1 /* 2 * Copyright(c) 2015, 2016 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 #include <linux/poll.h> 48 #include <linux/cdev.h> 49 #include <linux/vmalloc.h> 50 #include <linux/io.h> 51 52 #include <rdma/ib.h> 53 54 #include "hfi.h" 55 #include "pio.h" 56 #include "device.h" 57 #include "common.h" 58 #include "trace.h" 59 #include "user_sdma.h" 60 #include "user_exp_rcv.h" 61 #include "eprom.h" 62 #include "aspm.h" 63 #include "mmu_rb.h" 64 65 #undef pr_fmt 66 #define pr_fmt(fmt) DRIVER_NAME ": " fmt 67 68 #define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */ 69 70 /* 71 * File operation functions 72 */ 73 static int hfi1_file_open(struct inode *, struct file *); 74 static int hfi1_file_close(struct inode *, struct file *); 75 static ssize_t hfi1_write_iter(struct kiocb *, struct iov_iter *); 76 static unsigned int hfi1_poll(struct file *, struct poll_table_struct *); 77 static int hfi1_file_mmap(struct file *, struct vm_area_struct *); 78 79 static u64 kvirt_to_phys(void *); 80 static int assign_ctxt(struct file *, struct hfi1_user_info *); 81 static int init_subctxts(struct hfi1_ctxtdata *, const struct hfi1_user_info *); 82 static int user_init(struct file *); 83 static int get_ctxt_info(struct file *, void __user *, __u32); 84 static int get_base_info(struct file *, void __user *, __u32); 85 static int setup_ctxt(struct file *); 86 static int setup_subctxt(struct hfi1_ctxtdata *); 87 static int get_user_context(struct file *, struct hfi1_user_info *, int); 88 static int find_shared_ctxt(struct file *, const struct hfi1_user_info *); 89 static int allocate_ctxt(struct file *, struct hfi1_devdata *, 90 struct hfi1_user_info *); 91 static unsigned int poll_urgent(struct file *, struct poll_table_struct *); 92 static unsigned int poll_next(struct file *, struct poll_table_struct *); 93 static int user_event_ack(struct hfi1_ctxtdata *, int, unsigned long); 94 static int set_ctxt_pkey(struct hfi1_ctxtdata *, unsigned, u16); 95 static int manage_rcvq(struct hfi1_ctxtdata *, unsigned, int); 96 static int vma_fault(struct vm_area_struct *, struct vm_fault *); 97 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd, 98 unsigned long arg); 99 100 static const struct file_operations hfi1_file_ops = { 101 .owner = THIS_MODULE, 102 .write_iter = hfi1_write_iter, 103 .open = hfi1_file_open, 104 .release = hfi1_file_close, 105 .unlocked_ioctl = hfi1_file_ioctl, 106 .poll = hfi1_poll, 107 .mmap = hfi1_file_mmap, 108 .llseek = noop_llseek, 109 }; 110 111 static struct vm_operations_struct vm_ops = { 112 .fault = vma_fault, 113 }; 114 115 /* 116 * Types of memories mapped into user processes' space 117 */ 118 enum mmap_types { 119 PIO_BUFS = 1, 120 PIO_BUFS_SOP, 121 PIO_CRED, 122 RCV_HDRQ, 123 RCV_EGRBUF, 124 UREGS, 125 EVENTS, 126 STATUS, 127 RTAIL, 128 SUBCTXT_UREGS, 129 SUBCTXT_RCV_HDRQ, 130 SUBCTXT_EGRBUF, 131 SDMA_COMP 132 }; 133 134 /* 135 * Masks and offsets defining the mmap tokens 136 */ 137 #define HFI1_MMAP_OFFSET_MASK 0xfffULL 138 #define HFI1_MMAP_OFFSET_SHIFT 0 139 #define HFI1_MMAP_SUBCTXT_MASK 0xfULL 140 #define HFI1_MMAP_SUBCTXT_SHIFT 12 141 #define HFI1_MMAP_CTXT_MASK 0xffULL 142 #define HFI1_MMAP_CTXT_SHIFT 16 143 #define HFI1_MMAP_TYPE_MASK 0xfULL 144 #define HFI1_MMAP_TYPE_SHIFT 24 145 #define HFI1_MMAP_MAGIC_MASK 0xffffffffULL 146 #define HFI1_MMAP_MAGIC_SHIFT 32 147 148 #define HFI1_MMAP_MAGIC 0xdabbad00 149 150 #define HFI1_MMAP_TOKEN_SET(field, val) \ 151 (((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT) 152 #define HFI1_MMAP_TOKEN_GET(field, token) \ 153 (((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK) 154 #define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr) \ 155 (HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \ 156 HFI1_MMAP_TOKEN_SET(TYPE, type) | \ 157 HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \ 158 HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \ 159 HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr)))) 160 161 #define dbg(fmt, ...) \ 162 pr_info(fmt, ##__VA_ARGS__) 163 164 static inline int is_valid_mmap(u64 token) 165 { 166 return (HFI1_MMAP_TOKEN_GET(MAGIC, token) == HFI1_MMAP_MAGIC); 167 } 168 169 static int hfi1_file_open(struct inode *inode, struct file *fp) 170 { 171 struct hfi1_filedata *fd; 172 struct hfi1_devdata *dd = container_of(inode->i_cdev, 173 struct hfi1_devdata, 174 user_cdev); 175 176 /* Just take a ref now. Not all opens result in a context assign */ 177 kobject_get(&dd->kobj); 178 179 /* The real work is performed later in assign_ctxt() */ 180 181 fd = kzalloc(sizeof(*fd), GFP_KERNEL); 182 183 if (fd) { 184 fd->rec_cpu_num = -1; /* no cpu affinity by default */ 185 fd->mm = current->mm; 186 atomic_inc(&fd->mm->mm_count); 187 } 188 189 fp->private_data = fd; 190 191 return fd ? 0 : -ENOMEM; 192 } 193 194 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd, 195 unsigned long arg) 196 { 197 struct hfi1_filedata *fd = fp->private_data; 198 struct hfi1_ctxtdata *uctxt = fd->uctxt; 199 struct hfi1_user_info uinfo; 200 struct hfi1_tid_info tinfo; 201 int ret = 0; 202 unsigned long addr; 203 int uval = 0; 204 unsigned long ul_uval = 0; 205 u16 uval16 = 0; 206 207 hfi1_cdbg(IOCTL, "IOCTL recv: 0x%x", cmd); 208 if (cmd != HFI1_IOCTL_ASSIGN_CTXT && 209 cmd != HFI1_IOCTL_GET_VERS && 210 !uctxt) 211 return -EINVAL; 212 213 switch (cmd) { 214 case HFI1_IOCTL_ASSIGN_CTXT: 215 if (uctxt) 216 return -EINVAL; 217 218 if (copy_from_user(&uinfo, 219 (struct hfi1_user_info __user *)arg, 220 sizeof(uinfo))) 221 return -EFAULT; 222 223 ret = assign_ctxt(fp, &uinfo); 224 if (ret < 0) 225 return ret; 226 ret = setup_ctxt(fp); 227 if (ret) 228 return ret; 229 ret = user_init(fp); 230 break; 231 case HFI1_IOCTL_CTXT_INFO: 232 ret = get_ctxt_info(fp, (void __user *)(unsigned long)arg, 233 sizeof(struct hfi1_ctxt_info)); 234 break; 235 case HFI1_IOCTL_USER_INFO: 236 ret = get_base_info(fp, (void __user *)(unsigned long)arg, 237 sizeof(struct hfi1_base_info)); 238 break; 239 case HFI1_IOCTL_CREDIT_UPD: 240 if (uctxt) 241 sc_return_credits(uctxt->sc); 242 break; 243 244 case HFI1_IOCTL_TID_UPDATE: 245 if (copy_from_user(&tinfo, 246 (struct hfi11_tid_info __user *)arg, 247 sizeof(tinfo))) 248 return -EFAULT; 249 250 ret = hfi1_user_exp_rcv_setup(fp, &tinfo); 251 if (!ret) { 252 /* 253 * Copy the number of tidlist entries we used 254 * and the length of the buffer we registered. 255 * These fields are adjacent in the structure so 256 * we can copy them at the same time. 257 */ 258 addr = arg + offsetof(struct hfi1_tid_info, tidcnt); 259 if (copy_to_user((void __user *)addr, &tinfo.tidcnt, 260 sizeof(tinfo.tidcnt) + 261 sizeof(tinfo.length))) 262 ret = -EFAULT; 263 } 264 break; 265 266 case HFI1_IOCTL_TID_FREE: 267 if (copy_from_user(&tinfo, 268 (struct hfi11_tid_info __user *)arg, 269 sizeof(tinfo))) 270 return -EFAULT; 271 272 ret = hfi1_user_exp_rcv_clear(fp, &tinfo); 273 if (ret) 274 break; 275 addr = arg + offsetof(struct hfi1_tid_info, tidcnt); 276 if (copy_to_user((void __user *)addr, &tinfo.tidcnt, 277 sizeof(tinfo.tidcnt))) 278 ret = -EFAULT; 279 break; 280 281 case HFI1_IOCTL_TID_INVAL_READ: 282 if (copy_from_user(&tinfo, 283 (struct hfi11_tid_info __user *)arg, 284 sizeof(tinfo))) 285 return -EFAULT; 286 287 ret = hfi1_user_exp_rcv_invalid(fp, &tinfo); 288 if (ret) 289 break; 290 addr = arg + offsetof(struct hfi1_tid_info, tidcnt); 291 if (copy_to_user((void __user *)addr, &tinfo.tidcnt, 292 sizeof(tinfo.tidcnt))) 293 ret = -EFAULT; 294 break; 295 296 case HFI1_IOCTL_RECV_CTRL: 297 ret = get_user(uval, (int __user *)arg); 298 if (ret != 0) 299 return -EFAULT; 300 ret = manage_rcvq(uctxt, fd->subctxt, uval); 301 break; 302 303 case HFI1_IOCTL_POLL_TYPE: 304 ret = get_user(uval, (int __user *)arg); 305 if (ret != 0) 306 return -EFAULT; 307 uctxt->poll_type = (typeof(uctxt->poll_type))uval; 308 break; 309 310 case HFI1_IOCTL_ACK_EVENT: 311 ret = get_user(ul_uval, (unsigned long __user *)arg); 312 if (ret != 0) 313 return -EFAULT; 314 ret = user_event_ack(uctxt, fd->subctxt, ul_uval); 315 break; 316 317 case HFI1_IOCTL_SET_PKEY: 318 ret = get_user(uval16, (u16 __user *)arg); 319 if (ret != 0) 320 return -EFAULT; 321 if (HFI1_CAP_IS_USET(PKEY_CHECK)) 322 ret = set_ctxt_pkey(uctxt, fd->subctxt, uval16); 323 else 324 return -EPERM; 325 break; 326 327 case HFI1_IOCTL_CTXT_RESET: { 328 struct send_context *sc; 329 struct hfi1_devdata *dd; 330 331 if (!uctxt || !uctxt->dd || !uctxt->sc) 332 return -EINVAL; 333 334 /* 335 * There is no protection here. User level has to 336 * guarantee that no one will be writing to the send 337 * context while it is being re-initialized. 338 * If user level breaks that guarantee, it will break 339 * it's own context and no one else's. 340 */ 341 dd = uctxt->dd; 342 sc = uctxt->sc; 343 /* 344 * Wait until the interrupt handler has marked the 345 * context as halted or frozen. Report error if we time 346 * out. 347 */ 348 wait_event_interruptible_timeout( 349 sc->halt_wait, (sc->flags & SCF_HALTED), 350 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT)); 351 if (!(sc->flags & SCF_HALTED)) 352 return -ENOLCK; 353 354 /* 355 * If the send context was halted due to a Freeze, 356 * wait until the device has been "unfrozen" before 357 * resetting the context. 358 */ 359 if (sc->flags & SCF_FROZEN) { 360 wait_event_interruptible_timeout( 361 dd->event_queue, 362 !(ACCESS_ONCE(dd->flags) & HFI1_FROZEN), 363 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT)); 364 if (dd->flags & HFI1_FROZEN) 365 return -ENOLCK; 366 367 if (dd->flags & HFI1_FORCED_FREEZE) 368 /* 369 * Don't allow context reset if we are into 370 * forced freeze 371 */ 372 return -ENODEV; 373 374 sc_disable(sc); 375 ret = sc_enable(sc); 376 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB, 377 uctxt->ctxt); 378 } else { 379 ret = sc_restart(sc); 380 } 381 if (!ret) 382 sc_return_credits(sc); 383 break; 384 } 385 386 case HFI1_IOCTL_GET_VERS: 387 uval = HFI1_USER_SWVERSION; 388 if (put_user(uval, (int __user *)arg)) 389 return -EFAULT; 390 break; 391 392 default: 393 return -EINVAL; 394 } 395 396 return ret; 397 } 398 399 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from) 400 { 401 struct hfi1_filedata *fd = kiocb->ki_filp->private_data; 402 struct hfi1_user_sdma_pkt_q *pq = fd->pq; 403 struct hfi1_user_sdma_comp_q *cq = fd->cq; 404 int done = 0, reqs = 0; 405 unsigned long dim = from->nr_segs; 406 407 if (!cq || !pq) 408 return -EIO; 409 410 if (!iter_is_iovec(from) || !dim) 411 return -EINVAL; 412 413 hfi1_cdbg(SDMA, "SDMA request from %u:%u (%lu)", 414 fd->uctxt->ctxt, fd->subctxt, dim); 415 416 if (atomic_read(&pq->n_reqs) == pq->n_max_reqs) 417 return -ENOSPC; 418 419 while (dim) { 420 int ret; 421 unsigned long count = 0; 422 423 ret = hfi1_user_sdma_process_request( 424 kiocb->ki_filp, (struct iovec *)(from->iov + done), 425 dim, &count); 426 if (ret) { 427 reqs = ret; 428 break; 429 } 430 dim -= count; 431 done += count; 432 reqs++; 433 } 434 435 return reqs; 436 } 437 438 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma) 439 { 440 struct hfi1_filedata *fd = fp->private_data; 441 struct hfi1_ctxtdata *uctxt = fd->uctxt; 442 struct hfi1_devdata *dd; 443 unsigned long flags, pfn; 444 u64 token = vma->vm_pgoff << PAGE_SHIFT, 445 memaddr = 0; 446 u8 subctxt, mapio = 0, vmf = 0, type; 447 ssize_t memlen = 0; 448 int ret = 0; 449 u16 ctxt; 450 451 if (!is_valid_mmap(token) || !uctxt || 452 !(vma->vm_flags & VM_SHARED)) { 453 ret = -EINVAL; 454 goto done; 455 } 456 dd = uctxt->dd; 457 ctxt = HFI1_MMAP_TOKEN_GET(CTXT, token); 458 subctxt = HFI1_MMAP_TOKEN_GET(SUBCTXT, token); 459 type = HFI1_MMAP_TOKEN_GET(TYPE, token); 460 if (ctxt != uctxt->ctxt || subctxt != fd->subctxt) { 461 ret = -EINVAL; 462 goto done; 463 } 464 465 flags = vma->vm_flags; 466 467 switch (type) { 468 case PIO_BUFS: 469 case PIO_BUFS_SOP: 470 memaddr = ((dd->physaddr + TXE_PIO_SEND) + 471 /* chip pio base */ 472 (uctxt->sc->hw_context * BIT(16))) + 473 /* 64K PIO space / ctxt */ 474 (type == PIO_BUFS_SOP ? 475 (TXE_PIO_SIZE / 2) : 0); /* sop? */ 476 /* 477 * Map only the amount allocated to the context, not the 478 * entire available context's PIO space. 479 */ 480 memlen = PAGE_ALIGN(uctxt->sc->credits * PIO_BLOCK_SIZE); 481 flags &= ~VM_MAYREAD; 482 flags |= VM_DONTCOPY | VM_DONTEXPAND; 483 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); 484 mapio = 1; 485 break; 486 case PIO_CRED: 487 if (flags & VM_WRITE) { 488 ret = -EPERM; 489 goto done; 490 } 491 /* 492 * The credit return location for this context could be on the 493 * second or third page allocated for credit returns (if number 494 * of enabled contexts > 64 and 128 respectively). 495 */ 496 memaddr = dd->cr_base[uctxt->numa_id].pa + 497 (((u64)uctxt->sc->hw_free - 498 (u64)dd->cr_base[uctxt->numa_id].va) & PAGE_MASK); 499 memlen = PAGE_SIZE; 500 flags &= ~VM_MAYWRITE; 501 flags |= VM_DONTCOPY | VM_DONTEXPAND; 502 /* 503 * The driver has already allocated memory for credit 504 * returns and programmed it into the chip. Has that 505 * memory been flagged as non-cached? 506 */ 507 /* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */ 508 mapio = 1; 509 break; 510 case RCV_HDRQ: 511 memaddr = uctxt->rcvhdrq_phys; 512 memlen = uctxt->rcvhdrq_size; 513 break; 514 case RCV_EGRBUF: { 515 unsigned long addr; 516 int i; 517 /* 518 * The RcvEgr buffer need to be handled differently 519 * as multiple non-contiguous pages need to be mapped 520 * into the user process. 521 */ 522 memlen = uctxt->egrbufs.size; 523 if ((vma->vm_end - vma->vm_start) != memlen) { 524 dd_dev_err(dd, "Eager buffer map size invalid (%lu != %lu)\n", 525 (vma->vm_end - vma->vm_start), memlen); 526 ret = -EINVAL; 527 goto done; 528 } 529 if (vma->vm_flags & VM_WRITE) { 530 ret = -EPERM; 531 goto done; 532 } 533 vma->vm_flags &= ~VM_MAYWRITE; 534 addr = vma->vm_start; 535 for (i = 0 ; i < uctxt->egrbufs.numbufs; i++) { 536 ret = remap_pfn_range( 537 vma, addr, 538 uctxt->egrbufs.buffers[i].phys >> PAGE_SHIFT, 539 uctxt->egrbufs.buffers[i].len, 540 vma->vm_page_prot); 541 if (ret < 0) 542 goto done; 543 addr += uctxt->egrbufs.buffers[i].len; 544 } 545 ret = 0; 546 goto done; 547 } 548 case UREGS: 549 /* 550 * Map only the page that contains this context's user 551 * registers. 552 */ 553 memaddr = (unsigned long) 554 (dd->physaddr + RXE_PER_CONTEXT_USER) 555 + (uctxt->ctxt * RXE_PER_CONTEXT_SIZE); 556 /* 557 * TidFlow table is on the same page as the rest of the 558 * user registers. 559 */ 560 memlen = PAGE_SIZE; 561 flags |= VM_DONTCOPY | VM_DONTEXPAND; 562 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 563 mapio = 1; 564 break; 565 case EVENTS: 566 /* 567 * Use the page where this context's flags are. User level 568 * knows where it's own bitmap is within the page. 569 */ 570 memaddr = (unsigned long)(dd->events + 571 ((uctxt->ctxt - dd->first_user_ctxt) * 572 HFI1_MAX_SHARED_CTXTS)) & PAGE_MASK; 573 memlen = PAGE_SIZE; 574 /* 575 * v3.7 removes VM_RESERVED but the effect is kept by 576 * using VM_IO. 577 */ 578 flags |= VM_IO | VM_DONTEXPAND; 579 vmf = 1; 580 break; 581 case STATUS: 582 memaddr = kvirt_to_phys((void *)dd->status); 583 memlen = PAGE_SIZE; 584 flags |= VM_IO | VM_DONTEXPAND; 585 break; 586 case RTAIL: 587 if (!HFI1_CAP_IS_USET(DMA_RTAIL)) { 588 /* 589 * If the memory allocation failed, the context alloc 590 * also would have failed, so we would never get here 591 */ 592 ret = -EINVAL; 593 goto done; 594 } 595 if (flags & VM_WRITE) { 596 ret = -EPERM; 597 goto done; 598 } 599 memaddr = uctxt->rcvhdrqtailaddr_phys; 600 memlen = PAGE_SIZE; 601 flags &= ~VM_MAYWRITE; 602 break; 603 case SUBCTXT_UREGS: 604 memaddr = (u64)uctxt->subctxt_uregbase; 605 memlen = PAGE_SIZE; 606 flags |= VM_IO | VM_DONTEXPAND; 607 vmf = 1; 608 break; 609 case SUBCTXT_RCV_HDRQ: 610 memaddr = (u64)uctxt->subctxt_rcvhdr_base; 611 memlen = uctxt->rcvhdrq_size * uctxt->subctxt_cnt; 612 flags |= VM_IO | VM_DONTEXPAND; 613 vmf = 1; 614 break; 615 case SUBCTXT_EGRBUF: 616 memaddr = (u64)uctxt->subctxt_rcvegrbuf; 617 memlen = uctxt->egrbufs.size * uctxt->subctxt_cnt; 618 flags |= VM_IO | VM_DONTEXPAND; 619 flags &= ~VM_MAYWRITE; 620 vmf = 1; 621 break; 622 case SDMA_COMP: { 623 struct hfi1_user_sdma_comp_q *cq = fd->cq; 624 625 if (!cq) { 626 ret = -EFAULT; 627 goto done; 628 } 629 memaddr = (u64)cq->comps; 630 memlen = PAGE_ALIGN(sizeof(*cq->comps) * cq->nentries); 631 flags |= VM_IO | VM_DONTEXPAND; 632 vmf = 1; 633 break; 634 } 635 default: 636 ret = -EINVAL; 637 break; 638 } 639 640 if ((vma->vm_end - vma->vm_start) != memlen) { 641 hfi1_cdbg(PROC, "%u:%u Memory size mismatch %lu:%lu", 642 uctxt->ctxt, fd->subctxt, 643 (vma->vm_end - vma->vm_start), memlen); 644 ret = -EINVAL; 645 goto done; 646 } 647 648 vma->vm_flags = flags; 649 hfi1_cdbg(PROC, 650 "%u:%u type:%u io/vf:%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx\n", 651 ctxt, subctxt, type, mapio, vmf, memaddr, memlen, 652 vma->vm_end - vma->vm_start, vma->vm_flags); 653 pfn = (unsigned long)(memaddr >> PAGE_SHIFT); 654 if (vmf) { 655 vma->vm_pgoff = pfn; 656 vma->vm_ops = &vm_ops; 657 ret = 0; 658 } else if (mapio) { 659 ret = io_remap_pfn_range(vma, vma->vm_start, pfn, memlen, 660 vma->vm_page_prot); 661 } else { 662 ret = remap_pfn_range(vma, vma->vm_start, pfn, memlen, 663 vma->vm_page_prot); 664 } 665 done: 666 return ret; 667 } 668 669 /* 670 * Local (non-chip) user memory is not mapped right away but as it is 671 * accessed by the user-level code. 672 */ 673 static int vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 674 { 675 struct page *page; 676 677 page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT)); 678 if (!page) 679 return VM_FAULT_SIGBUS; 680 681 get_page(page); 682 vmf->page = page; 683 684 return 0; 685 } 686 687 static unsigned int hfi1_poll(struct file *fp, struct poll_table_struct *pt) 688 { 689 struct hfi1_ctxtdata *uctxt; 690 unsigned pollflag; 691 692 uctxt = ((struct hfi1_filedata *)fp->private_data)->uctxt; 693 if (!uctxt) 694 pollflag = POLLERR; 695 else if (uctxt->poll_type == HFI1_POLL_TYPE_URGENT) 696 pollflag = poll_urgent(fp, pt); 697 else if (uctxt->poll_type == HFI1_POLL_TYPE_ANYRCV) 698 pollflag = poll_next(fp, pt); 699 else /* invalid */ 700 pollflag = POLLERR; 701 702 return pollflag; 703 } 704 705 static int hfi1_file_close(struct inode *inode, struct file *fp) 706 { 707 struct hfi1_filedata *fdata = fp->private_data; 708 struct hfi1_ctxtdata *uctxt = fdata->uctxt; 709 struct hfi1_devdata *dd = container_of(inode->i_cdev, 710 struct hfi1_devdata, 711 user_cdev); 712 unsigned long flags, *ev; 713 714 fp->private_data = NULL; 715 716 if (!uctxt) 717 goto done; 718 719 hfi1_cdbg(PROC, "freeing ctxt %u:%u", uctxt->ctxt, fdata->subctxt); 720 mutex_lock(&hfi1_mutex); 721 722 flush_wc(); 723 /* drain user sdma queue */ 724 hfi1_user_sdma_free_queues(fdata); 725 726 /* release the cpu */ 727 hfi1_put_proc_affinity(fdata->rec_cpu_num); 728 729 /* 730 * Clear any left over, unhandled events so the next process that 731 * gets this context doesn't get confused. 732 */ 733 ev = dd->events + ((uctxt->ctxt - dd->first_user_ctxt) * 734 HFI1_MAX_SHARED_CTXTS) + fdata->subctxt; 735 *ev = 0; 736 737 if (--uctxt->cnt) { 738 uctxt->active_slaves &= ~(1 << fdata->subctxt); 739 mutex_unlock(&hfi1_mutex); 740 goto done; 741 } 742 743 spin_lock_irqsave(&dd->uctxt_lock, flags); 744 /* 745 * Disable receive context and interrupt available, reset all 746 * RcvCtxtCtrl bits to default values. 747 */ 748 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS | 749 HFI1_RCVCTRL_TIDFLOW_DIS | 750 HFI1_RCVCTRL_INTRAVAIL_DIS | 751 HFI1_RCVCTRL_TAILUPD_DIS | 752 HFI1_RCVCTRL_ONE_PKT_EGR_DIS | 753 HFI1_RCVCTRL_NO_RHQ_DROP_DIS | 754 HFI1_RCVCTRL_NO_EGR_DROP_DIS, uctxt->ctxt); 755 /* Clear the context's J_KEY */ 756 hfi1_clear_ctxt_jkey(dd, uctxt->ctxt); 757 /* 758 * Reset context integrity checks to default. 759 * (writes to CSRs probably belong in chip.c) 760 */ 761 write_kctxt_csr(dd, uctxt->sc->hw_context, SEND_CTXT_CHECK_ENABLE, 762 hfi1_pkt_default_send_ctxt_mask(dd, uctxt->sc->type)); 763 sc_disable(uctxt->sc); 764 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 765 766 dd->rcd[uctxt->ctxt] = NULL; 767 768 hfi1_user_exp_rcv_free(fdata); 769 hfi1_clear_ctxt_pkey(dd, uctxt->ctxt); 770 771 uctxt->rcvwait_to = 0; 772 uctxt->piowait_to = 0; 773 uctxt->rcvnowait = 0; 774 uctxt->pionowait = 0; 775 uctxt->event_flags = 0; 776 777 hfi1_stats.sps_ctxts--; 778 if (++dd->freectxts == dd->num_user_contexts) 779 aspm_enable_all(dd); 780 mutex_unlock(&hfi1_mutex); 781 hfi1_free_ctxtdata(dd, uctxt); 782 done: 783 mmdrop(fdata->mm); 784 kobject_put(&dd->kobj); 785 kfree(fdata); 786 return 0; 787 } 788 789 /* 790 * Convert kernel *virtual* addresses to physical addresses. 791 * This is used to vmalloc'ed addresses. 792 */ 793 static u64 kvirt_to_phys(void *addr) 794 { 795 struct page *page; 796 u64 paddr = 0; 797 798 page = vmalloc_to_page(addr); 799 if (page) 800 paddr = page_to_pfn(page) << PAGE_SHIFT; 801 802 return paddr; 803 } 804 805 static int assign_ctxt(struct file *fp, struct hfi1_user_info *uinfo) 806 { 807 int i_minor, ret = 0; 808 unsigned int swmajor, swminor; 809 810 swmajor = uinfo->userversion >> 16; 811 if (swmajor != HFI1_USER_SWMAJOR) { 812 ret = -ENODEV; 813 goto done; 814 } 815 816 swminor = uinfo->userversion & 0xffff; 817 818 mutex_lock(&hfi1_mutex); 819 /* First, lets check if we need to setup a shared context? */ 820 if (uinfo->subctxt_cnt) { 821 struct hfi1_filedata *fd = fp->private_data; 822 823 ret = find_shared_ctxt(fp, uinfo); 824 if (ret < 0) 825 goto done_unlock; 826 if (ret) { 827 fd->rec_cpu_num = 828 hfi1_get_proc_affinity(fd->uctxt->numa_id); 829 } 830 } 831 832 /* 833 * We execute the following block if we couldn't find a 834 * shared context or if context sharing is not required. 835 */ 836 if (!ret) { 837 i_minor = iminor(file_inode(fp)) - HFI1_USER_MINOR_BASE; 838 ret = get_user_context(fp, uinfo, i_minor); 839 } 840 done_unlock: 841 mutex_unlock(&hfi1_mutex); 842 done: 843 return ret; 844 } 845 846 static int get_user_context(struct file *fp, struct hfi1_user_info *uinfo, 847 int devno) 848 { 849 struct hfi1_devdata *dd = NULL; 850 int devmax, npresent, nup; 851 852 devmax = hfi1_count_units(&npresent, &nup); 853 if (!npresent) 854 return -ENXIO; 855 856 if (!nup) 857 return -ENETDOWN; 858 859 dd = hfi1_lookup(devno); 860 if (!dd) 861 return -ENODEV; 862 else if (!dd->freectxts) 863 return -EBUSY; 864 865 return allocate_ctxt(fp, dd, uinfo); 866 } 867 868 static int find_shared_ctxt(struct file *fp, 869 const struct hfi1_user_info *uinfo) 870 { 871 int devmax, ndev, i; 872 int ret = 0; 873 struct hfi1_filedata *fd = fp->private_data; 874 875 devmax = hfi1_count_units(NULL, NULL); 876 877 for (ndev = 0; ndev < devmax; ndev++) { 878 struct hfi1_devdata *dd = hfi1_lookup(ndev); 879 880 if (!(dd && (dd->flags & HFI1_PRESENT) && dd->kregbase)) 881 continue; 882 for (i = dd->first_user_ctxt; i < dd->num_rcv_contexts; i++) { 883 struct hfi1_ctxtdata *uctxt = dd->rcd[i]; 884 885 /* Skip ctxts which are not yet open */ 886 if (!uctxt || !uctxt->cnt) 887 continue; 888 /* Skip ctxt if it doesn't match the requested one */ 889 if (memcmp(uctxt->uuid, uinfo->uuid, 890 sizeof(uctxt->uuid)) || 891 uctxt->jkey != generate_jkey(current_uid()) || 892 uctxt->subctxt_id != uinfo->subctxt_id || 893 uctxt->subctxt_cnt != uinfo->subctxt_cnt) 894 continue; 895 896 /* Verify the sharing process matches the master */ 897 if (uctxt->userversion != uinfo->userversion || 898 uctxt->cnt >= uctxt->subctxt_cnt) { 899 ret = -EINVAL; 900 goto done; 901 } 902 fd->uctxt = uctxt; 903 fd->subctxt = uctxt->cnt++; 904 uctxt->active_slaves |= 1 << fd->subctxt; 905 ret = 1; 906 goto done; 907 } 908 } 909 910 done: 911 return ret; 912 } 913 914 static int allocate_ctxt(struct file *fp, struct hfi1_devdata *dd, 915 struct hfi1_user_info *uinfo) 916 { 917 struct hfi1_filedata *fd = fp->private_data; 918 struct hfi1_ctxtdata *uctxt; 919 unsigned ctxt; 920 int ret, numa; 921 922 if (dd->flags & HFI1_FROZEN) { 923 /* 924 * Pick an error that is unique from all other errors 925 * that are returned so the user process knows that 926 * it tried to allocate while the SPC was frozen. It 927 * it should be able to retry with success in a short 928 * while. 929 */ 930 return -EIO; 931 } 932 933 for (ctxt = dd->first_user_ctxt; ctxt < dd->num_rcv_contexts; ctxt++) 934 if (!dd->rcd[ctxt]) 935 break; 936 937 if (ctxt == dd->num_rcv_contexts) 938 return -EBUSY; 939 940 /* 941 * If we don't have a NUMA node requested, preference is towards 942 * device NUMA node. 943 */ 944 fd->rec_cpu_num = hfi1_get_proc_affinity(dd->node); 945 if (fd->rec_cpu_num != -1) 946 numa = cpu_to_node(fd->rec_cpu_num); 947 else 948 numa = numa_node_id(); 949 uctxt = hfi1_create_ctxtdata(dd->pport, ctxt, numa); 950 if (!uctxt) { 951 dd_dev_err(dd, 952 "Unable to allocate ctxtdata memory, failing open\n"); 953 return -ENOMEM; 954 } 955 hfi1_cdbg(PROC, "[%u:%u] pid %u assigned to CPU %d (NUMA %u)", 956 uctxt->ctxt, fd->subctxt, current->pid, fd->rec_cpu_num, 957 uctxt->numa_id); 958 959 /* 960 * Allocate and enable a PIO send context. 961 */ 962 uctxt->sc = sc_alloc(dd, SC_USER, uctxt->rcvhdrqentsize, 963 uctxt->dd->node); 964 if (!uctxt->sc) 965 return -ENOMEM; 966 967 hfi1_cdbg(PROC, "allocated send context %u(%u)\n", uctxt->sc->sw_index, 968 uctxt->sc->hw_context); 969 ret = sc_enable(uctxt->sc); 970 if (ret) 971 return ret; 972 /* 973 * Setup shared context resources if the user-level has requested 974 * shared contexts and this is the 'master' process. 975 * This has to be done here so the rest of the sub-contexts find the 976 * proper master. 977 */ 978 if (uinfo->subctxt_cnt && !fd->subctxt) { 979 ret = init_subctxts(uctxt, uinfo); 980 /* 981 * On error, we don't need to disable and de-allocate the 982 * send context because it will be done during file close 983 */ 984 if (ret) 985 return ret; 986 } 987 uctxt->userversion = uinfo->userversion; 988 uctxt->flags = hfi1_cap_mask; /* save current flag state */ 989 init_waitqueue_head(&uctxt->wait); 990 strlcpy(uctxt->comm, current->comm, sizeof(uctxt->comm)); 991 memcpy(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)); 992 uctxt->jkey = generate_jkey(current_uid()); 993 INIT_LIST_HEAD(&uctxt->sdma_queues); 994 spin_lock_init(&uctxt->sdma_qlock); 995 hfi1_stats.sps_ctxts++; 996 /* 997 * Disable ASPM when there are open user/PSM contexts to avoid 998 * issues with ASPM L1 exit latency 999 */ 1000 if (dd->freectxts-- == dd->num_user_contexts) 1001 aspm_disable_all(dd); 1002 fd->uctxt = uctxt; 1003 1004 return 0; 1005 } 1006 1007 static int init_subctxts(struct hfi1_ctxtdata *uctxt, 1008 const struct hfi1_user_info *uinfo) 1009 { 1010 unsigned num_subctxts; 1011 1012 num_subctxts = uinfo->subctxt_cnt; 1013 if (num_subctxts > HFI1_MAX_SHARED_CTXTS) 1014 return -EINVAL; 1015 1016 uctxt->subctxt_cnt = uinfo->subctxt_cnt; 1017 uctxt->subctxt_id = uinfo->subctxt_id; 1018 uctxt->active_slaves = 1; 1019 uctxt->redirect_seq_cnt = 1; 1020 set_bit(HFI1_CTXT_MASTER_UNINIT, &uctxt->event_flags); 1021 1022 return 0; 1023 } 1024 1025 static int setup_subctxt(struct hfi1_ctxtdata *uctxt) 1026 { 1027 int ret = 0; 1028 unsigned num_subctxts = uctxt->subctxt_cnt; 1029 1030 uctxt->subctxt_uregbase = vmalloc_user(PAGE_SIZE); 1031 if (!uctxt->subctxt_uregbase) { 1032 ret = -ENOMEM; 1033 goto bail; 1034 } 1035 /* We can take the size of the RcvHdr Queue from the master */ 1036 uctxt->subctxt_rcvhdr_base = vmalloc_user(uctxt->rcvhdrq_size * 1037 num_subctxts); 1038 if (!uctxt->subctxt_rcvhdr_base) { 1039 ret = -ENOMEM; 1040 goto bail_ureg; 1041 } 1042 1043 uctxt->subctxt_rcvegrbuf = vmalloc_user(uctxt->egrbufs.size * 1044 num_subctxts); 1045 if (!uctxt->subctxt_rcvegrbuf) { 1046 ret = -ENOMEM; 1047 goto bail_rhdr; 1048 } 1049 goto bail; 1050 bail_rhdr: 1051 vfree(uctxt->subctxt_rcvhdr_base); 1052 bail_ureg: 1053 vfree(uctxt->subctxt_uregbase); 1054 uctxt->subctxt_uregbase = NULL; 1055 bail: 1056 return ret; 1057 } 1058 1059 static int user_init(struct file *fp) 1060 { 1061 unsigned int rcvctrl_ops = 0; 1062 struct hfi1_filedata *fd = fp->private_data; 1063 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1064 1065 /* make sure that the context has already been setup */ 1066 if (!test_bit(HFI1_CTXT_SETUP_DONE, &uctxt->event_flags)) 1067 return -EFAULT; 1068 1069 /* initialize poll variables... */ 1070 uctxt->urgent = 0; 1071 uctxt->urgent_poll = 0; 1072 1073 /* 1074 * Now enable the ctxt for receive. 1075 * For chips that are set to DMA the tail register to memory 1076 * when they change (and when the update bit transitions from 1077 * 0 to 1. So for those chips, we turn it off and then back on. 1078 * This will (very briefly) affect any other open ctxts, but the 1079 * duration is very short, and therefore isn't an issue. We 1080 * explicitly set the in-memory tail copy to 0 beforehand, so we 1081 * don't have to wait to be sure the DMA update has happened 1082 * (chip resets head/tail to 0 on transition to enable). 1083 */ 1084 if (uctxt->rcvhdrtail_kvaddr) 1085 clear_rcvhdrtail(uctxt); 1086 1087 /* Setup J_KEY before enabling the context */ 1088 hfi1_set_ctxt_jkey(uctxt->dd, uctxt->ctxt, uctxt->jkey); 1089 1090 rcvctrl_ops = HFI1_RCVCTRL_CTXT_ENB; 1091 if (HFI1_CAP_UGET_MASK(uctxt->flags, HDRSUPP)) 1092 rcvctrl_ops |= HFI1_RCVCTRL_TIDFLOW_ENB; 1093 /* 1094 * Ignore the bit in the flags for now until proper 1095 * support for multiple packet per rcv array entry is 1096 * added. 1097 */ 1098 if (!HFI1_CAP_UGET_MASK(uctxt->flags, MULTI_PKT_EGR)) 1099 rcvctrl_ops |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB; 1100 if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_EGR_FULL)) 1101 rcvctrl_ops |= HFI1_RCVCTRL_NO_EGR_DROP_ENB; 1102 if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_RHQ_FULL)) 1103 rcvctrl_ops |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB; 1104 /* 1105 * The RcvCtxtCtrl.TailUpd bit has to be explicitly written. 1106 * We can't rely on the correct value to be set from prior 1107 * uses of the chip or ctxt. Therefore, add the rcvctrl op 1108 * for both cases. 1109 */ 1110 if (HFI1_CAP_UGET_MASK(uctxt->flags, DMA_RTAIL)) 1111 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_ENB; 1112 else 1113 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_DIS; 1114 hfi1_rcvctrl(uctxt->dd, rcvctrl_ops, uctxt->ctxt); 1115 1116 /* Notify any waiting slaves */ 1117 if (uctxt->subctxt_cnt) { 1118 clear_bit(HFI1_CTXT_MASTER_UNINIT, &uctxt->event_flags); 1119 wake_up(&uctxt->wait); 1120 } 1121 1122 return 0; 1123 } 1124 1125 static int get_ctxt_info(struct file *fp, void __user *ubase, __u32 len) 1126 { 1127 struct hfi1_ctxt_info cinfo; 1128 struct hfi1_filedata *fd = fp->private_data; 1129 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1130 int ret = 0; 1131 1132 memset(&cinfo, 0, sizeof(cinfo)); 1133 cinfo.runtime_flags = (((uctxt->flags >> HFI1_CAP_MISC_SHIFT) & 1134 HFI1_CAP_MISC_MASK) << HFI1_CAP_USER_SHIFT) | 1135 HFI1_CAP_UGET_MASK(uctxt->flags, MASK) | 1136 HFI1_CAP_KGET_MASK(uctxt->flags, K2U); 1137 /* adjust flag if this fd is not able to cache */ 1138 if (!fd->handler) 1139 cinfo.runtime_flags |= HFI1_CAP_TID_UNMAP; /* no caching */ 1140 1141 cinfo.num_active = hfi1_count_active_units(); 1142 cinfo.unit = uctxt->dd->unit; 1143 cinfo.ctxt = uctxt->ctxt; 1144 cinfo.subctxt = fd->subctxt; 1145 cinfo.rcvtids = roundup(uctxt->egrbufs.alloced, 1146 uctxt->dd->rcv_entries.group_size) + 1147 uctxt->expected_count; 1148 cinfo.credits = uctxt->sc->credits; 1149 cinfo.numa_node = uctxt->numa_id; 1150 cinfo.rec_cpu = fd->rec_cpu_num; 1151 cinfo.send_ctxt = uctxt->sc->hw_context; 1152 1153 cinfo.egrtids = uctxt->egrbufs.alloced; 1154 cinfo.rcvhdrq_cnt = uctxt->rcvhdrq_cnt; 1155 cinfo.rcvhdrq_entsize = uctxt->rcvhdrqentsize << 2; 1156 cinfo.sdma_ring_size = fd->cq->nentries; 1157 cinfo.rcvegr_size = uctxt->egrbufs.rcvtid_size; 1158 1159 trace_hfi1_ctxt_info(uctxt->dd, uctxt->ctxt, fd->subctxt, cinfo); 1160 if (copy_to_user(ubase, &cinfo, sizeof(cinfo))) 1161 ret = -EFAULT; 1162 1163 return ret; 1164 } 1165 1166 static int setup_ctxt(struct file *fp) 1167 { 1168 struct hfi1_filedata *fd = fp->private_data; 1169 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1170 struct hfi1_devdata *dd = uctxt->dd; 1171 int ret = 0; 1172 1173 /* 1174 * Context should be set up only once, including allocation and 1175 * programming of eager buffers. This is done if context sharing 1176 * is not requested or by the master process. 1177 */ 1178 if (!uctxt->subctxt_cnt || !fd->subctxt) { 1179 ret = hfi1_init_ctxt(uctxt->sc); 1180 if (ret) 1181 goto done; 1182 1183 /* Now allocate the RcvHdr queue and eager buffers. */ 1184 ret = hfi1_create_rcvhdrq(dd, uctxt); 1185 if (ret) 1186 goto done; 1187 ret = hfi1_setup_eagerbufs(uctxt); 1188 if (ret) 1189 goto done; 1190 if (uctxt->subctxt_cnt && !fd->subctxt) { 1191 ret = setup_subctxt(uctxt); 1192 if (ret) 1193 goto done; 1194 } 1195 } else { 1196 ret = wait_event_interruptible(uctxt->wait, !test_bit( 1197 HFI1_CTXT_MASTER_UNINIT, 1198 &uctxt->event_flags)); 1199 if (ret) 1200 goto done; 1201 } 1202 1203 ret = hfi1_user_sdma_alloc_queues(uctxt, fp); 1204 if (ret) 1205 goto done; 1206 /* 1207 * Expected receive has to be setup for all processes (including 1208 * shared contexts). However, it has to be done after the master 1209 * context has been fully configured as it depends on the 1210 * eager/expected split of the RcvArray entries. 1211 * Setting it up here ensures that the subcontexts will be waiting 1212 * (due to the above wait_event_interruptible() until the master 1213 * is setup. 1214 */ 1215 ret = hfi1_user_exp_rcv_init(fp); 1216 if (ret) 1217 goto done; 1218 1219 set_bit(HFI1_CTXT_SETUP_DONE, &uctxt->event_flags); 1220 done: 1221 return ret; 1222 } 1223 1224 static int get_base_info(struct file *fp, void __user *ubase, __u32 len) 1225 { 1226 struct hfi1_base_info binfo; 1227 struct hfi1_filedata *fd = fp->private_data; 1228 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1229 struct hfi1_devdata *dd = uctxt->dd; 1230 ssize_t sz; 1231 unsigned offset; 1232 int ret = 0; 1233 1234 trace_hfi1_uctxtdata(uctxt->dd, uctxt); 1235 1236 memset(&binfo, 0, sizeof(binfo)); 1237 binfo.hw_version = dd->revision; 1238 binfo.sw_version = HFI1_KERN_SWVERSION; 1239 binfo.bthqp = kdeth_qp; 1240 binfo.jkey = uctxt->jkey; 1241 /* 1242 * If more than 64 contexts are enabled the allocated credit 1243 * return will span two or three contiguous pages. Since we only 1244 * map the page containing the context's credit return address, 1245 * we need to calculate the offset in the proper page. 1246 */ 1247 offset = ((u64)uctxt->sc->hw_free - 1248 (u64)dd->cr_base[uctxt->numa_id].va) % PAGE_SIZE; 1249 binfo.sc_credits_addr = HFI1_MMAP_TOKEN(PIO_CRED, uctxt->ctxt, 1250 fd->subctxt, offset); 1251 binfo.pio_bufbase = HFI1_MMAP_TOKEN(PIO_BUFS, uctxt->ctxt, 1252 fd->subctxt, 1253 uctxt->sc->base_addr); 1254 binfo.pio_bufbase_sop = HFI1_MMAP_TOKEN(PIO_BUFS_SOP, 1255 uctxt->ctxt, 1256 fd->subctxt, 1257 uctxt->sc->base_addr); 1258 binfo.rcvhdr_bufbase = HFI1_MMAP_TOKEN(RCV_HDRQ, uctxt->ctxt, 1259 fd->subctxt, 1260 uctxt->rcvhdrq); 1261 binfo.rcvegr_bufbase = HFI1_MMAP_TOKEN(RCV_EGRBUF, uctxt->ctxt, 1262 fd->subctxt, 1263 uctxt->egrbufs.rcvtids[0].phys); 1264 binfo.sdma_comp_bufbase = HFI1_MMAP_TOKEN(SDMA_COMP, uctxt->ctxt, 1265 fd->subctxt, 0); 1266 /* 1267 * user regs are at 1268 * (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE)) 1269 */ 1270 binfo.user_regbase = HFI1_MMAP_TOKEN(UREGS, uctxt->ctxt, 1271 fd->subctxt, 0); 1272 offset = offset_in_page((((uctxt->ctxt - dd->first_user_ctxt) * 1273 HFI1_MAX_SHARED_CTXTS) + fd->subctxt) * 1274 sizeof(*dd->events)); 1275 binfo.events_bufbase = HFI1_MMAP_TOKEN(EVENTS, uctxt->ctxt, 1276 fd->subctxt, 1277 offset); 1278 binfo.status_bufbase = HFI1_MMAP_TOKEN(STATUS, uctxt->ctxt, 1279 fd->subctxt, 1280 dd->status); 1281 if (HFI1_CAP_IS_USET(DMA_RTAIL)) 1282 binfo.rcvhdrtail_base = HFI1_MMAP_TOKEN(RTAIL, uctxt->ctxt, 1283 fd->subctxt, 0); 1284 if (uctxt->subctxt_cnt) { 1285 binfo.subctxt_uregbase = HFI1_MMAP_TOKEN(SUBCTXT_UREGS, 1286 uctxt->ctxt, 1287 fd->subctxt, 0); 1288 binfo.subctxt_rcvhdrbuf = HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ, 1289 uctxt->ctxt, 1290 fd->subctxt, 0); 1291 binfo.subctxt_rcvegrbuf = HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF, 1292 uctxt->ctxt, 1293 fd->subctxt, 0); 1294 } 1295 sz = (len < sizeof(binfo)) ? len : sizeof(binfo); 1296 if (copy_to_user(ubase, &binfo, sz)) 1297 ret = -EFAULT; 1298 return ret; 1299 } 1300 1301 static unsigned int poll_urgent(struct file *fp, 1302 struct poll_table_struct *pt) 1303 { 1304 struct hfi1_filedata *fd = fp->private_data; 1305 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1306 struct hfi1_devdata *dd = uctxt->dd; 1307 unsigned pollflag; 1308 1309 poll_wait(fp, &uctxt->wait, pt); 1310 1311 spin_lock_irq(&dd->uctxt_lock); 1312 if (uctxt->urgent != uctxt->urgent_poll) { 1313 pollflag = POLLIN | POLLRDNORM; 1314 uctxt->urgent_poll = uctxt->urgent; 1315 } else { 1316 pollflag = 0; 1317 set_bit(HFI1_CTXT_WAITING_URG, &uctxt->event_flags); 1318 } 1319 spin_unlock_irq(&dd->uctxt_lock); 1320 1321 return pollflag; 1322 } 1323 1324 static unsigned int poll_next(struct file *fp, 1325 struct poll_table_struct *pt) 1326 { 1327 struct hfi1_filedata *fd = fp->private_data; 1328 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1329 struct hfi1_devdata *dd = uctxt->dd; 1330 unsigned pollflag; 1331 1332 poll_wait(fp, &uctxt->wait, pt); 1333 1334 spin_lock_irq(&dd->uctxt_lock); 1335 if (hdrqempty(uctxt)) { 1336 set_bit(HFI1_CTXT_WAITING_RCV, &uctxt->event_flags); 1337 hfi1_rcvctrl(dd, HFI1_RCVCTRL_INTRAVAIL_ENB, uctxt->ctxt); 1338 pollflag = 0; 1339 } else { 1340 pollflag = POLLIN | POLLRDNORM; 1341 } 1342 spin_unlock_irq(&dd->uctxt_lock); 1343 1344 return pollflag; 1345 } 1346 1347 /* 1348 * Find all user contexts in use, and set the specified bit in their 1349 * event mask. 1350 * See also find_ctxt() for a similar use, that is specific to send buffers. 1351 */ 1352 int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit) 1353 { 1354 struct hfi1_ctxtdata *uctxt; 1355 struct hfi1_devdata *dd = ppd->dd; 1356 unsigned ctxt; 1357 int ret = 0; 1358 unsigned long flags; 1359 1360 if (!dd->events) { 1361 ret = -EINVAL; 1362 goto done; 1363 } 1364 1365 spin_lock_irqsave(&dd->uctxt_lock, flags); 1366 for (ctxt = dd->first_user_ctxt; ctxt < dd->num_rcv_contexts; 1367 ctxt++) { 1368 uctxt = dd->rcd[ctxt]; 1369 if (uctxt) { 1370 unsigned long *evs = dd->events + 1371 (uctxt->ctxt - dd->first_user_ctxt) * 1372 HFI1_MAX_SHARED_CTXTS; 1373 int i; 1374 /* 1375 * subctxt_cnt is 0 if not shared, so do base 1376 * separately, first, then remaining subctxt, if any 1377 */ 1378 set_bit(evtbit, evs); 1379 for (i = 1; i < uctxt->subctxt_cnt; i++) 1380 set_bit(evtbit, evs + i); 1381 } 1382 } 1383 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 1384 done: 1385 return ret; 1386 } 1387 1388 /** 1389 * manage_rcvq - manage a context's receive queue 1390 * @uctxt: the context 1391 * @subctxt: the sub-context 1392 * @start_stop: action to carry out 1393 * 1394 * start_stop == 0 disables receive on the context, for use in queue 1395 * overflow conditions. start_stop==1 re-enables, to be used to 1396 * re-init the software copy of the head register 1397 */ 1398 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, unsigned subctxt, 1399 int start_stop) 1400 { 1401 struct hfi1_devdata *dd = uctxt->dd; 1402 unsigned int rcvctrl_op; 1403 1404 if (subctxt) 1405 goto bail; 1406 /* atomically clear receive enable ctxt. */ 1407 if (start_stop) { 1408 /* 1409 * On enable, force in-memory copy of the tail register to 1410 * 0, so that protocol code doesn't have to worry about 1411 * whether or not the chip has yet updated the in-memory 1412 * copy or not on return from the system call. The chip 1413 * always resets it's tail register back to 0 on a 1414 * transition from disabled to enabled. 1415 */ 1416 if (uctxt->rcvhdrtail_kvaddr) 1417 clear_rcvhdrtail(uctxt); 1418 rcvctrl_op = HFI1_RCVCTRL_CTXT_ENB; 1419 } else { 1420 rcvctrl_op = HFI1_RCVCTRL_CTXT_DIS; 1421 } 1422 hfi1_rcvctrl(dd, rcvctrl_op, uctxt->ctxt); 1423 /* always; new head should be equal to new tail; see above */ 1424 bail: 1425 return 0; 1426 } 1427 1428 /* 1429 * clear the event notifier events for this context. 1430 * User process then performs actions appropriate to bit having been 1431 * set, if desired, and checks again in future. 1432 */ 1433 static int user_event_ack(struct hfi1_ctxtdata *uctxt, int subctxt, 1434 unsigned long events) 1435 { 1436 int i; 1437 struct hfi1_devdata *dd = uctxt->dd; 1438 unsigned long *evs; 1439 1440 if (!dd->events) 1441 return 0; 1442 1443 evs = dd->events + ((uctxt->ctxt - dd->first_user_ctxt) * 1444 HFI1_MAX_SHARED_CTXTS) + subctxt; 1445 1446 for (i = 0; i <= _HFI1_MAX_EVENT_BIT; i++) { 1447 if (!test_bit(i, &events)) 1448 continue; 1449 clear_bit(i, evs); 1450 } 1451 return 0; 1452 } 1453 1454 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned subctxt, 1455 u16 pkey) 1456 { 1457 int ret = -ENOENT, i, intable = 0; 1458 struct hfi1_pportdata *ppd = uctxt->ppd; 1459 struct hfi1_devdata *dd = uctxt->dd; 1460 1461 if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY) { 1462 ret = -EINVAL; 1463 goto done; 1464 } 1465 1466 for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) 1467 if (pkey == ppd->pkeys[i]) { 1468 intable = 1; 1469 break; 1470 } 1471 1472 if (intable) 1473 ret = hfi1_set_ctxt_pkey(dd, uctxt->ctxt, pkey); 1474 done: 1475 return ret; 1476 } 1477 1478 static void user_remove(struct hfi1_devdata *dd) 1479 { 1480 1481 hfi1_cdev_cleanup(&dd->user_cdev, &dd->user_device); 1482 } 1483 1484 static int user_add(struct hfi1_devdata *dd) 1485 { 1486 char name[10]; 1487 int ret; 1488 1489 snprintf(name, sizeof(name), "%s_%d", class_name(), dd->unit); 1490 ret = hfi1_cdev_init(dd->unit, name, &hfi1_file_ops, 1491 &dd->user_cdev, &dd->user_device, 1492 true, &dd->kobj); 1493 if (ret) 1494 user_remove(dd); 1495 1496 return ret; 1497 } 1498 1499 /* 1500 * Create per-unit files in /dev 1501 */ 1502 int hfi1_device_create(struct hfi1_devdata *dd) 1503 { 1504 return user_add(dd); 1505 } 1506 1507 /* 1508 * Remove per-unit files in /dev 1509 * void, core kernel returns no errors for this stuff 1510 */ 1511 void hfi1_device_remove(struct hfi1_devdata *dd) 1512 { 1513 user_remove(dd); 1514 } 1515