1 /* 2 * Copyright(c) 2015-2017 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 #include <linux/poll.h> 48 #include <linux/cdev.h> 49 #include <linux/vmalloc.h> 50 #include <linux/io.h> 51 #include <linux/sched/mm.h> 52 #include <linux/bitmap.h> 53 54 #include <rdma/ib.h> 55 56 #include "hfi.h" 57 #include "pio.h" 58 #include "device.h" 59 #include "common.h" 60 #include "trace.h" 61 #include "mmu_rb.h" 62 #include "user_sdma.h" 63 #include "user_exp_rcv.h" 64 #include "aspm.h" 65 66 #undef pr_fmt 67 #define pr_fmt(fmt) DRIVER_NAME ": " fmt 68 69 #define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */ 70 71 /* 72 * File operation functions 73 */ 74 static int hfi1_file_open(struct inode *inode, struct file *fp); 75 static int hfi1_file_close(struct inode *inode, struct file *fp); 76 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from); 77 static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt); 78 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma); 79 80 static u64 kvirt_to_phys(void *addr); 81 static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len); 82 static void init_subctxts(struct hfi1_ctxtdata *uctxt, 83 const struct hfi1_user_info *uinfo); 84 static int init_user_ctxt(struct hfi1_filedata *fd, 85 struct hfi1_ctxtdata *uctxt); 86 static void user_init(struct hfi1_ctxtdata *uctxt); 87 static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len); 88 static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len); 89 static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg, 90 u32 len); 91 static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg, 92 u32 len); 93 static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg, 94 u32 len); 95 static int setup_base_ctxt(struct hfi1_filedata *fd, 96 struct hfi1_ctxtdata *uctxt); 97 static int setup_subctxt(struct hfi1_ctxtdata *uctxt); 98 99 static int find_sub_ctxt(struct hfi1_filedata *fd, 100 const struct hfi1_user_info *uinfo); 101 static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd, 102 struct hfi1_user_info *uinfo, 103 struct hfi1_ctxtdata **cd); 104 static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt); 105 static __poll_t poll_urgent(struct file *fp, struct poll_table_struct *pt); 106 static __poll_t poll_next(struct file *fp, struct poll_table_struct *pt); 107 static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt, 108 unsigned long arg); 109 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg); 110 static int ctxt_reset(struct hfi1_ctxtdata *uctxt); 111 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt, 112 unsigned long arg); 113 static vm_fault_t vma_fault(struct vm_fault *vmf); 114 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd, 115 unsigned long arg); 116 117 static const struct file_operations hfi1_file_ops = { 118 .owner = THIS_MODULE, 119 .write_iter = hfi1_write_iter, 120 .open = hfi1_file_open, 121 .release = hfi1_file_close, 122 .unlocked_ioctl = hfi1_file_ioctl, 123 .poll = hfi1_poll, 124 .mmap = hfi1_file_mmap, 125 .llseek = noop_llseek, 126 }; 127 128 static const struct vm_operations_struct vm_ops = { 129 .fault = vma_fault, 130 }; 131 132 /* 133 * Types of memories mapped into user processes' space 134 */ 135 enum mmap_types { 136 PIO_BUFS = 1, 137 PIO_BUFS_SOP, 138 PIO_CRED, 139 RCV_HDRQ, 140 RCV_EGRBUF, 141 UREGS, 142 EVENTS, 143 STATUS, 144 RTAIL, 145 SUBCTXT_UREGS, 146 SUBCTXT_RCV_HDRQ, 147 SUBCTXT_EGRBUF, 148 SDMA_COMP 149 }; 150 151 /* 152 * Masks and offsets defining the mmap tokens 153 */ 154 #define HFI1_MMAP_OFFSET_MASK 0xfffULL 155 #define HFI1_MMAP_OFFSET_SHIFT 0 156 #define HFI1_MMAP_SUBCTXT_MASK 0xfULL 157 #define HFI1_MMAP_SUBCTXT_SHIFT 12 158 #define HFI1_MMAP_CTXT_MASK 0xffULL 159 #define HFI1_MMAP_CTXT_SHIFT 16 160 #define HFI1_MMAP_TYPE_MASK 0xfULL 161 #define HFI1_MMAP_TYPE_SHIFT 24 162 #define HFI1_MMAP_MAGIC_MASK 0xffffffffULL 163 #define HFI1_MMAP_MAGIC_SHIFT 32 164 165 #define HFI1_MMAP_MAGIC 0xdabbad00 166 167 #define HFI1_MMAP_TOKEN_SET(field, val) \ 168 (((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT) 169 #define HFI1_MMAP_TOKEN_GET(field, token) \ 170 (((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK) 171 #define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr) \ 172 (HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \ 173 HFI1_MMAP_TOKEN_SET(TYPE, type) | \ 174 HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \ 175 HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \ 176 HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr)))) 177 178 #define dbg(fmt, ...) \ 179 pr_info(fmt, ##__VA_ARGS__) 180 181 static inline int is_valid_mmap(u64 token) 182 { 183 return (HFI1_MMAP_TOKEN_GET(MAGIC, token) == HFI1_MMAP_MAGIC); 184 } 185 186 static int hfi1_file_open(struct inode *inode, struct file *fp) 187 { 188 struct hfi1_filedata *fd; 189 struct hfi1_devdata *dd = container_of(inode->i_cdev, 190 struct hfi1_devdata, 191 user_cdev); 192 193 if (!((dd->flags & HFI1_PRESENT) && dd->kregbase1)) 194 return -EINVAL; 195 196 if (!atomic_inc_not_zero(&dd->user_refcount)) 197 return -ENXIO; 198 199 /* The real work is performed later in assign_ctxt() */ 200 201 fd = kzalloc(sizeof(*fd), GFP_KERNEL); 202 203 if (fd) { 204 fd->rec_cpu_num = -1; /* no cpu affinity by default */ 205 fd->mm = current->mm; 206 mmgrab(fd->mm); 207 fd->dd = dd; 208 kobject_get(&fd->dd->kobj); 209 fp->private_data = fd; 210 } else { 211 fp->private_data = NULL; 212 213 if (atomic_dec_and_test(&dd->user_refcount)) 214 complete(&dd->user_comp); 215 216 return -ENOMEM; 217 } 218 219 return 0; 220 } 221 222 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd, 223 unsigned long arg) 224 { 225 struct hfi1_filedata *fd = fp->private_data; 226 struct hfi1_ctxtdata *uctxt = fd->uctxt; 227 int ret = 0; 228 int uval = 0; 229 230 hfi1_cdbg(IOCTL, "IOCTL recv: 0x%x", cmd); 231 if (cmd != HFI1_IOCTL_ASSIGN_CTXT && 232 cmd != HFI1_IOCTL_GET_VERS && 233 !uctxt) 234 return -EINVAL; 235 236 switch (cmd) { 237 case HFI1_IOCTL_ASSIGN_CTXT: 238 ret = assign_ctxt(fd, arg, _IOC_SIZE(cmd)); 239 break; 240 241 case HFI1_IOCTL_CTXT_INFO: 242 ret = get_ctxt_info(fd, arg, _IOC_SIZE(cmd)); 243 break; 244 245 case HFI1_IOCTL_USER_INFO: 246 ret = get_base_info(fd, arg, _IOC_SIZE(cmd)); 247 break; 248 249 case HFI1_IOCTL_CREDIT_UPD: 250 if (uctxt) 251 sc_return_credits(uctxt->sc); 252 break; 253 254 case HFI1_IOCTL_TID_UPDATE: 255 ret = user_exp_rcv_setup(fd, arg, _IOC_SIZE(cmd)); 256 break; 257 258 case HFI1_IOCTL_TID_FREE: 259 ret = user_exp_rcv_clear(fd, arg, _IOC_SIZE(cmd)); 260 break; 261 262 case HFI1_IOCTL_TID_INVAL_READ: 263 ret = user_exp_rcv_invalid(fd, arg, _IOC_SIZE(cmd)); 264 break; 265 266 case HFI1_IOCTL_RECV_CTRL: 267 ret = manage_rcvq(uctxt, fd->subctxt, arg); 268 break; 269 270 case HFI1_IOCTL_POLL_TYPE: 271 if (get_user(uval, (int __user *)arg)) 272 return -EFAULT; 273 uctxt->poll_type = (typeof(uctxt->poll_type))uval; 274 break; 275 276 case HFI1_IOCTL_ACK_EVENT: 277 ret = user_event_ack(uctxt, fd->subctxt, arg); 278 break; 279 280 case HFI1_IOCTL_SET_PKEY: 281 ret = set_ctxt_pkey(uctxt, arg); 282 break; 283 284 case HFI1_IOCTL_CTXT_RESET: 285 ret = ctxt_reset(uctxt); 286 break; 287 288 case HFI1_IOCTL_GET_VERS: 289 uval = HFI1_USER_SWVERSION; 290 if (put_user(uval, (int __user *)arg)) 291 return -EFAULT; 292 break; 293 294 default: 295 return -EINVAL; 296 } 297 298 return ret; 299 } 300 301 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from) 302 { 303 struct hfi1_filedata *fd = kiocb->ki_filp->private_data; 304 struct hfi1_user_sdma_pkt_q *pq = fd->pq; 305 struct hfi1_user_sdma_comp_q *cq = fd->cq; 306 int done = 0, reqs = 0; 307 unsigned long dim = from->nr_segs; 308 309 if (!cq || !pq) 310 return -EIO; 311 312 if (!iter_is_iovec(from) || !dim) 313 return -EINVAL; 314 315 trace_hfi1_sdma_request(fd->dd, fd->uctxt->ctxt, fd->subctxt, dim); 316 317 if (atomic_read(&pq->n_reqs) == pq->n_max_reqs) 318 return -ENOSPC; 319 320 while (dim) { 321 int ret; 322 unsigned long count = 0; 323 324 ret = hfi1_user_sdma_process_request( 325 fd, (struct iovec *)(from->iov + done), 326 dim, &count); 327 if (ret) { 328 reqs = ret; 329 break; 330 } 331 dim -= count; 332 done += count; 333 reqs++; 334 } 335 336 return reqs; 337 } 338 339 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma) 340 { 341 struct hfi1_filedata *fd = fp->private_data; 342 struct hfi1_ctxtdata *uctxt = fd->uctxt; 343 struct hfi1_devdata *dd; 344 unsigned long flags; 345 u64 token = vma->vm_pgoff << PAGE_SHIFT, 346 memaddr = 0; 347 void *memvirt = NULL; 348 u8 subctxt, mapio = 0, vmf = 0, type; 349 ssize_t memlen = 0; 350 int ret = 0; 351 u16 ctxt; 352 353 if (!is_valid_mmap(token) || !uctxt || 354 !(vma->vm_flags & VM_SHARED)) { 355 ret = -EINVAL; 356 goto done; 357 } 358 dd = uctxt->dd; 359 ctxt = HFI1_MMAP_TOKEN_GET(CTXT, token); 360 subctxt = HFI1_MMAP_TOKEN_GET(SUBCTXT, token); 361 type = HFI1_MMAP_TOKEN_GET(TYPE, token); 362 if (ctxt != uctxt->ctxt || subctxt != fd->subctxt) { 363 ret = -EINVAL; 364 goto done; 365 } 366 367 flags = vma->vm_flags; 368 369 switch (type) { 370 case PIO_BUFS: 371 case PIO_BUFS_SOP: 372 memaddr = ((dd->physaddr + TXE_PIO_SEND) + 373 /* chip pio base */ 374 (uctxt->sc->hw_context * BIT(16))) + 375 /* 64K PIO space / ctxt */ 376 (type == PIO_BUFS_SOP ? 377 (TXE_PIO_SIZE / 2) : 0); /* sop? */ 378 /* 379 * Map only the amount allocated to the context, not the 380 * entire available context's PIO space. 381 */ 382 memlen = PAGE_ALIGN(uctxt->sc->credits * PIO_BLOCK_SIZE); 383 flags &= ~VM_MAYREAD; 384 flags |= VM_DONTCOPY | VM_DONTEXPAND; 385 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); 386 mapio = 1; 387 break; 388 case PIO_CRED: 389 if (flags & VM_WRITE) { 390 ret = -EPERM; 391 goto done; 392 } 393 /* 394 * The credit return location for this context could be on the 395 * second or third page allocated for credit returns (if number 396 * of enabled contexts > 64 and 128 respectively). 397 */ 398 memvirt = dd->cr_base[uctxt->numa_id].va; 399 memaddr = virt_to_phys(memvirt) + 400 (((u64)uctxt->sc->hw_free - 401 (u64)dd->cr_base[uctxt->numa_id].va) & PAGE_MASK); 402 memlen = PAGE_SIZE; 403 flags &= ~VM_MAYWRITE; 404 flags |= VM_DONTCOPY | VM_DONTEXPAND; 405 /* 406 * The driver has already allocated memory for credit 407 * returns and programmed it into the chip. Has that 408 * memory been flagged as non-cached? 409 */ 410 /* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */ 411 mapio = 1; 412 break; 413 case RCV_HDRQ: 414 memlen = rcvhdrq_size(uctxt); 415 memvirt = uctxt->rcvhdrq; 416 break; 417 case RCV_EGRBUF: { 418 unsigned long addr; 419 int i; 420 /* 421 * The RcvEgr buffer need to be handled differently 422 * as multiple non-contiguous pages need to be mapped 423 * into the user process. 424 */ 425 memlen = uctxt->egrbufs.size; 426 if ((vma->vm_end - vma->vm_start) != memlen) { 427 dd_dev_err(dd, "Eager buffer map size invalid (%lu != %lu)\n", 428 (vma->vm_end - vma->vm_start), memlen); 429 ret = -EINVAL; 430 goto done; 431 } 432 if (vma->vm_flags & VM_WRITE) { 433 ret = -EPERM; 434 goto done; 435 } 436 vma->vm_flags &= ~VM_MAYWRITE; 437 addr = vma->vm_start; 438 for (i = 0 ; i < uctxt->egrbufs.numbufs; i++) { 439 memlen = uctxt->egrbufs.buffers[i].len; 440 memvirt = uctxt->egrbufs.buffers[i].addr; 441 ret = remap_pfn_range( 442 vma, addr, 443 /* 444 * virt_to_pfn() does the same, but 445 * it's not available on x86_64 446 * when CONFIG_MMU is enabled. 447 */ 448 PFN_DOWN(__pa(memvirt)), 449 memlen, 450 vma->vm_page_prot); 451 if (ret < 0) 452 goto done; 453 addr += memlen; 454 } 455 ret = 0; 456 goto done; 457 } 458 case UREGS: 459 /* 460 * Map only the page that contains this context's user 461 * registers. 462 */ 463 memaddr = (unsigned long) 464 (dd->physaddr + RXE_PER_CONTEXT_USER) 465 + (uctxt->ctxt * RXE_PER_CONTEXT_SIZE); 466 /* 467 * TidFlow table is on the same page as the rest of the 468 * user registers. 469 */ 470 memlen = PAGE_SIZE; 471 flags |= VM_DONTCOPY | VM_DONTEXPAND; 472 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 473 mapio = 1; 474 break; 475 case EVENTS: 476 /* 477 * Use the page where this context's flags are. User level 478 * knows where it's own bitmap is within the page. 479 */ 480 memaddr = (unsigned long) 481 (dd->events + uctxt_offset(uctxt)) & PAGE_MASK; 482 memlen = PAGE_SIZE; 483 /* 484 * v3.7 removes VM_RESERVED but the effect is kept by 485 * using VM_IO. 486 */ 487 flags |= VM_IO | VM_DONTEXPAND; 488 vmf = 1; 489 break; 490 case STATUS: 491 if (flags & (unsigned long)(VM_WRITE | VM_EXEC)) { 492 ret = -EPERM; 493 goto done; 494 } 495 memaddr = kvirt_to_phys((void *)dd->status); 496 memlen = PAGE_SIZE; 497 flags |= VM_IO | VM_DONTEXPAND; 498 break; 499 case RTAIL: 500 if (!HFI1_CAP_IS_USET(DMA_RTAIL)) { 501 /* 502 * If the memory allocation failed, the context alloc 503 * also would have failed, so we would never get here 504 */ 505 ret = -EINVAL; 506 goto done; 507 } 508 if ((flags & VM_WRITE) || !uctxt->rcvhdrtail_kvaddr) { 509 ret = -EPERM; 510 goto done; 511 } 512 memlen = PAGE_SIZE; 513 memvirt = (void *)uctxt->rcvhdrtail_kvaddr; 514 flags &= ~VM_MAYWRITE; 515 break; 516 case SUBCTXT_UREGS: 517 memaddr = (u64)uctxt->subctxt_uregbase; 518 memlen = PAGE_SIZE; 519 flags |= VM_IO | VM_DONTEXPAND; 520 vmf = 1; 521 break; 522 case SUBCTXT_RCV_HDRQ: 523 memaddr = (u64)uctxt->subctxt_rcvhdr_base; 524 memlen = rcvhdrq_size(uctxt) * uctxt->subctxt_cnt; 525 flags |= VM_IO | VM_DONTEXPAND; 526 vmf = 1; 527 break; 528 case SUBCTXT_EGRBUF: 529 memaddr = (u64)uctxt->subctxt_rcvegrbuf; 530 memlen = uctxt->egrbufs.size * uctxt->subctxt_cnt; 531 flags |= VM_IO | VM_DONTEXPAND; 532 flags &= ~VM_MAYWRITE; 533 vmf = 1; 534 break; 535 case SDMA_COMP: { 536 struct hfi1_user_sdma_comp_q *cq = fd->cq; 537 538 if (!cq) { 539 ret = -EFAULT; 540 goto done; 541 } 542 memaddr = (u64)cq->comps; 543 memlen = PAGE_ALIGN(sizeof(*cq->comps) * cq->nentries); 544 flags |= VM_IO | VM_DONTEXPAND; 545 vmf = 1; 546 break; 547 } 548 default: 549 ret = -EINVAL; 550 break; 551 } 552 553 if ((vma->vm_end - vma->vm_start) != memlen) { 554 hfi1_cdbg(PROC, "%u:%u Memory size mismatch %lu:%lu", 555 uctxt->ctxt, fd->subctxt, 556 (vma->vm_end - vma->vm_start), memlen); 557 ret = -EINVAL; 558 goto done; 559 } 560 561 vma->vm_flags = flags; 562 hfi1_cdbg(PROC, 563 "%u:%u type:%u io/vf:%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx\n", 564 ctxt, subctxt, type, mapio, vmf, memaddr, memlen, 565 vma->vm_end - vma->vm_start, vma->vm_flags); 566 if (vmf) { 567 vma->vm_pgoff = PFN_DOWN(memaddr); 568 vma->vm_ops = &vm_ops; 569 ret = 0; 570 } else if (mapio) { 571 ret = io_remap_pfn_range(vma, vma->vm_start, 572 PFN_DOWN(memaddr), 573 memlen, 574 vma->vm_page_prot); 575 } else if (memvirt) { 576 ret = remap_pfn_range(vma, vma->vm_start, 577 PFN_DOWN(__pa(memvirt)), 578 memlen, 579 vma->vm_page_prot); 580 } else { 581 ret = remap_pfn_range(vma, vma->vm_start, 582 PFN_DOWN(memaddr), 583 memlen, 584 vma->vm_page_prot); 585 } 586 done: 587 return ret; 588 } 589 590 /* 591 * Local (non-chip) user memory is not mapped right away but as it is 592 * accessed by the user-level code. 593 */ 594 static vm_fault_t vma_fault(struct vm_fault *vmf) 595 { 596 struct page *page; 597 598 page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT)); 599 if (!page) 600 return VM_FAULT_SIGBUS; 601 602 get_page(page); 603 vmf->page = page; 604 605 return 0; 606 } 607 608 static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt) 609 { 610 struct hfi1_ctxtdata *uctxt; 611 __poll_t pollflag; 612 613 uctxt = ((struct hfi1_filedata *)fp->private_data)->uctxt; 614 if (!uctxt) 615 pollflag = EPOLLERR; 616 else if (uctxt->poll_type == HFI1_POLL_TYPE_URGENT) 617 pollflag = poll_urgent(fp, pt); 618 else if (uctxt->poll_type == HFI1_POLL_TYPE_ANYRCV) 619 pollflag = poll_next(fp, pt); 620 else /* invalid */ 621 pollflag = EPOLLERR; 622 623 return pollflag; 624 } 625 626 static int hfi1_file_close(struct inode *inode, struct file *fp) 627 { 628 struct hfi1_filedata *fdata = fp->private_data; 629 struct hfi1_ctxtdata *uctxt = fdata->uctxt; 630 struct hfi1_devdata *dd = container_of(inode->i_cdev, 631 struct hfi1_devdata, 632 user_cdev); 633 unsigned long flags, *ev; 634 635 fp->private_data = NULL; 636 637 if (!uctxt) 638 goto done; 639 640 hfi1_cdbg(PROC, "closing ctxt %u:%u", uctxt->ctxt, fdata->subctxt); 641 642 flush_wc(); 643 /* drain user sdma queue */ 644 hfi1_user_sdma_free_queues(fdata, uctxt); 645 646 /* release the cpu */ 647 hfi1_put_proc_affinity(fdata->rec_cpu_num); 648 649 /* clean up rcv side */ 650 hfi1_user_exp_rcv_free(fdata); 651 652 /* 653 * fdata->uctxt is used in the above cleanup. It is not ready to be 654 * removed until here. 655 */ 656 fdata->uctxt = NULL; 657 hfi1_rcd_put(uctxt); 658 659 /* 660 * Clear any left over, unhandled events so the next process that 661 * gets this context doesn't get confused. 662 */ 663 ev = dd->events + uctxt_offset(uctxt) + fdata->subctxt; 664 *ev = 0; 665 666 spin_lock_irqsave(&dd->uctxt_lock, flags); 667 __clear_bit(fdata->subctxt, uctxt->in_use_ctxts); 668 if (!bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) { 669 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 670 goto done; 671 } 672 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 673 674 /* 675 * Disable receive context and interrupt available, reset all 676 * RcvCtxtCtrl bits to default values. 677 */ 678 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS | 679 HFI1_RCVCTRL_TIDFLOW_DIS | 680 HFI1_RCVCTRL_INTRAVAIL_DIS | 681 HFI1_RCVCTRL_TAILUPD_DIS | 682 HFI1_RCVCTRL_ONE_PKT_EGR_DIS | 683 HFI1_RCVCTRL_NO_RHQ_DROP_DIS | 684 HFI1_RCVCTRL_NO_EGR_DROP_DIS, uctxt); 685 /* Clear the context's J_KEY */ 686 hfi1_clear_ctxt_jkey(dd, uctxt); 687 /* 688 * If a send context is allocated, reset context integrity 689 * checks to default and disable the send context. 690 */ 691 if (uctxt->sc) { 692 sc_disable(uctxt->sc); 693 set_pio_integrity(uctxt->sc); 694 } 695 696 hfi1_free_ctxt_rcv_groups(uctxt); 697 hfi1_clear_ctxt_pkey(dd, uctxt); 698 699 uctxt->event_flags = 0; 700 701 deallocate_ctxt(uctxt); 702 done: 703 mmdrop(fdata->mm); 704 kobject_put(&dd->kobj); 705 706 if (atomic_dec_and_test(&dd->user_refcount)) 707 complete(&dd->user_comp); 708 709 kfree(fdata); 710 return 0; 711 } 712 713 /* 714 * Convert kernel *virtual* addresses to physical addresses. 715 * This is used to vmalloc'ed addresses. 716 */ 717 static u64 kvirt_to_phys(void *addr) 718 { 719 struct page *page; 720 u64 paddr = 0; 721 722 page = vmalloc_to_page(addr); 723 if (page) 724 paddr = page_to_pfn(page) << PAGE_SHIFT; 725 726 return paddr; 727 } 728 729 /** 730 * complete_subctxt 731 * @fd: valid filedata pointer 732 * 733 * Sub-context info can only be set up after the base context 734 * has been completed. This is indicated by the clearing of the 735 * HFI1_CTXT_BASE_UINIT bit. 736 * 737 * Wait for the bit to be cleared, and then complete the subcontext 738 * initialization. 739 * 740 */ 741 static int complete_subctxt(struct hfi1_filedata *fd) 742 { 743 int ret; 744 unsigned long flags; 745 746 /* 747 * sub-context info can only be set up after the base context 748 * has been completed. 749 */ 750 ret = wait_event_interruptible( 751 fd->uctxt->wait, 752 !test_bit(HFI1_CTXT_BASE_UNINIT, &fd->uctxt->event_flags)); 753 754 if (test_bit(HFI1_CTXT_BASE_FAILED, &fd->uctxt->event_flags)) 755 ret = -ENOMEM; 756 757 /* Finish the sub-context init */ 758 if (!ret) { 759 fd->rec_cpu_num = hfi1_get_proc_affinity(fd->uctxt->numa_id); 760 ret = init_user_ctxt(fd, fd->uctxt); 761 } 762 763 if (ret) { 764 spin_lock_irqsave(&fd->dd->uctxt_lock, flags); 765 __clear_bit(fd->subctxt, fd->uctxt->in_use_ctxts); 766 spin_unlock_irqrestore(&fd->dd->uctxt_lock, flags); 767 hfi1_rcd_put(fd->uctxt); 768 fd->uctxt = NULL; 769 } 770 771 return ret; 772 } 773 774 static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len) 775 { 776 int ret; 777 unsigned int swmajor; 778 struct hfi1_ctxtdata *uctxt = NULL; 779 struct hfi1_user_info uinfo; 780 781 if (fd->uctxt) 782 return -EINVAL; 783 784 if (sizeof(uinfo) != len) 785 return -EINVAL; 786 787 if (copy_from_user(&uinfo, (void __user *)arg, sizeof(uinfo))) 788 return -EFAULT; 789 790 swmajor = uinfo.userversion >> 16; 791 if (swmajor != HFI1_USER_SWMAJOR) 792 return -ENODEV; 793 794 if (uinfo.subctxt_cnt > HFI1_MAX_SHARED_CTXTS) 795 return -EINVAL; 796 797 /* 798 * Acquire the mutex to protect against multiple creations of what 799 * could be a shared base context. 800 */ 801 mutex_lock(&hfi1_mutex); 802 /* 803 * Get a sub context if available (fd->uctxt will be set). 804 * ret < 0 error, 0 no context, 1 sub-context found 805 */ 806 ret = find_sub_ctxt(fd, &uinfo); 807 808 /* 809 * Allocate a base context if context sharing is not required or a 810 * sub context wasn't found. 811 */ 812 if (!ret) 813 ret = allocate_ctxt(fd, fd->dd, &uinfo, &uctxt); 814 815 mutex_unlock(&hfi1_mutex); 816 817 /* Depending on the context type, finish the appropriate init */ 818 switch (ret) { 819 case 0: 820 ret = setup_base_ctxt(fd, uctxt); 821 if (ret) 822 deallocate_ctxt(uctxt); 823 break; 824 case 1: 825 ret = complete_subctxt(fd); 826 break; 827 default: 828 break; 829 } 830 831 return ret; 832 } 833 834 /** 835 * match_ctxt 836 * @fd: valid filedata pointer 837 * @uinfo: user info to compare base context with 838 * @uctxt: context to compare uinfo to. 839 * 840 * Compare the given context with the given information to see if it 841 * can be used for a sub context. 842 */ 843 static int match_ctxt(struct hfi1_filedata *fd, 844 const struct hfi1_user_info *uinfo, 845 struct hfi1_ctxtdata *uctxt) 846 { 847 struct hfi1_devdata *dd = fd->dd; 848 unsigned long flags; 849 u16 subctxt; 850 851 /* Skip dynamically allocated kernel contexts */ 852 if (uctxt->sc && (uctxt->sc->type == SC_KERNEL)) 853 return 0; 854 855 /* Skip ctxt if it doesn't match the requested one */ 856 if (memcmp(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)) || 857 uctxt->jkey != generate_jkey(current_uid()) || 858 uctxt->subctxt_id != uinfo->subctxt_id || 859 uctxt->subctxt_cnt != uinfo->subctxt_cnt) 860 return 0; 861 862 /* Verify the sharing process matches the base */ 863 if (uctxt->userversion != uinfo->userversion) 864 return -EINVAL; 865 866 /* Find an unused sub context */ 867 spin_lock_irqsave(&dd->uctxt_lock, flags); 868 if (bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) { 869 /* context is being closed, do not use */ 870 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 871 return 0; 872 } 873 874 subctxt = find_first_zero_bit(uctxt->in_use_ctxts, 875 HFI1_MAX_SHARED_CTXTS); 876 if (subctxt >= uctxt->subctxt_cnt) { 877 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 878 return -EBUSY; 879 } 880 881 fd->subctxt = subctxt; 882 __set_bit(fd->subctxt, uctxt->in_use_ctxts); 883 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 884 885 fd->uctxt = uctxt; 886 hfi1_rcd_get(uctxt); 887 888 return 1; 889 } 890 891 /** 892 * find_sub_ctxt 893 * @fd: valid filedata pointer 894 * @uinfo: matching info to use to find a possible context to share. 895 * 896 * The hfi1_mutex must be held when this function is called. It is 897 * necessary to ensure serialized creation of shared contexts. 898 * 899 * Return: 900 * 0 No sub-context found 901 * 1 Subcontext found and allocated 902 * errno EINVAL (incorrect parameters) 903 * EBUSY (all sub contexts in use) 904 */ 905 static int find_sub_ctxt(struct hfi1_filedata *fd, 906 const struct hfi1_user_info *uinfo) 907 { 908 struct hfi1_ctxtdata *uctxt; 909 struct hfi1_devdata *dd = fd->dd; 910 u16 i; 911 int ret; 912 913 if (!uinfo->subctxt_cnt) 914 return 0; 915 916 for (i = dd->first_dyn_alloc_ctxt; i < dd->num_rcv_contexts; i++) { 917 uctxt = hfi1_rcd_get_by_index(dd, i); 918 if (uctxt) { 919 ret = match_ctxt(fd, uinfo, uctxt); 920 hfi1_rcd_put(uctxt); 921 /* value of != 0 will return */ 922 if (ret) 923 return ret; 924 } 925 } 926 927 return 0; 928 } 929 930 static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd, 931 struct hfi1_user_info *uinfo, 932 struct hfi1_ctxtdata **rcd) 933 { 934 struct hfi1_ctxtdata *uctxt; 935 int ret, numa; 936 937 if (dd->flags & HFI1_FROZEN) { 938 /* 939 * Pick an error that is unique from all other errors 940 * that are returned so the user process knows that 941 * it tried to allocate while the SPC was frozen. It 942 * it should be able to retry with success in a short 943 * while. 944 */ 945 return -EIO; 946 } 947 948 if (!dd->freectxts) 949 return -EBUSY; 950 951 /* 952 * If we don't have a NUMA node requested, preference is towards 953 * device NUMA node. 954 */ 955 fd->rec_cpu_num = hfi1_get_proc_affinity(dd->node); 956 if (fd->rec_cpu_num != -1) 957 numa = cpu_to_node(fd->rec_cpu_num); 958 else 959 numa = numa_node_id(); 960 ret = hfi1_create_ctxtdata(dd->pport, numa, &uctxt); 961 if (ret < 0) { 962 dd_dev_err(dd, "user ctxtdata allocation failed\n"); 963 return ret; 964 } 965 hfi1_cdbg(PROC, "[%u:%u] pid %u assigned to CPU %d (NUMA %u)", 966 uctxt->ctxt, fd->subctxt, current->pid, fd->rec_cpu_num, 967 uctxt->numa_id); 968 969 /* 970 * Allocate and enable a PIO send context. 971 */ 972 uctxt->sc = sc_alloc(dd, SC_USER, uctxt->rcvhdrqentsize, dd->node); 973 if (!uctxt->sc) { 974 ret = -ENOMEM; 975 goto ctxdata_free; 976 } 977 hfi1_cdbg(PROC, "allocated send context %u(%u)\n", uctxt->sc->sw_index, 978 uctxt->sc->hw_context); 979 ret = sc_enable(uctxt->sc); 980 if (ret) 981 goto ctxdata_free; 982 983 /* 984 * Setup sub context information if the user-level has requested 985 * sub contexts. 986 * This has to be done here so the rest of the sub-contexts find the 987 * proper base context. 988 * NOTE: _set_bit() can be used here because the context creation is 989 * protected by the mutex (rather than the spin_lock), and will be the 990 * very first instance of this context. 991 */ 992 __set_bit(0, uctxt->in_use_ctxts); 993 if (uinfo->subctxt_cnt) 994 init_subctxts(uctxt, uinfo); 995 uctxt->userversion = uinfo->userversion; 996 uctxt->flags = hfi1_cap_mask; /* save current flag state */ 997 init_waitqueue_head(&uctxt->wait); 998 strlcpy(uctxt->comm, current->comm, sizeof(uctxt->comm)); 999 memcpy(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)); 1000 uctxt->jkey = generate_jkey(current_uid()); 1001 hfi1_stats.sps_ctxts++; 1002 /* 1003 * Disable ASPM when there are open user/PSM contexts to avoid 1004 * issues with ASPM L1 exit latency 1005 */ 1006 if (dd->freectxts-- == dd->num_user_contexts) 1007 aspm_disable_all(dd); 1008 1009 *rcd = uctxt; 1010 1011 return 0; 1012 1013 ctxdata_free: 1014 hfi1_free_ctxt(uctxt); 1015 return ret; 1016 } 1017 1018 static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt) 1019 { 1020 mutex_lock(&hfi1_mutex); 1021 hfi1_stats.sps_ctxts--; 1022 if (++uctxt->dd->freectxts == uctxt->dd->num_user_contexts) 1023 aspm_enable_all(uctxt->dd); 1024 mutex_unlock(&hfi1_mutex); 1025 1026 hfi1_free_ctxt(uctxt); 1027 } 1028 1029 static void init_subctxts(struct hfi1_ctxtdata *uctxt, 1030 const struct hfi1_user_info *uinfo) 1031 { 1032 uctxt->subctxt_cnt = uinfo->subctxt_cnt; 1033 uctxt->subctxt_id = uinfo->subctxt_id; 1034 set_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags); 1035 } 1036 1037 static int setup_subctxt(struct hfi1_ctxtdata *uctxt) 1038 { 1039 int ret = 0; 1040 u16 num_subctxts = uctxt->subctxt_cnt; 1041 1042 uctxt->subctxt_uregbase = vmalloc_user(PAGE_SIZE); 1043 if (!uctxt->subctxt_uregbase) 1044 return -ENOMEM; 1045 1046 /* We can take the size of the RcvHdr Queue from the master */ 1047 uctxt->subctxt_rcvhdr_base = vmalloc_user(rcvhdrq_size(uctxt) * 1048 num_subctxts); 1049 if (!uctxt->subctxt_rcvhdr_base) { 1050 ret = -ENOMEM; 1051 goto bail_ureg; 1052 } 1053 1054 uctxt->subctxt_rcvegrbuf = vmalloc_user(uctxt->egrbufs.size * 1055 num_subctxts); 1056 if (!uctxt->subctxt_rcvegrbuf) { 1057 ret = -ENOMEM; 1058 goto bail_rhdr; 1059 } 1060 1061 return 0; 1062 1063 bail_rhdr: 1064 vfree(uctxt->subctxt_rcvhdr_base); 1065 uctxt->subctxt_rcvhdr_base = NULL; 1066 bail_ureg: 1067 vfree(uctxt->subctxt_uregbase); 1068 uctxt->subctxt_uregbase = NULL; 1069 1070 return ret; 1071 } 1072 1073 static void user_init(struct hfi1_ctxtdata *uctxt) 1074 { 1075 unsigned int rcvctrl_ops = 0; 1076 1077 /* initialize poll variables... */ 1078 uctxt->urgent = 0; 1079 uctxt->urgent_poll = 0; 1080 1081 /* 1082 * Now enable the ctxt for receive. 1083 * For chips that are set to DMA the tail register to memory 1084 * when they change (and when the update bit transitions from 1085 * 0 to 1. So for those chips, we turn it off and then back on. 1086 * This will (very briefly) affect any other open ctxts, but the 1087 * duration is very short, and therefore isn't an issue. We 1088 * explicitly set the in-memory tail copy to 0 beforehand, so we 1089 * don't have to wait to be sure the DMA update has happened 1090 * (chip resets head/tail to 0 on transition to enable). 1091 */ 1092 if (uctxt->rcvhdrtail_kvaddr) 1093 clear_rcvhdrtail(uctxt); 1094 1095 /* Setup J_KEY before enabling the context */ 1096 hfi1_set_ctxt_jkey(uctxt->dd, uctxt, uctxt->jkey); 1097 1098 rcvctrl_ops = HFI1_RCVCTRL_CTXT_ENB; 1099 if (HFI1_CAP_UGET_MASK(uctxt->flags, HDRSUPP)) 1100 rcvctrl_ops |= HFI1_RCVCTRL_TIDFLOW_ENB; 1101 /* 1102 * Ignore the bit in the flags for now until proper 1103 * support for multiple packet per rcv array entry is 1104 * added. 1105 */ 1106 if (!HFI1_CAP_UGET_MASK(uctxt->flags, MULTI_PKT_EGR)) 1107 rcvctrl_ops |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB; 1108 if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_EGR_FULL)) 1109 rcvctrl_ops |= HFI1_RCVCTRL_NO_EGR_DROP_ENB; 1110 if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_RHQ_FULL)) 1111 rcvctrl_ops |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB; 1112 /* 1113 * The RcvCtxtCtrl.TailUpd bit has to be explicitly written. 1114 * We can't rely on the correct value to be set from prior 1115 * uses of the chip or ctxt. Therefore, add the rcvctrl op 1116 * for both cases. 1117 */ 1118 if (HFI1_CAP_UGET_MASK(uctxt->flags, DMA_RTAIL)) 1119 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_ENB; 1120 else 1121 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_DIS; 1122 hfi1_rcvctrl(uctxt->dd, rcvctrl_ops, uctxt); 1123 } 1124 1125 static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len) 1126 { 1127 struct hfi1_ctxt_info cinfo; 1128 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1129 1130 if (sizeof(cinfo) != len) 1131 return -EINVAL; 1132 1133 memset(&cinfo, 0, sizeof(cinfo)); 1134 cinfo.runtime_flags = (((uctxt->flags >> HFI1_CAP_MISC_SHIFT) & 1135 HFI1_CAP_MISC_MASK) << HFI1_CAP_USER_SHIFT) | 1136 HFI1_CAP_UGET_MASK(uctxt->flags, MASK) | 1137 HFI1_CAP_KGET_MASK(uctxt->flags, K2U); 1138 /* adjust flag if this fd is not able to cache */ 1139 if (!fd->handler) 1140 cinfo.runtime_flags |= HFI1_CAP_TID_UNMAP; /* no caching */ 1141 1142 cinfo.num_active = hfi1_count_active_units(); 1143 cinfo.unit = uctxt->dd->unit; 1144 cinfo.ctxt = uctxt->ctxt; 1145 cinfo.subctxt = fd->subctxt; 1146 cinfo.rcvtids = roundup(uctxt->egrbufs.alloced, 1147 uctxt->dd->rcv_entries.group_size) + 1148 uctxt->expected_count; 1149 cinfo.credits = uctxt->sc->credits; 1150 cinfo.numa_node = uctxt->numa_id; 1151 cinfo.rec_cpu = fd->rec_cpu_num; 1152 cinfo.send_ctxt = uctxt->sc->hw_context; 1153 1154 cinfo.egrtids = uctxt->egrbufs.alloced; 1155 cinfo.rcvhdrq_cnt = uctxt->rcvhdrq_cnt; 1156 cinfo.rcvhdrq_entsize = uctxt->rcvhdrqentsize << 2; 1157 cinfo.sdma_ring_size = fd->cq->nentries; 1158 cinfo.rcvegr_size = uctxt->egrbufs.rcvtid_size; 1159 1160 trace_hfi1_ctxt_info(uctxt->dd, uctxt->ctxt, fd->subctxt, &cinfo); 1161 if (copy_to_user((void __user *)arg, &cinfo, len)) 1162 return -EFAULT; 1163 1164 return 0; 1165 } 1166 1167 static int init_user_ctxt(struct hfi1_filedata *fd, 1168 struct hfi1_ctxtdata *uctxt) 1169 { 1170 int ret; 1171 1172 ret = hfi1_user_sdma_alloc_queues(uctxt, fd); 1173 if (ret) 1174 return ret; 1175 1176 ret = hfi1_user_exp_rcv_init(fd, uctxt); 1177 if (ret) 1178 hfi1_user_sdma_free_queues(fd, uctxt); 1179 1180 return ret; 1181 } 1182 1183 static int setup_base_ctxt(struct hfi1_filedata *fd, 1184 struct hfi1_ctxtdata *uctxt) 1185 { 1186 struct hfi1_devdata *dd = uctxt->dd; 1187 int ret = 0; 1188 1189 hfi1_init_ctxt(uctxt->sc); 1190 1191 /* Now allocate the RcvHdr queue and eager buffers. */ 1192 ret = hfi1_create_rcvhdrq(dd, uctxt); 1193 if (ret) 1194 goto done; 1195 1196 ret = hfi1_setup_eagerbufs(uctxt); 1197 if (ret) 1198 goto done; 1199 1200 /* If sub-contexts are enabled, do the appropriate setup */ 1201 if (uctxt->subctxt_cnt) 1202 ret = setup_subctxt(uctxt); 1203 if (ret) 1204 goto done; 1205 1206 ret = hfi1_alloc_ctxt_rcv_groups(uctxt); 1207 if (ret) 1208 goto done; 1209 1210 ret = init_user_ctxt(fd, uctxt); 1211 if (ret) 1212 goto done; 1213 1214 user_init(uctxt); 1215 1216 /* Now that the context is set up, the fd can get a reference. */ 1217 fd->uctxt = uctxt; 1218 hfi1_rcd_get(uctxt); 1219 1220 done: 1221 if (uctxt->subctxt_cnt) { 1222 /* 1223 * On error, set the failed bit so sub-contexts will clean up 1224 * correctly. 1225 */ 1226 if (ret) 1227 set_bit(HFI1_CTXT_BASE_FAILED, &uctxt->event_flags); 1228 1229 /* 1230 * Base context is done (successfully or not), notify anybody 1231 * using a sub-context that is waiting for this completion. 1232 */ 1233 clear_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags); 1234 wake_up(&uctxt->wait); 1235 } 1236 1237 return ret; 1238 } 1239 1240 static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len) 1241 { 1242 struct hfi1_base_info binfo; 1243 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1244 struct hfi1_devdata *dd = uctxt->dd; 1245 unsigned offset; 1246 1247 trace_hfi1_uctxtdata(uctxt->dd, uctxt, fd->subctxt); 1248 1249 if (sizeof(binfo) != len) 1250 return -EINVAL; 1251 1252 memset(&binfo, 0, sizeof(binfo)); 1253 binfo.hw_version = dd->revision; 1254 binfo.sw_version = HFI1_KERN_SWVERSION; 1255 binfo.bthqp = kdeth_qp; 1256 binfo.jkey = uctxt->jkey; 1257 /* 1258 * If more than 64 contexts are enabled the allocated credit 1259 * return will span two or three contiguous pages. Since we only 1260 * map the page containing the context's credit return address, 1261 * we need to calculate the offset in the proper page. 1262 */ 1263 offset = ((u64)uctxt->sc->hw_free - 1264 (u64)dd->cr_base[uctxt->numa_id].va) % PAGE_SIZE; 1265 binfo.sc_credits_addr = HFI1_MMAP_TOKEN(PIO_CRED, uctxt->ctxt, 1266 fd->subctxt, offset); 1267 binfo.pio_bufbase = HFI1_MMAP_TOKEN(PIO_BUFS, uctxt->ctxt, 1268 fd->subctxt, 1269 uctxt->sc->base_addr); 1270 binfo.pio_bufbase_sop = HFI1_MMAP_TOKEN(PIO_BUFS_SOP, 1271 uctxt->ctxt, 1272 fd->subctxt, 1273 uctxt->sc->base_addr); 1274 binfo.rcvhdr_bufbase = HFI1_MMAP_TOKEN(RCV_HDRQ, uctxt->ctxt, 1275 fd->subctxt, 1276 uctxt->rcvhdrq); 1277 binfo.rcvegr_bufbase = HFI1_MMAP_TOKEN(RCV_EGRBUF, uctxt->ctxt, 1278 fd->subctxt, 1279 uctxt->egrbufs.rcvtids[0].dma); 1280 binfo.sdma_comp_bufbase = HFI1_MMAP_TOKEN(SDMA_COMP, uctxt->ctxt, 1281 fd->subctxt, 0); 1282 /* 1283 * user regs are at 1284 * (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE)) 1285 */ 1286 binfo.user_regbase = HFI1_MMAP_TOKEN(UREGS, uctxt->ctxt, 1287 fd->subctxt, 0); 1288 offset = offset_in_page((uctxt_offset(uctxt) + fd->subctxt) * 1289 sizeof(*dd->events)); 1290 binfo.events_bufbase = HFI1_MMAP_TOKEN(EVENTS, uctxt->ctxt, 1291 fd->subctxt, 1292 offset); 1293 binfo.status_bufbase = HFI1_MMAP_TOKEN(STATUS, uctxt->ctxt, 1294 fd->subctxt, 1295 dd->status); 1296 if (HFI1_CAP_IS_USET(DMA_RTAIL)) 1297 binfo.rcvhdrtail_base = HFI1_MMAP_TOKEN(RTAIL, uctxt->ctxt, 1298 fd->subctxt, 0); 1299 if (uctxt->subctxt_cnt) { 1300 binfo.subctxt_uregbase = HFI1_MMAP_TOKEN(SUBCTXT_UREGS, 1301 uctxt->ctxt, 1302 fd->subctxt, 0); 1303 binfo.subctxt_rcvhdrbuf = HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ, 1304 uctxt->ctxt, 1305 fd->subctxt, 0); 1306 binfo.subctxt_rcvegrbuf = HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF, 1307 uctxt->ctxt, 1308 fd->subctxt, 0); 1309 } 1310 1311 if (copy_to_user((void __user *)arg, &binfo, len)) 1312 return -EFAULT; 1313 1314 return 0; 1315 } 1316 1317 /** 1318 * user_exp_rcv_setup - Set up the given tid rcv list 1319 * @fd: file data of the current driver instance 1320 * @arg: ioctl argumnent for user space information 1321 * @len: length of data structure associated with ioctl command 1322 * 1323 * Wrapper to validate ioctl information before doing _rcv_setup. 1324 * 1325 */ 1326 static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg, 1327 u32 len) 1328 { 1329 int ret; 1330 unsigned long addr; 1331 struct hfi1_tid_info tinfo; 1332 1333 if (sizeof(tinfo) != len) 1334 return -EINVAL; 1335 1336 if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo)))) 1337 return -EFAULT; 1338 1339 ret = hfi1_user_exp_rcv_setup(fd, &tinfo); 1340 if (!ret) { 1341 /* 1342 * Copy the number of tidlist entries we used 1343 * and the length of the buffer we registered. 1344 */ 1345 addr = arg + offsetof(struct hfi1_tid_info, tidcnt); 1346 if (copy_to_user((void __user *)addr, &tinfo.tidcnt, 1347 sizeof(tinfo.tidcnt))) 1348 return -EFAULT; 1349 1350 addr = arg + offsetof(struct hfi1_tid_info, length); 1351 if (copy_to_user((void __user *)addr, &tinfo.length, 1352 sizeof(tinfo.length))) 1353 ret = -EFAULT; 1354 } 1355 1356 return ret; 1357 } 1358 1359 /** 1360 * user_exp_rcv_clear - Clear the given tid rcv list 1361 * @fd: file data of the current driver instance 1362 * @arg: ioctl argumnent for user space information 1363 * @len: length of data structure associated with ioctl command 1364 * 1365 * The hfi1_user_exp_rcv_clear() can be called from the error path. Because 1366 * of this, we need to use this wrapper to copy the user space information 1367 * before doing the clear. 1368 */ 1369 static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg, 1370 u32 len) 1371 { 1372 int ret; 1373 unsigned long addr; 1374 struct hfi1_tid_info tinfo; 1375 1376 if (sizeof(tinfo) != len) 1377 return -EINVAL; 1378 1379 if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo)))) 1380 return -EFAULT; 1381 1382 ret = hfi1_user_exp_rcv_clear(fd, &tinfo); 1383 if (!ret) { 1384 addr = arg + offsetof(struct hfi1_tid_info, tidcnt); 1385 if (copy_to_user((void __user *)addr, &tinfo.tidcnt, 1386 sizeof(tinfo.tidcnt))) 1387 return -EFAULT; 1388 } 1389 1390 return ret; 1391 } 1392 1393 /** 1394 * user_exp_rcv_invalid - Invalidate the given tid rcv list 1395 * @fd: file data of the current driver instance 1396 * @arg: ioctl argumnent for user space information 1397 * @len: length of data structure associated with ioctl command 1398 * 1399 * Wrapper to validate ioctl information before doing _rcv_invalid. 1400 * 1401 */ 1402 static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg, 1403 u32 len) 1404 { 1405 int ret; 1406 unsigned long addr; 1407 struct hfi1_tid_info tinfo; 1408 1409 if (sizeof(tinfo) != len) 1410 return -EINVAL; 1411 1412 if (!fd->invalid_tids) 1413 return -EINVAL; 1414 1415 if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo)))) 1416 return -EFAULT; 1417 1418 ret = hfi1_user_exp_rcv_invalid(fd, &tinfo); 1419 if (ret) 1420 return ret; 1421 1422 addr = arg + offsetof(struct hfi1_tid_info, tidcnt); 1423 if (copy_to_user((void __user *)addr, &tinfo.tidcnt, 1424 sizeof(tinfo.tidcnt))) 1425 ret = -EFAULT; 1426 1427 return ret; 1428 } 1429 1430 static __poll_t poll_urgent(struct file *fp, 1431 struct poll_table_struct *pt) 1432 { 1433 struct hfi1_filedata *fd = fp->private_data; 1434 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1435 struct hfi1_devdata *dd = uctxt->dd; 1436 __poll_t pollflag; 1437 1438 poll_wait(fp, &uctxt->wait, pt); 1439 1440 spin_lock_irq(&dd->uctxt_lock); 1441 if (uctxt->urgent != uctxt->urgent_poll) { 1442 pollflag = EPOLLIN | EPOLLRDNORM; 1443 uctxt->urgent_poll = uctxt->urgent; 1444 } else { 1445 pollflag = 0; 1446 set_bit(HFI1_CTXT_WAITING_URG, &uctxt->event_flags); 1447 } 1448 spin_unlock_irq(&dd->uctxt_lock); 1449 1450 return pollflag; 1451 } 1452 1453 static __poll_t poll_next(struct file *fp, 1454 struct poll_table_struct *pt) 1455 { 1456 struct hfi1_filedata *fd = fp->private_data; 1457 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1458 struct hfi1_devdata *dd = uctxt->dd; 1459 __poll_t pollflag; 1460 1461 poll_wait(fp, &uctxt->wait, pt); 1462 1463 spin_lock_irq(&dd->uctxt_lock); 1464 if (hdrqempty(uctxt)) { 1465 set_bit(HFI1_CTXT_WAITING_RCV, &uctxt->event_flags); 1466 hfi1_rcvctrl(dd, HFI1_RCVCTRL_INTRAVAIL_ENB, uctxt); 1467 pollflag = 0; 1468 } else { 1469 pollflag = EPOLLIN | EPOLLRDNORM; 1470 } 1471 spin_unlock_irq(&dd->uctxt_lock); 1472 1473 return pollflag; 1474 } 1475 1476 /* 1477 * Find all user contexts in use, and set the specified bit in their 1478 * event mask. 1479 * See also find_ctxt() for a similar use, that is specific to send buffers. 1480 */ 1481 int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit) 1482 { 1483 struct hfi1_ctxtdata *uctxt; 1484 struct hfi1_devdata *dd = ppd->dd; 1485 u16 ctxt; 1486 1487 if (!dd->events) 1488 return -EINVAL; 1489 1490 for (ctxt = dd->first_dyn_alloc_ctxt; ctxt < dd->num_rcv_contexts; 1491 ctxt++) { 1492 uctxt = hfi1_rcd_get_by_index(dd, ctxt); 1493 if (uctxt) { 1494 unsigned long *evs; 1495 int i; 1496 /* 1497 * subctxt_cnt is 0 if not shared, so do base 1498 * separately, first, then remaining subctxt, if any 1499 */ 1500 evs = dd->events + uctxt_offset(uctxt); 1501 set_bit(evtbit, evs); 1502 for (i = 1; i < uctxt->subctxt_cnt; i++) 1503 set_bit(evtbit, evs + i); 1504 hfi1_rcd_put(uctxt); 1505 } 1506 } 1507 1508 return 0; 1509 } 1510 1511 /** 1512 * manage_rcvq - manage a context's receive queue 1513 * @uctxt: the context 1514 * @subctxt: the sub-context 1515 * @start_stop: action to carry out 1516 * 1517 * start_stop == 0 disables receive on the context, for use in queue 1518 * overflow conditions. start_stop==1 re-enables, to be used to 1519 * re-init the software copy of the head register 1520 */ 1521 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt, 1522 unsigned long arg) 1523 { 1524 struct hfi1_devdata *dd = uctxt->dd; 1525 unsigned int rcvctrl_op; 1526 int start_stop; 1527 1528 if (subctxt) 1529 return 0; 1530 1531 if (get_user(start_stop, (int __user *)arg)) 1532 return -EFAULT; 1533 1534 /* atomically clear receive enable ctxt. */ 1535 if (start_stop) { 1536 /* 1537 * On enable, force in-memory copy of the tail register to 1538 * 0, so that protocol code doesn't have to worry about 1539 * whether or not the chip has yet updated the in-memory 1540 * copy or not on return from the system call. The chip 1541 * always resets it's tail register back to 0 on a 1542 * transition from disabled to enabled. 1543 */ 1544 if (uctxt->rcvhdrtail_kvaddr) 1545 clear_rcvhdrtail(uctxt); 1546 rcvctrl_op = HFI1_RCVCTRL_CTXT_ENB; 1547 } else { 1548 rcvctrl_op = HFI1_RCVCTRL_CTXT_DIS; 1549 } 1550 hfi1_rcvctrl(dd, rcvctrl_op, uctxt); 1551 /* always; new head should be equal to new tail; see above */ 1552 1553 return 0; 1554 } 1555 1556 /* 1557 * clear the event notifier events for this context. 1558 * User process then performs actions appropriate to bit having been 1559 * set, if desired, and checks again in future. 1560 */ 1561 static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt, 1562 unsigned long arg) 1563 { 1564 int i; 1565 struct hfi1_devdata *dd = uctxt->dd; 1566 unsigned long *evs; 1567 unsigned long events; 1568 1569 if (!dd->events) 1570 return 0; 1571 1572 if (get_user(events, (unsigned long __user *)arg)) 1573 return -EFAULT; 1574 1575 evs = dd->events + uctxt_offset(uctxt) + subctxt; 1576 1577 for (i = 0; i <= _HFI1_MAX_EVENT_BIT; i++) { 1578 if (!test_bit(i, &events)) 1579 continue; 1580 clear_bit(i, evs); 1581 } 1582 return 0; 1583 } 1584 1585 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg) 1586 { 1587 int i; 1588 struct hfi1_pportdata *ppd = uctxt->ppd; 1589 struct hfi1_devdata *dd = uctxt->dd; 1590 u16 pkey; 1591 1592 if (!HFI1_CAP_IS_USET(PKEY_CHECK)) 1593 return -EPERM; 1594 1595 if (get_user(pkey, (u16 __user *)arg)) 1596 return -EFAULT; 1597 1598 if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY) 1599 return -EINVAL; 1600 1601 for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) 1602 if (pkey == ppd->pkeys[i]) 1603 return hfi1_set_ctxt_pkey(dd, uctxt, pkey); 1604 1605 return -ENOENT; 1606 } 1607 1608 /** 1609 * ctxt_reset - Reset the user context 1610 * @uctxt: valid user context 1611 */ 1612 static int ctxt_reset(struct hfi1_ctxtdata *uctxt) 1613 { 1614 struct send_context *sc; 1615 struct hfi1_devdata *dd; 1616 int ret = 0; 1617 1618 if (!uctxt || !uctxt->dd || !uctxt->sc) 1619 return -EINVAL; 1620 1621 /* 1622 * There is no protection here. User level has to guarantee that 1623 * no one will be writing to the send context while it is being 1624 * re-initialized. If user level breaks that guarantee, it will 1625 * break it's own context and no one else's. 1626 */ 1627 dd = uctxt->dd; 1628 sc = uctxt->sc; 1629 1630 /* 1631 * Wait until the interrupt handler has marked the context as 1632 * halted or frozen. Report error if we time out. 1633 */ 1634 wait_event_interruptible_timeout( 1635 sc->halt_wait, (sc->flags & SCF_HALTED), 1636 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT)); 1637 if (!(sc->flags & SCF_HALTED)) 1638 return -ENOLCK; 1639 1640 /* 1641 * If the send context was halted due to a Freeze, wait until the 1642 * device has been "unfrozen" before resetting the context. 1643 */ 1644 if (sc->flags & SCF_FROZEN) { 1645 wait_event_interruptible_timeout( 1646 dd->event_queue, 1647 !(READ_ONCE(dd->flags) & HFI1_FROZEN), 1648 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT)); 1649 if (dd->flags & HFI1_FROZEN) 1650 return -ENOLCK; 1651 1652 if (dd->flags & HFI1_FORCED_FREEZE) 1653 /* 1654 * Don't allow context reset if we are into 1655 * forced freeze 1656 */ 1657 return -ENODEV; 1658 1659 sc_disable(sc); 1660 ret = sc_enable(sc); 1661 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB, uctxt); 1662 } else { 1663 ret = sc_restart(sc); 1664 } 1665 if (!ret) 1666 sc_return_credits(sc); 1667 1668 return ret; 1669 } 1670 1671 static void user_remove(struct hfi1_devdata *dd) 1672 { 1673 1674 hfi1_cdev_cleanup(&dd->user_cdev, &dd->user_device); 1675 } 1676 1677 static int user_add(struct hfi1_devdata *dd) 1678 { 1679 char name[10]; 1680 int ret; 1681 1682 snprintf(name, sizeof(name), "%s_%d", class_name(), dd->unit); 1683 ret = hfi1_cdev_init(dd->unit, name, &hfi1_file_ops, 1684 &dd->user_cdev, &dd->user_device, 1685 true, &dd->kobj); 1686 if (ret) 1687 user_remove(dd); 1688 1689 return ret; 1690 } 1691 1692 /* 1693 * Create per-unit files in /dev 1694 */ 1695 int hfi1_device_create(struct hfi1_devdata *dd) 1696 { 1697 return user_add(dd); 1698 } 1699 1700 /* 1701 * Remove per-unit files in /dev 1702 * void, core kernel returns no errors for this stuff 1703 */ 1704 void hfi1_device_remove(struct hfi1_devdata *dd) 1705 { 1706 user_remove(dd); 1707 } 1708