1 /*
2  * Copyright(c) 2015-2020 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 #include <linux/poll.h>
48 #include <linux/cdev.h>
49 #include <linux/vmalloc.h>
50 #include <linux/io.h>
51 #include <linux/sched/mm.h>
52 #include <linux/bitmap.h>
53 
54 #include <rdma/ib.h>
55 
56 #include "hfi.h"
57 #include "pio.h"
58 #include "device.h"
59 #include "common.h"
60 #include "trace.h"
61 #include "mmu_rb.h"
62 #include "user_sdma.h"
63 #include "user_exp_rcv.h"
64 #include "aspm.h"
65 
66 #undef pr_fmt
67 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
68 
69 #define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */
70 
71 /*
72  * File operation functions
73  */
74 static int hfi1_file_open(struct inode *inode, struct file *fp);
75 static int hfi1_file_close(struct inode *inode, struct file *fp);
76 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from);
77 static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt);
78 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma);
79 
80 static u64 kvirt_to_phys(void *addr);
81 static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len);
82 static void init_subctxts(struct hfi1_ctxtdata *uctxt,
83 			  const struct hfi1_user_info *uinfo);
84 static int init_user_ctxt(struct hfi1_filedata *fd,
85 			  struct hfi1_ctxtdata *uctxt);
86 static void user_init(struct hfi1_ctxtdata *uctxt);
87 static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
88 static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
89 static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
90 			      u32 len);
91 static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
92 			      u32 len);
93 static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
94 				u32 len);
95 static int setup_base_ctxt(struct hfi1_filedata *fd,
96 			   struct hfi1_ctxtdata *uctxt);
97 static int setup_subctxt(struct hfi1_ctxtdata *uctxt);
98 
99 static int find_sub_ctxt(struct hfi1_filedata *fd,
100 			 const struct hfi1_user_info *uinfo);
101 static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
102 			 struct hfi1_user_info *uinfo,
103 			 struct hfi1_ctxtdata **cd);
104 static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt);
105 static __poll_t poll_urgent(struct file *fp, struct poll_table_struct *pt);
106 static __poll_t poll_next(struct file *fp, struct poll_table_struct *pt);
107 static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
108 			  unsigned long arg);
109 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg);
110 static int ctxt_reset(struct hfi1_ctxtdata *uctxt);
111 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
112 		       unsigned long arg);
113 static vm_fault_t vma_fault(struct vm_fault *vmf);
114 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
115 			    unsigned long arg);
116 
117 static const struct file_operations hfi1_file_ops = {
118 	.owner = THIS_MODULE,
119 	.write_iter = hfi1_write_iter,
120 	.open = hfi1_file_open,
121 	.release = hfi1_file_close,
122 	.unlocked_ioctl = hfi1_file_ioctl,
123 	.poll = hfi1_poll,
124 	.mmap = hfi1_file_mmap,
125 	.llseek = noop_llseek,
126 };
127 
128 static const struct vm_operations_struct vm_ops = {
129 	.fault = vma_fault,
130 };
131 
132 /*
133  * Types of memories mapped into user processes' space
134  */
135 enum mmap_types {
136 	PIO_BUFS = 1,
137 	PIO_BUFS_SOP,
138 	PIO_CRED,
139 	RCV_HDRQ,
140 	RCV_EGRBUF,
141 	UREGS,
142 	EVENTS,
143 	STATUS,
144 	RTAIL,
145 	SUBCTXT_UREGS,
146 	SUBCTXT_RCV_HDRQ,
147 	SUBCTXT_EGRBUF,
148 	SDMA_COMP
149 };
150 
151 /*
152  * Masks and offsets defining the mmap tokens
153  */
154 #define HFI1_MMAP_OFFSET_MASK   0xfffULL
155 #define HFI1_MMAP_OFFSET_SHIFT  0
156 #define HFI1_MMAP_SUBCTXT_MASK  0xfULL
157 #define HFI1_MMAP_SUBCTXT_SHIFT 12
158 #define HFI1_MMAP_CTXT_MASK     0xffULL
159 #define HFI1_MMAP_CTXT_SHIFT    16
160 #define HFI1_MMAP_TYPE_MASK     0xfULL
161 #define HFI1_MMAP_TYPE_SHIFT    24
162 #define HFI1_MMAP_MAGIC_MASK    0xffffffffULL
163 #define HFI1_MMAP_MAGIC_SHIFT   32
164 
165 #define HFI1_MMAP_MAGIC         0xdabbad00
166 
167 #define HFI1_MMAP_TOKEN_SET(field, val)	\
168 	(((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT)
169 #define HFI1_MMAP_TOKEN_GET(field, token) \
170 	(((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK)
171 #define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr)   \
172 	(HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \
173 	HFI1_MMAP_TOKEN_SET(TYPE, type) | \
174 	HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \
175 	HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \
176 	HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr))))
177 
178 #define dbg(fmt, ...)				\
179 	pr_info(fmt, ##__VA_ARGS__)
180 
181 static inline int is_valid_mmap(u64 token)
182 {
183 	return (HFI1_MMAP_TOKEN_GET(MAGIC, token) == HFI1_MMAP_MAGIC);
184 }
185 
186 static int hfi1_file_open(struct inode *inode, struct file *fp)
187 {
188 	struct hfi1_filedata *fd;
189 	struct hfi1_devdata *dd = container_of(inode->i_cdev,
190 					       struct hfi1_devdata,
191 					       user_cdev);
192 
193 	if (!((dd->flags & HFI1_PRESENT) && dd->kregbase1))
194 		return -EINVAL;
195 
196 	if (!atomic_inc_not_zero(&dd->user_refcount))
197 		return -ENXIO;
198 
199 	/* The real work is performed later in assign_ctxt() */
200 
201 	fd = kzalloc(sizeof(*fd), GFP_KERNEL);
202 
203 	if (!fd || init_srcu_struct(&fd->pq_srcu))
204 		goto nomem;
205 	spin_lock_init(&fd->pq_rcu_lock);
206 	spin_lock_init(&fd->tid_lock);
207 	spin_lock_init(&fd->invalid_lock);
208 	fd->rec_cpu_num = -1; /* no cpu affinity by default */
209 	fd->mm = current->mm;
210 	mmgrab(fd->mm);
211 	fd->dd = dd;
212 	fp->private_data = fd;
213 	return 0;
214 nomem:
215 	kfree(fd);
216 	fp->private_data = NULL;
217 	if (atomic_dec_and_test(&dd->user_refcount))
218 		complete(&dd->user_comp);
219 	return -ENOMEM;
220 }
221 
222 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
223 			    unsigned long arg)
224 {
225 	struct hfi1_filedata *fd = fp->private_data;
226 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
227 	int ret = 0;
228 	int uval = 0;
229 
230 	hfi1_cdbg(IOCTL, "IOCTL recv: 0x%x", cmd);
231 	if (cmd != HFI1_IOCTL_ASSIGN_CTXT &&
232 	    cmd != HFI1_IOCTL_GET_VERS &&
233 	    !uctxt)
234 		return -EINVAL;
235 
236 	switch (cmd) {
237 	case HFI1_IOCTL_ASSIGN_CTXT:
238 		ret = assign_ctxt(fd, arg, _IOC_SIZE(cmd));
239 		break;
240 
241 	case HFI1_IOCTL_CTXT_INFO:
242 		ret = get_ctxt_info(fd, arg, _IOC_SIZE(cmd));
243 		break;
244 
245 	case HFI1_IOCTL_USER_INFO:
246 		ret = get_base_info(fd, arg, _IOC_SIZE(cmd));
247 		break;
248 
249 	case HFI1_IOCTL_CREDIT_UPD:
250 		if (uctxt)
251 			sc_return_credits(uctxt->sc);
252 		break;
253 
254 	case HFI1_IOCTL_TID_UPDATE:
255 		ret = user_exp_rcv_setup(fd, arg, _IOC_SIZE(cmd));
256 		break;
257 
258 	case HFI1_IOCTL_TID_FREE:
259 		ret = user_exp_rcv_clear(fd, arg, _IOC_SIZE(cmd));
260 		break;
261 
262 	case HFI1_IOCTL_TID_INVAL_READ:
263 		ret = user_exp_rcv_invalid(fd, arg, _IOC_SIZE(cmd));
264 		break;
265 
266 	case HFI1_IOCTL_RECV_CTRL:
267 		ret = manage_rcvq(uctxt, fd->subctxt, arg);
268 		break;
269 
270 	case HFI1_IOCTL_POLL_TYPE:
271 		if (get_user(uval, (int __user *)arg))
272 			return -EFAULT;
273 		uctxt->poll_type = (typeof(uctxt->poll_type))uval;
274 		break;
275 
276 	case HFI1_IOCTL_ACK_EVENT:
277 		ret = user_event_ack(uctxt, fd->subctxt, arg);
278 		break;
279 
280 	case HFI1_IOCTL_SET_PKEY:
281 		ret = set_ctxt_pkey(uctxt, arg);
282 		break;
283 
284 	case HFI1_IOCTL_CTXT_RESET:
285 		ret = ctxt_reset(uctxt);
286 		break;
287 
288 	case HFI1_IOCTL_GET_VERS:
289 		uval = HFI1_USER_SWVERSION;
290 		if (put_user(uval, (int __user *)arg))
291 			return -EFAULT;
292 		break;
293 
294 	default:
295 		return -EINVAL;
296 	}
297 
298 	return ret;
299 }
300 
301 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from)
302 {
303 	struct hfi1_filedata *fd = kiocb->ki_filp->private_data;
304 	struct hfi1_user_sdma_pkt_q *pq;
305 	struct hfi1_user_sdma_comp_q *cq = fd->cq;
306 	int done = 0, reqs = 0;
307 	unsigned long dim = from->nr_segs;
308 	int idx;
309 
310 	idx = srcu_read_lock(&fd->pq_srcu);
311 	pq = srcu_dereference(fd->pq, &fd->pq_srcu);
312 	if (!cq || !pq) {
313 		srcu_read_unlock(&fd->pq_srcu, idx);
314 		return -EIO;
315 	}
316 
317 	if (!iter_is_iovec(from) || !dim) {
318 		srcu_read_unlock(&fd->pq_srcu, idx);
319 		return -EINVAL;
320 	}
321 
322 	trace_hfi1_sdma_request(fd->dd, fd->uctxt->ctxt, fd->subctxt, dim);
323 
324 	if (atomic_read(&pq->n_reqs) == pq->n_max_reqs) {
325 		srcu_read_unlock(&fd->pq_srcu, idx);
326 		return -ENOSPC;
327 	}
328 
329 	while (dim) {
330 		int ret;
331 		unsigned long count = 0;
332 
333 		ret = hfi1_user_sdma_process_request(
334 			fd, (struct iovec *)(from->iov + done),
335 			dim, &count);
336 		if (ret) {
337 			reqs = ret;
338 			break;
339 		}
340 		dim -= count;
341 		done += count;
342 		reqs++;
343 	}
344 
345 	srcu_read_unlock(&fd->pq_srcu, idx);
346 	return reqs;
347 }
348 
349 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma)
350 {
351 	struct hfi1_filedata *fd = fp->private_data;
352 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
353 	struct hfi1_devdata *dd;
354 	unsigned long flags;
355 	u64 token = vma->vm_pgoff << PAGE_SHIFT,
356 		memaddr = 0;
357 	void *memvirt = NULL;
358 	u8 subctxt, mapio = 0, vmf = 0, type;
359 	ssize_t memlen = 0;
360 	int ret = 0;
361 	u16 ctxt;
362 
363 	if (!is_valid_mmap(token) || !uctxt ||
364 	    !(vma->vm_flags & VM_SHARED)) {
365 		ret = -EINVAL;
366 		goto done;
367 	}
368 	dd = uctxt->dd;
369 	ctxt = HFI1_MMAP_TOKEN_GET(CTXT, token);
370 	subctxt = HFI1_MMAP_TOKEN_GET(SUBCTXT, token);
371 	type = HFI1_MMAP_TOKEN_GET(TYPE, token);
372 	if (ctxt != uctxt->ctxt || subctxt != fd->subctxt) {
373 		ret = -EINVAL;
374 		goto done;
375 	}
376 
377 	flags = vma->vm_flags;
378 
379 	switch (type) {
380 	case PIO_BUFS:
381 	case PIO_BUFS_SOP:
382 		memaddr = ((dd->physaddr + TXE_PIO_SEND) +
383 				/* chip pio base */
384 			   (uctxt->sc->hw_context * BIT(16))) +
385 				/* 64K PIO space / ctxt */
386 			(type == PIO_BUFS_SOP ?
387 				(TXE_PIO_SIZE / 2) : 0); /* sop? */
388 		/*
389 		 * Map only the amount allocated to the context, not the
390 		 * entire available context's PIO space.
391 		 */
392 		memlen = PAGE_ALIGN(uctxt->sc->credits * PIO_BLOCK_SIZE);
393 		flags &= ~VM_MAYREAD;
394 		flags |= VM_DONTCOPY | VM_DONTEXPAND;
395 		vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
396 		mapio = 1;
397 		break;
398 	case PIO_CRED:
399 		if (flags & VM_WRITE) {
400 			ret = -EPERM;
401 			goto done;
402 		}
403 		/*
404 		 * The credit return location for this context could be on the
405 		 * second or third page allocated for credit returns (if number
406 		 * of enabled contexts > 64 and 128 respectively).
407 		 */
408 		memvirt = dd->cr_base[uctxt->numa_id].va;
409 		memaddr = virt_to_phys(memvirt) +
410 			(((u64)uctxt->sc->hw_free -
411 			  (u64)dd->cr_base[uctxt->numa_id].va) & PAGE_MASK);
412 		memlen = PAGE_SIZE;
413 		flags &= ~VM_MAYWRITE;
414 		flags |= VM_DONTCOPY | VM_DONTEXPAND;
415 		/*
416 		 * The driver has already allocated memory for credit
417 		 * returns and programmed it into the chip. Has that
418 		 * memory been flagged as non-cached?
419 		 */
420 		/* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */
421 		mapio = 1;
422 		break;
423 	case RCV_HDRQ:
424 		memlen = rcvhdrq_size(uctxt);
425 		memvirt = uctxt->rcvhdrq;
426 		break;
427 	case RCV_EGRBUF: {
428 		unsigned long addr;
429 		int i;
430 		/*
431 		 * The RcvEgr buffer need to be handled differently
432 		 * as multiple non-contiguous pages need to be mapped
433 		 * into the user process.
434 		 */
435 		memlen = uctxt->egrbufs.size;
436 		if ((vma->vm_end - vma->vm_start) != memlen) {
437 			dd_dev_err(dd, "Eager buffer map size invalid (%lu != %lu)\n",
438 				   (vma->vm_end - vma->vm_start), memlen);
439 			ret = -EINVAL;
440 			goto done;
441 		}
442 		if (vma->vm_flags & VM_WRITE) {
443 			ret = -EPERM;
444 			goto done;
445 		}
446 		vma->vm_flags &= ~VM_MAYWRITE;
447 		addr = vma->vm_start;
448 		for (i = 0 ; i < uctxt->egrbufs.numbufs; i++) {
449 			memlen = uctxt->egrbufs.buffers[i].len;
450 			memvirt = uctxt->egrbufs.buffers[i].addr;
451 			ret = remap_pfn_range(
452 				vma, addr,
453 				/*
454 				 * virt_to_pfn() does the same, but
455 				 * it's not available on x86_64
456 				 * when CONFIG_MMU is enabled.
457 				 */
458 				PFN_DOWN(__pa(memvirt)),
459 				memlen,
460 				vma->vm_page_prot);
461 			if (ret < 0)
462 				goto done;
463 			addr += memlen;
464 		}
465 		ret = 0;
466 		goto done;
467 	}
468 	case UREGS:
469 		/*
470 		 * Map only the page that contains this context's user
471 		 * registers.
472 		 */
473 		memaddr = (unsigned long)
474 			(dd->physaddr + RXE_PER_CONTEXT_USER)
475 			+ (uctxt->ctxt * RXE_PER_CONTEXT_SIZE);
476 		/*
477 		 * TidFlow table is on the same page as the rest of the
478 		 * user registers.
479 		 */
480 		memlen = PAGE_SIZE;
481 		flags |= VM_DONTCOPY | VM_DONTEXPAND;
482 		vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
483 		mapio = 1;
484 		break;
485 	case EVENTS:
486 		/*
487 		 * Use the page where this context's flags are. User level
488 		 * knows where it's own bitmap is within the page.
489 		 */
490 		memaddr = (unsigned long)
491 			(dd->events + uctxt_offset(uctxt)) & PAGE_MASK;
492 		memlen = PAGE_SIZE;
493 		/*
494 		 * v3.7 removes VM_RESERVED but the effect is kept by
495 		 * using VM_IO.
496 		 */
497 		flags |= VM_IO | VM_DONTEXPAND;
498 		vmf = 1;
499 		break;
500 	case STATUS:
501 		if (flags & VM_WRITE) {
502 			ret = -EPERM;
503 			goto done;
504 		}
505 		memaddr = kvirt_to_phys((void *)dd->status);
506 		memlen = PAGE_SIZE;
507 		flags |= VM_IO | VM_DONTEXPAND;
508 		break;
509 	case RTAIL:
510 		if (!HFI1_CAP_IS_USET(DMA_RTAIL)) {
511 			/*
512 			 * If the memory allocation failed, the context alloc
513 			 * also would have failed, so we would never get here
514 			 */
515 			ret = -EINVAL;
516 			goto done;
517 		}
518 		if ((flags & VM_WRITE) || !hfi1_rcvhdrtail_kvaddr(uctxt)) {
519 			ret = -EPERM;
520 			goto done;
521 		}
522 		memlen = PAGE_SIZE;
523 		memvirt = (void *)hfi1_rcvhdrtail_kvaddr(uctxt);
524 		flags &= ~VM_MAYWRITE;
525 		break;
526 	case SUBCTXT_UREGS:
527 		memaddr = (u64)uctxt->subctxt_uregbase;
528 		memlen = PAGE_SIZE;
529 		flags |= VM_IO | VM_DONTEXPAND;
530 		vmf = 1;
531 		break;
532 	case SUBCTXT_RCV_HDRQ:
533 		memaddr = (u64)uctxt->subctxt_rcvhdr_base;
534 		memlen = rcvhdrq_size(uctxt) * uctxt->subctxt_cnt;
535 		flags |= VM_IO | VM_DONTEXPAND;
536 		vmf = 1;
537 		break;
538 	case SUBCTXT_EGRBUF:
539 		memaddr = (u64)uctxt->subctxt_rcvegrbuf;
540 		memlen = uctxt->egrbufs.size * uctxt->subctxt_cnt;
541 		flags |= VM_IO | VM_DONTEXPAND;
542 		flags &= ~VM_MAYWRITE;
543 		vmf = 1;
544 		break;
545 	case SDMA_COMP: {
546 		struct hfi1_user_sdma_comp_q *cq = fd->cq;
547 
548 		if (!cq) {
549 			ret = -EFAULT;
550 			goto done;
551 		}
552 		memaddr = (u64)cq->comps;
553 		memlen = PAGE_ALIGN(sizeof(*cq->comps) * cq->nentries);
554 		flags |= VM_IO | VM_DONTEXPAND;
555 		vmf = 1;
556 		break;
557 	}
558 	default:
559 		ret = -EINVAL;
560 		break;
561 	}
562 
563 	if ((vma->vm_end - vma->vm_start) != memlen) {
564 		hfi1_cdbg(PROC, "%u:%u Memory size mismatch %lu:%lu",
565 			  uctxt->ctxt, fd->subctxt,
566 			  (vma->vm_end - vma->vm_start), memlen);
567 		ret = -EINVAL;
568 		goto done;
569 	}
570 
571 	vma->vm_flags = flags;
572 	hfi1_cdbg(PROC,
573 		  "%u:%u type:%u io/vf:%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx\n",
574 		    ctxt, subctxt, type, mapio, vmf, memaddr, memlen,
575 		    vma->vm_end - vma->vm_start, vma->vm_flags);
576 	if (vmf) {
577 		vma->vm_pgoff = PFN_DOWN(memaddr);
578 		vma->vm_ops = &vm_ops;
579 		ret = 0;
580 	} else if (mapio) {
581 		ret = io_remap_pfn_range(vma, vma->vm_start,
582 					 PFN_DOWN(memaddr),
583 					 memlen,
584 					 vma->vm_page_prot);
585 	} else if (memvirt) {
586 		ret = remap_pfn_range(vma, vma->vm_start,
587 				      PFN_DOWN(__pa(memvirt)),
588 				      memlen,
589 				      vma->vm_page_prot);
590 	} else {
591 		ret = remap_pfn_range(vma, vma->vm_start,
592 				      PFN_DOWN(memaddr),
593 				      memlen,
594 				      vma->vm_page_prot);
595 	}
596 done:
597 	return ret;
598 }
599 
600 /*
601  * Local (non-chip) user memory is not mapped right away but as it is
602  * accessed by the user-level code.
603  */
604 static vm_fault_t vma_fault(struct vm_fault *vmf)
605 {
606 	struct page *page;
607 
608 	page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT));
609 	if (!page)
610 		return VM_FAULT_SIGBUS;
611 
612 	get_page(page);
613 	vmf->page = page;
614 
615 	return 0;
616 }
617 
618 static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt)
619 {
620 	struct hfi1_ctxtdata *uctxt;
621 	__poll_t pollflag;
622 
623 	uctxt = ((struct hfi1_filedata *)fp->private_data)->uctxt;
624 	if (!uctxt)
625 		pollflag = EPOLLERR;
626 	else if (uctxt->poll_type == HFI1_POLL_TYPE_URGENT)
627 		pollflag = poll_urgent(fp, pt);
628 	else  if (uctxt->poll_type == HFI1_POLL_TYPE_ANYRCV)
629 		pollflag = poll_next(fp, pt);
630 	else /* invalid */
631 		pollflag = EPOLLERR;
632 
633 	return pollflag;
634 }
635 
636 static int hfi1_file_close(struct inode *inode, struct file *fp)
637 {
638 	struct hfi1_filedata *fdata = fp->private_data;
639 	struct hfi1_ctxtdata *uctxt = fdata->uctxt;
640 	struct hfi1_devdata *dd = container_of(inode->i_cdev,
641 					       struct hfi1_devdata,
642 					       user_cdev);
643 	unsigned long flags, *ev;
644 
645 	fp->private_data = NULL;
646 
647 	if (!uctxt)
648 		goto done;
649 
650 	hfi1_cdbg(PROC, "closing ctxt %u:%u", uctxt->ctxt, fdata->subctxt);
651 
652 	flush_wc();
653 	/* drain user sdma queue */
654 	hfi1_user_sdma_free_queues(fdata, uctxt);
655 
656 	/* release the cpu */
657 	hfi1_put_proc_affinity(fdata->rec_cpu_num);
658 
659 	/* clean up rcv side */
660 	hfi1_user_exp_rcv_free(fdata);
661 
662 	/*
663 	 * fdata->uctxt is used in the above cleanup.  It is not ready to be
664 	 * removed until here.
665 	 */
666 	fdata->uctxt = NULL;
667 	hfi1_rcd_put(uctxt);
668 
669 	/*
670 	 * Clear any left over, unhandled events so the next process that
671 	 * gets this context doesn't get confused.
672 	 */
673 	ev = dd->events + uctxt_offset(uctxt) + fdata->subctxt;
674 	*ev = 0;
675 
676 	spin_lock_irqsave(&dd->uctxt_lock, flags);
677 	__clear_bit(fdata->subctxt, uctxt->in_use_ctxts);
678 	if (!bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
679 		spin_unlock_irqrestore(&dd->uctxt_lock, flags);
680 		goto done;
681 	}
682 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
683 
684 	/*
685 	 * Disable receive context and interrupt available, reset all
686 	 * RcvCtxtCtrl bits to default values.
687 	 */
688 	hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
689 		     HFI1_RCVCTRL_TIDFLOW_DIS |
690 		     HFI1_RCVCTRL_INTRAVAIL_DIS |
691 		     HFI1_RCVCTRL_TAILUPD_DIS |
692 		     HFI1_RCVCTRL_ONE_PKT_EGR_DIS |
693 		     HFI1_RCVCTRL_NO_RHQ_DROP_DIS |
694 		     HFI1_RCVCTRL_NO_EGR_DROP_DIS |
695 		     HFI1_RCVCTRL_URGENT_DIS, uctxt);
696 	/* Clear the context's J_KEY */
697 	hfi1_clear_ctxt_jkey(dd, uctxt);
698 	/*
699 	 * If a send context is allocated, reset context integrity
700 	 * checks to default and disable the send context.
701 	 */
702 	if (uctxt->sc) {
703 		sc_disable(uctxt->sc);
704 		set_pio_integrity(uctxt->sc);
705 	}
706 
707 	hfi1_free_ctxt_rcv_groups(uctxt);
708 	hfi1_clear_ctxt_pkey(dd, uctxt);
709 
710 	uctxt->event_flags = 0;
711 
712 	deallocate_ctxt(uctxt);
713 done:
714 	mmdrop(fdata->mm);
715 
716 	if (atomic_dec_and_test(&dd->user_refcount))
717 		complete(&dd->user_comp);
718 
719 	cleanup_srcu_struct(&fdata->pq_srcu);
720 	kfree(fdata);
721 	return 0;
722 }
723 
724 /*
725  * Convert kernel *virtual* addresses to physical addresses.
726  * This is used to vmalloc'ed addresses.
727  */
728 static u64 kvirt_to_phys(void *addr)
729 {
730 	struct page *page;
731 	u64 paddr = 0;
732 
733 	page = vmalloc_to_page(addr);
734 	if (page)
735 		paddr = page_to_pfn(page) << PAGE_SHIFT;
736 
737 	return paddr;
738 }
739 
740 /**
741  * complete_subctxt
742  * @fd: valid filedata pointer
743  *
744  * Sub-context info can only be set up after the base context
745  * has been completed.  This is indicated by the clearing of the
746  * HFI1_CTXT_BASE_UINIT bit.
747  *
748  * Wait for the bit to be cleared, and then complete the subcontext
749  * initialization.
750  *
751  */
752 static int complete_subctxt(struct hfi1_filedata *fd)
753 {
754 	int ret;
755 	unsigned long flags;
756 
757 	/*
758 	 * sub-context info can only be set up after the base context
759 	 * has been completed.
760 	 */
761 	ret = wait_event_interruptible(
762 		fd->uctxt->wait,
763 		!test_bit(HFI1_CTXT_BASE_UNINIT, &fd->uctxt->event_flags));
764 
765 	if (test_bit(HFI1_CTXT_BASE_FAILED, &fd->uctxt->event_flags))
766 		ret = -ENOMEM;
767 
768 	/* Finish the sub-context init */
769 	if (!ret) {
770 		fd->rec_cpu_num = hfi1_get_proc_affinity(fd->uctxt->numa_id);
771 		ret = init_user_ctxt(fd, fd->uctxt);
772 	}
773 
774 	if (ret) {
775 		spin_lock_irqsave(&fd->dd->uctxt_lock, flags);
776 		__clear_bit(fd->subctxt, fd->uctxt->in_use_ctxts);
777 		spin_unlock_irqrestore(&fd->dd->uctxt_lock, flags);
778 		hfi1_rcd_put(fd->uctxt);
779 		fd->uctxt = NULL;
780 	}
781 
782 	return ret;
783 }
784 
785 static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len)
786 {
787 	int ret;
788 	unsigned int swmajor;
789 	struct hfi1_ctxtdata *uctxt = NULL;
790 	struct hfi1_user_info uinfo;
791 
792 	if (fd->uctxt)
793 		return -EINVAL;
794 
795 	if (sizeof(uinfo) != len)
796 		return -EINVAL;
797 
798 	if (copy_from_user(&uinfo, (void __user *)arg, sizeof(uinfo)))
799 		return -EFAULT;
800 
801 	swmajor = uinfo.userversion >> 16;
802 	if (swmajor != HFI1_USER_SWMAJOR)
803 		return -ENODEV;
804 
805 	if (uinfo.subctxt_cnt > HFI1_MAX_SHARED_CTXTS)
806 		return -EINVAL;
807 
808 	/*
809 	 * Acquire the mutex to protect against multiple creations of what
810 	 * could be a shared base context.
811 	 */
812 	mutex_lock(&hfi1_mutex);
813 	/*
814 	 * Get a sub context if available  (fd->uctxt will be set).
815 	 * ret < 0 error, 0 no context, 1 sub-context found
816 	 */
817 	ret = find_sub_ctxt(fd, &uinfo);
818 
819 	/*
820 	 * Allocate a base context if context sharing is not required or a
821 	 * sub context wasn't found.
822 	 */
823 	if (!ret)
824 		ret = allocate_ctxt(fd, fd->dd, &uinfo, &uctxt);
825 
826 	mutex_unlock(&hfi1_mutex);
827 
828 	/* Depending on the context type, finish the appropriate init */
829 	switch (ret) {
830 	case 0:
831 		ret = setup_base_ctxt(fd, uctxt);
832 		if (ret)
833 			deallocate_ctxt(uctxt);
834 		break;
835 	case 1:
836 		ret = complete_subctxt(fd);
837 		break;
838 	default:
839 		break;
840 	}
841 
842 	return ret;
843 }
844 
845 /**
846  * match_ctxt
847  * @fd: valid filedata pointer
848  * @uinfo: user info to compare base context with
849  * @uctxt: context to compare uinfo to.
850  *
851  * Compare the given context with the given information to see if it
852  * can be used for a sub context.
853  */
854 static int match_ctxt(struct hfi1_filedata *fd,
855 		      const struct hfi1_user_info *uinfo,
856 		      struct hfi1_ctxtdata *uctxt)
857 {
858 	struct hfi1_devdata *dd = fd->dd;
859 	unsigned long flags;
860 	u16 subctxt;
861 
862 	/* Skip dynamically allocated kernel contexts */
863 	if (uctxt->sc && (uctxt->sc->type == SC_KERNEL))
864 		return 0;
865 
866 	/* Skip ctxt if it doesn't match the requested one */
867 	if (memcmp(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)) ||
868 	    uctxt->jkey != generate_jkey(current_uid()) ||
869 	    uctxt->subctxt_id != uinfo->subctxt_id ||
870 	    uctxt->subctxt_cnt != uinfo->subctxt_cnt)
871 		return 0;
872 
873 	/* Verify the sharing process matches the base */
874 	if (uctxt->userversion != uinfo->userversion)
875 		return -EINVAL;
876 
877 	/* Find an unused sub context */
878 	spin_lock_irqsave(&dd->uctxt_lock, flags);
879 	if (bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
880 		/* context is being closed, do not use */
881 		spin_unlock_irqrestore(&dd->uctxt_lock, flags);
882 		return 0;
883 	}
884 
885 	subctxt = find_first_zero_bit(uctxt->in_use_ctxts,
886 				      HFI1_MAX_SHARED_CTXTS);
887 	if (subctxt >= uctxt->subctxt_cnt) {
888 		spin_unlock_irqrestore(&dd->uctxt_lock, flags);
889 		return -EBUSY;
890 	}
891 
892 	fd->subctxt = subctxt;
893 	__set_bit(fd->subctxt, uctxt->in_use_ctxts);
894 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
895 
896 	fd->uctxt = uctxt;
897 	hfi1_rcd_get(uctxt);
898 
899 	return 1;
900 }
901 
902 /**
903  * find_sub_ctxt
904  * @fd: valid filedata pointer
905  * @uinfo: matching info to use to find a possible context to share.
906  *
907  * The hfi1_mutex must be held when this function is called.  It is
908  * necessary to ensure serialized creation of shared contexts.
909  *
910  * Return:
911  *    0      No sub-context found
912  *    1      Subcontext found and allocated
913  *    errno  EINVAL (incorrect parameters)
914  *           EBUSY (all sub contexts in use)
915  */
916 static int find_sub_ctxt(struct hfi1_filedata *fd,
917 			 const struct hfi1_user_info *uinfo)
918 {
919 	struct hfi1_ctxtdata *uctxt;
920 	struct hfi1_devdata *dd = fd->dd;
921 	u16 i;
922 	int ret;
923 
924 	if (!uinfo->subctxt_cnt)
925 		return 0;
926 
927 	for (i = dd->first_dyn_alloc_ctxt; i < dd->num_rcv_contexts; i++) {
928 		uctxt = hfi1_rcd_get_by_index(dd, i);
929 		if (uctxt) {
930 			ret = match_ctxt(fd, uinfo, uctxt);
931 			hfi1_rcd_put(uctxt);
932 			/* value of != 0 will return */
933 			if (ret)
934 				return ret;
935 		}
936 	}
937 
938 	return 0;
939 }
940 
941 static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
942 			 struct hfi1_user_info *uinfo,
943 			 struct hfi1_ctxtdata **rcd)
944 {
945 	struct hfi1_ctxtdata *uctxt;
946 	int ret, numa;
947 
948 	if (dd->flags & HFI1_FROZEN) {
949 		/*
950 		 * Pick an error that is unique from all other errors
951 		 * that are returned so the user process knows that
952 		 * it tried to allocate while the SPC was frozen.  It
953 		 * it should be able to retry with success in a short
954 		 * while.
955 		 */
956 		return -EIO;
957 	}
958 
959 	if (!dd->freectxts)
960 		return -EBUSY;
961 
962 	/*
963 	 * If we don't have a NUMA node requested, preference is towards
964 	 * device NUMA node.
965 	 */
966 	fd->rec_cpu_num = hfi1_get_proc_affinity(dd->node);
967 	if (fd->rec_cpu_num != -1)
968 		numa = cpu_to_node(fd->rec_cpu_num);
969 	else
970 		numa = numa_node_id();
971 	ret = hfi1_create_ctxtdata(dd->pport, numa, &uctxt);
972 	if (ret < 0) {
973 		dd_dev_err(dd, "user ctxtdata allocation failed\n");
974 		return ret;
975 	}
976 	hfi1_cdbg(PROC, "[%u:%u] pid %u assigned to CPU %d (NUMA %u)",
977 		  uctxt->ctxt, fd->subctxt, current->pid, fd->rec_cpu_num,
978 		  uctxt->numa_id);
979 
980 	/*
981 	 * Allocate and enable a PIO send context.
982 	 */
983 	uctxt->sc = sc_alloc(dd, SC_USER, uctxt->rcvhdrqentsize, dd->node);
984 	if (!uctxt->sc) {
985 		ret = -ENOMEM;
986 		goto ctxdata_free;
987 	}
988 	hfi1_cdbg(PROC, "allocated send context %u(%u)\n", uctxt->sc->sw_index,
989 		  uctxt->sc->hw_context);
990 	ret = sc_enable(uctxt->sc);
991 	if (ret)
992 		goto ctxdata_free;
993 
994 	/*
995 	 * Setup sub context information if the user-level has requested
996 	 * sub contexts.
997 	 * This has to be done here so the rest of the sub-contexts find the
998 	 * proper base context.
999 	 * NOTE: _set_bit() can be used here because the context creation is
1000 	 * protected by the mutex (rather than the spin_lock), and will be the
1001 	 * very first instance of this context.
1002 	 */
1003 	__set_bit(0, uctxt->in_use_ctxts);
1004 	if (uinfo->subctxt_cnt)
1005 		init_subctxts(uctxt, uinfo);
1006 	uctxt->userversion = uinfo->userversion;
1007 	uctxt->flags = hfi1_cap_mask; /* save current flag state */
1008 	init_waitqueue_head(&uctxt->wait);
1009 	strlcpy(uctxt->comm, current->comm, sizeof(uctxt->comm));
1010 	memcpy(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid));
1011 	uctxt->jkey = generate_jkey(current_uid());
1012 	hfi1_stats.sps_ctxts++;
1013 	/*
1014 	 * Disable ASPM when there are open user/PSM contexts to avoid
1015 	 * issues with ASPM L1 exit latency
1016 	 */
1017 	if (dd->freectxts-- == dd->num_user_contexts)
1018 		aspm_disable_all(dd);
1019 
1020 	*rcd = uctxt;
1021 
1022 	return 0;
1023 
1024 ctxdata_free:
1025 	hfi1_free_ctxt(uctxt);
1026 	return ret;
1027 }
1028 
1029 static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt)
1030 {
1031 	mutex_lock(&hfi1_mutex);
1032 	hfi1_stats.sps_ctxts--;
1033 	if (++uctxt->dd->freectxts == uctxt->dd->num_user_contexts)
1034 		aspm_enable_all(uctxt->dd);
1035 	mutex_unlock(&hfi1_mutex);
1036 
1037 	hfi1_free_ctxt(uctxt);
1038 }
1039 
1040 static void init_subctxts(struct hfi1_ctxtdata *uctxt,
1041 			  const struct hfi1_user_info *uinfo)
1042 {
1043 	uctxt->subctxt_cnt = uinfo->subctxt_cnt;
1044 	uctxt->subctxt_id = uinfo->subctxt_id;
1045 	set_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
1046 }
1047 
1048 static int setup_subctxt(struct hfi1_ctxtdata *uctxt)
1049 {
1050 	int ret = 0;
1051 	u16 num_subctxts = uctxt->subctxt_cnt;
1052 
1053 	uctxt->subctxt_uregbase = vmalloc_user(PAGE_SIZE);
1054 	if (!uctxt->subctxt_uregbase)
1055 		return -ENOMEM;
1056 
1057 	/* We can take the size of the RcvHdr Queue from the master */
1058 	uctxt->subctxt_rcvhdr_base = vmalloc_user(rcvhdrq_size(uctxt) *
1059 						  num_subctxts);
1060 	if (!uctxt->subctxt_rcvhdr_base) {
1061 		ret = -ENOMEM;
1062 		goto bail_ureg;
1063 	}
1064 
1065 	uctxt->subctxt_rcvegrbuf = vmalloc_user(uctxt->egrbufs.size *
1066 						num_subctxts);
1067 	if (!uctxt->subctxt_rcvegrbuf) {
1068 		ret = -ENOMEM;
1069 		goto bail_rhdr;
1070 	}
1071 
1072 	return 0;
1073 
1074 bail_rhdr:
1075 	vfree(uctxt->subctxt_rcvhdr_base);
1076 	uctxt->subctxt_rcvhdr_base = NULL;
1077 bail_ureg:
1078 	vfree(uctxt->subctxt_uregbase);
1079 	uctxt->subctxt_uregbase = NULL;
1080 
1081 	return ret;
1082 }
1083 
1084 static void user_init(struct hfi1_ctxtdata *uctxt)
1085 {
1086 	unsigned int rcvctrl_ops = 0;
1087 
1088 	/* initialize poll variables... */
1089 	uctxt->urgent = 0;
1090 	uctxt->urgent_poll = 0;
1091 
1092 	/*
1093 	 * Now enable the ctxt for receive.
1094 	 * For chips that are set to DMA the tail register to memory
1095 	 * when they change (and when the update bit transitions from
1096 	 * 0 to 1.  So for those chips, we turn it off and then back on.
1097 	 * This will (very briefly) affect any other open ctxts, but the
1098 	 * duration is very short, and therefore isn't an issue.  We
1099 	 * explicitly set the in-memory tail copy to 0 beforehand, so we
1100 	 * don't have to wait to be sure the DMA update has happened
1101 	 * (chip resets head/tail to 0 on transition to enable).
1102 	 */
1103 	if (hfi1_rcvhdrtail_kvaddr(uctxt))
1104 		clear_rcvhdrtail(uctxt);
1105 
1106 	/* Setup J_KEY before enabling the context */
1107 	hfi1_set_ctxt_jkey(uctxt->dd, uctxt, uctxt->jkey);
1108 
1109 	rcvctrl_ops = HFI1_RCVCTRL_CTXT_ENB;
1110 	rcvctrl_ops |= HFI1_RCVCTRL_URGENT_ENB;
1111 	if (HFI1_CAP_UGET_MASK(uctxt->flags, HDRSUPP))
1112 		rcvctrl_ops |= HFI1_RCVCTRL_TIDFLOW_ENB;
1113 	/*
1114 	 * Ignore the bit in the flags for now until proper
1115 	 * support for multiple packet per rcv array entry is
1116 	 * added.
1117 	 */
1118 	if (!HFI1_CAP_UGET_MASK(uctxt->flags, MULTI_PKT_EGR))
1119 		rcvctrl_ops |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
1120 	if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_EGR_FULL))
1121 		rcvctrl_ops |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
1122 	if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_RHQ_FULL))
1123 		rcvctrl_ops |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
1124 	/*
1125 	 * The RcvCtxtCtrl.TailUpd bit has to be explicitly written.
1126 	 * We can't rely on the correct value to be set from prior
1127 	 * uses of the chip or ctxt. Therefore, add the rcvctrl op
1128 	 * for both cases.
1129 	 */
1130 	if (HFI1_CAP_UGET_MASK(uctxt->flags, DMA_RTAIL))
1131 		rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_ENB;
1132 	else
1133 		rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_DIS;
1134 	hfi1_rcvctrl(uctxt->dd, rcvctrl_ops, uctxt);
1135 }
1136 
1137 static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
1138 {
1139 	struct hfi1_ctxt_info cinfo;
1140 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1141 
1142 	if (sizeof(cinfo) != len)
1143 		return -EINVAL;
1144 
1145 	memset(&cinfo, 0, sizeof(cinfo));
1146 	cinfo.runtime_flags = (((uctxt->flags >> HFI1_CAP_MISC_SHIFT) &
1147 				HFI1_CAP_MISC_MASK) << HFI1_CAP_USER_SHIFT) |
1148 			HFI1_CAP_UGET_MASK(uctxt->flags, MASK) |
1149 			HFI1_CAP_KGET_MASK(uctxt->flags, K2U);
1150 	/* adjust flag if this fd is not able to cache */
1151 	if (!fd->use_mn)
1152 		cinfo.runtime_flags |= HFI1_CAP_TID_UNMAP; /* no caching */
1153 
1154 	cinfo.num_active = hfi1_count_active_units();
1155 	cinfo.unit = uctxt->dd->unit;
1156 	cinfo.ctxt = uctxt->ctxt;
1157 	cinfo.subctxt = fd->subctxt;
1158 	cinfo.rcvtids = roundup(uctxt->egrbufs.alloced,
1159 				uctxt->dd->rcv_entries.group_size) +
1160 		uctxt->expected_count;
1161 	cinfo.credits = uctxt->sc->credits;
1162 	cinfo.numa_node = uctxt->numa_id;
1163 	cinfo.rec_cpu = fd->rec_cpu_num;
1164 	cinfo.send_ctxt = uctxt->sc->hw_context;
1165 
1166 	cinfo.egrtids = uctxt->egrbufs.alloced;
1167 	cinfo.rcvhdrq_cnt = get_hdrq_cnt(uctxt);
1168 	cinfo.rcvhdrq_entsize = get_hdrqentsize(uctxt) << 2;
1169 	cinfo.sdma_ring_size = fd->cq->nentries;
1170 	cinfo.rcvegr_size = uctxt->egrbufs.rcvtid_size;
1171 
1172 	trace_hfi1_ctxt_info(uctxt->dd, uctxt->ctxt, fd->subctxt, &cinfo);
1173 	if (copy_to_user((void __user *)arg, &cinfo, len))
1174 		return -EFAULT;
1175 
1176 	return 0;
1177 }
1178 
1179 static int init_user_ctxt(struct hfi1_filedata *fd,
1180 			  struct hfi1_ctxtdata *uctxt)
1181 {
1182 	int ret;
1183 
1184 	ret = hfi1_user_sdma_alloc_queues(uctxt, fd);
1185 	if (ret)
1186 		return ret;
1187 
1188 	ret = hfi1_user_exp_rcv_init(fd, uctxt);
1189 	if (ret)
1190 		hfi1_user_sdma_free_queues(fd, uctxt);
1191 
1192 	return ret;
1193 }
1194 
1195 static int setup_base_ctxt(struct hfi1_filedata *fd,
1196 			   struct hfi1_ctxtdata *uctxt)
1197 {
1198 	struct hfi1_devdata *dd = uctxt->dd;
1199 	int ret = 0;
1200 
1201 	hfi1_init_ctxt(uctxt->sc);
1202 
1203 	/* Now allocate the RcvHdr queue and eager buffers. */
1204 	ret = hfi1_create_rcvhdrq(dd, uctxt);
1205 	if (ret)
1206 		goto done;
1207 
1208 	ret = hfi1_setup_eagerbufs(uctxt);
1209 	if (ret)
1210 		goto done;
1211 
1212 	/* If sub-contexts are enabled, do the appropriate setup */
1213 	if (uctxt->subctxt_cnt)
1214 		ret = setup_subctxt(uctxt);
1215 	if (ret)
1216 		goto done;
1217 
1218 	ret = hfi1_alloc_ctxt_rcv_groups(uctxt);
1219 	if (ret)
1220 		goto done;
1221 
1222 	ret = init_user_ctxt(fd, uctxt);
1223 	if (ret)
1224 		goto done;
1225 
1226 	user_init(uctxt);
1227 
1228 	/* Now that the context is set up, the fd can get a reference. */
1229 	fd->uctxt = uctxt;
1230 	hfi1_rcd_get(uctxt);
1231 
1232 done:
1233 	if (uctxt->subctxt_cnt) {
1234 		/*
1235 		 * On error, set the failed bit so sub-contexts will clean up
1236 		 * correctly.
1237 		 */
1238 		if (ret)
1239 			set_bit(HFI1_CTXT_BASE_FAILED, &uctxt->event_flags);
1240 
1241 		/*
1242 		 * Base context is done (successfully or not), notify anybody
1243 		 * using a sub-context that is waiting for this completion.
1244 		 */
1245 		clear_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
1246 		wake_up(&uctxt->wait);
1247 	}
1248 
1249 	return ret;
1250 }
1251 
1252 static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
1253 {
1254 	struct hfi1_base_info binfo;
1255 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1256 	struct hfi1_devdata *dd = uctxt->dd;
1257 	unsigned offset;
1258 
1259 	trace_hfi1_uctxtdata(uctxt->dd, uctxt, fd->subctxt);
1260 
1261 	if (sizeof(binfo) != len)
1262 		return -EINVAL;
1263 
1264 	memset(&binfo, 0, sizeof(binfo));
1265 	binfo.hw_version = dd->revision;
1266 	binfo.sw_version = HFI1_KERN_SWVERSION;
1267 	binfo.bthqp = RVT_KDETH_QP_PREFIX;
1268 	binfo.jkey = uctxt->jkey;
1269 	/*
1270 	 * If more than 64 contexts are enabled the allocated credit
1271 	 * return will span two or three contiguous pages. Since we only
1272 	 * map the page containing the context's credit return address,
1273 	 * we need to calculate the offset in the proper page.
1274 	 */
1275 	offset = ((u64)uctxt->sc->hw_free -
1276 		  (u64)dd->cr_base[uctxt->numa_id].va) % PAGE_SIZE;
1277 	binfo.sc_credits_addr = HFI1_MMAP_TOKEN(PIO_CRED, uctxt->ctxt,
1278 						fd->subctxt, offset);
1279 	binfo.pio_bufbase = HFI1_MMAP_TOKEN(PIO_BUFS, uctxt->ctxt,
1280 					    fd->subctxt,
1281 					    uctxt->sc->base_addr);
1282 	binfo.pio_bufbase_sop = HFI1_MMAP_TOKEN(PIO_BUFS_SOP,
1283 						uctxt->ctxt,
1284 						fd->subctxt,
1285 						uctxt->sc->base_addr);
1286 	binfo.rcvhdr_bufbase = HFI1_MMAP_TOKEN(RCV_HDRQ, uctxt->ctxt,
1287 					       fd->subctxt,
1288 					       uctxt->rcvhdrq);
1289 	binfo.rcvegr_bufbase = HFI1_MMAP_TOKEN(RCV_EGRBUF, uctxt->ctxt,
1290 					       fd->subctxt,
1291 					       uctxt->egrbufs.rcvtids[0].dma);
1292 	binfo.sdma_comp_bufbase = HFI1_MMAP_TOKEN(SDMA_COMP, uctxt->ctxt,
1293 						  fd->subctxt, 0);
1294 	/*
1295 	 * user regs are at
1296 	 * (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE))
1297 	 */
1298 	binfo.user_regbase = HFI1_MMAP_TOKEN(UREGS, uctxt->ctxt,
1299 					     fd->subctxt, 0);
1300 	offset = offset_in_page((uctxt_offset(uctxt) + fd->subctxt) *
1301 				sizeof(*dd->events));
1302 	binfo.events_bufbase = HFI1_MMAP_TOKEN(EVENTS, uctxt->ctxt,
1303 					       fd->subctxt,
1304 					       offset);
1305 	binfo.status_bufbase = HFI1_MMAP_TOKEN(STATUS, uctxt->ctxt,
1306 					       fd->subctxt,
1307 					       dd->status);
1308 	if (HFI1_CAP_IS_USET(DMA_RTAIL))
1309 		binfo.rcvhdrtail_base = HFI1_MMAP_TOKEN(RTAIL, uctxt->ctxt,
1310 							fd->subctxt, 0);
1311 	if (uctxt->subctxt_cnt) {
1312 		binfo.subctxt_uregbase = HFI1_MMAP_TOKEN(SUBCTXT_UREGS,
1313 							 uctxt->ctxt,
1314 							 fd->subctxt, 0);
1315 		binfo.subctxt_rcvhdrbuf = HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ,
1316 							  uctxt->ctxt,
1317 							  fd->subctxt, 0);
1318 		binfo.subctxt_rcvegrbuf = HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF,
1319 							  uctxt->ctxt,
1320 							  fd->subctxt, 0);
1321 	}
1322 
1323 	if (copy_to_user((void __user *)arg, &binfo, len))
1324 		return -EFAULT;
1325 
1326 	return 0;
1327 }
1328 
1329 /**
1330  * user_exp_rcv_setup - Set up the given tid rcv list
1331  * @fd: file data of the current driver instance
1332  * @arg: ioctl argumnent for user space information
1333  * @len: length of data structure associated with ioctl command
1334  *
1335  * Wrapper to validate ioctl information before doing _rcv_setup.
1336  *
1337  */
1338 static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
1339 			      u32 len)
1340 {
1341 	int ret;
1342 	unsigned long addr;
1343 	struct hfi1_tid_info tinfo;
1344 
1345 	if (sizeof(tinfo) != len)
1346 		return -EINVAL;
1347 
1348 	if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1349 		return -EFAULT;
1350 
1351 	ret = hfi1_user_exp_rcv_setup(fd, &tinfo);
1352 	if (!ret) {
1353 		/*
1354 		 * Copy the number of tidlist entries we used
1355 		 * and the length of the buffer we registered.
1356 		 */
1357 		addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1358 		if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1359 				 sizeof(tinfo.tidcnt)))
1360 			return -EFAULT;
1361 
1362 		addr = arg + offsetof(struct hfi1_tid_info, length);
1363 		if (copy_to_user((void __user *)addr, &tinfo.length,
1364 				 sizeof(tinfo.length)))
1365 			ret = -EFAULT;
1366 	}
1367 
1368 	return ret;
1369 }
1370 
1371 /**
1372  * user_exp_rcv_clear - Clear the given tid rcv list
1373  * @fd: file data of the current driver instance
1374  * @arg: ioctl argumnent for user space information
1375  * @len: length of data structure associated with ioctl command
1376  *
1377  * The hfi1_user_exp_rcv_clear() can be called from the error path.  Because
1378  * of this, we need to use this wrapper to copy the user space information
1379  * before doing the clear.
1380  */
1381 static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
1382 			      u32 len)
1383 {
1384 	int ret;
1385 	unsigned long addr;
1386 	struct hfi1_tid_info tinfo;
1387 
1388 	if (sizeof(tinfo) != len)
1389 		return -EINVAL;
1390 
1391 	if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1392 		return -EFAULT;
1393 
1394 	ret = hfi1_user_exp_rcv_clear(fd, &tinfo);
1395 	if (!ret) {
1396 		addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1397 		if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1398 				 sizeof(tinfo.tidcnt)))
1399 			return -EFAULT;
1400 	}
1401 
1402 	return ret;
1403 }
1404 
1405 /**
1406  * user_exp_rcv_invalid - Invalidate the given tid rcv list
1407  * @fd: file data of the current driver instance
1408  * @arg: ioctl argumnent for user space information
1409  * @len: length of data structure associated with ioctl command
1410  *
1411  * Wrapper to validate ioctl information before doing _rcv_invalid.
1412  *
1413  */
1414 static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
1415 				u32 len)
1416 {
1417 	int ret;
1418 	unsigned long addr;
1419 	struct hfi1_tid_info tinfo;
1420 
1421 	if (sizeof(tinfo) != len)
1422 		return -EINVAL;
1423 
1424 	if (!fd->invalid_tids)
1425 		return -EINVAL;
1426 
1427 	if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1428 		return -EFAULT;
1429 
1430 	ret = hfi1_user_exp_rcv_invalid(fd, &tinfo);
1431 	if (ret)
1432 		return ret;
1433 
1434 	addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1435 	if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1436 			 sizeof(tinfo.tidcnt)))
1437 		ret = -EFAULT;
1438 
1439 	return ret;
1440 }
1441 
1442 static __poll_t poll_urgent(struct file *fp,
1443 				struct poll_table_struct *pt)
1444 {
1445 	struct hfi1_filedata *fd = fp->private_data;
1446 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1447 	struct hfi1_devdata *dd = uctxt->dd;
1448 	__poll_t pollflag;
1449 
1450 	poll_wait(fp, &uctxt->wait, pt);
1451 
1452 	spin_lock_irq(&dd->uctxt_lock);
1453 	if (uctxt->urgent != uctxt->urgent_poll) {
1454 		pollflag = EPOLLIN | EPOLLRDNORM;
1455 		uctxt->urgent_poll = uctxt->urgent;
1456 	} else {
1457 		pollflag = 0;
1458 		set_bit(HFI1_CTXT_WAITING_URG, &uctxt->event_flags);
1459 	}
1460 	spin_unlock_irq(&dd->uctxt_lock);
1461 
1462 	return pollflag;
1463 }
1464 
1465 static __poll_t poll_next(struct file *fp,
1466 			      struct poll_table_struct *pt)
1467 {
1468 	struct hfi1_filedata *fd = fp->private_data;
1469 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1470 	struct hfi1_devdata *dd = uctxt->dd;
1471 	__poll_t pollflag;
1472 
1473 	poll_wait(fp, &uctxt->wait, pt);
1474 
1475 	spin_lock_irq(&dd->uctxt_lock);
1476 	if (hdrqempty(uctxt)) {
1477 		set_bit(HFI1_CTXT_WAITING_RCV, &uctxt->event_flags);
1478 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_INTRAVAIL_ENB, uctxt);
1479 		pollflag = 0;
1480 	} else {
1481 		pollflag = EPOLLIN | EPOLLRDNORM;
1482 	}
1483 	spin_unlock_irq(&dd->uctxt_lock);
1484 
1485 	return pollflag;
1486 }
1487 
1488 /*
1489  * Find all user contexts in use, and set the specified bit in their
1490  * event mask.
1491  * See also find_ctxt() for a similar use, that is specific to send buffers.
1492  */
1493 int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit)
1494 {
1495 	struct hfi1_ctxtdata *uctxt;
1496 	struct hfi1_devdata *dd = ppd->dd;
1497 	u16 ctxt;
1498 
1499 	if (!dd->events)
1500 		return -EINVAL;
1501 
1502 	for (ctxt = dd->first_dyn_alloc_ctxt; ctxt < dd->num_rcv_contexts;
1503 	     ctxt++) {
1504 		uctxt = hfi1_rcd_get_by_index(dd, ctxt);
1505 		if (uctxt) {
1506 			unsigned long *evs;
1507 			int i;
1508 			/*
1509 			 * subctxt_cnt is 0 if not shared, so do base
1510 			 * separately, first, then remaining subctxt, if any
1511 			 */
1512 			evs = dd->events + uctxt_offset(uctxt);
1513 			set_bit(evtbit, evs);
1514 			for (i = 1; i < uctxt->subctxt_cnt; i++)
1515 				set_bit(evtbit, evs + i);
1516 			hfi1_rcd_put(uctxt);
1517 		}
1518 	}
1519 
1520 	return 0;
1521 }
1522 
1523 /**
1524  * manage_rcvq - manage a context's receive queue
1525  * @uctxt: the context
1526  * @subctxt: the sub-context
1527  * @start_stop: action to carry out
1528  *
1529  * start_stop == 0 disables receive on the context, for use in queue
1530  * overflow conditions.  start_stop==1 re-enables, to be used to
1531  * re-init the software copy of the head register
1532  */
1533 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
1534 		       unsigned long arg)
1535 {
1536 	struct hfi1_devdata *dd = uctxt->dd;
1537 	unsigned int rcvctrl_op;
1538 	int start_stop;
1539 
1540 	if (subctxt)
1541 		return 0;
1542 
1543 	if (get_user(start_stop, (int __user *)arg))
1544 		return -EFAULT;
1545 
1546 	/* atomically clear receive enable ctxt. */
1547 	if (start_stop) {
1548 		/*
1549 		 * On enable, force in-memory copy of the tail register to
1550 		 * 0, so that protocol code doesn't have to worry about
1551 		 * whether or not the chip has yet updated the in-memory
1552 		 * copy or not on return from the system call. The chip
1553 		 * always resets it's tail register back to 0 on a
1554 		 * transition from disabled to enabled.
1555 		 */
1556 		if (hfi1_rcvhdrtail_kvaddr(uctxt))
1557 			clear_rcvhdrtail(uctxt);
1558 		rcvctrl_op = HFI1_RCVCTRL_CTXT_ENB;
1559 	} else {
1560 		rcvctrl_op = HFI1_RCVCTRL_CTXT_DIS;
1561 	}
1562 	hfi1_rcvctrl(dd, rcvctrl_op, uctxt);
1563 	/* always; new head should be equal to new tail; see above */
1564 
1565 	return 0;
1566 }
1567 
1568 /*
1569  * clear the event notifier events for this context.
1570  * User process then performs actions appropriate to bit having been
1571  * set, if desired, and checks again in future.
1572  */
1573 static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
1574 			  unsigned long arg)
1575 {
1576 	int i;
1577 	struct hfi1_devdata *dd = uctxt->dd;
1578 	unsigned long *evs;
1579 	unsigned long events;
1580 
1581 	if (!dd->events)
1582 		return 0;
1583 
1584 	if (get_user(events, (unsigned long __user *)arg))
1585 		return -EFAULT;
1586 
1587 	evs = dd->events + uctxt_offset(uctxt) + subctxt;
1588 
1589 	for (i = 0; i <= _HFI1_MAX_EVENT_BIT; i++) {
1590 		if (!test_bit(i, &events))
1591 			continue;
1592 		clear_bit(i, evs);
1593 	}
1594 	return 0;
1595 }
1596 
1597 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg)
1598 {
1599 	int i;
1600 	struct hfi1_pportdata *ppd = uctxt->ppd;
1601 	struct hfi1_devdata *dd = uctxt->dd;
1602 	u16 pkey;
1603 
1604 	if (!HFI1_CAP_IS_USET(PKEY_CHECK))
1605 		return -EPERM;
1606 
1607 	if (get_user(pkey, (u16 __user *)arg))
1608 		return -EFAULT;
1609 
1610 	if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY)
1611 		return -EINVAL;
1612 
1613 	for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++)
1614 		if (pkey == ppd->pkeys[i])
1615 			return hfi1_set_ctxt_pkey(dd, uctxt, pkey);
1616 
1617 	return -ENOENT;
1618 }
1619 
1620 /**
1621  * ctxt_reset - Reset the user context
1622  * @uctxt: valid user context
1623  */
1624 static int ctxt_reset(struct hfi1_ctxtdata *uctxt)
1625 {
1626 	struct send_context *sc;
1627 	struct hfi1_devdata *dd;
1628 	int ret = 0;
1629 
1630 	if (!uctxt || !uctxt->dd || !uctxt->sc)
1631 		return -EINVAL;
1632 
1633 	/*
1634 	 * There is no protection here. User level has to guarantee that
1635 	 * no one will be writing to the send context while it is being
1636 	 * re-initialized.  If user level breaks that guarantee, it will
1637 	 * break it's own context and no one else's.
1638 	 */
1639 	dd = uctxt->dd;
1640 	sc = uctxt->sc;
1641 
1642 	/*
1643 	 * Wait until the interrupt handler has marked the context as
1644 	 * halted or frozen. Report error if we time out.
1645 	 */
1646 	wait_event_interruptible_timeout(
1647 		sc->halt_wait, (sc->flags & SCF_HALTED),
1648 		msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
1649 	if (!(sc->flags & SCF_HALTED))
1650 		return -ENOLCK;
1651 
1652 	/*
1653 	 * If the send context was halted due to a Freeze, wait until the
1654 	 * device has been "unfrozen" before resetting the context.
1655 	 */
1656 	if (sc->flags & SCF_FROZEN) {
1657 		wait_event_interruptible_timeout(
1658 			dd->event_queue,
1659 			!(READ_ONCE(dd->flags) & HFI1_FROZEN),
1660 			msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
1661 		if (dd->flags & HFI1_FROZEN)
1662 			return -ENOLCK;
1663 
1664 		if (dd->flags & HFI1_FORCED_FREEZE)
1665 			/*
1666 			 * Don't allow context reset if we are into
1667 			 * forced freeze
1668 			 */
1669 			return -ENODEV;
1670 
1671 		sc_disable(sc);
1672 		ret = sc_enable(sc);
1673 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB, uctxt);
1674 	} else {
1675 		ret = sc_restart(sc);
1676 	}
1677 	if (!ret)
1678 		sc_return_credits(sc);
1679 
1680 	return ret;
1681 }
1682 
1683 static void user_remove(struct hfi1_devdata *dd)
1684 {
1685 
1686 	hfi1_cdev_cleanup(&dd->user_cdev, &dd->user_device);
1687 }
1688 
1689 static int user_add(struct hfi1_devdata *dd)
1690 {
1691 	char name[10];
1692 	int ret;
1693 
1694 	snprintf(name, sizeof(name), "%s_%d", class_name(), dd->unit);
1695 	ret = hfi1_cdev_init(dd->unit, name, &hfi1_file_ops,
1696 			     &dd->user_cdev, &dd->user_device,
1697 			     true, &dd->verbs_dev.rdi.ibdev.dev.kobj);
1698 	if (ret)
1699 		user_remove(dd);
1700 
1701 	return ret;
1702 }
1703 
1704 /*
1705  * Create per-unit files in /dev
1706  */
1707 int hfi1_device_create(struct hfi1_devdata *dd)
1708 {
1709 	return user_add(dd);
1710 }
1711 
1712 /*
1713  * Remove per-unit files in /dev
1714  * void, core kernel returns no errors for this stuff
1715  */
1716 void hfi1_device_remove(struct hfi1_devdata *dd)
1717 {
1718 	user_remove(dd);
1719 }
1720