1 /*
2  * Copyright(c) 2015-2017 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 #include <linux/poll.h>
48 #include <linux/cdev.h>
49 #include <linux/vmalloc.h>
50 #include <linux/io.h>
51 #include <linux/sched/mm.h>
52 #include <linux/bitmap.h>
53 
54 #include <rdma/ib.h>
55 
56 #include "hfi.h"
57 #include "pio.h"
58 #include "device.h"
59 #include "common.h"
60 #include "trace.h"
61 #include "mmu_rb.h"
62 #include "user_sdma.h"
63 #include "user_exp_rcv.h"
64 #include "aspm.h"
65 
66 #undef pr_fmt
67 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
68 
69 #define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */
70 
71 /*
72  * File operation functions
73  */
74 static int hfi1_file_open(struct inode *inode, struct file *fp);
75 static int hfi1_file_close(struct inode *inode, struct file *fp);
76 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from);
77 static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt);
78 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma);
79 
80 static u64 kvirt_to_phys(void *addr);
81 static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len);
82 static void init_subctxts(struct hfi1_ctxtdata *uctxt,
83 			  const struct hfi1_user_info *uinfo);
84 static int init_user_ctxt(struct hfi1_filedata *fd,
85 			  struct hfi1_ctxtdata *uctxt);
86 static void user_init(struct hfi1_ctxtdata *uctxt);
87 static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
88 static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
89 static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
90 			      u32 len);
91 static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
92 			      u32 len);
93 static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
94 				u32 len);
95 static int setup_base_ctxt(struct hfi1_filedata *fd,
96 			   struct hfi1_ctxtdata *uctxt);
97 static int setup_subctxt(struct hfi1_ctxtdata *uctxt);
98 
99 static int find_sub_ctxt(struct hfi1_filedata *fd,
100 			 const struct hfi1_user_info *uinfo);
101 static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
102 			 struct hfi1_user_info *uinfo,
103 			 struct hfi1_ctxtdata **cd);
104 static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt);
105 static __poll_t poll_urgent(struct file *fp, struct poll_table_struct *pt);
106 static __poll_t poll_next(struct file *fp, struct poll_table_struct *pt);
107 static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
108 			  unsigned long arg);
109 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg);
110 static int ctxt_reset(struct hfi1_ctxtdata *uctxt);
111 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
112 		       unsigned long arg);
113 static vm_fault_t vma_fault(struct vm_fault *vmf);
114 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
115 			    unsigned long arg);
116 
117 static const struct file_operations hfi1_file_ops = {
118 	.owner = THIS_MODULE,
119 	.write_iter = hfi1_write_iter,
120 	.open = hfi1_file_open,
121 	.release = hfi1_file_close,
122 	.unlocked_ioctl = hfi1_file_ioctl,
123 	.poll = hfi1_poll,
124 	.mmap = hfi1_file_mmap,
125 	.llseek = noop_llseek,
126 };
127 
128 static const struct vm_operations_struct vm_ops = {
129 	.fault = vma_fault,
130 };
131 
132 /*
133  * Types of memories mapped into user processes' space
134  */
135 enum mmap_types {
136 	PIO_BUFS = 1,
137 	PIO_BUFS_SOP,
138 	PIO_CRED,
139 	RCV_HDRQ,
140 	RCV_EGRBUF,
141 	UREGS,
142 	EVENTS,
143 	STATUS,
144 	RTAIL,
145 	SUBCTXT_UREGS,
146 	SUBCTXT_RCV_HDRQ,
147 	SUBCTXT_EGRBUF,
148 	SDMA_COMP
149 };
150 
151 /*
152  * Masks and offsets defining the mmap tokens
153  */
154 #define HFI1_MMAP_OFFSET_MASK   0xfffULL
155 #define HFI1_MMAP_OFFSET_SHIFT  0
156 #define HFI1_MMAP_SUBCTXT_MASK  0xfULL
157 #define HFI1_MMAP_SUBCTXT_SHIFT 12
158 #define HFI1_MMAP_CTXT_MASK     0xffULL
159 #define HFI1_MMAP_CTXT_SHIFT    16
160 #define HFI1_MMAP_TYPE_MASK     0xfULL
161 #define HFI1_MMAP_TYPE_SHIFT    24
162 #define HFI1_MMAP_MAGIC_MASK    0xffffffffULL
163 #define HFI1_MMAP_MAGIC_SHIFT   32
164 
165 #define HFI1_MMAP_MAGIC         0xdabbad00
166 
167 #define HFI1_MMAP_TOKEN_SET(field, val)	\
168 	(((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT)
169 #define HFI1_MMAP_TOKEN_GET(field, token) \
170 	(((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK)
171 #define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr)   \
172 	(HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \
173 	HFI1_MMAP_TOKEN_SET(TYPE, type) | \
174 	HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \
175 	HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \
176 	HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr))))
177 
178 #define dbg(fmt, ...)				\
179 	pr_info(fmt, ##__VA_ARGS__)
180 
181 static inline int is_valid_mmap(u64 token)
182 {
183 	return (HFI1_MMAP_TOKEN_GET(MAGIC, token) == HFI1_MMAP_MAGIC);
184 }
185 
186 static int hfi1_file_open(struct inode *inode, struct file *fp)
187 {
188 	struct hfi1_filedata *fd;
189 	struct hfi1_devdata *dd = container_of(inode->i_cdev,
190 					       struct hfi1_devdata,
191 					       user_cdev);
192 
193 	if (!((dd->flags & HFI1_PRESENT) && dd->kregbase1))
194 		return -EINVAL;
195 
196 	if (!atomic_inc_not_zero(&dd->user_refcount))
197 		return -ENXIO;
198 
199 	/* The real work is performed later in assign_ctxt() */
200 
201 	fd = kzalloc(sizeof(*fd), GFP_KERNEL);
202 
203 	if (!fd || init_srcu_struct(&fd->pq_srcu))
204 		goto nomem;
205 	spin_lock_init(&fd->pq_rcu_lock);
206 	spin_lock_init(&fd->tid_lock);
207 	spin_lock_init(&fd->invalid_lock);
208 	fd->rec_cpu_num = -1; /* no cpu affinity by default */
209 	fd->mm = current->mm;
210 	mmgrab(fd->mm);
211 	fd->dd = dd;
212 	kobject_get(&fd->dd->kobj);
213 	fp->private_data = fd;
214 	return 0;
215 nomem:
216 	kfree(fd);
217 	fp->private_data = NULL;
218 	if (atomic_dec_and_test(&dd->user_refcount))
219 		complete(&dd->user_comp);
220 	return -ENOMEM;
221 }
222 
223 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
224 			    unsigned long arg)
225 {
226 	struct hfi1_filedata *fd = fp->private_data;
227 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
228 	int ret = 0;
229 	int uval = 0;
230 
231 	hfi1_cdbg(IOCTL, "IOCTL recv: 0x%x", cmd);
232 	if (cmd != HFI1_IOCTL_ASSIGN_CTXT &&
233 	    cmd != HFI1_IOCTL_GET_VERS &&
234 	    !uctxt)
235 		return -EINVAL;
236 
237 	switch (cmd) {
238 	case HFI1_IOCTL_ASSIGN_CTXT:
239 		ret = assign_ctxt(fd, arg, _IOC_SIZE(cmd));
240 		break;
241 
242 	case HFI1_IOCTL_CTXT_INFO:
243 		ret = get_ctxt_info(fd, arg, _IOC_SIZE(cmd));
244 		break;
245 
246 	case HFI1_IOCTL_USER_INFO:
247 		ret = get_base_info(fd, arg, _IOC_SIZE(cmd));
248 		break;
249 
250 	case HFI1_IOCTL_CREDIT_UPD:
251 		if (uctxt)
252 			sc_return_credits(uctxt->sc);
253 		break;
254 
255 	case HFI1_IOCTL_TID_UPDATE:
256 		ret = user_exp_rcv_setup(fd, arg, _IOC_SIZE(cmd));
257 		break;
258 
259 	case HFI1_IOCTL_TID_FREE:
260 		ret = user_exp_rcv_clear(fd, arg, _IOC_SIZE(cmd));
261 		break;
262 
263 	case HFI1_IOCTL_TID_INVAL_READ:
264 		ret = user_exp_rcv_invalid(fd, arg, _IOC_SIZE(cmd));
265 		break;
266 
267 	case HFI1_IOCTL_RECV_CTRL:
268 		ret = manage_rcvq(uctxt, fd->subctxt, arg);
269 		break;
270 
271 	case HFI1_IOCTL_POLL_TYPE:
272 		if (get_user(uval, (int __user *)arg))
273 			return -EFAULT;
274 		uctxt->poll_type = (typeof(uctxt->poll_type))uval;
275 		break;
276 
277 	case HFI1_IOCTL_ACK_EVENT:
278 		ret = user_event_ack(uctxt, fd->subctxt, arg);
279 		break;
280 
281 	case HFI1_IOCTL_SET_PKEY:
282 		ret = set_ctxt_pkey(uctxt, arg);
283 		break;
284 
285 	case HFI1_IOCTL_CTXT_RESET:
286 		ret = ctxt_reset(uctxt);
287 		break;
288 
289 	case HFI1_IOCTL_GET_VERS:
290 		uval = HFI1_USER_SWVERSION;
291 		if (put_user(uval, (int __user *)arg))
292 			return -EFAULT;
293 		break;
294 
295 	default:
296 		return -EINVAL;
297 	}
298 
299 	return ret;
300 }
301 
302 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from)
303 {
304 	struct hfi1_filedata *fd = kiocb->ki_filp->private_data;
305 	struct hfi1_user_sdma_pkt_q *pq;
306 	struct hfi1_user_sdma_comp_q *cq = fd->cq;
307 	int done = 0, reqs = 0;
308 	unsigned long dim = from->nr_segs;
309 	int idx;
310 
311 	idx = srcu_read_lock(&fd->pq_srcu);
312 	pq = srcu_dereference(fd->pq, &fd->pq_srcu);
313 	if (!cq || !pq) {
314 		srcu_read_unlock(&fd->pq_srcu, idx);
315 		return -EIO;
316 	}
317 
318 	if (!iter_is_iovec(from) || !dim) {
319 		srcu_read_unlock(&fd->pq_srcu, idx);
320 		return -EINVAL;
321 	}
322 
323 	trace_hfi1_sdma_request(fd->dd, fd->uctxt->ctxt, fd->subctxt, dim);
324 
325 	if (atomic_read(&pq->n_reqs) == pq->n_max_reqs) {
326 		srcu_read_unlock(&fd->pq_srcu, idx);
327 		return -ENOSPC;
328 	}
329 
330 	while (dim) {
331 		int ret;
332 		unsigned long count = 0;
333 
334 		ret = hfi1_user_sdma_process_request(
335 			fd, (struct iovec *)(from->iov + done),
336 			dim, &count);
337 		if (ret) {
338 			reqs = ret;
339 			break;
340 		}
341 		dim -= count;
342 		done += count;
343 		reqs++;
344 	}
345 
346 	srcu_read_unlock(&fd->pq_srcu, idx);
347 	return reqs;
348 }
349 
350 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma)
351 {
352 	struct hfi1_filedata *fd = fp->private_data;
353 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
354 	struct hfi1_devdata *dd;
355 	unsigned long flags;
356 	u64 token = vma->vm_pgoff << PAGE_SHIFT,
357 		memaddr = 0;
358 	void *memvirt = NULL;
359 	u8 subctxt, mapio = 0, vmf = 0, type;
360 	ssize_t memlen = 0;
361 	int ret = 0;
362 	u16 ctxt;
363 
364 	if (!is_valid_mmap(token) || !uctxt ||
365 	    !(vma->vm_flags & VM_SHARED)) {
366 		ret = -EINVAL;
367 		goto done;
368 	}
369 	dd = uctxt->dd;
370 	ctxt = HFI1_MMAP_TOKEN_GET(CTXT, token);
371 	subctxt = HFI1_MMAP_TOKEN_GET(SUBCTXT, token);
372 	type = HFI1_MMAP_TOKEN_GET(TYPE, token);
373 	if (ctxt != uctxt->ctxt || subctxt != fd->subctxt) {
374 		ret = -EINVAL;
375 		goto done;
376 	}
377 
378 	flags = vma->vm_flags;
379 
380 	switch (type) {
381 	case PIO_BUFS:
382 	case PIO_BUFS_SOP:
383 		memaddr = ((dd->physaddr + TXE_PIO_SEND) +
384 				/* chip pio base */
385 			   (uctxt->sc->hw_context * BIT(16))) +
386 				/* 64K PIO space / ctxt */
387 			(type == PIO_BUFS_SOP ?
388 				(TXE_PIO_SIZE / 2) : 0); /* sop? */
389 		/*
390 		 * Map only the amount allocated to the context, not the
391 		 * entire available context's PIO space.
392 		 */
393 		memlen = PAGE_ALIGN(uctxt->sc->credits * PIO_BLOCK_SIZE);
394 		flags &= ~VM_MAYREAD;
395 		flags |= VM_DONTCOPY | VM_DONTEXPAND;
396 		vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
397 		mapio = 1;
398 		break;
399 	case PIO_CRED:
400 		if (flags & VM_WRITE) {
401 			ret = -EPERM;
402 			goto done;
403 		}
404 		/*
405 		 * The credit return location for this context could be on the
406 		 * second or third page allocated for credit returns (if number
407 		 * of enabled contexts > 64 and 128 respectively).
408 		 */
409 		memvirt = dd->cr_base[uctxt->numa_id].va;
410 		memaddr = virt_to_phys(memvirt) +
411 			(((u64)uctxt->sc->hw_free -
412 			  (u64)dd->cr_base[uctxt->numa_id].va) & PAGE_MASK);
413 		memlen = PAGE_SIZE;
414 		flags &= ~VM_MAYWRITE;
415 		flags |= VM_DONTCOPY | VM_DONTEXPAND;
416 		/*
417 		 * The driver has already allocated memory for credit
418 		 * returns and programmed it into the chip. Has that
419 		 * memory been flagged as non-cached?
420 		 */
421 		/* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */
422 		mapio = 1;
423 		break;
424 	case RCV_HDRQ:
425 		memlen = rcvhdrq_size(uctxt);
426 		memvirt = uctxt->rcvhdrq;
427 		break;
428 	case RCV_EGRBUF: {
429 		unsigned long addr;
430 		int i;
431 		/*
432 		 * The RcvEgr buffer need to be handled differently
433 		 * as multiple non-contiguous pages need to be mapped
434 		 * into the user process.
435 		 */
436 		memlen = uctxt->egrbufs.size;
437 		if ((vma->vm_end - vma->vm_start) != memlen) {
438 			dd_dev_err(dd, "Eager buffer map size invalid (%lu != %lu)\n",
439 				   (vma->vm_end - vma->vm_start), memlen);
440 			ret = -EINVAL;
441 			goto done;
442 		}
443 		if (vma->vm_flags & VM_WRITE) {
444 			ret = -EPERM;
445 			goto done;
446 		}
447 		vma->vm_flags &= ~VM_MAYWRITE;
448 		addr = vma->vm_start;
449 		for (i = 0 ; i < uctxt->egrbufs.numbufs; i++) {
450 			memlen = uctxt->egrbufs.buffers[i].len;
451 			memvirt = uctxt->egrbufs.buffers[i].addr;
452 			ret = remap_pfn_range(
453 				vma, addr,
454 				/*
455 				 * virt_to_pfn() does the same, but
456 				 * it's not available on x86_64
457 				 * when CONFIG_MMU is enabled.
458 				 */
459 				PFN_DOWN(__pa(memvirt)),
460 				memlen,
461 				vma->vm_page_prot);
462 			if (ret < 0)
463 				goto done;
464 			addr += memlen;
465 		}
466 		ret = 0;
467 		goto done;
468 	}
469 	case UREGS:
470 		/*
471 		 * Map only the page that contains this context's user
472 		 * registers.
473 		 */
474 		memaddr = (unsigned long)
475 			(dd->physaddr + RXE_PER_CONTEXT_USER)
476 			+ (uctxt->ctxt * RXE_PER_CONTEXT_SIZE);
477 		/*
478 		 * TidFlow table is on the same page as the rest of the
479 		 * user registers.
480 		 */
481 		memlen = PAGE_SIZE;
482 		flags |= VM_DONTCOPY | VM_DONTEXPAND;
483 		vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
484 		mapio = 1;
485 		break;
486 	case EVENTS:
487 		/*
488 		 * Use the page where this context's flags are. User level
489 		 * knows where it's own bitmap is within the page.
490 		 */
491 		memaddr = (unsigned long)
492 			(dd->events + uctxt_offset(uctxt)) & PAGE_MASK;
493 		memlen = PAGE_SIZE;
494 		/*
495 		 * v3.7 removes VM_RESERVED but the effect is kept by
496 		 * using VM_IO.
497 		 */
498 		flags |= VM_IO | VM_DONTEXPAND;
499 		vmf = 1;
500 		break;
501 	case STATUS:
502 		if (flags & VM_WRITE) {
503 			ret = -EPERM;
504 			goto done;
505 		}
506 		memaddr = kvirt_to_phys((void *)dd->status);
507 		memlen = PAGE_SIZE;
508 		flags |= VM_IO | VM_DONTEXPAND;
509 		break;
510 	case RTAIL:
511 		if (!HFI1_CAP_IS_USET(DMA_RTAIL)) {
512 			/*
513 			 * If the memory allocation failed, the context alloc
514 			 * also would have failed, so we would never get here
515 			 */
516 			ret = -EINVAL;
517 			goto done;
518 		}
519 		if ((flags & VM_WRITE) || !hfi1_rcvhdrtail_kvaddr(uctxt)) {
520 			ret = -EPERM;
521 			goto done;
522 		}
523 		memlen = PAGE_SIZE;
524 		memvirt = (void *)hfi1_rcvhdrtail_kvaddr(uctxt);
525 		flags &= ~VM_MAYWRITE;
526 		break;
527 	case SUBCTXT_UREGS:
528 		memaddr = (u64)uctxt->subctxt_uregbase;
529 		memlen = PAGE_SIZE;
530 		flags |= VM_IO | VM_DONTEXPAND;
531 		vmf = 1;
532 		break;
533 	case SUBCTXT_RCV_HDRQ:
534 		memaddr = (u64)uctxt->subctxt_rcvhdr_base;
535 		memlen = rcvhdrq_size(uctxt) * uctxt->subctxt_cnt;
536 		flags |= VM_IO | VM_DONTEXPAND;
537 		vmf = 1;
538 		break;
539 	case SUBCTXT_EGRBUF:
540 		memaddr = (u64)uctxt->subctxt_rcvegrbuf;
541 		memlen = uctxt->egrbufs.size * uctxt->subctxt_cnt;
542 		flags |= VM_IO | VM_DONTEXPAND;
543 		flags &= ~VM_MAYWRITE;
544 		vmf = 1;
545 		break;
546 	case SDMA_COMP: {
547 		struct hfi1_user_sdma_comp_q *cq = fd->cq;
548 
549 		if (!cq) {
550 			ret = -EFAULT;
551 			goto done;
552 		}
553 		memaddr = (u64)cq->comps;
554 		memlen = PAGE_ALIGN(sizeof(*cq->comps) * cq->nentries);
555 		flags |= VM_IO | VM_DONTEXPAND;
556 		vmf = 1;
557 		break;
558 	}
559 	default:
560 		ret = -EINVAL;
561 		break;
562 	}
563 
564 	if ((vma->vm_end - vma->vm_start) != memlen) {
565 		hfi1_cdbg(PROC, "%u:%u Memory size mismatch %lu:%lu",
566 			  uctxt->ctxt, fd->subctxt,
567 			  (vma->vm_end - vma->vm_start), memlen);
568 		ret = -EINVAL;
569 		goto done;
570 	}
571 
572 	vma->vm_flags = flags;
573 	hfi1_cdbg(PROC,
574 		  "%u:%u type:%u io/vf:%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx\n",
575 		    ctxt, subctxt, type, mapio, vmf, memaddr, memlen,
576 		    vma->vm_end - vma->vm_start, vma->vm_flags);
577 	if (vmf) {
578 		vma->vm_pgoff = PFN_DOWN(memaddr);
579 		vma->vm_ops = &vm_ops;
580 		ret = 0;
581 	} else if (mapio) {
582 		ret = io_remap_pfn_range(vma, vma->vm_start,
583 					 PFN_DOWN(memaddr),
584 					 memlen,
585 					 vma->vm_page_prot);
586 	} else if (memvirt) {
587 		ret = remap_pfn_range(vma, vma->vm_start,
588 				      PFN_DOWN(__pa(memvirt)),
589 				      memlen,
590 				      vma->vm_page_prot);
591 	} else {
592 		ret = remap_pfn_range(vma, vma->vm_start,
593 				      PFN_DOWN(memaddr),
594 				      memlen,
595 				      vma->vm_page_prot);
596 	}
597 done:
598 	return ret;
599 }
600 
601 /*
602  * Local (non-chip) user memory is not mapped right away but as it is
603  * accessed by the user-level code.
604  */
605 static vm_fault_t vma_fault(struct vm_fault *vmf)
606 {
607 	struct page *page;
608 
609 	page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT));
610 	if (!page)
611 		return VM_FAULT_SIGBUS;
612 
613 	get_page(page);
614 	vmf->page = page;
615 
616 	return 0;
617 }
618 
619 static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt)
620 {
621 	struct hfi1_ctxtdata *uctxt;
622 	__poll_t pollflag;
623 
624 	uctxt = ((struct hfi1_filedata *)fp->private_data)->uctxt;
625 	if (!uctxt)
626 		pollflag = EPOLLERR;
627 	else if (uctxt->poll_type == HFI1_POLL_TYPE_URGENT)
628 		pollflag = poll_urgent(fp, pt);
629 	else  if (uctxt->poll_type == HFI1_POLL_TYPE_ANYRCV)
630 		pollflag = poll_next(fp, pt);
631 	else /* invalid */
632 		pollflag = EPOLLERR;
633 
634 	return pollflag;
635 }
636 
637 static int hfi1_file_close(struct inode *inode, struct file *fp)
638 {
639 	struct hfi1_filedata *fdata = fp->private_data;
640 	struct hfi1_ctxtdata *uctxt = fdata->uctxt;
641 	struct hfi1_devdata *dd = container_of(inode->i_cdev,
642 					       struct hfi1_devdata,
643 					       user_cdev);
644 	unsigned long flags, *ev;
645 
646 	fp->private_data = NULL;
647 
648 	if (!uctxt)
649 		goto done;
650 
651 	hfi1_cdbg(PROC, "closing ctxt %u:%u", uctxt->ctxt, fdata->subctxt);
652 
653 	flush_wc();
654 	/* drain user sdma queue */
655 	hfi1_user_sdma_free_queues(fdata, uctxt);
656 
657 	/* release the cpu */
658 	hfi1_put_proc_affinity(fdata->rec_cpu_num);
659 
660 	/* clean up rcv side */
661 	hfi1_user_exp_rcv_free(fdata);
662 
663 	/*
664 	 * fdata->uctxt is used in the above cleanup.  It is not ready to be
665 	 * removed until here.
666 	 */
667 	fdata->uctxt = NULL;
668 	hfi1_rcd_put(uctxt);
669 
670 	/*
671 	 * Clear any left over, unhandled events so the next process that
672 	 * gets this context doesn't get confused.
673 	 */
674 	ev = dd->events + uctxt_offset(uctxt) + fdata->subctxt;
675 	*ev = 0;
676 
677 	spin_lock_irqsave(&dd->uctxt_lock, flags);
678 	__clear_bit(fdata->subctxt, uctxt->in_use_ctxts);
679 	if (!bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
680 		spin_unlock_irqrestore(&dd->uctxt_lock, flags);
681 		goto done;
682 	}
683 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
684 
685 	/*
686 	 * Disable receive context and interrupt available, reset all
687 	 * RcvCtxtCtrl bits to default values.
688 	 */
689 	hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
690 		     HFI1_RCVCTRL_TIDFLOW_DIS |
691 		     HFI1_RCVCTRL_INTRAVAIL_DIS |
692 		     HFI1_RCVCTRL_TAILUPD_DIS |
693 		     HFI1_RCVCTRL_ONE_PKT_EGR_DIS |
694 		     HFI1_RCVCTRL_NO_RHQ_DROP_DIS |
695 		     HFI1_RCVCTRL_NO_EGR_DROP_DIS |
696 		     HFI1_RCVCTRL_URGENT_DIS, uctxt);
697 	/* Clear the context's J_KEY */
698 	hfi1_clear_ctxt_jkey(dd, uctxt);
699 	/*
700 	 * If a send context is allocated, reset context integrity
701 	 * checks to default and disable the send context.
702 	 */
703 	if (uctxt->sc) {
704 		sc_disable(uctxt->sc);
705 		set_pio_integrity(uctxt->sc);
706 	}
707 
708 	hfi1_free_ctxt_rcv_groups(uctxt);
709 	hfi1_clear_ctxt_pkey(dd, uctxt);
710 
711 	uctxt->event_flags = 0;
712 
713 	deallocate_ctxt(uctxt);
714 done:
715 	mmdrop(fdata->mm);
716 	kobject_put(&dd->kobj);
717 
718 	if (atomic_dec_and_test(&dd->user_refcount))
719 		complete(&dd->user_comp);
720 
721 	cleanup_srcu_struct(&fdata->pq_srcu);
722 	kfree(fdata);
723 	return 0;
724 }
725 
726 /*
727  * Convert kernel *virtual* addresses to physical addresses.
728  * This is used to vmalloc'ed addresses.
729  */
730 static u64 kvirt_to_phys(void *addr)
731 {
732 	struct page *page;
733 	u64 paddr = 0;
734 
735 	page = vmalloc_to_page(addr);
736 	if (page)
737 		paddr = page_to_pfn(page) << PAGE_SHIFT;
738 
739 	return paddr;
740 }
741 
742 /**
743  * complete_subctxt
744  * @fd: valid filedata pointer
745  *
746  * Sub-context info can only be set up after the base context
747  * has been completed.  This is indicated by the clearing of the
748  * HFI1_CTXT_BASE_UINIT bit.
749  *
750  * Wait for the bit to be cleared, and then complete the subcontext
751  * initialization.
752  *
753  */
754 static int complete_subctxt(struct hfi1_filedata *fd)
755 {
756 	int ret;
757 	unsigned long flags;
758 
759 	/*
760 	 * sub-context info can only be set up after the base context
761 	 * has been completed.
762 	 */
763 	ret = wait_event_interruptible(
764 		fd->uctxt->wait,
765 		!test_bit(HFI1_CTXT_BASE_UNINIT, &fd->uctxt->event_flags));
766 
767 	if (test_bit(HFI1_CTXT_BASE_FAILED, &fd->uctxt->event_flags))
768 		ret = -ENOMEM;
769 
770 	/* Finish the sub-context init */
771 	if (!ret) {
772 		fd->rec_cpu_num = hfi1_get_proc_affinity(fd->uctxt->numa_id);
773 		ret = init_user_ctxt(fd, fd->uctxt);
774 	}
775 
776 	if (ret) {
777 		spin_lock_irqsave(&fd->dd->uctxt_lock, flags);
778 		__clear_bit(fd->subctxt, fd->uctxt->in_use_ctxts);
779 		spin_unlock_irqrestore(&fd->dd->uctxt_lock, flags);
780 		hfi1_rcd_put(fd->uctxt);
781 		fd->uctxt = NULL;
782 	}
783 
784 	return ret;
785 }
786 
787 static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len)
788 {
789 	int ret;
790 	unsigned int swmajor;
791 	struct hfi1_ctxtdata *uctxt = NULL;
792 	struct hfi1_user_info uinfo;
793 
794 	if (fd->uctxt)
795 		return -EINVAL;
796 
797 	if (sizeof(uinfo) != len)
798 		return -EINVAL;
799 
800 	if (copy_from_user(&uinfo, (void __user *)arg, sizeof(uinfo)))
801 		return -EFAULT;
802 
803 	swmajor = uinfo.userversion >> 16;
804 	if (swmajor != HFI1_USER_SWMAJOR)
805 		return -ENODEV;
806 
807 	if (uinfo.subctxt_cnt > HFI1_MAX_SHARED_CTXTS)
808 		return -EINVAL;
809 
810 	/*
811 	 * Acquire the mutex to protect against multiple creations of what
812 	 * could be a shared base context.
813 	 */
814 	mutex_lock(&hfi1_mutex);
815 	/*
816 	 * Get a sub context if available  (fd->uctxt will be set).
817 	 * ret < 0 error, 0 no context, 1 sub-context found
818 	 */
819 	ret = find_sub_ctxt(fd, &uinfo);
820 
821 	/*
822 	 * Allocate a base context if context sharing is not required or a
823 	 * sub context wasn't found.
824 	 */
825 	if (!ret)
826 		ret = allocate_ctxt(fd, fd->dd, &uinfo, &uctxt);
827 
828 	mutex_unlock(&hfi1_mutex);
829 
830 	/* Depending on the context type, finish the appropriate init */
831 	switch (ret) {
832 	case 0:
833 		ret = setup_base_ctxt(fd, uctxt);
834 		if (ret)
835 			deallocate_ctxt(uctxt);
836 		break;
837 	case 1:
838 		ret = complete_subctxt(fd);
839 		break;
840 	default:
841 		break;
842 	}
843 
844 	return ret;
845 }
846 
847 /**
848  * match_ctxt
849  * @fd: valid filedata pointer
850  * @uinfo: user info to compare base context with
851  * @uctxt: context to compare uinfo to.
852  *
853  * Compare the given context with the given information to see if it
854  * can be used for a sub context.
855  */
856 static int match_ctxt(struct hfi1_filedata *fd,
857 		      const struct hfi1_user_info *uinfo,
858 		      struct hfi1_ctxtdata *uctxt)
859 {
860 	struct hfi1_devdata *dd = fd->dd;
861 	unsigned long flags;
862 	u16 subctxt;
863 
864 	/* Skip dynamically allocated kernel contexts */
865 	if (uctxt->sc && (uctxt->sc->type == SC_KERNEL))
866 		return 0;
867 
868 	/* Skip ctxt if it doesn't match the requested one */
869 	if (memcmp(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)) ||
870 	    uctxt->jkey != generate_jkey(current_uid()) ||
871 	    uctxt->subctxt_id != uinfo->subctxt_id ||
872 	    uctxt->subctxt_cnt != uinfo->subctxt_cnt)
873 		return 0;
874 
875 	/* Verify the sharing process matches the base */
876 	if (uctxt->userversion != uinfo->userversion)
877 		return -EINVAL;
878 
879 	/* Find an unused sub context */
880 	spin_lock_irqsave(&dd->uctxt_lock, flags);
881 	if (bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
882 		/* context is being closed, do not use */
883 		spin_unlock_irqrestore(&dd->uctxt_lock, flags);
884 		return 0;
885 	}
886 
887 	subctxt = find_first_zero_bit(uctxt->in_use_ctxts,
888 				      HFI1_MAX_SHARED_CTXTS);
889 	if (subctxt >= uctxt->subctxt_cnt) {
890 		spin_unlock_irqrestore(&dd->uctxt_lock, flags);
891 		return -EBUSY;
892 	}
893 
894 	fd->subctxt = subctxt;
895 	__set_bit(fd->subctxt, uctxt->in_use_ctxts);
896 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
897 
898 	fd->uctxt = uctxt;
899 	hfi1_rcd_get(uctxt);
900 
901 	return 1;
902 }
903 
904 /**
905  * find_sub_ctxt
906  * @fd: valid filedata pointer
907  * @uinfo: matching info to use to find a possible context to share.
908  *
909  * The hfi1_mutex must be held when this function is called.  It is
910  * necessary to ensure serialized creation of shared contexts.
911  *
912  * Return:
913  *    0      No sub-context found
914  *    1      Subcontext found and allocated
915  *    errno  EINVAL (incorrect parameters)
916  *           EBUSY (all sub contexts in use)
917  */
918 static int find_sub_ctxt(struct hfi1_filedata *fd,
919 			 const struct hfi1_user_info *uinfo)
920 {
921 	struct hfi1_ctxtdata *uctxt;
922 	struct hfi1_devdata *dd = fd->dd;
923 	u16 i;
924 	int ret;
925 
926 	if (!uinfo->subctxt_cnt)
927 		return 0;
928 
929 	for (i = dd->first_dyn_alloc_ctxt; i < dd->num_rcv_contexts; i++) {
930 		uctxt = hfi1_rcd_get_by_index(dd, i);
931 		if (uctxt) {
932 			ret = match_ctxt(fd, uinfo, uctxt);
933 			hfi1_rcd_put(uctxt);
934 			/* value of != 0 will return */
935 			if (ret)
936 				return ret;
937 		}
938 	}
939 
940 	return 0;
941 }
942 
943 static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
944 			 struct hfi1_user_info *uinfo,
945 			 struct hfi1_ctxtdata **rcd)
946 {
947 	struct hfi1_ctxtdata *uctxt;
948 	int ret, numa;
949 
950 	if (dd->flags & HFI1_FROZEN) {
951 		/*
952 		 * Pick an error that is unique from all other errors
953 		 * that are returned so the user process knows that
954 		 * it tried to allocate while the SPC was frozen.  It
955 		 * it should be able to retry with success in a short
956 		 * while.
957 		 */
958 		return -EIO;
959 	}
960 
961 	if (!dd->freectxts)
962 		return -EBUSY;
963 
964 	/*
965 	 * If we don't have a NUMA node requested, preference is towards
966 	 * device NUMA node.
967 	 */
968 	fd->rec_cpu_num = hfi1_get_proc_affinity(dd->node);
969 	if (fd->rec_cpu_num != -1)
970 		numa = cpu_to_node(fd->rec_cpu_num);
971 	else
972 		numa = numa_node_id();
973 	ret = hfi1_create_ctxtdata(dd->pport, numa, &uctxt);
974 	if (ret < 0) {
975 		dd_dev_err(dd, "user ctxtdata allocation failed\n");
976 		return ret;
977 	}
978 	hfi1_cdbg(PROC, "[%u:%u] pid %u assigned to CPU %d (NUMA %u)",
979 		  uctxt->ctxt, fd->subctxt, current->pid, fd->rec_cpu_num,
980 		  uctxt->numa_id);
981 
982 	/*
983 	 * Allocate and enable a PIO send context.
984 	 */
985 	uctxt->sc = sc_alloc(dd, SC_USER, uctxt->rcvhdrqentsize, dd->node);
986 	if (!uctxt->sc) {
987 		ret = -ENOMEM;
988 		goto ctxdata_free;
989 	}
990 	hfi1_cdbg(PROC, "allocated send context %u(%u)\n", uctxt->sc->sw_index,
991 		  uctxt->sc->hw_context);
992 	ret = sc_enable(uctxt->sc);
993 	if (ret)
994 		goto ctxdata_free;
995 
996 	/*
997 	 * Setup sub context information if the user-level has requested
998 	 * sub contexts.
999 	 * This has to be done here so the rest of the sub-contexts find the
1000 	 * proper base context.
1001 	 * NOTE: _set_bit() can be used here because the context creation is
1002 	 * protected by the mutex (rather than the spin_lock), and will be the
1003 	 * very first instance of this context.
1004 	 */
1005 	__set_bit(0, uctxt->in_use_ctxts);
1006 	if (uinfo->subctxt_cnt)
1007 		init_subctxts(uctxt, uinfo);
1008 	uctxt->userversion = uinfo->userversion;
1009 	uctxt->flags = hfi1_cap_mask; /* save current flag state */
1010 	init_waitqueue_head(&uctxt->wait);
1011 	strlcpy(uctxt->comm, current->comm, sizeof(uctxt->comm));
1012 	memcpy(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid));
1013 	uctxt->jkey = generate_jkey(current_uid());
1014 	hfi1_stats.sps_ctxts++;
1015 	/*
1016 	 * Disable ASPM when there are open user/PSM contexts to avoid
1017 	 * issues with ASPM L1 exit latency
1018 	 */
1019 	if (dd->freectxts-- == dd->num_user_contexts)
1020 		aspm_disable_all(dd);
1021 
1022 	*rcd = uctxt;
1023 
1024 	return 0;
1025 
1026 ctxdata_free:
1027 	hfi1_free_ctxt(uctxt);
1028 	return ret;
1029 }
1030 
1031 static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt)
1032 {
1033 	mutex_lock(&hfi1_mutex);
1034 	hfi1_stats.sps_ctxts--;
1035 	if (++uctxt->dd->freectxts == uctxt->dd->num_user_contexts)
1036 		aspm_enable_all(uctxt->dd);
1037 	mutex_unlock(&hfi1_mutex);
1038 
1039 	hfi1_free_ctxt(uctxt);
1040 }
1041 
1042 static void init_subctxts(struct hfi1_ctxtdata *uctxt,
1043 			  const struct hfi1_user_info *uinfo)
1044 {
1045 	uctxt->subctxt_cnt = uinfo->subctxt_cnt;
1046 	uctxt->subctxt_id = uinfo->subctxt_id;
1047 	set_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
1048 }
1049 
1050 static int setup_subctxt(struct hfi1_ctxtdata *uctxt)
1051 {
1052 	int ret = 0;
1053 	u16 num_subctxts = uctxt->subctxt_cnt;
1054 
1055 	uctxt->subctxt_uregbase = vmalloc_user(PAGE_SIZE);
1056 	if (!uctxt->subctxt_uregbase)
1057 		return -ENOMEM;
1058 
1059 	/* We can take the size of the RcvHdr Queue from the master */
1060 	uctxt->subctxt_rcvhdr_base = vmalloc_user(rcvhdrq_size(uctxt) *
1061 						  num_subctxts);
1062 	if (!uctxt->subctxt_rcvhdr_base) {
1063 		ret = -ENOMEM;
1064 		goto bail_ureg;
1065 	}
1066 
1067 	uctxt->subctxt_rcvegrbuf = vmalloc_user(uctxt->egrbufs.size *
1068 						num_subctxts);
1069 	if (!uctxt->subctxt_rcvegrbuf) {
1070 		ret = -ENOMEM;
1071 		goto bail_rhdr;
1072 	}
1073 
1074 	return 0;
1075 
1076 bail_rhdr:
1077 	vfree(uctxt->subctxt_rcvhdr_base);
1078 	uctxt->subctxt_rcvhdr_base = NULL;
1079 bail_ureg:
1080 	vfree(uctxt->subctxt_uregbase);
1081 	uctxt->subctxt_uregbase = NULL;
1082 
1083 	return ret;
1084 }
1085 
1086 static void user_init(struct hfi1_ctxtdata *uctxt)
1087 {
1088 	unsigned int rcvctrl_ops = 0;
1089 
1090 	/* initialize poll variables... */
1091 	uctxt->urgent = 0;
1092 	uctxt->urgent_poll = 0;
1093 
1094 	/*
1095 	 * Now enable the ctxt for receive.
1096 	 * For chips that are set to DMA the tail register to memory
1097 	 * when they change (and when the update bit transitions from
1098 	 * 0 to 1.  So for those chips, we turn it off and then back on.
1099 	 * This will (very briefly) affect any other open ctxts, but the
1100 	 * duration is very short, and therefore isn't an issue.  We
1101 	 * explicitly set the in-memory tail copy to 0 beforehand, so we
1102 	 * don't have to wait to be sure the DMA update has happened
1103 	 * (chip resets head/tail to 0 on transition to enable).
1104 	 */
1105 	if (hfi1_rcvhdrtail_kvaddr(uctxt))
1106 		clear_rcvhdrtail(uctxt);
1107 
1108 	/* Setup J_KEY before enabling the context */
1109 	hfi1_set_ctxt_jkey(uctxt->dd, uctxt, uctxt->jkey);
1110 
1111 	rcvctrl_ops = HFI1_RCVCTRL_CTXT_ENB;
1112 	rcvctrl_ops |= HFI1_RCVCTRL_URGENT_ENB;
1113 	if (HFI1_CAP_UGET_MASK(uctxt->flags, HDRSUPP))
1114 		rcvctrl_ops |= HFI1_RCVCTRL_TIDFLOW_ENB;
1115 	/*
1116 	 * Ignore the bit in the flags for now until proper
1117 	 * support for multiple packet per rcv array entry is
1118 	 * added.
1119 	 */
1120 	if (!HFI1_CAP_UGET_MASK(uctxt->flags, MULTI_PKT_EGR))
1121 		rcvctrl_ops |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
1122 	if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_EGR_FULL))
1123 		rcvctrl_ops |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
1124 	if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_RHQ_FULL))
1125 		rcvctrl_ops |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
1126 	/*
1127 	 * The RcvCtxtCtrl.TailUpd bit has to be explicitly written.
1128 	 * We can't rely on the correct value to be set from prior
1129 	 * uses of the chip or ctxt. Therefore, add the rcvctrl op
1130 	 * for both cases.
1131 	 */
1132 	if (HFI1_CAP_UGET_MASK(uctxt->flags, DMA_RTAIL))
1133 		rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_ENB;
1134 	else
1135 		rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_DIS;
1136 	hfi1_rcvctrl(uctxt->dd, rcvctrl_ops, uctxt);
1137 }
1138 
1139 static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
1140 {
1141 	struct hfi1_ctxt_info cinfo;
1142 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1143 
1144 	if (sizeof(cinfo) != len)
1145 		return -EINVAL;
1146 
1147 	memset(&cinfo, 0, sizeof(cinfo));
1148 	cinfo.runtime_flags = (((uctxt->flags >> HFI1_CAP_MISC_SHIFT) &
1149 				HFI1_CAP_MISC_MASK) << HFI1_CAP_USER_SHIFT) |
1150 			HFI1_CAP_UGET_MASK(uctxt->flags, MASK) |
1151 			HFI1_CAP_KGET_MASK(uctxt->flags, K2U);
1152 	/* adjust flag if this fd is not able to cache */
1153 	if (!fd->use_mn)
1154 		cinfo.runtime_flags |= HFI1_CAP_TID_UNMAP; /* no caching */
1155 
1156 	cinfo.num_active = hfi1_count_active_units();
1157 	cinfo.unit = uctxt->dd->unit;
1158 	cinfo.ctxt = uctxt->ctxt;
1159 	cinfo.subctxt = fd->subctxt;
1160 	cinfo.rcvtids = roundup(uctxt->egrbufs.alloced,
1161 				uctxt->dd->rcv_entries.group_size) +
1162 		uctxt->expected_count;
1163 	cinfo.credits = uctxt->sc->credits;
1164 	cinfo.numa_node = uctxt->numa_id;
1165 	cinfo.rec_cpu = fd->rec_cpu_num;
1166 	cinfo.send_ctxt = uctxt->sc->hw_context;
1167 
1168 	cinfo.egrtids = uctxt->egrbufs.alloced;
1169 	cinfo.rcvhdrq_cnt = get_hdrq_cnt(uctxt);
1170 	cinfo.rcvhdrq_entsize = get_hdrqentsize(uctxt) << 2;
1171 	cinfo.sdma_ring_size = fd->cq->nentries;
1172 	cinfo.rcvegr_size = uctxt->egrbufs.rcvtid_size;
1173 
1174 	trace_hfi1_ctxt_info(uctxt->dd, uctxt->ctxt, fd->subctxt, &cinfo);
1175 	if (copy_to_user((void __user *)arg, &cinfo, len))
1176 		return -EFAULT;
1177 
1178 	return 0;
1179 }
1180 
1181 static int init_user_ctxt(struct hfi1_filedata *fd,
1182 			  struct hfi1_ctxtdata *uctxt)
1183 {
1184 	int ret;
1185 
1186 	ret = hfi1_user_sdma_alloc_queues(uctxt, fd);
1187 	if (ret)
1188 		return ret;
1189 
1190 	ret = hfi1_user_exp_rcv_init(fd, uctxt);
1191 	if (ret)
1192 		hfi1_user_sdma_free_queues(fd, uctxt);
1193 
1194 	return ret;
1195 }
1196 
1197 static int setup_base_ctxt(struct hfi1_filedata *fd,
1198 			   struct hfi1_ctxtdata *uctxt)
1199 {
1200 	struct hfi1_devdata *dd = uctxt->dd;
1201 	int ret = 0;
1202 
1203 	hfi1_init_ctxt(uctxt->sc);
1204 
1205 	/* Now allocate the RcvHdr queue and eager buffers. */
1206 	ret = hfi1_create_rcvhdrq(dd, uctxt);
1207 	if (ret)
1208 		goto done;
1209 
1210 	ret = hfi1_setup_eagerbufs(uctxt);
1211 	if (ret)
1212 		goto done;
1213 
1214 	/* If sub-contexts are enabled, do the appropriate setup */
1215 	if (uctxt->subctxt_cnt)
1216 		ret = setup_subctxt(uctxt);
1217 	if (ret)
1218 		goto done;
1219 
1220 	ret = hfi1_alloc_ctxt_rcv_groups(uctxt);
1221 	if (ret)
1222 		goto done;
1223 
1224 	ret = init_user_ctxt(fd, uctxt);
1225 	if (ret)
1226 		goto done;
1227 
1228 	user_init(uctxt);
1229 
1230 	/* Now that the context is set up, the fd can get a reference. */
1231 	fd->uctxt = uctxt;
1232 	hfi1_rcd_get(uctxt);
1233 
1234 done:
1235 	if (uctxt->subctxt_cnt) {
1236 		/*
1237 		 * On error, set the failed bit so sub-contexts will clean up
1238 		 * correctly.
1239 		 */
1240 		if (ret)
1241 			set_bit(HFI1_CTXT_BASE_FAILED, &uctxt->event_flags);
1242 
1243 		/*
1244 		 * Base context is done (successfully or not), notify anybody
1245 		 * using a sub-context that is waiting for this completion.
1246 		 */
1247 		clear_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
1248 		wake_up(&uctxt->wait);
1249 	}
1250 
1251 	return ret;
1252 }
1253 
1254 static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
1255 {
1256 	struct hfi1_base_info binfo;
1257 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1258 	struct hfi1_devdata *dd = uctxt->dd;
1259 	unsigned offset;
1260 
1261 	trace_hfi1_uctxtdata(uctxt->dd, uctxt, fd->subctxt);
1262 
1263 	if (sizeof(binfo) != len)
1264 		return -EINVAL;
1265 
1266 	memset(&binfo, 0, sizeof(binfo));
1267 	binfo.hw_version = dd->revision;
1268 	binfo.sw_version = HFI1_KERN_SWVERSION;
1269 	binfo.bthqp = kdeth_qp;
1270 	binfo.jkey = uctxt->jkey;
1271 	/*
1272 	 * If more than 64 contexts are enabled the allocated credit
1273 	 * return will span two or three contiguous pages. Since we only
1274 	 * map the page containing the context's credit return address,
1275 	 * we need to calculate the offset in the proper page.
1276 	 */
1277 	offset = ((u64)uctxt->sc->hw_free -
1278 		  (u64)dd->cr_base[uctxt->numa_id].va) % PAGE_SIZE;
1279 	binfo.sc_credits_addr = HFI1_MMAP_TOKEN(PIO_CRED, uctxt->ctxt,
1280 						fd->subctxt, offset);
1281 	binfo.pio_bufbase = HFI1_MMAP_TOKEN(PIO_BUFS, uctxt->ctxt,
1282 					    fd->subctxt,
1283 					    uctxt->sc->base_addr);
1284 	binfo.pio_bufbase_sop = HFI1_MMAP_TOKEN(PIO_BUFS_SOP,
1285 						uctxt->ctxt,
1286 						fd->subctxt,
1287 						uctxt->sc->base_addr);
1288 	binfo.rcvhdr_bufbase = HFI1_MMAP_TOKEN(RCV_HDRQ, uctxt->ctxt,
1289 					       fd->subctxt,
1290 					       uctxt->rcvhdrq);
1291 	binfo.rcvegr_bufbase = HFI1_MMAP_TOKEN(RCV_EGRBUF, uctxt->ctxt,
1292 					       fd->subctxt,
1293 					       uctxt->egrbufs.rcvtids[0].dma);
1294 	binfo.sdma_comp_bufbase = HFI1_MMAP_TOKEN(SDMA_COMP, uctxt->ctxt,
1295 						  fd->subctxt, 0);
1296 	/*
1297 	 * user regs are at
1298 	 * (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE))
1299 	 */
1300 	binfo.user_regbase = HFI1_MMAP_TOKEN(UREGS, uctxt->ctxt,
1301 					     fd->subctxt, 0);
1302 	offset = offset_in_page((uctxt_offset(uctxt) + fd->subctxt) *
1303 				sizeof(*dd->events));
1304 	binfo.events_bufbase = HFI1_MMAP_TOKEN(EVENTS, uctxt->ctxt,
1305 					       fd->subctxt,
1306 					       offset);
1307 	binfo.status_bufbase = HFI1_MMAP_TOKEN(STATUS, uctxt->ctxt,
1308 					       fd->subctxt,
1309 					       dd->status);
1310 	if (HFI1_CAP_IS_USET(DMA_RTAIL))
1311 		binfo.rcvhdrtail_base = HFI1_MMAP_TOKEN(RTAIL, uctxt->ctxt,
1312 							fd->subctxt, 0);
1313 	if (uctxt->subctxt_cnt) {
1314 		binfo.subctxt_uregbase = HFI1_MMAP_TOKEN(SUBCTXT_UREGS,
1315 							 uctxt->ctxt,
1316 							 fd->subctxt, 0);
1317 		binfo.subctxt_rcvhdrbuf = HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ,
1318 							  uctxt->ctxt,
1319 							  fd->subctxt, 0);
1320 		binfo.subctxt_rcvegrbuf = HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF,
1321 							  uctxt->ctxt,
1322 							  fd->subctxt, 0);
1323 	}
1324 
1325 	if (copy_to_user((void __user *)arg, &binfo, len))
1326 		return -EFAULT;
1327 
1328 	return 0;
1329 }
1330 
1331 /**
1332  * user_exp_rcv_setup - Set up the given tid rcv list
1333  * @fd: file data of the current driver instance
1334  * @arg: ioctl argumnent for user space information
1335  * @len: length of data structure associated with ioctl command
1336  *
1337  * Wrapper to validate ioctl information before doing _rcv_setup.
1338  *
1339  */
1340 static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
1341 			      u32 len)
1342 {
1343 	int ret;
1344 	unsigned long addr;
1345 	struct hfi1_tid_info tinfo;
1346 
1347 	if (sizeof(tinfo) != len)
1348 		return -EINVAL;
1349 
1350 	if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1351 		return -EFAULT;
1352 
1353 	ret = hfi1_user_exp_rcv_setup(fd, &tinfo);
1354 	if (!ret) {
1355 		/*
1356 		 * Copy the number of tidlist entries we used
1357 		 * and the length of the buffer we registered.
1358 		 */
1359 		addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1360 		if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1361 				 sizeof(tinfo.tidcnt)))
1362 			return -EFAULT;
1363 
1364 		addr = arg + offsetof(struct hfi1_tid_info, length);
1365 		if (copy_to_user((void __user *)addr, &tinfo.length,
1366 				 sizeof(tinfo.length)))
1367 			ret = -EFAULT;
1368 	}
1369 
1370 	return ret;
1371 }
1372 
1373 /**
1374  * user_exp_rcv_clear - Clear the given tid rcv list
1375  * @fd: file data of the current driver instance
1376  * @arg: ioctl argumnent for user space information
1377  * @len: length of data structure associated with ioctl command
1378  *
1379  * The hfi1_user_exp_rcv_clear() can be called from the error path.  Because
1380  * of this, we need to use this wrapper to copy the user space information
1381  * before doing the clear.
1382  */
1383 static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
1384 			      u32 len)
1385 {
1386 	int ret;
1387 	unsigned long addr;
1388 	struct hfi1_tid_info tinfo;
1389 
1390 	if (sizeof(tinfo) != len)
1391 		return -EINVAL;
1392 
1393 	if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1394 		return -EFAULT;
1395 
1396 	ret = hfi1_user_exp_rcv_clear(fd, &tinfo);
1397 	if (!ret) {
1398 		addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1399 		if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1400 				 sizeof(tinfo.tidcnt)))
1401 			return -EFAULT;
1402 	}
1403 
1404 	return ret;
1405 }
1406 
1407 /**
1408  * user_exp_rcv_invalid - Invalidate the given tid rcv list
1409  * @fd: file data of the current driver instance
1410  * @arg: ioctl argumnent for user space information
1411  * @len: length of data structure associated with ioctl command
1412  *
1413  * Wrapper to validate ioctl information before doing _rcv_invalid.
1414  *
1415  */
1416 static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
1417 				u32 len)
1418 {
1419 	int ret;
1420 	unsigned long addr;
1421 	struct hfi1_tid_info tinfo;
1422 
1423 	if (sizeof(tinfo) != len)
1424 		return -EINVAL;
1425 
1426 	if (!fd->invalid_tids)
1427 		return -EINVAL;
1428 
1429 	if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1430 		return -EFAULT;
1431 
1432 	ret = hfi1_user_exp_rcv_invalid(fd, &tinfo);
1433 	if (ret)
1434 		return ret;
1435 
1436 	addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1437 	if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1438 			 sizeof(tinfo.tidcnt)))
1439 		ret = -EFAULT;
1440 
1441 	return ret;
1442 }
1443 
1444 static __poll_t poll_urgent(struct file *fp,
1445 				struct poll_table_struct *pt)
1446 {
1447 	struct hfi1_filedata *fd = fp->private_data;
1448 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1449 	struct hfi1_devdata *dd = uctxt->dd;
1450 	__poll_t pollflag;
1451 
1452 	poll_wait(fp, &uctxt->wait, pt);
1453 
1454 	spin_lock_irq(&dd->uctxt_lock);
1455 	if (uctxt->urgent != uctxt->urgent_poll) {
1456 		pollflag = EPOLLIN | EPOLLRDNORM;
1457 		uctxt->urgent_poll = uctxt->urgent;
1458 	} else {
1459 		pollflag = 0;
1460 		set_bit(HFI1_CTXT_WAITING_URG, &uctxt->event_flags);
1461 	}
1462 	spin_unlock_irq(&dd->uctxt_lock);
1463 
1464 	return pollflag;
1465 }
1466 
1467 static __poll_t poll_next(struct file *fp,
1468 			      struct poll_table_struct *pt)
1469 {
1470 	struct hfi1_filedata *fd = fp->private_data;
1471 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1472 	struct hfi1_devdata *dd = uctxt->dd;
1473 	__poll_t pollflag;
1474 
1475 	poll_wait(fp, &uctxt->wait, pt);
1476 
1477 	spin_lock_irq(&dd->uctxt_lock);
1478 	if (hdrqempty(uctxt)) {
1479 		set_bit(HFI1_CTXT_WAITING_RCV, &uctxt->event_flags);
1480 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_INTRAVAIL_ENB, uctxt);
1481 		pollflag = 0;
1482 	} else {
1483 		pollflag = EPOLLIN | EPOLLRDNORM;
1484 	}
1485 	spin_unlock_irq(&dd->uctxt_lock);
1486 
1487 	return pollflag;
1488 }
1489 
1490 /*
1491  * Find all user contexts in use, and set the specified bit in their
1492  * event mask.
1493  * See also find_ctxt() for a similar use, that is specific to send buffers.
1494  */
1495 int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit)
1496 {
1497 	struct hfi1_ctxtdata *uctxt;
1498 	struct hfi1_devdata *dd = ppd->dd;
1499 	u16 ctxt;
1500 
1501 	if (!dd->events)
1502 		return -EINVAL;
1503 
1504 	for (ctxt = dd->first_dyn_alloc_ctxt; ctxt < dd->num_rcv_contexts;
1505 	     ctxt++) {
1506 		uctxt = hfi1_rcd_get_by_index(dd, ctxt);
1507 		if (uctxt) {
1508 			unsigned long *evs;
1509 			int i;
1510 			/*
1511 			 * subctxt_cnt is 0 if not shared, so do base
1512 			 * separately, first, then remaining subctxt, if any
1513 			 */
1514 			evs = dd->events + uctxt_offset(uctxt);
1515 			set_bit(evtbit, evs);
1516 			for (i = 1; i < uctxt->subctxt_cnt; i++)
1517 				set_bit(evtbit, evs + i);
1518 			hfi1_rcd_put(uctxt);
1519 		}
1520 	}
1521 
1522 	return 0;
1523 }
1524 
1525 /**
1526  * manage_rcvq - manage a context's receive queue
1527  * @uctxt: the context
1528  * @subctxt: the sub-context
1529  * @start_stop: action to carry out
1530  *
1531  * start_stop == 0 disables receive on the context, for use in queue
1532  * overflow conditions.  start_stop==1 re-enables, to be used to
1533  * re-init the software copy of the head register
1534  */
1535 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
1536 		       unsigned long arg)
1537 {
1538 	struct hfi1_devdata *dd = uctxt->dd;
1539 	unsigned int rcvctrl_op;
1540 	int start_stop;
1541 
1542 	if (subctxt)
1543 		return 0;
1544 
1545 	if (get_user(start_stop, (int __user *)arg))
1546 		return -EFAULT;
1547 
1548 	/* atomically clear receive enable ctxt. */
1549 	if (start_stop) {
1550 		/*
1551 		 * On enable, force in-memory copy of the tail register to
1552 		 * 0, so that protocol code doesn't have to worry about
1553 		 * whether or not the chip has yet updated the in-memory
1554 		 * copy or not on return from the system call. The chip
1555 		 * always resets it's tail register back to 0 on a
1556 		 * transition from disabled to enabled.
1557 		 */
1558 		if (hfi1_rcvhdrtail_kvaddr(uctxt))
1559 			clear_rcvhdrtail(uctxt);
1560 		rcvctrl_op = HFI1_RCVCTRL_CTXT_ENB;
1561 	} else {
1562 		rcvctrl_op = HFI1_RCVCTRL_CTXT_DIS;
1563 	}
1564 	hfi1_rcvctrl(dd, rcvctrl_op, uctxt);
1565 	/* always; new head should be equal to new tail; see above */
1566 
1567 	return 0;
1568 }
1569 
1570 /*
1571  * clear the event notifier events for this context.
1572  * User process then performs actions appropriate to bit having been
1573  * set, if desired, and checks again in future.
1574  */
1575 static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
1576 			  unsigned long arg)
1577 {
1578 	int i;
1579 	struct hfi1_devdata *dd = uctxt->dd;
1580 	unsigned long *evs;
1581 	unsigned long events;
1582 
1583 	if (!dd->events)
1584 		return 0;
1585 
1586 	if (get_user(events, (unsigned long __user *)arg))
1587 		return -EFAULT;
1588 
1589 	evs = dd->events + uctxt_offset(uctxt) + subctxt;
1590 
1591 	for (i = 0; i <= _HFI1_MAX_EVENT_BIT; i++) {
1592 		if (!test_bit(i, &events))
1593 			continue;
1594 		clear_bit(i, evs);
1595 	}
1596 	return 0;
1597 }
1598 
1599 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg)
1600 {
1601 	int i;
1602 	struct hfi1_pportdata *ppd = uctxt->ppd;
1603 	struct hfi1_devdata *dd = uctxt->dd;
1604 	u16 pkey;
1605 
1606 	if (!HFI1_CAP_IS_USET(PKEY_CHECK))
1607 		return -EPERM;
1608 
1609 	if (get_user(pkey, (u16 __user *)arg))
1610 		return -EFAULT;
1611 
1612 	if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY)
1613 		return -EINVAL;
1614 
1615 	for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++)
1616 		if (pkey == ppd->pkeys[i])
1617 			return hfi1_set_ctxt_pkey(dd, uctxt, pkey);
1618 
1619 	return -ENOENT;
1620 }
1621 
1622 /**
1623  * ctxt_reset - Reset the user context
1624  * @uctxt: valid user context
1625  */
1626 static int ctxt_reset(struct hfi1_ctxtdata *uctxt)
1627 {
1628 	struct send_context *sc;
1629 	struct hfi1_devdata *dd;
1630 	int ret = 0;
1631 
1632 	if (!uctxt || !uctxt->dd || !uctxt->sc)
1633 		return -EINVAL;
1634 
1635 	/*
1636 	 * There is no protection here. User level has to guarantee that
1637 	 * no one will be writing to the send context while it is being
1638 	 * re-initialized.  If user level breaks that guarantee, it will
1639 	 * break it's own context and no one else's.
1640 	 */
1641 	dd = uctxt->dd;
1642 	sc = uctxt->sc;
1643 
1644 	/*
1645 	 * Wait until the interrupt handler has marked the context as
1646 	 * halted or frozen. Report error if we time out.
1647 	 */
1648 	wait_event_interruptible_timeout(
1649 		sc->halt_wait, (sc->flags & SCF_HALTED),
1650 		msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
1651 	if (!(sc->flags & SCF_HALTED))
1652 		return -ENOLCK;
1653 
1654 	/*
1655 	 * If the send context was halted due to a Freeze, wait until the
1656 	 * device has been "unfrozen" before resetting the context.
1657 	 */
1658 	if (sc->flags & SCF_FROZEN) {
1659 		wait_event_interruptible_timeout(
1660 			dd->event_queue,
1661 			!(READ_ONCE(dd->flags) & HFI1_FROZEN),
1662 			msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
1663 		if (dd->flags & HFI1_FROZEN)
1664 			return -ENOLCK;
1665 
1666 		if (dd->flags & HFI1_FORCED_FREEZE)
1667 			/*
1668 			 * Don't allow context reset if we are into
1669 			 * forced freeze
1670 			 */
1671 			return -ENODEV;
1672 
1673 		sc_disable(sc);
1674 		ret = sc_enable(sc);
1675 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB, uctxt);
1676 	} else {
1677 		ret = sc_restart(sc);
1678 	}
1679 	if (!ret)
1680 		sc_return_credits(sc);
1681 
1682 	return ret;
1683 }
1684 
1685 static void user_remove(struct hfi1_devdata *dd)
1686 {
1687 
1688 	hfi1_cdev_cleanup(&dd->user_cdev, &dd->user_device);
1689 }
1690 
1691 static int user_add(struct hfi1_devdata *dd)
1692 {
1693 	char name[10];
1694 	int ret;
1695 
1696 	snprintf(name, sizeof(name), "%s_%d", class_name(), dd->unit);
1697 	ret = hfi1_cdev_init(dd->unit, name, &hfi1_file_ops,
1698 			     &dd->user_cdev, &dd->user_device,
1699 			     true, &dd->kobj);
1700 	if (ret)
1701 		user_remove(dd);
1702 
1703 	return ret;
1704 }
1705 
1706 /*
1707  * Create per-unit files in /dev
1708  */
1709 int hfi1_device_create(struct hfi1_devdata *dd)
1710 {
1711 	return user_add(dd);
1712 }
1713 
1714 /*
1715  * Remove per-unit files in /dev
1716  * void, core kernel returns no errors for this stuff
1717  */
1718 void hfi1_device_remove(struct hfi1_devdata *dd)
1719 {
1720 	user_remove(dd);
1721 }
1722