1 /*
2  * Copyright(c) 2015, 2016 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 #include <linux/poll.h>
48 #include <linux/cdev.h>
49 #include <linux/vmalloc.h>
50 #include <linux/io.h>
51 
52 #include <rdma/ib.h>
53 
54 #include "hfi.h"
55 #include "pio.h"
56 #include "device.h"
57 #include "common.h"
58 #include "trace.h"
59 #include "user_sdma.h"
60 #include "user_exp_rcv.h"
61 #include "eprom.h"
62 #include "aspm.h"
63 #include "mmu_rb.h"
64 
65 #undef pr_fmt
66 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
67 
68 #define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */
69 
70 /*
71  * File operation functions
72  */
73 static int hfi1_file_open(struct inode *, struct file *);
74 static int hfi1_file_close(struct inode *, struct file *);
75 static ssize_t hfi1_write_iter(struct kiocb *, struct iov_iter *);
76 static unsigned int hfi1_poll(struct file *, struct poll_table_struct *);
77 static int hfi1_file_mmap(struct file *, struct vm_area_struct *);
78 
79 static u64 kvirt_to_phys(void *);
80 static int assign_ctxt(struct file *, struct hfi1_user_info *);
81 static int init_subctxts(struct hfi1_ctxtdata *, const struct hfi1_user_info *);
82 static int user_init(struct file *);
83 static int get_ctxt_info(struct file *, void __user *, __u32);
84 static int get_base_info(struct file *, void __user *, __u32);
85 static int setup_ctxt(struct file *);
86 static int setup_subctxt(struct hfi1_ctxtdata *);
87 static int get_user_context(struct file *, struct hfi1_user_info *, int);
88 static int find_shared_ctxt(struct file *, const struct hfi1_user_info *);
89 static int allocate_ctxt(struct file *, struct hfi1_devdata *,
90 			 struct hfi1_user_info *);
91 static unsigned int poll_urgent(struct file *, struct poll_table_struct *);
92 static unsigned int poll_next(struct file *, struct poll_table_struct *);
93 static int user_event_ack(struct hfi1_ctxtdata *, int, unsigned long);
94 static int set_ctxt_pkey(struct hfi1_ctxtdata *, unsigned, u16);
95 static int manage_rcvq(struct hfi1_ctxtdata *, unsigned, int);
96 static int vma_fault(struct vm_area_struct *, struct vm_fault *);
97 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
98 			    unsigned long arg);
99 
100 static const struct file_operations hfi1_file_ops = {
101 	.owner = THIS_MODULE,
102 	.write_iter = hfi1_write_iter,
103 	.open = hfi1_file_open,
104 	.release = hfi1_file_close,
105 	.unlocked_ioctl = hfi1_file_ioctl,
106 	.poll = hfi1_poll,
107 	.mmap = hfi1_file_mmap,
108 	.llseek = noop_llseek,
109 };
110 
111 static struct vm_operations_struct vm_ops = {
112 	.fault = vma_fault,
113 };
114 
115 /*
116  * Types of memories mapped into user processes' space
117  */
118 enum mmap_types {
119 	PIO_BUFS = 1,
120 	PIO_BUFS_SOP,
121 	PIO_CRED,
122 	RCV_HDRQ,
123 	RCV_EGRBUF,
124 	UREGS,
125 	EVENTS,
126 	STATUS,
127 	RTAIL,
128 	SUBCTXT_UREGS,
129 	SUBCTXT_RCV_HDRQ,
130 	SUBCTXT_EGRBUF,
131 	SDMA_COMP
132 };
133 
134 /*
135  * Masks and offsets defining the mmap tokens
136  */
137 #define HFI1_MMAP_OFFSET_MASK   0xfffULL
138 #define HFI1_MMAP_OFFSET_SHIFT  0
139 #define HFI1_MMAP_SUBCTXT_MASK  0xfULL
140 #define HFI1_MMAP_SUBCTXT_SHIFT 12
141 #define HFI1_MMAP_CTXT_MASK     0xffULL
142 #define HFI1_MMAP_CTXT_SHIFT    16
143 #define HFI1_MMAP_TYPE_MASK     0xfULL
144 #define HFI1_MMAP_TYPE_SHIFT    24
145 #define HFI1_MMAP_MAGIC_MASK    0xffffffffULL
146 #define HFI1_MMAP_MAGIC_SHIFT   32
147 
148 #define HFI1_MMAP_MAGIC         0xdabbad00
149 
150 #define HFI1_MMAP_TOKEN_SET(field, val)	\
151 	(((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT)
152 #define HFI1_MMAP_TOKEN_GET(field, token) \
153 	(((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK)
154 #define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr)   \
155 	(HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \
156 	HFI1_MMAP_TOKEN_SET(TYPE, type) | \
157 	HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \
158 	HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \
159 	HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr))))
160 
161 #define dbg(fmt, ...)				\
162 	pr_info(fmt, ##__VA_ARGS__)
163 
164 static inline int is_valid_mmap(u64 token)
165 {
166 	return (HFI1_MMAP_TOKEN_GET(MAGIC, token) == HFI1_MMAP_MAGIC);
167 }
168 
169 static int hfi1_file_open(struct inode *inode, struct file *fp)
170 {
171 	struct hfi1_devdata *dd = container_of(inode->i_cdev,
172 					       struct hfi1_devdata,
173 					       user_cdev);
174 
175 	/* Just take a ref now. Not all opens result in a context assign */
176 	kobject_get(&dd->kobj);
177 
178 	/* The real work is performed later in assign_ctxt() */
179 	fp->private_data = kzalloc(sizeof(struct hfi1_filedata), GFP_KERNEL);
180 	if (fp->private_data) /* no cpu affinity by default */
181 		((struct hfi1_filedata *)fp->private_data)->rec_cpu_num = -1;
182 	return fp->private_data ? 0 : -ENOMEM;
183 }
184 
185 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
186 			    unsigned long arg)
187 {
188 	struct hfi1_filedata *fd = fp->private_data;
189 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
190 	struct hfi1_user_info uinfo;
191 	struct hfi1_tid_info tinfo;
192 	int ret = 0;
193 	unsigned long addr;
194 	int uval = 0;
195 	unsigned long ul_uval = 0;
196 	u16 uval16 = 0;
197 
198 	hfi1_cdbg(IOCTL, "IOCTL recv: 0x%x", cmd);
199 	if (cmd != HFI1_IOCTL_ASSIGN_CTXT &&
200 	    cmd != HFI1_IOCTL_GET_VERS &&
201 	    !uctxt)
202 		return -EINVAL;
203 
204 	switch (cmd) {
205 	case HFI1_IOCTL_ASSIGN_CTXT:
206 		if (uctxt)
207 			return -EINVAL;
208 
209 		if (copy_from_user(&uinfo,
210 				   (struct hfi1_user_info __user *)arg,
211 				   sizeof(uinfo)))
212 			return -EFAULT;
213 
214 		ret = assign_ctxt(fp, &uinfo);
215 		if (ret < 0)
216 			return ret;
217 		setup_ctxt(fp);
218 		if (ret)
219 			return ret;
220 		ret = user_init(fp);
221 		break;
222 	case HFI1_IOCTL_CTXT_INFO:
223 		ret = get_ctxt_info(fp, (void __user *)(unsigned long)arg,
224 				    sizeof(struct hfi1_ctxt_info));
225 		break;
226 	case HFI1_IOCTL_USER_INFO:
227 		ret = get_base_info(fp, (void __user *)(unsigned long)arg,
228 				    sizeof(struct hfi1_base_info));
229 		break;
230 	case HFI1_IOCTL_CREDIT_UPD:
231 		if (uctxt && uctxt->sc)
232 			sc_return_credits(uctxt->sc);
233 		break;
234 
235 	case HFI1_IOCTL_TID_UPDATE:
236 		if (copy_from_user(&tinfo,
237 				   (struct hfi11_tid_info __user *)arg,
238 				   sizeof(tinfo)))
239 			return -EFAULT;
240 
241 		ret = hfi1_user_exp_rcv_setup(fp, &tinfo);
242 		if (!ret) {
243 			/*
244 			 * Copy the number of tidlist entries we used
245 			 * and the length of the buffer we registered.
246 			 * These fields are adjacent in the structure so
247 			 * we can copy them at the same time.
248 			 */
249 			addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
250 			if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
251 					 sizeof(tinfo.tidcnt) +
252 					 sizeof(tinfo.length)))
253 				ret = -EFAULT;
254 		}
255 		break;
256 
257 	case HFI1_IOCTL_TID_FREE:
258 		if (copy_from_user(&tinfo,
259 				   (struct hfi11_tid_info __user *)arg,
260 				   sizeof(tinfo)))
261 			return -EFAULT;
262 
263 		ret = hfi1_user_exp_rcv_clear(fp, &tinfo);
264 		if (ret)
265 			break;
266 		addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
267 		if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
268 				 sizeof(tinfo.tidcnt)))
269 			ret = -EFAULT;
270 		break;
271 
272 	case HFI1_IOCTL_TID_INVAL_READ:
273 		if (copy_from_user(&tinfo,
274 				   (struct hfi11_tid_info __user *)arg,
275 				   sizeof(tinfo)))
276 			return -EFAULT;
277 
278 		ret = hfi1_user_exp_rcv_invalid(fp, &tinfo);
279 		if (ret)
280 			break;
281 		addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
282 		if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
283 				 sizeof(tinfo.tidcnt)))
284 			ret = -EFAULT;
285 		break;
286 
287 	case HFI1_IOCTL_RECV_CTRL:
288 		ret = get_user(uval, (int __user *)arg);
289 		if (ret != 0)
290 			return -EFAULT;
291 		ret = manage_rcvq(uctxt, fd->subctxt, uval);
292 		break;
293 
294 	case HFI1_IOCTL_POLL_TYPE:
295 		ret = get_user(uval, (int __user *)arg);
296 		if (ret != 0)
297 			return -EFAULT;
298 		uctxt->poll_type = (typeof(uctxt->poll_type))uval;
299 		break;
300 
301 	case HFI1_IOCTL_ACK_EVENT:
302 		ret = get_user(ul_uval, (unsigned long __user *)arg);
303 		if (ret != 0)
304 			return -EFAULT;
305 		ret = user_event_ack(uctxt, fd->subctxt, ul_uval);
306 		break;
307 
308 	case HFI1_IOCTL_SET_PKEY:
309 		ret = get_user(uval16, (u16 __user *)arg);
310 		if (ret != 0)
311 			return -EFAULT;
312 		if (HFI1_CAP_IS_USET(PKEY_CHECK))
313 			ret = set_ctxt_pkey(uctxt, fd->subctxt, uval16);
314 		else
315 			return -EPERM;
316 		break;
317 
318 	case HFI1_IOCTL_CTXT_RESET: {
319 		struct send_context *sc;
320 		struct hfi1_devdata *dd;
321 
322 		if (!uctxt || !uctxt->dd || !uctxt->sc)
323 			return -EINVAL;
324 
325 		/*
326 		 * There is no protection here. User level has to
327 		 * guarantee that no one will be writing to the send
328 		 * context while it is being re-initialized.
329 		 * If user level breaks that guarantee, it will break
330 		 * it's own context and no one else's.
331 		 */
332 		dd = uctxt->dd;
333 		sc = uctxt->sc;
334 		/*
335 		 * Wait until the interrupt handler has marked the
336 		 * context as halted or frozen. Report error if we time
337 		 * out.
338 		 */
339 		wait_event_interruptible_timeout(
340 			sc->halt_wait, (sc->flags & SCF_HALTED),
341 			msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
342 		if (!(sc->flags & SCF_HALTED))
343 			return -ENOLCK;
344 
345 		/*
346 		 * If the send context was halted due to a Freeze,
347 		 * wait until the device has been "unfrozen" before
348 		 * resetting the context.
349 		 */
350 		if (sc->flags & SCF_FROZEN) {
351 			wait_event_interruptible_timeout(
352 				dd->event_queue,
353 				!(ACCESS_ONCE(dd->flags) & HFI1_FROZEN),
354 				msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
355 			if (dd->flags & HFI1_FROZEN)
356 				return -ENOLCK;
357 
358 			if (dd->flags & HFI1_FORCED_FREEZE)
359 				/*
360 				 * Don't allow context reset if we are into
361 				 * forced freeze
362 				 */
363 				return -ENODEV;
364 
365 			sc_disable(sc);
366 			ret = sc_enable(sc);
367 			hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB,
368 				     uctxt->ctxt);
369 		} else {
370 			ret = sc_restart(sc);
371 		}
372 		if (!ret)
373 			sc_return_credits(sc);
374 		break;
375 	}
376 
377 	case HFI1_IOCTL_GET_VERS:
378 		uval = HFI1_USER_SWVERSION;
379 		if (put_user(uval, (int __user *)arg))
380 			return -EFAULT;
381 		break;
382 
383 	default:
384 		return -EINVAL;
385 	}
386 
387 	return ret;
388 }
389 
390 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from)
391 {
392 	struct hfi1_filedata *fd = kiocb->ki_filp->private_data;
393 	struct hfi1_user_sdma_pkt_q *pq = fd->pq;
394 	struct hfi1_user_sdma_comp_q *cq = fd->cq;
395 	int ret = 0, done = 0, reqs = 0;
396 	unsigned long dim = from->nr_segs;
397 
398 	if (!cq || !pq) {
399 		ret = -EIO;
400 		goto done;
401 	}
402 
403 	if (!iter_is_iovec(from) || !dim) {
404 		ret = -EINVAL;
405 		goto done;
406 	}
407 
408 	hfi1_cdbg(SDMA, "SDMA request from %u:%u (%lu)",
409 		  fd->uctxt->ctxt, fd->subctxt, dim);
410 
411 	if (atomic_read(&pq->n_reqs) == pq->n_max_reqs) {
412 		ret = -ENOSPC;
413 		goto done;
414 	}
415 
416 	while (dim) {
417 		unsigned long count = 0;
418 
419 		ret = hfi1_user_sdma_process_request(
420 			kiocb->ki_filp,	(struct iovec *)(from->iov + done),
421 			dim, &count);
422 		if (ret)
423 			goto done;
424 		dim -= count;
425 		done += count;
426 		reqs++;
427 	}
428 done:
429 	return ret ? ret : reqs;
430 }
431 
432 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma)
433 {
434 	struct hfi1_filedata *fd = fp->private_data;
435 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
436 	struct hfi1_devdata *dd;
437 	unsigned long flags, pfn;
438 	u64 token = vma->vm_pgoff << PAGE_SHIFT,
439 		memaddr = 0;
440 	u8 subctxt, mapio = 0, vmf = 0, type;
441 	ssize_t memlen = 0;
442 	int ret = 0;
443 	u16 ctxt;
444 
445 	if (!is_valid_mmap(token) || !uctxt ||
446 	    !(vma->vm_flags & VM_SHARED)) {
447 		ret = -EINVAL;
448 		goto done;
449 	}
450 	dd = uctxt->dd;
451 	ctxt = HFI1_MMAP_TOKEN_GET(CTXT, token);
452 	subctxt = HFI1_MMAP_TOKEN_GET(SUBCTXT, token);
453 	type = HFI1_MMAP_TOKEN_GET(TYPE, token);
454 	if (ctxt != uctxt->ctxt || subctxt != fd->subctxt) {
455 		ret = -EINVAL;
456 		goto done;
457 	}
458 
459 	flags = vma->vm_flags;
460 
461 	switch (type) {
462 	case PIO_BUFS:
463 	case PIO_BUFS_SOP:
464 		memaddr = ((dd->physaddr + TXE_PIO_SEND) +
465 				/* chip pio base */
466 			   (uctxt->sc->hw_context * BIT(16))) +
467 				/* 64K PIO space / ctxt */
468 			(type == PIO_BUFS_SOP ?
469 				(TXE_PIO_SIZE / 2) : 0); /* sop? */
470 		/*
471 		 * Map only the amount allocated to the context, not the
472 		 * entire available context's PIO space.
473 		 */
474 		memlen = PAGE_ALIGN(uctxt->sc->credits * PIO_BLOCK_SIZE);
475 		flags &= ~VM_MAYREAD;
476 		flags |= VM_DONTCOPY | VM_DONTEXPAND;
477 		vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
478 		mapio = 1;
479 		break;
480 	case PIO_CRED:
481 		if (flags & VM_WRITE) {
482 			ret = -EPERM;
483 			goto done;
484 		}
485 		/*
486 		 * The credit return location for this context could be on the
487 		 * second or third page allocated for credit returns (if number
488 		 * of enabled contexts > 64 and 128 respectively).
489 		 */
490 		memaddr = dd->cr_base[uctxt->numa_id].pa +
491 			(((u64)uctxt->sc->hw_free -
492 			  (u64)dd->cr_base[uctxt->numa_id].va) & PAGE_MASK);
493 		memlen = PAGE_SIZE;
494 		flags &= ~VM_MAYWRITE;
495 		flags |= VM_DONTCOPY | VM_DONTEXPAND;
496 		/*
497 		 * The driver has already allocated memory for credit
498 		 * returns and programmed it into the chip. Has that
499 		 * memory been flagged as non-cached?
500 		 */
501 		/* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */
502 		mapio = 1;
503 		break;
504 	case RCV_HDRQ:
505 		memaddr = uctxt->rcvhdrq_phys;
506 		memlen = uctxt->rcvhdrq_size;
507 		break;
508 	case RCV_EGRBUF: {
509 		unsigned long addr;
510 		int i;
511 		/*
512 		 * The RcvEgr buffer need to be handled differently
513 		 * as multiple non-contiguous pages need to be mapped
514 		 * into the user process.
515 		 */
516 		memlen = uctxt->egrbufs.size;
517 		if ((vma->vm_end - vma->vm_start) != memlen) {
518 			dd_dev_err(dd, "Eager buffer map size invalid (%lu != %lu)\n",
519 				   (vma->vm_end - vma->vm_start), memlen);
520 			ret = -EINVAL;
521 			goto done;
522 		}
523 		if (vma->vm_flags & VM_WRITE) {
524 			ret = -EPERM;
525 			goto done;
526 		}
527 		vma->vm_flags &= ~VM_MAYWRITE;
528 		addr = vma->vm_start;
529 		for (i = 0 ; i < uctxt->egrbufs.numbufs; i++) {
530 			ret = remap_pfn_range(
531 				vma, addr,
532 				uctxt->egrbufs.buffers[i].phys >> PAGE_SHIFT,
533 				uctxt->egrbufs.buffers[i].len,
534 				vma->vm_page_prot);
535 			if (ret < 0)
536 				goto done;
537 			addr += uctxt->egrbufs.buffers[i].len;
538 		}
539 		ret = 0;
540 		goto done;
541 	}
542 	case UREGS:
543 		/*
544 		 * Map only the page that contains this context's user
545 		 * registers.
546 		 */
547 		memaddr = (unsigned long)
548 			(dd->physaddr + RXE_PER_CONTEXT_USER)
549 			+ (uctxt->ctxt * RXE_PER_CONTEXT_SIZE);
550 		/*
551 		 * TidFlow table is on the same page as the rest of the
552 		 * user registers.
553 		 */
554 		memlen = PAGE_SIZE;
555 		flags |= VM_DONTCOPY | VM_DONTEXPAND;
556 		vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
557 		mapio = 1;
558 		break;
559 	case EVENTS:
560 		/*
561 		 * Use the page where this context's flags are. User level
562 		 * knows where it's own bitmap is within the page.
563 		 */
564 		memaddr = (unsigned long)(dd->events +
565 					  ((uctxt->ctxt - dd->first_user_ctxt) *
566 					   HFI1_MAX_SHARED_CTXTS)) & PAGE_MASK;
567 		memlen = PAGE_SIZE;
568 		/*
569 		 * v3.7 removes VM_RESERVED but the effect is kept by
570 		 * using VM_IO.
571 		 */
572 		flags |= VM_IO | VM_DONTEXPAND;
573 		vmf = 1;
574 		break;
575 	case STATUS:
576 		memaddr = kvirt_to_phys((void *)dd->status);
577 		memlen = PAGE_SIZE;
578 		flags |= VM_IO | VM_DONTEXPAND;
579 		break;
580 	case RTAIL:
581 		if (!HFI1_CAP_IS_USET(DMA_RTAIL)) {
582 			/*
583 			 * If the memory allocation failed, the context alloc
584 			 * also would have failed, so we would never get here
585 			 */
586 			ret = -EINVAL;
587 			goto done;
588 		}
589 		if (flags & VM_WRITE) {
590 			ret = -EPERM;
591 			goto done;
592 		}
593 		memaddr = uctxt->rcvhdrqtailaddr_phys;
594 		memlen = PAGE_SIZE;
595 		flags &= ~VM_MAYWRITE;
596 		break;
597 	case SUBCTXT_UREGS:
598 		memaddr = (u64)uctxt->subctxt_uregbase;
599 		memlen = PAGE_SIZE;
600 		flags |= VM_IO | VM_DONTEXPAND;
601 		vmf = 1;
602 		break;
603 	case SUBCTXT_RCV_HDRQ:
604 		memaddr = (u64)uctxt->subctxt_rcvhdr_base;
605 		memlen = uctxt->rcvhdrq_size * uctxt->subctxt_cnt;
606 		flags |= VM_IO | VM_DONTEXPAND;
607 		vmf = 1;
608 		break;
609 	case SUBCTXT_EGRBUF:
610 		memaddr = (u64)uctxt->subctxt_rcvegrbuf;
611 		memlen = uctxt->egrbufs.size * uctxt->subctxt_cnt;
612 		flags |= VM_IO | VM_DONTEXPAND;
613 		flags &= ~VM_MAYWRITE;
614 		vmf = 1;
615 		break;
616 	case SDMA_COMP: {
617 		struct hfi1_user_sdma_comp_q *cq = fd->cq;
618 
619 		if (!cq) {
620 			ret = -EFAULT;
621 			goto done;
622 		}
623 		memaddr = (u64)cq->comps;
624 		memlen = PAGE_ALIGN(sizeof(*cq->comps) * cq->nentries);
625 		flags |= VM_IO | VM_DONTEXPAND;
626 		vmf = 1;
627 		break;
628 	}
629 	default:
630 		ret = -EINVAL;
631 		break;
632 	}
633 
634 	if ((vma->vm_end - vma->vm_start) != memlen) {
635 		hfi1_cdbg(PROC, "%u:%u Memory size mismatch %lu:%lu",
636 			  uctxt->ctxt, fd->subctxt,
637 			  (vma->vm_end - vma->vm_start), memlen);
638 		ret = -EINVAL;
639 		goto done;
640 	}
641 
642 	vma->vm_flags = flags;
643 	hfi1_cdbg(PROC,
644 		  "%u:%u type:%u io/vf:%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx\n",
645 		    ctxt, subctxt, type, mapio, vmf, memaddr, memlen,
646 		    vma->vm_end - vma->vm_start, vma->vm_flags);
647 	pfn = (unsigned long)(memaddr >> PAGE_SHIFT);
648 	if (vmf) {
649 		vma->vm_pgoff = pfn;
650 		vma->vm_ops = &vm_ops;
651 		ret = 0;
652 	} else if (mapio) {
653 		ret = io_remap_pfn_range(vma, vma->vm_start, pfn, memlen,
654 					 vma->vm_page_prot);
655 	} else {
656 		ret = remap_pfn_range(vma, vma->vm_start, pfn, memlen,
657 				      vma->vm_page_prot);
658 	}
659 done:
660 	return ret;
661 }
662 
663 /*
664  * Local (non-chip) user memory is not mapped right away but as it is
665  * accessed by the user-level code.
666  */
667 static int vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
668 {
669 	struct page *page;
670 
671 	page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT));
672 	if (!page)
673 		return VM_FAULT_SIGBUS;
674 
675 	get_page(page);
676 	vmf->page = page;
677 
678 	return 0;
679 }
680 
681 static unsigned int hfi1_poll(struct file *fp, struct poll_table_struct *pt)
682 {
683 	struct hfi1_ctxtdata *uctxt;
684 	unsigned pollflag;
685 
686 	uctxt = ((struct hfi1_filedata *)fp->private_data)->uctxt;
687 	if (!uctxt)
688 		pollflag = POLLERR;
689 	else if (uctxt->poll_type == HFI1_POLL_TYPE_URGENT)
690 		pollflag = poll_urgent(fp, pt);
691 	else  if (uctxt->poll_type == HFI1_POLL_TYPE_ANYRCV)
692 		pollflag = poll_next(fp, pt);
693 	else /* invalid */
694 		pollflag = POLLERR;
695 
696 	return pollflag;
697 }
698 
699 static int hfi1_file_close(struct inode *inode, struct file *fp)
700 {
701 	struct hfi1_filedata *fdata = fp->private_data;
702 	struct hfi1_ctxtdata *uctxt = fdata->uctxt;
703 	struct hfi1_devdata *dd = container_of(inode->i_cdev,
704 					       struct hfi1_devdata,
705 					       user_cdev);
706 	unsigned long flags, *ev;
707 
708 	fp->private_data = NULL;
709 
710 	if (!uctxt)
711 		goto done;
712 
713 	hfi1_cdbg(PROC, "freeing ctxt %u:%u", uctxt->ctxt, fdata->subctxt);
714 	mutex_lock(&hfi1_mutex);
715 
716 	flush_wc();
717 	/* drain user sdma queue */
718 	hfi1_user_sdma_free_queues(fdata);
719 
720 	/* release the cpu */
721 	hfi1_put_proc_affinity(dd, fdata->rec_cpu_num);
722 
723 	/*
724 	 * Clear any left over, unhandled events so the next process that
725 	 * gets this context doesn't get confused.
726 	 */
727 	ev = dd->events + ((uctxt->ctxt - dd->first_user_ctxt) *
728 			   HFI1_MAX_SHARED_CTXTS) + fdata->subctxt;
729 	*ev = 0;
730 
731 	if (--uctxt->cnt) {
732 		uctxt->active_slaves &= ~(1 << fdata->subctxt);
733 		uctxt->subpid[fdata->subctxt] = 0;
734 		mutex_unlock(&hfi1_mutex);
735 		goto done;
736 	}
737 
738 	spin_lock_irqsave(&dd->uctxt_lock, flags);
739 	/*
740 	 * Disable receive context and interrupt available, reset all
741 	 * RcvCtxtCtrl bits to default values.
742 	 */
743 	hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
744 		     HFI1_RCVCTRL_TIDFLOW_DIS |
745 		     HFI1_RCVCTRL_INTRAVAIL_DIS |
746 		     HFI1_RCVCTRL_TAILUPD_DIS |
747 		     HFI1_RCVCTRL_ONE_PKT_EGR_DIS |
748 		     HFI1_RCVCTRL_NO_RHQ_DROP_DIS |
749 		     HFI1_RCVCTRL_NO_EGR_DROP_DIS, uctxt->ctxt);
750 	/* Clear the context's J_KEY */
751 	hfi1_clear_ctxt_jkey(dd, uctxt->ctxt);
752 	/*
753 	 * Reset context integrity checks to default.
754 	 * (writes to CSRs probably belong in chip.c)
755 	 */
756 	write_kctxt_csr(dd, uctxt->sc->hw_context, SEND_CTXT_CHECK_ENABLE,
757 			hfi1_pkt_default_send_ctxt_mask(dd, uctxt->sc->type));
758 	sc_disable(uctxt->sc);
759 	uctxt->pid = 0;
760 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
761 
762 	dd->rcd[uctxt->ctxt] = NULL;
763 
764 	hfi1_user_exp_rcv_free(fdata);
765 	hfi1_clear_ctxt_pkey(dd, uctxt->ctxt);
766 
767 	uctxt->rcvwait_to = 0;
768 	uctxt->piowait_to = 0;
769 	uctxt->rcvnowait = 0;
770 	uctxt->pionowait = 0;
771 	uctxt->event_flags = 0;
772 
773 	hfi1_stats.sps_ctxts--;
774 	if (++dd->freectxts == dd->num_user_contexts)
775 		aspm_enable_all(dd);
776 	mutex_unlock(&hfi1_mutex);
777 	hfi1_free_ctxtdata(dd, uctxt);
778 done:
779 	kobject_put(&dd->kobj);
780 	kfree(fdata);
781 	return 0;
782 }
783 
784 /*
785  * Convert kernel *virtual* addresses to physical addresses.
786  * This is used to vmalloc'ed addresses.
787  */
788 static u64 kvirt_to_phys(void *addr)
789 {
790 	struct page *page;
791 	u64 paddr = 0;
792 
793 	page = vmalloc_to_page(addr);
794 	if (page)
795 		paddr = page_to_pfn(page) << PAGE_SHIFT;
796 
797 	return paddr;
798 }
799 
800 static int assign_ctxt(struct file *fp, struct hfi1_user_info *uinfo)
801 {
802 	int i_minor, ret = 0;
803 	unsigned int swmajor, swminor;
804 
805 	swmajor = uinfo->userversion >> 16;
806 	if (swmajor != HFI1_USER_SWMAJOR) {
807 		ret = -ENODEV;
808 		goto done;
809 	}
810 
811 	swminor = uinfo->userversion & 0xffff;
812 
813 	mutex_lock(&hfi1_mutex);
814 	/* First, lets check if we need to setup a shared context? */
815 	if (uinfo->subctxt_cnt) {
816 		struct hfi1_filedata *fd = fp->private_data;
817 
818 		ret = find_shared_ctxt(fp, uinfo);
819 		if (ret < 0)
820 			goto done_unlock;
821 		if (ret)
822 			fd->rec_cpu_num = hfi1_get_proc_affinity(
823 				fd->uctxt->dd, fd->uctxt->numa_id);
824 	}
825 
826 	/*
827 	 * We execute the following block if we couldn't find a
828 	 * shared context or if context sharing is not required.
829 	 */
830 	if (!ret) {
831 		i_minor = iminor(file_inode(fp)) - HFI1_USER_MINOR_BASE;
832 		ret = get_user_context(fp, uinfo, i_minor);
833 	}
834 done_unlock:
835 	mutex_unlock(&hfi1_mutex);
836 done:
837 	return ret;
838 }
839 
840 static int get_user_context(struct file *fp, struct hfi1_user_info *uinfo,
841 			    int devno)
842 {
843 	struct hfi1_devdata *dd = NULL;
844 	int devmax, npresent, nup;
845 
846 	devmax = hfi1_count_units(&npresent, &nup);
847 	if (!npresent)
848 		return -ENXIO;
849 
850 	if (!nup)
851 		return -ENETDOWN;
852 
853 	dd = hfi1_lookup(devno);
854 	if (!dd)
855 		return -ENODEV;
856 	else if (!dd->freectxts)
857 		return -EBUSY;
858 
859 	return allocate_ctxt(fp, dd, uinfo);
860 }
861 
862 static int find_shared_ctxt(struct file *fp,
863 			    const struct hfi1_user_info *uinfo)
864 {
865 	int devmax, ndev, i;
866 	int ret = 0;
867 	struct hfi1_filedata *fd = fp->private_data;
868 
869 	devmax = hfi1_count_units(NULL, NULL);
870 
871 	for (ndev = 0; ndev < devmax; ndev++) {
872 		struct hfi1_devdata *dd = hfi1_lookup(ndev);
873 
874 		if (!(dd && (dd->flags & HFI1_PRESENT) && dd->kregbase))
875 			continue;
876 		for (i = dd->first_user_ctxt; i < dd->num_rcv_contexts; i++) {
877 			struct hfi1_ctxtdata *uctxt = dd->rcd[i];
878 
879 			/* Skip ctxts which are not yet open */
880 			if (!uctxt || !uctxt->cnt)
881 				continue;
882 			/* Skip ctxt if it doesn't match the requested one */
883 			if (memcmp(uctxt->uuid, uinfo->uuid,
884 				   sizeof(uctxt->uuid)) ||
885 			    uctxt->jkey != generate_jkey(current_uid()) ||
886 			    uctxt->subctxt_id != uinfo->subctxt_id ||
887 			    uctxt->subctxt_cnt != uinfo->subctxt_cnt)
888 				continue;
889 
890 			/* Verify the sharing process matches the master */
891 			if (uctxt->userversion != uinfo->userversion ||
892 			    uctxt->cnt >= uctxt->subctxt_cnt) {
893 				ret = -EINVAL;
894 				goto done;
895 			}
896 			fd->uctxt = uctxt;
897 			fd->subctxt  = uctxt->cnt++;
898 			uctxt->subpid[fd->subctxt] = current->pid;
899 			uctxt->active_slaves |= 1 << fd->subctxt;
900 			ret = 1;
901 			goto done;
902 		}
903 	}
904 
905 done:
906 	return ret;
907 }
908 
909 static int allocate_ctxt(struct file *fp, struct hfi1_devdata *dd,
910 			 struct hfi1_user_info *uinfo)
911 {
912 	struct hfi1_filedata *fd = fp->private_data;
913 	struct hfi1_ctxtdata *uctxt;
914 	unsigned ctxt;
915 	int ret, numa;
916 
917 	if (dd->flags & HFI1_FROZEN) {
918 		/*
919 		 * Pick an error that is unique from all other errors
920 		 * that are returned so the user process knows that
921 		 * it tried to allocate while the SPC was frozen.  It
922 		 * it should be able to retry with success in a short
923 		 * while.
924 		 */
925 		return -EIO;
926 	}
927 
928 	for (ctxt = dd->first_user_ctxt; ctxt < dd->num_rcv_contexts; ctxt++)
929 		if (!dd->rcd[ctxt])
930 			break;
931 
932 	if (ctxt == dd->num_rcv_contexts)
933 		return -EBUSY;
934 
935 	fd->rec_cpu_num = hfi1_get_proc_affinity(dd, -1);
936 	if (fd->rec_cpu_num != -1)
937 		numa = cpu_to_node(fd->rec_cpu_num);
938 	else
939 		numa = numa_node_id();
940 	uctxt = hfi1_create_ctxtdata(dd->pport, ctxt, numa);
941 	if (!uctxt) {
942 		dd_dev_err(dd,
943 			   "Unable to allocate ctxtdata memory, failing open\n");
944 		return -ENOMEM;
945 	}
946 	hfi1_cdbg(PROC, "[%u:%u] pid %u assigned to CPU %d (NUMA %u)",
947 		  uctxt->ctxt, fd->subctxt, current->pid, fd->rec_cpu_num,
948 		  uctxt->numa_id);
949 
950 	/*
951 	 * Allocate and enable a PIO send context.
952 	 */
953 	uctxt->sc = sc_alloc(dd, SC_USER, uctxt->rcvhdrqentsize,
954 			     uctxt->dd->node);
955 	if (!uctxt->sc)
956 		return -ENOMEM;
957 
958 	hfi1_cdbg(PROC, "allocated send context %u(%u)\n", uctxt->sc->sw_index,
959 		  uctxt->sc->hw_context);
960 	ret = sc_enable(uctxt->sc);
961 	if (ret)
962 		return ret;
963 	/*
964 	 * Setup shared context resources if the user-level has requested
965 	 * shared contexts and this is the 'master' process.
966 	 * This has to be done here so the rest of the sub-contexts find the
967 	 * proper master.
968 	 */
969 	if (uinfo->subctxt_cnt && !fd->subctxt) {
970 		ret = init_subctxts(uctxt, uinfo);
971 		/*
972 		 * On error, we don't need to disable and de-allocate the
973 		 * send context because it will be done during file close
974 		 */
975 		if (ret)
976 			return ret;
977 	}
978 	uctxt->userversion = uinfo->userversion;
979 	uctxt->pid = current->pid;
980 	uctxt->flags = HFI1_CAP_UGET(MASK);
981 	init_waitqueue_head(&uctxt->wait);
982 	strlcpy(uctxt->comm, current->comm, sizeof(uctxt->comm));
983 	memcpy(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid));
984 	uctxt->jkey = generate_jkey(current_uid());
985 	INIT_LIST_HEAD(&uctxt->sdma_queues);
986 	spin_lock_init(&uctxt->sdma_qlock);
987 	hfi1_stats.sps_ctxts++;
988 	/*
989 	 * Disable ASPM when there are open user/PSM contexts to avoid
990 	 * issues with ASPM L1 exit latency
991 	 */
992 	if (dd->freectxts-- == dd->num_user_contexts)
993 		aspm_disable_all(dd);
994 	fd->uctxt = uctxt;
995 
996 	return 0;
997 }
998 
999 static int init_subctxts(struct hfi1_ctxtdata *uctxt,
1000 			 const struct hfi1_user_info *uinfo)
1001 {
1002 	unsigned num_subctxts;
1003 
1004 	num_subctxts = uinfo->subctxt_cnt;
1005 	if (num_subctxts > HFI1_MAX_SHARED_CTXTS)
1006 		return -EINVAL;
1007 
1008 	uctxt->subctxt_cnt = uinfo->subctxt_cnt;
1009 	uctxt->subctxt_id = uinfo->subctxt_id;
1010 	uctxt->active_slaves = 1;
1011 	uctxt->redirect_seq_cnt = 1;
1012 	set_bit(HFI1_CTXT_MASTER_UNINIT, &uctxt->event_flags);
1013 
1014 	return 0;
1015 }
1016 
1017 static int setup_subctxt(struct hfi1_ctxtdata *uctxt)
1018 {
1019 	int ret = 0;
1020 	unsigned num_subctxts = uctxt->subctxt_cnt;
1021 
1022 	uctxt->subctxt_uregbase = vmalloc_user(PAGE_SIZE);
1023 	if (!uctxt->subctxt_uregbase) {
1024 		ret = -ENOMEM;
1025 		goto bail;
1026 	}
1027 	/* We can take the size of the RcvHdr Queue from the master */
1028 	uctxt->subctxt_rcvhdr_base = vmalloc_user(uctxt->rcvhdrq_size *
1029 						  num_subctxts);
1030 	if (!uctxt->subctxt_rcvhdr_base) {
1031 		ret = -ENOMEM;
1032 		goto bail_ureg;
1033 	}
1034 
1035 	uctxt->subctxt_rcvegrbuf = vmalloc_user(uctxt->egrbufs.size *
1036 						num_subctxts);
1037 	if (!uctxt->subctxt_rcvegrbuf) {
1038 		ret = -ENOMEM;
1039 		goto bail_rhdr;
1040 	}
1041 	goto bail;
1042 bail_rhdr:
1043 	vfree(uctxt->subctxt_rcvhdr_base);
1044 bail_ureg:
1045 	vfree(uctxt->subctxt_uregbase);
1046 	uctxt->subctxt_uregbase = NULL;
1047 bail:
1048 	return ret;
1049 }
1050 
1051 static int user_init(struct file *fp)
1052 {
1053 	unsigned int rcvctrl_ops = 0;
1054 	struct hfi1_filedata *fd = fp->private_data;
1055 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1056 
1057 	/* make sure that the context has already been setup */
1058 	if (!test_bit(HFI1_CTXT_SETUP_DONE, &uctxt->event_flags))
1059 		return -EFAULT;
1060 
1061 	/* initialize poll variables... */
1062 	uctxt->urgent = 0;
1063 	uctxt->urgent_poll = 0;
1064 
1065 	/*
1066 	 * Now enable the ctxt for receive.
1067 	 * For chips that are set to DMA the tail register to memory
1068 	 * when they change (and when the update bit transitions from
1069 	 * 0 to 1.  So for those chips, we turn it off and then back on.
1070 	 * This will (very briefly) affect any other open ctxts, but the
1071 	 * duration is very short, and therefore isn't an issue.  We
1072 	 * explicitly set the in-memory tail copy to 0 beforehand, so we
1073 	 * don't have to wait to be sure the DMA update has happened
1074 	 * (chip resets head/tail to 0 on transition to enable).
1075 	 */
1076 	if (uctxt->rcvhdrtail_kvaddr)
1077 		clear_rcvhdrtail(uctxt);
1078 
1079 	/* Setup J_KEY before enabling the context */
1080 	hfi1_set_ctxt_jkey(uctxt->dd, uctxt->ctxt, uctxt->jkey);
1081 
1082 	rcvctrl_ops = HFI1_RCVCTRL_CTXT_ENB;
1083 	if (HFI1_CAP_KGET_MASK(uctxt->flags, HDRSUPP))
1084 		rcvctrl_ops |= HFI1_RCVCTRL_TIDFLOW_ENB;
1085 	/*
1086 	 * Ignore the bit in the flags for now until proper
1087 	 * support for multiple packet per rcv array entry is
1088 	 * added.
1089 	 */
1090 	if (!HFI1_CAP_KGET_MASK(uctxt->flags, MULTI_PKT_EGR))
1091 		rcvctrl_ops |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
1092 	if (HFI1_CAP_KGET_MASK(uctxt->flags, NODROP_EGR_FULL))
1093 		rcvctrl_ops |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
1094 	if (HFI1_CAP_KGET_MASK(uctxt->flags, NODROP_RHQ_FULL))
1095 		rcvctrl_ops |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
1096 	/*
1097 	 * The RcvCtxtCtrl.TailUpd bit has to be explicitly written.
1098 	 * We can't rely on the correct value to be set from prior
1099 	 * uses of the chip or ctxt. Therefore, add the rcvctrl op
1100 	 * for both cases.
1101 	 */
1102 	if (HFI1_CAP_KGET_MASK(uctxt->flags, DMA_RTAIL))
1103 		rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_ENB;
1104 	else
1105 		rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_DIS;
1106 	hfi1_rcvctrl(uctxt->dd, rcvctrl_ops, uctxt->ctxt);
1107 
1108 	/* Notify any waiting slaves */
1109 	if (uctxt->subctxt_cnt) {
1110 		clear_bit(HFI1_CTXT_MASTER_UNINIT, &uctxt->event_flags);
1111 		wake_up(&uctxt->wait);
1112 	}
1113 
1114 	return 0;
1115 }
1116 
1117 static int get_ctxt_info(struct file *fp, void __user *ubase, __u32 len)
1118 {
1119 	struct hfi1_ctxt_info cinfo;
1120 	struct hfi1_filedata *fd = fp->private_data;
1121 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1122 	int ret = 0;
1123 
1124 	memset(&cinfo, 0, sizeof(cinfo));
1125 	ret = hfi1_get_base_kinfo(uctxt, &cinfo);
1126 	if (ret < 0)
1127 		goto done;
1128 	cinfo.num_active = hfi1_count_active_units();
1129 	cinfo.unit = uctxt->dd->unit;
1130 	cinfo.ctxt = uctxt->ctxt;
1131 	cinfo.subctxt = fd->subctxt;
1132 	cinfo.rcvtids = roundup(uctxt->egrbufs.alloced,
1133 				uctxt->dd->rcv_entries.group_size) +
1134 		uctxt->expected_count;
1135 	cinfo.credits = uctxt->sc->credits;
1136 	cinfo.numa_node = uctxt->numa_id;
1137 	cinfo.rec_cpu = fd->rec_cpu_num;
1138 	cinfo.send_ctxt = uctxt->sc->hw_context;
1139 
1140 	cinfo.egrtids = uctxt->egrbufs.alloced;
1141 	cinfo.rcvhdrq_cnt = uctxt->rcvhdrq_cnt;
1142 	cinfo.rcvhdrq_entsize = uctxt->rcvhdrqentsize << 2;
1143 	cinfo.sdma_ring_size = fd->cq->nentries;
1144 	cinfo.rcvegr_size = uctxt->egrbufs.rcvtid_size;
1145 
1146 	trace_hfi1_ctxt_info(uctxt->dd, uctxt->ctxt, fd->subctxt, cinfo);
1147 	if (copy_to_user(ubase, &cinfo, sizeof(cinfo)))
1148 		ret = -EFAULT;
1149 done:
1150 	return ret;
1151 }
1152 
1153 static int setup_ctxt(struct file *fp)
1154 {
1155 	struct hfi1_filedata *fd = fp->private_data;
1156 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1157 	struct hfi1_devdata *dd = uctxt->dd;
1158 	int ret = 0;
1159 
1160 	/*
1161 	 * Context should be set up only once, including allocation and
1162 	 * programming of eager buffers. This is done if context sharing
1163 	 * is not requested or by the master process.
1164 	 */
1165 	if (!uctxt->subctxt_cnt || !fd->subctxt) {
1166 		ret = hfi1_init_ctxt(uctxt->sc);
1167 		if (ret)
1168 			goto done;
1169 
1170 		/* Now allocate the RcvHdr queue and eager buffers. */
1171 		ret = hfi1_create_rcvhdrq(dd, uctxt);
1172 		if (ret)
1173 			goto done;
1174 		ret = hfi1_setup_eagerbufs(uctxt);
1175 		if (ret)
1176 			goto done;
1177 		if (uctxt->subctxt_cnt && !fd->subctxt) {
1178 			ret = setup_subctxt(uctxt);
1179 			if (ret)
1180 				goto done;
1181 		}
1182 	} else {
1183 		ret = wait_event_interruptible(uctxt->wait, !test_bit(
1184 					       HFI1_CTXT_MASTER_UNINIT,
1185 					       &uctxt->event_flags));
1186 		if (ret)
1187 			goto done;
1188 	}
1189 
1190 	ret = hfi1_user_sdma_alloc_queues(uctxt, fp);
1191 	if (ret)
1192 		goto done;
1193 	/*
1194 	 * Expected receive has to be setup for all processes (including
1195 	 * shared contexts). However, it has to be done after the master
1196 	 * context has been fully configured as it depends on the
1197 	 * eager/expected split of the RcvArray entries.
1198 	 * Setting it up here ensures that the subcontexts will be waiting
1199 	 * (due to the above wait_event_interruptible() until the master
1200 	 * is setup.
1201 	 */
1202 	ret = hfi1_user_exp_rcv_init(fp);
1203 	if (ret)
1204 		goto done;
1205 
1206 	set_bit(HFI1_CTXT_SETUP_DONE, &uctxt->event_flags);
1207 done:
1208 	return ret;
1209 }
1210 
1211 static int get_base_info(struct file *fp, void __user *ubase, __u32 len)
1212 {
1213 	struct hfi1_base_info binfo;
1214 	struct hfi1_filedata *fd = fp->private_data;
1215 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1216 	struct hfi1_devdata *dd = uctxt->dd;
1217 	ssize_t sz;
1218 	unsigned offset;
1219 	int ret = 0;
1220 
1221 	trace_hfi1_uctxtdata(uctxt->dd, uctxt);
1222 
1223 	memset(&binfo, 0, sizeof(binfo));
1224 	binfo.hw_version = dd->revision;
1225 	binfo.sw_version = HFI1_KERN_SWVERSION;
1226 	binfo.bthqp = kdeth_qp;
1227 	binfo.jkey = uctxt->jkey;
1228 	/*
1229 	 * If more than 64 contexts are enabled the allocated credit
1230 	 * return will span two or three contiguous pages. Since we only
1231 	 * map the page containing the context's credit return address,
1232 	 * we need to calculate the offset in the proper page.
1233 	 */
1234 	offset = ((u64)uctxt->sc->hw_free -
1235 		  (u64)dd->cr_base[uctxt->numa_id].va) % PAGE_SIZE;
1236 	binfo.sc_credits_addr = HFI1_MMAP_TOKEN(PIO_CRED, uctxt->ctxt,
1237 						fd->subctxt, offset);
1238 	binfo.pio_bufbase = HFI1_MMAP_TOKEN(PIO_BUFS, uctxt->ctxt,
1239 					    fd->subctxt,
1240 					    uctxt->sc->base_addr);
1241 	binfo.pio_bufbase_sop = HFI1_MMAP_TOKEN(PIO_BUFS_SOP,
1242 						uctxt->ctxt,
1243 						fd->subctxt,
1244 						uctxt->sc->base_addr);
1245 	binfo.rcvhdr_bufbase = HFI1_MMAP_TOKEN(RCV_HDRQ, uctxt->ctxt,
1246 					       fd->subctxt,
1247 					       uctxt->rcvhdrq);
1248 	binfo.rcvegr_bufbase = HFI1_MMAP_TOKEN(RCV_EGRBUF, uctxt->ctxt,
1249 					       fd->subctxt,
1250 					       uctxt->egrbufs.rcvtids[0].phys);
1251 	binfo.sdma_comp_bufbase = HFI1_MMAP_TOKEN(SDMA_COMP, uctxt->ctxt,
1252 						 fd->subctxt, 0);
1253 	/*
1254 	 * user regs are at
1255 	 * (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE))
1256 	 */
1257 	binfo.user_regbase = HFI1_MMAP_TOKEN(UREGS, uctxt->ctxt,
1258 					    fd->subctxt, 0);
1259 	offset = offset_in_page((((uctxt->ctxt - dd->first_user_ctxt) *
1260 		    HFI1_MAX_SHARED_CTXTS) + fd->subctxt) *
1261 		  sizeof(*dd->events));
1262 	binfo.events_bufbase = HFI1_MMAP_TOKEN(EVENTS, uctxt->ctxt,
1263 					      fd->subctxt,
1264 					      offset);
1265 	binfo.status_bufbase = HFI1_MMAP_TOKEN(STATUS, uctxt->ctxt,
1266 					      fd->subctxt,
1267 					      dd->status);
1268 	if (HFI1_CAP_IS_USET(DMA_RTAIL))
1269 		binfo.rcvhdrtail_base = HFI1_MMAP_TOKEN(RTAIL, uctxt->ctxt,
1270 						       fd->subctxt, 0);
1271 	if (uctxt->subctxt_cnt) {
1272 		binfo.subctxt_uregbase = HFI1_MMAP_TOKEN(SUBCTXT_UREGS,
1273 							uctxt->ctxt,
1274 							fd->subctxt, 0);
1275 		binfo.subctxt_rcvhdrbuf = HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ,
1276 							 uctxt->ctxt,
1277 							 fd->subctxt, 0);
1278 		binfo.subctxt_rcvegrbuf = HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF,
1279 							 uctxt->ctxt,
1280 							 fd->subctxt, 0);
1281 	}
1282 	sz = (len < sizeof(binfo)) ? len : sizeof(binfo);
1283 	if (copy_to_user(ubase, &binfo, sz))
1284 		ret = -EFAULT;
1285 	return ret;
1286 }
1287 
1288 static unsigned int poll_urgent(struct file *fp,
1289 				struct poll_table_struct *pt)
1290 {
1291 	struct hfi1_filedata *fd = fp->private_data;
1292 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1293 	struct hfi1_devdata *dd = uctxt->dd;
1294 	unsigned pollflag;
1295 
1296 	poll_wait(fp, &uctxt->wait, pt);
1297 
1298 	spin_lock_irq(&dd->uctxt_lock);
1299 	if (uctxt->urgent != uctxt->urgent_poll) {
1300 		pollflag = POLLIN | POLLRDNORM;
1301 		uctxt->urgent_poll = uctxt->urgent;
1302 	} else {
1303 		pollflag = 0;
1304 		set_bit(HFI1_CTXT_WAITING_URG, &uctxt->event_flags);
1305 	}
1306 	spin_unlock_irq(&dd->uctxt_lock);
1307 
1308 	return pollflag;
1309 }
1310 
1311 static unsigned int poll_next(struct file *fp,
1312 			      struct poll_table_struct *pt)
1313 {
1314 	struct hfi1_filedata *fd = fp->private_data;
1315 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1316 	struct hfi1_devdata *dd = uctxt->dd;
1317 	unsigned pollflag;
1318 
1319 	poll_wait(fp, &uctxt->wait, pt);
1320 
1321 	spin_lock_irq(&dd->uctxt_lock);
1322 	if (hdrqempty(uctxt)) {
1323 		set_bit(HFI1_CTXT_WAITING_RCV, &uctxt->event_flags);
1324 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_INTRAVAIL_ENB, uctxt->ctxt);
1325 		pollflag = 0;
1326 	} else {
1327 		pollflag = POLLIN | POLLRDNORM;
1328 	}
1329 	spin_unlock_irq(&dd->uctxt_lock);
1330 
1331 	return pollflag;
1332 }
1333 
1334 /*
1335  * Find all user contexts in use, and set the specified bit in their
1336  * event mask.
1337  * See also find_ctxt() for a similar use, that is specific to send buffers.
1338  */
1339 int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit)
1340 {
1341 	struct hfi1_ctxtdata *uctxt;
1342 	struct hfi1_devdata *dd = ppd->dd;
1343 	unsigned ctxt;
1344 	int ret = 0;
1345 	unsigned long flags;
1346 
1347 	if (!dd->events) {
1348 		ret = -EINVAL;
1349 		goto done;
1350 	}
1351 
1352 	spin_lock_irqsave(&dd->uctxt_lock, flags);
1353 	for (ctxt = dd->first_user_ctxt; ctxt < dd->num_rcv_contexts;
1354 	     ctxt++) {
1355 		uctxt = dd->rcd[ctxt];
1356 		if (uctxt) {
1357 			unsigned long *evs = dd->events +
1358 				(uctxt->ctxt - dd->first_user_ctxt) *
1359 				HFI1_MAX_SHARED_CTXTS;
1360 			int i;
1361 			/*
1362 			 * subctxt_cnt is 0 if not shared, so do base
1363 			 * separately, first, then remaining subctxt, if any
1364 			 */
1365 			set_bit(evtbit, evs);
1366 			for (i = 1; i < uctxt->subctxt_cnt; i++)
1367 				set_bit(evtbit, evs + i);
1368 		}
1369 	}
1370 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
1371 done:
1372 	return ret;
1373 }
1374 
1375 /**
1376  * manage_rcvq - manage a context's receive queue
1377  * @uctxt: the context
1378  * @subctxt: the sub-context
1379  * @start_stop: action to carry out
1380  *
1381  * start_stop == 0 disables receive on the context, for use in queue
1382  * overflow conditions.  start_stop==1 re-enables, to be used to
1383  * re-init the software copy of the head register
1384  */
1385 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, unsigned subctxt,
1386 		       int start_stop)
1387 {
1388 	struct hfi1_devdata *dd = uctxt->dd;
1389 	unsigned int rcvctrl_op;
1390 
1391 	if (subctxt)
1392 		goto bail;
1393 	/* atomically clear receive enable ctxt. */
1394 	if (start_stop) {
1395 		/*
1396 		 * On enable, force in-memory copy of the tail register to
1397 		 * 0, so that protocol code doesn't have to worry about
1398 		 * whether or not the chip has yet updated the in-memory
1399 		 * copy or not on return from the system call. The chip
1400 		 * always resets it's tail register back to 0 on a
1401 		 * transition from disabled to enabled.
1402 		 */
1403 		if (uctxt->rcvhdrtail_kvaddr)
1404 			clear_rcvhdrtail(uctxt);
1405 		rcvctrl_op = HFI1_RCVCTRL_CTXT_ENB;
1406 	} else {
1407 		rcvctrl_op = HFI1_RCVCTRL_CTXT_DIS;
1408 	}
1409 	hfi1_rcvctrl(dd, rcvctrl_op, uctxt->ctxt);
1410 	/* always; new head should be equal to new tail; see above */
1411 bail:
1412 	return 0;
1413 }
1414 
1415 /*
1416  * clear the event notifier events for this context.
1417  * User process then performs actions appropriate to bit having been
1418  * set, if desired, and checks again in future.
1419  */
1420 static int user_event_ack(struct hfi1_ctxtdata *uctxt, int subctxt,
1421 			  unsigned long events)
1422 {
1423 	int i;
1424 	struct hfi1_devdata *dd = uctxt->dd;
1425 	unsigned long *evs;
1426 
1427 	if (!dd->events)
1428 		return 0;
1429 
1430 	evs = dd->events + ((uctxt->ctxt - dd->first_user_ctxt) *
1431 			    HFI1_MAX_SHARED_CTXTS) + subctxt;
1432 
1433 	for (i = 0; i <= _HFI1_MAX_EVENT_BIT; i++) {
1434 		if (!test_bit(i, &events))
1435 			continue;
1436 		clear_bit(i, evs);
1437 	}
1438 	return 0;
1439 }
1440 
1441 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned subctxt,
1442 			 u16 pkey)
1443 {
1444 	int ret = -ENOENT, i, intable = 0;
1445 	struct hfi1_pportdata *ppd = uctxt->ppd;
1446 	struct hfi1_devdata *dd = uctxt->dd;
1447 
1448 	if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY) {
1449 		ret = -EINVAL;
1450 		goto done;
1451 	}
1452 
1453 	for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++)
1454 		if (pkey == ppd->pkeys[i]) {
1455 			intable = 1;
1456 			break;
1457 		}
1458 
1459 	if (intable)
1460 		ret = hfi1_set_ctxt_pkey(dd, uctxt->ctxt, pkey);
1461 done:
1462 	return ret;
1463 }
1464 
1465 static void user_remove(struct hfi1_devdata *dd)
1466 {
1467 
1468 	hfi1_cdev_cleanup(&dd->user_cdev, &dd->user_device);
1469 }
1470 
1471 static int user_add(struct hfi1_devdata *dd)
1472 {
1473 	char name[10];
1474 	int ret;
1475 
1476 	snprintf(name, sizeof(name), "%s_%d", class_name(), dd->unit);
1477 	ret = hfi1_cdev_init(dd->unit, name, &hfi1_file_ops,
1478 			     &dd->user_cdev, &dd->user_device,
1479 			     true, &dd->kobj);
1480 	if (ret)
1481 		user_remove(dd);
1482 
1483 	return ret;
1484 }
1485 
1486 /*
1487  * Create per-unit files in /dev
1488  */
1489 int hfi1_device_create(struct hfi1_devdata *dd)
1490 {
1491 	return user_add(dd);
1492 }
1493 
1494 /*
1495  * Remove per-unit files in /dev
1496  * void, core kernel returns no errors for this stuff
1497  */
1498 void hfi1_device_remove(struct hfi1_devdata *dd)
1499 {
1500 	user_remove(dd);
1501 }
1502