1 /* 2 * Copyright(c) 2015, 2016 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 #include <linux/poll.h> 48 #include <linux/cdev.h> 49 #include <linux/vmalloc.h> 50 #include <linux/io.h> 51 #include <linux/sched/mm.h> 52 53 #include <rdma/ib.h> 54 55 #include "hfi.h" 56 #include "pio.h" 57 #include "device.h" 58 #include "common.h" 59 #include "trace.h" 60 #include "user_sdma.h" 61 #include "user_exp_rcv.h" 62 #include "aspm.h" 63 #include "mmu_rb.h" 64 65 #undef pr_fmt 66 #define pr_fmt(fmt) DRIVER_NAME ": " fmt 67 68 #define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */ 69 70 /* 71 * File operation functions 72 */ 73 static int hfi1_file_open(struct inode *, struct file *); 74 static int hfi1_file_close(struct inode *, struct file *); 75 static ssize_t hfi1_write_iter(struct kiocb *, struct iov_iter *); 76 static unsigned int hfi1_poll(struct file *, struct poll_table_struct *); 77 static int hfi1_file_mmap(struct file *, struct vm_area_struct *); 78 79 static u64 kvirt_to_phys(void *); 80 static int assign_ctxt(struct file *, struct hfi1_user_info *); 81 static int init_subctxts(struct hfi1_ctxtdata *, const struct hfi1_user_info *); 82 static int user_init(struct file *); 83 static int get_ctxt_info(struct file *, void __user *, __u32); 84 static int get_base_info(struct file *, void __user *, __u32); 85 static int setup_ctxt(struct file *); 86 static int setup_subctxt(struct hfi1_ctxtdata *); 87 static int get_user_context(struct file *, struct hfi1_user_info *, int); 88 static int find_shared_ctxt(struct file *, const struct hfi1_user_info *); 89 static int allocate_ctxt(struct file *, struct hfi1_devdata *, 90 struct hfi1_user_info *); 91 static unsigned int poll_urgent(struct file *, struct poll_table_struct *); 92 static unsigned int poll_next(struct file *, struct poll_table_struct *); 93 static int user_event_ack(struct hfi1_ctxtdata *, int, unsigned long); 94 static int set_ctxt_pkey(struct hfi1_ctxtdata *, unsigned, u16); 95 static int manage_rcvq(struct hfi1_ctxtdata *, unsigned, int); 96 static int vma_fault(struct vm_fault *); 97 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd, 98 unsigned long arg); 99 100 static const struct file_operations hfi1_file_ops = { 101 .owner = THIS_MODULE, 102 .write_iter = hfi1_write_iter, 103 .open = hfi1_file_open, 104 .release = hfi1_file_close, 105 .unlocked_ioctl = hfi1_file_ioctl, 106 .poll = hfi1_poll, 107 .mmap = hfi1_file_mmap, 108 .llseek = noop_llseek, 109 }; 110 111 static struct vm_operations_struct vm_ops = { 112 .fault = vma_fault, 113 }; 114 115 /* 116 * Types of memories mapped into user processes' space 117 */ 118 enum mmap_types { 119 PIO_BUFS = 1, 120 PIO_BUFS_SOP, 121 PIO_CRED, 122 RCV_HDRQ, 123 RCV_EGRBUF, 124 UREGS, 125 EVENTS, 126 STATUS, 127 RTAIL, 128 SUBCTXT_UREGS, 129 SUBCTXT_RCV_HDRQ, 130 SUBCTXT_EGRBUF, 131 SDMA_COMP 132 }; 133 134 /* 135 * Masks and offsets defining the mmap tokens 136 */ 137 #define HFI1_MMAP_OFFSET_MASK 0xfffULL 138 #define HFI1_MMAP_OFFSET_SHIFT 0 139 #define HFI1_MMAP_SUBCTXT_MASK 0xfULL 140 #define HFI1_MMAP_SUBCTXT_SHIFT 12 141 #define HFI1_MMAP_CTXT_MASK 0xffULL 142 #define HFI1_MMAP_CTXT_SHIFT 16 143 #define HFI1_MMAP_TYPE_MASK 0xfULL 144 #define HFI1_MMAP_TYPE_SHIFT 24 145 #define HFI1_MMAP_MAGIC_MASK 0xffffffffULL 146 #define HFI1_MMAP_MAGIC_SHIFT 32 147 148 #define HFI1_MMAP_MAGIC 0xdabbad00 149 150 #define HFI1_MMAP_TOKEN_SET(field, val) \ 151 (((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT) 152 #define HFI1_MMAP_TOKEN_GET(field, token) \ 153 (((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK) 154 #define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr) \ 155 (HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \ 156 HFI1_MMAP_TOKEN_SET(TYPE, type) | \ 157 HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \ 158 HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \ 159 HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr)))) 160 161 #define dbg(fmt, ...) \ 162 pr_info(fmt, ##__VA_ARGS__) 163 164 static inline int is_valid_mmap(u64 token) 165 { 166 return (HFI1_MMAP_TOKEN_GET(MAGIC, token) == HFI1_MMAP_MAGIC); 167 } 168 169 static int hfi1_file_open(struct inode *inode, struct file *fp) 170 { 171 struct hfi1_filedata *fd; 172 struct hfi1_devdata *dd = container_of(inode->i_cdev, 173 struct hfi1_devdata, 174 user_cdev); 175 176 if (!atomic_inc_not_zero(&dd->user_refcount)) 177 return -ENXIO; 178 179 /* Just take a ref now. Not all opens result in a context assign */ 180 kobject_get(&dd->kobj); 181 182 /* The real work is performed later in assign_ctxt() */ 183 184 fd = kzalloc(sizeof(*fd), GFP_KERNEL); 185 186 if (fd) { 187 fd->rec_cpu_num = -1; /* no cpu affinity by default */ 188 fd->mm = current->mm; 189 mmgrab(fd->mm); 190 fp->private_data = fd; 191 } else { 192 fp->private_data = NULL; 193 194 if (atomic_dec_and_test(&dd->user_refcount)) 195 complete(&dd->user_comp); 196 197 return -ENOMEM; 198 } 199 200 return 0; 201 } 202 203 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd, 204 unsigned long arg) 205 { 206 struct hfi1_filedata *fd = fp->private_data; 207 struct hfi1_ctxtdata *uctxt = fd->uctxt; 208 struct hfi1_user_info uinfo; 209 struct hfi1_tid_info tinfo; 210 int ret = 0; 211 unsigned long addr; 212 int uval = 0; 213 unsigned long ul_uval = 0; 214 u16 uval16 = 0; 215 216 hfi1_cdbg(IOCTL, "IOCTL recv: 0x%x", cmd); 217 if (cmd != HFI1_IOCTL_ASSIGN_CTXT && 218 cmd != HFI1_IOCTL_GET_VERS && 219 !uctxt) 220 return -EINVAL; 221 222 switch (cmd) { 223 case HFI1_IOCTL_ASSIGN_CTXT: 224 if (uctxt) 225 return -EINVAL; 226 227 if (copy_from_user(&uinfo, 228 (struct hfi1_user_info __user *)arg, 229 sizeof(uinfo))) 230 return -EFAULT; 231 232 ret = assign_ctxt(fp, &uinfo); 233 if (ret < 0) 234 return ret; 235 ret = setup_ctxt(fp); 236 if (ret) 237 return ret; 238 ret = user_init(fp); 239 break; 240 case HFI1_IOCTL_CTXT_INFO: 241 ret = get_ctxt_info(fp, (void __user *)(unsigned long)arg, 242 sizeof(struct hfi1_ctxt_info)); 243 break; 244 case HFI1_IOCTL_USER_INFO: 245 ret = get_base_info(fp, (void __user *)(unsigned long)arg, 246 sizeof(struct hfi1_base_info)); 247 break; 248 case HFI1_IOCTL_CREDIT_UPD: 249 if (uctxt) 250 sc_return_credits(uctxt->sc); 251 break; 252 253 case HFI1_IOCTL_TID_UPDATE: 254 if (copy_from_user(&tinfo, 255 (struct hfi11_tid_info __user *)arg, 256 sizeof(tinfo))) 257 return -EFAULT; 258 259 ret = hfi1_user_exp_rcv_setup(fp, &tinfo); 260 if (!ret) { 261 /* 262 * Copy the number of tidlist entries we used 263 * and the length of the buffer we registered. 264 * These fields are adjacent in the structure so 265 * we can copy them at the same time. 266 */ 267 addr = arg + offsetof(struct hfi1_tid_info, tidcnt); 268 if (copy_to_user((void __user *)addr, &tinfo.tidcnt, 269 sizeof(tinfo.tidcnt) + 270 sizeof(tinfo.length))) 271 ret = -EFAULT; 272 } 273 break; 274 275 case HFI1_IOCTL_TID_FREE: 276 if (copy_from_user(&tinfo, 277 (struct hfi11_tid_info __user *)arg, 278 sizeof(tinfo))) 279 return -EFAULT; 280 281 ret = hfi1_user_exp_rcv_clear(fp, &tinfo); 282 if (ret) 283 break; 284 addr = arg + offsetof(struct hfi1_tid_info, tidcnt); 285 if (copy_to_user((void __user *)addr, &tinfo.tidcnt, 286 sizeof(tinfo.tidcnt))) 287 ret = -EFAULT; 288 break; 289 290 case HFI1_IOCTL_TID_INVAL_READ: 291 if (copy_from_user(&tinfo, 292 (struct hfi11_tid_info __user *)arg, 293 sizeof(tinfo))) 294 return -EFAULT; 295 296 ret = hfi1_user_exp_rcv_invalid(fp, &tinfo); 297 if (ret) 298 break; 299 addr = arg + offsetof(struct hfi1_tid_info, tidcnt); 300 if (copy_to_user((void __user *)addr, &tinfo.tidcnt, 301 sizeof(tinfo.tidcnt))) 302 ret = -EFAULT; 303 break; 304 305 case HFI1_IOCTL_RECV_CTRL: 306 ret = get_user(uval, (int __user *)arg); 307 if (ret != 0) 308 return -EFAULT; 309 ret = manage_rcvq(uctxt, fd->subctxt, uval); 310 break; 311 312 case HFI1_IOCTL_POLL_TYPE: 313 ret = get_user(uval, (int __user *)arg); 314 if (ret != 0) 315 return -EFAULT; 316 uctxt->poll_type = (typeof(uctxt->poll_type))uval; 317 break; 318 319 case HFI1_IOCTL_ACK_EVENT: 320 ret = get_user(ul_uval, (unsigned long __user *)arg); 321 if (ret != 0) 322 return -EFAULT; 323 ret = user_event_ack(uctxt, fd->subctxt, ul_uval); 324 break; 325 326 case HFI1_IOCTL_SET_PKEY: 327 ret = get_user(uval16, (u16 __user *)arg); 328 if (ret != 0) 329 return -EFAULT; 330 if (HFI1_CAP_IS_USET(PKEY_CHECK)) 331 ret = set_ctxt_pkey(uctxt, fd->subctxt, uval16); 332 else 333 return -EPERM; 334 break; 335 336 case HFI1_IOCTL_CTXT_RESET: { 337 struct send_context *sc; 338 struct hfi1_devdata *dd; 339 340 if (!uctxt || !uctxt->dd || !uctxt->sc) 341 return -EINVAL; 342 343 /* 344 * There is no protection here. User level has to 345 * guarantee that no one will be writing to the send 346 * context while it is being re-initialized. 347 * If user level breaks that guarantee, it will break 348 * it's own context and no one else's. 349 */ 350 dd = uctxt->dd; 351 sc = uctxt->sc; 352 /* 353 * Wait until the interrupt handler has marked the 354 * context as halted or frozen. Report error if we time 355 * out. 356 */ 357 wait_event_interruptible_timeout( 358 sc->halt_wait, (sc->flags & SCF_HALTED), 359 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT)); 360 if (!(sc->flags & SCF_HALTED)) 361 return -ENOLCK; 362 363 /* 364 * If the send context was halted due to a Freeze, 365 * wait until the device has been "unfrozen" before 366 * resetting the context. 367 */ 368 if (sc->flags & SCF_FROZEN) { 369 wait_event_interruptible_timeout( 370 dd->event_queue, 371 !(ACCESS_ONCE(dd->flags) & HFI1_FROZEN), 372 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT)); 373 if (dd->flags & HFI1_FROZEN) 374 return -ENOLCK; 375 376 if (dd->flags & HFI1_FORCED_FREEZE) 377 /* 378 * Don't allow context reset if we are into 379 * forced freeze 380 */ 381 return -ENODEV; 382 383 sc_disable(sc); 384 ret = sc_enable(sc); 385 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB, 386 uctxt->ctxt); 387 } else { 388 ret = sc_restart(sc); 389 } 390 if (!ret) 391 sc_return_credits(sc); 392 break; 393 } 394 395 case HFI1_IOCTL_GET_VERS: 396 uval = HFI1_USER_SWVERSION; 397 if (put_user(uval, (int __user *)arg)) 398 return -EFAULT; 399 break; 400 401 default: 402 return -EINVAL; 403 } 404 405 return ret; 406 } 407 408 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from) 409 { 410 struct hfi1_filedata *fd = kiocb->ki_filp->private_data; 411 struct hfi1_user_sdma_pkt_q *pq = fd->pq; 412 struct hfi1_user_sdma_comp_q *cq = fd->cq; 413 int done = 0, reqs = 0; 414 unsigned long dim = from->nr_segs; 415 416 if (!cq || !pq) 417 return -EIO; 418 419 if (!iter_is_iovec(from) || !dim) 420 return -EINVAL; 421 422 hfi1_cdbg(SDMA, "SDMA request from %u:%u (%lu)", 423 fd->uctxt->ctxt, fd->subctxt, dim); 424 425 if (atomic_read(&pq->n_reqs) == pq->n_max_reqs) 426 return -ENOSPC; 427 428 while (dim) { 429 int ret; 430 unsigned long count = 0; 431 432 ret = hfi1_user_sdma_process_request( 433 kiocb->ki_filp, (struct iovec *)(from->iov + done), 434 dim, &count); 435 if (ret) { 436 reqs = ret; 437 break; 438 } 439 dim -= count; 440 done += count; 441 reqs++; 442 } 443 444 return reqs; 445 } 446 447 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma) 448 { 449 struct hfi1_filedata *fd = fp->private_data; 450 struct hfi1_ctxtdata *uctxt = fd->uctxt; 451 struct hfi1_devdata *dd; 452 unsigned long flags; 453 u64 token = vma->vm_pgoff << PAGE_SHIFT, 454 memaddr = 0; 455 void *memvirt = NULL; 456 u8 subctxt, mapio = 0, vmf = 0, type; 457 ssize_t memlen = 0; 458 int ret = 0; 459 u16 ctxt; 460 461 if (!is_valid_mmap(token) || !uctxt || 462 !(vma->vm_flags & VM_SHARED)) { 463 ret = -EINVAL; 464 goto done; 465 } 466 dd = uctxt->dd; 467 ctxt = HFI1_MMAP_TOKEN_GET(CTXT, token); 468 subctxt = HFI1_MMAP_TOKEN_GET(SUBCTXT, token); 469 type = HFI1_MMAP_TOKEN_GET(TYPE, token); 470 if (ctxt != uctxt->ctxt || subctxt != fd->subctxt) { 471 ret = -EINVAL; 472 goto done; 473 } 474 475 flags = vma->vm_flags; 476 477 switch (type) { 478 case PIO_BUFS: 479 case PIO_BUFS_SOP: 480 memaddr = ((dd->physaddr + TXE_PIO_SEND) + 481 /* chip pio base */ 482 (uctxt->sc->hw_context * BIT(16))) + 483 /* 64K PIO space / ctxt */ 484 (type == PIO_BUFS_SOP ? 485 (TXE_PIO_SIZE / 2) : 0); /* sop? */ 486 /* 487 * Map only the amount allocated to the context, not the 488 * entire available context's PIO space. 489 */ 490 memlen = PAGE_ALIGN(uctxt->sc->credits * PIO_BLOCK_SIZE); 491 flags &= ~VM_MAYREAD; 492 flags |= VM_DONTCOPY | VM_DONTEXPAND; 493 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); 494 mapio = 1; 495 break; 496 case PIO_CRED: 497 if (flags & VM_WRITE) { 498 ret = -EPERM; 499 goto done; 500 } 501 /* 502 * The credit return location for this context could be on the 503 * second or third page allocated for credit returns (if number 504 * of enabled contexts > 64 and 128 respectively). 505 */ 506 memvirt = dd->cr_base[uctxt->numa_id].va; 507 memaddr = virt_to_phys(memvirt) + 508 (((u64)uctxt->sc->hw_free - 509 (u64)dd->cr_base[uctxt->numa_id].va) & PAGE_MASK); 510 memlen = PAGE_SIZE; 511 flags &= ~VM_MAYWRITE; 512 flags |= VM_DONTCOPY | VM_DONTEXPAND; 513 /* 514 * The driver has already allocated memory for credit 515 * returns and programmed it into the chip. Has that 516 * memory been flagged as non-cached? 517 */ 518 /* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */ 519 mapio = 1; 520 break; 521 case RCV_HDRQ: 522 memlen = uctxt->rcvhdrq_size; 523 memvirt = uctxt->rcvhdrq; 524 break; 525 case RCV_EGRBUF: { 526 unsigned long addr; 527 int i; 528 /* 529 * The RcvEgr buffer need to be handled differently 530 * as multiple non-contiguous pages need to be mapped 531 * into the user process. 532 */ 533 memlen = uctxt->egrbufs.size; 534 if ((vma->vm_end - vma->vm_start) != memlen) { 535 dd_dev_err(dd, "Eager buffer map size invalid (%lu != %lu)\n", 536 (vma->vm_end - vma->vm_start), memlen); 537 ret = -EINVAL; 538 goto done; 539 } 540 if (vma->vm_flags & VM_WRITE) { 541 ret = -EPERM; 542 goto done; 543 } 544 vma->vm_flags &= ~VM_MAYWRITE; 545 addr = vma->vm_start; 546 for (i = 0 ; i < uctxt->egrbufs.numbufs; i++) { 547 memlen = uctxt->egrbufs.buffers[i].len; 548 memvirt = uctxt->egrbufs.buffers[i].addr; 549 ret = remap_pfn_range( 550 vma, addr, 551 /* 552 * virt_to_pfn() does the same, but 553 * it's not available on x86_64 554 * when CONFIG_MMU is enabled. 555 */ 556 PFN_DOWN(__pa(memvirt)), 557 memlen, 558 vma->vm_page_prot); 559 if (ret < 0) 560 goto done; 561 addr += memlen; 562 } 563 ret = 0; 564 goto done; 565 } 566 case UREGS: 567 /* 568 * Map only the page that contains this context's user 569 * registers. 570 */ 571 memaddr = (unsigned long) 572 (dd->physaddr + RXE_PER_CONTEXT_USER) 573 + (uctxt->ctxt * RXE_PER_CONTEXT_SIZE); 574 /* 575 * TidFlow table is on the same page as the rest of the 576 * user registers. 577 */ 578 memlen = PAGE_SIZE; 579 flags |= VM_DONTCOPY | VM_DONTEXPAND; 580 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 581 mapio = 1; 582 break; 583 case EVENTS: 584 /* 585 * Use the page where this context's flags are. User level 586 * knows where it's own bitmap is within the page. 587 */ 588 memaddr = (unsigned long)(dd->events + 589 ((uctxt->ctxt - dd->first_user_ctxt) * 590 HFI1_MAX_SHARED_CTXTS)) & PAGE_MASK; 591 memlen = PAGE_SIZE; 592 /* 593 * v3.7 removes VM_RESERVED but the effect is kept by 594 * using VM_IO. 595 */ 596 flags |= VM_IO | VM_DONTEXPAND; 597 vmf = 1; 598 break; 599 case STATUS: 600 memaddr = kvirt_to_phys((void *)dd->status); 601 memlen = PAGE_SIZE; 602 flags |= VM_IO | VM_DONTEXPAND; 603 break; 604 case RTAIL: 605 if (!HFI1_CAP_IS_USET(DMA_RTAIL)) { 606 /* 607 * If the memory allocation failed, the context alloc 608 * also would have failed, so we would never get here 609 */ 610 ret = -EINVAL; 611 goto done; 612 } 613 if (flags & VM_WRITE) { 614 ret = -EPERM; 615 goto done; 616 } 617 memlen = PAGE_SIZE; 618 memvirt = (void *)uctxt->rcvhdrtail_kvaddr; 619 flags &= ~VM_MAYWRITE; 620 break; 621 case SUBCTXT_UREGS: 622 memaddr = (u64)uctxt->subctxt_uregbase; 623 memlen = PAGE_SIZE; 624 flags |= VM_IO | VM_DONTEXPAND; 625 vmf = 1; 626 break; 627 case SUBCTXT_RCV_HDRQ: 628 memaddr = (u64)uctxt->subctxt_rcvhdr_base; 629 memlen = uctxt->rcvhdrq_size * uctxt->subctxt_cnt; 630 flags |= VM_IO | VM_DONTEXPAND; 631 vmf = 1; 632 break; 633 case SUBCTXT_EGRBUF: 634 memaddr = (u64)uctxt->subctxt_rcvegrbuf; 635 memlen = uctxt->egrbufs.size * uctxt->subctxt_cnt; 636 flags |= VM_IO | VM_DONTEXPAND; 637 flags &= ~VM_MAYWRITE; 638 vmf = 1; 639 break; 640 case SDMA_COMP: { 641 struct hfi1_user_sdma_comp_q *cq = fd->cq; 642 643 if (!cq) { 644 ret = -EFAULT; 645 goto done; 646 } 647 memaddr = (u64)cq->comps; 648 memlen = PAGE_ALIGN(sizeof(*cq->comps) * cq->nentries); 649 flags |= VM_IO | VM_DONTEXPAND; 650 vmf = 1; 651 break; 652 } 653 default: 654 ret = -EINVAL; 655 break; 656 } 657 658 if ((vma->vm_end - vma->vm_start) != memlen) { 659 hfi1_cdbg(PROC, "%u:%u Memory size mismatch %lu:%lu", 660 uctxt->ctxt, fd->subctxt, 661 (vma->vm_end - vma->vm_start), memlen); 662 ret = -EINVAL; 663 goto done; 664 } 665 666 vma->vm_flags = flags; 667 hfi1_cdbg(PROC, 668 "%u:%u type:%u io/vf:%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx\n", 669 ctxt, subctxt, type, mapio, vmf, memaddr, memlen, 670 vma->vm_end - vma->vm_start, vma->vm_flags); 671 if (vmf) { 672 vma->vm_pgoff = PFN_DOWN(memaddr); 673 vma->vm_ops = &vm_ops; 674 ret = 0; 675 } else if (mapio) { 676 ret = io_remap_pfn_range(vma, vma->vm_start, 677 PFN_DOWN(memaddr), 678 memlen, 679 vma->vm_page_prot); 680 } else if (memvirt) { 681 ret = remap_pfn_range(vma, vma->vm_start, 682 PFN_DOWN(__pa(memvirt)), 683 memlen, 684 vma->vm_page_prot); 685 } else { 686 ret = remap_pfn_range(vma, vma->vm_start, 687 PFN_DOWN(memaddr), 688 memlen, 689 vma->vm_page_prot); 690 } 691 done: 692 return ret; 693 } 694 695 /* 696 * Local (non-chip) user memory is not mapped right away but as it is 697 * accessed by the user-level code. 698 */ 699 static int vma_fault(struct vm_fault *vmf) 700 { 701 struct page *page; 702 703 page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT)); 704 if (!page) 705 return VM_FAULT_SIGBUS; 706 707 get_page(page); 708 vmf->page = page; 709 710 return 0; 711 } 712 713 static unsigned int hfi1_poll(struct file *fp, struct poll_table_struct *pt) 714 { 715 struct hfi1_ctxtdata *uctxt; 716 unsigned pollflag; 717 718 uctxt = ((struct hfi1_filedata *)fp->private_data)->uctxt; 719 if (!uctxt) 720 pollflag = POLLERR; 721 else if (uctxt->poll_type == HFI1_POLL_TYPE_URGENT) 722 pollflag = poll_urgent(fp, pt); 723 else if (uctxt->poll_type == HFI1_POLL_TYPE_ANYRCV) 724 pollflag = poll_next(fp, pt); 725 else /* invalid */ 726 pollflag = POLLERR; 727 728 return pollflag; 729 } 730 731 static int hfi1_file_close(struct inode *inode, struct file *fp) 732 { 733 struct hfi1_filedata *fdata = fp->private_data; 734 struct hfi1_ctxtdata *uctxt = fdata->uctxt; 735 struct hfi1_devdata *dd = container_of(inode->i_cdev, 736 struct hfi1_devdata, 737 user_cdev); 738 unsigned long flags, *ev; 739 740 fp->private_data = NULL; 741 742 if (!uctxt) 743 goto done; 744 745 hfi1_cdbg(PROC, "freeing ctxt %u:%u", uctxt->ctxt, fdata->subctxt); 746 mutex_lock(&hfi1_mutex); 747 748 flush_wc(); 749 /* drain user sdma queue */ 750 hfi1_user_sdma_free_queues(fdata); 751 752 /* release the cpu */ 753 hfi1_put_proc_affinity(fdata->rec_cpu_num); 754 755 /* 756 * Clear any left over, unhandled events so the next process that 757 * gets this context doesn't get confused. 758 */ 759 ev = dd->events + ((uctxt->ctxt - dd->first_user_ctxt) * 760 HFI1_MAX_SHARED_CTXTS) + fdata->subctxt; 761 *ev = 0; 762 763 if (--uctxt->cnt) { 764 uctxt->active_slaves &= ~(1 << fdata->subctxt); 765 mutex_unlock(&hfi1_mutex); 766 goto done; 767 } 768 769 spin_lock_irqsave(&dd->uctxt_lock, flags); 770 /* 771 * Disable receive context and interrupt available, reset all 772 * RcvCtxtCtrl bits to default values. 773 */ 774 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS | 775 HFI1_RCVCTRL_TIDFLOW_DIS | 776 HFI1_RCVCTRL_INTRAVAIL_DIS | 777 HFI1_RCVCTRL_TAILUPD_DIS | 778 HFI1_RCVCTRL_ONE_PKT_EGR_DIS | 779 HFI1_RCVCTRL_NO_RHQ_DROP_DIS | 780 HFI1_RCVCTRL_NO_EGR_DROP_DIS, uctxt->ctxt); 781 /* Clear the context's J_KEY */ 782 hfi1_clear_ctxt_jkey(dd, uctxt->ctxt); 783 /* 784 * Reset context integrity checks to default. 785 * (writes to CSRs probably belong in chip.c) 786 */ 787 write_kctxt_csr(dd, uctxt->sc->hw_context, SEND_CTXT_CHECK_ENABLE, 788 hfi1_pkt_default_send_ctxt_mask(dd, uctxt->sc->type)); 789 sc_disable(uctxt->sc); 790 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 791 792 dd->rcd[uctxt->ctxt] = NULL; 793 794 hfi1_user_exp_rcv_free(fdata); 795 hfi1_clear_ctxt_pkey(dd, uctxt->ctxt); 796 797 uctxt->rcvwait_to = 0; 798 uctxt->piowait_to = 0; 799 uctxt->rcvnowait = 0; 800 uctxt->pionowait = 0; 801 uctxt->event_flags = 0; 802 803 hfi1_stats.sps_ctxts--; 804 if (++dd->freectxts == dd->num_user_contexts) 805 aspm_enable_all(dd); 806 mutex_unlock(&hfi1_mutex); 807 hfi1_free_ctxtdata(dd, uctxt); 808 done: 809 mmdrop(fdata->mm); 810 kobject_put(&dd->kobj); 811 812 if (atomic_dec_and_test(&dd->user_refcount)) 813 complete(&dd->user_comp); 814 815 kfree(fdata); 816 return 0; 817 } 818 819 /* 820 * Convert kernel *virtual* addresses to physical addresses. 821 * This is used to vmalloc'ed addresses. 822 */ 823 static u64 kvirt_to_phys(void *addr) 824 { 825 struct page *page; 826 u64 paddr = 0; 827 828 page = vmalloc_to_page(addr); 829 if (page) 830 paddr = page_to_pfn(page) << PAGE_SHIFT; 831 832 return paddr; 833 } 834 835 static int assign_ctxt(struct file *fp, struct hfi1_user_info *uinfo) 836 { 837 int i_minor, ret = 0; 838 unsigned int swmajor, swminor; 839 840 swmajor = uinfo->userversion >> 16; 841 if (swmajor != HFI1_USER_SWMAJOR) { 842 ret = -ENODEV; 843 goto done; 844 } 845 846 swminor = uinfo->userversion & 0xffff; 847 848 mutex_lock(&hfi1_mutex); 849 /* First, lets check if we need to setup a shared context? */ 850 if (uinfo->subctxt_cnt) { 851 struct hfi1_filedata *fd = fp->private_data; 852 853 ret = find_shared_ctxt(fp, uinfo); 854 if (ret < 0) 855 goto done_unlock; 856 if (ret) { 857 fd->rec_cpu_num = 858 hfi1_get_proc_affinity(fd->uctxt->numa_id); 859 } 860 } 861 862 /* 863 * We execute the following block if we couldn't find a 864 * shared context or if context sharing is not required. 865 */ 866 if (!ret) { 867 i_minor = iminor(file_inode(fp)) - HFI1_USER_MINOR_BASE; 868 ret = get_user_context(fp, uinfo, i_minor); 869 } 870 done_unlock: 871 mutex_unlock(&hfi1_mutex); 872 done: 873 return ret; 874 } 875 876 static int get_user_context(struct file *fp, struct hfi1_user_info *uinfo, 877 int devno) 878 { 879 struct hfi1_devdata *dd = NULL; 880 int devmax, npresent, nup; 881 882 devmax = hfi1_count_units(&npresent, &nup); 883 if (!npresent) 884 return -ENXIO; 885 886 if (!nup) 887 return -ENETDOWN; 888 889 dd = hfi1_lookup(devno); 890 if (!dd) 891 return -ENODEV; 892 else if (!dd->freectxts) 893 return -EBUSY; 894 895 return allocate_ctxt(fp, dd, uinfo); 896 } 897 898 static int find_shared_ctxt(struct file *fp, 899 const struct hfi1_user_info *uinfo) 900 { 901 int devmax, ndev, i; 902 int ret = 0; 903 struct hfi1_filedata *fd = fp->private_data; 904 905 devmax = hfi1_count_units(NULL, NULL); 906 907 for (ndev = 0; ndev < devmax; ndev++) { 908 struct hfi1_devdata *dd = hfi1_lookup(ndev); 909 910 if (!(dd && (dd->flags & HFI1_PRESENT) && dd->kregbase)) 911 continue; 912 for (i = dd->first_user_ctxt; i < dd->num_rcv_contexts; i++) { 913 struct hfi1_ctxtdata *uctxt = dd->rcd[i]; 914 915 /* Skip ctxts which are not yet open */ 916 if (!uctxt || !uctxt->cnt) 917 continue; 918 /* Skip ctxt if it doesn't match the requested one */ 919 if (memcmp(uctxt->uuid, uinfo->uuid, 920 sizeof(uctxt->uuid)) || 921 uctxt->jkey != generate_jkey(current_uid()) || 922 uctxt->subctxt_id != uinfo->subctxt_id || 923 uctxt->subctxt_cnt != uinfo->subctxt_cnt) 924 continue; 925 926 /* Verify the sharing process matches the master */ 927 if (uctxt->userversion != uinfo->userversion || 928 uctxt->cnt >= uctxt->subctxt_cnt) { 929 ret = -EINVAL; 930 goto done; 931 } 932 fd->uctxt = uctxt; 933 fd->subctxt = uctxt->cnt++; 934 uctxt->active_slaves |= 1 << fd->subctxt; 935 ret = 1; 936 goto done; 937 } 938 } 939 940 done: 941 return ret; 942 } 943 944 static int allocate_ctxt(struct file *fp, struct hfi1_devdata *dd, 945 struct hfi1_user_info *uinfo) 946 { 947 struct hfi1_filedata *fd = fp->private_data; 948 struct hfi1_ctxtdata *uctxt; 949 unsigned ctxt; 950 int ret, numa; 951 952 if (dd->flags & HFI1_FROZEN) { 953 /* 954 * Pick an error that is unique from all other errors 955 * that are returned so the user process knows that 956 * it tried to allocate while the SPC was frozen. It 957 * it should be able to retry with success in a short 958 * while. 959 */ 960 return -EIO; 961 } 962 963 for (ctxt = dd->first_user_ctxt; ctxt < dd->num_rcv_contexts; ctxt++) 964 if (!dd->rcd[ctxt]) 965 break; 966 967 if (ctxt == dd->num_rcv_contexts) 968 return -EBUSY; 969 970 /* 971 * If we don't have a NUMA node requested, preference is towards 972 * device NUMA node. 973 */ 974 fd->rec_cpu_num = hfi1_get_proc_affinity(dd->node); 975 if (fd->rec_cpu_num != -1) 976 numa = cpu_to_node(fd->rec_cpu_num); 977 else 978 numa = numa_node_id(); 979 uctxt = hfi1_create_ctxtdata(dd->pport, ctxt, numa); 980 if (!uctxt) { 981 dd_dev_err(dd, 982 "Unable to allocate ctxtdata memory, failing open\n"); 983 return -ENOMEM; 984 } 985 hfi1_cdbg(PROC, "[%u:%u] pid %u assigned to CPU %d (NUMA %u)", 986 uctxt->ctxt, fd->subctxt, current->pid, fd->rec_cpu_num, 987 uctxt->numa_id); 988 989 /* 990 * Allocate and enable a PIO send context. 991 */ 992 uctxt->sc = sc_alloc(dd, SC_USER, uctxt->rcvhdrqentsize, 993 uctxt->dd->node); 994 if (!uctxt->sc) { 995 ret = -ENOMEM; 996 goto ctxdata_free; 997 } 998 hfi1_cdbg(PROC, "allocated send context %u(%u)\n", uctxt->sc->sw_index, 999 uctxt->sc->hw_context); 1000 ret = sc_enable(uctxt->sc); 1001 if (ret) 1002 goto ctxdata_free; 1003 1004 /* 1005 * Setup shared context resources if the user-level has requested 1006 * shared contexts and this is the 'master' process. 1007 * This has to be done here so the rest of the sub-contexts find the 1008 * proper master. 1009 */ 1010 if (uinfo->subctxt_cnt && !fd->subctxt) { 1011 ret = init_subctxts(uctxt, uinfo); 1012 /* 1013 * On error, we don't need to disable and de-allocate the 1014 * send context because it will be done during file close 1015 */ 1016 if (ret) 1017 goto ctxdata_free; 1018 } 1019 uctxt->userversion = uinfo->userversion; 1020 uctxt->flags = hfi1_cap_mask; /* save current flag state */ 1021 init_waitqueue_head(&uctxt->wait); 1022 strlcpy(uctxt->comm, current->comm, sizeof(uctxt->comm)); 1023 memcpy(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)); 1024 uctxt->jkey = generate_jkey(current_uid()); 1025 INIT_LIST_HEAD(&uctxt->sdma_queues); 1026 spin_lock_init(&uctxt->sdma_qlock); 1027 hfi1_stats.sps_ctxts++; 1028 /* 1029 * Disable ASPM when there are open user/PSM contexts to avoid 1030 * issues with ASPM L1 exit latency 1031 */ 1032 if (dd->freectxts-- == dd->num_user_contexts) 1033 aspm_disable_all(dd); 1034 fd->uctxt = uctxt; 1035 1036 return 0; 1037 1038 ctxdata_free: 1039 dd->rcd[ctxt] = NULL; 1040 hfi1_free_ctxtdata(dd, uctxt); 1041 return ret; 1042 } 1043 1044 static int init_subctxts(struct hfi1_ctxtdata *uctxt, 1045 const struct hfi1_user_info *uinfo) 1046 { 1047 unsigned num_subctxts; 1048 1049 num_subctxts = uinfo->subctxt_cnt; 1050 if (num_subctxts > HFI1_MAX_SHARED_CTXTS) 1051 return -EINVAL; 1052 1053 uctxt->subctxt_cnt = uinfo->subctxt_cnt; 1054 uctxt->subctxt_id = uinfo->subctxt_id; 1055 uctxt->active_slaves = 1; 1056 uctxt->redirect_seq_cnt = 1; 1057 set_bit(HFI1_CTXT_MASTER_UNINIT, &uctxt->event_flags); 1058 1059 return 0; 1060 } 1061 1062 static int setup_subctxt(struct hfi1_ctxtdata *uctxt) 1063 { 1064 int ret = 0; 1065 unsigned num_subctxts = uctxt->subctxt_cnt; 1066 1067 uctxt->subctxt_uregbase = vmalloc_user(PAGE_SIZE); 1068 if (!uctxt->subctxt_uregbase) { 1069 ret = -ENOMEM; 1070 goto bail; 1071 } 1072 /* We can take the size of the RcvHdr Queue from the master */ 1073 uctxt->subctxt_rcvhdr_base = vmalloc_user(uctxt->rcvhdrq_size * 1074 num_subctxts); 1075 if (!uctxt->subctxt_rcvhdr_base) { 1076 ret = -ENOMEM; 1077 goto bail_ureg; 1078 } 1079 1080 uctxt->subctxt_rcvegrbuf = vmalloc_user(uctxt->egrbufs.size * 1081 num_subctxts); 1082 if (!uctxt->subctxt_rcvegrbuf) { 1083 ret = -ENOMEM; 1084 goto bail_rhdr; 1085 } 1086 goto bail; 1087 bail_rhdr: 1088 vfree(uctxt->subctxt_rcvhdr_base); 1089 bail_ureg: 1090 vfree(uctxt->subctxt_uregbase); 1091 uctxt->subctxt_uregbase = NULL; 1092 bail: 1093 return ret; 1094 } 1095 1096 static int user_init(struct file *fp) 1097 { 1098 unsigned int rcvctrl_ops = 0; 1099 struct hfi1_filedata *fd = fp->private_data; 1100 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1101 1102 /* make sure that the context has already been setup */ 1103 if (!test_bit(HFI1_CTXT_SETUP_DONE, &uctxt->event_flags)) 1104 return -EFAULT; 1105 1106 /* initialize poll variables... */ 1107 uctxt->urgent = 0; 1108 uctxt->urgent_poll = 0; 1109 1110 /* 1111 * Now enable the ctxt for receive. 1112 * For chips that are set to DMA the tail register to memory 1113 * when they change (and when the update bit transitions from 1114 * 0 to 1. So for those chips, we turn it off and then back on. 1115 * This will (very briefly) affect any other open ctxts, but the 1116 * duration is very short, and therefore isn't an issue. We 1117 * explicitly set the in-memory tail copy to 0 beforehand, so we 1118 * don't have to wait to be sure the DMA update has happened 1119 * (chip resets head/tail to 0 on transition to enable). 1120 */ 1121 if (uctxt->rcvhdrtail_kvaddr) 1122 clear_rcvhdrtail(uctxt); 1123 1124 /* Setup J_KEY before enabling the context */ 1125 hfi1_set_ctxt_jkey(uctxt->dd, uctxt->ctxt, uctxt->jkey); 1126 1127 rcvctrl_ops = HFI1_RCVCTRL_CTXT_ENB; 1128 if (HFI1_CAP_UGET_MASK(uctxt->flags, HDRSUPP)) 1129 rcvctrl_ops |= HFI1_RCVCTRL_TIDFLOW_ENB; 1130 /* 1131 * Ignore the bit in the flags for now until proper 1132 * support for multiple packet per rcv array entry is 1133 * added. 1134 */ 1135 if (!HFI1_CAP_UGET_MASK(uctxt->flags, MULTI_PKT_EGR)) 1136 rcvctrl_ops |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB; 1137 if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_EGR_FULL)) 1138 rcvctrl_ops |= HFI1_RCVCTRL_NO_EGR_DROP_ENB; 1139 if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_RHQ_FULL)) 1140 rcvctrl_ops |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB; 1141 /* 1142 * The RcvCtxtCtrl.TailUpd bit has to be explicitly written. 1143 * We can't rely on the correct value to be set from prior 1144 * uses of the chip or ctxt. Therefore, add the rcvctrl op 1145 * for both cases. 1146 */ 1147 if (HFI1_CAP_UGET_MASK(uctxt->flags, DMA_RTAIL)) 1148 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_ENB; 1149 else 1150 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_DIS; 1151 hfi1_rcvctrl(uctxt->dd, rcvctrl_ops, uctxt->ctxt); 1152 1153 /* Notify any waiting slaves */ 1154 if (uctxt->subctxt_cnt) { 1155 clear_bit(HFI1_CTXT_MASTER_UNINIT, &uctxt->event_flags); 1156 wake_up(&uctxt->wait); 1157 } 1158 1159 return 0; 1160 } 1161 1162 static int get_ctxt_info(struct file *fp, void __user *ubase, __u32 len) 1163 { 1164 struct hfi1_ctxt_info cinfo; 1165 struct hfi1_filedata *fd = fp->private_data; 1166 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1167 int ret = 0; 1168 1169 memset(&cinfo, 0, sizeof(cinfo)); 1170 cinfo.runtime_flags = (((uctxt->flags >> HFI1_CAP_MISC_SHIFT) & 1171 HFI1_CAP_MISC_MASK) << HFI1_CAP_USER_SHIFT) | 1172 HFI1_CAP_UGET_MASK(uctxt->flags, MASK) | 1173 HFI1_CAP_KGET_MASK(uctxt->flags, K2U); 1174 /* adjust flag if this fd is not able to cache */ 1175 if (!fd->handler) 1176 cinfo.runtime_flags |= HFI1_CAP_TID_UNMAP; /* no caching */ 1177 1178 cinfo.num_active = hfi1_count_active_units(); 1179 cinfo.unit = uctxt->dd->unit; 1180 cinfo.ctxt = uctxt->ctxt; 1181 cinfo.subctxt = fd->subctxt; 1182 cinfo.rcvtids = roundup(uctxt->egrbufs.alloced, 1183 uctxt->dd->rcv_entries.group_size) + 1184 uctxt->expected_count; 1185 cinfo.credits = uctxt->sc->credits; 1186 cinfo.numa_node = uctxt->numa_id; 1187 cinfo.rec_cpu = fd->rec_cpu_num; 1188 cinfo.send_ctxt = uctxt->sc->hw_context; 1189 1190 cinfo.egrtids = uctxt->egrbufs.alloced; 1191 cinfo.rcvhdrq_cnt = uctxt->rcvhdrq_cnt; 1192 cinfo.rcvhdrq_entsize = uctxt->rcvhdrqentsize << 2; 1193 cinfo.sdma_ring_size = fd->cq->nentries; 1194 cinfo.rcvegr_size = uctxt->egrbufs.rcvtid_size; 1195 1196 trace_hfi1_ctxt_info(uctxt->dd, uctxt->ctxt, fd->subctxt, cinfo); 1197 if (copy_to_user(ubase, &cinfo, sizeof(cinfo))) 1198 ret = -EFAULT; 1199 1200 return ret; 1201 } 1202 1203 static int setup_ctxt(struct file *fp) 1204 { 1205 struct hfi1_filedata *fd = fp->private_data; 1206 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1207 struct hfi1_devdata *dd = uctxt->dd; 1208 int ret = 0; 1209 1210 /* 1211 * Context should be set up only once, including allocation and 1212 * programming of eager buffers. This is done if context sharing 1213 * is not requested or by the master process. 1214 */ 1215 if (!uctxt->subctxt_cnt || !fd->subctxt) { 1216 ret = hfi1_init_ctxt(uctxt->sc); 1217 if (ret) 1218 goto done; 1219 1220 /* Now allocate the RcvHdr queue and eager buffers. */ 1221 ret = hfi1_create_rcvhdrq(dd, uctxt); 1222 if (ret) 1223 goto done; 1224 ret = hfi1_setup_eagerbufs(uctxt); 1225 if (ret) 1226 goto done; 1227 if (uctxt->subctxt_cnt && !fd->subctxt) { 1228 ret = setup_subctxt(uctxt); 1229 if (ret) 1230 goto done; 1231 } 1232 } else { 1233 ret = wait_event_interruptible(uctxt->wait, !test_bit( 1234 HFI1_CTXT_MASTER_UNINIT, 1235 &uctxt->event_flags)); 1236 if (ret) 1237 goto done; 1238 } 1239 1240 ret = hfi1_user_sdma_alloc_queues(uctxt, fp); 1241 if (ret) 1242 goto done; 1243 /* 1244 * Expected receive has to be setup for all processes (including 1245 * shared contexts). However, it has to be done after the master 1246 * context has been fully configured as it depends on the 1247 * eager/expected split of the RcvArray entries. 1248 * Setting it up here ensures that the subcontexts will be waiting 1249 * (due to the above wait_event_interruptible() until the master 1250 * is setup. 1251 */ 1252 ret = hfi1_user_exp_rcv_init(fp); 1253 if (ret) 1254 goto done; 1255 1256 set_bit(HFI1_CTXT_SETUP_DONE, &uctxt->event_flags); 1257 done: 1258 return ret; 1259 } 1260 1261 static int get_base_info(struct file *fp, void __user *ubase, __u32 len) 1262 { 1263 struct hfi1_base_info binfo; 1264 struct hfi1_filedata *fd = fp->private_data; 1265 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1266 struct hfi1_devdata *dd = uctxt->dd; 1267 ssize_t sz; 1268 unsigned offset; 1269 int ret = 0; 1270 1271 trace_hfi1_uctxtdata(uctxt->dd, uctxt); 1272 1273 memset(&binfo, 0, sizeof(binfo)); 1274 binfo.hw_version = dd->revision; 1275 binfo.sw_version = HFI1_KERN_SWVERSION; 1276 binfo.bthqp = kdeth_qp; 1277 binfo.jkey = uctxt->jkey; 1278 /* 1279 * If more than 64 contexts are enabled the allocated credit 1280 * return will span two or three contiguous pages. Since we only 1281 * map the page containing the context's credit return address, 1282 * we need to calculate the offset in the proper page. 1283 */ 1284 offset = ((u64)uctxt->sc->hw_free - 1285 (u64)dd->cr_base[uctxt->numa_id].va) % PAGE_SIZE; 1286 binfo.sc_credits_addr = HFI1_MMAP_TOKEN(PIO_CRED, uctxt->ctxt, 1287 fd->subctxt, offset); 1288 binfo.pio_bufbase = HFI1_MMAP_TOKEN(PIO_BUFS, uctxt->ctxt, 1289 fd->subctxt, 1290 uctxt->sc->base_addr); 1291 binfo.pio_bufbase_sop = HFI1_MMAP_TOKEN(PIO_BUFS_SOP, 1292 uctxt->ctxt, 1293 fd->subctxt, 1294 uctxt->sc->base_addr); 1295 binfo.rcvhdr_bufbase = HFI1_MMAP_TOKEN(RCV_HDRQ, uctxt->ctxt, 1296 fd->subctxt, 1297 uctxt->rcvhdrq); 1298 binfo.rcvegr_bufbase = HFI1_MMAP_TOKEN(RCV_EGRBUF, uctxt->ctxt, 1299 fd->subctxt, 1300 uctxt->egrbufs.rcvtids[0].dma); 1301 binfo.sdma_comp_bufbase = HFI1_MMAP_TOKEN(SDMA_COMP, uctxt->ctxt, 1302 fd->subctxt, 0); 1303 /* 1304 * user regs are at 1305 * (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE)) 1306 */ 1307 binfo.user_regbase = HFI1_MMAP_TOKEN(UREGS, uctxt->ctxt, 1308 fd->subctxt, 0); 1309 offset = offset_in_page((((uctxt->ctxt - dd->first_user_ctxt) * 1310 HFI1_MAX_SHARED_CTXTS) + fd->subctxt) * 1311 sizeof(*dd->events)); 1312 binfo.events_bufbase = HFI1_MMAP_TOKEN(EVENTS, uctxt->ctxt, 1313 fd->subctxt, 1314 offset); 1315 binfo.status_bufbase = HFI1_MMAP_TOKEN(STATUS, uctxt->ctxt, 1316 fd->subctxt, 1317 dd->status); 1318 if (HFI1_CAP_IS_USET(DMA_RTAIL)) 1319 binfo.rcvhdrtail_base = HFI1_MMAP_TOKEN(RTAIL, uctxt->ctxt, 1320 fd->subctxt, 0); 1321 if (uctxt->subctxt_cnt) { 1322 binfo.subctxt_uregbase = HFI1_MMAP_TOKEN(SUBCTXT_UREGS, 1323 uctxt->ctxt, 1324 fd->subctxt, 0); 1325 binfo.subctxt_rcvhdrbuf = HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ, 1326 uctxt->ctxt, 1327 fd->subctxt, 0); 1328 binfo.subctxt_rcvegrbuf = HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF, 1329 uctxt->ctxt, 1330 fd->subctxt, 0); 1331 } 1332 sz = (len < sizeof(binfo)) ? len : sizeof(binfo); 1333 if (copy_to_user(ubase, &binfo, sz)) 1334 ret = -EFAULT; 1335 return ret; 1336 } 1337 1338 static unsigned int poll_urgent(struct file *fp, 1339 struct poll_table_struct *pt) 1340 { 1341 struct hfi1_filedata *fd = fp->private_data; 1342 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1343 struct hfi1_devdata *dd = uctxt->dd; 1344 unsigned pollflag; 1345 1346 poll_wait(fp, &uctxt->wait, pt); 1347 1348 spin_lock_irq(&dd->uctxt_lock); 1349 if (uctxt->urgent != uctxt->urgent_poll) { 1350 pollflag = POLLIN | POLLRDNORM; 1351 uctxt->urgent_poll = uctxt->urgent; 1352 } else { 1353 pollflag = 0; 1354 set_bit(HFI1_CTXT_WAITING_URG, &uctxt->event_flags); 1355 } 1356 spin_unlock_irq(&dd->uctxt_lock); 1357 1358 return pollflag; 1359 } 1360 1361 static unsigned int poll_next(struct file *fp, 1362 struct poll_table_struct *pt) 1363 { 1364 struct hfi1_filedata *fd = fp->private_data; 1365 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1366 struct hfi1_devdata *dd = uctxt->dd; 1367 unsigned pollflag; 1368 1369 poll_wait(fp, &uctxt->wait, pt); 1370 1371 spin_lock_irq(&dd->uctxt_lock); 1372 if (hdrqempty(uctxt)) { 1373 set_bit(HFI1_CTXT_WAITING_RCV, &uctxt->event_flags); 1374 hfi1_rcvctrl(dd, HFI1_RCVCTRL_INTRAVAIL_ENB, uctxt->ctxt); 1375 pollflag = 0; 1376 } else { 1377 pollflag = POLLIN | POLLRDNORM; 1378 } 1379 spin_unlock_irq(&dd->uctxt_lock); 1380 1381 return pollflag; 1382 } 1383 1384 /* 1385 * Find all user contexts in use, and set the specified bit in their 1386 * event mask. 1387 * See also find_ctxt() for a similar use, that is specific to send buffers. 1388 */ 1389 int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit) 1390 { 1391 struct hfi1_ctxtdata *uctxt; 1392 struct hfi1_devdata *dd = ppd->dd; 1393 unsigned ctxt; 1394 int ret = 0; 1395 unsigned long flags; 1396 1397 if (!dd->events) { 1398 ret = -EINVAL; 1399 goto done; 1400 } 1401 1402 spin_lock_irqsave(&dd->uctxt_lock, flags); 1403 for (ctxt = dd->first_user_ctxt; ctxt < dd->num_rcv_contexts; 1404 ctxt++) { 1405 uctxt = dd->rcd[ctxt]; 1406 if (uctxt) { 1407 unsigned long *evs = dd->events + 1408 (uctxt->ctxt - dd->first_user_ctxt) * 1409 HFI1_MAX_SHARED_CTXTS; 1410 int i; 1411 /* 1412 * subctxt_cnt is 0 if not shared, so do base 1413 * separately, first, then remaining subctxt, if any 1414 */ 1415 set_bit(evtbit, evs); 1416 for (i = 1; i < uctxt->subctxt_cnt; i++) 1417 set_bit(evtbit, evs + i); 1418 } 1419 } 1420 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 1421 done: 1422 return ret; 1423 } 1424 1425 /** 1426 * manage_rcvq - manage a context's receive queue 1427 * @uctxt: the context 1428 * @subctxt: the sub-context 1429 * @start_stop: action to carry out 1430 * 1431 * start_stop == 0 disables receive on the context, for use in queue 1432 * overflow conditions. start_stop==1 re-enables, to be used to 1433 * re-init the software copy of the head register 1434 */ 1435 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, unsigned subctxt, 1436 int start_stop) 1437 { 1438 struct hfi1_devdata *dd = uctxt->dd; 1439 unsigned int rcvctrl_op; 1440 1441 if (subctxt) 1442 goto bail; 1443 /* atomically clear receive enable ctxt. */ 1444 if (start_stop) { 1445 /* 1446 * On enable, force in-memory copy of the tail register to 1447 * 0, so that protocol code doesn't have to worry about 1448 * whether or not the chip has yet updated the in-memory 1449 * copy or not on return from the system call. The chip 1450 * always resets it's tail register back to 0 on a 1451 * transition from disabled to enabled. 1452 */ 1453 if (uctxt->rcvhdrtail_kvaddr) 1454 clear_rcvhdrtail(uctxt); 1455 rcvctrl_op = HFI1_RCVCTRL_CTXT_ENB; 1456 } else { 1457 rcvctrl_op = HFI1_RCVCTRL_CTXT_DIS; 1458 } 1459 hfi1_rcvctrl(dd, rcvctrl_op, uctxt->ctxt); 1460 /* always; new head should be equal to new tail; see above */ 1461 bail: 1462 return 0; 1463 } 1464 1465 /* 1466 * clear the event notifier events for this context. 1467 * User process then performs actions appropriate to bit having been 1468 * set, if desired, and checks again in future. 1469 */ 1470 static int user_event_ack(struct hfi1_ctxtdata *uctxt, int subctxt, 1471 unsigned long events) 1472 { 1473 int i; 1474 struct hfi1_devdata *dd = uctxt->dd; 1475 unsigned long *evs; 1476 1477 if (!dd->events) 1478 return 0; 1479 1480 evs = dd->events + ((uctxt->ctxt - dd->first_user_ctxt) * 1481 HFI1_MAX_SHARED_CTXTS) + subctxt; 1482 1483 for (i = 0; i <= _HFI1_MAX_EVENT_BIT; i++) { 1484 if (!test_bit(i, &events)) 1485 continue; 1486 clear_bit(i, evs); 1487 } 1488 return 0; 1489 } 1490 1491 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned subctxt, 1492 u16 pkey) 1493 { 1494 int ret = -ENOENT, i, intable = 0; 1495 struct hfi1_pportdata *ppd = uctxt->ppd; 1496 struct hfi1_devdata *dd = uctxt->dd; 1497 1498 if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY) { 1499 ret = -EINVAL; 1500 goto done; 1501 } 1502 1503 for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) 1504 if (pkey == ppd->pkeys[i]) { 1505 intable = 1; 1506 break; 1507 } 1508 1509 if (intable) 1510 ret = hfi1_set_ctxt_pkey(dd, uctxt->ctxt, pkey); 1511 done: 1512 return ret; 1513 } 1514 1515 static void user_remove(struct hfi1_devdata *dd) 1516 { 1517 1518 hfi1_cdev_cleanup(&dd->user_cdev, &dd->user_device); 1519 } 1520 1521 static int user_add(struct hfi1_devdata *dd) 1522 { 1523 char name[10]; 1524 int ret; 1525 1526 snprintf(name, sizeof(name), "%s_%d", class_name(), dd->unit); 1527 ret = hfi1_cdev_init(dd->unit, name, &hfi1_file_ops, 1528 &dd->user_cdev, &dd->user_device, 1529 true, &dd->kobj); 1530 if (ret) 1531 user_remove(dd); 1532 1533 return ret; 1534 } 1535 1536 /* 1537 * Create per-unit files in /dev 1538 */ 1539 int hfi1_device_create(struct hfi1_devdata *dd) 1540 { 1541 return user_add(dd); 1542 } 1543 1544 /* 1545 * Remove per-unit files in /dev 1546 * void, core kernel returns no errors for this stuff 1547 */ 1548 void hfi1_device_remove(struct hfi1_devdata *dd) 1549 { 1550 user_remove(dd); 1551 } 1552