1 /* 2 * Copyright(c) 2015, 2016 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 #include <linux/poll.h> 48 #include <linux/cdev.h> 49 #include <linux/vmalloc.h> 50 #include <linux/io.h> 51 52 #include <rdma/ib.h> 53 54 #include "hfi.h" 55 #include "pio.h" 56 #include "device.h" 57 #include "common.h" 58 #include "trace.h" 59 #include "user_sdma.h" 60 #include "user_exp_rcv.h" 61 #include "aspm.h" 62 #include "mmu_rb.h" 63 64 #undef pr_fmt 65 #define pr_fmt(fmt) DRIVER_NAME ": " fmt 66 67 #define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */ 68 69 /* 70 * File operation functions 71 */ 72 static int hfi1_file_open(struct inode *, struct file *); 73 static int hfi1_file_close(struct inode *, struct file *); 74 static ssize_t hfi1_write_iter(struct kiocb *, struct iov_iter *); 75 static unsigned int hfi1_poll(struct file *, struct poll_table_struct *); 76 static int hfi1_file_mmap(struct file *, struct vm_area_struct *); 77 78 static u64 kvirt_to_phys(void *); 79 static int assign_ctxt(struct file *, struct hfi1_user_info *); 80 static int init_subctxts(struct hfi1_ctxtdata *, const struct hfi1_user_info *); 81 static int user_init(struct file *); 82 static int get_ctxt_info(struct file *, void __user *, __u32); 83 static int get_base_info(struct file *, void __user *, __u32); 84 static int setup_ctxt(struct file *); 85 static int setup_subctxt(struct hfi1_ctxtdata *); 86 static int get_user_context(struct file *, struct hfi1_user_info *, int); 87 static int find_shared_ctxt(struct file *, const struct hfi1_user_info *); 88 static int allocate_ctxt(struct file *, struct hfi1_devdata *, 89 struct hfi1_user_info *); 90 static unsigned int poll_urgent(struct file *, struct poll_table_struct *); 91 static unsigned int poll_next(struct file *, struct poll_table_struct *); 92 static int user_event_ack(struct hfi1_ctxtdata *, int, unsigned long); 93 static int set_ctxt_pkey(struct hfi1_ctxtdata *, unsigned, u16); 94 static int manage_rcvq(struct hfi1_ctxtdata *, unsigned, int); 95 static int vma_fault(struct vm_area_struct *, struct vm_fault *); 96 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd, 97 unsigned long arg); 98 99 static const struct file_operations hfi1_file_ops = { 100 .owner = THIS_MODULE, 101 .write_iter = hfi1_write_iter, 102 .open = hfi1_file_open, 103 .release = hfi1_file_close, 104 .unlocked_ioctl = hfi1_file_ioctl, 105 .poll = hfi1_poll, 106 .mmap = hfi1_file_mmap, 107 .llseek = noop_llseek, 108 }; 109 110 static struct vm_operations_struct vm_ops = { 111 .fault = vma_fault, 112 }; 113 114 /* 115 * Types of memories mapped into user processes' space 116 */ 117 enum mmap_types { 118 PIO_BUFS = 1, 119 PIO_BUFS_SOP, 120 PIO_CRED, 121 RCV_HDRQ, 122 RCV_EGRBUF, 123 UREGS, 124 EVENTS, 125 STATUS, 126 RTAIL, 127 SUBCTXT_UREGS, 128 SUBCTXT_RCV_HDRQ, 129 SUBCTXT_EGRBUF, 130 SDMA_COMP 131 }; 132 133 /* 134 * Masks and offsets defining the mmap tokens 135 */ 136 #define HFI1_MMAP_OFFSET_MASK 0xfffULL 137 #define HFI1_MMAP_OFFSET_SHIFT 0 138 #define HFI1_MMAP_SUBCTXT_MASK 0xfULL 139 #define HFI1_MMAP_SUBCTXT_SHIFT 12 140 #define HFI1_MMAP_CTXT_MASK 0xffULL 141 #define HFI1_MMAP_CTXT_SHIFT 16 142 #define HFI1_MMAP_TYPE_MASK 0xfULL 143 #define HFI1_MMAP_TYPE_SHIFT 24 144 #define HFI1_MMAP_MAGIC_MASK 0xffffffffULL 145 #define HFI1_MMAP_MAGIC_SHIFT 32 146 147 #define HFI1_MMAP_MAGIC 0xdabbad00 148 149 #define HFI1_MMAP_TOKEN_SET(field, val) \ 150 (((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT) 151 #define HFI1_MMAP_TOKEN_GET(field, token) \ 152 (((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK) 153 #define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr) \ 154 (HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \ 155 HFI1_MMAP_TOKEN_SET(TYPE, type) | \ 156 HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \ 157 HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \ 158 HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr)))) 159 160 #define dbg(fmt, ...) \ 161 pr_info(fmt, ##__VA_ARGS__) 162 163 static inline int is_valid_mmap(u64 token) 164 { 165 return (HFI1_MMAP_TOKEN_GET(MAGIC, token) == HFI1_MMAP_MAGIC); 166 } 167 168 static int hfi1_file_open(struct inode *inode, struct file *fp) 169 { 170 struct hfi1_filedata *fd; 171 struct hfi1_devdata *dd = container_of(inode->i_cdev, 172 struct hfi1_devdata, 173 user_cdev); 174 175 /* Just take a ref now. Not all opens result in a context assign */ 176 kobject_get(&dd->kobj); 177 178 /* The real work is performed later in assign_ctxt() */ 179 180 fd = kzalloc(sizeof(*fd), GFP_KERNEL); 181 182 if (fd) { 183 fd->rec_cpu_num = -1; /* no cpu affinity by default */ 184 fd->mm = current->mm; 185 atomic_inc(&fd->mm->mm_count); 186 } 187 188 fp->private_data = fd; 189 190 return fd ? 0 : -ENOMEM; 191 } 192 193 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd, 194 unsigned long arg) 195 { 196 struct hfi1_filedata *fd = fp->private_data; 197 struct hfi1_ctxtdata *uctxt = fd->uctxt; 198 struct hfi1_user_info uinfo; 199 struct hfi1_tid_info tinfo; 200 int ret = 0; 201 unsigned long addr; 202 int uval = 0; 203 unsigned long ul_uval = 0; 204 u16 uval16 = 0; 205 206 hfi1_cdbg(IOCTL, "IOCTL recv: 0x%x", cmd); 207 if (cmd != HFI1_IOCTL_ASSIGN_CTXT && 208 cmd != HFI1_IOCTL_GET_VERS && 209 !uctxt) 210 return -EINVAL; 211 212 switch (cmd) { 213 case HFI1_IOCTL_ASSIGN_CTXT: 214 if (uctxt) 215 return -EINVAL; 216 217 if (copy_from_user(&uinfo, 218 (struct hfi1_user_info __user *)arg, 219 sizeof(uinfo))) 220 return -EFAULT; 221 222 ret = assign_ctxt(fp, &uinfo); 223 if (ret < 0) 224 return ret; 225 ret = setup_ctxt(fp); 226 if (ret) 227 return ret; 228 ret = user_init(fp); 229 break; 230 case HFI1_IOCTL_CTXT_INFO: 231 ret = get_ctxt_info(fp, (void __user *)(unsigned long)arg, 232 sizeof(struct hfi1_ctxt_info)); 233 break; 234 case HFI1_IOCTL_USER_INFO: 235 ret = get_base_info(fp, (void __user *)(unsigned long)arg, 236 sizeof(struct hfi1_base_info)); 237 break; 238 case HFI1_IOCTL_CREDIT_UPD: 239 if (uctxt) 240 sc_return_credits(uctxt->sc); 241 break; 242 243 case HFI1_IOCTL_TID_UPDATE: 244 if (copy_from_user(&tinfo, 245 (struct hfi11_tid_info __user *)arg, 246 sizeof(tinfo))) 247 return -EFAULT; 248 249 ret = hfi1_user_exp_rcv_setup(fp, &tinfo); 250 if (!ret) { 251 /* 252 * Copy the number of tidlist entries we used 253 * and the length of the buffer we registered. 254 * These fields are adjacent in the structure so 255 * we can copy them at the same time. 256 */ 257 addr = arg + offsetof(struct hfi1_tid_info, tidcnt); 258 if (copy_to_user((void __user *)addr, &tinfo.tidcnt, 259 sizeof(tinfo.tidcnt) + 260 sizeof(tinfo.length))) 261 ret = -EFAULT; 262 } 263 break; 264 265 case HFI1_IOCTL_TID_FREE: 266 if (copy_from_user(&tinfo, 267 (struct hfi11_tid_info __user *)arg, 268 sizeof(tinfo))) 269 return -EFAULT; 270 271 ret = hfi1_user_exp_rcv_clear(fp, &tinfo); 272 if (ret) 273 break; 274 addr = arg + offsetof(struct hfi1_tid_info, tidcnt); 275 if (copy_to_user((void __user *)addr, &tinfo.tidcnt, 276 sizeof(tinfo.tidcnt))) 277 ret = -EFAULT; 278 break; 279 280 case HFI1_IOCTL_TID_INVAL_READ: 281 if (copy_from_user(&tinfo, 282 (struct hfi11_tid_info __user *)arg, 283 sizeof(tinfo))) 284 return -EFAULT; 285 286 ret = hfi1_user_exp_rcv_invalid(fp, &tinfo); 287 if (ret) 288 break; 289 addr = arg + offsetof(struct hfi1_tid_info, tidcnt); 290 if (copy_to_user((void __user *)addr, &tinfo.tidcnt, 291 sizeof(tinfo.tidcnt))) 292 ret = -EFAULT; 293 break; 294 295 case HFI1_IOCTL_RECV_CTRL: 296 ret = get_user(uval, (int __user *)arg); 297 if (ret != 0) 298 return -EFAULT; 299 ret = manage_rcvq(uctxt, fd->subctxt, uval); 300 break; 301 302 case HFI1_IOCTL_POLL_TYPE: 303 ret = get_user(uval, (int __user *)arg); 304 if (ret != 0) 305 return -EFAULT; 306 uctxt->poll_type = (typeof(uctxt->poll_type))uval; 307 break; 308 309 case HFI1_IOCTL_ACK_EVENT: 310 ret = get_user(ul_uval, (unsigned long __user *)arg); 311 if (ret != 0) 312 return -EFAULT; 313 ret = user_event_ack(uctxt, fd->subctxt, ul_uval); 314 break; 315 316 case HFI1_IOCTL_SET_PKEY: 317 ret = get_user(uval16, (u16 __user *)arg); 318 if (ret != 0) 319 return -EFAULT; 320 if (HFI1_CAP_IS_USET(PKEY_CHECK)) 321 ret = set_ctxt_pkey(uctxt, fd->subctxt, uval16); 322 else 323 return -EPERM; 324 break; 325 326 case HFI1_IOCTL_CTXT_RESET: { 327 struct send_context *sc; 328 struct hfi1_devdata *dd; 329 330 if (!uctxt || !uctxt->dd || !uctxt->sc) 331 return -EINVAL; 332 333 /* 334 * There is no protection here. User level has to 335 * guarantee that no one will be writing to the send 336 * context while it is being re-initialized. 337 * If user level breaks that guarantee, it will break 338 * it's own context and no one else's. 339 */ 340 dd = uctxt->dd; 341 sc = uctxt->sc; 342 /* 343 * Wait until the interrupt handler has marked the 344 * context as halted or frozen. Report error if we time 345 * out. 346 */ 347 wait_event_interruptible_timeout( 348 sc->halt_wait, (sc->flags & SCF_HALTED), 349 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT)); 350 if (!(sc->flags & SCF_HALTED)) 351 return -ENOLCK; 352 353 /* 354 * If the send context was halted due to a Freeze, 355 * wait until the device has been "unfrozen" before 356 * resetting the context. 357 */ 358 if (sc->flags & SCF_FROZEN) { 359 wait_event_interruptible_timeout( 360 dd->event_queue, 361 !(ACCESS_ONCE(dd->flags) & HFI1_FROZEN), 362 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT)); 363 if (dd->flags & HFI1_FROZEN) 364 return -ENOLCK; 365 366 if (dd->flags & HFI1_FORCED_FREEZE) 367 /* 368 * Don't allow context reset if we are into 369 * forced freeze 370 */ 371 return -ENODEV; 372 373 sc_disable(sc); 374 ret = sc_enable(sc); 375 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB, 376 uctxt->ctxt); 377 } else { 378 ret = sc_restart(sc); 379 } 380 if (!ret) 381 sc_return_credits(sc); 382 break; 383 } 384 385 case HFI1_IOCTL_GET_VERS: 386 uval = HFI1_USER_SWVERSION; 387 if (put_user(uval, (int __user *)arg)) 388 return -EFAULT; 389 break; 390 391 default: 392 return -EINVAL; 393 } 394 395 return ret; 396 } 397 398 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from) 399 { 400 struct hfi1_filedata *fd = kiocb->ki_filp->private_data; 401 struct hfi1_user_sdma_pkt_q *pq = fd->pq; 402 struct hfi1_user_sdma_comp_q *cq = fd->cq; 403 int done = 0, reqs = 0; 404 unsigned long dim = from->nr_segs; 405 406 if (!cq || !pq) 407 return -EIO; 408 409 if (!iter_is_iovec(from) || !dim) 410 return -EINVAL; 411 412 hfi1_cdbg(SDMA, "SDMA request from %u:%u (%lu)", 413 fd->uctxt->ctxt, fd->subctxt, dim); 414 415 if (atomic_read(&pq->n_reqs) == pq->n_max_reqs) 416 return -ENOSPC; 417 418 while (dim) { 419 int ret; 420 unsigned long count = 0; 421 422 ret = hfi1_user_sdma_process_request( 423 kiocb->ki_filp, (struct iovec *)(from->iov + done), 424 dim, &count); 425 if (ret) { 426 reqs = ret; 427 break; 428 } 429 dim -= count; 430 done += count; 431 reqs++; 432 } 433 434 return reqs; 435 } 436 437 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma) 438 { 439 struct hfi1_filedata *fd = fp->private_data; 440 struct hfi1_ctxtdata *uctxt = fd->uctxt; 441 struct hfi1_devdata *dd; 442 unsigned long flags; 443 u64 token = vma->vm_pgoff << PAGE_SHIFT, 444 memaddr = 0; 445 void *memvirt = NULL; 446 u8 subctxt, mapio = 0, vmf = 0, type; 447 ssize_t memlen = 0; 448 int ret = 0; 449 u16 ctxt; 450 451 if (!is_valid_mmap(token) || !uctxt || 452 !(vma->vm_flags & VM_SHARED)) { 453 ret = -EINVAL; 454 goto done; 455 } 456 dd = uctxt->dd; 457 ctxt = HFI1_MMAP_TOKEN_GET(CTXT, token); 458 subctxt = HFI1_MMAP_TOKEN_GET(SUBCTXT, token); 459 type = HFI1_MMAP_TOKEN_GET(TYPE, token); 460 if (ctxt != uctxt->ctxt || subctxt != fd->subctxt) { 461 ret = -EINVAL; 462 goto done; 463 } 464 465 flags = vma->vm_flags; 466 467 switch (type) { 468 case PIO_BUFS: 469 case PIO_BUFS_SOP: 470 memaddr = ((dd->physaddr + TXE_PIO_SEND) + 471 /* chip pio base */ 472 (uctxt->sc->hw_context * BIT(16))) + 473 /* 64K PIO space / ctxt */ 474 (type == PIO_BUFS_SOP ? 475 (TXE_PIO_SIZE / 2) : 0); /* sop? */ 476 /* 477 * Map only the amount allocated to the context, not the 478 * entire available context's PIO space. 479 */ 480 memlen = PAGE_ALIGN(uctxt->sc->credits * PIO_BLOCK_SIZE); 481 flags &= ~VM_MAYREAD; 482 flags |= VM_DONTCOPY | VM_DONTEXPAND; 483 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); 484 mapio = 1; 485 break; 486 case PIO_CRED: 487 if (flags & VM_WRITE) { 488 ret = -EPERM; 489 goto done; 490 } 491 /* 492 * The credit return location for this context could be on the 493 * second or third page allocated for credit returns (if number 494 * of enabled contexts > 64 and 128 respectively). 495 */ 496 memvirt = dd->cr_base[uctxt->numa_id].va; 497 memaddr = virt_to_phys(memvirt) + 498 (((u64)uctxt->sc->hw_free - 499 (u64)dd->cr_base[uctxt->numa_id].va) & PAGE_MASK); 500 memlen = PAGE_SIZE; 501 flags &= ~VM_MAYWRITE; 502 flags |= VM_DONTCOPY | VM_DONTEXPAND; 503 /* 504 * The driver has already allocated memory for credit 505 * returns and programmed it into the chip. Has that 506 * memory been flagged as non-cached? 507 */ 508 /* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */ 509 mapio = 1; 510 break; 511 case RCV_HDRQ: 512 memlen = uctxt->rcvhdrq_size; 513 memvirt = uctxt->rcvhdrq; 514 break; 515 case RCV_EGRBUF: { 516 unsigned long addr; 517 int i; 518 /* 519 * The RcvEgr buffer need to be handled differently 520 * as multiple non-contiguous pages need to be mapped 521 * into the user process. 522 */ 523 memlen = uctxt->egrbufs.size; 524 if ((vma->vm_end - vma->vm_start) != memlen) { 525 dd_dev_err(dd, "Eager buffer map size invalid (%lu != %lu)\n", 526 (vma->vm_end - vma->vm_start), memlen); 527 ret = -EINVAL; 528 goto done; 529 } 530 if (vma->vm_flags & VM_WRITE) { 531 ret = -EPERM; 532 goto done; 533 } 534 vma->vm_flags &= ~VM_MAYWRITE; 535 addr = vma->vm_start; 536 for (i = 0 ; i < uctxt->egrbufs.numbufs; i++) { 537 memlen = uctxt->egrbufs.buffers[i].len; 538 memvirt = uctxt->egrbufs.buffers[i].addr; 539 ret = remap_pfn_range( 540 vma, addr, 541 /* 542 * virt_to_pfn() does the same, but 543 * it's not available on x86_64 544 * when CONFIG_MMU is enabled. 545 */ 546 PFN_DOWN(__pa(memvirt)), 547 memlen, 548 vma->vm_page_prot); 549 if (ret < 0) 550 goto done; 551 addr += memlen; 552 } 553 ret = 0; 554 goto done; 555 } 556 case UREGS: 557 /* 558 * Map only the page that contains this context's user 559 * registers. 560 */ 561 memaddr = (unsigned long) 562 (dd->physaddr + RXE_PER_CONTEXT_USER) 563 + (uctxt->ctxt * RXE_PER_CONTEXT_SIZE); 564 /* 565 * TidFlow table is on the same page as the rest of the 566 * user registers. 567 */ 568 memlen = PAGE_SIZE; 569 flags |= VM_DONTCOPY | VM_DONTEXPAND; 570 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 571 mapio = 1; 572 break; 573 case EVENTS: 574 /* 575 * Use the page where this context's flags are. User level 576 * knows where it's own bitmap is within the page. 577 */ 578 memaddr = (unsigned long)(dd->events + 579 ((uctxt->ctxt - dd->first_user_ctxt) * 580 HFI1_MAX_SHARED_CTXTS)) & PAGE_MASK; 581 memlen = PAGE_SIZE; 582 /* 583 * v3.7 removes VM_RESERVED but the effect is kept by 584 * using VM_IO. 585 */ 586 flags |= VM_IO | VM_DONTEXPAND; 587 vmf = 1; 588 break; 589 case STATUS: 590 memaddr = kvirt_to_phys((void *)dd->status); 591 memlen = PAGE_SIZE; 592 flags |= VM_IO | VM_DONTEXPAND; 593 break; 594 case RTAIL: 595 if (!HFI1_CAP_IS_USET(DMA_RTAIL)) { 596 /* 597 * If the memory allocation failed, the context alloc 598 * also would have failed, so we would never get here 599 */ 600 ret = -EINVAL; 601 goto done; 602 } 603 if (flags & VM_WRITE) { 604 ret = -EPERM; 605 goto done; 606 } 607 memlen = PAGE_SIZE; 608 memvirt = (void *)uctxt->rcvhdrtail_kvaddr; 609 flags &= ~VM_MAYWRITE; 610 break; 611 case SUBCTXT_UREGS: 612 memaddr = (u64)uctxt->subctxt_uregbase; 613 memlen = PAGE_SIZE; 614 flags |= VM_IO | VM_DONTEXPAND; 615 vmf = 1; 616 break; 617 case SUBCTXT_RCV_HDRQ: 618 memaddr = (u64)uctxt->subctxt_rcvhdr_base; 619 memlen = uctxt->rcvhdrq_size * uctxt->subctxt_cnt; 620 flags |= VM_IO | VM_DONTEXPAND; 621 vmf = 1; 622 break; 623 case SUBCTXT_EGRBUF: 624 memaddr = (u64)uctxt->subctxt_rcvegrbuf; 625 memlen = uctxt->egrbufs.size * uctxt->subctxt_cnt; 626 flags |= VM_IO | VM_DONTEXPAND; 627 flags &= ~VM_MAYWRITE; 628 vmf = 1; 629 break; 630 case SDMA_COMP: { 631 struct hfi1_user_sdma_comp_q *cq = fd->cq; 632 633 if (!cq) { 634 ret = -EFAULT; 635 goto done; 636 } 637 memaddr = (u64)cq->comps; 638 memlen = PAGE_ALIGN(sizeof(*cq->comps) * cq->nentries); 639 flags |= VM_IO | VM_DONTEXPAND; 640 vmf = 1; 641 break; 642 } 643 default: 644 ret = -EINVAL; 645 break; 646 } 647 648 if ((vma->vm_end - vma->vm_start) != memlen) { 649 hfi1_cdbg(PROC, "%u:%u Memory size mismatch %lu:%lu", 650 uctxt->ctxt, fd->subctxt, 651 (vma->vm_end - vma->vm_start), memlen); 652 ret = -EINVAL; 653 goto done; 654 } 655 656 vma->vm_flags = flags; 657 hfi1_cdbg(PROC, 658 "%u:%u type:%u io/vf:%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx\n", 659 ctxt, subctxt, type, mapio, vmf, memaddr, memlen, 660 vma->vm_end - vma->vm_start, vma->vm_flags); 661 if (vmf) { 662 vma->vm_pgoff = PFN_DOWN(memaddr); 663 vma->vm_ops = &vm_ops; 664 ret = 0; 665 } else if (mapio) { 666 ret = io_remap_pfn_range(vma, vma->vm_start, 667 PFN_DOWN(memaddr), 668 memlen, 669 vma->vm_page_prot); 670 } else if (memvirt) { 671 ret = remap_pfn_range(vma, vma->vm_start, 672 PFN_DOWN(__pa(memvirt)), 673 memlen, 674 vma->vm_page_prot); 675 } else { 676 ret = remap_pfn_range(vma, vma->vm_start, 677 PFN_DOWN(memaddr), 678 memlen, 679 vma->vm_page_prot); 680 } 681 done: 682 return ret; 683 } 684 685 /* 686 * Local (non-chip) user memory is not mapped right away but as it is 687 * accessed by the user-level code. 688 */ 689 static int vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 690 { 691 struct page *page; 692 693 page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT)); 694 if (!page) 695 return VM_FAULT_SIGBUS; 696 697 get_page(page); 698 vmf->page = page; 699 700 return 0; 701 } 702 703 static unsigned int hfi1_poll(struct file *fp, struct poll_table_struct *pt) 704 { 705 struct hfi1_ctxtdata *uctxt; 706 unsigned pollflag; 707 708 uctxt = ((struct hfi1_filedata *)fp->private_data)->uctxt; 709 if (!uctxt) 710 pollflag = POLLERR; 711 else if (uctxt->poll_type == HFI1_POLL_TYPE_URGENT) 712 pollflag = poll_urgent(fp, pt); 713 else if (uctxt->poll_type == HFI1_POLL_TYPE_ANYRCV) 714 pollflag = poll_next(fp, pt); 715 else /* invalid */ 716 pollflag = POLLERR; 717 718 return pollflag; 719 } 720 721 static int hfi1_file_close(struct inode *inode, struct file *fp) 722 { 723 struct hfi1_filedata *fdata = fp->private_data; 724 struct hfi1_ctxtdata *uctxt = fdata->uctxt; 725 struct hfi1_devdata *dd = container_of(inode->i_cdev, 726 struct hfi1_devdata, 727 user_cdev); 728 unsigned long flags, *ev; 729 730 fp->private_data = NULL; 731 732 if (!uctxt) 733 goto done; 734 735 hfi1_cdbg(PROC, "freeing ctxt %u:%u", uctxt->ctxt, fdata->subctxt); 736 mutex_lock(&hfi1_mutex); 737 738 flush_wc(); 739 /* drain user sdma queue */ 740 hfi1_user_sdma_free_queues(fdata); 741 742 /* release the cpu */ 743 hfi1_put_proc_affinity(fdata->rec_cpu_num); 744 745 /* 746 * Clear any left over, unhandled events so the next process that 747 * gets this context doesn't get confused. 748 */ 749 ev = dd->events + ((uctxt->ctxt - dd->first_user_ctxt) * 750 HFI1_MAX_SHARED_CTXTS) + fdata->subctxt; 751 *ev = 0; 752 753 if (--uctxt->cnt) { 754 uctxt->active_slaves &= ~(1 << fdata->subctxt); 755 mutex_unlock(&hfi1_mutex); 756 goto done; 757 } 758 759 spin_lock_irqsave(&dd->uctxt_lock, flags); 760 /* 761 * Disable receive context and interrupt available, reset all 762 * RcvCtxtCtrl bits to default values. 763 */ 764 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS | 765 HFI1_RCVCTRL_TIDFLOW_DIS | 766 HFI1_RCVCTRL_INTRAVAIL_DIS | 767 HFI1_RCVCTRL_TAILUPD_DIS | 768 HFI1_RCVCTRL_ONE_PKT_EGR_DIS | 769 HFI1_RCVCTRL_NO_RHQ_DROP_DIS | 770 HFI1_RCVCTRL_NO_EGR_DROP_DIS, uctxt->ctxt); 771 /* Clear the context's J_KEY */ 772 hfi1_clear_ctxt_jkey(dd, uctxt->ctxt); 773 /* 774 * Reset context integrity checks to default. 775 * (writes to CSRs probably belong in chip.c) 776 */ 777 write_kctxt_csr(dd, uctxt->sc->hw_context, SEND_CTXT_CHECK_ENABLE, 778 hfi1_pkt_default_send_ctxt_mask(dd, uctxt->sc->type)); 779 sc_disable(uctxt->sc); 780 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 781 782 dd->rcd[uctxt->ctxt] = NULL; 783 784 hfi1_user_exp_rcv_free(fdata); 785 hfi1_clear_ctxt_pkey(dd, uctxt->ctxt); 786 787 uctxt->rcvwait_to = 0; 788 uctxt->piowait_to = 0; 789 uctxt->rcvnowait = 0; 790 uctxt->pionowait = 0; 791 uctxt->event_flags = 0; 792 793 hfi1_stats.sps_ctxts--; 794 if (++dd->freectxts == dd->num_user_contexts) 795 aspm_enable_all(dd); 796 mutex_unlock(&hfi1_mutex); 797 hfi1_free_ctxtdata(dd, uctxt); 798 done: 799 mmdrop(fdata->mm); 800 kobject_put(&dd->kobj); 801 kfree(fdata); 802 return 0; 803 } 804 805 /* 806 * Convert kernel *virtual* addresses to physical addresses. 807 * This is used to vmalloc'ed addresses. 808 */ 809 static u64 kvirt_to_phys(void *addr) 810 { 811 struct page *page; 812 u64 paddr = 0; 813 814 page = vmalloc_to_page(addr); 815 if (page) 816 paddr = page_to_pfn(page) << PAGE_SHIFT; 817 818 return paddr; 819 } 820 821 static int assign_ctxt(struct file *fp, struct hfi1_user_info *uinfo) 822 { 823 int i_minor, ret = 0; 824 unsigned int swmajor, swminor; 825 826 swmajor = uinfo->userversion >> 16; 827 if (swmajor != HFI1_USER_SWMAJOR) { 828 ret = -ENODEV; 829 goto done; 830 } 831 832 swminor = uinfo->userversion & 0xffff; 833 834 mutex_lock(&hfi1_mutex); 835 /* First, lets check if we need to setup a shared context? */ 836 if (uinfo->subctxt_cnt) { 837 struct hfi1_filedata *fd = fp->private_data; 838 839 ret = find_shared_ctxt(fp, uinfo); 840 if (ret < 0) 841 goto done_unlock; 842 if (ret) { 843 fd->rec_cpu_num = 844 hfi1_get_proc_affinity(fd->uctxt->numa_id); 845 } 846 } 847 848 /* 849 * We execute the following block if we couldn't find a 850 * shared context or if context sharing is not required. 851 */ 852 if (!ret) { 853 i_minor = iminor(file_inode(fp)) - HFI1_USER_MINOR_BASE; 854 ret = get_user_context(fp, uinfo, i_minor); 855 } 856 done_unlock: 857 mutex_unlock(&hfi1_mutex); 858 done: 859 return ret; 860 } 861 862 static int get_user_context(struct file *fp, struct hfi1_user_info *uinfo, 863 int devno) 864 { 865 struct hfi1_devdata *dd = NULL; 866 int devmax, npresent, nup; 867 868 devmax = hfi1_count_units(&npresent, &nup); 869 if (!npresent) 870 return -ENXIO; 871 872 if (!nup) 873 return -ENETDOWN; 874 875 dd = hfi1_lookup(devno); 876 if (!dd) 877 return -ENODEV; 878 else if (!dd->freectxts) 879 return -EBUSY; 880 881 return allocate_ctxt(fp, dd, uinfo); 882 } 883 884 static int find_shared_ctxt(struct file *fp, 885 const struct hfi1_user_info *uinfo) 886 { 887 int devmax, ndev, i; 888 int ret = 0; 889 struct hfi1_filedata *fd = fp->private_data; 890 891 devmax = hfi1_count_units(NULL, NULL); 892 893 for (ndev = 0; ndev < devmax; ndev++) { 894 struct hfi1_devdata *dd = hfi1_lookup(ndev); 895 896 if (!(dd && (dd->flags & HFI1_PRESENT) && dd->kregbase)) 897 continue; 898 for (i = dd->first_user_ctxt; i < dd->num_rcv_contexts; i++) { 899 struct hfi1_ctxtdata *uctxt = dd->rcd[i]; 900 901 /* Skip ctxts which are not yet open */ 902 if (!uctxt || !uctxt->cnt) 903 continue; 904 /* Skip ctxt if it doesn't match the requested one */ 905 if (memcmp(uctxt->uuid, uinfo->uuid, 906 sizeof(uctxt->uuid)) || 907 uctxt->jkey != generate_jkey(current_uid()) || 908 uctxt->subctxt_id != uinfo->subctxt_id || 909 uctxt->subctxt_cnt != uinfo->subctxt_cnt) 910 continue; 911 912 /* Verify the sharing process matches the master */ 913 if (uctxt->userversion != uinfo->userversion || 914 uctxt->cnt >= uctxt->subctxt_cnt) { 915 ret = -EINVAL; 916 goto done; 917 } 918 fd->uctxt = uctxt; 919 fd->subctxt = uctxt->cnt++; 920 uctxt->active_slaves |= 1 << fd->subctxt; 921 ret = 1; 922 goto done; 923 } 924 } 925 926 done: 927 return ret; 928 } 929 930 static int allocate_ctxt(struct file *fp, struct hfi1_devdata *dd, 931 struct hfi1_user_info *uinfo) 932 { 933 struct hfi1_filedata *fd = fp->private_data; 934 struct hfi1_ctxtdata *uctxt; 935 unsigned ctxt; 936 int ret, numa; 937 938 if (dd->flags & HFI1_FROZEN) { 939 /* 940 * Pick an error that is unique from all other errors 941 * that are returned so the user process knows that 942 * it tried to allocate while the SPC was frozen. It 943 * it should be able to retry with success in a short 944 * while. 945 */ 946 return -EIO; 947 } 948 949 for (ctxt = dd->first_user_ctxt; ctxt < dd->num_rcv_contexts; ctxt++) 950 if (!dd->rcd[ctxt]) 951 break; 952 953 if (ctxt == dd->num_rcv_contexts) 954 return -EBUSY; 955 956 /* 957 * If we don't have a NUMA node requested, preference is towards 958 * device NUMA node. 959 */ 960 fd->rec_cpu_num = hfi1_get_proc_affinity(dd->node); 961 if (fd->rec_cpu_num != -1) 962 numa = cpu_to_node(fd->rec_cpu_num); 963 else 964 numa = numa_node_id(); 965 uctxt = hfi1_create_ctxtdata(dd->pport, ctxt, numa); 966 if (!uctxt) { 967 dd_dev_err(dd, 968 "Unable to allocate ctxtdata memory, failing open\n"); 969 return -ENOMEM; 970 } 971 hfi1_cdbg(PROC, "[%u:%u] pid %u assigned to CPU %d (NUMA %u)", 972 uctxt->ctxt, fd->subctxt, current->pid, fd->rec_cpu_num, 973 uctxt->numa_id); 974 975 /* 976 * Allocate and enable a PIO send context. 977 */ 978 uctxt->sc = sc_alloc(dd, SC_USER, uctxt->rcvhdrqentsize, 979 uctxt->dd->node); 980 if (!uctxt->sc) { 981 ret = -ENOMEM; 982 goto ctxdata_free; 983 } 984 hfi1_cdbg(PROC, "allocated send context %u(%u)\n", uctxt->sc->sw_index, 985 uctxt->sc->hw_context); 986 ret = sc_enable(uctxt->sc); 987 if (ret) 988 goto ctxdata_free; 989 990 /* 991 * Setup shared context resources if the user-level has requested 992 * shared contexts and this is the 'master' process. 993 * This has to be done here so the rest of the sub-contexts find the 994 * proper master. 995 */ 996 if (uinfo->subctxt_cnt && !fd->subctxt) { 997 ret = init_subctxts(uctxt, uinfo); 998 /* 999 * On error, we don't need to disable and de-allocate the 1000 * send context because it will be done during file close 1001 */ 1002 if (ret) 1003 goto ctxdata_free; 1004 } 1005 uctxt->userversion = uinfo->userversion; 1006 uctxt->flags = hfi1_cap_mask; /* save current flag state */ 1007 init_waitqueue_head(&uctxt->wait); 1008 strlcpy(uctxt->comm, current->comm, sizeof(uctxt->comm)); 1009 memcpy(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)); 1010 uctxt->jkey = generate_jkey(current_uid()); 1011 INIT_LIST_HEAD(&uctxt->sdma_queues); 1012 spin_lock_init(&uctxt->sdma_qlock); 1013 hfi1_stats.sps_ctxts++; 1014 /* 1015 * Disable ASPM when there are open user/PSM contexts to avoid 1016 * issues with ASPM L1 exit latency 1017 */ 1018 if (dd->freectxts-- == dd->num_user_contexts) 1019 aspm_disable_all(dd); 1020 fd->uctxt = uctxt; 1021 1022 return 0; 1023 1024 ctxdata_free: 1025 dd->rcd[ctxt] = NULL; 1026 hfi1_free_ctxtdata(dd, uctxt); 1027 return ret; 1028 } 1029 1030 static int init_subctxts(struct hfi1_ctxtdata *uctxt, 1031 const struct hfi1_user_info *uinfo) 1032 { 1033 unsigned num_subctxts; 1034 1035 num_subctxts = uinfo->subctxt_cnt; 1036 if (num_subctxts > HFI1_MAX_SHARED_CTXTS) 1037 return -EINVAL; 1038 1039 uctxt->subctxt_cnt = uinfo->subctxt_cnt; 1040 uctxt->subctxt_id = uinfo->subctxt_id; 1041 uctxt->active_slaves = 1; 1042 uctxt->redirect_seq_cnt = 1; 1043 set_bit(HFI1_CTXT_MASTER_UNINIT, &uctxt->event_flags); 1044 1045 return 0; 1046 } 1047 1048 static int setup_subctxt(struct hfi1_ctxtdata *uctxt) 1049 { 1050 int ret = 0; 1051 unsigned num_subctxts = uctxt->subctxt_cnt; 1052 1053 uctxt->subctxt_uregbase = vmalloc_user(PAGE_SIZE); 1054 if (!uctxt->subctxt_uregbase) { 1055 ret = -ENOMEM; 1056 goto bail; 1057 } 1058 /* We can take the size of the RcvHdr Queue from the master */ 1059 uctxt->subctxt_rcvhdr_base = vmalloc_user(uctxt->rcvhdrq_size * 1060 num_subctxts); 1061 if (!uctxt->subctxt_rcvhdr_base) { 1062 ret = -ENOMEM; 1063 goto bail_ureg; 1064 } 1065 1066 uctxt->subctxt_rcvegrbuf = vmalloc_user(uctxt->egrbufs.size * 1067 num_subctxts); 1068 if (!uctxt->subctxt_rcvegrbuf) { 1069 ret = -ENOMEM; 1070 goto bail_rhdr; 1071 } 1072 goto bail; 1073 bail_rhdr: 1074 vfree(uctxt->subctxt_rcvhdr_base); 1075 bail_ureg: 1076 vfree(uctxt->subctxt_uregbase); 1077 uctxt->subctxt_uregbase = NULL; 1078 bail: 1079 return ret; 1080 } 1081 1082 static int user_init(struct file *fp) 1083 { 1084 unsigned int rcvctrl_ops = 0; 1085 struct hfi1_filedata *fd = fp->private_data; 1086 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1087 1088 /* make sure that the context has already been setup */ 1089 if (!test_bit(HFI1_CTXT_SETUP_DONE, &uctxt->event_flags)) 1090 return -EFAULT; 1091 1092 /* initialize poll variables... */ 1093 uctxt->urgent = 0; 1094 uctxt->urgent_poll = 0; 1095 1096 /* 1097 * Now enable the ctxt for receive. 1098 * For chips that are set to DMA the tail register to memory 1099 * when they change (and when the update bit transitions from 1100 * 0 to 1. So for those chips, we turn it off and then back on. 1101 * This will (very briefly) affect any other open ctxts, but the 1102 * duration is very short, and therefore isn't an issue. We 1103 * explicitly set the in-memory tail copy to 0 beforehand, so we 1104 * don't have to wait to be sure the DMA update has happened 1105 * (chip resets head/tail to 0 on transition to enable). 1106 */ 1107 if (uctxt->rcvhdrtail_kvaddr) 1108 clear_rcvhdrtail(uctxt); 1109 1110 /* Setup J_KEY before enabling the context */ 1111 hfi1_set_ctxt_jkey(uctxt->dd, uctxt->ctxt, uctxt->jkey); 1112 1113 rcvctrl_ops = HFI1_RCVCTRL_CTXT_ENB; 1114 if (HFI1_CAP_UGET_MASK(uctxt->flags, HDRSUPP)) 1115 rcvctrl_ops |= HFI1_RCVCTRL_TIDFLOW_ENB; 1116 /* 1117 * Ignore the bit in the flags for now until proper 1118 * support for multiple packet per rcv array entry is 1119 * added. 1120 */ 1121 if (!HFI1_CAP_UGET_MASK(uctxt->flags, MULTI_PKT_EGR)) 1122 rcvctrl_ops |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB; 1123 if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_EGR_FULL)) 1124 rcvctrl_ops |= HFI1_RCVCTRL_NO_EGR_DROP_ENB; 1125 if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_RHQ_FULL)) 1126 rcvctrl_ops |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB; 1127 /* 1128 * The RcvCtxtCtrl.TailUpd bit has to be explicitly written. 1129 * We can't rely on the correct value to be set from prior 1130 * uses of the chip or ctxt. Therefore, add the rcvctrl op 1131 * for both cases. 1132 */ 1133 if (HFI1_CAP_UGET_MASK(uctxt->flags, DMA_RTAIL)) 1134 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_ENB; 1135 else 1136 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_DIS; 1137 hfi1_rcvctrl(uctxt->dd, rcvctrl_ops, uctxt->ctxt); 1138 1139 /* Notify any waiting slaves */ 1140 if (uctxt->subctxt_cnt) { 1141 clear_bit(HFI1_CTXT_MASTER_UNINIT, &uctxt->event_flags); 1142 wake_up(&uctxt->wait); 1143 } 1144 1145 return 0; 1146 } 1147 1148 static int get_ctxt_info(struct file *fp, void __user *ubase, __u32 len) 1149 { 1150 struct hfi1_ctxt_info cinfo; 1151 struct hfi1_filedata *fd = fp->private_data; 1152 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1153 int ret = 0; 1154 1155 memset(&cinfo, 0, sizeof(cinfo)); 1156 cinfo.runtime_flags = (((uctxt->flags >> HFI1_CAP_MISC_SHIFT) & 1157 HFI1_CAP_MISC_MASK) << HFI1_CAP_USER_SHIFT) | 1158 HFI1_CAP_UGET_MASK(uctxt->flags, MASK) | 1159 HFI1_CAP_KGET_MASK(uctxt->flags, K2U); 1160 /* adjust flag if this fd is not able to cache */ 1161 if (!fd->handler) 1162 cinfo.runtime_flags |= HFI1_CAP_TID_UNMAP; /* no caching */ 1163 1164 cinfo.num_active = hfi1_count_active_units(); 1165 cinfo.unit = uctxt->dd->unit; 1166 cinfo.ctxt = uctxt->ctxt; 1167 cinfo.subctxt = fd->subctxt; 1168 cinfo.rcvtids = roundup(uctxt->egrbufs.alloced, 1169 uctxt->dd->rcv_entries.group_size) + 1170 uctxt->expected_count; 1171 cinfo.credits = uctxt->sc->credits; 1172 cinfo.numa_node = uctxt->numa_id; 1173 cinfo.rec_cpu = fd->rec_cpu_num; 1174 cinfo.send_ctxt = uctxt->sc->hw_context; 1175 1176 cinfo.egrtids = uctxt->egrbufs.alloced; 1177 cinfo.rcvhdrq_cnt = uctxt->rcvhdrq_cnt; 1178 cinfo.rcvhdrq_entsize = uctxt->rcvhdrqentsize << 2; 1179 cinfo.sdma_ring_size = fd->cq->nentries; 1180 cinfo.rcvegr_size = uctxt->egrbufs.rcvtid_size; 1181 1182 trace_hfi1_ctxt_info(uctxt->dd, uctxt->ctxt, fd->subctxt, cinfo); 1183 if (copy_to_user(ubase, &cinfo, sizeof(cinfo))) 1184 ret = -EFAULT; 1185 1186 return ret; 1187 } 1188 1189 static int setup_ctxt(struct file *fp) 1190 { 1191 struct hfi1_filedata *fd = fp->private_data; 1192 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1193 struct hfi1_devdata *dd = uctxt->dd; 1194 int ret = 0; 1195 1196 /* 1197 * Context should be set up only once, including allocation and 1198 * programming of eager buffers. This is done if context sharing 1199 * is not requested or by the master process. 1200 */ 1201 if (!uctxt->subctxt_cnt || !fd->subctxt) { 1202 ret = hfi1_init_ctxt(uctxt->sc); 1203 if (ret) 1204 goto done; 1205 1206 /* Now allocate the RcvHdr queue and eager buffers. */ 1207 ret = hfi1_create_rcvhdrq(dd, uctxt); 1208 if (ret) 1209 goto done; 1210 ret = hfi1_setup_eagerbufs(uctxt); 1211 if (ret) 1212 goto done; 1213 if (uctxt->subctxt_cnt && !fd->subctxt) { 1214 ret = setup_subctxt(uctxt); 1215 if (ret) 1216 goto done; 1217 } 1218 } else { 1219 ret = wait_event_interruptible(uctxt->wait, !test_bit( 1220 HFI1_CTXT_MASTER_UNINIT, 1221 &uctxt->event_flags)); 1222 if (ret) 1223 goto done; 1224 } 1225 1226 ret = hfi1_user_sdma_alloc_queues(uctxt, fp); 1227 if (ret) 1228 goto done; 1229 /* 1230 * Expected receive has to be setup for all processes (including 1231 * shared contexts). However, it has to be done after the master 1232 * context has been fully configured as it depends on the 1233 * eager/expected split of the RcvArray entries. 1234 * Setting it up here ensures that the subcontexts will be waiting 1235 * (due to the above wait_event_interruptible() until the master 1236 * is setup. 1237 */ 1238 ret = hfi1_user_exp_rcv_init(fp); 1239 if (ret) 1240 goto done; 1241 1242 set_bit(HFI1_CTXT_SETUP_DONE, &uctxt->event_flags); 1243 done: 1244 return ret; 1245 } 1246 1247 static int get_base_info(struct file *fp, void __user *ubase, __u32 len) 1248 { 1249 struct hfi1_base_info binfo; 1250 struct hfi1_filedata *fd = fp->private_data; 1251 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1252 struct hfi1_devdata *dd = uctxt->dd; 1253 ssize_t sz; 1254 unsigned offset; 1255 int ret = 0; 1256 1257 trace_hfi1_uctxtdata(uctxt->dd, uctxt); 1258 1259 memset(&binfo, 0, sizeof(binfo)); 1260 binfo.hw_version = dd->revision; 1261 binfo.sw_version = HFI1_KERN_SWVERSION; 1262 binfo.bthqp = kdeth_qp; 1263 binfo.jkey = uctxt->jkey; 1264 /* 1265 * If more than 64 contexts are enabled the allocated credit 1266 * return will span two or three contiguous pages. Since we only 1267 * map the page containing the context's credit return address, 1268 * we need to calculate the offset in the proper page. 1269 */ 1270 offset = ((u64)uctxt->sc->hw_free - 1271 (u64)dd->cr_base[uctxt->numa_id].va) % PAGE_SIZE; 1272 binfo.sc_credits_addr = HFI1_MMAP_TOKEN(PIO_CRED, uctxt->ctxt, 1273 fd->subctxt, offset); 1274 binfo.pio_bufbase = HFI1_MMAP_TOKEN(PIO_BUFS, uctxt->ctxt, 1275 fd->subctxt, 1276 uctxt->sc->base_addr); 1277 binfo.pio_bufbase_sop = HFI1_MMAP_TOKEN(PIO_BUFS_SOP, 1278 uctxt->ctxt, 1279 fd->subctxt, 1280 uctxt->sc->base_addr); 1281 binfo.rcvhdr_bufbase = HFI1_MMAP_TOKEN(RCV_HDRQ, uctxt->ctxt, 1282 fd->subctxt, 1283 uctxt->rcvhdrq); 1284 binfo.rcvegr_bufbase = HFI1_MMAP_TOKEN(RCV_EGRBUF, uctxt->ctxt, 1285 fd->subctxt, 1286 uctxt->egrbufs.rcvtids[0].dma); 1287 binfo.sdma_comp_bufbase = HFI1_MMAP_TOKEN(SDMA_COMP, uctxt->ctxt, 1288 fd->subctxt, 0); 1289 /* 1290 * user regs are at 1291 * (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE)) 1292 */ 1293 binfo.user_regbase = HFI1_MMAP_TOKEN(UREGS, uctxt->ctxt, 1294 fd->subctxt, 0); 1295 offset = offset_in_page((((uctxt->ctxt - dd->first_user_ctxt) * 1296 HFI1_MAX_SHARED_CTXTS) + fd->subctxt) * 1297 sizeof(*dd->events)); 1298 binfo.events_bufbase = HFI1_MMAP_TOKEN(EVENTS, uctxt->ctxt, 1299 fd->subctxt, 1300 offset); 1301 binfo.status_bufbase = HFI1_MMAP_TOKEN(STATUS, uctxt->ctxt, 1302 fd->subctxt, 1303 dd->status); 1304 if (HFI1_CAP_IS_USET(DMA_RTAIL)) 1305 binfo.rcvhdrtail_base = HFI1_MMAP_TOKEN(RTAIL, uctxt->ctxt, 1306 fd->subctxt, 0); 1307 if (uctxt->subctxt_cnt) { 1308 binfo.subctxt_uregbase = HFI1_MMAP_TOKEN(SUBCTXT_UREGS, 1309 uctxt->ctxt, 1310 fd->subctxt, 0); 1311 binfo.subctxt_rcvhdrbuf = HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ, 1312 uctxt->ctxt, 1313 fd->subctxt, 0); 1314 binfo.subctxt_rcvegrbuf = HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF, 1315 uctxt->ctxt, 1316 fd->subctxt, 0); 1317 } 1318 sz = (len < sizeof(binfo)) ? len : sizeof(binfo); 1319 if (copy_to_user(ubase, &binfo, sz)) 1320 ret = -EFAULT; 1321 return ret; 1322 } 1323 1324 static unsigned int poll_urgent(struct file *fp, 1325 struct poll_table_struct *pt) 1326 { 1327 struct hfi1_filedata *fd = fp->private_data; 1328 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1329 struct hfi1_devdata *dd = uctxt->dd; 1330 unsigned pollflag; 1331 1332 poll_wait(fp, &uctxt->wait, pt); 1333 1334 spin_lock_irq(&dd->uctxt_lock); 1335 if (uctxt->urgent != uctxt->urgent_poll) { 1336 pollflag = POLLIN | POLLRDNORM; 1337 uctxt->urgent_poll = uctxt->urgent; 1338 } else { 1339 pollflag = 0; 1340 set_bit(HFI1_CTXT_WAITING_URG, &uctxt->event_flags); 1341 } 1342 spin_unlock_irq(&dd->uctxt_lock); 1343 1344 return pollflag; 1345 } 1346 1347 static unsigned int poll_next(struct file *fp, 1348 struct poll_table_struct *pt) 1349 { 1350 struct hfi1_filedata *fd = fp->private_data; 1351 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1352 struct hfi1_devdata *dd = uctxt->dd; 1353 unsigned pollflag; 1354 1355 poll_wait(fp, &uctxt->wait, pt); 1356 1357 spin_lock_irq(&dd->uctxt_lock); 1358 if (hdrqempty(uctxt)) { 1359 set_bit(HFI1_CTXT_WAITING_RCV, &uctxt->event_flags); 1360 hfi1_rcvctrl(dd, HFI1_RCVCTRL_INTRAVAIL_ENB, uctxt->ctxt); 1361 pollflag = 0; 1362 } else { 1363 pollflag = POLLIN | POLLRDNORM; 1364 } 1365 spin_unlock_irq(&dd->uctxt_lock); 1366 1367 return pollflag; 1368 } 1369 1370 /* 1371 * Find all user contexts in use, and set the specified bit in their 1372 * event mask. 1373 * See also find_ctxt() for a similar use, that is specific to send buffers. 1374 */ 1375 int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit) 1376 { 1377 struct hfi1_ctxtdata *uctxt; 1378 struct hfi1_devdata *dd = ppd->dd; 1379 unsigned ctxt; 1380 int ret = 0; 1381 unsigned long flags; 1382 1383 if (!dd->events) { 1384 ret = -EINVAL; 1385 goto done; 1386 } 1387 1388 spin_lock_irqsave(&dd->uctxt_lock, flags); 1389 for (ctxt = dd->first_user_ctxt; ctxt < dd->num_rcv_contexts; 1390 ctxt++) { 1391 uctxt = dd->rcd[ctxt]; 1392 if (uctxt) { 1393 unsigned long *evs = dd->events + 1394 (uctxt->ctxt - dd->first_user_ctxt) * 1395 HFI1_MAX_SHARED_CTXTS; 1396 int i; 1397 /* 1398 * subctxt_cnt is 0 if not shared, so do base 1399 * separately, first, then remaining subctxt, if any 1400 */ 1401 set_bit(evtbit, evs); 1402 for (i = 1; i < uctxt->subctxt_cnt; i++) 1403 set_bit(evtbit, evs + i); 1404 } 1405 } 1406 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 1407 done: 1408 return ret; 1409 } 1410 1411 /** 1412 * manage_rcvq - manage a context's receive queue 1413 * @uctxt: the context 1414 * @subctxt: the sub-context 1415 * @start_stop: action to carry out 1416 * 1417 * start_stop == 0 disables receive on the context, for use in queue 1418 * overflow conditions. start_stop==1 re-enables, to be used to 1419 * re-init the software copy of the head register 1420 */ 1421 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, unsigned subctxt, 1422 int start_stop) 1423 { 1424 struct hfi1_devdata *dd = uctxt->dd; 1425 unsigned int rcvctrl_op; 1426 1427 if (subctxt) 1428 goto bail; 1429 /* atomically clear receive enable ctxt. */ 1430 if (start_stop) { 1431 /* 1432 * On enable, force in-memory copy of the tail register to 1433 * 0, so that protocol code doesn't have to worry about 1434 * whether or not the chip has yet updated the in-memory 1435 * copy or not on return from the system call. The chip 1436 * always resets it's tail register back to 0 on a 1437 * transition from disabled to enabled. 1438 */ 1439 if (uctxt->rcvhdrtail_kvaddr) 1440 clear_rcvhdrtail(uctxt); 1441 rcvctrl_op = HFI1_RCVCTRL_CTXT_ENB; 1442 } else { 1443 rcvctrl_op = HFI1_RCVCTRL_CTXT_DIS; 1444 } 1445 hfi1_rcvctrl(dd, rcvctrl_op, uctxt->ctxt); 1446 /* always; new head should be equal to new tail; see above */ 1447 bail: 1448 return 0; 1449 } 1450 1451 /* 1452 * clear the event notifier events for this context. 1453 * User process then performs actions appropriate to bit having been 1454 * set, if desired, and checks again in future. 1455 */ 1456 static int user_event_ack(struct hfi1_ctxtdata *uctxt, int subctxt, 1457 unsigned long events) 1458 { 1459 int i; 1460 struct hfi1_devdata *dd = uctxt->dd; 1461 unsigned long *evs; 1462 1463 if (!dd->events) 1464 return 0; 1465 1466 evs = dd->events + ((uctxt->ctxt - dd->first_user_ctxt) * 1467 HFI1_MAX_SHARED_CTXTS) + subctxt; 1468 1469 for (i = 0; i <= _HFI1_MAX_EVENT_BIT; i++) { 1470 if (!test_bit(i, &events)) 1471 continue; 1472 clear_bit(i, evs); 1473 } 1474 return 0; 1475 } 1476 1477 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned subctxt, 1478 u16 pkey) 1479 { 1480 int ret = -ENOENT, i, intable = 0; 1481 struct hfi1_pportdata *ppd = uctxt->ppd; 1482 struct hfi1_devdata *dd = uctxt->dd; 1483 1484 if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY) { 1485 ret = -EINVAL; 1486 goto done; 1487 } 1488 1489 for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) 1490 if (pkey == ppd->pkeys[i]) { 1491 intable = 1; 1492 break; 1493 } 1494 1495 if (intable) 1496 ret = hfi1_set_ctxt_pkey(dd, uctxt->ctxt, pkey); 1497 done: 1498 return ret; 1499 } 1500 1501 static void user_remove(struct hfi1_devdata *dd) 1502 { 1503 1504 hfi1_cdev_cleanup(&dd->user_cdev, &dd->user_device); 1505 } 1506 1507 static int user_add(struct hfi1_devdata *dd) 1508 { 1509 char name[10]; 1510 int ret; 1511 1512 snprintf(name, sizeof(name), "%s_%d", class_name(), dd->unit); 1513 ret = hfi1_cdev_init(dd->unit, name, &hfi1_file_ops, 1514 &dd->user_cdev, &dd->user_device, 1515 true, &dd->kobj); 1516 if (ret) 1517 user_remove(dd); 1518 1519 return ret; 1520 } 1521 1522 /* 1523 * Create per-unit files in /dev 1524 */ 1525 int hfi1_device_create(struct hfi1_devdata *dd) 1526 { 1527 return user_add(dd); 1528 } 1529 1530 /* 1531 * Remove per-unit files in /dev 1532 * void, core kernel returns no errors for this stuff 1533 */ 1534 void hfi1_device_remove(struct hfi1_devdata *dd) 1535 { 1536 user_remove(dd); 1537 } 1538