xref: /openbmc/linux/drivers/infiniband/hw/hfi1/file_ops.c (revision b003fb5c9df8a8923bf46e0c00cc54edcfb0fbe3)
1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
2 /*
3  * Copyright(c) 2020 Cornelis Networks, Inc.
4  * Copyright(c) 2015-2020 Intel Corporation.
5  */
6 
7 #include <linux/poll.h>
8 #include <linux/cdev.h>
9 #include <linux/vmalloc.h>
10 #include <linux/io.h>
11 #include <linux/sched/mm.h>
12 #include <linux/bitmap.h>
13 
14 #include <rdma/ib.h>
15 
16 #include "hfi.h"
17 #include "pio.h"
18 #include "device.h"
19 #include "common.h"
20 #include "trace.h"
21 #include "mmu_rb.h"
22 #include "user_sdma.h"
23 #include "user_exp_rcv.h"
24 #include "aspm.h"
25 
26 #undef pr_fmt
27 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
28 
29 #define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */
30 
31 /*
32  * File operation functions
33  */
34 static int hfi1_file_open(struct inode *inode, struct file *fp);
35 static int hfi1_file_close(struct inode *inode, struct file *fp);
36 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from);
37 static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt);
38 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma);
39 
40 static u64 kvirt_to_phys(void *addr);
41 static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len);
42 static void init_subctxts(struct hfi1_ctxtdata *uctxt,
43 			  const struct hfi1_user_info *uinfo);
44 static int init_user_ctxt(struct hfi1_filedata *fd,
45 			  struct hfi1_ctxtdata *uctxt);
46 static void user_init(struct hfi1_ctxtdata *uctxt);
47 static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
48 static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
49 static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
50 			      u32 len);
51 static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
52 			      u32 len);
53 static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
54 				u32 len);
55 static int setup_base_ctxt(struct hfi1_filedata *fd,
56 			   struct hfi1_ctxtdata *uctxt);
57 static int setup_subctxt(struct hfi1_ctxtdata *uctxt);
58 
59 static int find_sub_ctxt(struct hfi1_filedata *fd,
60 			 const struct hfi1_user_info *uinfo);
61 static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
62 			 struct hfi1_user_info *uinfo,
63 			 struct hfi1_ctxtdata **cd);
64 static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt);
65 static __poll_t poll_urgent(struct file *fp, struct poll_table_struct *pt);
66 static __poll_t poll_next(struct file *fp, struct poll_table_struct *pt);
67 static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
68 			  unsigned long arg);
69 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg);
70 static int ctxt_reset(struct hfi1_ctxtdata *uctxt);
71 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
72 		       unsigned long arg);
73 static vm_fault_t vma_fault(struct vm_fault *vmf);
74 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
75 			    unsigned long arg);
76 
77 static const struct file_operations hfi1_file_ops = {
78 	.owner = THIS_MODULE,
79 	.write_iter = hfi1_write_iter,
80 	.open = hfi1_file_open,
81 	.release = hfi1_file_close,
82 	.unlocked_ioctl = hfi1_file_ioctl,
83 	.poll = hfi1_poll,
84 	.mmap = hfi1_file_mmap,
85 	.llseek = noop_llseek,
86 };
87 
88 static const struct vm_operations_struct vm_ops = {
89 	.fault = vma_fault,
90 };
91 
92 /*
93  * Types of memories mapped into user processes' space
94  */
95 enum mmap_types {
96 	PIO_BUFS = 1,
97 	PIO_BUFS_SOP,
98 	PIO_CRED,
99 	RCV_HDRQ,
100 	RCV_EGRBUF,
101 	UREGS,
102 	EVENTS,
103 	STATUS,
104 	RTAIL,
105 	SUBCTXT_UREGS,
106 	SUBCTXT_RCV_HDRQ,
107 	SUBCTXT_EGRBUF,
108 	SDMA_COMP
109 };
110 
111 /*
112  * Masks and offsets defining the mmap tokens
113  */
114 #define HFI1_MMAP_OFFSET_MASK   0xfffULL
115 #define HFI1_MMAP_OFFSET_SHIFT  0
116 #define HFI1_MMAP_SUBCTXT_MASK  0xfULL
117 #define HFI1_MMAP_SUBCTXT_SHIFT 12
118 #define HFI1_MMAP_CTXT_MASK     0xffULL
119 #define HFI1_MMAP_CTXT_SHIFT    16
120 #define HFI1_MMAP_TYPE_MASK     0xfULL
121 #define HFI1_MMAP_TYPE_SHIFT    24
122 #define HFI1_MMAP_MAGIC_MASK    0xffffffffULL
123 #define HFI1_MMAP_MAGIC_SHIFT   32
124 
125 #define HFI1_MMAP_MAGIC         0xdabbad00
126 
127 #define HFI1_MMAP_TOKEN_SET(field, val)	\
128 	(((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT)
129 #define HFI1_MMAP_TOKEN_GET(field, token) \
130 	(((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK)
131 #define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr)   \
132 	(HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \
133 	HFI1_MMAP_TOKEN_SET(TYPE, type) | \
134 	HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \
135 	HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \
136 	HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr))))
137 
138 #define dbg(fmt, ...)				\
139 	pr_info(fmt, ##__VA_ARGS__)
140 
141 static inline int is_valid_mmap(u64 token)
142 {
143 	return (HFI1_MMAP_TOKEN_GET(MAGIC, token) == HFI1_MMAP_MAGIC);
144 }
145 
146 static int hfi1_file_open(struct inode *inode, struct file *fp)
147 {
148 	struct hfi1_filedata *fd;
149 	struct hfi1_devdata *dd = container_of(inode->i_cdev,
150 					       struct hfi1_devdata,
151 					       user_cdev);
152 
153 	if (!((dd->flags & HFI1_PRESENT) && dd->kregbase1))
154 		return -EINVAL;
155 
156 	if (!refcount_inc_not_zero(&dd->user_refcount))
157 		return -ENXIO;
158 
159 	/* The real work is performed later in assign_ctxt() */
160 
161 	fd = kzalloc(sizeof(*fd), GFP_KERNEL);
162 
163 	if (!fd || init_srcu_struct(&fd->pq_srcu))
164 		goto nomem;
165 	spin_lock_init(&fd->pq_rcu_lock);
166 	spin_lock_init(&fd->tid_lock);
167 	spin_lock_init(&fd->invalid_lock);
168 	fd->rec_cpu_num = -1; /* no cpu affinity by default */
169 	fd->dd = dd;
170 	fp->private_data = fd;
171 	return 0;
172 nomem:
173 	kfree(fd);
174 	fp->private_data = NULL;
175 	if (refcount_dec_and_test(&dd->user_refcount))
176 		complete(&dd->user_comp);
177 	return -ENOMEM;
178 }
179 
180 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
181 			    unsigned long arg)
182 {
183 	struct hfi1_filedata *fd = fp->private_data;
184 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
185 	int ret = 0;
186 	int uval = 0;
187 
188 	hfi1_cdbg(IOCTL, "IOCTL recv: 0x%x", cmd);
189 	if (cmd != HFI1_IOCTL_ASSIGN_CTXT &&
190 	    cmd != HFI1_IOCTL_GET_VERS &&
191 	    !uctxt)
192 		return -EINVAL;
193 
194 	switch (cmd) {
195 	case HFI1_IOCTL_ASSIGN_CTXT:
196 		ret = assign_ctxt(fd, arg, _IOC_SIZE(cmd));
197 		break;
198 
199 	case HFI1_IOCTL_CTXT_INFO:
200 		ret = get_ctxt_info(fd, arg, _IOC_SIZE(cmd));
201 		break;
202 
203 	case HFI1_IOCTL_USER_INFO:
204 		ret = get_base_info(fd, arg, _IOC_SIZE(cmd));
205 		break;
206 
207 	case HFI1_IOCTL_CREDIT_UPD:
208 		if (uctxt)
209 			sc_return_credits(uctxt->sc);
210 		break;
211 
212 	case HFI1_IOCTL_TID_UPDATE:
213 		ret = user_exp_rcv_setup(fd, arg, _IOC_SIZE(cmd));
214 		break;
215 
216 	case HFI1_IOCTL_TID_FREE:
217 		ret = user_exp_rcv_clear(fd, arg, _IOC_SIZE(cmd));
218 		break;
219 
220 	case HFI1_IOCTL_TID_INVAL_READ:
221 		ret = user_exp_rcv_invalid(fd, arg, _IOC_SIZE(cmd));
222 		break;
223 
224 	case HFI1_IOCTL_RECV_CTRL:
225 		ret = manage_rcvq(uctxt, fd->subctxt, arg);
226 		break;
227 
228 	case HFI1_IOCTL_POLL_TYPE:
229 		if (get_user(uval, (int __user *)arg))
230 			return -EFAULT;
231 		uctxt->poll_type = (typeof(uctxt->poll_type))uval;
232 		break;
233 
234 	case HFI1_IOCTL_ACK_EVENT:
235 		ret = user_event_ack(uctxt, fd->subctxt, arg);
236 		break;
237 
238 	case HFI1_IOCTL_SET_PKEY:
239 		ret = set_ctxt_pkey(uctxt, arg);
240 		break;
241 
242 	case HFI1_IOCTL_CTXT_RESET:
243 		ret = ctxt_reset(uctxt);
244 		break;
245 
246 	case HFI1_IOCTL_GET_VERS:
247 		uval = HFI1_USER_SWVERSION;
248 		if (put_user(uval, (int __user *)arg))
249 			return -EFAULT;
250 		break;
251 
252 	default:
253 		return -EINVAL;
254 	}
255 
256 	return ret;
257 }
258 
259 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from)
260 {
261 	struct hfi1_filedata *fd = kiocb->ki_filp->private_data;
262 	struct hfi1_user_sdma_pkt_q *pq;
263 	struct hfi1_user_sdma_comp_q *cq = fd->cq;
264 	int done = 0, reqs = 0;
265 	unsigned long dim = from->nr_segs;
266 	int idx;
267 
268 	if (!HFI1_CAP_IS_KSET(SDMA))
269 		return -EINVAL;
270 	idx = srcu_read_lock(&fd->pq_srcu);
271 	pq = srcu_dereference(fd->pq, &fd->pq_srcu);
272 	if (!cq || !pq) {
273 		srcu_read_unlock(&fd->pq_srcu, idx);
274 		return -EIO;
275 	}
276 
277 	if (!iter_is_iovec(from) || !dim) {
278 		srcu_read_unlock(&fd->pq_srcu, idx);
279 		return -EINVAL;
280 	}
281 
282 	trace_hfi1_sdma_request(fd->dd, fd->uctxt->ctxt, fd->subctxt, dim);
283 
284 	if (atomic_read(&pq->n_reqs) == pq->n_max_reqs) {
285 		srcu_read_unlock(&fd->pq_srcu, idx);
286 		return -ENOSPC;
287 	}
288 
289 	while (dim) {
290 		int ret;
291 		unsigned long count = 0;
292 
293 		ret = hfi1_user_sdma_process_request(
294 			fd, (struct iovec *)(from->iov + done),
295 			dim, &count);
296 		if (ret) {
297 			reqs = ret;
298 			break;
299 		}
300 		dim -= count;
301 		done += count;
302 		reqs++;
303 	}
304 
305 	srcu_read_unlock(&fd->pq_srcu, idx);
306 	return reqs;
307 }
308 
309 static inline void mmap_cdbg(u16 ctxt, u8 subctxt, u8 type, u8 mapio, u8 vmf,
310 			     u64 memaddr, void *memvirt, dma_addr_t memdma,
311 			     ssize_t memlen, struct vm_area_struct *vma)
312 {
313 	hfi1_cdbg(PROC,
314 		  "%u:%u type:%u io/vf/dma:%d/%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx",
315 		  ctxt, subctxt, type, mapio, vmf, !!memdma,
316 		  memaddr ?: (u64)memvirt, memlen,
317 		  vma->vm_end - vma->vm_start, vma->vm_flags);
318 }
319 
320 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma)
321 {
322 	struct hfi1_filedata *fd = fp->private_data;
323 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
324 	struct hfi1_devdata *dd;
325 	unsigned long flags;
326 	u64 token = vma->vm_pgoff << PAGE_SHIFT,
327 		memaddr = 0;
328 	void *memvirt = NULL;
329 	dma_addr_t memdma = 0;
330 	u8 subctxt, mapio = 0, vmf = 0, type;
331 	ssize_t memlen = 0;
332 	int ret = 0;
333 	u16 ctxt;
334 
335 	if (!is_valid_mmap(token) || !uctxt ||
336 	    !(vma->vm_flags & VM_SHARED)) {
337 		ret = -EINVAL;
338 		goto done;
339 	}
340 	dd = uctxt->dd;
341 	ctxt = HFI1_MMAP_TOKEN_GET(CTXT, token);
342 	subctxt = HFI1_MMAP_TOKEN_GET(SUBCTXT, token);
343 	type = HFI1_MMAP_TOKEN_GET(TYPE, token);
344 	if (ctxt != uctxt->ctxt || subctxt != fd->subctxt) {
345 		ret = -EINVAL;
346 		goto done;
347 	}
348 
349 	/*
350 	 * vm_pgoff is used as a buffer selector cookie.  Always mmap from
351 	 * the beginning.
352 	 */
353 	vma->vm_pgoff = 0;
354 	flags = vma->vm_flags;
355 
356 	switch (type) {
357 	case PIO_BUFS:
358 	case PIO_BUFS_SOP:
359 		memaddr = ((dd->physaddr + TXE_PIO_SEND) +
360 				/* chip pio base */
361 			   (uctxt->sc->hw_context * BIT(16))) +
362 				/* 64K PIO space / ctxt */
363 			(type == PIO_BUFS_SOP ?
364 				(TXE_PIO_SIZE / 2) : 0); /* sop? */
365 		/*
366 		 * Map only the amount allocated to the context, not the
367 		 * entire available context's PIO space.
368 		 */
369 		memlen = PAGE_ALIGN(uctxt->sc->credits * PIO_BLOCK_SIZE);
370 		flags &= ~VM_MAYREAD;
371 		flags |= VM_DONTCOPY | VM_DONTEXPAND;
372 		vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
373 		mapio = 1;
374 		break;
375 	case PIO_CRED: {
376 		u64 cr_page_offset;
377 		if (flags & VM_WRITE) {
378 			ret = -EPERM;
379 			goto done;
380 		}
381 		/*
382 		 * The credit return location for this context could be on the
383 		 * second or third page allocated for credit returns (if number
384 		 * of enabled contexts > 64 and 128 respectively).
385 		 */
386 		cr_page_offset = ((u64)uctxt->sc->hw_free -
387 			  	     (u64)dd->cr_base[uctxt->numa_id].va) &
388 				   PAGE_MASK;
389 		memvirt = dd->cr_base[uctxt->numa_id].va + cr_page_offset;
390 		memdma = dd->cr_base[uctxt->numa_id].dma + cr_page_offset;
391 		memlen = PAGE_SIZE;
392 		flags &= ~VM_MAYWRITE;
393 		flags |= VM_DONTCOPY | VM_DONTEXPAND;
394 		/*
395 		 * The driver has already allocated memory for credit
396 		 * returns and programmed it into the chip. Has that
397 		 * memory been flagged as non-cached?
398 		 */
399 		/* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */
400 		break;
401 	}
402 	case RCV_HDRQ:
403 		memlen = rcvhdrq_size(uctxt);
404 		memvirt = uctxt->rcvhdrq;
405 		memdma = uctxt->rcvhdrq_dma;
406 		break;
407 	case RCV_EGRBUF: {
408 		unsigned long vm_start_save;
409 		unsigned long vm_end_save;
410 		int i;
411 		/*
412 		 * The RcvEgr buffer need to be handled differently
413 		 * as multiple non-contiguous pages need to be mapped
414 		 * into the user process.
415 		 */
416 		memlen = uctxt->egrbufs.size;
417 		if ((vma->vm_end - vma->vm_start) != memlen) {
418 			dd_dev_err(dd, "Eager buffer map size invalid (%lu != %lu)\n",
419 				   (vma->vm_end - vma->vm_start), memlen);
420 			ret = -EINVAL;
421 			goto done;
422 		}
423 		if (vma->vm_flags & VM_WRITE) {
424 			ret = -EPERM;
425 			goto done;
426 		}
427 		vm_flags_clear(vma, VM_MAYWRITE);
428 		/*
429 		 * Mmap multiple separate allocations into a single vma.  From
430 		 * here, dma_mmap_coherent() calls dma_direct_mmap(), which
431 		 * requires the mmap to exactly fill the vma starting at
432 		 * vma_start.  Adjust the vma start and end for each eager
433 		 * buffer segment mapped.  Restore the originals when done.
434 		 */
435 		vm_start_save = vma->vm_start;
436 		vm_end_save = vma->vm_end;
437 		vma->vm_end = vma->vm_start;
438 		for (i = 0 ; i < uctxt->egrbufs.numbufs; i++) {
439 			memlen = uctxt->egrbufs.buffers[i].len;
440 			memvirt = uctxt->egrbufs.buffers[i].addr;
441 			memdma = uctxt->egrbufs.buffers[i].dma;
442 			vma->vm_end += memlen;
443 			mmap_cdbg(ctxt, subctxt, type, mapio, vmf, memaddr,
444 				  memvirt, memdma, memlen, vma);
445 			ret = dma_mmap_coherent(&dd->pcidev->dev, vma,
446 						memvirt, memdma, memlen);
447 			if (ret < 0) {
448 				vma->vm_start = vm_start_save;
449 				vma->vm_end = vm_end_save;
450 				goto done;
451 			}
452 			vma->vm_start += memlen;
453 		}
454 		vma->vm_start = vm_start_save;
455 		vma->vm_end = vm_end_save;
456 		ret = 0;
457 		goto done;
458 	}
459 	case UREGS:
460 		/*
461 		 * Map only the page that contains this context's user
462 		 * registers.
463 		 */
464 		memaddr = (unsigned long)
465 			(dd->physaddr + RXE_PER_CONTEXT_USER)
466 			+ (uctxt->ctxt * RXE_PER_CONTEXT_SIZE);
467 		/*
468 		 * TidFlow table is on the same page as the rest of the
469 		 * user registers.
470 		 */
471 		memlen = PAGE_SIZE;
472 		flags |= VM_DONTCOPY | VM_DONTEXPAND;
473 		vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
474 		mapio = 1;
475 		break;
476 	case EVENTS:
477 		/*
478 		 * Use the page where this context's flags are. User level
479 		 * knows where it's own bitmap is within the page.
480 		 */
481 		memaddr = (unsigned long)
482 			(dd->events + uctxt_offset(uctxt)) & PAGE_MASK;
483 		memlen = PAGE_SIZE;
484 		/*
485 		 * v3.7 removes VM_RESERVED but the effect is kept by
486 		 * using VM_IO.
487 		 */
488 		flags |= VM_IO | VM_DONTEXPAND;
489 		vmf = 1;
490 		break;
491 	case STATUS:
492 		if (flags & VM_WRITE) {
493 			ret = -EPERM;
494 			goto done;
495 		}
496 		memaddr = kvirt_to_phys((void *)dd->status);
497 		memlen = PAGE_SIZE;
498 		flags |= VM_IO | VM_DONTEXPAND;
499 		break;
500 	case RTAIL:
501 		if (!HFI1_CAP_IS_USET(DMA_RTAIL)) {
502 			/*
503 			 * If the memory allocation failed, the context alloc
504 			 * also would have failed, so we would never get here
505 			 */
506 			ret = -EINVAL;
507 			goto done;
508 		}
509 		if ((flags & VM_WRITE) || !hfi1_rcvhdrtail_kvaddr(uctxt)) {
510 			ret = -EPERM;
511 			goto done;
512 		}
513 		memlen = PAGE_SIZE;
514 		memvirt = (void *)hfi1_rcvhdrtail_kvaddr(uctxt);
515 		memdma = uctxt->rcvhdrqtailaddr_dma;
516 		flags &= ~VM_MAYWRITE;
517 		break;
518 	case SUBCTXT_UREGS:
519 		memaddr = (u64)uctxt->subctxt_uregbase;
520 		memlen = PAGE_SIZE;
521 		flags |= VM_IO | VM_DONTEXPAND;
522 		vmf = 1;
523 		break;
524 	case SUBCTXT_RCV_HDRQ:
525 		memaddr = (u64)uctxt->subctxt_rcvhdr_base;
526 		memlen = rcvhdrq_size(uctxt) * uctxt->subctxt_cnt;
527 		flags |= VM_IO | VM_DONTEXPAND;
528 		vmf = 1;
529 		break;
530 	case SUBCTXT_EGRBUF:
531 		memaddr = (u64)uctxt->subctxt_rcvegrbuf;
532 		memlen = uctxt->egrbufs.size * uctxt->subctxt_cnt;
533 		flags |= VM_IO | VM_DONTEXPAND;
534 		flags &= ~VM_MAYWRITE;
535 		vmf = 1;
536 		break;
537 	case SDMA_COMP: {
538 		struct hfi1_user_sdma_comp_q *cq = fd->cq;
539 
540 		if (!cq) {
541 			ret = -EFAULT;
542 			goto done;
543 		}
544 		memaddr = (u64)cq->comps;
545 		memlen = PAGE_ALIGN(sizeof(*cq->comps) * cq->nentries);
546 		flags |= VM_IO | VM_DONTEXPAND;
547 		vmf = 1;
548 		break;
549 	}
550 	default:
551 		ret = -EINVAL;
552 		break;
553 	}
554 
555 	if ((vma->vm_end - vma->vm_start) != memlen) {
556 		hfi1_cdbg(PROC, "%u:%u Memory size mismatch %lu:%lu",
557 			  uctxt->ctxt, fd->subctxt,
558 			  (vma->vm_end - vma->vm_start), memlen);
559 		ret = -EINVAL;
560 		goto done;
561 	}
562 
563 	vm_flags_reset(vma, flags);
564 	mmap_cdbg(ctxt, subctxt, type, mapio, vmf, memaddr, memvirt, memdma,
565 		  memlen, vma);
566 	if (vmf) {
567 		vma->vm_pgoff = PFN_DOWN(memaddr);
568 		vma->vm_ops = &vm_ops;
569 		ret = 0;
570 	} else if (memdma) {
571 		ret = dma_mmap_coherent(&dd->pcidev->dev, vma,
572 					memvirt, memdma, memlen);
573 	} else if (mapio) {
574 		ret = io_remap_pfn_range(vma, vma->vm_start,
575 					 PFN_DOWN(memaddr),
576 					 memlen,
577 					 vma->vm_page_prot);
578 	} else if (memvirt) {
579 		ret = remap_pfn_range(vma, vma->vm_start,
580 				      PFN_DOWN(__pa(memvirt)),
581 				      memlen,
582 				      vma->vm_page_prot);
583 	} else {
584 		ret = remap_pfn_range(vma, vma->vm_start,
585 				      PFN_DOWN(memaddr),
586 				      memlen,
587 				      vma->vm_page_prot);
588 	}
589 done:
590 	return ret;
591 }
592 
593 /*
594  * Local (non-chip) user memory is not mapped right away but as it is
595  * accessed by the user-level code.
596  */
597 static vm_fault_t vma_fault(struct vm_fault *vmf)
598 {
599 	struct page *page;
600 
601 	page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT));
602 	if (!page)
603 		return VM_FAULT_SIGBUS;
604 
605 	get_page(page);
606 	vmf->page = page;
607 
608 	return 0;
609 }
610 
611 static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt)
612 {
613 	struct hfi1_ctxtdata *uctxt;
614 	__poll_t pollflag;
615 
616 	uctxt = ((struct hfi1_filedata *)fp->private_data)->uctxt;
617 	if (!uctxt)
618 		pollflag = EPOLLERR;
619 	else if (uctxt->poll_type == HFI1_POLL_TYPE_URGENT)
620 		pollflag = poll_urgent(fp, pt);
621 	else  if (uctxt->poll_type == HFI1_POLL_TYPE_ANYRCV)
622 		pollflag = poll_next(fp, pt);
623 	else /* invalid */
624 		pollflag = EPOLLERR;
625 
626 	return pollflag;
627 }
628 
629 static int hfi1_file_close(struct inode *inode, struct file *fp)
630 {
631 	struct hfi1_filedata *fdata = fp->private_data;
632 	struct hfi1_ctxtdata *uctxt = fdata->uctxt;
633 	struct hfi1_devdata *dd = container_of(inode->i_cdev,
634 					       struct hfi1_devdata,
635 					       user_cdev);
636 	unsigned long flags, *ev;
637 
638 	fp->private_data = NULL;
639 
640 	if (!uctxt)
641 		goto done;
642 
643 	hfi1_cdbg(PROC, "closing ctxt %u:%u", uctxt->ctxt, fdata->subctxt);
644 
645 	flush_wc();
646 	/* drain user sdma queue */
647 	hfi1_user_sdma_free_queues(fdata, uctxt);
648 
649 	/* release the cpu */
650 	hfi1_put_proc_affinity(fdata->rec_cpu_num);
651 
652 	/* clean up rcv side */
653 	hfi1_user_exp_rcv_free(fdata);
654 
655 	/*
656 	 * fdata->uctxt is used in the above cleanup.  It is not ready to be
657 	 * removed until here.
658 	 */
659 	fdata->uctxt = NULL;
660 	hfi1_rcd_put(uctxt);
661 
662 	/*
663 	 * Clear any left over, unhandled events so the next process that
664 	 * gets this context doesn't get confused.
665 	 */
666 	ev = dd->events + uctxt_offset(uctxt) + fdata->subctxt;
667 	*ev = 0;
668 
669 	spin_lock_irqsave(&dd->uctxt_lock, flags);
670 	__clear_bit(fdata->subctxt, uctxt->in_use_ctxts);
671 	if (!bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
672 		spin_unlock_irqrestore(&dd->uctxt_lock, flags);
673 		goto done;
674 	}
675 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
676 
677 	/*
678 	 * Disable receive context and interrupt available, reset all
679 	 * RcvCtxtCtrl bits to default values.
680 	 */
681 	hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
682 		     HFI1_RCVCTRL_TIDFLOW_DIS |
683 		     HFI1_RCVCTRL_INTRAVAIL_DIS |
684 		     HFI1_RCVCTRL_TAILUPD_DIS |
685 		     HFI1_RCVCTRL_ONE_PKT_EGR_DIS |
686 		     HFI1_RCVCTRL_NO_RHQ_DROP_DIS |
687 		     HFI1_RCVCTRL_NO_EGR_DROP_DIS |
688 		     HFI1_RCVCTRL_URGENT_DIS, uctxt);
689 	/* Clear the context's J_KEY */
690 	hfi1_clear_ctxt_jkey(dd, uctxt);
691 	/*
692 	 * If a send context is allocated, reset context integrity
693 	 * checks to default and disable the send context.
694 	 */
695 	if (uctxt->sc) {
696 		sc_disable(uctxt->sc);
697 		set_pio_integrity(uctxt->sc);
698 	}
699 
700 	hfi1_free_ctxt_rcv_groups(uctxt);
701 	hfi1_clear_ctxt_pkey(dd, uctxt);
702 
703 	uctxt->event_flags = 0;
704 
705 	deallocate_ctxt(uctxt);
706 done:
707 
708 	if (refcount_dec_and_test(&dd->user_refcount))
709 		complete(&dd->user_comp);
710 
711 	cleanup_srcu_struct(&fdata->pq_srcu);
712 	kfree(fdata);
713 	return 0;
714 }
715 
716 /*
717  * Convert kernel *virtual* addresses to physical addresses.
718  * This is used to vmalloc'ed addresses.
719  */
720 static u64 kvirt_to_phys(void *addr)
721 {
722 	struct page *page;
723 	u64 paddr = 0;
724 
725 	page = vmalloc_to_page(addr);
726 	if (page)
727 		paddr = page_to_pfn(page) << PAGE_SHIFT;
728 
729 	return paddr;
730 }
731 
732 /**
733  * complete_subctxt - complete sub-context info
734  * @fd: valid filedata pointer
735  *
736  * Sub-context info can only be set up after the base context
737  * has been completed.  This is indicated by the clearing of the
738  * HFI1_CTXT_BASE_UINIT bit.
739  *
740  * Wait for the bit to be cleared, and then complete the subcontext
741  * initialization.
742  *
743  */
744 static int complete_subctxt(struct hfi1_filedata *fd)
745 {
746 	int ret;
747 	unsigned long flags;
748 
749 	/*
750 	 * sub-context info can only be set up after the base context
751 	 * has been completed.
752 	 */
753 	ret = wait_event_interruptible(
754 		fd->uctxt->wait,
755 		!test_bit(HFI1_CTXT_BASE_UNINIT, &fd->uctxt->event_flags));
756 
757 	if (test_bit(HFI1_CTXT_BASE_FAILED, &fd->uctxt->event_flags))
758 		ret = -ENOMEM;
759 
760 	/* Finish the sub-context init */
761 	if (!ret) {
762 		fd->rec_cpu_num = hfi1_get_proc_affinity(fd->uctxt->numa_id);
763 		ret = init_user_ctxt(fd, fd->uctxt);
764 	}
765 
766 	if (ret) {
767 		spin_lock_irqsave(&fd->dd->uctxt_lock, flags);
768 		__clear_bit(fd->subctxt, fd->uctxt->in_use_ctxts);
769 		spin_unlock_irqrestore(&fd->dd->uctxt_lock, flags);
770 		hfi1_rcd_put(fd->uctxt);
771 		fd->uctxt = NULL;
772 	}
773 
774 	return ret;
775 }
776 
777 static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len)
778 {
779 	int ret;
780 	unsigned int swmajor;
781 	struct hfi1_ctxtdata *uctxt = NULL;
782 	struct hfi1_user_info uinfo;
783 
784 	if (fd->uctxt)
785 		return -EINVAL;
786 
787 	if (sizeof(uinfo) != len)
788 		return -EINVAL;
789 
790 	if (copy_from_user(&uinfo, (void __user *)arg, sizeof(uinfo)))
791 		return -EFAULT;
792 
793 	swmajor = uinfo.userversion >> 16;
794 	if (swmajor != HFI1_USER_SWMAJOR)
795 		return -ENODEV;
796 
797 	if (uinfo.subctxt_cnt > HFI1_MAX_SHARED_CTXTS)
798 		return -EINVAL;
799 
800 	/*
801 	 * Acquire the mutex to protect against multiple creations of what
802 	 * could be a shared base context.
803 	 */
804 	mutex_lock(&hfi1_mutex);
805 	/*
806 	 * Get a sub context if available  (fd->uctxt will be set).
807 	 * ret < 0 error, 0 no context, 1 sub-context found
808 	 */
809 	ret = find_sub_ctxt(fd, &uinfo);
810 
811 	/*
812 	 * Allocate a base context if context sharing is not required or a
813 	 * sub context wasn't found.
814 	 */
815 	if (!ret)
816 		ret = allocate_ctxt(fd, fd->dd, &uinfo, &uctxt);
817 
818 	mutex_unlock(&hfi1_mutex);
819 
820 	/* Depending on the context type, finish the appropriate init */
821 	switch (ret) {
822 	case 0:
823 		ret = setup_base_ctxt(fd, uctxt);
824 		if (ret)
825 			deallocate_ctxt(uctxt);
826 		break;
827 	case 1:
828 		ret = complete_subctxt(fd);
829 		break;
830 	default:
831 		break;
832 	}
833 
834 	return ret;
835 }
836 
837 /**
838  * match_ctxt - match context
839  * @fd: valid filedata pointer
840  * @uinfo: user info to compare base context with
841  * @uctxt: context to compare uinfo to.
842  *
843  * Compare the given context with the given information to see if it
844  * can be used for a sub context.
845  */
846 static int match_ctxt(struct hfi1_filedata *fd,
847 		      const struct hfi1_user_info *uinfo,
848 		      struct hfi1_ctxtdata *uctxt)
849 {
850 	struct hfi1_devdata *dd = fd->dd;
851 	unsigned long flags;
852 	u16 subctxt;
853 
854 	/* Skip dynamically allocated kernel contexts */
855 	if (uctxt->sc && (uctxt->sc->type == SC_KERNEL))
856 		return 0;
857 
858 	/* Skip ctxt if it doesn't match the requested one */
859 	if (memcmp(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)) ||
860 	    uctxt->jkey != generate_jkey(current_uid()) ||
861 	    uctxt->subctxt_id != uinfo->subctxt_id ||
862 	    uctxt->subctxt_cnt != uinfo->subctxt_cnt)
863 		return 0;
864 
865 	/* Verify the sharing process matches the base */
866 	if (uctxt->userversion != uinfo->userversion)
867 		return -EINVAL;
868 
869 	/* Find an unused sub context */
870 	spin_lock_irqsave(&dd->uctxt_lock, flags);
871 	if (bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
872 		/* context is being closed, do not use */
873 		spin_unlock_irqrestore(&dd->uctxt_lock, flags);
874 		return 0;
875 	}
876 
877 	subctxt = find_first_zero_bit(uctxt->in_use_ctxts,
878 				      HFI1_MAX_SHARED_CTXTS);
879 	if (subctxt >= uctxt->subctxt_cnt) {
880 		spin_unlock_irqrestore(&dd->uctxt_lock, flags);
881 		return -EBUSY;
882 	}
883 
884 	fd->subctxt = subctxt;
885 	__set_bit(fd->subctxt, uctxt->in_use_ctxts);
886 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
887 
888 	fd->uctxt = uctxt;
889 	hfi1_rcd_get(uctxt);
890 
891 	return 1;
892 }
893 
894 /**
895  * find_sub_ctxt - fund sub-context
896  * @fd: valid filedata pointer
897  * @uinfo: matching info to use to find a possible context to share.
898  *
899  * The hfi1_mutex must be held when this function is called.  It is
900  * necessary to ensure serialized creation of shared contexts.
901  *
902  * Return:
903  *    0      No sub-context found
904  *    1      Subcontext found and allocated
905  *    errno  EINVAL (incorrect parameters)
906  *           EBUSY (all sub contexts in use)
907  */
908 static int find_sub_ctxt(struct hfi1_filedata *fd,
909 			 const struct hfi1_user_info *uinfo)
910 {
911 	struct hfi1_ctxtdata *uctxt;
912 	struct hfi1_devdata *dd = fd->dd;
913 	u16 i;
914 	int ret;
915 
916 	if (!uinfo->subctxt_cnt)
917 		return 0;
918 
919 	for (i = dd->first_dyn_alloc_ctxt; i < dd->num_rcv_contexts; i++) {
920 		uctxt = hfi1_rcd_get_by_index(dd, i);
921 		if (uctxt) {
922 			ret = match_ctxt(fd, uinfo, uctxt);
923 			hfi1_rcd_put(uctxt);
924 			/* value of != 0 will return */
925 			if (ret)
926 				return ret;
927 		}
928 	}
929 
930 	return 0;
931 }
932 
933 static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
934 			 struct hfi1_user_info *uinfo,
935 			 struct hfi1_ctxtdata **rcd)
936 {
937 	struct hfi1_ctxtdata *uctxt;
938 	int ret, numa;
939 
940 	if (dd->flags & HFI1_FROZEN) {
941 		/*
942 		 * Pick an error that is unique from all other errors
943 		 * that are returned so the user process knows that
944 		 * it tried to allocate while the SPC was frozen.  It
945 		 * it should be able to retry with success in a short
946 		 * while.
947 		 */
948 		return -EIO;
949 	}
950 
951 	if (!dd->freectxts)
952 		return -EBUSY;
953 
954 	/*
955 	 * If we don't have a NUMA node requested, preference is towards
956 	 * device NUMA node.
957 	 */
958 	fd->rec_cpu_num = hfi1_get_proc_affinity(dd->node);
959 	if (fd->rec_cpu_num != -1)
960 		numa = cpu_to_node(fd->rec_cpu_num);
961 	else
962 		numa = numa_node_id();
963 	ret = hfi1_create_ctxtdata(dd->pport, numa, &uctxt);
964 	if (ret < 0) {
965 		dd_dev_err(dd, "user ctxtdata allocation failed\n");
966 		return ret;
967 	}
968 	hfi1_cdbg(PROC, "[%u:%u] pid %u assigned to CPU %d (NUMA %u)",
969 		  uctxt->ctxt, fd->subctxt, current->pid, fd->rec_cpu_num,
970 		  uctxt->numa_id);
971 
972 	/*
973 	 * Allocate and enable a PIO send context.
974 	 */
975 	uctxt->sc = sc_alloc(dd, SC_USER, uctxt->rcvhdrqentsize, dd->node);
976 	if (!uctxt->sc) {
977 		ret = -ENOMEM;
978 		goto ctxdata_free;
979 	}
980 	hfi1_cdbg(PROC, "allocated send context %u(%u)\n", uctxt->sc->sw_index,
981 		  uctxt->sc->hw_context);
982 	ret = sc_enable(uctxt->sc);
983 	if (ret)
984 		goto ctxdata_free;
985 
986 	/*
987 	 * Setup sub context information if the user-level has requested
988 	 * sub contexts.
989 	 * This has to be done here so the rest of the sub-contexts find the
990 	 * proper base context.
991 	 * NOTE: _set_bit() can be used here because the context creation is
992 	 * protected by the mutex (rather than the spin_lock), and will be the
993 	 * very first instance of this context.
994 	 */
995 	__set_bit(0, uctxt->in_use_ctxts);
996 	if (uinfo->subctxt_cnt)
997 		init_subctxts(uctxt, uinfo);
998 	uctxt->userversion = uinfo->userversion;
999 	uctxt->flags = hfi1_cap_mask; /* save current flag state */
1000 	init_waitqueue_head(&uctxt->wait);
1001 	strscpy(uctxt->comm, current->comm, sizeof(uctxt->comm));
1002 	memcpy(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid));
1003 	uctxt->jkey = generate_jkey(current_uid());
1004 	hfi1_stats.sps_ctxts++;
1005 	/*
1006 	 * Disable ASPM when there are open user/PSM contexts to avoid
1007 	 * issues with ASPM L1 exit latency
1008 	 */
1009 	if (dd->freectxts-- == dd->num_user_contexts)
1010 		aspm_disable_all(dd);
1011 
1012 	*rcd = uctxt;
1013 
1014 	return 0;
1015 
1016 ctxdata_free:
1017 	hfi1_free_ctxt(uctxt);
1018 	return ret;
1019 }
1020 
1021 static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt)
1022 {
1023 	mutex_lock(&hfi1_mutex);
1024 	hfi1_stats.sps_ctxts--;
1025 	if (++uctxt->dd->freectxts == uctxt->dd->num_user_contexts)
1026 		aspm_enable_all(uctxt->dd);
1027 	mutex_unlock(&hfi1_mutex);
1028 
1029 	hfi1_free_ctxt(uctxt);
1030 }
1031 
1032 static void init_subctxts(struct hfi1_ctxtdata *uctxt,
1033 			  const struct hfi1_user_info *uinfo)
1034 {
1035 	uctxt->subctxt_cnt = uinfo->subctxt_cnt;
1036 	uctxt->subctxt_id = uinfo->subctxt_id;
1037 	set_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
1038 }
1039 
1040 static int setup_subctxt(struct hfi1_ctxtdata *uctxt)
1041 {
1042 	int ret = 0;
1043 	u16 num_subctxts = uctxt->subctxt_cnt;
1044 
1045 	uctxt->subctxt_uregbase = vmalloc_user(PAGE_SIZE);
1046 	if (!uctxt->subctxt_uregbase)
1047 		return -ENOMEM;
1048 
1049 	/* We can take the size of the RcvHdr Queue from the master */
1050 	uctxt->subctxt_rcvhdr_base = vmalloc_user(rcvhdrq_size(uctxt) *
1051 						  num_subctxts);
1052 	if (!uctxt->subctxt_rcvhdr_base) {
1053 		ret = -ENOMEM;
1054 		goto bail_ureg;
1055 	}
1056 
1057 	uctxt->subctxt_rcvegrbuf = vmalloc_user(uctxt->egrbufs.size *
1058 						num_subctxts);
1059 	if (!uctxt->subctxt_rcvegrbuf) {
1060 		ret = -ENOMEM;
1061 		goto bail_rhdr;
1062 	}
1063 
1064 	return 0;
1065 
1066 bail_rhdr:
1067 	vfree(uctxt->subctxt_rcvhdr_base);
1068 	uctxt->subctxt_rcvhdr_base = NULL;
1069 bail_ureg:
1070 	vfree(uctxt->subctxt_uregbase);
1071 	uctxt->subctxt_uregbase = NULL;
1072 
1073 	return ret;
1074 }
1075 
1076 static void user_init(struct hfi1_ctxtdata *uctxt)
1077 {
1078 	unsigned int rcvctrl_ops = 0;
1079 
1080 	/* initialize poll variables... */
1081 	uctxt->urgent = 0;
1082 	uctxt->urgent_poll = 0;
1083 
1084 	/*
1085 	 * Now enable the ctxt for receive.
1086 	 * For chips that are set to DMA the tail register to memory
1087 	 * when they change (and when the update bit transitions from
1088 	 * 0 to 1.  So for those chips, we turn it off and then back on.
1089 	 * This will (very briefly) affect any other open ctxts, but the
1090 	 * duration is very short, and therefore isn't an issue.  We
1091 	 * explicitly set the in-memory tail copy to 0 beforehand, so we
1092 	 * don't have to wait to be sure the DMA update has happened
1093 	 * (chip resets head/tail to 0 on transition to enable).
1094 	 */
1095 	if (hfi1_rcvhdrtail_kvaddr(uctxt))
1096 		clear_rcvhdrtail(uctxt);
1097 
1098 	/* Setup J_KEY before enabling the context */
1099 	hfi1_set_ctxt_jkey(uctxt->dd, uctxt, uctxt->jkey);
1100 
1101 	rcvctrl_ops = HFI1_RCVCTRL_CTXT_ENB;
1102 	rcvctrl_ops |= HFI1_RCVCTRL_URGENT_ENB;
1103 	if (HFI1_CAP_UGET_MASK(uctxt->flags, HDRSUPP))
1104 		rcvctrl_ops |= HFI1_RCVCTRL_TIDFLOW_ENB;
1105 	/*
1106 	 * Ignore the bit in the flags for now until proper
1107 	 * support for multiple packet per rcv array entry is
1108 	 * added.
1109 	 */
1110 	if (!HFI1_CAP_UGET_MASK(uctxt->flags, MULTI_PKT_EGR))
1111 		rcvctrl_ops |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
1112 	if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_EGR_FULL))
1113 		rcvctrl_ops |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
1114 	if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_RHQ_FULL))
1115 		rcvctrl_ops |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
1116 	/*
1117 	 * The RcvCtxtCtrl.TailUpd bit has to be explicitly written.
1118 	 * We can't rely on the correct value to be set from prior
1119 	 * uses of the chip or ctxt. Therefore, add the rcvctrl op
1120 	 * for both cases.
1121 	 */
1122 	if (HFI1_CAP_UGET_MASK(uctxt->flags, DMA_RTAIL))
1123 		rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_ENB;
1124 	else
1125 		rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_DIS;
1126 	hfi1_rcvctrl(uctxt->dd, rcvctrl_ops, uctxt);
1127 }
1128 
1129 static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
1130 {
1131 	struct hfi1_ctxt_info cinfo;
1132 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1133 
1134 	if (sizeof(cinfo) != len)
1135 		return -EINVAL;
1136 
1137 	memset(&cinfo, 0, sizeof(cinfo));
1138 	cinfo.runtime_flags = (((uctxt->flags >> HFI1_CAP_MISC_SHIFT) &
1139 				HFI1_CAP_MISC_MASK) << HFI1_CAP_USER_SHIFT) |
1140 			HFI1_CAP_UGET_MASK(uctxt->flags, MASK) |
1141 			HFI1_CAP_KGET_MASK(uctxt->flags, K2U);
1142 	/* adjust flag if this fd is not able to cache */
1143 	if (!fd->use_mn)
1144 		cinfo.runtime_flags |= HFI1_CAP_TID_UNMAP; /* no caching */
1145 
1146 	cinfo.num_active = hfi1_count_active_units();
1147 	cinfo.unit = uctxt->dd->unit;
1148 	cinfo.ctxt = uctxt->ctxt;
1149 	cinfo.subctxt = fd->subctxt;
1150 	cinfo.rcvtids = roundup(uctxt->egrbufs.alloced,
1151 				uctxt->dd->rcv_entries.group_size) +
1152 		uctxt->expected_count;
1153 	cinfo.credits = uctxt->sc->credits;
1154 	cinfo.numa_node = uctxt->numa_id;
1155 	cinfo.rec_cpu = fd->rec_cpu_num;
1156 	cinfo.send_ctxt = uctxt->sc->hw_context;
1157 
1158 	cinfo.egrtids = uctxt->egrbufs.alloced;
1159 	cinfo.rcvhdrq_cnt = get_hdrq_cnt(uctxt);
1160 	cinfo.rcvhdrq_entsize = get_hdrqentsize(uctxt) << 2;
1161 	cinfo.sdma_ring_size = fd->cq->nentries;
1162 	cinfo.rcvegr_size = uctxt->egrbufs.rcvtid_size;
1163 
1164 	trace_hfi1_ctxt_info(uctxt->dd, uctxt->ctxt, fd->subctxt, &cinfo);
1165 	if (copy_to_user((void __user *)arg, &cinfo, len))
1166 		return -EFAULT;
1167 
1168 	return 0;
1169 }
1170 
1171 static int init_user_ctxt(struct hfi1_filedata *fd,
1172 			  struct hfi1_ctxtdata *uctxt)
1173 {
1174 	int ret;
1175 
1176 	ret = hfi1_user_sdma_alloc_queues(uctxt, fd);
1177 	if (ret)
1178 		return ret;
1179 
1180 	ret = hfi1_user_exp_rcv_init(fd, uctxt);
1181 	if (ret)
1182 		hfi1_user_sdma_free_queues(fd, uctxt);
1183 
1184 	return ret;
1185 }
1186 
1187 static int setup_base_ctxt(struct hfi1_filedata *fd,
1188 			   struct hfi1_ctxtdata *uctxt)
1189 {
1190 	struct hfi1_devdata *dd = uctxt->dd;
1191 	int ret = 0;
1192 
1193 	hfi1_init_ctxt(uctxt->sc);
1194 
1195 	/* Now allocate the RcvHdr queue and eager buffers. */
1196 	ret = hfi1_create_rcvhdrq(dd, uctxt);
1197 	if (ret)
1198 		goto done;
1199 
1200 	ret = hfi1_setup_eagerbufs(uctxt);
1201 	if (ret)
1202 		goto done;
1203 
1204 	/* If sub-contexts are enabled, do the appropriate setup */
1205 	if (uctxt->subctxt_cnt)
1206 		ret = setup_subctxt(uctxt);
1207 	if (ret)
1208 		goto done;
1209 
1210 	ret = hfi1_alloc_ctxt_rcv_groups(uctxt);
1211 	if (ret)
1212 		goto done;
1213 
1214 	ret = init_user_ctxt(fd, uctxt);
1215 	if (ret) {
1216 		hfi1_free_ctxt_rcv_groups(uctxt);
1217 		goto done;
1218 	}
1219 
1220 	user_init(uctxt);
1221 
1222 	/* Now that the context is set up, the fd can get a reference. */
1223 	fd->uctxt = uctxt;
1224 	hfi1_rcd_get(uctxt);
1225 
1226 done:
1227 	if (uctxt->subctxt_cnt) {
1228 		/*
1229 		 * On error, set the failed bit so sub-contexts will clean up
1230 		 * correctly.
1231 		 */
1232 		if (ret)
1233 			set_bit(HFI1_CTXT_BASE_FAILED, &uctxt->event_flags);
1234 
1235 		/*
1236 		 * Base context is done (successfully or not), notify anybody
1237 		 * using a sub-context that is waiting for this completion.
1238 		 */
1239 		clear_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
1240 		wake_up(&uctxt->wait);
1241 	}
1242 
1243 	return ret;
1244 }
1245 
1246 static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
1247 {
1248 	struct hfi1_base_info binfo;
1249 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1250 	struct hfi1_devdata *dd = uctxt->dd;
1251 	unsigned offset;
1252 
1253 	trace_hfi1_uctxtdata(uctxt->dd, uctxt, fd->subctxt);
1254 
1255 	if (sizeof(binfo) != len)
1256 		return -EINVAL;
1257 
1258 	memset(&binfo, 0, sizeof(binfo));
1259 	binfo.hw_version = dd->revision;
1260 	binfo.sw_version = HFI1_USER_SWVERSION;
1261 	binfo.bthqp = RVT_KDETH_QP_PREFIX;
1262 	binfo.jkey = uctxt->jkey;
1263 	/*
1264 	 * If more than 64 contexts are enabled the allocated credit
1265 	 * return will span two or three contiguous pages. Since we only
1266 	 * map the page containing the context's credit return address,
1267 	 * we need to calculate the offset in the proper page.
1268 	 */
1269 	offset = ((u64)uctxt->sc->hw_free -
1270 		  (u64)dd->cr_base[uctxt->numa_id].va) % PAGE_SIZE;
1271 	binfo.sc_credits_addr = HFI1_MMAP_TOKEN(PIO_CRED, uctxt->ctxt,
1272 						fd->subctxt, offset);
1273 	binfo.pio_bufbase = HFI1_MMAP_TOKEN(PIO_BUFS, uctxt->ctxt,
1274 					    fd->subctxt,
1275 					    uctxt->sc->base_addr);
1276 	binfo.pio_bufbase_sop = HFI1_MMAP_TOKEN(PIO_BUFS_SOP,
1277 						uctxt->ctxt,
1278 						fd->subctxt,
1279 						uctxt->sc->base_addr);
1280 	binfo.rcvhdr_bufbase = HFI1_MMAP_TOKEN(RCV_HDRQ, uctxt->ctxt,
1281 					       fd->subctxt,
1282 					       uctxt->rcvhdrq);
1283 	binfo.rcvegr_bufbase = HFI1_MMAP_TOKEN(RCV_EGRBUF, uctxt->ctxt,
1284 					       fd->subctxt,
1285 					       uctxt->egrbufs.rcvtids[0].dma);
1286 	binfo.sdma_comp_bufbase = HFI1_MMAP_TOKEN(SDMA_COMP, uctxt->ctxt,
1287 						  fd->subctxt, 0);
1288 	/*
1289 	 * user regs are at
1290 	 * (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE))
1291 	 */
1292 	binfo.user_regbase = HFI1_MMAP_TOKEN(UREGS, uctxt->ctxt,
1293 					     fd->subctxt, 0);
1294 	offset = offset_in_page((uctxt_offset(uctxt) + fd->subctxt) *
1295 				sizeof(*dd->events));
1296 	binfo.events_bufbase = HFI1_MMAP_TOKEN(EVENTS, uctxt->ctxt,
1297 					       fd->subctxt,
1298 					       offset);
1299 	binfo.status_bufbase = HFI1_MMAP_TOKEN(STATUS, uctxt->ctxt,
1300 					       fd->subctxt,
1301 					       dd->status);
1302 	if (HFI1_CAP_IS_USET(DMA_RTAIL))
1303 		binfo.rcvhdrtail_base = HFI1_MMAP_TOKEN(RTAIL, uctxt->ctxt,
1304 							fd->subctxt, 0);
1305 	if (uctxt->subctxt_cnt) {
1306 		binfo.subctxt_uregbase = HFI1_MMAP_TOKEN(SUBCTXT_UREGS,
1307 							 uctxt->ctxt,
1308 							 fd->subctxt, 0);
1309 		binfo.subctxt_rcvhdrbuf = HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ,
1310 							  uctxt->ctxt,
1311 							  fd->subctxt, 0);
1312 		binfo.subctxt_rcvegrbuf = HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF,
1313 							  uctxt->ctxt,
1314 							  fd->subctxt, 0);
1315 	}
1316 
1317 	if (copy_to_user((void __user *)arg, &binfo, len))
1318 		return -EFAULT;
1319 
1320 	return 0;
1321 }
1322 
1323 /**
1324  * user_exp_rcv_setup - Set up the given tid rcv list
1325  * @fd: file data of the current driver instance
1326  * @arg: ioctl argumnent for user space information
1327  * @len: length of data structure associated with ioctl command
1328  *
1329  * Wrapper to validate ioctl information before doing _rcv_setup.
1330  *
1331  */
1332 static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
1333 			      u32 len)
1334 {
1335 	int ret;
1336 	unsigned long addr;
1337 	struct hfi1_tid_info tinfo;
1338 
1339 	if (sizeof(tinfo) != len)
1340 		return -EINVAL;
1341 
1342 	if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1343 		return -EFAULT;
1344 
1345 	ret = hfi1_user_exp_rcv_setup(fd, &tinfo);
1346 	if (!ret) {
1347 		/*
1348 		 * Copy the number of tidlist entries we used
1349 		 * and the length of the buffer we registered.
1350 		 */
1351 		addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1352 		if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1353 				 sizeof(tinfo.tidcnt)))
1354 			ret = -EFAULT;
1355 
1356 		addr = arg + offsetof(struct hfi1_tid_info, length);
1357 		if (!ret && copy_to_user((void __user *)addr, &tinfo.length,
1358 				 sizeof(tinfo.length)))
1359 			ret = -EFAULT;
1360 
1361 		if (ret)
1362 			hfi1_user_exp_rcv_invalid(fd, &tinfo);
1363 	}
1364 
1365 	return ret;
1366 }
1367 
1368 /**
1369  * user_exp_rcv_clear - Clear the given tid rcv list
1370  * @fd: file data of the current driver instance
1371  * @arg: ioctl argumnent for user space information
1372  * @len: length of data structure associated with ioctl command
1373  *
1374  * The hfi1_user_exp_rcv_clear() can be called from the error path.  Because
1375  * of this, we need to use this wrapper to copy the user space information
1376  * before doing the clear.
1377  */
1378 static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
1379 			      u32 len)
1380 {
1381 	int ret;
1382 	unsigned long addr;
1383 	struct hfi1_tid_info tinfo;
1384 
1385 	if (sizeof(tinfo) != len)
1386 		return -EINVAL;
1387 
1388 	if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1389 		return -EFAULT;
1390 
1391 	ret = hfi1_user_exp_rcv_clear(fd, &tinfo);
1392 	if (!ret) {
1393 		addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1394 		if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1395 				 sizeof(tinfo.tidcnt)))
1396 			return -EFAULT;
1397 	}
1398 
1399 	return ret;
1400 }
1401 
1402 /**
1403  * user_exp_rcv_invalid - Invalidate the given tid rcv list
1404  * @fd: file data of the current driver instance
1405  * @arg: ioctl argumnent for user space information
1406  * @len: length of data structure associated with ioctl command
1407  *
1408  * Wrapper to validate ioctl information before doing _rcv_invalid.
1409  *
1410  */
1411 static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
1412 				u32 len)
1413 {
1414 	int ret;
1415 	unsigned long addr;
1416 	struct hfi1_tid_info tinfo;
1417 
1418 	if (sizeof(tinfo) != len)
1419 		return -EINVAL;
1420 
1421 	if (!fd->invalid_tids)
1422 		return -EINVAL;
1423 
1424 	if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1425 		return -EFAULT;
1426 
1427 	ret = hfi1_user_exp_rcv_invalid(fd, &tinfo);
1428 	if (ret)
1429 		return ret;
1430 
1431 	addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1432 	if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1433 			 sizeof(tinfo.tidcnt)))
1434 		ret = -EFAULT;
1435 
1436 	return ret;
1437 }
1438 
1439 static __poll_t poll_urgent(struct file *fp,
1440 				struct poll_table_struct *pt)
1441 {
1442 	struct hfi1_filedata *fd = fp->private_data;
1443 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1444 	struct hfi1_devdata *dd = uctxt->dd;
1445 	__poll_t pollflag;
1446 
1447 	poll_wait(fp, &uctxt->wait, pt);
1448 
1449 	spin_lock_irq(&dd->uctxt_lock);
1450 	if (uctxt->urgent != uctxt->urgent_poll) {
1451 		pollflag = EPOLLIN | EPOLLRDNORM;
1452 		uctxt->urgent_poll = uctxt->urgent;
1453 	} else {
1454 		pollflag = 0;
1455 		set_bit(HFI1_CTXT_WAITING_URG, &uctxt->event_flags);
1456 	}
1457 	spin_unlock_irq(&dd->uctxt_lock);
1458 
1459 	return pollflag;
1460 }
1461 
1462 static __poll_t poll_next(struct file *fp,
1463 			      struct poll_table_struct *pt)
1464 {
1465 	struct hfi1_filedata *fd = fp->private_data;
1466 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1467 	struct hfi1_devdata *dd = uctxt->dd;
1468 	__poll_t pollflag;
1469 
1470 	poll_wait(fp, &uctxt->wait, pt);
1471 
1472 	spin_lock_irq(&dd->uctxt_lock);
1473 	if (hdrqempty(uctxt)) {
1474 		set_bit(HFI1_CTXT_WAITING_RCV, &uctxt->event_flags);
1475 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_INTRAVAIL_ENB, uctxt);
1476 		pollflag = 0;
1477 	} else {
1478 		pollflag = EPOLLIN | EPOLLRDNORM;
1479 	}
1480 	spin_unlock_irq(&dd->uctxt_lock);
1481 
1482 	return pollflag;
1483 }
1484 
1485 /*
1486  * Find all user contexts in use, and set the specified bit in their
1487  * event mask.
1488  * See also find_ctxt() for a similar use, that is specific to send buffers.
1489  */
1490 int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit)
1491 {
1492 	struct hfi1_ctxtdata *uctxt;
1493 	struct hfi1_devdata *dd = ppd->dd;
1494 	u16 ctxt;
1495 
1496 	if (!dd->events)
1497 		return -EINVAL;
1498 
1499 	for (ctxt = dd->first_dyn_alloc_ctxt; ctxt < dd->num_rcv_contexts;
1500 	     ctxt++) {
1501 		uctxt = hfi1_rcd_get_by_index(dd, ctxt);
1502 		if (uctxt) {
1503 			unsigned long *evs;
1504 			int i;
1505 			/*
1506 			 * subctxt_cnt is 0 if not shared, so do base
1507 			 * separately, first, then remaining subctxt, if any
1508 			 */
1509 			evs = dd->events + uctxt_offset(uctxt);
1510 			set_bit(evtbit, evs);
1511 			for (i = 1; i < uctxt->subctxt_cnt; i++)
1512 				set_bit(evtbit, evs + i);
1513 			hfi1_rcd_put(uctxt);
1514 		}
1515 	}
1516 
1517 	return 0;
1518 }
1519 
1520 /**
1521  * manage_rcvq - manage a context's receive queue
1522  * @uctxt: the context
1523  * @subctxt: the sub-context
1524  * @arg: start/stop action to carry out
1525  *
1526  * start_stop == 0 disables receive on the context, for use in queue
1527  * overflow conditions.  start_stop==1 re-enables, to be used to
1528  * re-init the software copy of the head register
1529  */
1530 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
1531 		       unsigned long arg)
1532 {
1533 	struct hfi1_devdata *dd = uctxt->dd;
1534 	unsigned int rcvctrl_op;
1535 	int start_stop;
1536 
1537 	if (subctxt)
1538 		return 0;
1539 
1540 	if (get_user(start_stop, (int __user *)arg))
1541 		return -EFAULT;
1542 
1543 	/* atomically clear receive enable ctxt. */
1544 	if (start_stop) {
1545 		/*
1546 		 * On enable, force in-memory copy of the tail register to
1547 		 * 0, so that protocol code doesn't have to worry about
1548 		 * whether or not the chip has yet updated the in-memory
1549 		 * copy or not on return from the system call. The chip
1550 		 * always resets it's tail register back to 0 on a
1551 		 * transition from disabled to enabled.
1552 		 */
1553 		if (hfi1_rcvhdrtail_kvaddr(uctxt))
1554 			clear_rcvhdrtail(uctxt);
1555 		rcvctrl_op = HFI1_RCVCTRL_CTXT_ENB;
1556 	} else {
1557 		rcvctrl_op = HFI1_RCVCTRL_CTXT_DIS;
1558 	}
1559 	hfi1_rcvctrl(dd, rcvctrl_op, uctxt);
1560 	/* always; new head should be equal to new tail; see above */
1561 
1562 	return 0;
1563 }
1564 
1565 /*
1566  * clear the event notifier events for this context.
1567  * User process then performs actions appropriate to bit having been
1568  * set, if desired, and checks again in future.
1569  */
1570 static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
1571 			  unsigned long arg)
1572 {
1573 	int i;
1574 	struct hfi1_devdata *dd = uctxt->dd;
1575 	unsigned long *evs;
1576 	unsigned long events;
1577 
1578 	if (!dd->events)
1579 		return 0;
1580 
1581 	if (get_user(events, (unsigned long __user *)arg))
1582 		return -EFAULT;
1583 
1584 	evs = dd->events + uctxt_offset(uctxt) + subctxt;
1585 
1586 	for (i = 0; i <= _HFI1_MAX_EVENT_BIT; i++) {
1587 		if (!test_bit(i, &events))
1588 			continue;
1589 		clear_bit(i, evs);
1590 	}
1591 	return 0;
1592 }
1593 
1594 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg)
1595 {
1596 	int i;
1597 	struct hfi1_pportdata *ppd = uctxt->ppd;
1598 	struct hfi1_devdata *dd = uctxt->dd;
1599 	u16 pkey;
1600 
1601 	if (!HFI1_CAP_IS_USET(PKEY_CHECK))
1602 		return -EPERM;
1603 
1604 	if (get_user(pkey, (u16 __user *)arg))
1605 		return -EFAULT;
1606 
1607 	if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY)
1608 		return -EINVAL;
1609 
1610 	for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++)
1611 		if (pkey == ppd->pkeys[i])
1612 			return hfi1_set_ctxt_pkey(dd, uctxt, pkey);
1613 
1614 	return -ENOENT;
1615 }
1616 
1617 /**
1618  * ctxt_reset - Reset the user context
1619  * @uctxt: valid user context
1620  */
1621 static int ctxt_reset(struct hfi1_ctxtdata *uctxt)
1622 {
1623 	struct send_context *sc;
1624 	struct hfi1_devdata *dd;
1625 	int ret = 0;
1626 
1627 	if (!uctxt || !uctxt->dd || !uctxt->sc)
1628 		return -EINVAL;
1629 
1630 	/*
1631 	 * There is no protection here. User level has to guarantee that
1632 	 * no one will be writing to the send context while it is being
1633 	 * re-initialized.  If user level breaks that guarantee, it will
1634 	 * break it's own context and no one else's.
1635 	 */
1636 	dd = uctxt->dd;
1637 	sc = uctxt->sc;
1638 
1639 	/*
1640 	 * Wait until the interrupt handler has marked the context as
1641 	 * halted or frozen. Report error if we time out.
1642 	 */
1643 	wait_event_interruptible_timeout(
1644 		sc->halt_wait, (sc->flags & SCF_HALTED),
1645 		msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
1646 	if (!(sc->flags & SCF_HALTED))
1647 		return -ENOLCK;
1648 
1649 	/*
1650 	 * If the send context was halted due to a Freeze, wait until the
1651 	 * device has been "unfrozen" before resetting the context.
1652 	 */
1653 	if (sc->flags & SCF_FROZEN) {
1654 		wait_event_interruptible_timeout(
1655 			dd->event_queue,
1656 			!(READ_ONCE(dd->flags) & HFI1_FROZEN),
1657 			msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
1658 		if (dd->flags & HFI1_FROZEN)
1659 			return -ENOLCK;
1660 
1661 		if (dd->flags & HFI1_FORCED_FREEZE)
1662 			/*
1663 			 * Don't allow context reset if we are into
1664 			 * forced freeze
1665 			 */
1666 			return -ENODEV;
1667 
1668 		sc_disable(sc);
1669 		ret = sc_enable(sc);
1670 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB, uctxt);
1671 	} else {
1672 		ret = sc_restart(sc);
1673 	}
1674 	if (!ret)
1675 		sc_return_credits(sc);
1676 
1677 	return ret;
1678 }
1679 
1680 static void user_remove(struct hfi1_devdata *dd)
1681 {
1682 
1683 	hfi1_cdev_cleanup(&dd->user_cdev, &dd->user_device);
1684 }
1685 
1686 static int user_add(struct hfi1_devdata *dd)
1687 {
1688 	char name[10];
1689 	int ret;
1690 
1691 	snprintf(name, sizeof(name), "%s_%d", class_name(), dd->unit);
1692 	ret = hfi1_cdev_init(dd->unit, name, &hfi1_file_ops,
1693 			     &dd->user_cdev, &dd->user_device,
1694 			     true, &dd->verbs_dev.rdi.ibdev.dev.kobj);
1695 	if (ret)
1696 		user_remove(dd);
1697 
1698 	return ret;
1699 }
1700 
1701 /*
1702  * Create per-unit files in /dev
1703  */
1704 int hfi1_device_create(struct hfi1_devdata *dd)
1705 {
1706 	return user_add(dd);
1707 }
1708 
1709 /*
1710  * Remove per-unit files in /dev
1711  * void, core kernel returns no errors for this stuff
1712  */
1713 void hfi1_device_remove(struct hfi1_devdata *dd)
1714 {
1715 	user_remove(dd);
1716 }
1717