1 /* 2 * Copyright(c) 2015, 2016 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 #include <linux/poll.h> 48 #include <linux/cdev.h> 49 #include <linux/vmalloc.h> 50 #include <linux/io.h> 51 52 #include <rdma/ib.h> 53 54 #include "hfi.h" 55 #include "pio.h" 56 #include "device.h" 57 #include "common.h" 58 #include "trace.h" 59 #include "user_sdma.h" 60 #include "user_exp_rcv.h" 61 #include "eprom.h" 62 #include "aspm.h" 63 #include "mmu_rb.h" 64 65 #undef pr_fmt 66 #define pr_fmt(fmt) DRIVER_NAME ": " fmt 67 68 #define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */ 69 70 /* 71 * File operation functions 72 */ 73 static int hfi1_file_open(struct inode *, struct file *); 74 static int hfi1_file_close(struct inode *, struct file *); 75 static ssize_t hfi1_write_iter(struct kiocb *, struct iov_iter *); 76 static unsigned int hfi1_poll(struct file *, struct poll_table_struct *); 77 static int hfi1_file_mmap(struct file *, struct vm_area_struct *); 78 79 static u64 kvirt_to_phys(void *); 80 static int assign_ctxt(struct file *, struct hfi1_user_info *); 81 static int init_subctxts(struct hfi1_ctxtdata *, const struct hfi1_user_info *); 82 static int user_init(struct file *); 83 static int get_ctxt_info(struct file *, void __user *, __u32); 84 static int get_base_info(struct file *, void __user *, __u32); 85 static int setup_ctxt(struct file *); 86 static int setup_subctxt(struct hfi1_ctxtdata *); 87 static int get_user_context(struct file *, struct hfi1_user_info *, int); 88 static int find_shared_ctxt(struct file *, const struct hfi1_user_info *); 89 static int allocate_ctxt(struct file *, struct hfi1_devdata *, 90 struct hfi1_user_info *); 91 static unsigned int poll_urgent(struct file *, struct poll_table_struct *); 92 static unsigned int poll_next(struct file *, struct poll_table_struct *); 93 static int user_event_ack(struct hfi1_ctxtdata *, int, unsigned long); 94 static int set_ctxt_pkey(struct hfi1_ctxtdata *, unsigned, u16); 95 static int manage_rcvq(struct hfi1_ctxtdata *, unsigned, int); 96 static int vma_fault(struct vm_area_struct *, struct vm_fault *); 97 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd, 98 unsigned long arg); 99 100 static const struct file_operations hfi1_file_ops = { 101 .owner = THIS_MODULE, 102 .write_iter = hfi1_write_iter, 103 .open = hfi1_file_open, 104 .release = hfi1_file_close, 105 .unlocked_ioctl = hfi1_file_ioctl, 106 .poll = hfi1_poll, 107 .mmap = hfi1_file_mmap, 108 .llseek = noop_llseek, 109 }; 110 111 static struct vm_operations_struct vm_ops = { 112 .fault = vma_fault, 113 }; 114 115 /* 116 * Types of memories mapped into user processes' space 117 */ 118 enum mmap_types { 119 PIO_BUFS = 1, 120 PIO_BUFS_SOP, 121 PIO_CRED, 122 RCV_HDRQ, 123 RCV_EGRBUF, 124 UREGS, 125 EVENTS, 126 STATUS, 127 RTAIL, 128 SUBCTXT_UREGS, 129 SUBCTXT_RCV_HDRQ, 130 SUBCTXT_EGRBUF, 131 SDMA_COMP 132 }; 133 134 /* 135 * Masks and offsets defining the mmap tokens 136 */ 137 #define HFI1_MMAP_OFFSET_MASK 0xfffULL 138 #define HFI1_MMAP_OFFSET_SHIFT 0 139 #define HFI1_MMAP_SUBCTXT_MASK 0xfULL 140 #define HFI1_MMAP_SUBCTXT_SHIFT 12 141 #define HFI1_MMAP_CTXT_MASK 0xffULL 142 #define HFI1_MMAP_CTXT_SHIFT 16 143 #define HFI1_MMAP_TYPE_MASK 0xfULL 144 #define HFI1_MMAP_TYPE_SHIFT 24 145 #define HFI1_MMAP_MAGIC_MASK 0xffffffffULL 146 #define HFI1_MMAP_MAGIC_SHIFT 32 147 148 #define HFI1_MMAP_MAGIC 0xdabbad00 149 150 #define HFI1_MMAP_TOKEN_SET(field, val) \ 151 (((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT) 152 #define HFI1_MMAP_TOKEN_GET(field, token) \ 153 (((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK) 154 #define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr) \ 155 (HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \ 156 HFI1_MMAP_TOKEN_SET(TYPE, type) | \ 157 HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \ 158 HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \ 159 HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr)))) 160 161 #define dbg(fmt, ...) \ 162 pr_info(fmt, ##__VA_ARGS__) 163 164 static inline int is_valid_mmap(u64 token) 165 { 166 return (HFI1_MMAP_TOKEN_GET(MAGIC, token) == HFI1_MMAP_MAGIC); 167 } 168 169 static int hfi1_file_open(struct inode *inode, struct file *fp) 170 { 171 struct hfi1_filedata *fd; 172 struct hfi1_devdata *dd = container_of(inode->i_cdev, 173 struct hfi1_devdata, 174 user_cdev); 175 176 /* Just take a ref now. Not all opens result in a context assign */ 177 kobject_get(&dd->kobj); 178 179 /* The real work is performed later in assign_ctxt() */ 180 181 fd = kzalloc(sizeof(*fd), GFP_KERNEL); 182 183 if (fd) { 184 fd->rec_cpu_num = -1; /* no cpu affinity by default */ 185 fd->mm = current->mm; 186 } 187 188 fp->private_data = fd; 189 190 return fd ? 0 : -ENOMEM; 191 } 192 193 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd, 194 unsigned long arg) 195 { 196 struct hfi1_filedata *fd = fp->private_data; 197 struct hfi1_ctxtdata *uctxt = fd->uctxt; 198 struct hfi1_user_info uinfo; 199 struct hfi1_tid_info tinfo; 200 int ret = 0; 201 unsigned long addr; 202 int uval = 0; 203 unsigned long ul_uval = 0; 204 u16 uval16 = 0; 205 206 hfi1_cdbg(IOCTL, "IOCTL recv: 0x%x", cmd); 207 if (cmd != HFI1_IOCTL_ASSIGN_CTXT && 208 cmd != HFI1_IOCTL_GET_VERS && 209 !uctxt) 210 return -EINVAL; 211 212 switch (cmd) { 213 case HFI1_IOCTL_ASSIGN_CTXT: 214 if (uctxt) 215 return -EINVAL; 216 217 if (copy_from_user(&uinfo, 218 (struct hfi1_user_info __user *)arg, 219 sizeof(uinfo))) 220 return -EFAULT; 221 222 ret = assign_ctxt(fp, &uinfo); 223 if (ret < 0) 224 return ret; 225 setup_ctxt(fp); 226 if (ret) 227 return ret; 228 ret = user_init(fp); 229 break; 230 case HFI1_IOCTL_CTXT_INFO: 231 ret = get_ctxt_info(fp, (void __user *)(unsigned long)arg, 232 sizeof(struct hfi1_ctxt_info)); 233 break; 234 case HFI1_IOCTL_USER_INFO: 235 ret = get_base_info(fp, (void __user *)(unsigned long)arg, 236 sizeof(struct hfi1_base_info)); 237 break; 238 case HFI1_IOCTL_CREDIT_UPD: 239 if (uctxt) 240 sc_return_credits(uctxt->sc); 241 break; 242 243 case HFI1_IOCTL_TID_UPDATE: 244 if (copy_from_user(&tinfo, 245 (struct hfi11_tid_info __user *)arg, 246 sizeof(tinfo))) 247 return -EFAULT; 248 249 ret = hfi1_user_exp_rcv_setup(fp, &tinfo); 250 if (!ret) { 251 /* 252 * Copy the number of tidlist entries we used 253 * and the length of the buffer we registered. 254 * These fields are adjacent in the structure so 255 * we can copy them at the same time. 256 */ 257 addr = arg + offsetof(struct hfi1_tid_info, tidcnt); 258 if (copy_to_user((void __user *)addr, &tinfo.tidcnt, 259 sizeof(tinfo.tidcnt) + 260 sizeof(tinfo.length))) 261 ret = -EFAULT; 262 } 263 break; 264 265 case HFI1_IOCTL_TID_FREE: 266 if (copy_from_user(&tinfo, 267 (struct hfi11_tid_info __user *)arg, 268 sizeof(tinfo))) 269 return -EFAULT; 270 271 ret = hfi1_user_exp_rcv_clear(fp, &tinfo); 272 if (ret) 273 break; 274 addr = arg + offsetof(struct hfi1_tid_info, tidcnt); 275 if (copy_to_user((void __user *)addr, &tinfo.tidcnt, 276 sizeof(tinfo.tidcnt))) 277 ret = -EFAULT; 278 break; 279 280 case HFI1_IOCTL_TID_INVAL_READ: 281 if (copy_from_user(&tinfo, 282 (struct hfi11_tid_info __user *)arg, 283 sizeof(tinfo))) 284 return -EFAULT; 285 286 ret = hfi1_user_exp_rcv_invalid(fp, &tinfo); 287 if (ret) 288 break; 289 addr = arg + offsetof(struct hfi1_tid_info, tidcnt); 290 if (copy_to_user((void __user *)addr, &tinfo.tidcnt, 291 sizeof(tinfo.tidcnt))) 292 ret = -EFAULT; 293 break; 294 295 case HFI1_IOCTL_RECV_CTRL: 296 ret = get_user(uval, (int __user *)arg); 297 if (ret != 0) 298 return -EFAULT; 299 ret = manage_rcvq(uctxt, fd->subctxt, uval); 300 break; 301 302 case HFI1_IOCTL_POLL_TYPE: 303 ret = get_user(uval, (int __user *)arg); 304 if (ret != 0) 305 return -EFAULT; 306 uctxt->poll_type = (typeof(uctxt->poll_type))uval; 307 break; 308 309 case HFI1_IOCTL_ACK_EVENT: 310 ret = get_user(ul_uval, (unsigned long __user *)arg); 311 if (ret != 0) 312 return -EFAULT; 313 ret = user_event_ack(uctxt, fd->subctxt, ul_uval); 314 break; 315 316 case HFI1_IOCTL_SET_PKEY: 317 ret = get_user(uval16, (u16 __user *)arg); 318 if (ret != 0) 319 return -EFAULT; 320 if (HFI1_CAP_IS_USET(PKEY_CHECK)) 321 ret = set_ctxt_pkey(uctxt, fd->subctxt, uval16); 322 else 323 return -EPERM; 324 break; 325 326 case HFI1_IOCTL_CTXT_RESET: { 327 struct send_context *sc; 328 struct hfi1_devdata *dd; 329 330 if (!uctxt || !uctxt->dd || !uctxt->sc) 331 return -EINVAL; 332 333 /* 334 * There is no protection here. User level has to 335 * guarantee that no one will be writing to the send 336 * context while it is being re-initialized. 337 * If user level breaks that guarantee, it will break 338 * it's own context and no one else's. 339 */ 340 dd = uctxt->dd; 341 sc = uctxt->sc; 342 /* 343 * Wait until the interrupt handler has marked the 344 * context as halted or frozen. Report error if we time 345 * out. 346 */ 347 wait_event_interruptible_timeout( 348 sc->halt_wait, (sc->flags & SCF_HALTED), 349 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT)); 350 if (!(sc->flags & SCF_HALTED)) 351 return -ENOLCK; 352 353 /* 354 * If the send context was halted due to a Freeze, 355 * wait until the device has been "unfrozen" before 356 * resetting the context. 357 */ 358 if (sc->flags & SCF_FROZEN) { 359 wait_event_interruptible_timeout( 360 dd->event_queue, 361 !(ACCESS_ONCE(dd->flags) & HFI1_FROZEN), 362 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT)); 363 if (dd->flags & HFI1_FROZEN) 364 return -ENOLCK; 365 366 if (dd->flags & HFI1_FORCED_FREEZE) 367 /* 368 * Don't allow context reset if we are into 369 * forced freeze 370 */ 371 return -ENODEV; 372 373 sc_disable(sc); 374 ret = sc_enable(sc); 375 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB, 376 uctxt->ctxt); 377 } else { 378 ret = sc_restart(sc); 379 } 380 if (!ret) 381 sc_return_credits(sc); 382 break; 383 } 384 385 case HFI1_IOCTL_GET_VERS: 386 uval = HFI1_USER_SWVERSION; 387 if (put_user(uval, (int __user *)arg)) 388 return -EFAULT; 389 break; 390 391 default: 392 return -EINVAL; 393 } 394 395 return ret; 396 } 397 398 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from) 399 { 400 struct hfi1_filedata *fd = kiocb->ki_filp->private_data; 401 struct hfi1_user_sdma_pkt_q *pq = fd->pq; 402 struct hfi1_user_sdma_comp_q *cq = fd->cq; 403 int done = 0, reqs = 0; 404 unsigned long dim = from->nr_segs; 405 406 if (!cq || !pq) 407 return -EIO; 408 409 if (!iter_is_iovec(from) || !dim) 410 return -EINVAL; 411 412 hfi1_cdbg(SDMA, "SDMA request from %u:%u (%lu)", 413 fd->uctxt->ctxt, fd->subctxt, dim); 414 415 if (atomic_read(&pq->n_reqs) == pq->n_max_reqs) 416 return -ENOSPC; 417 418 while (dim) { 419 int ret; 420 unsigned long count = 0; 421 422 ret = hfi1_user_sdma_process_request( 423 kiocb->ki_filp, (struct iovec *)(from->iov + done), 424 dim, &count); 425 if (ret) { 426 reqs = ret; 427 break; 428 } 429 dim -= count; 430 done += count; 431 reqs++; 432 } 433 434 return reqs; 435 } 436 437 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma) 438 { 439 struct hfi1_filedata *fd = fp->private_data; 440 struct hfi1_ctxtdata *uctxt = fd->uctxt; 441 struct hfi1_devdata *dd; 442 unsigned long flags, pfn; 443 u64 token = vma->vm_pgoff << PAGE_SHIFT, 444 memaddr = 0; 445 u8 subctxt, mapio = 0, vmf = 0, type; 446 ssize_t memlen = 0; 447 int ret = 0; 448 u16 ctxt; 449 450 if (!is_valid_mmap(token) || !uctxt || 451 !(vma->vm_flags & VM_SHARED)) { 452 ret = -EINVAL; 453 goto done; 454 } 455 dd = uctxt->dd; 456 ctxt = HFI1_MMAP_TOKEN_GET(CTXT, token); 457 subctxt = HFI1_MMAP_TOKEN_GET(SUBCTXT, token); 458 type = HFI1_MMAP_TOKEN_GET(TYPE, token); 459 if (ctxt != uctxt->ctxt || subctxt != fd->subctxt) { 460 ret = -EINVAL; 461 goto done; 462 } 463 464 flags = vma->vm_flags; 465 466 switch (type) { 467 case PIO_BUFS: 468 case PIO_BUFS_SOP: 469 memaddr = ((dd->physaddr + TXE_PIO_SEND) + 470 /* chip pio base */ 471 (uctxt->sc->hw_context * BIT(16))) + 472 /* 64K PIO space / ctxt */ 473 (type == PIO_BUFS_SOP ? 474 (TXE_PIO_SIZE / 2) : 0); /* sop? */ 475 /* 476 * Map only the amount allocated to the context, not the 477 * entire available context's PIO space. 478 */ 479 memlen = PAGE_ALIGN(uctxt->sc->credits * PIO_BLOCK_SIZE); 480 flags &= ~VM_MAYREAD; 481 flags |= VM_DONTCOPY | VM_DONTEXPAND; 482 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); 483 mapio = 1; 484 break; 485 case PIO_CRED: 486 if (flags & VM_WRITE) { 487 ret = -EPERM; 488 goto done; 489 } 490 /* 491 * The credit return location for this context could be on the 492 * second or third page allocated for credit returns (if number 493 * of enabled contexts > 64 and 128 respectively). 494 */ 495 memaddr = dd->cr_base[uctxt->numa_id].pa + 496 (((u64)uctxt->sc->hw_free - 497 (u64)dd->cr_base[uctxt->numa_id].va) & PAGE_MASK); 498 memlen = PAGE_SIZE; 499 flags &= ~VM_MAYWRITE; 500 flags |= VM_DONTCOPY | VM_DONTEXPAND; 501 /* 502 * The driver has already allocated memory for credit 503 * returns and programmed it into the chip. Has that 504 * memory been flagged as non-cached? 505 */ 506 /* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */ 507 mapio = 1; 508 break; 509 case RCV_HDRQ: 510 memaddr = uctxt->rcvhdrq_phys; 511 memlen = uctxt->rcvhdrq_size; 512 break; 513 case RCV_EGRBUF: { 514 unsigned long addr; 515 int i; 516 /* 517 * The RcvEgr buffer need to be handled differently 518 * as multiple non-contiguous pages need to be mapped 519 * into the user process. 520 */ 521 memlen = uctxt->egrbufs.size; 522 if ((vma->vm_end - vma->vm_start) != memlen) { 523 dd_dev_err(dd, "Eager buffer map size invalid (%lu != %lu)\n", 524 (vma->vm_end - vma->vm_start), memlen); 525 ret = -EINVAL; 526 goto done; 527 } 528 if (vma->vm_flags & VM_WRITE) { 529 ret = -EPERM; 530 goto done; 531 } 532 vma->vm_flags &= ~VM_MAYWRITE; 533 addr = vma->vm_start; 534 for (i = 0 ; i < uctxt->egrbufs.numbufs; i++) { 535 ret = remap_pfn_range( 536 vma, addr, 537 uctxt->egrbufs.buffers[i].phys >> PAGE_SHIFT, 538 uctxt->egrbufs.buffers[i].len, 539 vma->vm_page_prot); 540 if (ret < 0) 541 goto done; 542 addr += uctxt->egrbufs.buffers[i].len; 543 } 544 ret = 0; 545 goto done; 546 } 547 case UREGS: 548 /* 549 * Map only the page that contains this context's user 550 * registers. 551 */ 552 memaddr = (unsigned long) 553 (dd->physaddr + RXE_PER_CONTEXT_USER) 554 + (uctxt->ctxt * RXE_PER_CONTEXT_SIZE); 555 /* 556 * TidFlow table is on the same page as the rest of the 557 * user registers. 558 */ 559 memlen = PAGE_SIZE; 560 flags |= VM_DONTCOPY | VM_DONTEXPAND; 561 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 562 mapio = 1; 563 break; 564 case EVENTS: 565 /* 566 * Use the page where this context's flags are. User level 567 * knows where it's own bitmap is within the page. 568 */ 569 memaddr = (unsigned long)(dd->events + 570 ((uctxt->ctxt - dd->first_user_ctxt) * 571 HFI1_MAX_SHARED_CTXTS)) & PAGE_MASK; 572 memlen = PAGE_SIZE; 573 /* 574 * v3.7 removes VM_RESERVED but the effect is kept by 575 * using VM_IO. 576 */ 577 flags |= VM_IO | VM_DONTEXPAND; 578 vmf = 1; 579 break; 580 case STATUS: 581 memaddr = kvirt_to_phys((void *)dd->status); 582 memlen = PAGE_SIZE; 583 flags |= VM_IO | VM_DONTEXPAND; 584 break; 585 case RTAIL: 586 if (!HFI1_CAP_IS_USET(DMA_RTAIL)) { 587 /* 588 * If the memory allocation failed, the context alloc 589 * also would have failed, so we would never get here 590 */ 591 ret = -EINVAL; 592 goto done; 593 } 594 if (flags & VM_WRITE) { 595 ret = -EPERM; 596 goto done; 597 } 598 memaddr = uctxt->rcvhdrqtailaddr_phys; 599 memlen = PAGE_SIZE; 600 flags &= ~VM_MAYWRITE; 601 break; 602 case SUBCTXT_UREGS: 603 memaddr = (u64)uctxt->subctxt_uregbase; 604 memlen = PAGE_SIZE; 605 flags |= VM_IO | VM_DONTEXPAND; 606 vmf = 1; 607 break; 608 case SUBCTXT_RCV_HDRQ: 609 memaddr = (u64)uctxt->subctxt_rcvhdr_base; 610 memlen = uctxt->rcvhdrq_size * uctxt->subctxt_cnt; 611 flags |= VM_IO | VM_DONTEXPAND; 612 vmf = 1; 613 break; 614 case SUBCTXT_EGRBUF: 615 memaddr = (u64)uctxt->subctxt_rcvegrbuf; 616 memlen = uctxt->egrbufs.size * uctxt->subctxt_cnt; 617 flags |= VM_IO | VM_DONTEXPAND; 618 flags &= ~VM_MAYWRITE; 619 vmf = 1; 620 break; 621 case SDMA_COMP: { 622 struct hfi1_user_sdma_comp_q *cq = fd->cq; 623 624 if (!cq) { 625 ret = -EFAULT; 626 goto done; 627 } 628 memaddr = (u64)cq->comps; 629 memlen = PAGE_ALIGN(sizeof(*cq->comps) * cq->nentries); 630 flags |= VM_IO | VM_DONTEXPAND; 631 vmf = 1; 632 break; 633 } 634 default: 635 ret = -EINVAL; 636 break; 637 } 638 639 if ((vma->vm_end - vma->vm_start) != memlen) { 640 hfi1_cdbg(PROC, "%u:%u Memory size mismatch %lu:%lu", 641 uctxt->ctxt, fd->subctxt, 642 (vma->vm_end - vma->vm_start), memlen); 643 ret = -EINVAL; 644 goto done; 645 } 646 647 vma->vm_flags = flags; 648 hfi1_cdbg(PROC, 649 "%u:%u type:%u io/vf:%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx\n", 650 ctxt, subctxt, type, mapio, vmf, memaddr, memlen, 651 vma->vm_end - vma->vm_start, vma->vm_flags); 652 pfn = (unsigned long)(memaddr >> PAGE_SHIFT); 653 if (vmf) { 654 vma->vm_pgoff = pfn; 655 vma->vm_ops = &vm_ops; 656 ret = 0; 657 } else if (mapio) { 658 ret = io_remap_pfn_range(vma, vma->vm_start, pfn, memlen, 659 vma->vm_page_prot); 660 } else { 661 ret = remap_pfn_range(vma, vma->vm_start, pfn, memlen, 662 vma->vm_page_prot); 663 } 664 done: 665 return ret; 666 } 667 668 /* 669 * Local (non-chip) user memory is not mapped right away but as it is 670 * accessed by the user-level code. 671 */ 672 static int vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 673 { 674 struct page *page; 675 676 page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT)); 677 if (!page) 678 return VM_FAULT_SIGBUS; 679 680 get_page(page); 681 vmf->page = page; 682 683 return 0; 684 } 685 686 static unsigned int hfi1_poll(struct file *fp, struct poll_table_struct *pt) 687 { 688 struct hfi1_ctxtdata *uctxt; 689 unsigned pollflag; 690 691 uctxt = ((struct hfi1_filedata *)fp->private_data)->uctxt; 692 if (!uctxt) 693 pollflag = POLLERR; 694 else if (uctxt->poll_type == HFI1_POLL_TYPE_URGENT) 695 pollflag = poll_urgent(fp, pt); 696 else if (uctxt->poll_type == HFI1_POLL_TYPE_ANYRCV) 697 pollflag = poll_next(fp, pt); 698 else /* invalid */ 699 pollflag = POLLERR; 700 701 return pollflag; 702 } 703 704 static int hfi1_file_close(struct inode *inode, struct file *fp) 705 { 706 struct hfi1_filedata *fdata = fp->private_data; 707 struct hfi1_ctxtdata *uctxt = fdata->uctxt; 708 struct hfi1_devdata *dd = container_of(inode->i_cdev, 709 struct hfi1_devdata, 710 user_cdev); 711 unsigned long flags, *ev; 712 713 fp->private_data = NULL; 714 715 if (!uctxt) 716 goto done; 717 718 hfi1_cdbg(PROC, "freeing ctxt %u:%u", uctxt->ctxt, fdata->subctxt); 719 mutex_lock(&hfi1_mutex); 720 721 flush_wc(); 722 /* drain user sdma queue */ 723 hfi1_user_sdma_free_queues(fdata); 724 725 /* release the cpu */ 726 hfi1_put_proc_affinity(fdata->rec_cpu_num); 727 728 /* 729 * Clear any left over, unhandled events so the next process that 730 * gets this context doesn't get confused. 731 */ 732 ev = dd->events + ((uctxt->ctxt - dd->first_user_ctxt) * 733 HFI1_MAX_SHARED_CTXTS) + fdata->subctxt; 734 *ev = 0; 735 736 if (--uctxt->cnt) { 737 uctxt->active_slaves &= ~(1 << fdata->subctxt); 738 mutex_unlock(&hfi1_mutex); 739 goto done; 740 } 741 742 spin_lock_irqsave(&dd->uctxt_lock, flags); 743 /* 744 * Disable receive context and interrupt available, reset all 745 * RcvCtxtCtrl bits to default values. 746 */ 747 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS | 748 HFI1_RCVCTRL_TIDFLOW_DIS | 749 HFI1_RCVCTRL_INTRAVAIL_DIS | 750 HFI1_RCVCTRL_TAILUPD_DIS | 751 HFI1_RCVCTRL_ONE_PKT_EGR_DIS | 752 HFI1_RCVCTRL_NO_RHQ_DROP_DIS | 753 HFI1_RCVCTRL_NO_EGR_DROP_DIS, uctxt->ctxt); 754 /* Clear the context's J_KEY */ 755 hfi1_clear_ctxt_jkey(dd, uctxt->ctxt); 756 /* 757 * Reset context integrity checks to default. 758 * (writes to CSRs probably belong in chip.c) 759 */ 760 write_kctxt_csr(dd, uctxt->sc->hw_context, SEND_CTXT_CHECK_ENABLE, 761 hfi1_pkt_default_send_ctxt_mask(dd, uctxt->sc->type)); 762 sc_disable(uctxt->sc); 763 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 764 765 dd->rcd[uctxt->ctxt] = NULL; 766 767 hfi1_user_exp_rcv_free(fdata); 768 hfi1_clear_ctxt_pkey(dd, uctxt->ctxt); 769 770 uctxt->rcvwait_to = 0; 771 uctxt->piowait_to = 0; 772 uctxt->rcvnowait = 0; 773 uctxt->pionowait = 0; 774 uctxt->event_flags = 0; 775 776 hfi1_stats.sps_ctxts--; 777 if (++dd->freectxts == dd->num_user_contexts) 778 aspm_enable_all(dd); 779 mutex_unlock(&hfi1_mutex); 780 hfi1_free_ctxtdata(dd, uctxt); 781 done: 782 kobject_put(&dd->kobj); 783 kfree(fdata); 784 return 0; 785 } 786 787 /* 788 * Convert kernel *virtual* addresses to physical addresses. 789 * This is used to vmalloc'ed addresses. 790 */ 791 static u64 kvirt_to_phys(void *addr) 792 { 793 struct page *page; 794 u64 paddr = 0; 795 796 page = vmalloc_to_page(addr); 797 if (page) 798 paddr = page_to_pfn(page) << PAGE_SHIFT; 799 800 return paddr; 801 } 802 803 static int assign_ctxt(struct file *fp, struct hfi1_user_info *uinfo) 804 { 805 int i_minor, ret = 0; 806 unsigned int swmajor, swminor; 807 808 swmajor = uinfo->userversion >> 16; 809 if (swmajor != HFI1_USER_SWMAJOR) { 810 ret = -ENODEV; 811 goto done; 812 } 813 814 swminor = uinfo->userversion & 0xffff; 815 816 mutex_lock(&hfi1_mutex); 817 /* First, lets check if we need to setup a shared context? */ 818 if (uinfo->subctxt_cnt) { 819 struct hfi1_filedata *fd = fp->private_data; 820 821 ret = find_shared_ctxt(fp, uinfo); 822 if (ret < 0) 823 goto done_unlock; 824 if (ret) { 825 fd->rec_cpu_num = 826 hfi1_get_proc_affinity(fd->uctxt->numa_id); 827 } 828 } 829 830 /* 831 * We execute the following block if we couldn't find a 832 * shared context or if context sharing is not required. 833 */ 834 if (!ret) { 835 i_minor = iminor(file_inode(fp)) - HFI1_USER_MINOR_BASE; 836 ret = get_user_context(fp, uinfo, i_minor); 837 } 838 done_unlock: 839 mutex_unlock(&hfi1_mutex); 840 done: 841 return ret; 842 } 843 844 static int get_user_context(struct file *fp, struct hfi1_user_info *uinfo, 845 int devno) 846 { 847 struct hfi1_devdata *dd = NULL; 848 int devmax, npresent, nup; 849 850 devmax = hfi1_count_units(&npresent, &nup); 851 if (!npresent) 852 return -ENXIO; 853 854 if (!nup) 855 return -ENETDOWN; 856 857 dd = hfi1_lookup(devno); 858 if (!dd) 859 return -ENODEV; 860 else if (!dd->freectxts) 861 return -EBUSY; 862 863 return allocate_ctxt(fp, dd, uinfo); 864 } 865 866 static int find_shared_ctxt(struct file *fp, 867 const struct hfi1_user_info *uinfo) 868 { 869 int devmax, ndev, i; 870 int ret = 0; 871 struct hfi1_filedata *fd = fp->private_data; 872 873 devmax = hfi1_count_units(NULL, NULL); 874 875 for (ndev = 0; ndev < devmax; ndev++) { 876 struct hfi1_devdata *dd = hfi1_lookup(ndev); 877 878 if (!(dd && (dd->flags & HFI1_PRESENT) && dd->kregbase)) 879 continue; 880 for (i = dd->first_user_ctxt; i < dd->num_rcv_contexts; i++) { 881 struct hfi1_ctxtdata *uctxt = dd->rcd[i]; 882 883 /* Skip ctxts which are not yet open */ 884 if (!uctxt || !uctxt->cnt) 885 continue; 886 /* Skip ctxt if it doesn't match the requested one */ 887 if (memcmp(uctxt->uuid, uinfo->uuid, 888 sizeof(uctxt->uuid)) || 889 uctxt->jkey != generate_jkey(current_uid()) || 890 uctxt->subctxt_id != uinfo->subctxt_id || 891 uctxt->subctxt_cnt != uinfo->subctxt_cnt) 892 continue; 893 894 /* Verify the sharing process matches the master */ 895 if (uctxt->userversion != uinfo->userversion || 896 uctxt->cnt >= uctxt->subctxt_cnt) { 897 ret = -EINVAL; 898 goto done; 899 } 900 fd->uctxt = uctxt; 901 fd->subctxt = uctxt->cnt++; 902 uctxt->active_slaves |= 1 << fd->subctxt; 903 ret = 1; 904 goto done; 905 } 906 } 907 908 done: 909 return ret; 910 } 911 912 static int allocate_ctxt(struct file *fp, struct hfi1_devdata *dd, 913 struct hfi1_user_info *uinfo) 914 { 915 struct hfi1_filedata *fd = fp->private_data; 916 struct hfi1_ctxtdata *uctxt; 917 unsigned ctxt; 918 int ret, numa; 919 920 if (dd->flags & HFI1_FROZEN) { 921 /* 922 * Pick an error that is unique from all other errors 923 * that are returned so the user process knows that 924 * it tried to allocate while the SPC was frozen. It 925 * it should be able to retry with success in a short 926 * while. 927 */ 928 return -EIO; 929 } 930 931 for (ctxt = dd->first_user_ctxt; ctxt < dd->num_rcv_contexts; ctxt++) 932 if (!dd->rcd[ctxt]) 933 break; 934 935 if (ctxt == dd->num_rcv_contexts) 936 return -EBUSY; 937 938 /* 939 * If we don't have a NUMA node requested, preference is towards 940 * device NUMA node. 941 */ 942 fd->rec_cpu_num = hfi1_get_proc_affinity(dd->node); 943 if (fd->rec_cpu_num != -1) 944 numa = cpu_to_node(fd->rec_cpu_num); 945 else 946 numa = numa_node_id(); 947 uctxt = hfi1_create_ctxtdata(dd->pport, ctxt, numa); 948 if (!uctxt) { 949 dd_dev_err(dd, 950 "Unable to allocate ctxtdata memory, failing open\n"); 951 return -ENOMEM; 952 } 953 hfi1_cdbg(PROC, "[%u:%u] pid %u assigned to CPU %d (NUMA %u)", 954 uctxt->ctxt, fd->subctxt, current->pid, fd->rec_cpu_num, 955 uctxt->numa_id); 956 957 /* 958 * Allocate and enable a PIO send context. 959 */ 960 uctxt->sc = sc_alloc(dd, SC_USER, uctxt->rcvhdrqentsize, 961 uctxt->dd->node); 962 if (!uctxt->sc) 963 return -ENOMEM; 964 965 hfi1_cdbg(PROC, "allocated send context %u(%u)\n", uctxt->sc->sw_index, 966 uctxt->sc->hw_context); 967 ret = sc_enable(uctxt->sc); 968 if (ret) 969 return ret; 970 /* 971 * Setup shared context resources if the user-level has requested 972 * shared contexts and this is the 'master' process. 973 * This has to be done here so the rest of the sub-contexts find the 974 * proper master. 975 */ 976 if (uinfo->subctxt_cnt && !fd->subctxt) { 977 ret = init_subctxts(uctxt, uinfo); 978 /* 979 * On error, we don't need to disable and de-allocate the 980 * send context because it will be done during file close 981 */ 982 if (ret) 983 return ret; 984 } 985 uctxt->userversion = uinfo->userversion; 986 uctxt->flags = hfi1_cap_mask; /* save current flag state */ 987 init_waitqueue_head(&uctxt->wait); 988 strlcpy(uctxt->comm, current->comm, sizeof(uctxt->comm)); 989 memcpy(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)); 990 uctxt->jkey = generate_jkey(current_uid()); 991 INIT_LIST_HEAD(&uctxt->sdma_queues); 992 spin_lock_init(&uctxt->sdma_qlock); 993 hfi1_stats.sps_ctxts++; 994 /* 995 * Disable ASPM when there are open user/PSM contexts to avoid 996 * issues with ASPM L1 exit latency 997 */ 998 if (dd->freectxts-- == dd->num_user_contexts) 999 aspm_disable_all(dd); 1000 fd->uctxt = uctxt; 1001 1002 return 0; 1003 } 1004 1005 static int init_subctxts(struct hfi1_ctxtdata *uctxt, 1006 const struct hfi1_user_info *uinfo) 1007 { 1008 unsigned num_subctxts; 1009 1010 num_subctxts = uinfo->subctxt_cnt; 1011 if (num_subctxts > HFI1_MAX_SHARED_CTXTS) 1012 return -EINVAL; 1013 1014 uctxt->subctxt_cnt = uinfo->subctxt_cnt; 1015 uctxt->subctxt_id = uinfo->subctxt_id; 1016 uctxt->active_slaves = 1; 1017 uctxt->redirect_seq_cnt = 1; 1018 set_bit(HFI1_CTXT_MASTER_UNINIT, &uctxt->event_flags); 1019 1020 return 0; 1021 } 1022 1023 static int setup_subctxt(struct hfi1_ctxtdata *uctxt) 1024 { 1025 int ret = 0; 1026 unsigned num_subctxts = uctxt->subctxt_cnt; 1027 1028 uctxt->subctxt_uregbase = vmalloc_user(PAGE_SIZE); 1029 if (!uctxt->subctxt_uregbase) { 1030 ret = -ENOMEM; 1031 goto bail; 1032 } 1033 /* We can take the size of the RcvHdr Queue from the master */ 1034 uctxt->subctxt_rcvhdr_base = vmalloc_user(uctxt->rcvhdrq_size * 1035 num_subctxts); 1036 if (!uctxt->subctxt_rcvhdr_base) { 1037 ret = -ENOMEM; 1038 goto bail_ureg; 1039 } 1040 1041 uctxt->subctxt_rcvegrbuf = vmalloc_user(uctxt->egrbufs.size * 1042 num_subctxts); 1043 if (!uctxt->subctxt_rcvegrbuf) { 1044 ret = -ENOMEM; 1045 goto bail_rhdr; 1046 } 1047 goto bail; 1048 bail_rhdr: 1049 vfree(uctxt->subctxt_rcvhdr_base); 1050 bail_ureg: 1051 vfree(uctxt->subctxt_uregbase); 1052 uctxt->subctxt_uregbase = NULL; 1053 bail: 1054 return ret; 1055 } 1056 1057 static int user_init(struct file *fp) 1058 { 1059 unsigned int rcvctrl_ops = 0; 1060 struct hfi1_filedata *fd = fp->private_data; 1061 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1062 1063 /* make sure that the context has already been setup */ 1064 if (!test_bit(HFI1_CTXT_SETUP_DONE, &uctxt->event_flags)) 1065 return -EFAULT; 1066 1067 /* initialize poll variables... */ 1068 uctxt->urgent = 0; 1069 uctxt->urgent_poll = 0; 1070 1071 /* 1072 * Now enable the ctxt for receive. 1073 * For chips that are set to DMA the tail register to memory 1074 * when they change (and when the update bit transitions from 1075 * 0 to 1. So for those chips, we turn it off and then back on. 1076 * This will (very briefly) affect any other open ctxts, but the 1077 * duration is very short, and therefore isn't an issue. We 1078 * explicitly set the in-memory tail copy to 0 beforehand, so we 1079 * don't have to wait to be sure the DMA update has happened 1080 * (chip resets head/tail to 0 on transition to enable). 1081 */ 1082 if (uctxt->rcvhdrtail_kvaddr) 1083 clear_rcvhdrtail(uctxt); 1084 1085 /* Setup J_KEY before enabling the context */ 1086 hfi1_set_ctxt_jkey(uctxt->dd, uctxt->ctxt, uctxt->jkey); 1087 1088 rcvctrl_ops = HFI1_RCVCTRL_CTXT_ENB; 1089 if (HFI1_CAP_UGET_MASK(uctxt->flags, HDRSUPP)) 1090 rcvctrl_ops |= HFI1_RCVCTRL_TIDFLOW_ENB; 1091 /* 1092 * Ignore the bit in the flags for now until proper 1093 * support for multiple packet per rcv array entry is 1094 * added. 1095 */ 1096 if (!HFI1_CAP_UGET_MASK(uctxt->flags, MULTI_PKT_EGR)) 1097 rcvctrl_ops |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB; 1098 if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_EGR_FULL)) 1099 rcvctrl_ops |= HFI1_RCVCTRL_NO_EGR_DROP_ENB; 1100 if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_RHQ_FULL)) 1101 rcvctrl_ops |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB; 1102 /* 1103 * The RcvCtxtCtrl.TailUpd bit has to be explicitly written. 1104 * We can't rely on the correct value to be set from prior 1105 * uses of the chip or ctxt. Therefore, add the rcvctrl op 1106 * for both cases. 1107 */ 1108 if (HFI1_CAP_UGET_MASK(uctxt->flags, DMA_RTAIL)) 1109 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_ENB; 1110 else 1111 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_DIS; 1112 hfi1_rcvctrl(uctxt->dd, rcvctrl_ops, uctxt->ctxt); 1113 1114 /* Notify any waiting slaves */ 1115 if (uctxt->subctxt_cnt) { 1116 clear_bit(HFI1_CTXT_MASTER_UNINIT, &uctxt->event_flags); 1117 wake_up(&uctxt->wait); 1118 } 1119 1120 return 0; 1121 } 1122 1123 static int get_ctxt_info(struct file *fp, void __user *ubase, __u32 len) 1124 { 1125 struct hfi1_ctxt_info cinfo; 1126 struct hfi1_filedata *fd = fp->private_data; 1127 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1128 int ret = 0; 1129 1130 memset(&cinfo, 0, sizeof(cinfo)); 1131 cinfo.runtime_flags = (((uctxt->flags >> HFI1_CAP_MISC_SHIFT) & 1132 HFI1_CAP_MISC_MASK) << HFI1_CAP_USER_SHIFT) | 1133 HFI1_CAP_UGET_MASK(uctxt->flags, MASK) | 1134 HFI1_CAP_KGET_MASK(uctxt->flags, K2U); 1135 /* adjust flag if this fd is not able to cache */ 1136 if (!fd->handler) 1137 cinfo.runtime_flags |= HFI1_CAP_TID_UNMAP; /* no caching */ 1138 1139 cinfo.num_active = hfi1_count_active_units(); 1140 cinfo.unit = uctxt->dd->unit; 1141 cinfo.ctxt = uctxt->ctxt; 1142 cinfo.subctxt = fd->subctxt; 1143 cinfo.rcvtids = roundup(uctxt->egrbufs.alloced, 1144 uctxt->dd->rcv_entries.group_size) + 1145 uctxt->expected_count; 1146 cinfo.credits = uctxt->sc->credits; 1147 cinfo.numa_node = uctxt->numa_id; 1148 cinfo.rec_cpu = fd->rec_cpu_num; 1149 cinfo.send_ctxt = uctxt->sc->hw_context; 1150 1151 cinfo.egrtids = uctxt->egrbufs.alloced; 1152 cinfo.rcvhdrq_cnt = uctxt->rcvhdrq_cnt; 1153 cinfo.rcvhdrq_entsize = uctxt->rcvhdrqentsize << 2; 1154 cinfo.sdma_ring_size = fd->cq->nentries; 1155 cinfo.rcvegr_size = uctxt->egrbufs.rcvtid_size; 1156 1157 trace_hfi1_ctxt_info(uctxt->dd, uctxt->ctxt, fd->subctxt, cinfo); 1158 if (copy_to_user(ubase, &cinfo, sizeof(cinfo))) 1159 ret = -EFAULT; 1160 1161 return ret; 1162 } 1163 1164 static int setup_ctxt(struct file *fp) 1165 { 1166 struct hfi1_filedata *fd = fp->private_data; 1167 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1168 struct hfi1_devdata *dd = uctxt->dd; 1169 int ret = 0; 1170 1171 /* 1172 * Context should be set up only once, including allocation and 1173 * programming of eager buffers. This is done if context sharing 1174 * is not requested or by the master process. 1175 */ 1176 if (!uctxt->subctxt_cnt || !fd->subctxt) { 1177 ret = hfi1_init_ctxt(uctxt->sc); 1178 if (ret) 1179 goto done; 1180 1181 /* Now allocate the RcvHdr queue and eager buffers. */ 1182 ret = hfi1_create_rcvhdrq(dd, uctxt); 1183 if (ret) 1184 goto done; 1185 ret = hfi1_setup_eagerbufs(uctxt); 1186 if (ret) 1187 goto done; 1188 if (uctxt->subctxt_cnt && !fd->subctxt) { 1189 ret = setup_subctxt(uctxt); 1190 if (ret) 1191 goto done; 1192 } 1193 } else { 1194 ret = wait_event_interruptible(uctxt->wait, !test_bit( 1195 HFI1_CTXT_MASTER_UNINIT, 1196 &uctxt->event_flags)); 1197 if (ret) 1198 goto done; 1199 } 1200 1201 ret = hfi1_user_sdma_alloc_queues(uctxt, fp); 1202 if (ret) 1203 goto done; 1204 /* 1205 * Expected receive has to be setup for all processes (including 1206 * shared contexts). However, it has to be done after the master 1207 * context has been fully configured as it depends on the 1208 * eager/expected split of the RcvArray entries. 1209 * Setting it up here ensures that the subcontexts will be waiting 1210 * (due to the above wait_event_interruptible() until the master 1211 * is setup. 1212 */ 1213 ret = hfi1_user_exp_rcv_init(fp); 1214 if (ret) 1215 goto done; 1216 1217 set_bit(HFI1_CTXT_SETUP_DONE, &uctxt->event_flags); 1218 done: 1219 return ret; 1220 } 1221 1222 static int get_base_info(struct file *fp, void __user *ubase, __u32 len) 1223 { 1224 struct hfi1_base_info binfo; 1225 struct hfi1_filedata *fd = fp->private_data; 1226 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1227 struct hfi1_devdata *dd = uctxt->dd; 1228 ssize_t sz; 1229 unsigned offset; 1230 int ret = 0; 1231 1232 trace_hfi1_uctxtdata(uctxt->dd, uctxt); 1233 1234 memset(&binfo, 0, sizeof(binfo)); 1235 binfo.hw_version = dd->revision; 1236 binfo.sw_version = HFI1_KERN_SWVERSION; 1237 binfo.bthqp = kdeth_qp; 1238 binfo.jkey = uctxt->jkey; 1239 /* 1240 * If more than 64 contexts are enabled the allocated credit 1241 * return will span two or three contiguous pages. Since we only 1242 * map the page containing the context's credit return address, 1243 * we need to calculate the offset in the proper page. 1244 */ 1245 offset = ((u64)uctxt->sc->hw_free - 1246 (u64)dd->cr_base[uctxt->numa_id].va) % PAGE_SIZE; 1247 binfo.sc_credits_addr = HFI1_MMAP_TOKEN(PIO_CRED, uctxt->ctxt, 1248 fd->subctxt, offset); 1249 binfo.pio_bufbase = HFI1_MMAP_TOKEN(PIO_BUFS, uctxt->ctxt, 1250 fd->subctxt, 1251 uctxt->sc->base_addr); 1252 binfo.pio_bufbase_sop = HFI1_MMAP_TOKEN(PIO_BUFS_SOP, 1253 uctxt->ctxt, 1254 fd->subctxt, 1255 uctxt->sc->base_addr); 1256 binfo.rcvhdr_bufbase = HFI1_MMAP_TOKEN(RCV_HDRQ, uctxt->ctxt, 1257 fd->subctxt, 1258 uctxt->rcvhdrq); 1259 binfo.rcvegr_bufbase = HFI1_MMAP_TOKEN(RCV_EGRBUF, uctxt->ctxt, 1260 fd->subctxt, 1261 uctxt->egrbufs.rcvtids[0].phys); 1262 binfo.sdma_comp_bufbase = HFI1_MMAP_TOKEN(SDMA_COMP, uctxt->ctxt, 1263 fd->subctxt, 0); 1264 /* 1265 * user regs are at 1266 * (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE)) 1267 */ 1268 binfo.user_regbase = HFI1_MMAP_TOKEN(UREGS, uctxt->ctxt, 1269 fd->subctxt, 0); 1270 offset = offset_in_page((((uctxt->ctxt - dd->first_user_ctxt) * 1271 HFI1_MAX_SHARED_CTXTS) + fd->subctxt) * 1272 sizeof(*dd->events)); 1273 binfo.events_bufbase = HFI1_MMAP_TOKEN(EVENTS, uctxt->ctxt, 1274 fd->subctxt, 1275 offset); 1276 binfo.status_bufbase = HFI1_MMAP_TOKEN(STATUS, uctxt->ctxt, 1277 fd->subctxt, 1278 dd->status); 1279 if (HFI1_CAP_IS_USET(DMA_RTAIL)) 1280 binfo.rcvhdrtail_base = HFI1_MMAP_TOKEN(RTAIL, uctxt->ctxt, 1281 fd->subctxt, 0); 1282 if (uctxt->subctxt_cnt) { 1283 binfo.subctxt_uregbase = HFI1_MMAP_TOKEN(SUBCTXT_UREGS, 1284 uctxt->ctxt, 1285 fd->subctxt, 0); 1286 binfo.subctxt_rcvhdrbuf = HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ, 1287 uctxt->ctxt, 1288 fd->subctxt, 0); 1289 binfo.subctxt_rcvegrbuf = HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF, 1290 uctxt->ctxt, 1291 fd->subctxt, 0); 1292 } 1293 sz = (len < sizeof(binfo)) ? len : sizeof(binfo); 1294 if (copy_to_user(ubase, &binfo, sz)) 1295 ret = -EFAULT; 1296 return ret; 1297 } 1298 1299 static unsigned int poll_urgent(struct file *fp, 1300 struct poll_table_struct *pt) 1301 { 1302 struct hfi1_filedata *fd = fp->private_data; 1303 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1304 struct hfi1_devdata *dd = uctxt->dd; 1305 unsigned pollflag; 1306 1307 poll_wait(fp, &uctxt->wait, pt); 1308 1309 spin_lock_irq(&dd->uctxt_lock); 1310 if (uctxt->urgent != uctxt->urgent_poll) { 1311 pollflag = POLLIN | POLLRDNORM; 1312 uctxt->urgent_poll = uctxt->urgent; 1313 } else { 1314 pollflag = 0; 1315 set_bit(HFI1_CTXT_WAITING_URG, &uctxt->event_flags); 1316 } 1317 spin_unlock_irq(&dd->uctxt_lock); 1318 1319 return pollflag; 1320 } 1321 1322 static unsigned int poll_next(struct file *fp, 1323 struct poll_table_struct *pt) 1324 { 1325 struct hfi1_filedata *fd = fp->private_data; 1326 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1327 struct hfi1_devdata *dd = uctxt->dd; 1328 unsigned pollflag; 1329 1330 poll_wait(fp, &uctxt->wait, pt); 1331 1332 spin_lock_irq(&dd->uctxt_lock); 1333 if (hdrqempty(uctxt)) { 1334 set_bit(HFI1_CTXT_WAITING_RCV, &uctxt->event_flags); 1335 hfi1_rcvctrl(dd, HFI1_RCVCTRL_INTRAVAIL_ENB, uctxt->ctxt); 1336 pollflag = 0; 1337 } else { 1338 pollflag = POLLIN | POLLRDNORM; 1339 } 1340 spin_unlock_irq(&dd->uctxt_lock); 1341 1342 return pollflag; 1343 } 1344 1345 /* 1346 * Find all user contexts in use, and set the specified bit in their 1347 * event mask. 1348 * See also find_ctxt() for a similar use, that is specific to send buffers. 1349 */ 1350 int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit) 1351 { 1352 struct hfi1_ctxtdata *uctxt; 1353 struct hfi1_devdata *dd = ppd->dd; 1354 unsigned ctxt; 1355 int ret = 0; 1356 unsigned long flags; 1357 1358 if (!dd->events) { 1359 ret = -EINVAL; 1360 goto done; 1361 } 1362 1363 spin_lock_irqsave(&dd->uctxt_lock, flags); 1364 for (ctxt = dd->first_user_ctxt; ctxt < dd->num_rcv_contexts; 1365 ctxt++) { 1366 uctxt = dd->rcd[ctxt]; 1367 if (uctxt) { 1368 unsigned long *evs = dd->events + 1369 (uctxt->ctxt - dd->first_user_ctxt) * 1370 HFI1_MAX_SHARED_CTXTS; 1371 int i; 1372 /* 1373 * subctxt_cnt is 0 if not shared, so do base 1374 * separately, first, then remaining subctxt, if any 1375 */ 1376 set_bit(evtbit, evs); 1377 for (i = 1; i < uctxt->subctxt_cnt; i++) 1378 set_bit(evtbit, evs + i); 1379 } 1380 } 1381 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 1382 done: 1383 return ret; 1384 } 1385 1386 /** 1387 * manage_rcvq - manage a context's receive queue 1388 * @uctxt: the context 1389 * @subctxt: the sub-context 1390 * @start_stop: action to carry out 1391 * 1392 * start_stop == 0 disables receive on the context, for use in queue 1393 * overflow conditions. start_stop==1 re-enables, to be used to 1394 * re-init the software copy of the head register 1395 */ 1396 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, unsigned subctxt, 1397 int start_stop) 1398 { 1399 struct hfi1_devdata *dd = uctxt->dd; 1400 unsigned int rcvctrl_op; 1401 1402 if (subctxt) 1403 goto bail; 1404 /* atomically clear receive enable ctxt. */ 1405 if (start_stop) { 1406 /* 1407 * On enable, force in-memory copy of the tail register to 1408 * 0, so that protocol code doesn't have to worry about 1409 * whether or not the chip has yet updated the in-memory 1410 * copy or not on return from the system call. The chip 1411 * always resets it's tail register back to 0 on a 1412 * transition from disabled to enabled. 1413 */ 1414 if (uctxt->rcvhdrtail_kvaddr) 1415 clear_rcvhdrtail(uctxt); 1416 rcvctrl_op = HFI1_RCVCTRL_CTXT_ENB; 1417 } else { 1418 rcvctrl_op = HFI1_RCVCTRL_CTXT_DIS; 1419 } 1420 hfi1_rcvctrl(dd, rcvctrl_op, uctxt->ctxt); 1421 /* always; new head should be equal to new tail; see above */ 1422 bail: 1423 return 0; 1424 } 1425 1426 /* 1427 * clear the event notifier events for this context. 1428 * User process then performs actions appropriate to bit having been 1429 * set, if desired, and checks again in future. 1430 */ 1431 static int user_event_ack(struct hfi1_ctxtdata *uctxt, int subctxt, 1432 unsigned long events) 1433 { 1434 int i; 1435 struct hfi1_devdata *dd = uctxt->dd; 1436 unsigned long *evs; 1437 1438 if (!dd->events) 1439 return 0; 1440 1441 evs = dd->events + ((uctxt->ctxt - dd->first_user_ctxt) * 1442 HFI1_MAX_SHARED_CTXTS) + subctxt; 1443 1444 for (i = 0; i <= _HFI1_MAX_EVENT_BIT; i++) { 1445 if (!test_bit(i, &events)) 1446 continue; 1447 clear_bit(i, evs); 1448 } 1449 return 0; 1450 } 1451 1452 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned subctxt, 1453 u16 pkey) 1454 { 1455 int ret = -ENOENT, i, intable = 0; 1456 struct hfi1_pportdata *ppd = uctxt->ppd; 1457 struct hfi1_devdata *dd = uctxt->dd; 1458 1459 if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY) { 1460 ret = -EINVAL; 1461 goto done; 1462 } 1463 1464 for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) 1465 if (pkey == ppd->pkeys[i]) { 1466 intable = 1; 1467 break; 1468 } 1469 1470 if (intable) 1471 ret = hfi1_set_ctxt_pkey(dd, uctxt->ctxt, pkey); 1472 done: 1473 return ret; 1474 } 1475 1476 static void user_remove(struct hfi1_devdata *dd) 1477 { 1478 1479 hfi1_cdev_cleanup(&dd->user_cdev, &dd->user_device); 1480 } 1481 1482 static int user_add(struct hfi1_devdata *dd) 1483 { 1484 char name[10]; 1485 int ret; 1486 1487 snprintf(name, sizeof(name), "%s_%d", class_name(), dd->unit); 1488 ret = hfi1_cdev_init(dd->unit, name, &hfi1_file_ops, 1489 &dd->user_cdev, &dd->user_device, 1490 true, &dd->kobj); 1491 if (ret) 1492 user_remove(dd); 1493 1494 return ret; 1495 } 1496 1497 /* 1498 * Create per-unit files in /dev 1499 */ 1500 int hfi1_device_create(struct hfi1_devdata *dd) 1501 { 1502 return user_add(dd); 1503 } 1504 1505 /* 1506 * Remove per-unit files in /dev 1507 * void, core kernel returns no errors for this stuff 1508 */ 1509 void hfi1_device_remove(struct hfi1_devdata *dd) 1510 { 1511 user_remove(dd); 1512 } 1513