1 /* 2 * Copyright(c) 2015-2020 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 #include <linux/poll.h> 48 #include <linux/cdev.h> 49 #include <linux/vmalloc.h> 50 #include <linux/io.h> 51 #include <linux/sched/mm.h> 52 #include <linux/bitmap.h> 53 54 #include <rdma/ib.h> 55 56 #include "hfi.h" 57 #include "pio.h" 58 #include "device.h" 59 #include "common.h" 60 #include "trace.h" 61 #include "mmu_rb.h" 62 #include "user_sdma.h" 63 #include "user_exp_rcv.h" 64 #include "aspm.h" 65 66 #undef pr_fmt 67 #define pr_fmt(fmt) DRIVER_NAME ": " fmt 68 69 #define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */ 70 71 /* 72 * File operation functions 73 */ 74 static int hfi1_file_open(struct inode *inode, struct file *fp); 75 static int hfi1_file_close(struct inode *inode, struct file *fp); 76 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from); 77 static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt); 78 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma); 79 80 static u64 kvirt_to_phys(void *addr); 81 static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len); 82 static void init_subctxts(struct hfi1_ctxtdata *uctxt, 83 const struct hfi1_user_info *uinfo); 84 static int init_user_ctxt(struct hfi1_filedata *fd, 85 struct hfi1_ctxtdata *uctxt); 86 static void user_init(struct hfi1_ctxtdata *uctxt); 87 static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len); 88 static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len); 89 static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg, 90 u32 len); 91 static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg, 92 u32 len); 93 static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg, 94 u32 len); 95 static int setup_base_ctxt(struct hfi1_filedata *fd, 96 struct hfi1_ctxtdata *uctxt); 97 static int setup_subctxt(struct hfi1_ctxtdata *uctxt); 98 99 static int find_sub_ctxt(struct hfi1_filedata *fd, 100 const struct hfi1_user_info *uinfo); 101 static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd, 102 struct hfi1_user_info *uinfo, 103 struct hfi1_ctxtdata **cd); 104 static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt); 105 static __poll_t poll_urgent(struct file *fp, struct poll_table_struct *pt); 106 static __poll_t poll_next(struct file *fp, struct poll_table_struct *pt); 107 static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt, 108 unsigned long arg); 109 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg); 110 static int ctxt_reset(struct hfi1_ctxtdata *uctxt); 111 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt, 112 unsigned long arg); 113 static vm_fault_t vma_fault(struct vm_fault *vmf); 114 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd, 115 unsigned long arg); 116 117 static const struct file_operations hfi1_file_ops = { 118 .owner = THIS_MODULE, 119 .write_iter = hfi1_write_iter, 120 .open = hfi1_file_open, 121 .release = hfi1_file_close, 122 .unlocked_ioctl = hfi1_file_ioctl, 123 .poll = hfi1_poll, 124 .mmap = hfi1_file_mmap, 125 .llseek = noop_llseek, 126 }; 127 128 static const struct vm_operations_struct vm_ops = { 129 .fault = vma_fault, 130 }; 131 132 /* 133 * Types of memories mapped into user processes' space 134 */ 135 enum mmap_types { 136 PIO_BUFS = 1, 137 PIO_BUFS_SOP, 138 PIO_CRED, 139 RCV_HDRQ, 140 RCV_EGRBUF, 141 UREGS, 142 EVENTS, 143 STATUS, 144 RTAIL, 145 SUBCTXT_UREGS, 146 SUBCTXT_RCV_HDRQ, 147 SUBCTXT_EGRBUF, 148 SDMA_COMP 149 }; 150 151 /* 152 * Masks and offsets defining the mmap tokens 153 */ 154 #define HFI1_MMAP_OFFSET_MASK 0xfffULL 155 #define HFI1_MMAP_OFFSET_SHIFT 0 156 #define HFI1_MMAP_SUBCTXT_MASK 0xfULL 157 #define HFI1_MMAP_SUBCTXT_SHIFT 12 158 #define HFI1_MMAP_CTXT_MASK 0xffULL 159 #define HFI1_MMAP_CTXT_SHIFT 16 160 #define HFI1_MMAP_TYPE_MASK 0xfULL 161 #define HFI1_MMAP_TYPE_SHIFT 24 162 #define HFI1_MMAP_MAGIC_MASK 0xffffffffULL 163 #define HFI1_MMAP_MAGIC_SHIFT 32 164 165 #define HFI1_MMAP_MAGIC 0xdabbad00 166 167 #define HFI1_MMAP_TOKEN_SET(field, val) \ 168 (((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT) 169 #define HFI1_MMAP_TOKEN_GET(field, token) \ 170 (((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK) 171 #define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr) \ 172 (HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \ 173 HFI1_MMAP_TOKEN_SET(TYPE, type) | \ 174 HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \ 175 HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \ 176 HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr)))) 177 178 #define dbg(fmt, ...) \ 179 pr_info(fmt, ##__VA_ARGS__) 180 181 static inline int is_valid_mmap(u64 token) 182 { 183 return (HFI1_MMAP_TOKEN_GET(MAGIC, token) == HFI1_MMAP_MAGIC); 184 } 185 186 static int hfi1_file_open(struct inode *inode, struct file *fp) 187 { 188 struct hfi1_filedata *fd; 189 struct hfi1_devdata *dd = container_of(inode->i_cdev, 190 struct hfi1_devdata, 191 user_cdev); 192 193 if (!((dd->flags & HFI1_PRESENT) && dd->kregbase1)) 194 return -EINVAL; 195 196 if (!atomic_inc_not_zero(&dd->user_refcount)) 197 return -ENXIO; 198 199 /* The real work is performed later in assign_ctxt() */ 200 201 fd = kzalloc(sizeof(*fd), GFP_KERNEL); 202 203 if (!fd || init_srcu_struct(&fd->pq_srcu)) 204 goto nomem; 205 spin_lock_init(&fd->pq_rcu_lock); 206 spin_lock_init(&fd->tid_lock); 207 spin_lock_init(&fd->invalid_lock); 208 fd->rec_cpu_num = -1; /* no cpu affinity by default */ 209 fd->mm = current->mm; 210 mmgrab(fd->mm); 211 fd->dd = dd; 212 fp->private_data = fd; 213 return 0; 214 nomem: 215 kfree(fd); 216 fp->private_data = NULL; 217 if (atomic_dec_and_test(&dd->user_refcount)) 218 complete(&dd->user_comp); 219 return -ENOMEM; 220 } 221 222 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd, 223 unsigned long arg) 224 { 225 struct hfi1_filedata *fd = fp->private_data; 226 struct hfi1_ctxtdata *uctxt = fd->uctxt; 227 int ret = 0; 228 int uval = 0; 229 230 hfi1_cdbg(IOCTL, "IOCTL recv: 0x%x", cmd); 231 if (cmd != HFI1_IOCTL_ASSIGN_CTXT && 232 cmd != HFI1_IOCTL_GET_VERS && 233 !uctxt) 234 return -EINVAL; 235 236 switch (cmd) { 237 case HFI1_IOCTL_ASSIGN_CTXT: 238 ret = assign_ctxt(fd, arg, _IOC_SIZE(cmd)); 239 break; 240 241 case HFI1_IOCTL_CTXT_INFO: 242 ret = get_ctxt_info(fd, arg, _IOC_SIZE(cmd)); 243 break; 244 245 case HFI1_IOCTL_USER_INFO: 246 ret = get_base_info(fd, arg, _IOC_SIZE(cmd)); 247 break; 248 249 case HFI1_IOCTL_CREDIT_UPD: 250 if (uctxt) 251 sc_return_credits(uctxt->sc); 252 break; 253 254 case HFI1_IOCTL_TID_UPDATE: 255 ret = user_exp_rcv_setup(fd, arg, _IOC_SIZE(cmd)); 256 break; 257 258 case HFI1_IOCTL_TID_FREE: 259 ret = user_exp_rcv_clear(fd, arg, _IOC_SIZE(cmd)); 260 break; 261 262 case HFI1_IOCTL_TID_INVAL_READ: 263 ret = user_exp_rcv_invalid(fd, arg, _IOC_SIZE(cmd)); 264 break; 265 266 case HFI1_IOCTL_RECV_CTRL: 267 ret = manage_rcvq(uctxt, fd->subctxt, arg); 268 break; 269 270 case HFI1_IOCTL_POLL_TYPE: 271 if (get_user(uval, (int __user *)arg)) 272 return -EFAULT; 273 uctxt->poll_type = (typeof(uctxt->poll_type))uval; 274 break; 275 276 case HFI1_IOCTL_ACK_EVENT: 277 ret = user_event_ack(uctxt, fd->subctxt, arg); 278 break; 279 280 case HFI1_IOCTL_SET_PKEY: 281 ret = set_ctxt_pkey(uctxt, arg); 282 break; 283 284 case HFI1_IOCTL_CTXT_RESET: 285 ret = ctxt_reset(uctxt); 286 break; 287 288 case HFI1_IOCTL_GET_VERS: 289 uval = HFI1_USER_SWVERSION; 290 if (put_user(uval, (int __user *)arg)) 291 return -EFAULT; 292 break; 293 294 default: 295 return -EINVAL; 296 } 297 298 return ret; 299 } 300 301 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from) 302 { 303 struct hfi1_filedata *fd = kiocb->ki_filp->private_data; 304 struct hfi1_user_sdma_pkt_q *pq; 305 struct hfi1_user_sdma_comp_q *cq = fd->cq; 306 int done = 0, reqs = 0; 307 unsigned long dim = from->nr_segs; 308 int idx; 309 310 idx = srcu_read_lock(&fd->pq_srcu); 311 pq = srcu_dereference(fd->pq, &fd->pq_srcu); 312 if (!cq || !pq) { 313 srcu_read_unlock(&fd->pq_srcu, idx); 314 return -EIO; 315 } 316 317 if (!iter_is_iovec(from) || !dim) { 318 srcu_read_unlock(&fd->pq_srcu, idx); 319 return -EINVAL; 320 } 321 322 trace_hfi1_sdma_request(fd->dd, fd->uctxt->ctxt, fd->subctxt, dim); 323 324 if (atomic_read(&pq->n_reqs) == pq->n_max_reqs) { 325 srcu_read_unlock(&fd->pq_srcu, idx); 326 return -ENOSPC; 327 } 328 329 while (dim) { 330 int ret; 331 unsigned long count = 0; 332 333 ret = hfi1_user_sdma_process_request( 334 fd, (struct iovec *)(from->iov + done), 335 dim, &count); 336 if (ret) { 337 reqs = ret; 338 break; 339 } 340 dim -= count; 341 done += count; 342 reqs++; 343 } 344 345 srcu_read_unlock(&fd->pq_srcu, idx); 346 return reqs; 347 } 348 349 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma) 350 { 351 struct hfi1_filedata *fd = fp->private_data; 352 struct hfi1_ctxtdata *uctxt = fd->uctxt; 353 struct hfi1_devdata *dd; 354 unsigned long flags; 355 u64 token = vma->vm_pgoff << PAGE_SHIFT, 356 memaddr = 0; 357 void *memvirt = NULL; 358 u8 subctxt, mapio = 0, vmf = 0, type; 359 ssize_t memlen = 0; 360 int ret = 0; 361 u16 ctxt; 362 363 if (!is_valid_mmap(token) || !uctxt || 364 !(vma->vm_flags & VM_SHARED)) { 365 ret = -EINVAL; 366 goto done; 367 } 368 dd = uctxt->dd; 369 ctxt = HFI1_MMAP_TOKEN_GET(CTXT, token); 370 subctxt = HFI1_MMAP_TOKEN_GET(SUBCTXT, token); 371 type = HFI1_MMAP_TOKEN_GET(TYPE, token); 372 if (ctxt != uctxt->ctxt || subctxt != fd->subctxt) { 373 ret = -EINVAL; 374 goto done; 375 } 376 377 flags = vma->vm_flags; 378 379 switch (type) { 380 case PIO_BUFS: 381 case PIO_BUFS_SOP: 382 memaddr = ((dd->physaddr + TXE_PIO_SEND) + 383 /* chip pio base */ 384 (uctxt->sc->hw_context * BIT(16))) + 385 /* 64K PIO space / ctxt */ 386 (type == PIO_BUFS_SOP ? 387 (TXE_PIO_SIZE / 2) : 0); /* sop? */ 388 /* 389 * Map only the amount allocated to the context, not the 390 * entire available context's PIO space. 391 */ 392 memlen = PAGE_ALIGN(uctxt->sc->credits * PIO_BLOCK_SIZE); 393 flags &= ~VM_MAYREAD; 394 flags |= VM_DONTCOPY | VM_DONTEXPAND; 395 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); 396 mapio = 1; 397 break; 398 case PIO_CRED: 399 if (flags & VM_WRITE) { 400 ret = -EPERM; 401 goto done; 402 } 403 /* 404 * The credit return location for this context could be on the 405 * second or third page allocated for credit returns (if number 406 * of enabled contexts > 64 and 128 respectively). 407 */ 408 memvirt = dd->cr_base[uctxt->numa_id].va; 409 memaddr = virt_to_phys(memvirt) + 410 (((u64)uctxt->sc->hw_free - 411 (u64)dd->cr_base[uctxt->numa_id].va) & PAGE_MASK); 412 memlen = PAGE_SIZE; 413 flags &= ~VM_MAYWRITE; 414 flags |= VM_DONTCOPY | VM_DONTEXPAND; 415 /* 416 * The driver has already allocated memory for credit 417 * returns and programmed it into the chip. Has that 418 * memory been flagged as non-cached? 419 */ 420 /* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */ 421 mapio = 1; 422 break; 423 case RCV_HDRQ: 424 memlen = rcvhdrq_size(uctxt); 425 memvirt = uctxt->rcvhdrq; 426 break; 427 case RCV_EGRBUF: { 428 unsigned long addr; 429 int i; 430 /* 431 * The RcvEgr buffer need to be handled differently 432 * as multiple non-contiguous pages need to be mapped 433 * into the user process. 434 */ 435 memlen = uctxt->egrbufs.size; 436 if ((vma->vm_end - vma->vm_start) != memlen) { 437 dd_dev_err(dd, "Eager buffer map size invalid (%lu != %lu)\n", 438 (vma->vm_end - vma->vm_start), memlen); 439 ret = -EINVAL; 440 goto done; 441 } 442 if (vma->vm_flags & VM_WRITE) { 443 ret = -EPERM; 444 goto done; 445 } 446 vma->vm_flags &= ~VM_MAYWRITE; 447 addr = vma->vm_start; 448 for (i = 0 ; i < uctxt->egrbufs.numbufs; i++) { 449 memlen = uctxt->egrbufs.buffers[i].len; 450 memvirt = uctxt->egrbufs.buffers[i].addr; 451 ret = remap_pfn_range( 452 vma, addr, 453 /* 454 * virt_to_pfn() does the same, but 455 * it's not available on x86_64 456 * when CONFIG_MMU is enabled. 457 */ 458 PFN_DOWN(__pa(memvirt)), 459 memlen, 460 vma->vm_page_prot); 461 if (ret < 0) 462 goto done; 463 addr += memlen; 464 } 465 ret = 0; 466 goto done; 467 } 468 case UREGS: 469 /* 470 * Map only the page that contains this context's user 471 * registers. 472 */ 473 memaddr = (unsigned long) 474 (dd->physaddr + RXE_PER_CONTEXT_USER) 475 + (uctxt->ctxt * RXE_PER_CONTEXT_SIZE); 476 /* 477 * TidFlow table is on the same page as the rest of the 478 * user registers. 479 */ 480 memlen = PAGE_SIZE; 481 flags |= VM_DONTCOPY | VM_DONTEXPAND; 482 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 483 mapio = 1; 484 break; 485 case EVENTS: 486 /* 487 * Use the page where this context's flags are. User level 488 * knows where it's own bitmap is within the page. 489 */ 490 memaddr = (unsigned long) 491 (dd->events + uctxt_offset(uctxt)) & PAGE_MASK; 492 memlen = PAGE_SIZE; 493 /* 494 * v3.7 removes VM_RESERVED but the effect is kept by 495 * using VM_IO. 496 */ 497 flags |= VM_IO | VM_DONTEXPAND; 498 vmf = 1; 499 break; 500 case STATUS: 501 if (flags & VM_WRITE) { 502 ret = -EPERM; 503 goto done; 504 } 505 memaddr = kvirt_to_phys((void *)dd->status); 506 memlen = PAGE_SIZE; 507 flags |= VM_IO | VM_DONTEXPAND; 508 break; 509 case RTAIL: 510 if (!HFI1_CAP_IS_USET(DMA_RTAIL)) { 511 /* 512 * If the memory allocation failed, the context alloc 513 * also would have failed, so we would never get here 514 */ 515 ret = -EINVAL; 516 goto done; 517 } 518 if ((flags & VM_WRITE) || !hfi1_rcvhdrtail_kvaddr(uctxt)) { 519 ret = -EPERM; 520 goto done; 521 } 522 memlen = PAGE_SIZE; 523 memvirt = (void *)hfi1_rcvhdrtail_kvaddr(uctxt); 524 flags &= ~VM_MAYWRITE; 525 break; 526 case SUBCTXT_UREGS: 527 memaddr = (u64)uctxt->subctxt_uregbase; 528 memlen = PAGE_SIZE; 529 flags |= VM_IO | VM_DONTEXPAND; 530 vmf = 1; 531 break; 532 case SUBCTXT_RCV_HDRQ: 533 memaddr = (u64)uctxt->subctxt_rcvhdr_base; 534 memlen = rcvhdrq_size(uctxt) * uctxt->subctxt_cnt; 535 flags |= VM_IO | VM_DONTEXPAND; 536 vmf = 1; 537 break; 538 case SUBCTXT_EGRBUF: 539 memaddr = (u64)uctxt->subctxt_rcvegrbuf; 540 memlen = uctxt->egrbufs.size * uctxt->subctxt_cnt; 541 flags |= VM_IO | VM_DONTEXPAND; 542 flags &= ~VM_MAYWRITE; 543 vmf = 1; 544 break; 545 case SDMA_COMP: { 546 struct hfi1_user_sdma_comp_q *cq = fd->cq; 547 548 if (!cq) { 549 ret = -EFAULT; 550 goto done; 551 } 552 memaddr = (u64)cq->comps; 553 memlen = PAGE_ALIGN(sizeof(*cq->comps) * cq->nentries); 554 flags |= VM_IO | VM_DONTEXPAND; 555 vmf = 1; 556 break; 557 } 558 default: 559 ret = -EINVAL; 560 break; 561 } 562 563 if ((vma->vm_end - vma->vm_start) != memlen) { 564 hfi1_cdbg(PROC, "%u:%u Memory size mismatch %lu:%lu", 565 uctxt->ctxt, fd->subctxt, 566 (vma->vm_end - vma->vm_start), memlen); 567 ret = -EINVAL; 568 goto done; 569 } 570 571 vma->vm_flags = flags; 572 hfi1_cdbg(PROC, 573 "%u:%u type:%u io/vf:%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx\n", 574 ctxt, subctxt, type, mapio, vmf, memaddr, memlen, 575 vma->vm_end - vma->vm_start, vma->vm_flags); 576 if (vmf) { 577 vma->vm_pgoff = PFN_DOWN(memaddr); 578 vma->vm_ops = &vm_ops; 579 ret = 0; 580 } else if (mapio) { 581 ret = io_remap_pfn_range(vma, vma->vm_start, 582 PFN_DOWN(memaddr), 583 memlen, 584 vma->vm_page_prot); 585 } else if (memvirt) { 586 ret = remap_pfn_range(vma, vma->vm_start, 587 PFN_DOWN(__pa(memvirt)), 588 memlen, 589 vma->vm_page_prot); 590 } else { 591 ret = remap_pfn_range(vma, vma->vm_start, 592 PFN_DOWN(memaddr), 593 memlen, 594 vma->vm_page_prot); 595 } 596 done: 597 return ret; 598 } 599 600 /* 601 * Local (non-chip) user memory is not mapped right away but as it is 602 * accessed by the user-level code. 603 */ 604 static vm_fault_t vma_fault(struct vm_fault *vmf) 605 { 606 struct page *page; 607 608 page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT)); 609 if (!page) 610 return VM_FAULT_SIGBUS; 611 612 get_page(page); 613 vmf->page = page; 614 615 return 0; 616 } 617 618 static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt) 619 { 620 struct hfi1_ctxtdata *uctxt; 621 __poll_t pollflag; 622 623 uctxt = ((struct hfi1_filedata *)fp->private_data)->uctxt; 624 if (!uctxt) 625 pollflag = EPOLLERR; 626 else if (uctxt->poll_type == HFI1_POLL_TYPE_URGENT) 627 pollflag = poll_urgent(fp, pt); 628 else if (uctxt->poll_type == HFI1_POLL_TYPE_ANYRCV) 629 pollflag = poll_next(fp, pt); 630 else /* invalid */ 631 pollflag = EPOLLERR; 632 633 return pollflag; 634 } 635 636 static int hfi1_file_close(struct inode *inode, struct file *fp) 637 { 638 struct hfi1_filedata *fdata = fp->private_data; 639 struct hfi1_ctxtdata *uctxt = fdata->uctxt; 640 struct hfi1_devdata *dd = container_of(inode->i_cdev, 641 struct hfi1_devdata, 642 user_cdev); 643 unsigned long flags, *ev; 644 645 fp->private_data = NULL; 646 647 if (!uctxt) 648 goto done; 649 650 hfi1_cdbg(PROC, "closing ctxt %u:%u", uctxt->ctxt, fdata->subctxt); 651 652 flush_wc(); 653 /* drain user sdma queue */ 654 hfi1_user_sdma_free_queues(fdata, uctxt); 655 656 /* release the cpu */ 657 hfi1_put_proc_affinity(fdata->rec_cpu_num); 658 659 /* clean up rcv side */ 660 hfi1_user_exp_rcv_free(fdata); 661 662 /* 663 * fdata->uctxt is used in the above cleanup. It is not ready to be 664 * removed until here. 665 */ 666 fdata->uctxt = NULL; 667 hfi1_rcd_put(uctxt); 668 669 /* 670 * Clear any left over, unhandled events so the next process that 671 * gets this context doesn't get confused. 672 */ 673 ev = dd->events + uctxt_offset(uctxt) + fdata->subctxt; 674 *ev = 0; 675 676 spin_lock_irqsave(&dd->uctxt_lock, flags); 677 __clear_bit(fdata->subctxt, uctxt->in_use_ctxts); 678 if (!bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) { 679 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 680 goto done; 681 } 682 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 683 684 /* 685 * Disable receive context and interrupt available, reset all 686 * RcvCtxtCtrl bits to default values. 687 */ 688 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS | 689 HFI1_RCVCTRL_TIDFLOW_DIS | 690 HFI1_RCVCTRL_INTRAVAIL_DIS | 691 HFI1_RCVCTRL_TAILUPD_DIS | 692 HFI1_RCVCTRL_ONE_PKT_EGR_DIS | 693 HFI1_RCVCTRL_NO_RHQ_DROP_DIS | 694 HFI1_RCVCTRL_NO_EGR_DROP_DIS | 695 HFI1_RCVCTRL_URGENT_DIS, uctxt); 696 /* Clear the context's J_KEY */ 697 hfi1_clear_ctxt_jkey(dd, uctxt); 698 /* 699 * If a send context is allocated, reset context integrity 700 * checks to default and disable the send context. 701 */ 702 if (uctxt->sc) { 703 sc_disable(uctxt->sc); 704 set_pio_integrity(uctxt->sc); 705 } 706 707 hfi1_free_ctxt_rcv_groups(uctxt); 708 hfi1_clear_ctxt_pkey(dd, uctxt); 709 710 uctxt->event_flags = 0; 711 712 deallocate_ctxt(uctxt); 713 done: 714 mmdrop(fdata->mm); 715 716 if (atomic_dec_and_test(&dd->user_refcount)) 717 complete(&dd->user_comp); 718 719 cleanup_srcu_struct(&fdata->pq_srcu); 720 kfree(fdata); 721 return 0; 722 } 723 724 /* 725 * Convert kernel *virtual* addresses to physical addresses. 726 * This is used to vmalloc'ed addresses. 727 */ 728 static u64 kvirt_to_phys(void *addr) 729 { 730 struct page *page; 731 u64 paddr = 0; 732 733 page = vmalloc_to_page(addr); 734 if (page) 735 paddr = page_to_pfn(page) << PAGE_SHIFT; 736 737 return paddr; 738 } 739 740 /** 741 * complete_subctxt 742 * @fd: valid filedata pointer 743 * 744 * Sub-context info can only be set up after the base context 745 * has been completed. This is indicated by the clearing of the 746 * HFI1_CTXT_BASE_UINIT bit. 747 * 748 * Wait for the bit to be cleared, and then complete the subcontext 749 * initialization. 750 * 751 */ 752 static int complete_subctxt(struct hfi1_filedata *fd) 753 { 754 int ret; 755 unsigned long flags; 756 757 /* 758 * sub-context info can only be set up after the base context 759 * has been completed. 760 */ 761 ret = wait_event_interruptible( 762 fd->uctxt->wait, 763 !test_bit(HFI1_CTXT_BASE_UNINIT, &fd->uctxt->event_flags)); 764 765 if (test_bit(HFI1_CTXT_BASE_FAILED, &fd->uctxt->event_flags)) 766 ret = -ENOMEM; 767 768 /* Finish the sub-context init */ 769 if (!ret) { 770 fd->rec_cpu_num = hfi1_get_proc_affinity(fd->uctxt->numa_id); 771 ret = init_user_ctxt(fd, fd->uctxt); 772 } 773 774 if (ret) { 775 spin_lock_irqsave(&fd->dd->uctxt_lock, flags); 776 __clear_bit(fd->subctxt, fd->uctxt->in_use_ctxts); 777 spin_unlock_irqrestore(&fd->dd->uctxt_lock, flags); 778 hfi1_rcd_put(fd->uctxt); 779 fd->uctxt = NULL; 780 } 781 782 return ret; 783 } 784 785 static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len) 786 { 787 int ret; 788 unsigned int swmajor; 789 struct hfi1_ctxtdata *uctxt = NULL; 790 struct hfi1_user_info uinfo; 791 792 if (fd->uctxt) 793 return -EINVAL; 794 795 if (sizeof(uinfo) != len) 796 return -EINVAL; 797 798 if (copy_from_user(&uinfo, (void __user *)arg, sizeof(uinfo))) 799 return -EFAULT; 800 801 swmajor = uinfo.userversion >> 16; 802 if (swmajor != HFI1_USER_SWMAJOR) 803 return -ENODEV; 804 805 if (uinfo.subctxt_cnt > HFI1_MAX_SHARED_CTXTS) 806 return -EINVAL; 807 808 /* 809 * Acquire the mutex to protect against multiple creations of what 810 * could be a shared base context. 811 */ 812 mutex_lock(&hfi1_mutex); 813 /* 814 * Get a sub context if available (fd->uctxt will be set). 815 * ret < 0 error, 0 no context, 1 sub-context found 816 */ 817 ret = find_sub_ctxt(fd, &uinfo); 818 819 /* 820 * Allocate a base context if context sharing is not required or a 821 * sub context wasn't found. 822 */ 823 if (!ret) 824 ret = allocate_ctxt(fd, fd->dd, &uinfo, &uctxt); 825 826 mutex_unlock(&hfi1_mutex); 827 828 /* Depending on the context type, finish the appropriate init */ 829 switch (ret) { 830 case 0: 831 ret = setup_base_ctxt(fd, uctxt); 832 if (ret) 833 deallocate_ctxt(uctxt); 834 break; 835 case 1: 836 ret = complete_subctxt(fd); 837 break; 838 default: 839 break; 840 } 841 842 return ret; 843 } 844 845 /** 846 * match_ctxt 847 * @fd: valid filedata pointer 848 * @uinfo: user info to compare base context with 849 * @uctxt: context to compare uinfo to. 850 * 851 * Compare the given context with the given information to see if it 852 * can be used for a sub context. 853 */ 854 static int match_ctxt(struct hfi1_filedata *fd, 855 const struct hfi1_user_info *uinfo, 856 struct hfi1_ctxtdata *uctxt) 857 { 858 struct hfi1_devdata *dd = fd->dd; 859 unsigned long flags; 860 u16 subctxt; 861 862 /* Skip dynamically allocated kernel contexts */ 863 if (uctxt->sc && (uctxt->sc->type == SC_KERNEL)) 864 return 0; 865 866 /* Skip ctxt if it doesn't match the requested one */ 867 if (memcmp(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)) || 868 uctxt->jkey != generate_jkey(current_uid()) || 869 uctxt->subctxt_id != uinfo->subctxt_id || 870 uctxt->subctxt_cnt != uinfo->subctxt_cnt) 871 return 0; 872 873 /* Verify the sharing process matches the base */ 874 if (uctxt->userversion != uinfo->userversion) 875 return -EINVAL; 876 877 /* Find an unused sub context */ 878 spin_lock_irqsave(&dd->uctxt_lock, flags); 879 if (bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) { 880 /* context is being closed, do not use */ 881 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 882 return 0; 883 } 884 885 subctxt = find_first_zero_bit(uctxt->in_use_ctxts, 886 HFI1_MAX_SHARED_CTXTS); 887 if (subctxt >= uctxt->subctxt_cnt) { 888 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 889 return -EBUSY; 890 } 891 892 fd->subctxt = subctxt; 893 __set_bit(fd->subctxt, uctxt->in_use_ctxts); 894 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 895 896 fd->uctxt = uctxt; 897 hfi1_rcd_get(uctxt); 898 899 return 1; 900 } 901 902 /** 903 * find_sub_ctxt 904 * @fd: valid filedata pointer 905 * @uinfo: matching info to use to find a possible context to share. 906 * 907 * The hfi1_mutex must be held when this function is called. It is 908 * necessary to ensure serialized creation of shared contexts. 909 * 910 * Return: 911 * 0 No sub-context found 912 * 1 Subcontext found and allocated 913 * errno EINVAL (incorrect parameters) 914 * EBUSY (all sub contexts in use) 915 */ 916 static int find_sub_ctxt(struct hfi1_filedata *fd, 917 const struct hfi1_user_info *uinfo) 918 { 919 struct hfi1_ctxtdata *uctxt; 920 struct hfi1_devdata *dd = fd->dd; 921 u16 i; 922 int ret; 923 924 if (!uinfo->subctxt_cnt) 925 return 0; 926 927 for (i = dd->first_dyn_alloc_ctxt; i < dd->num_rcv_contexts; i++) { 928 uctxt = hfi1_rcd_get_by_index(dd, i); 929 if (uctxt) { 930 ret = match_ctxt(fd, uinfo, uctxt); 931 hfi1_rcd_put(uctxt); 932 /* value of != 0 will return */ 933 if (ret) 934 return ret; 935 } 936 } 937 938 return 0; 939 } 940 941 static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd, 942 struct hfi1_user_info *uinfo, 943 struct hfi1_ctxtdata **rcd) 944 { 945 struct hfi1_ctxtdata *uctxt; 946 int ret, numa; 947 948 if (dd->flags & HFI1_FROZEN) { 949 /* 950 * Pick an error that is unique from all other errors 951 * that are returned so the user process knows that 952 * it tried to allocate while the SPC was frozen. It 953 * it should be able to retry with success in a short 954 * while. 955 */ 956 return -EIO; 957 } 958 959 if (!dd->freectxts) 960 return -EBUSY; 961 962 /* 963 * If we don't have a NUMA node requested, preference is towards 964 * device NUMA node. 965 */ 966 fd->rec_cpu_num = hfi1_get_proc_affinity(dd->node); 967 if (fd->rec_cpu_num != -1) 968 numa = cpu_to_node(fd->rec_cpu_num); 969 else 970 numa = numa_node_id(); 971 ret = hfi1_create_ctxtdata(dd->pport, numa, &uctxt); 972 if (ret < 0) { 973 dd_dev_err(dd, "user ctxtdata allocation failed\n"); 974 return ret; 975 } 976 hfi1_cdbg(PROC, "[%u:%u] pid %u assigned to CPU %d (NUMA %u)", 977 uctxt->ctxt, fd->subctxt, current->pid, fd->rec_cpu_num, 978 uctxt->numa_id); 979 980 /* 981 * Allocate and enable a PIO send context. 982 */ 983 uctxt->sc = sc_alloc(dd, SC_USER, uctxt->rcvhdrqentsize, dd->node); 984 if (!uctxt->sc) { 985 ret = -ENOMEM; 986 goto ctxdata_free; 987 } 988 hfi1_cdbg(PROC, "allocated send context %u(%u)\n", uctxt->sc->sw_index, 989 uctxt->sc->hw_context); 990 ret = sc_enable(uctxt->sc); 991 if (ret) 992 goto ctxdata_free; 993 994 /* 995 * Setup sub context information if the user-level has requested 996 * sub contexts. 997 * This has to be done here so the rest of the sub-contexts find the 998 * proper base context. 999 * NOTE: _set_bit() can be used here because the context creation is 1000 * protected by the mutex (rather than the spin_lock), and will be the 1001 * very first instance of this context. 1002 */ 1003 __set_bit(0, uctxt->in_use_ctxts); 1004 if (uinfo->subctxt_cnt) 1005 init_subctxts(uctxt, uinfo); 1006 uctxt->userversion = uinfo->userversion; 1007 uctxt->flags = hfi1_cap_mask; /* save current flag state */ 1008 init_waitqueue_head(&uctxt->wait); 1009 strlcpy(uctxt->comm, current->comm, sizeof(uctxt->comm)); 1010 memcpy(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)); 1011 uctxt->jkey = generate_jkey(current_uid()); 1012 hfi1_stats.sps_ctxts++; 1013 /* 1014 * Disable ASPM when there are open user/PSM contexts to avoid 1015 * issues with ASPM L1 exit latency 1016 */ 1017 if (dd->freectxts-- == dd->num_user_contexts) 1018 aspm_disable_all(dd); 1019 1020 *rcd = uctxt; 1021 1022 return 0; 1023 1024 ctxdata_free: 1025 hfi1_free_ctxt(uctxt); 1026 return ret; 1027 } 1028 1029 static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt) 1030 { 1031 mutex_lock(&hfi1_mutex); 1032 hfi1_stats.sps_ctxts--; 1033 if (++uctxt->dd->freectxts == uctxt->dd->num_user_contexts) 1034 aspm_enable_all(uctxt->dd); 1035 mutex_unlock(&hfi1_mutex); 1036 1037 hfi1_free_ctxt(uctxt); 1038 } 1039 1040 static void init_subctxts(struct hfi1_ctxtdata *uctxt, 1041 const struct hfi1_user_info *uinfo) 1042 { 1043 uctxt->subctxt_cnt = uinfo->subctxt_cnt; 1044 uctxt->subctxt_id = uinfo->subctxt_id; 1045 set_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags); 1046 } 1047 1048 static int setup_subctxt(struct hfi1_ctxtdata *uctxt) 1049 { 1050 int ret = 0; 1051 u16 num_subctxts = uctxt->subctxt_cnt; 1052 1053 uctxt->subctxt_uregbase = vmalloc_user(PAGE_SIZE); 1054 if (!uctxt->subctxt_uregbase) 1055 return -ENOMEM; 1056 1057 /* We can take the size of the RcvHdr Queue from the master */ 1058 uctxt->subctxt_rcvhdr_base = vmalloc_user(rcvhdrq_size(uctxt) * 1059 num_subctxts); 1060 if (!uctxt->subctxt_rcvhdr_base) { 1061 ret = -ENOMEM; 1062 goto bail_ureg; 1063 } 1064 1065 uctxt->subctxt_rcvegrbuf = vmalloc_user(uctxt->egrbufs.size * 1066 num_subctxts); 1067 if (!uctxt->subctxt_rcvegrbuf) { 1068 ret = -ENOMEM; 1069 goto bail_rhdr; 1070 } 1071 1072 return 0; 1073 1074 bail_rhdr: 1075 vfree(uctxt->subctxt_rcvhdr_base); 1076 uctxt->subctxt_rcvhdr_base = NULL; 1077 bail_ureg: 1078 vfree(uctxt->subctxt_uregbase); 1079 uctxt->subctxt_uregbase = NULL; 1080 1081 return ret; 1082 } 1083 1084 static void user_init(struct hfi1_ctxtdata *uctxt) 1085 { 1086 unsigned int rcvctrl_ops = 0; 1087 1088 /* initialize poll variables... */ 1089 uctxt->urgent = 0; 1090 uctxt->urgent_poll = 0; 1091 1092 /* 1093 * Now enable the ctxt for receive. 1094 * For chips that are set to DMA the tail register to memory 1095 * when they change (and when the update bit transitions from 1096 * 0 to 1. So for those chips, we turn it off and then back on. 1097 * This will (very briefly) affect any other open ctxts, but the 1098 * duration is very short, and therefore isn't an issue. We 1099 * explicitly set the in-memory tail copy to 0 beforehand, so we 1100 * don't have to wait to be sure the DMA update has happened 1101 * (chip resets head/tail to 0 on transition to enable). 1102 */ 1103 if (hfi1_rcvhdrtail_kvaddr(uctxt)) 1104 clear_rcvhdrtail(uctxt); 1105 1106 /* Setup J_KEY before enabling the context */ 1107 hfi1_set_ctxt_jkey(uctxt->dd, uctxt, uctxt->jkey); 1108 1109 rcvctrl_ops = HFI1_RCVCTRL_CTXT_ENB; 1110 rcvctrl_ops |= HFI1_RCVCTRL_URGENT_ENB; 1111 if (HFI1_CAP_UGET_MASK(uctxt->flags, HDRSUPP)) 1112 rcvctrl_ops |= HFI1_RCVCTRL_TIDFLOW_ENB; 1113 /* 1114 * Ignore the bit in the flags for now until proper 1115 * support for multiple packet per rcv array entry is 1116 * added. 1117 */ 1118 if (!HFI1_CAP_UGET_MASK(uctxt->flags, MULTI_PKT_EGR)) 1119 rcvctrl_ops |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB; 1120 if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_EGR_FULL)) 1121 rcvctrl_ops |= HFI1_RCVCTRL_NO_EGR_DROP_ENB; 1122 if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_RHQ_FULL)) 1123 rcvctrl_ops |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB; 1124 /* 1125 * The RcvCtxtCtrl.TailUpd bit has to be explicitly written. 1126 * We can't rely on the correct value to be set from prior 1127 * uses of the chip or ctxt. Therefore, add the rcvctrl op 1128 * for both cases. 1129 */ 1130 if (HFI1_CAP_UGET_MASK(uctxt->flags, DMA_RTAIL)) 1131 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_ENB; 1132 else 1133 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_DIS; 1134 hfi1_rcvctrl(uctxt->dd, rcvctrl_ops, uctxt); 1135 } 1136 1137 static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len) 1138 { 1139 struct hfi1_ctxt_info cinfo; 1140 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1141 1142 if (sizeof(cinfo) != len) 1143 return -EINVAL; 1144 1145 memset(&cinfo, 0, sizeof(cinfo)); 1146 cinfo.runtime_flags = (((uctxt->flags >> HFI1_CAP_MISC_SHIFT) & 1147 HFI1_CAP_MISC_MASK) << HFI1_CAP_USER_SHIFT) | 1148 HFI1_CAP_UGET_MASK(uctxt->flags, MASK) | 1149 HFI1_CAP_KGET_MASK(uctxt->flags, K2U); 1150 /* adjust flag if this fd is not able to cache */ 1151 if (!fd->use_mn) 1152 cinfo.runtime_flags |= HFI1_CAP_TID_UNMAP; /* no caching */ 1153 1154 cinfo.num_active = hfi1_count_active_units(); 1155 cinfo.unit = uctxt->dd->unit; 1156 cinfo.ctxt = uctxt->ctxt; 1157 cinfo.subctxt = fd->subctxt; 1158 cinfo.rcvtids = roundup(uctxt->egrbufs.alloced, 1159 uctxt->dd->rcv_entries.group_size) + 1160 uctxt->expected_count; 1161 cinfo.credits = uctxt->sc->credits; 1162 cinfo.numa_node = uctxt->numa_id; 1163 cinfo.rec_cpu = fd->rec_cpu_num; 1164 cinfo.send_ctxt = uctxt->sc->hw_context; 1165 1166 cinfo.egrtids = uctxt->egrbufs.alloced; 1167 cinfo.rcvhdrq_cnt = get_hdrq_cnt(uctxt); 1168 cinfo.rcvhdrq_entsize = get_hdrqentsize(uctxt) << 2; 1169 cinfo.sdma_ring_size = fd->cq->nentries; 1170 cinfo.rcvegr_size = uctxt->egrbufs.rcvtid_size; 1171 1172 trace_hfi1_ctxt_info(uctxt->dd, uctxt->ctxt, fd->subctxt, &cinfo); 1173 if (copy_to_user((void __user *)arg, &cinfo, len)) 1174 return -EFAULT; 1175 1176 return 0; 1177 } 1178 1179 static int init_user_ctxt(struct hfi1_filedata *fd, 1180 struct hfi1_ctxtdata *uctxt) 1181 { 1182 int ret; 1183 1184 ret = hfi1_user_sdma_alloc_queues(uctxt, fd); 1185 if (ret) 1186 return ret; 1187 1188 ret = hfi1_user_exp_rcv_init(fd, uctxt); 1189 if (ret) 1190 hfi1_user_sdma_free_queues(fd, uctxt); 1191 1192 return ret; 1193 } 1194 1195 static int setup_base_ctxt(struct hfi1_filedata *fd, 1196 struct hfi1_ctxtdata *uctxt) 1197 { 1198 struct hfi1_devdata *dd = uctxt->dd; 1199 int ret = 0; 1200 1201 hfi1_init_ctxt(uctxt->sc); 1202 1203 /* Now allocate the RcvHdr queue and eager buffers. */ 1204 ret = hfi1_create_rcvhdrq(dd, uctxt); 1205 if (ret) 1206 goto done; 1207 1208 ret = hfi1_setup_eagerbufs(uctxt); 1209 if (ret) 1210 goto done; 1211 1212 /* If sub-contexts are enabled, do the appropriate setup */ 1213 if (uctxt->subctxt_cnt) 1214 ret = setup_subctxt(uctxt); 1215 if (ret) 1216 goto done; 1217 1218 ret = hfi1_alloc_ctxt_rcv_groups(uctxt); 1219 if (ret) 1220 goto done; 1221 1222 ret = init_user_ctxt(fd, uctxt); 1223 if (ret) 1224 goto done; 1225 1226 user_init(uctxt); 1227 1228 /* Now that the context is set up, the fd can get a reference. */ 1229 fd->uctxt = uctxt; 1230 hfi1_rcd_get(uctxt); 1231 1232 done: 1233 if (uctxt->subctxt_cnt) { 1234 /* 1235 * On error, set the failed bit so sub-contexts will clean up 1236 * correctly. 1237 */ 1238 if (ret) 1239 set_bit(HFI1_CTXT_BASE_FAILED, &uctxt->event_flags); 1240 1241 /* 1242 * Base context is done (successfully or not), notify anybody 1243 * using a sub-context that is waiting for this completion. 1244 */ 1245 clear_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags); 1246 wake_up(&uctxt->wait); 1247 } 1248 1249 return ret; 1250 } 1251 1252 static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len) 1253 { 1254 struct hfi1_base_info binfo; 1255 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1256 struct hfi1_devdata *dd = uctxt->dd; 1257 unsigned offset; 1258 1259 trace_hfi1_uctxtdata(uctxt->dd, uctxt, fd->subctxt); 1260 1261 if (sizeof(binfo) != len) 1262 return -EINVAL; 1263 1264 memset(&binfo, 0, sizeof(binfo)); 1265 binfo.hw_version = dd->revision; 1266 binfo.sw_version = HFI1_KERN_SWVERSION; 1267 binfo.bthqp = RVT_KDETH_QP_PREFIX; 1268 binfo.jkey = uctxt->jkey; 1269 /* 1270 * If more than 64 contexts are enabled the allocated credit 1271 * return will span two or three contiguous pages. Since we only 1272 * map the page containing the context's credit return address, 1273 * we need to calculate the offset in the proper page. 1274 */ 1275 offset = ((u64)uctxt->sc->hw_free - 1276 (u64)dd->cr_base[uctxt->numa_id].va) % PAGE_SIZE; 1277 binfo.sc_credits_addr = HFI1_MMAP_TOKEN(PIO_CRED, uctxt->ctxt, 1278 fd->subctxt, offset); 1279 binfo.pio_bufbase = HFI1_MMAP_TOKEN(PIO_BUFS, uctxt->ctxt, 1280 fd->subctxt, 1281 uctxt->sc->base_addr); 1282 binfo.pio_bufbase_sop = HFI1_MMAP_TOKEN(PIO_BUFS_SOP, 1283 uctxt->ctxt, 1284 fd->subctxt, 1285 uctxt->sc->base_addr); 1286 binfo.rcvhdr_bufbase = HFI1_MMAP_TOKEN(RCV_HDRQ, uctxt->ctxt, 1287 fd->subctxt, 1288 uctxt->rcvhdrq); 1289 binfo.rcvegr_bufbase = HFI1_MMAP_TOKEN(RCV_EGRBUF, uctxt->ctxt, 1290 fd->subctxt, 1291 uctxt->egrbufs.rcvtids[0].dma); 1292 binfo.sdma_comp_bufbase = HFI1_MMAP_TOKEN(SDMA_COMP, uctxt->ctxt, 1293 fd->subctxt, 0); 1294 /* 1295 * user regs are at 1296 * (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE)) 1297 */ 1298 binfo.user_regbase = HFI1_MMAP_TOKEN(UREGS, uctxt->ctxt, 1299 fd->subctxt, 0); 1300 offset = offset_in_page((uctxt_offset(uctxt) + fd->subctxt) * 1301 sizeof(*dd->events)); 1302 binfo.events_bufbase = HFI1_MMAP_TOKEN(EVENTS, uctxt->ctxt, 1303 fd->subctxt, 1304 offset); 1305 binfo.status_bufbase = HFI1_MMAP_TOKEN(STATUS, uctxt->ctxt, 1306 fd->subctxt, 1307 dd->status); 1308 if (HFI1_CAP_IS_USET(DMA_RTAIL)) 1309 binfo.rcvhdrtail_base = HFI1_MMAP_TOKEN(RTAIL, uctxt->ctxt, 1310 fd->subctxt, 0); 1311 if (uctxt->subctxt_cnt) { 1312 binfo.subctxt_uregbase = HFI1_MMAP_TOKEN(SUBCTXT_UREGS, 1313 uctxt->ctxt, 1314 fd->subctxt, 0); 1315 binfo.subctxt_rcvhdrbuf = HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ, 1316 uctxt->ctxt, 1317 fd->subctxt, 0); 1318 binfo.subctxt_rcvegrbuf = HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF, 1319 uctxt->ctxt, 1320 fd->subctxt, 0); 1321 } 1322 1323 if (copy_to_user((void __user *)arg, &binfo, len)) 1324 return -EFAULT; 1325 1326 return 0; 1327 } 1328 1329 /** 1330 * user_exp_rcv_setup - Set up the given tid rcv list 1331 * @fd: file data of the current driver instance 1332 * @arg: ioctl argumnent for user space information 1333 * @len: length of data structure associated with ioctl command 1334 * 1335 * Wrapper to validate ioctl information before doing _rcv_setup. 1336 * 1337 */ 1338 static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg, 1339 u32 len) 1340 { 1341 int ret; 1342 unsigned long addr; 1343 struct hfi1_tid_info tinfo; 1344 1345 if (sizeof(tinfo) != len) 1346 return -EINVAL; 1347 1348 if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo)))) 1349 return -EFAULT; 1350 1351 ret = hfi1_user_exp_rcv_setup(fd, &tinfo); 1352 if (!ret) { 1353 /* 1354 * Copy the number of tidlist entries we used 1355 * and the length of the buffer we registered. 1356 */ 1357 addr = arg + offsetof(struct hfi1_tid_info, tidcnt); 1358 if (copy_to_user((void __user *)addr, &tinfo.tidcnt, 1359 sizeof(tinfo.tidcnt))) 1360 return -EFAULT; 1361 1362 addr = arg + offsetof(struct hfi1_tid_info, length); 1363 if (copy_to_user((void __user *)addr, &tinfo.length, 1364 sizeof(tinfo.length))) 1365 ret = -EFAULT; 1366 } 1367 1368 return ret; 1369 } 1370 1371 /** 1372 * user_exp_rcv_clear - Clear the given tid rcv list 1373 * @fd: file data of the current driver instance 1374 * @arg: ioctl argumnent for user space information 1375 * @len: length of data structure associated with ioctl command 1376 * 1377 * The hfi1_user_exp_rcv_clear() can be called from the error path. Because 1378 * of this, we need to use this wrapper to copy the user space information 1379 * before doing the clear. 1380 */ 1381 static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg, 1382 u32 len) 1383 { 1384 int ret; 1385 unsigned long addr; 1386 struct hfi1_tid_info tinfo; 1387 1388 if (sizeof(tinfo) != len) 1389 return -EINVAL; 1390 1391 if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo)))) 1392 return -EFAULT; 1393 1394 ret = hfi1_user_exp_rcv_clear(fd, &tinfo); 1395 if (!ret) { 1396 addr = arg + offsetof(struct hfi1_tid_info, tidcnt); 1397 if (copy_to_user((void __user *)addr, &tinfo.tidcnt, 1398 sizeof(tinfo.tidcnt))) 1399 return -EFAULT; 1400 } 1401 1402 return ret; 1403 } 1404 1405 /** 1406 * user_exp_rcv_invalid - Invalidate the given tid rcv list 1407 * @fd: file data of the current driver instance 1408 * @arg: ioctl argumnent for user space information 1409 * @len: length of data structure associated with ioctl command 1410 * 1411 * Wrapper to validate ioctl information before doing _rcv_invalid. 1412 * 1413 */ 1414 static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg, 1415 u32 len) 1416 { 1417 int ret; 1418 unsigned long addr; 1419 struct hfi1_tid_info tinfo; 1420 1421 if (sizeof(tinfo) != len) 1422 return -EINVAL; 1423 1424 if (!fd->invalid_tids) 1425 return -EINVAL; 1426 1427 if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo)))) 1428 return -EFAULT; 1429 1430 ret = hfi1_user_exp_rcv_invalid(fd, &tinfo); 1431 if (ret) 1432 return ret; 1433 1434 addr = arg + offsetof(struct hfi1_tid_info, tidcnt); 1435 if (copy_to_user((void __user *)addr, &tinfo.tidcnt, 1436 sizeof(tinfo.tidcnt))) 1437 ret = -EFAULT; 1438 1439 return ret; 1440 } 1441 1442 static __poll_t poll_urgent(struct file *fp, 1443 struct poll_table_struct *pt) 1444 { 1445 struct hfi1_filedata *fd = fp->private_data; 1446 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1447 struct hfi1_devdata *dd = uctxt->dd; 1448 __poll_t pollflag; 1449 1450 poll_wait(fp, &uctxt->wait, pt); 1451 1452 spin_lock_irq(&dd->uctxt_lock); 1453 if (uctxt->urgent != uctxt->urgent_poll) { 1454 pollflag = EPOLLIN | EPOLLRDNORM; 1455 uctxt->urgent_poll = uctxt->urgent; 1456 } else { 1457 pollflag = 0; 1458 set_bit(HFI1_CTXT_WAITING_URG, &uctxt->event_flags); 1459 } 1460 spin_unlock_irq(&dd->uctxt_lock); 1461 1462 return pollflag; 1463 } 1464 1465 static __poll_t poll_next(struct file *fp, 1466 struct poll_table_struct *pt) 1467 { 1468 struct hfi1_filedata *fd = fp->private_data; 1469 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1470 struct hfi1_devdata *dd = uctxt->dd; 1471 __poll_t pollflag; 1472 1473 poll_wait(fp, &uctxt->wait, pt); 1474 1475 spin_lock_irq(&dd->uctxt_lock); 1476 if (hdrqempty(uctxt)) { 1477 set_bit(HFI1_CTXT_WAITING_RCV, &uctxt->event_flags); 1478 hfi1_rcvctrl(dd, HFI1_RCVCTRL_INTRAVAIL_ENB, uctxt); 1479 pollflag = 0; 1480 } else { 1481 pollflag = EPOLLIN | EPOLLRDNORM; 1482 } 1483 spin_unlock_irq(&dd->uctxt_lock); 1484 1485 return pollflag; 1486 } 1487 1488 /* 1489 * Find all user contexts in use, and set the specified bit in their 1490 * event mask. 1491 * See also find_ctxt() for a similar use, that is specific to send buffers. 1492 */ 1493 int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit) 1494 { 1495 struct hfi1_ctxtdata *uctxt; 1496 struct hfi1_devdata *dd = ppd->dd; 1497 u16 ctxt; 1498 1499 if (!dd->events) 1500 return -EINVAL; 1501 1502 for (ctxt = dd->first_dyn_alloc_ctxt; ctxt < dd->num_rcv_contexts; 1503 ctxt++) { 1504 uctxt = hfi1_rcd_get_by_index(dd, ctxt); 1505 if (uctxt) { 1506 unsigned long *evs; 1507 int i; 1508 /* 1509 * subctxt_cnt is 0 if not shared, so do base 1510 * separately, first, then remaining subctxt, if any 1511 */ 1512 evs = dd->events + uctxt_offset(uctxt); 1513 set_bit(evtbit, evs); 1514 for (i = 1; i < uctxt->subctxt_cnt; i++) 1515 set_bit(evtbit, evs + i); 1516 hfi1_rcd_put(uctxt); 1517 } 1518 } 1519 1520 return 0; 1521 } 1522 1523 /** 1524 * manage_rcvq - manage a context's receive queue 1525 * @uctxt: the context 1526 * @subctxt: the sub-context 1527 * @start_stop: action to carry out 1528 * 1529 * start_stop == 0 disables receive on the context, for use in queue 1530 * overflow conditions. start_stop==1 re-enables, to be used to 1531 * re-init the software copy of the head register 1532 */ 1533 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt, 1534 unsigned long arg) 1535 { 1536 struct hfi1_devdata *dd = uctxt->dd; 1537 unsigned int rcvctrl_op; 1538 int start_stop; 1539 1540 if (subctxt) 1541 return 0; 1542 1543 if (get_user(start_stop, (int __user *)arg)) 1544 return -EFAULT; 1545 1546 /* atomically clear receive enable ctxt. */ 1547 if (start_stop) { 1548 /* 1549 * On enable, force in-memory copy of the tail register to 1550 * 0, so that protocol code doesn't have to worry about 1551 * whether or not the chip has yet updated the in-memory 1552 * copy or not on return from the system call. The chip 1553 * always resets it's tail register back to 0 on a 1554 * transition from disabled to enabled. 1555 */ 1556 if (hfi1_rcvhdrtail_kvaddr(uctxt)) 1557 clear_rcvhdrtail(uctxt); 1558 rcvctrl_op = HFI1_RCVCTRL_CTXT_ENB; 1559 } else { 1560 rcvctrl_op = HFI1_RCVCTRL_CTXT_DIS; 1561 } 1562 hfi1_rcvctrl(dd, rcvctrl_op, uctxt); 1563 /* always; new head should be equal to new tail; see above */ 1564 1565 return 0; 1566 } 1567 1568 /* 1569 * clear the event notifier events for this context. 1570 * User process then performs actions appropriate to bit having been 1571 * set, if desired, and checks again in future. 1572 */ 1573 static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt, 1574 unsigned long arg) 1575 { 1576 int i; 1577 struct hfi1_devdata *dd = uctxt->dd; 1578 unsigned long *evs; 1579 unsigned long events; 1580 1581 if (!dd->events) 1582 return 0; 1583 1584 if (get_user(events, (unsigned long __user *)arg)) 1585 return -EFAULT; 1586 1587 evs = dd->events + uctxt_offset(uctxt) + subctxt; 1588 1589 for (i = 0; i <= _HFI1_MAX_EVENT_BIT; i++) { 1590 if (!test_bit(i, &events)) 1591 continue; 1592 clear_bit(i, evs); 1593 } 1594 return 0; 1595 } 1596 1597 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg) 1598 { 1599 int i; 1600 struct hfi1_pportdata *ppd = uctxt->ppd; 1601 struct hfi1_devdata *dd = uctxt->dd; 1602 u16 pkey; 1603 1604 if (!HFI1_CAP_IS_USET(PKEY_CHECK)) 1605 return -EPERM; 1606 1607 if (get_user(pkey, (u16 __user *)arg)) 1608 return -EFAULT; 1609 1610 if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY) 1611 return -EINVAL; 1612 1613 for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) 1614 if (pkey == ppd->pkeys[i]) 1615 return hfi1_set_ctxt_pkey(dd, uctxt, pkey); 1616 1617 return -ENOENT; 1618 } 1619 1620 /** 1621 * ctxt_reset - Reset the user context 1622 * @uctxt: valid user context 1623 */ 1624 static int ctxt_reset(struct hfi1_ctxtdata *uctxt) 1625 { 1626 struct send_context *sc; 1627 struct hfi1_devdata *dd; 1628 int ret = 0; 1629 1630 if (!uctxt || !uctxt->dd || !uctxt->sc) 1631 return -EINVAL; 1632 1633 /* 1634 * There is no protection here. User level has to guarantee that 1635 * no one will be writing to the send context while it is being 1636 * re-initialized. If user level breaks that guarantee, it will 1637 * break it's own context and no one else's. 1638 */ 1639 dd = uctxt->dd; 1640 sc = uctxt->sc; 1641 1642 /* 1643 * Wait until the interrupt handler has marked the context as 1644 * halted or frozen. Report error if we time out. 1645 */ 1646 wait_event_interruptible_timeout( 1647 sc->halt_wait, (sc->flags & SCF_HALTED), 1648 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT)); 1649 if (!(sc->flags & SCF_HALTED)) 1650 return -ENOLCK; 1651 1652 /* 1653 * If the send context was halted due to a Freeze, wait until the 1654 * device has been "unfrozen" before resetting the context. 1655 */ 1656 if (sc->flags & SCF_FROZEN) { 1657 wait_event_interruptible_timeout( 1658 dd->event_queue, 1659 !(READ_ONCE(dd->flags) & HFI1_FROZEN), 1660 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT)); 1661 if (dd->flags & HFI1_FROZEN) 1662 return -ENOLCK; 1663 1664 if (dd->flags & HFI1_FORCED_FREEZE) 1665 /* 1666 * Don't allow context reset if we are into 1667 * forced freeze 1668 */ 1669 return -ENODEV; 1670 1671 sc_disable(sc); 1672 ret = sc_enable(sc); 1673 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB, uctxt); 1674 } else { 1675 ret = sc_restart(sc); 1676 } 1677 if (!ret) 1678 sc_return_credits(sc); 1679 1680 return ret; 1681 } 1682 1683 static void user_remove(struct hfi1_devdata *dd) 1684 { 1685 1686 hfi1_cdev_cleanup(&dd->user_cdev, &dd->user_device); 1687 } 1688 1689 static int user_add(struct hfi1_devdata *dd) 1690 { 1691 char name[10]; 1692 int ret; 1693 1694 snprintf(name, sizeof(name), "%s_%d", class_name(), dd->unit); 1695 ret = hfi1_cdev_init(dd->unit, name, &hfi1_file_ops, 1696 &dd->user_cdev, &dd->user_device, 1697 true, &dd->verbs_dev.rdi.ibdev.dev.kobj); 1698 if (ret) 1699 user_remove(dd); 1700 1701 return ret; 1702 } 1703 1704 /* 1705 * Create per-unit files in /dev 1706 */ 1707 int hfi1_device_create(struct hfi1_devdata *dd) 1708 { 1709 return user_add(dd); 1710 } 1711 1712 /* 1713 * Remove per-unit files in /dev 1714 * void, core kernel returns no errors for this stuff 1715 */ 1716 void hfi1_device_remove(struct hfi1_devdata *dd) 1717 { 1718 user_remove(dd); 1719 } 1720