rest of the sub-contexts find the 988 * proper base context. 989 * NOTE: _set_bit() can be used here because the context creation is 990 * protected by the mutex (rather than the spin_lock), and will be the 991 * very first instance of this context. 992 */ 993 __set_bit(0, uctxt->in_use_ctxts); 994 if (uinfo->subctxt_cnt) 995 init_subctxts(uctxt, uinfo); 996 uctxt->userversion = uinfo->userversion; 997 uctxt->flags = hfi1_cap_mask; /* save current flag state */ 998 init_waitqueue_head(&uctxt->wait); 999 strlcpy(uctxt->comm, current->comm, sizeof(uctxt->comm)); 1000 memcpy(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)); 1001 uctxt->jkey = generate_jkey(current_uid()); 1002 hfi1_stats.sps_ctxts++; 1003 /* 1004 * Disable ASPM when there are open user/PSM contexts to avoid 1005 * issues with ASPM L1 exit latency 1006 */ 1007 if (dd->freectxts-- == dd->num_user_contexts) 1008 aspm_disable_all(dd); 1009 1010 *rcd = uctxt; 1011 1012 return 0; 1013 1014 ctxdata_free: 1015 hfi1_free_ctxt(uctxt); 1016 return ret; 1017 } 1018 1019 static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt) 1020 { 1021 mutex_lock(&hfi1_mutex); 1022 hfi1_stats.sps_ctxts--; 1023 if (++uctxt->dd->freectxts == uctxt->dd->num_user_contexts) 1024 aspm_enable_all(uctxt->dd); 1025 mutex_unlock(&hfi1_mutex); 1026 1027 hfi1_free_ctxt(uctxt); 1028 } 1029 1030 static void init_subctxts(struct hfi1_ctxtdata *uctxt, 1031 const struct hfi1_user_info *uinfo) 1032 { 1033 uctxt->subctxt_cnt = uinfo->subctxt_cnt; 1034 uctxt->subctxt_id = uinfo->subctxt_id; 1035 set_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags); 1036 } 1037 1038 static int setup_subctxt(struct hfi1_ctxtdata *uctxt) 1039 { 1040 int ret = 0; 1041 u16 num_subctxts = uctxt->subctxt_cnt; 1042 1043 uctxt->subctxt_uregbase = vmalloc_user(PAGE_SIZE); 1044 if (!uctxt->subctxt_uregbase) 1045 return -ENOMEM; 1046 1047 /* We can take the size of the RcvHdr Queue from the master */ 1048 uctxt->subctxt_rcvhdr_base = vmalloc_user(rcvhdrq_size(uctxt) * 1049 num_subctxts); 1050 if (!uctxt->subctxt_rcvhdr_base) { 1051 ret = -ENOMEM; 1052 goto bail_ureg; 1053 } 1054 1055 uctxt->subctxt_rcvegrbuf = vmalloc_user(uctxt->egrbufs.size * 1056 num_subctxts); 1057 if (!uctxt->subctxt_rcvegrbuf) { 1058 ret = -ENOMEM; 1059 goto bail_rhdr; 1060 } 1061 1062 return 0; 1063 1064 bail_rhdr: 1065 vfree(uctxt->subctxt_rcvhdr_base); 1066 uctxt->subctxt_rcvhdr_base = NULL; 1067 bail_ureg: 1068 vfree(uctxt->subctxt_uregbase); 1069 uctxt->subctxt_uregbase = NULL; 1070 1071 return ret; 1072 } 1073 1074 static void user_init(struct hfi1_ctxtdata *uctxt) 1075 { 1076 unsigned int rcvctrl_ops = 0; 1077 1078 /* initialize poll variables... */ 1079 uctxt->urgent = 0; 1080 uctxt->urgent_poll = 0; 1081 1082 /* 1083 * Now enable the ctxt for receive. 1084 * For chips that are set to DMA the tail register to memory 1085 * when they change (and when the update bit transitions from 1086 * 0 to 1. So for those chips, we turn it off and then back on. 1087 * This will (very briefly) affect any other open ctxts, but the 1088 * duration is very short, and therefore isn't an issue. We 1089 * explicitly set the in-memory tail copy to 0 beforehand, so we 1090 * don't have to wait to be sure the DMA update has happened 1091 * (chip resets head/tail to 0 on transition to enable). 1092 */ 1093 if (hfi1_rcvhdrtail_kvaddr(uctxt)) 1094 clear_rcvhdrtail(uctxt); 1095 1096 /* Setup J_KEY before enabling the context */ 1097 hfi1_set_ctxt_jkey(uctxt->dd, uctxt, uctxt->jkey); 1098 1099 rcvctrl_ops = HFI1_RCVCTRL_CTXT_ENB; 1100 rcvctrl_ops |= HFI1_RCVCTRL_URGENT_ENB; 1101 if (HFI1_CAP_UGET_MASK(uctxt->flags, HDRSUPP)) 1102 rcvctrl_ops |= HFI1_RCVCTRL_TIDFLOW_ENB; 1103 /* 1104 * Ignore the bit in the flags for now until proper 1105 * support for multiple packet per rcv array entry is 1106 * added. 1107 */ 1108 if (!HFI1_CAP_UGET_MASK(uctxt->flags, MULTI_PKT_EGR)) 1109 rcvctrl_ops |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB; 1110 if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_EGR_FULL)) 1111 rcvctrl_ops |= HFI1_RCVCTRL_NO_EGR_DROP_ENB; 1112 if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_RHQ_FULL)) 1113 rcvctrl_ops |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB; 1114 /* 1115 * The RcvCtxtCtrl.TailUpd bit has to be explicitly written. 1116 * We can't rely on the correct value to be set from prior 1117 * uses of the chip or ctxt. Therefore, add the rcvctrl op 1118 * for both cases. 1119 */ 1120 if (HFI1_CAP_UGET_MASK(uctxt->flags, DMA_RTAIL)) 1121 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_ENB; 1122 else 1123 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_DIS; 1124 hfi1_rcvctrl(uctxt->dd, rcvctrl_ops, uctxt); 1125 } 1126 1127 static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len) 1128 { 1129 struct hfi1_ctxt_info cinfo; 1130 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1131 1132 if (sizeof(cinfo) != len) 1133 return -EINVAL; 1134 1135 memset(&cinfo, 0, sizeof(cinfo)); 1136 cinfo.runtime_flags = (((uctxt->flags >> HFI1_CAP_MISC_SHIFT) & 1137 HFI1_CAP_MISC_MASK) << HFI1_CAP_USER_SHIFT) | 1138 HFI1_CAP_UGET_MASK(uctxt->flags, MASK) | 1139 HFI1_CAP_KGET_MASK(uctxt->flags, K2U); 1140 /* adjust flag if this fd is not able to cache */ 1141 if (!fd->use_mn) 1142 cinfo.runtime_flags |= HFI1_CAP_TID_UNMAP; /* no caching */ 1143 1144 cinfo.num_active = hfi1_count_active_units(); 1145 cinfo.unit = uctxt->dd->unit; 1146 cinfo.ctxt = uctxt->ctxt; 1147 cinfo.subctxt = fd->subctxt; 1148 cinfo.rcvtids = roundup(uctxt->egrbufs.alloced, 1149 uctxt->dd->rcv_entries.group_size) + 1150 uctxt->expected_count; 1151 cinfo.credits = uctxt->sc->credits; 1152 cinfo.numa_node = uctxt->numa_id; 1153 cinfo.rec_cpu = fd->rec_cpu_num; 1154 cinfo.send_ctxt = uctxt->sc->hw_context; 1155 1156 cinfo.egrtids = uctxt->egrbufs.alloced; 1157 cinfo.rcvhdrq_cnt = get_hdrq_cnt(uctxt); 1158 cinfo.rcvhdrq_entsize = get_hdrqentsize(uctxt) << 2; 1159 cinfo.sdma_ring_size = fd->cq->nentries; 1160 cinfo.rcvegr_size = uctxt->egrbufs.rcvtid_size; 1161 1162 trace_hfi1_ctxt_info(uctxt->dd, uctxt->ctxt, fd->subctxt, &cinfo); 1163 if (copy_to_user((void __user *)arg, &cinfo, len)) 1164 return -EFAULT; 1165 1166 return 0; 1167 } 1168 1169 static int init_user_ctxt(struct hfi1_filedata *fd, 1170 struct hfi1_ctxtdata *uctxt) 1171 { 1172 int ret; 1173 1174 ret = hfi1_user_sdma_alloc_queues(uctxt, fd); 1175 if (ret) 1176 return ret; 1177 1178 ret = hfi1_user_exp_rcv_init(fd, uctxt); 1179 if (ret) 1180 hfi1_user_sdma_free_queues(fd, uctxt); 1181 1182 return ret; 1183 } 1184 1185 static int setup_base_ctxt(struct hfi1_filedata *fd, 1186 struct hfi1_ctxtdata *uctxt) 1187 { 1188 struct hfi1_devdata *dd = uctxt->dd; 1189 int ret = 0; 1190 1191 hfi1_init_ctxt(uctxt->sc); 1192 1193 /* Now allocate the RcvHdr queue and eager buffers. */ 1194 ret = hfi1_create_rcvhdrq(dd, uctxt); 1195 if (ret) 1196 goto done; 1197 1198 ret = hfi1_setup_eagerbufs(uctxt); 1199 if (ret) 1200 goto done; 1201 1202 /* If sub-contexts are enabled, do the appropriate setup */ 1203 if (uctxt->subctxt_cnt) 1204 ret = setup_subctxt(uctxt); 1205 if (ret) 1206 goto done; 1207 1208 ret = hfi1_alloc_ctxt_rcv_groups(uctxt); 1209 if (ret) 1210 goto done; 1211 1212 ret = init_user_ctxt(fd, uctxt); 1213 if (ret) 1214 goto done; 1215 1216 user_init(uctxt); 1217 1218 /* Now that the context is set up, the fd can get a reference. */ 1219 fd->uctxt = uctxt; 1220 hfi1_rcd_get(uctxt); 1221 1222 done: 1223 if (uctxt->subctxt_cnt) { 1224 /* 1225 * On error, set the failed bit so sub-contexts will clean up 1226 * correctly. 1227 */ 1228 if (ret) 1229 set_bit(HFI1_CTXT_BASE_FAILED, &uctxt->event_flags); 1230 1231 /* 1232 * Base context is done (successfully or not), notify anybody 1233 * using a sub-context that is waiting for this completion. 1234 */ 1235 clear_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags); 1236 wake_up(&uctxt->wait); 1237 } 1238 1239 return ret; 1240 } 1241 1242 static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len) 1243 { 1244 struct hfi1_base_info binfo; 1245 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1246 struct hfi1_devdata *dd = uctxt->dd; 1247 unsigned offset; 1248 1249 trace_hfi1_uctxtdata(uctxt->dd, uctxt, fd->subctxt); 1250 1251 if (sizeof(binfo) != len) 1252 return -EINVAL; 1253 1254 memset(&binfo, 0, sizeof(binfo)); 1255 binfo.hw_version = dd->revision; 1256 binfo.sw_version = HFI1_KERN_SWVERSION; 1257 binfo.bthqp = kdeth_qp; 1258 binfo.jkey = uctxt->jkey; 1259 /* 1260 * If more than 64 contexts are enabled the allocated credit 1261 * return will span two or three contiguous pages. Since we only 1262 * map the page containing the context's credit return address, 1263 * we need to calculate the offset in the proper page. 1264 */ 1265 offset = ((u64)uctxt->sc->hw_free - 1266 (u64)dd->cr_base[uctxt->numa_id].va) % PAGE_SIZE; 1267 binfo.sc_credits_addr = HFI1_MMAP_TOKEN(PIO_CRED, uctxt->ctxt, 1268 fd->subctxt, offset); 1269 binfo.pio_bufbase = HFI1_MMAP_TOKEN(PIO_BUFS, uctxt->ctxt, 1270 fd->subctxt, 1271 uctxt->sc->base_addr); 1272 binfo.pio_bufbase_sop = HFI1_MMAP_TOKEN(PIO_BUFS_SOP, 1273 uctxt->ctxt, 1274 fd->subctxt, 1275 uctxt->sc->base_addr); 1276 binfo.rcvhdr_bufbase = HFI1_MMAP_TOKEN(RCV_HDRQ, uctxt->ctxt, 1277 fd->subctxt, 1278 uctxt->rcvhdrq); 1279 binfo.rcvegr_bufbase = HFI1_MMAP_TOKEN(RCV_EGRBUF, uctxt->ctxt, 1280 fd->subctxt, 1281 uctxt->egrbufs.rcvtids[0].dma); 1282 binfo.sdma_comp_bufbase = HFI1_MMAP_TOKEN(SDMA_COMP, uctxt->ctxt, 1283 fd->subctxt, 0); 1284 /* 1285 * user regs are at 1286 * (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE)) 1287 */ 1288 binfo.user_regbase = HFI1_MMAP_TOKEN(UREGS, uctxt->ctxt, 1289 fd->subctxt, 0); 1290 offset = offset_in_page((uctxt_offset(uctxt) + fd->subctxt) * 1291 sizeof(*dd->events)); 1292 binfo.events_bufbase = HFI1_MMAP_TOKEN(EVENTS, uctxt->ctxt, 1293 fd->subctxt, 1294 offset); 1295 binfo.status_bufbase = HFI1_MMAP_TOKEN(STATUS, uctxt->ctxt, 1296 fd->subctxt, 1297 dd->status); 1298 if (HFI1_CAP_IS_USET(DMA_RTAIL)) 1299 binfo.rcvhdrtail_base = HFI1_MMAP_TOKEN(RTAIL, uctxt->ctxt, 1300 fd->subctxt, 0); 1301 if (uctxt->subctxt_cnt) { 1302 binfo.subctxt_uregbase = HFI1_MMAP_TOKEN(SUBCTXT_UREGS, 1303 uctxt->ctxt, 1304 fd->subctxt, 0); 1305 binfo.subctxt_rcvhdrbuf = HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ, 1306 uctxt->ctxt, 1307 fd->subctxt, 0); 1308 binfo.subctxt_rcvegrbuf = HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF, 1309 uctxt->ctxt, 1310 fd->subctxt, 0); 1311 } 1312 1313 if (copy_to_user((void __user *)arg, &binfo, len)) 1314 return -EFAULT; 1315 1316 return 0; 1317 } 1318 1319 /** 1320 * user_exp_rcv_setup - Set up the given tid rcv list 1321 * @fd: file data of the current driver instance 1322 * @arg: ioctl argumnent for user space information 1323 * @len: length of data structure associated with ioctl command 1324 * 1325 * Wrapper to validate ioctl information before doing _rcv_setup. 1326 * 1327 */ 1328 static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg, 1329 u32 len) 1330 { 1331 int ret; 1332 unsigned long addr; 1333 struct hfi1_tid_info tinfo; 1334 1335 if (sizeof(tinfo) != len) 1336 return -EINVAL; 1337 1338 if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo)))) 1339 return -EFAULT; 1340 1341 ret = hfi1_user_exp_rcv_setup(fd, &tinfo); 1342 if (!ret) { 1343 /* 1344 * Copy the number of tidlist entries we used 1345 * and the length of the buffer we registered. 1346 */ 1347 addr = arg + offsetof(struct hfi1_tid_info, tidcnt); 1348 if (copy_to_user((void __user *)addr, &tinfo.tidcnt, 1349 sizeof(tinfo.tidcnt))) 1350 return -EFAULT; 1351 1352 addr = arg + offsetof(struct hfi1_tid_info, length); 1353 if (copy_to_user((void __user *)addr, &tinfo.length, 1354 sizeof(tinfo.length))) 1355 ret = -EFAULT; 1356 } 1357 1358 return ret; 1359 } 1360 1361 /** 1362 * user_exp_rcv_clear - Clear the given tid rcv list 1363 * @fd: file data of the current driver instance 1364 * @arg: ioctl argumnent for user space information 1365 * @len: length of data structure associated with ioctl command 1366 * 1367 * The hfi1_user_exp_rcv_clear() can be called from the error path. Because 1368 * of this, we need to use this wrapper to copy the user space information 1369 * before doing the clear. 1370 */ 1371 static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg, 1372 u32 len) 1373 { 1374 int ret; 1375 unsigned long addr; 1376 struct hfi1_tid_info tinfo; 1377 1378 if (sizeof(tinfo) != len) 1379 return -EINVAL; 1380 1381 if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo)))) 1382 return -EFAULT; 1383 1384 ret = hfi1_user_exp_rcv_clear(fd, &tinfo); 1385 if (!ret) { 1386 addr = arg + offsetof(struct hfi1_tid_info, tidcnt); 1387 if (copy_to_user((void __user *)addr, &tinfo.tidcnt, 1388 sizeof(tinfo.tidcnt))) 1389 return -EFAULT; 1390 } 1391 1392 return ret; 1393 } 1394 1395 /** 1396 * user_exp_rcv_invalid - Invalidate the given tid rcv list 1397 * @fd: file data of the current driver instance 1398 * @arg: ioctl argumnent for user space information 1399 * @len: length of data structure associated with ioctl command 1400 * 1401 * Wrapper to validate ioctl information before doing _rcv_invalid. 1402 * 1403 */ 1404 static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg, 1405 u32 len) 1406 { 1407 int ret; 1408 unsigned long addr; 1409 struct hfi1_tid_info tinfo; 1410 1411 if (sizeof(tinfo) != len) 1412 return -EINVAL; 1413 1414 if (!fd->invalid_tids) 1415 return -EINVAL; 1416 1417 if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo)))) 1418 return -EFAULT; 1419 1420 ret = hfi1_user_exp_rcv_invalid(fd, &tinfo); 1421 if (ret) 1422 return ret; 1423 1424 addr = arg + offsetof(struct hfi1_tid_info, tidcnt); 1425 if (copy_to_user((void __user *)addr, &tinfo.tidcnt, 1426 sizeof(tinfo.tidcnt))) 1427 ret = -EFAULT; 1428 1429 return ret; 1430 } 1431 1432 static __poll_t poll_urgent(struct file *fp, 1433 struct poll_table_struct *pt) 1434 { 1435 struct hfi1_filedata *fd = fp->private_data; 1436 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1437 struct hfi1_devdata *dd = uctxt->dd; 1438 __poll_t pollflag; 1439 1440 poll_wait(fp, &uctxt->wait, pt); 1441 1442 spin_lock_irq(&dd->uctxt_lock); 1443 if (uctxt->urgent != uctxt->urgent_poll) { 1444 pollflag = EPOLLIN | EPOLLRDNORM; 1445 uctxt->urgent_poll = uctxt->urgent; 1446 } else { 1447 pollflag = 0; 1448 set_bit(HFI1_CTXT_WAITING_URG, &uctxt->event_flags); 1449 } 1450 spin_unlock_irq(&dd->uctxt_lock); 1451 1452 return pollflag; 1453 } 1454 1455 static __poll_t poll_next(struct file *fp, 1456 struct poll_table_struct *pt) 1457 { 1458 struct hfi1_filedata *fd = fp->private_data; 1459 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1460 struct hfi1_devdata *dd = uctxt->dd; 1461 __poll_t pollflag; 1462 1463 poll_wait(fp, &uctxt->wait, pt); 1464 1465 spin_lock_irq(&dd->uctxt_lock); 1466 if (hdrqempty(uctxt)) { 1467 set_bit(HFI1_CTXT_WAITING_RCV, &uctxt->event_flags); 1468 hfi1_rcvctrl(dd, HFI1_RCVCTRL_INTRAVAIL_ENB, uctxt); 1469 pollflag = 0; 1470 } else { 1471 pollflag = EPOLLIN | EPOLLRDNORM; 1472 } 1473 spin_unlock_irq(&dd->uctxt_lock); 1474 1475 return pollflag; 1476 } 1477 1478 /* 1479 * Find all user contexts in use, and set the specified bit in their 1480 * event mask. 1481 * See also find_ctxt() for a similar use, that is specific to send buffers. 1482 */ 1483 int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit) 1484 { 1485 struct hfi1_ctxtdata *uctxt; 1486 struct hfi1_devdata *dd = ppd->dd; 1487 u16 ctxt; 1488 1489 if (!dd->events) 1490 return -EINVAL; 1491 1492 for (ctxt = dd->first_dyn_alloc_ctxt; ctxt < dd->num_rcv_contexts; 1493 ctxt++) { 1494 uctxt = hfi1_rcd_get_by_index(dd, ctxt); 1495 if (uctxt) { 1496 unsigned long *evs; 1497 int i; 1498 /* 1499 * subctxt_cnt is 0 if not shared, so do base 1500 * separately, first, then remaining subctxt, if any 1501 */ 1502 evs = dd->events + uctxt_offset(uctxt); 1503 set_bit(evtbit, evs); 1504 for (i = 1; i < uctxt->subctxt_cnt; i++) 1505 set_bit(evtbit, evs + i); 1506 hfi1_rcd_put(uctxt); 1507 } 1508 } 1509 1510 return 0; 1511 } 1512 1513 /** 1514 * manage_rcvq - manage a context's receive queue 1515 * @uctxt: the context 1516 * @subctxt: the sub-context 1517 * @start_stop: action to carry out 1518 * 1519 * start_stop == 0 disables receive on the context, for use in queue 1520 * overflow conditions. start_stop==1 re-enables, to be used to 1521 * re-init the software copy of the head register 1522 */ 1523 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt, 1524 unsigned long arg) 1525 { 1526 struct hfi1_devdata *dd = uctxt->dd; 1527 unsigned int rcvctrl_op; 1528 int start_stop; 1529 1530 if (subctxt) 1531 return 0; 1532 1533 if (get_user(start_stop, (int __user *)arg)) 1534 return -EFAULT; 1535 1536 /* atomically clear receive enable ctxt. */ 1537 if (start_stop) { 1538 /* 1539 * On enable, force in-memory copy of the tail register to 1540 * 0, so that protocol code doesn't have to worry about 1541 * whether or not the chip has yet updated the in-memory 1542 * copy or not on return from the system call. The chip 1543 * always resets it's tail register back to 0 on a 1544 * transition from disabled to enabled. 1545 */ 1546 if (hfi1_rcvhdrtail_kvaddr(uctxt)) 1547 clear_rcvhdrtail(uctxt); 1548 rcvctrl_op = HFI1_RCVCTRL_CTXT_ENB; 1549 } else { 1550 rcvctrl_op = HFI1_RCVCTRL_CTXT_DIS; 1551 } 1552 hfi1_rcvctrl(dd, rcvctrl_op, uctxt); 1553 /* always; new head should be equal to new tail; see above */ 1554 1555 return 0; 1556 } 1557 1558 /* 1559 * clear the event notifier events for this context. 1560 * User process then performs actions appropriate to bit having been 1561 * set, if desired, and checks again in future. 1562 */ 1563 static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt, 1564 unsigned long arg) 1565 { 1566 int i; 1567 struct hfi1_devdata *dd = uctxt->dd; 1568 unsigned long *evs; 1569 unsigned long events; 1570 1571 if (!dd->events) 1572 return 0; 1573 1574 if (get_user(events, (unsigned long __user *)arg)) 1575 return -EFAULT; 1576 1577 evs = dd->events + uctxt_offset(uctxt) + subctxt; 1578 1579 for (i = 0; i <= _HFI1_MAX_EVENT_BIT; i++) { 1580 if (!test_bit(i, &events)) 1581 continue; 1582 clear_bit(i, evs); 1583 } 1584 return 0; 1585 } 1586 1587 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg) 1588 { 1589 int i; 1590 struct hfi1_pportdata *ppd = uctxt->ppd; 1591 struct hfi1_devdata *dd = uctxt->dd; 1592 u16 pkey; 1593 1594 if (!HFI1_CAP_IS_USET(PKEY_CHECK)) 1595 return -EPERM; 1596 1597 if (get_user(pkey, (u16 __user *)arg)) 1598 return -EFAULT; 1599 1600 if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY) 1601 return -EINVAL; 1602 1603 for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) 1604 if (pkey == ppd->pkeys[i]) 1605 return hfi1_set_ctxt_pkey(dd, uctxt, pkey); 1606 1607 return -ENOENT; 1608 } 1609 1610 /** 1611 * ctxt_reset - Reset the user context 1612 * @uctxt: valid user context 1613 */ 1614 static int ctxt_reset(struct hfi1_ctxtdata *uctxt) 1615 { 1616 struct send_context *sc; 1617 struct hfi1_devdata *dd; 1618 int ret = 0; 1619 1620 if (!uctxt || !uctxt->dd || !uctxt->sc) 1621 return -EINVAL; 1622 1623 /* 1624 * There is no protection here. User level has to guarantee that 1625 * no one will be writing to the send context while it is being 1626 * re-initialized. If user level breaks that guarantee, it will 1627 * break it's own context and no one else's. 1628 */ 1629 dd = uctxt->dd; 1630 sc = uctxt->sc; 1631 1632 /* 1633 * Wait until the interrupt handler has marked the context as 1634 * halted or frozen. Report error if we time out. 1635 */ 1636 wait_event_interruptible_timeout( 1637 sc->halt_wait, (sc->flags & SCF_HALTED), 1638 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT)); 1639 if (!(sc->flags & SCF_HALTED)) 1640 return -ENOLCK; 1641 1642 /* 1643 * If the send context was halted due to a Freeze, wait until the 1644 * device has been "unfrozen" before resetting the context. 1645 */ 1646 if (sc->flags & SCF_FROZEN) { 1647 wait_event_interruptible_timeout( 1648 dd->event_queue, 1649 !(READ_ONCE(dd->flags) & HFI1_FROZEN), 1650 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT)); 1651 if (dd->flags & HFI1_FROZEN) 1652 return -ENOLCK; 1653 1654 if (dd->flags & HFI1_FORCED_FREEZE) 1655 /* 1656 * Don't allow context reset if we are into 1657 * forced freeze 1658 */ 1659 return -ENODEV; 1660 1661 sc_disable(sc); 1662 ret = sc_enable(sc); 1663 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB, uctxt); 1664 } else { 1665 ret = sc_restart(sc); 1666 } 1667 if (!ret) 1668 sc_return_credits(sc); 1669 1670 return ret; 1671 } 1672 1673 static void user_remove(struct hfi1_devdata *dd) 1674 { 1675 1676 hfi1_cdev_cleanup(&dd->user_cdev, &dd->user_device); 1677 } 1678 1679 static int user_add(struct hfi1_devdata *dd) 1680 { 1681 char name[10]; 1682 int ret; 1683 1684 snprintf(name, sizeof(name), "%s_%d", class_name(), dd->unit); 1685 ret = hfi1_cdev_init(dd->unit, name, &hfi1_file_ops, 1686 &dd->user_cdev, &dd->user_device, 1687 true, &dd->kobj); 1688 if (ret) 1689 user_remove(dd); 1690 1691 return ret; 1692 } 1693 1694 /* 1695 * Create per-unit files in /dev 1696 */ 1697 int hfi1_device_create(struct hfi1_devdata *dd) 1698 { 1699 return user_add(dd); 1700 } 1701 1702 /* 1703 * Remove per-unit files in /dev 1704 * void, core kernel returns no errors for this stuff 1705 */ 1706 void hfi1_device_remove(struct hfi1_devdata *dd) 1707 { 1708 user_remove(dd); 1709 } 1710