1 /* 2 * Copyright(c) 2020 Cornelis Networks, Inc. 3 * Copyright(c) 2015-2020 Intel Corporation. 4 * 5 * This file is provided under a dual BSD/GPLv2 license. When using or 6 * redistributing this file, you may do so under either license. 7 * 8 * GPL LICENSE SUMMARY 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of version 2 of the GNU General Public License as 12 * published by the Free Software Foundation. 13 * 14 * This program is distributed in the hope that it will be useful, but 15 * WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * General Public License for more details. 18 * 19 * BSD LICENSE 20 * 21 * Redistribution and use in source and binary forms, with or without 22 * modification, are permitted provided that the following conditions 23 * are met: 24 * 25 * - Redistributions of source code must retain the above copyright 26 * notice, this list of conditions and the following disclaimer. 27 * - Redistributions in binary form must reproduce the above copyright 28 * notice, this list of conditions and the following disclaimer in 29 * the documentation and/or other materials provided with the 30 * distribution. 31 * - Neither the name of Intel Corporation nor the names of its 32 * contributors may be used to endorse or promote products derived 33 * from this software without specific prior written permission. 34 * 35 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 38 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 39 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 41 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 42 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 43 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 44 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 45 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 46 * 47 */ 48 #include <linux/poll.h> 49 #include <linux/cdev.h> 50 #include <linux/vmalloc.h> 51 #include <linux/io.h> 52 #include <linux/sched/mm.h> 53 #include <linux/bitmap.h> 54 55 #include <rdma/ib.h> 56 57 #include "hfi.h" 58 #include "pio.h" 59 #include "device.h" 60 #include "common.h" 61 #include "trace.h" 62 #include "mmu_rb.h" 63 #include "user_sdma.h" 64 #include "user_exp_rcv.h" 65 #include "aspm.h" 66 67 #undef pr_fmt 68 #define pr_fmt(fmt) DRIVER_NAME ": " fmt 69 70 #define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */ 71 72 /* 73 * File operation functions 74 */ 75 static int hfi1_file_open(struct inode *inode, struct file *fp); 76 static int hfi1_file_close(struct inode *inode, struct file *fp); 77 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from); 78 static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt); 79 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma); 80 81 static u64 kvirt_to_phys(void *addr); 82 static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len); 83 static void init_subctxts(struct hfi1_ctxtdata *uctxt, 84 const struct hfi1_user_info *uinfo); 85 static int init_user_ctxt(struct hfi1_filedata *fd, 86 struct hfi1_ctxtdata *uctxt); 87 static void user_init(struct hfi1_ctxtdata *uctxt); 88 static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len); 89 static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len); 90 static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg, 91 u32 len); 92 static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg, 93 u32 len); 94 static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg, 95 u32 len); 96 static int setup_base_ctxt(struct hfi1_filedata *fd, 97 struct hfi1_ctxtdata *uctxt); 98 static int setup_subctxt(struct hfi1_ctxtdata *uctxt); 99 100 static int find_sub_ctxt(struct hfi1_filedata *fd, 101 const struct hfi1_user_info *uinfo); 102 static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd, 103 struct hfi1_user_info *uinfo, 104 struct hfi1_ctxtdata **cd); 105 static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt); 106 static __poll_t poll_urgent(struct file *fp, struct poll_table_struct *pt); 107 static __poll_t poll_next(struct file *fp, struct poll_table_struct *pt); 108 static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt, 109 unsigned long arg); 110 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg); 111 static int ctxt_reset(struct hfi1_ctxtdata *uctxt); 112 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt, 113 unsigned long arg); 114 static vm_fault_t vma_fault(struct vm_fault *vmf); 115 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd, 116 unsigned long arg); 117 118 static const struct file_operations hfi1_file_ops = { 119 .owner = THIS_MODULE, 120 .write_iter = hfi1_write_iter, 121 .open = hfi1_file_open, 122 .release = hfi1_file_close, 123 .unlocked_ioctl = hfi1_file_ioctl, 124 .poll = hfi1_poll, 125 .mmap = hfi1_file_mmap, 126 .llseek = noop_llseek, 127 }; 128 129 static const struct vm_operations_struct vm_ops = { 130 .fault = vma_fault, 131 }; 132 133 /* 134 * Types of memories mapped into user processes' space 135 */ 136 enum mmap_types { 137 PIO_BUFS = 1, 138 PIO_BUFS_SOP, 139 PIO_CRED, 140 RCV_HDRQ, 141 RCV_EGRBUF, 142 UREGS, 143 EVENTS, 144 STATUS, 145 RTAIL, 146 SUBCTXT_UREGS, 147 SUBCTXT_RCV_HDRQ, 148 SUBCTXT_EGRBUF, 149 SDMA_COMP 150 }; 151 152 /* 153 * Masks and offsets defining the mmap tokens 154 */ 155 #define HFI1_MMAP_OFFSET_MASK 0xfffULL 156 #define HFI1_MMAP_OFFSET_SHIFT 0 157 #define HFI1_MMAP_SUBCTXT_MASK 0xfULL 158 #define HFI1_MMAP_SUBCTXT_SHIFT 12 159 #define HFI1_MMAP_CTXT_MASK 0xffULL 160 #define HFI1_MMAP_CTXT_SHIFT 16 161 #define HFI1_MMAP_TYPE_MASK 0xfULL 162 #define HFI1_MMAP_TYPE_SHIFT 24 163 #define HFI1_MMAP_MAGIC_MASK 0xffffffffULL 164 #define HFI1_MMAP_MAGIC_SHIFT 32 165 166 #define HFI1_MMAP_MAGIC 0xdabbad00 167 168 #define HFI1_MMAP_TOKEN_SET(field, val) \ 169 (((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT) 170 #define HFI1_MMAP_TOKEN_GET(field, token) \ 171 (((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK) 172 #define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr) \ 173 (HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \ 174 HFI1_MMAP_TOKEN_SET(TYPE, type) | \ 175 HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \ 176 HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \ 177 HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr)))) 178 179 #define dbg(fmt, ...) \ 180 pr_info(fmt, ##__VA_ARGS__) 181 182 static inline int is_valid_mmap(u64 token) 183 { 184 return (HFI1_MMAP_TOKEN_GET(MAGIC, token) == HFI1_MMAP_MAGIC); 185 } 186 187 static int hfi1_file_open(struct inode *inode, struct file *fp) 188 { 189 struct hfi1_filedata *fd; 190 struct hfi1_devdata *dd = container_of(inode->i_cdev, 191 struct hfi1_devdata, 192 user_cdev); 193 194 if (!((dd->flags & HFI1_PRESENT) && dd->kregbase1)) 195 return -EINVAL; 196 197 if (!atomic_inc_not_zero(&dd->user_refcount)) 198 return -ENXIO; 199 200 /* The real work is performed later in assign_ctxt() */ 201 202 fd = kzalloc(sizeof(*fd), GFP_KERNEL); 203 204 if (!fd || init_srcu_struct(&fd->pq_srcu)) 205 goto nomem; 206 spin_lock_init(&fd->pq_rcu_lock); 207 spin_lock_init(&fd->tid_lock); 208 spin_lock_init(&fd->invalid_lock); 209 fd->rec_cpu_num = -1; /* no cpu affinity by default */ 210 fd->dd = dd; 211 fp->private_data = fd; 212 return 0; 213 nomem: 214 kfree(fd); 215 fp->private_data = NULL; 216 if (atomic_dec_and_test(&dd->user_refcount)) 217 complete(&dd->user_comp); 218 return -ENOMEM; 219 } 220 221 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd, 222 unsigned long arg) 223 { 224 struct hfi1_filedata *fd = fp->private_data; 225 struct hfi1_ctxtdata *uctxt = fd->uctxt; 226 int ret = 0; 227 int uval = 0; 228 229 hfi1_cdbg(IOCTL, "IOCTL recv: 0x%x", cmd); 230 if (cmd != HFI1_IOCTL_ASSIGN_CTXT && 231 cmd != HFI1_IOCTL_GET_VERS && 232 !uctxt) 233 return -EINVAL; 234 235 switch (cmd) { 236 case HFI1_IOCTL_ASSIGN_CTXT: 237 ret = assign_ctxt(fd, arg, _IOC_SIZE(cmd)); 238 break; 239 240 case HFI1_IOCTL_CTXT_INFO: 241 ret = get_ctxt_info(fd, arg, _IOC_SIZE(cmd)); 242 break; 243 244 case HFI1_IOCTL_USER_INFO: 245 ret = get_base_info(fd, arg, _IOC_SIZE(cmd)); 246 break; 247 248 case HFI1_IOCTL_CREDIT_UPD: 249 if (uctxt) 250 sc_return_credits(uctxt->sc); 251 break; 252 253 case HFI1_IOCTL_TID_UPDATE: 254 ret = user_exp_rcv_setup(fd, arg, _IOC_SIZE(cmd)); 255 break; 256 257 case HFI1_IOCTL_TID_FREE: 258 ret = user_exp_rcv_clear(fd, arg, _IOC_SIZE(cmd)); 259 break; 260 261 case HFI1_IOCTL_TID_INVAL_READ: 262 ret = user_exp_rcv_invalid(fd, arg, _IOC_SIZE(cmd)); 263 break; 264 265 case HFI1_IOCTL_RECV_CTRL: 266 ret = manage_rcvq(uctxt, fd->subctxt, arg); 267 break; 268 269 case HFI1_IOCTL_POLL_TYPE: 270 if (get_user(uval, (int __user *)arg)) 271 return -EFAULT; 272 uctxt->poll_type = (typeof(uctxt->poll_type))uval; 273 break; 274 275 case HFI1_IOCTL_ACK_EVENT: 276 ret = user_event_ack(uctxt, fd->subctxt, arg); 277 break; 278 279 case HFI1_IOCTL_SET_PKEY: 280 ret = set_ctxt_pkey(uctxt, arg); 281 break; 282 283 case HFI1_IOCTL_CTXT_RESET: 284 ret = ctxt_reset(uctxt); 285 break; 286 287 case HFI1_IOCTL_GET_VERS: 288 uval = HFI1_USER_SWVERSION; 289 if (put_user(uval, (int __user *)arg)) 290 return -EFAULT; 291 break; 292 293 default: 294 return -EINVAL; 295 } 296 297 return ret; 298 } 299 300 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from) 301 { 302 struct hfi1_filedata *fd = kiocb->ki_filp->private_data; 303 struct hfi1_user_sdma_pkt_q *pq; 304 struct hfi1_user_sdma_comp_q *cq = fd->cq; 305 int done = 0, reqs = 0; 306 unsigned long dim = from->nr_segs; 307 int idx; 308 309 idx = srcu_read_lock(&fd->pq_srcu); 310 pq = srcu_dereference(fd->pq, &fd->pq_srcu); 311 if (!cq || !pq) { 312 srcu_read_unlock(&fd->pq_srcu, idx); 313 return -EIO; 314 } 315 316 if (!iter_is_iovec(from) || !dim) { 317 srcu_read_unlock(&fd->pq_srcu, idx); 318 return -EINVAL; 319 } 320 321 trace_hfi1_sdma_request(fd->dd, fd->uctxt->ctxt, fd->subctxt, dim); 322 323 if (atomic_read(&pq->n_reqs) == pq->n_max_reqs) { 324 srcu_read_unlock(&fd->pq_srcu, idx); 325 return -ENOSPC; 326 } 327 328 while (dim) { 329 int ret; 330 unsigned long count = 0; 331 332 ret = hfi1_user_sdma_process_request( 333 fd, (struct iovec *)(from->iov + done), 334 dim, &count); 335 if (ret) { 336 reqs = ret; 337 break; 338 } 339 dim -= count; 340 done += count; 341 reqs++; 342 } 343 344 srcu_read_unlock(&fd->pq_srcu, idx); 345 return reqs; 346 } 347 348 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma) 349 { 350 struct hfi1_filedata *fd = fp->private_data; 351 struct hfi1_ctxtdata *uctxt = fd->uctxt; 352 struct hfi1_devdata *dd; 353 unsigned long flags; 354 u64 token = vma->vm_pgoff << PAGE_SHIFT, 355 memaddr = 0; 356 void *memvirt = NULL; 357 u8 subctxt, mapio = 0, vmf = 0, type; 358 ssize_t memlen = 0; 359 int ret = 0; 360 u16 ctxt; 361 362 if (!is_valid_mmap(token) || !uctxt || 363 !(vma->vm_flags & VM_SHARED)) { 364 ret = -EINVAL; 365 goto done; 366 } 367 dd = uctxt->dd; 368 ctxt = HFI1_MMAP_TOKEN_GET(CTXT, token); 369 subctxt = HFI1_MMAP_TOKEN_GET(SUBCTXT, token); 370 type = HFI1_MMAP_TOKEN_GET(TYPE, token); 371 if (ctxt != uctxt->ctxt || subctxt != fd->subctxt) { 372 ret = -EINVAL; 373 goto done; 374 } 375 376 flags = vma->vm_flags; 377 378 switch (type) { 379 case PIO_BUFS: 380 case PIO_BUFS_SOP: 381 memaddr = ((dd->physaddr + TXE_PIO_SEND) + 382 /* chip pio base */ 383 (uctxt->sc->hw_context * BIT(16))) + 384 /* 64K PIO space / ctxt */ 385 (type == PIO_BUFS_SOP ? 386 (TXE_PIO_SIZE / 2) : 0); /* sop? */ 387 /* 388 * Map only the amount allocated to the context, not the 389 * entire available context's PIO space. 390 */ 391 memlen = PAGE_ALIGN(uctxt->sc->credits * PIO_BLOCK_SIZE); 392 flags &= ~VM_MAYREAD; 393 flags |= VM_DONTCOPY | VM_DONTEXPAND; 394 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); 395 mapio = 1; 396 break; 397 case PIO_CRED: 398 if (flags & VM_WRITE) { 399 ret = -EPERM; 400 goto done; 401 } 402 /* 403 * The credit return location for this context could be on the 404 * second or third page allocated for credit returns (if number 405 * of enabled contexts > 64 and 128 respectively). 406 */ 407 memvirt = dd->cr_base[uctxt->numa_id].va; 408 memaddr = virt_to_phys(memvirt) + 409 (((u64)uctxt->sc->hw_free - 410 (u64)dd->cr_base[uctxt->numa_id].va) & PAGE_MASK); 411 memlen = PAGE_SIZE; 412 flags &= ~VM_MAYWRITE; 413 flags |= VM_DONTCOPY | VM_DONTEXPAND; 414 /* 415 * The driver has already allocated memory for credit 416 * returns and programmed it into the chip. Has that 417 * memory been flagged as non-cached? 418 */ 419 /* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */ 420 mapio = 1; 421 break; 422 case RCV_HDRQ: 423 memlen = rcvhdrq_size(uctxt); 424 memvirt = uctxt->rcvhdrq; 425 break; 426 case RCV_EGRBUF: { 427 unsigned long addr; 428 int i; 429 /* 430 * The RcvEgr buffer need to be handled differently 431 * as multiple non-contiguous pages need to be mapped 432 * into the user process. 433 */ 434 memlen = uctxt->egrbufs.size; 435 if ((vma->vm_end - vma->vm_start) != memlen) { 436 dd_dev_err(dd, "Eager buffer map size invalid (%lu != %lu)\n", 437 (vma->vm_end - vma->vm_start), memlen); 438 ret = -EINVAL; 439 goto done; 440 } 441 if (vma->vm_flags & VM_WRITE) { 442 ret = -EPERM; 443 goto done; 444 } 445 vma->vm_flags &= ~VM_MAYWRITE; 446 addr = vma->vm_start; 447 for (i = 0 ; i < uctxt->egrbufs.numbufs; i++) { 448 memlen = uctxt->egrbufs.buffers[i].len; 449 memvirt = uctxt->egrbufs.buffers[i].addr; 450 ret = remap_pfn_range( 451 vma, addr, 452 /* 453 * virt_to_pfn() does the same, but 454 * it's not available on x86_64 455 * when CONFIG_MMU is enabled. 456 */ 457 PFN_DOWN(__pa(memvirt)), 458 memlen, 459 vma->vm_page_prot); 460 if (ret < 0) 461 goto done; 462 addr += memlen; 463 } 464 ret = 0; 465 goto done; 466 } 467 case UREGS: 468 /* 469 * Map only the page that contains this context's user 470 * registers. 471 */ 472 memaddr = (unsigned long) 473 (dd->physaddr + RXE_PER_CONTEXT_USER) 474 + (uctxt->ctxt * RXE_PER_CONTEXT_SIZE); 475 /* 476 * TidFlow table is on the same page as the rest of the 477 * user registers. 478 */ 479 memlen = PAGE_SIZE; 480 flags |= VM_DONTCOPY | VM_DONTEXPAND; 481 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 482 mapio = 1; 483 break; 484 case EVENTS: 485 /* 486 * Use the page where this context's flags are. User level 487 * knows where it's own bitmap is within the page. 488 */ 489 memaddr = (unsigned long) 490 (dd->events + uctxt_offset(uctxt)) & PAGE_MASK; 491 memlen = PAGE_SIZE; 492 /* 493 * v3.7 removes VM_RESERVED but the effect is kept by 494 * using VM_IO. 495 */ 496 flags |= VM_IO | VM_DONTEXPAND; 497 vmf = 1; 498 break; 499 case STATUS: 500 if (flags & VM_WRITE) { 501 ret = -EPERM; 502 goto done; 503 } 504 memaddr = kvirt_to_phys((void *)dd->status); 505 memlen = PAGE_SIZE; 506 flags |= VM_IO | VM_DONTEXPAND; 507 break; 508 case RTAIL: 509 if (!HFI1_CAP_IS_USET(DMA_RTAIL)) { 510 /* 511 * If the memory allocation failed, the context alloc 512 * also would have failed, so we would never get here 513 */ 514 ret = -EINVAL; 515 goto done; 516 } 517 if ((flags & VM_WRITE) || !hfi1_rcvhdrtail_kvaddr(uctxt)) { 518 ret = -EPERM; 519 goto done; 520 } 521 memlen = PAGE_SIZE; 522 memvirt = (void *)hfi1_rcvhdrtail_kvaddr(uctxt); 523 flags &= ~VM_MAYWRITE; 524 break; 525 case SUBCTXT_UREGS: 526 memaddr = (u64)uctxt->subctxt_uregbase; 527 memlen = PAGE_SIZE; 528 flags |= VM_IO | VM_DONTEXPAND; 529 vmf = 1; 530 break; 531 case SUBCTXT_RCV_HDRQ: 532 memaddr = (u64)uctxt->subctxt_rcvhdr_base; 533 memlen = rcvhdrq_size(uctxt) * uctxt->subctxt_cnt; 534 flags |= VM_IO | VM_DONTEXPAND; 535 vmf = 1; 536 break; 537 case SUBCTXT_EGRBUF: 538 memaddr = (u64)uctxt->subctxt_rcvegrbuf; 539 memlen = uctxt->egrbufs.size * uctxt->subctxt_cnt; 540 flags |= VM_IO | VM_DONTEXPAND; 541 flags &= ~VM_MAYWRITE; 542 vmf = 1; 543 break; 544 case SDMA_COMP: { 545 struct hfi1_user_sdma_comp_q *cq = fd->cq; 546 547 if (!cq) { 548 ret = -EFAULT; 549 goto done; 550 } 551 memaddr = (u64)cq->comps; 552 memlen = PAGE_ALIGN(sizeof(*cq->comps) * cq->nentries); 553 flags |= VM_IO | VM_DONTEXPAND; 554 vmf = 1; 555 break; 556 } 557 default: 558 ret = -EINVAL; 559 break; 560 } 561 562 if ((vma->vm_end - vma->vm_start) != memlen) { 563 hfi1_cdbg(PROC, "%u:%u Memory size mismatch %lu:%lu", 564 uctxt->ctxt, fd->subctxt, 565 (vma->vm_end - vma->vm_start), memlen); 566 ret = -EINVAL; 567 goto done; 568 } 569 570 vma->vm_flags = flags; 571 hfi1_cdbg(PROC, 572 "%u:%u type:%u io/vf:%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx\n", 573 ctxt, subctxt, type, mapio, vmf, memaddr, memlen, 574 vma->vm_end - vma->vm_start, vma->vm_flags); 575 if (vmf) { 576 vma->vm_pgoff = PFN_DOWN(memaddr); 577 vma->vm_ops = &vm_ops; 578 ret = 0; 579 } else if (mapio) { 580 ret = io_remap_pfn_range(vma, vma->vm_start, 581 PFN_DOWN(memaddr), 582 memlen, 583 vma->vm_page_prot); 584 } else if (memvirt) { 585 ret = remap_pfn_range(vma, vma->vm_start, 586 PFN_DOWN(__pa(memvirt)), 587 memlen, 588 vma->vm_page_prot); 589 } else { 590 ret = remap_pfn_range(vma, vma->vm_start, 591 PFN_DOWN(memaddr), 592 memlen, 593 vma->vm_page_prot); 594 } 595 done: 596 return ret; 597 } 598 599 /* 600 * Local (non-chip) user memory is not mapped right away but as it is 601 * accessed by the user-level code. 602 */ 603 static vm_fault_t vma_fault(struct vm_fault *vmf) 604 { 605 struct page *page; 606 607 page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT)); 608 if (!page) 609 return VM_FAULT_SIGBUS; 610 611 get_page(page); 612 vmf->page = page; 613 614 return 0; 615 } 616 617 static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt) 618 { 619 struct hfi1_ctxtdata *uctxt; 620 __poll_t pollflag; 621 622 uctxt = ((struct hfi1_filedata *)fp->private_data)->uctxt; 623 if (!uctxt) 624 pollflag = EPOLLERR; 625 else if (uctxt->poll_type == HFI1_POLL_TYPE_URGENT) 626 pollflag = poll_urgent(fp, pt); 627 else if (uctxt->poll_type == HFI1_POLL_TYPE_ANYRCV) 628 pollflag = poll_next(fp, pt); 629 else /* invalid */ 630 pollflag = EPOLLERR; 631 632 return pollflag; 633 } 634 635 static int hfi1_file_close(struct inode *inode, struct file *fp) 636 { 637 struct hfi1_filedata *fdata = fp->private_data; 638 struct hfi1_ctxtdata *uctxt = fdata->uctxt; 639 struct hfi1_devdata *dd = container_of(inode->i_cdev, 640 struct hfi1_devdata, 641 user_cdev); 642 unsigned long flags, *ev; 643 644 fp->private_data = NULL; 645 646 if (!uctxt) 647 goto done; 648 649 hfi1_cdbg(PROC, "closing ctxt %u:%u", uctxt->ctxt, fdata->subctxt); 650 651 flush_wc(); 652 /* drain user sdma queue */ 653 hfi1_user_sdma_free_queues(fdata, uctxt); 654 655 /* release the cpu */ 656 hfi1_put_proc_affinity(fdata->rec_cpu_num); 657 658 /* clean up rcv side */ 659 hfi1_user_exp_rcv_free(fdata); 660 661 /* 662 * fdata->uctxt is used in the above cleanup. It is not ready to be 663 * removed until here. 664 */ 665 fdata->uctxt = NULL; 666 hfi1_rcd_put(uctxt); 667 668 /* 669 * Clear any left over, unhandled events so the next process that 670 * gets this context doesn't get confused. 671 */ 672 ev = dd->events + uctxt_offset(uctxt) + fdata->subctxt; 673 *ev = 0; 674 675 spin_lock_irqsave(&dd->uctxt_lock, flags); 676 __clear_bit(fdata->subctxt, uctxt->in_use_ctxts); 677 if (!bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) { 678 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 679 goto done; 680 } 681 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 682 683 /* 684 * Disable receive context and interrupt available, reset all 685 * RcvCtxtCtrl bits to default values. 686 */ 687 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS | 688 HFI1_RCVCTRL_TIDFLOW_DIS | 689 HFI1_RCVCTRL_INTRAVAIL_DIS | 690 HFI1_RCVCTRL_TAILUPD_DIS | 691 HFI1_RCVCTRL_ONE_PKT_EGR_DIS | 692 HFI1_RCVCTRL_NO_RHQ_DROP_DIS | 693 HFI1_RCVCTRL_NO_EGR_DROP_DIS | 694 HFI1_RCVCTRL_URGENT_DIS, uctxt); 695 /* Clear the context's J_KEY */ 696 hfi1_clear_ctxt_jkey(dd, uctxt); 697 /* 698 * If a send context is allocated, reset context integrity 699 * checks to default and disable the send context. 700 */ 701 if (uctxt->sc) { 702 sc_disable(uctxt->sc); 703 set_pio_integrity(uctxt->sc); 704 } 705 706 hfi1_free_ctxt_rcv_groups(uctxt); 707 hfi1_clear_ctxt_pkey(dd, uctxt); 708 709 uctxt->event_flags = 0; 710 711 deallocate_ctxt(uctxt); 712 done: 713 714 if (atomic_dec_and_test(&dd->user_refcount)) 715 complete(&dd->user_comp); 716 717 cleanup_srcu_struct(&fdata->pq_srcu); 718 kfree(fdata); 719 return 0; 720 } 721 722 /* 723 * Convert kernel *virtual* addresses to physical addresses. 724 * This is used to vmalloc'ed addresses. 725 */ 726 static u64 kvirt_to_phys(void *addr) 727 { 728 struct page *page; 729 u64 paddr = 0; 730 731 page = vmalloc_to_page(addr); 732 if (page) 733 paddr = page_to_pfn(page) << PAGE_SHIFT; 734 735 return paddr; 736 } 737 738 /** 739 * complete_subctxt - complete sub-context info 740 * @fd: valid filedata pointer 741 * 742 * Sub-context info can only be set up after the base context 743 * has been completed. This is indicated by the clearing of the 744 * HFI1_CTXT_BASE_UINIT bit. 745 * 746 * Wait for the bit to be cleared, and then complete the subcontext 747 * initialization. 748 * 749 */ 750 static int complete_subctxt(struct hfi1_filedata *fd) 751 { 752 int ret; 753 unsigned long flags; 754 755 /* 756 * sub-context info can only be set up after the base context 757 * has been completed. 758 */ 759 ret = wait_event_interruptible( 760 fd->uctxt->wait, 761 !test_bit(HFI1_CTXT_BASE_UNINIT, &fd->uctxt->event_flags)); 762 763 if (test_bit(HFI1_CTXT_BASE_FAILED, &fd->uctxt->event_flags)) 764 ret = -ENOMEM; 765 766 /* Finish the sub-context init */ 767 if (!ret) { 768 fd->rec_cpu_num = hfi1_get_proc_affinity(fd->uctxt->numa_id); 769 ret = init_user_ctxt(fd, fd->uctxt); 770 } 771 772 if (ret) { 773 spin_lock_irqsave(&fd->dd->uctxt_lock, flags); 774 __clear_bit(fd->subctxt, fd->uctxt->in_use_ctxts); 775 spin_unlock_irqrestore(&fd->dd->uctxt_lock, flags); 776 hfi1_rcd_put(fd->uctxt); 777 fd->uctxt = NULL; 778 } 779 780 return ret; 781 } 782 783 static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len) 784 { 785 int ret; 786 unsigned int swmajor; 787 struct hfi1_ctxtdata *uctxt = NULL; 788 struct hfi1_user_info uinfo; 789 790 if (fd->uctxt) 791 return -EINVAL; 792 793 if (sizeof(uinfo) != len) 794 return -EINVAL; 795 796 if (copy_from_user(&uinfo, (void __user *)arg, sizeof(uinfo))) 797 return -EFAULT; 798 799 swmajor = uinfo.userversion >> 16; 800 if (swmajor != HFI1_USER_SWMAJOR) 801 return -ENODEV; 802 803 if (uinfo.subctxt_cnt > HFI1_MAX_SHARED_CTXTS) 804 return -EINVAL; 805 806 /* 807 * Acquire the mutex to protect against multiple creations of what 808 * could be a shared base context. 809 */ 810 mutex_lock(&hfi1_mutex); 811 /* 812 * Get a sub context if available (fd->uctxt will be set). 813 * ret < 0 error, 0 no context, 1 sub-context found 814 */ 815 ret = find_sub_ctxt(fd, &uinfo); 816 817 /* 818 * Allocate a base context if context sharing is not required or a 819 * sub context wasn't found. 820 */ 821 if (!ret) 822 ret = allocate_ctxt(fd, fd->dd, &uinfo, &uctxt); 823 824 mutex_unlock(&hfi1_mutex); 825 826 /* Depending on the context type, finish the appropriate init */ 827 switch (ret) { 828 case 0: 829 ret = setup_base_ctxt(fd, uctxt); 830 if (ret) 831 deallocate_ctxt(uctxt); 832 break; 833 case 1: 834 ret = complete_subctxt(fd); 835 break; 836 default: 837 break; 838 } 839 840 return ret; 841 } 842 843 /** 844 * match_ctxt - match context 845 * @fd: valid filedata pointer 846 * @uinfo: user info to compare base context with 847 * @uctxt: context to compare uinfo to. 848 * 849 * Compare the given context with the given information to see if it 850 * can be used for a sub context. 851 */ 852 static int match_ctxt(struct hfi1_filedata *fd, 853 const struct hfi1_user_info *uinfo, 854 struct hfi1_ctxtdata *uctxt) 855 { 856 struct hfi1_devdata *dd = fd->dd; 857 unsigned long flags; 858 u16 subctxt; 859 860 /* Skip dynamically allocated kernel contexts */ 861 if (uctxt->sc && (uctxt->sc->type == SC_KERNEL)) 862 return 0; 863 864 /* Skip ctxt if it doesn't match the requested one */ 865 if (memcmp(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)) || 866 uctxt->jkey != generate_jkey(current_uid()) || 867 uctxt->subctxt_id != uinfo->subctxt_id || 868 uctxt->subctxt_cnt != uinfo->subctxt_cnt) 869 return 0; 870 871 /* Verify the sharing process matches the base */ 872 if (uctxt->userversion != uinfo->userversion) 873 return -EINVAL; 874 875 /* Find an unused sub context */ 876 spin_lock_irqsave(&dd->uctxt_lock, flags); 877 if (bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) { 878 /* context is being closed, do not use */ 879 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 880 return 0; 881 } 882 883 subctxt = find_first_zero_bit(uctxt->in_use_ctxts, 884 HFI1_MAX_SHARED_CTXTS); 885 if (subctxt >= uctxt->subctxt_cnt) { 886 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 887 return -EBUSY; 888 } 889 890 fd->subctxt = subctxt; 891 __set_bit(fd->subctxt, uctxt->in_use_ctxts); 892 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 893 894 fd->uctxt = uctxt; 895 hfi1_rcd_get(uctxt); 896 897 return 1; 898 } 899 900 /** 901 * find_sub_ctxt - fund sub-context 902 * @fd: valid filedata pointer 903 * @uinfo: matching info to use to find a possible context to share. 904 * 905 * The hfi1_mutex must be held when this function is called. It is 906 * necessary to ensure serialized creation of shared contexts. 907 * 908 * Return: 909 * 0 No sub-context found 910 * 1 Subcontext found and allocated 911 * errno EINVAL (incorrect parameters) 912 * EBUSY (all sub contexts in use) 913 */ 914 static int find_sub_ctxt(struct hfi1_filedata *fd, 915 const struct hfi1_user_info *uinfo) 916 { 917 struct hfi1_ctxtdata *uctxt; 918 struct hfi1_devdata *dd = fd->dd; 919 u16 i; 920 int ret; 921 922 if (!uinfo->subctxt_cnt) 923 return 0; 924 925 for (i = dd->first_dyn_alloc_ctxt; i < dd->num_rcv_contexts; i++) { 926 uctxt = hfi1_rcd_get_by_index(dd, i); 927 if (uctxt) { 928 ret = match_ctxt(fd, uinfo, uctxt); 929 hfi1_rcd_put(uctxt); 930 /* value of != 0 will return */ 931 if (ret) 932 return ret; 933 } 934 } 935 936 return 0; 937 } 938 939 static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd, 940 struct hfi1_user_info *uinfo, 941 struct hfi1_ctxtdata **rcd) 942 { 943 struct hfi1_ctxtdata *uctxt; 944 int ret, numa; 945 946 if (dd->flags & HFI1_FROZEN) { 947 /* 948 * Pick an error that is unique from all other errors 949 * that are returned so the user process knows that 950 * it tried to allocate while the SPC was frozen. It 951 * it should be able to retry with success in a short 952 * while. 953 */ 954 return -EIO; 955 } 956 957 if (!dd->freectxts) 958 return -EBUSY; 959 960 /* 961 * If we don't have a NUMA node requested, preference is towards 962 * device NUMA node. 963 */ 964 fd->rec_cpu_num = hfi1_get_proc_affinity(dd->node); 965 if (fd->rec_cpu_num != -1) 966 numa = cpu_to_node(fd->rec_cpu_num); 967 else 968 numa = numa_node_id(); 969 ret = hfi1_create_ctxtdata(dd->pport, numa, &uctxt); 970 if (ret < 0) { 971 dd_dev_err(dd, "user ctxtdata allocation failed\n"); 972 return ret; 973 } 974 hfi1_cdbg(PROC, "[%u:%u] pid %u assigned to CPU %d (NUMA %u)", 975 uctxt->ctxt, fd->subctxt, current->pid, fd->rec_cpu_num, 976 uctxt->numa_id); 977 978 /* 979 * Allocate and enable a PIO send context. 980 */ 981 uctxt->sc = sc_alloc(dd, SC_USER, uctxt->rcvhdrqentsize, dd->node); 982 if (!uctxt->sc) { 983 ret = -ENOMEM; 984 goto ctxdata_free; 985 } 986 hfi1_cdbg(PROC, "allocated send context %u(%u)\n", uctxt->sc->sw_index, 987 uctxt->sc->hw_context); 988 ret = sc_enable(uctxt->sc); 989 if (ret) 990 goto ctxdata_free; 991 992 /* 993 * Setup sub context information if the user-level has requested 994 * sub contexts. 995 * This has to be done here so the rest of the sub-contexts find the 996 * proper base context. 997 * NOTE: _set_bit() can be used here because the context creation is 998 * protected by the mutex (rather than the spin_lock), and will be the 999 * very first instance of this context. 1000 */ 1001 __set_bit(0, uctxt->in_use_ctxts); 1002 if (uinfo->subctxt_cnt) 1003 init_subctxts(uctxt, uinfo); 1004 uctxt->userversion = uinfo->userversion; 1005 uctxt->flags = hfi1_cap_mask; /* save current flag state */ 1006 init_waitqueue_head(&uctxt->wait); 1007 strlcpy(uctxt->comm, current->comm, sizeof(uctxt->comm)); 1008 memcpy(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)); 1009 uctxt->jkey = generate_jkey(current_uid()); 1010 hfi1_stats.sps_ctxts++; 1011 /* 1012 * Disable ASPM when there are open user/PSM contexts to avoid 1013 * issues with ASPM L1 exit latency 1014 */ 1015 if (dd->freectxts-- == dd->num_user_contexts) 1016 aspm_disable_all(dd); 1017 1018 *rcd = uctxt; 1019 1020 return 0; 1021 1022 ctxdata_free: 1023 hfi1_free_ctxt(uctxt); 1024 return ret; 1025 } 1026 1027 static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt) 1028 { 1029 mutex_lock(&hfi1_mutex); 1030 hfi1_stats.sps_ctxts--; 1031 if (++uctxt->dd->freectxts == uctxt->dd->num_user_contexts) 1032 aspm_enable_all(uctxt->dd); 1033 mutex_unlock(&hfi1_mutex); 1034 1035 hfi1_free_ctxt(uctxt); 1036 } 1037 1038 static void init_subctxts(struct hfi1_ctxtdata *uctxt, 1039 const struct hfi1_user_info *uinfo) 1040 { 1041 uctxt->subctxt_cnt = uinfo->subctxt_cnt; 1042 uctxt->subctxt_id = uinfo->subctxt_id; 1043 set_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags); 1044 } 1045 1046 static int setup_subctxt(struct hfi1_ctxtdata *uctxt) 1047 { 1048 int ret = 0; 1049 u16 num_subctxts = uctxt->subctxt_cnt; 1050 1051 uctxt->subctxt_uregbase = vmalloc_user(PAGE_SIZE); 1052 if (!uctxt->subctxt_uregbase) 1053 return -ENOMEM; 1054 1055 /* We can take the size of the RcvHdr Queue from the master */ 1056 uctxt->subctxt_rcvhdr_base = vmalloc_user(rcvhdrq_size(uctxt) * 1057 num_subctxts); 1058 if (!uctxt->subctxt_rcvhdr_base) { 1059 ret = -ENOMEM; 1060 goto bail_ureg; 1061 } 1062 1063 uctxt->subctxt_rcvegrbuf = vmalloc_user(uctxt->egrbufs.size * 1064 num_subctxts); 1065 if (!uctxt->subctxt_rcvegrbuf) { 1066 ret = -ENOMEM; 1067 goto bail_rhdr; 1068 } 1069 1070 return 0; 1071 1072 bail_rhdr: 1073 vfree(uctxt->subctxt_rcvhdr_base); 1074 uctxt->subctxt_rcvhdr_base = NULL; 1075 bail_ureg: 1076 vfree(uctxt->subctxt_uregbase); 1077 uctxt->subctxt_uregbase = NULL; 1078 1079 return ret; 1080 } 1081 1082 static void user_init(struct hfi1_ctxtdata *uctxt) 1083 { 1084 unsigned int rcvctrl_ops = 0; 1085 1086 /* initialize poll variables... */ 1087 uctxt->urgent = 0; 1088 uctxt->urgent_poll = 0; 1089 1090 /* 1091 * Now enable the ctxt for receive. 1092 * For chips that are set to DMA the tail register to memory 1093 * when they change (and when the update bit transitions from 1094 * 0 to 1. So for those chips, we turn it off and then back on. 1095 * This will (very briefly) affect any other open ctxts, but the 1096 * duration is very short, and therefore isn't an issue. We 1097 * explicitly set the in-memory tail copy to 0 beforehand, so we 1098 * don't have to wait to be sure the DMA update has happened 1099 * (chip resets head/tail to 0 on transition to enable). 1100 */ 1101 if (hfi1_rcvhdrtail_kvaddr(uctxt)) 1102 clear_rcvhdrtail(uctxt); 1103 1104 /* Setup J_KEY before enabling the context */ 1105 hfi1_set_ctxt_jkey(uctxt->dd, uctxt, uctxt->jkey); 1106 1107 rcvctrl_ops = HFI1_RCVCTRL_CTXT_ENB; 1108 rcvctrl_ops |= HFI1_RCVCTRL_URGENT_ENB; 1109 if (HFI1_CAP_UGET_MASK(uctxt->flags, HDRSUPP)) 1110 rcvctrl_ops |= HFI1_RCVCTRL_TIDFLOW_ENB; 1111 /* 1112 * Ignore the bit in the flags for now until proper 1113 * support for multiple packet per rcv array entry is 1114 * added. 1115 */ 1116 if (!HFI1_CAP_UGET_MASK(uctxt->flags, MULTI_PKT_EGR)) 1117 rcvctrl_ops |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB; 1118 if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_EGR_FULL)) 1119 rcvctrl_ops |= HFI1_RCVCTRL_NO_EGR_DROP_ENB; 1120 if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_RHQ_FULL)) 1121 rcvctrl_ops |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB; 1122 /* 1123 * The RcvCtxtCtrl.TailUpd bit has to be explicitly written. 1124 * We can't rely on the correct value to be set from prior 1125 * uses of the chip or ctxt. Therefore, add the rcvctrl op 1126 * for both cases. 1127 */ 1128 if (HFI1_CAP_UGET_MASK(uctxt->flags, DMA_RTAIL)) 1129 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_ENB; 1130 else 1131 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_DIS; 1132 hfi1_rcvctrl(uctxt->dd, rcvctrl_ops, uctxt); 1133 } 1134 1135 static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len) 1136 { 1137 struct hfi1_ctxt_info cinfo; 1138 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1139 1140 if (sizeof(cinfo) != len) 1141 return -EINVAL; 1142 1143 memset(&cinfo, 0, sizeof(cinfo)); 1144 cinfo.runtime_flags = (((uctxt->flags >> HFI1_CAP_MISC_SHIFT) & 1145 HFI1_CAP_MISC_MASK) << HFI1_CAP_USER_SHIFT) | 1146 HFI1_CAP_UGET_MASK(uctxt->flags, MASK) | 1147 HFI1_CAP_KGET_MASK(uctxt->flags, K2U); 1148 /* adjust flag if this fd is not able to cache */ 1149 if (!fd->use_mn) 1150 cinfo.runtime_flags |= HFI1_CAP_TID_UNMAP; /* no caching */ 1151 1152 cinfo.num_active = hfi1_count_active_units(); 1153 cinfo.unit = uctxt->dd->unit; 1154 cinfo.ctxt = uctxt->ctxt; 1155 cinfo.subctxt = fd->subctxt; 1156 cinfo.rcvtids = roundup(uctxt->egrbufs.alloced, 1157 uctxt->dd->rcv_entries.group_size) + 1158 uctxt->expected_count; 1159 cinfo.credits = uctxt->sc->credits; 1160 cinfo.numa_node = uctxt->numa_id; 1161 cinfo.rec_cpu = fd->rec_cpu_num; 1162 cinfo.send_ctxt = uctxt->sc->hw_context; 1163 1164 cinfo.egrtids = uctxt->egrbufs.alloced; 1165 cinfo.rcvhdrq_cnt = get_hdrq_cnt(uctxt); 1166 cinfo.rcvhdrq_entsize = get_hdrqentsize(uctxt) << 2; 1167 cinfo.sdma_ring_size = fd->cq->nentries; 1168 cinfo.rcvegr_size = uctxt->egrbufs.rcvtid_size; 1169 1170 trace_hfi1_ctxt_info(uctxt->dd, uctxt->ctxt, fd->subctxt, &cinfo); 1171 if (copy_to_user((void __user *)arg, &cinfo, len)) 1172 return -EFAULT; 1173 1174 return 0; 1175 } 1176 1177 static int init_user_ctxt(struct hfi1_filedata *fd, 1178 struct hfi1_ctxtdata *uctxt) 1179 { 1180 int ret; 1181 1182 ret = hfi1_user_sdma_alloc_queues(uctxt, fd); 1183 if (ret) 1184 return ret; 1185 1186 ret = hfi1_user_exp_rcv_init(fd, uctxt); 1187 if (ret) 1188 hfi1_user_sdma_free_queues(fd, uctxt); 1189 1190 return ret; 1191 } 1192 1193 static int setup_base_ctxt(struct hfi1_filedata *fd, 1194 struct hfi1_ctxtdata *uctxt) 1195 { 1196 struct hfi1_devdata *dd = uctxt->dd; 1197 int ret = 0; 1198 1199 hfi1_init_ctxt(uctxt->sc); 1200 1201 /* Now allocate the RcvHdr queue and eager buffers. */ 1202 ret = hfi1_create_rcvhdrq(dd, uctxt); 1203 if (ret) 1204 goto done; 1205 1206 ret = hfi1_setup_eagerbufs(uctxt); 1207 if (ret) 1208 goto done; 1209 1210 /* If sub-contexts are enabled, do the appropriate setup */ 1211 if (uctxt->subctxt_cnt) 1212 ret = setup_subctxt(uctxt); 1213 if (ret) 1214 goto done; 1215 1216 ret = hfi1_alloc_ctxt_rcv_groups(uctxt); 1217 if (ret) 1218 goto done; 1219 1220 ret = init_user_ctxt(fd, uctxt); 1221 if (ret) 1222 goto done; 1223 1224 user_init(uctxt); 1225 1226 /* Now that the context is set up, the fd can get a reference. */ 1227 fd->uctxt = uctxt; 1228 hfi1_rcd_get(uctxt); 1229 1230 done: 1231 if (uctxt->subctxt_cnt) { 1232 /* 1233 * On error, set the failed bit so sub-contexts will clean up 1234 * correctly. 1235 */ 1236 if (ret) 1237 set_bit(HFI1_CTXT_BASE_FAILED, &uctxt->event_flags); 1238 1239 /* 1240 * Base context is done (successfully or not), notify anybody 1241 * using a sub-context that is waiting for this completion. 1242 */ 1243 clear_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags); 1244 wake_up(&uctxt->wait); 1245 } 1246 1247 return ret; 1248 } 1249 1250 static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len) 1251 { 1252 struct hfi1_base_info binfo; 1253 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1254 struct hfi1_devdata *dd = uctxt->dd; 1255 unsigned offset; 1256 1257 trace_hfi1_uctxtdata(uctxt->dd, uctxt, fd->subctxt); 1258 1259 if (sizeof(binfo) != len) 1260 return -EINVAL; 1261 1262 memset(&binfo, 0, sizeof(binfo)); 1263 binfo.hw_version = dd->revision; 1264 binfo.sw_version = HFI1_KERN_SWVERSION; 1265 binfo.bthqp = RVT_KDETH_QP_PREFIX; 1266 binfo.jkey = uctxt->jkey; 1267 /* 1268 * If more than 64 contexts are enabled the allocated credit 1269 * return will span two or three contiguous pages. Since we only 1270 * map the page containing the context's credit return address, 1271 * we need to calculate the offset in the proper page. 1272 */ 1273 offset = ((u64)uctxt->sc->hw_free - 1274 (u64)dd->cr_base[uctxt->numa_id].va) % PAGE_SIZE; 1275 binfo.sc_credits_addr = HFI1_MMAP_TOKEN(PIO_CRED, uctxt->ctxt, 1276 fd->subctxt, offset); 1277 binfo.pio_bufbase = HFI1_MMAP_TOKEN(PIO_BUFS, uctxt->ctxt, 1278 fd->subctxt, 1279 uctxt->sc->base_addr); 1280 binfo.pio_bufbase_sop = HFI1_MMAP_TOKEN(PIO_BUFS_SOP, 1281 uctxt->ctxt, 1282 fd->subctxt, 1283 uctxt->sc->base_addr); 1284 binfo.rcvhdr_bufbase = HFI1_MMAP_TOKEN(RCV_HDRQ, uctxt->ctxt, 1285 fd->subctxt, 1286 uctxt->rcvhdrq); 1287 binfo.rcvegr_bufbase = HFI1_MMAP_TOKEN(RCV_EGRBUF, uctxt->ctxt, 1288 fd->subctxt, 1289 uctxt->egrbufs.rcvtids[0].dma); 1290 binfo.sdma_comp_bufbase = HFI1_MMAP_TOKEN(SDMA_COMP, uctxt->ctxt, 1291 fd->subctxt, 0); 1292 /* 1293 * user regs are at 1294 * (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE)) 1295 */ 1296 binfo.user_regbase = HFI1_MMAP_TOKEN(UREGS, uctxt->ctxt, 1297 fd->subctxt, 0); 1298 offset = offset_in_page((uctxt_offset(uctxt) + fd->subctxt) * 1299 sizeof(*dd->events)); 1300 binfo.events_bufbase = HFI1_MMAP_TOKEN(EVENTS, uctxt->ctxt, 1301 fd->subctxt, 1302 offset); 1303 binfo.status_bufbase = HFI1_MMAP_TOKEN(STATUS, uctxt->ctxt, 1304 fd->subctxt, 1305 dd->status); 1306 if (HFI1_CAP_IS_USET(DMA_RTAIL)) 1307 binfo.rcvhdrtail_base = HFI1_MMAP_TOKEN(RTAIL, uctxt->ctxt, 1308 fd->subctxt, 0); 1309 if (uctxt->subctxt_cnt) { 1310 binfo.subctxt_uregbase = HFI1_MMAP_TOKEN(SUBCTXT_UREGS, 1311 uctxt->ctxt, 1312 fd->subctxt, 0); 1313 binfo.subctxt_rcvhdrbuf = HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ, 1314 uctxt->ctxt, 1315 fd->subctxt, 0); 1316 binfo.subctxt_rcvegrbuf = HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF, 1317 uctxt->ctxt, 1318 fd->subctxt, 0); 1319 } 1320 1321 if (copy_to_user((void __user *)arg, &binfo, len)) 1322 return -EFAULT; 1323 1324 return 0; 1325 } 1326 1327 /** 1328 * user_exp_rcv_setup - Set up the given tid rcv list 1329 * @fd: file data of the current driver instance 1330 * @arg: ioctl argumnent for user space information 1331 * @len: length of data structure associated with ioctl command 1332 * 1333 * Wrapper to validate ioctl information before doing _rcv_setup. 1334 * 1335 */ 1336 static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg, 1337 u32 len) 1338 { 1339 int ret; 1340 unsigned long addr; 1341 struct hfi1_tid_info tinfo; 1342 1343 if (sizeof(tinfo) != len) 1344 return -EINVAL; 1345 1346 if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo)))) 1347 return -EFAULT; 1348 1349 ret = hfi1_user_exp_rcv_setup(fd, &tinfo); 1350 if (!ret) { 1351 /* 1352 * Copy the number of tidlist entries we used 1353 * and the length of the buffer we registered. 1354 */ 1355 addr = arg + offsetof(struct hfi1_tid_info, tidcnt); 1356 if (copy_to_user((void __user *)addr, &tinfo.tidcnt, 1357 sizeof(tinfo.tidcnt))) 1358 return -EFAULT; 1359 1360 addr = arg + offsetof(struct hfi1_tid_info, length); 1361 if (copy_to_user((void __user *)addr, &tinfo.length, 1362 sizeof(tinfo.length))) 1363 ret = -EFAULT; 1364 } 1365 1366 return ret; 1367 } 1368 1369 /** 1370 * user_exp_rcv_clear - Clear the given tid rcv list 1371 * @fd: file data of the current driver instance 1372 * @arg: ioctl argumnent for user space information 1373 * @len: length of data structure associated with ioctl command 1374 * 1375 * The hfi1_user_exp_rcv_clear() can be called from the error path. Because 1376 * of this, we need to use this wrapper to copy the user space information 1377 * before doing the clear. 1378 */ 1379 static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg, 1380 u32 len) 1381 { 1382 int ret; 1383 unsigned long addr; 1384 struct hfi1_tid_info tinfo; 1385 1386 if (sizeof(tinfo) != len) 1387 return -EINVAL; 1388 1389 if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo)))) 1390 return -EFAULT; 1391 1392 ret = hfi1_user_exp_rcv_clear(fd, &tinfo); 1393 if (!ret) { 1394 addr = arg + offsetof(struct hfi1_tid_info, tidcnt); 1395 if (copy_to_user((void __user *)addr, &tinfo.tidcnt, 1396 sizeof(tinfo.tidcnt))) 1397 return -EFAULT; 1398 } 1399 1400 return ret; 1401 } 1402 1403 /** 1404 * user_exp_rcv_invalid - Invalidate the given tid rcv list 1405 * @fd: file data of the current driver instance 1406 * @arg: ioctl argumnent for user space information 1407 * @len: length of data structure associated with ioctl command 1408 * 1409 * Wrapper to validate ioctl information before doing _rcv_invalid. 1410 * 1411 */ 1412 static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg, 1413 u32 len) 1414 { 1415 int ret; 1416 unsigned long addr; 1417 struct hfi1_tid_info tinfo; 1418 1419 if (sizeof(tinfo) != len) 1420 return -EINVAL; 1421 1422 if (!fd->invalid_tids) 1423 return -EINVAL; 1424 1425 if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo)))) 1426 return -EFAULT; 1427 1428 ret = hfi1_user_exp_rcv_invalid(fd, &tinfo); 1429 if (ret) 1430 return ret; 1431 1432 addr = arg + offsetof(struct hfi1_tid_info, tidcnt); 1433 if (copy_to_user((void __user *)addr, &tinfo.tidcnt, 1434 sizeof(tinfo.tidcnt))) 1435 ret = -EFAULT; 1436 1437 return ret; 1438 } 1439 1440 static __poll_t poll_urgent(struct file *fp, 1441 struct poll_table_struct *pt) 1442 { 1443 struct hfi1_filedata *fd = fp->private_data; 1444 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1445 struct hfi1_devdata *dd = uctxt->dd; 1446 __poll_t pollflag; 1447 1448 poll_wait(fp, &uctxt->wait, pt); 1449 1450 spin_lock_irq(&dd->uctxt_lock); 1451 if (uctxt->urgent != uctxt->urgent_poll) { 1452 pollflag = EPOLLIN | EPOLLRDNORM; 1453 uctxt->urgent_poll = uctxt->urgent; 1454 } else { 1455 pollflag = 0; 1456 set_bit(HFI1_CTXT_WAITING_URG, &uctxt->event_flags); 1457 } 1458 spin_unlock_irq(&dd->uctxt_lock); 1459 1460 return pollflag; 1461 } 1462 1463 static __poll_t poll_next(struct file *fp, 1464 struct poll_table_struct *pt) 1465 { 1466 struct hfi1_filedata *fd = fp->private_data; 1467 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1468 struct hfi1_devdata *dd = uctxt->dd; 1469 __poll_t pollflag; 1470 1471 poll_wait(fp, &uctxt->wait, pt); 1472 1473 spin_lock_irq(&dd->uctxt_lock); 1474 if (hdrqempty(uctxt)) { 1475 set_bit(HFI1_CTXT_WAITING_RCV, &uctxt->event_flags); 1476 hfi1_rcvctrl(dd, HFI1_RCVCTRL_INTRAVAIL_ENB, uctxt); 1477 pollflag = 0; 1478 } else { 1479 pollflag = EPOLLIN | EPOLLRDNORM; 1480 } 1481 spin_unlock_irq(&dd->uctxt_lock); 1482 1483 return pollflag; 1484 } 1485 1486 /* 1487 * Find all user contexts in use, and set the specified bit in their 1488 * event mask. 1489 * See also find_ctxt() for a similar use, that is specific to send buffers. 1490 */ 1491 int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit) 1492 { 1493 struct hfi1_ctxtdata *uctxt; 1494 struct hfi1_devdata *dd = ppd->dd; 1495 u16 ctxt; 1496 1497 if (!dd->events) 1498 return -EINVAL; 1499 1500 for (ctxt = dd->first_dyn_alloc_ctxt; ctxt < dd->num_rcv_contexts; 1501 ctxt++) { 1502 uctxt = hfi1_rcd_get_by_index(dd, ctxt); 1503 if (uctxt) { 1504 unsigned long *evs; 1505 int i; 1506 /* 1507 * subctxt_cnt is 0 if not shared, so do base 1508 * separately, first, then remaining subctxt, if any 1509 */ 1510 evs = dd->events + uctxt_offset(uctxt); 1511 set_bit(evtbit, evs); 1512 for (i = 1; i < uctxt->subctxt_cnt; i++) 1513 set_bit(evtbit, evs + i); 1514 hfi1_rcd_put(uctxt); 1515 } 1516 } 1517 1518 return 0; 1519 } 1520 1521 /** 1522 * manage_rcvq - manage a context's receive queue 1523 * @uctxt: the context 1524 * @subctxt: the sub-context 1525 * @arg: start/stop action to carry out 1526 * 1527 * start_stop == 0 disables receive on the context, for use in queue 1528 * overflow conditions. start_stop==1 re-enables, to be used to 1529 * re-init the software copy of the head register 1530 */ 1531 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt, 1532 unsigned long arg) 1533 { 1534 struct hfi1_devdata *dd = uctxt->dd; 1535 unsigned int rcvctrl_op; 1536 int start_stop; 1537 1538 if (subctxt) 1539 return 0; 1540 1541 if (get_user(start_stop, (int __user *)arg)) 1542 return -EFAULT; 1543 1544 /* atomically clear receive enable ctxt. */ 1545 if (start_stop) { 1546 /* 1547 * On enable, force in-memory copy of the tail register to 1548 * 0, so that protocol code doesn't have to worry about 1549 * whether or not the chip has yet updated the in-memory 1550 * copy or not on return from the system call. The chip 1551 * always resets it's tail register back to 0 on a 1552 * transition from disabled to enabled. 1553 */ 1554 if (hfi1_rcvhdrtail_kvaddr(uctxt)) 1555 clear_rcvhdrtail(uctxt); 1556 rcvctrl_op = HFI1_RCVCTRL_CTXT_ENB; 1557 } else { 1558 rcvctrl_op = HFI1_RCVCTRL_CTXT_DIS; 1559 } 1560 hfi1_rcvctrl(dd, rcvctrl_op, uctxt); 1561 /* always; new head should be equal to new tail; see above */ 1562 1563 return 0; 1564 } 1565 1566 /* 1567 * clear the event notifier events for this context. 1568 * User process then performs actions appropriate to bit having been 1569 * set, if desired, and checks again in future. 1570 */ 1571 static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt, 1572 unsigned long arg) 1573 { 1574 int i; 1575 struct hfi1_devdata *dd = uctxt->dd; 1576 unsigned long *evs; 1577 unsigned long events; 1578 1579 if (!dd->events) 1580 return 0; 1581 1582 if (get_user(events, (unsigned long __user *)arg)) 1583 return -EFAULT; 1584 1585 evs = dd->events + uctxt_offset(uctxt) + subctxt; 1586 1587 for (i = 0; i <= _HFI1_MAX_EVENT_BIT; i++) { 1588 if (!test_bit(i, &events)) 1589 continue; 1590 clear_bit(i, evs); 1591 } 1592 return 0; 1593 } 1594 1595 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg) 1596 { 1597 int i; 1598 struct hfi1_pportdata *ppd = uctxt->ppd; 1599 struct hfi1_devdata *dd = uctxt->dd; 1600 u16 pkey; 1601 1602 if (!HFI1_CAP_IS_USET(PKEY_CHECK)) 1603 return -EPERM; 1604 1605 if (get_user(pkey, (u16 __user *)arg)) 1606 return -EFAULT; 1607 1608 if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY) 1609 return -EINVAL; 1610 1611 for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) 1612 if (pkey == ppd->pkeys[i]) 1613 return hfi1_set_ctxt_pkey(dd, uctxt, pkey); 1614 1615 return -ENOENT; 1616 } 1617 1618 /** 1619 * ctxt_reset - Reset the user context 1620 * @uctxt: valid user context 1621 */ 1622 static int ctxt_reset(struct hfi1_ctxtdata *uctxt) 1623 { 1624 struct send_context *sc; 1625 struct hfi1_devdata *dd; 1626 int ret = 0; 1627 1628 if (!uctxt || !uctxt->dd || !uctxt->sc) 1629 return -EINVAL; 1630 1631 /* 1632 * There is no protection here. User level has to guarantee that 1633 * no one will be writing to the send context while it is being 1634 * re-initialized. If user level breaks that guarantee, it will 1635 * break it's own context and no one else's. 1636 */ 1637 dd = uctxt->dd; 1638 sc = uctxt->sc; 1639 1640 /* 1641 * Wait until the interrupt handler has marked the context as 1642 * halted or frozen. Report error if we time out. 1643 */ 1644 wait_event_interruptible_timeout( 1645 sc->halt_wait, (sc->flags & SCF_HALTED), 1646 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT)); 1647 if (!(sc->flags & SCF_HALTED)) 1648 return -ENOLCK; 1649 1650 /* 1651 * If the send context was halted due to a Freeze, wait until the 1652 * device has been "unfrozen" before resetting the context. 1653 */ 1654 if (sc->flags & SCF_FROZEN) { 1655 wait_event_interruptible_timeout( 1656 dd->event_queue, 1657 !(READ_ONCE(dd->flags) & HFI1_FROZEN), 1658 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT)); 1659 if (dd->flags & HFI1_FROZEN) 1660 return -ENOLCK; 1661 1662 if (dd->flags & HFI1_FORCED_FREEZE) 1663 /* 1664 * Don't allow context reset if we are into 1665 * forced freeze 1666 */ 1667 return -ENODEV; 1668 1669 sc_disable(sc); 1670 ret = sc_enable(sc); 1671 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB, uctxt); 1672 } else { 1673 ret = sc_restart(sc); 1674 } 1675 if (!ret) 1676 sc_return_credits(sc); 1677 1678 return ret; 1679 } 1680 1681 static void user_remove(struct hfi1_devdata *dd) 1682 { 1683 1684 hfi1_cdev_cleanup(&dd->user_cdev, &dd->user_device); 1685 } 1686 1687 static int user_add(struct hfi1_devdata *dd) 1688 { 1689 char name[10]; 1690 int ret; 1691 1692 snprintf(name, sizeof(name), "%s_%d", class_name(), dd->unit); 1693 ret = hfi1_cdev_init(dd->unit, name, &hfi1_file_ops, 1694 &dd->user_cdev, &dd->user_device, 1695 true, &dd->verbs_dev.rdi.ibdev.dev.kobj); 1696 if (ret) 1697 user_remove(dd); 1698 1699 return ret; 1700 } 1701 1702 /* 1703 * Create per-unit files in /dev 1704 */ 1705 int hfi1_device_create(struct hfi1_devdata *dd) 1706 { 1707 return user_add(dd); 1708 } 1709 1710 /* 1711 * Remove per-unit files in /dev 1712 * void, core kernel returns no errors for this stuff 1713 */ 1714 void hfi1_device_remove(struct hfi1_devdata *dd) 1715 { 1716 user_remove(dd); 1717 } 1718