xref: /openbmc/linux/drivers/infiniband/hw/hfi1/file_ops.c (revision 19dc81b4017baffd6e919fd71cfc8dcbd5442e15)
1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
2 /*
3  * Copyright(c) 2020 Cornelis Networks, Inc.
4  * Copyright(c) 2015-2020 Intel Corporation.
5  */
6 
7 #include <linux/poll.h>
8 #include <linux/cdev.h>
9 #include <linux/vmalloc.h>
10 #include <linux/io.h>
11 #include <linux/sched/mm.h>
12 #include <linux/bitmap.h>
13 
14 #include <rdma/ib.h>
15 
16 #include "hfi.h"
17 #include "pio.h"
18 #include "device.h"
19 #include "common.h"
20 #include "trace.h"
21 #include "mmu_rb.h"
22 #include "user_sdma.h"
23 #include "user_exp_rcv.h"
24 #include "aspm.h"
25 
26 #undef pr_fmt
27 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
28 
29 #define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */
30 
31 /*
32  * File operation functions
33  */
34 static int hfi1_file_open(struct inode *inode, struct file *fp);
35 static int hfi1_file_close(struct inode *inode, struct file *fp);
36 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from);
37 static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt);
38 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma);
39 
40 static u64 kvirt_to_phys(void *addr);
41 static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len);
42 static void init_subctxts(struct hfi1_ctxtdata *uctxt,
43 			  const struct hfi1_user_info *uinfo);
44 static int init_user_ctxt(struct hfi1_filedata *fd,
45 			  struct hfi1_ctxtdata *uctxt);
46 static void user_init(struct hfi1_ctxtdata *uctxt);
47 static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
48 static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
49 static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
50 			      u32 len);
51 static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
52 			      u32 len);
53 static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
54 				u32 len);
55 static int setup_base_ctxt(struct hfi1_filedata *fd,
56 			   struct hfi1_ctxtdata *uctxt);
57 static int setup_subctxt(struct hfi1_ctxtdata *uctxt);
58 
59 static int find_sub_ctxt(struct hfi1_filedata *fd,
60 			 const struct hfi1_user_info *uinfo);
61 static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
62 			 struct hfi1_user_info *uinfo,
63 			 struct hfi1_ctxtdata **cd);
64 static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt);
65 static __poll_t poll_urgent(struct file *fp, struct poll_table_struct *pt);
66 static __poll_t poll_next(struct file *fp, struct poll_table_struct *pt);
67 static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
68 			  unsigned long arg);
69 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg);
70 static int ctxt_reset(struct hfi1_ctxtdata *uctxt);
71 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
72 		       unsigned long arg);
73 static vm_fault_t vma_fault(struct vm_fault *vmf);
74 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
75 			    unsigned long arg);
76 
77 static const struct file_operations hfi1_file_ops = {
78 	.owner = THIS_MODULE,
79 	.write_iter = hfi1_write_iter,
80 	.open = hfi1_file_open,
81 	.release = hfi1_file_close,
82 	.unlocked_ioctl = hfi1_file_ioctl,
83 	.poll = hfi1_poll,
84 	.mmap = hfi1_file_mmap,
85 	.llseek = noop_llseek,
86 };
87 
88 static const struct vm_operations_struct vm_ops = {
89 	.fault = vma_fault,
90 };
91 
92 /*
93  * Types of memories mapped into user processes' space
94  */
95 enum mmap_types {
96 	PIO_BUFS = 1,
97 	PIO_BUFS_SOP,
98 	PIO_CRED,
99 	RCV_HDRQ,
100 	RCV_EGRBUF,
101 	UREGS,
102 	EVENTS,
103 	STATUS,
104 	RTAIL,
105 	SUBCTXT_UREGS,
106 	SUBCTXT_RCV_HDRQ,
107 	SUBCTXT_EGRBUF,
108 	SDMA_COMP
109 };
110 
111 /*
112  * Masks and offsets defining the mmap tokens
113  */
114 #define HFI1_MMAP_OFFSET_MASK   0xfffULL
115 #define HFI1_MMAP_OFFSET_SHIFT  0
116 #define HFI1_MMAP_SUBCTXT_MASK  0xfULL
117 #define HFI1_MMAP_SUBCTXT_SHIFT 12
118 #define HFI1_MMAP_CTXT_MASK     0xffULL
119 #define HFI1_MMAP_CTXT_SHIFT    16
120 #define HFI1_MMAP_TYPE_MASK     0xfULL
121 #define HFI1_MMAP_TYPE_SHIFT    24
122 #define HFI1_MMAP_MAGIC_MASK    0xffffffffULL
123 #define HFI1_MMAP_MAGIC_SHIFT   32
124 
125 #define HFI1_MMAP_MAGIC         0xdabbad00
126 
127 #define HFI1_MMAP_TOKEN_SET(field, val)	\
128 	(((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT)
129 #define HFI1_MMAP_TOKEN_GET(field, token) \
130 	(((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK)
131 #define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr)   \
132 	(HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \
133 	HFI1_MMAP_TOKEN_SET(TYPE, type) | \
134 	HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \
135 	HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \
136 	HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr))))
137 
138 #define dbg(fmt, ...)				\
139 	pr_info(fmt, ##__VA_ARGS__)
140 
141 static inline int is_valid_mmap(u64 token)
142 {
143 	return (HFI1_MMAP_TOKEN_GET(MAGIC, token) == HFI1_MMAP_MAGIC);
144 }
145 
146 static int hfi1_file_open(struct inode *inode, struct file *fp)
147 {
148 	struct hfi1_filedata *fd;
149 	struct hfi1_devdata *dd = container_of(inode->i_cdev,
150 					       struct hfi1_devdata,
151 					       user_cdev);
152 
153 	if (!((dd->flags & HFI1_PRESENT) && dd->kregbase1))
154 		return -EINVAL;
155 
156 	if (!refcount_inc_not_zero(&dd->user_refcount))
157 		return -ENXIO;
158 
159 	/* The real work is performed later in assign_ctxt() */
160 
161 	fd = kzalloc(sizeof(*fd), GFP_KERNEL);
162 
163 	if (!fd || init_srcu_struct(&fd->pq_srcu))
164 		goto nomem;
165 	spin_lock_init(&fd->pq_rcu_lock);
166 	spin_lock_init(&fd->tid_lock);
167 	spin_lock_init(&fd->invalid_lock);
168 	fd->rec_cpu_num = -1; /* no cpu affinity by default */
169 	fd->dd = dd;
170 	fp->private_data = fd;
171 	return 0;
172 nomem:
173 	kfree(fd);
174 	fp->private_data = NULL;
175 	if (refcount_dec_and_test(&dd->user_refcount))
176 		complete(&dd->user_comp);
177 	return -ENOMEM;
178 }
179 
180 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
181 			    unsigned long arg)
182 {
183 	struct hfi1_filedata *fd = fp->private_data;
184 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
185 	int ret = 0;
186 	int uval = 0;
187 
188 	hfi1_cdbg(IOCTL, "IOCTL recv: 0x%x", cmd);
189 	if (cmd != HFI1_IOCTL_ASSIGN_CTXT &&
190 	    cmd != HFI1_IOCTL_GET_VERS &&
191 	    !uctxt)
192 		return -EINVAL;
193 
194 	switch (cmd) {
195 	case HFI1_IOCTL_ASSIGN_CTXT:
196 		ret = assign_ctxt(fd, arg, _IOC_SIZE(cmd));
197 		break;
198 
199 	case HFI1_IOCTL_CTXT_INFO:
200 		ret = get_ctxt_info(fd, arg, _IOC_SIZE(cmd));
201 		break;
202 
203 	case HFI1_IOCTL_USER_INFO:
204 		ret = get_base_info(fd, arg, _IOC_SIZE(cmd));
205 		break;
206 
207 	case HFI1_IOCTL_CREDIT_UPD:
208 		if (uctxt)
209 			sc_return_credits(uctxt->sc);
210 		break;
211 
212 	case HFI1_IOCTL_TID_UPDATE:
213 		ret = user_exp_rcv_setup(fd, arg, _IOC_SIZE(cmd));
214 		break;
215 
216 	case HFI1_IOCTL_TID_FREE:
217 		ret = user_exp_rcv_clear(fd, arg, _IOC_SIZE(cmd));
218 		break;
219 
220 	case HFI1_IOCTL_TID_INVAL_READ:
221 		ret = user_exp_rcv_invalid(fd, arg, _IOC_SIZE(cmd));
222 		break;
223 
224 	case HFI1_IOCTL_RECV_CTRL:
225 		ret = manage_rcvq(uctxt, fd->subctxt, arg);
226 		break;
227 
228 	case HFI1_IOCTL_POLL_TYPE:
229 		if (get_user(uval, (int __user *)arg))
230 			return -EFAULT;
231 		uctxt->poll_type = (typeof(uctxt->poll_type))uval;
232 		break;
233 
234 	case HFI1_IOCTL_ACK_EVENT:
235 		ret = user_event_ack(uctxt, fd->subctxt, arg);
236 		break;
237 
238 	case HFI1_IOCTL_SET_PKEY:
239 		ret = set_ctxt_pkey(uctxt, arg);
240 		break;
241 
242 	case HFI1_IOCTL_CTXT_RESET:
243 		ret = ctxt_reset(uctxt);
244 		break;
245 
246 	case HFI1_IOCTL_GET_VERS:
247 		uval = HFI1_USER_SWVERSION;
248 		if (put_user(uval, (int __user *)arg))
249 			return -EFAULT;
250 		break;
251 
252 	default:
253 		return -EINVAL;
254 	}
255 
256 	return ret;
257 }
258 
259 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from)
260 {
261 	struct hfi1_filedata *fd = kiocb->ki_filp->private_data;
262 	struct hfi1_user_sdma_pkt_q *pq;
263 	struct hfi1_user_sdma_comp_q *cq = fd->cq;
264 	int done = 0, reqs = 0;
265 	unsigned long dim = from->nr_segs;
266 	int idx;
267 
268 	idx = srcu_read_lock(&fd->pq_srcu);
269 	pq = srcu_dereference(fd->pq, &fd->pq_srcu);
270 	if (!cq || !pq) {
271 		srcu_read_unlock(&fd->pq_srcu, idx);
272 		return -EIO;
273 	}
274 
275 	if (!iter_is_iovec(from) || !dim) {
276 		srcu_read_unlock(&fd->pq_srcu, idx);
277 		return -EINVAL;
278 	}
279 
280 	trace_hfi1_sdma_request(fd->dd, fd->uctxt->ctxt, fd->subctxt, dim);
281 
282 	if (atomic_read(&pq->n_reqs) == pq->n_max_reqs) {
283 		srcu_read_unlock(&fd->pq_srcu, idx);
284 		return -ENOSPC;
285 	}
286 
287 	while (dim) {
288 		int ret;
289 		unsigned long count = 0;
290 
291 		ret = hfi1_user_sdma_process_request(
292 			fd, (struct iovec *)(from->iov + done),
293 			dim, &count);
294 		if (ret) {
295 			reqs = ret;
296 			break;
297 		}
298 		dim -= count;
299 		done += count;
300 		reqs++;
301 	}
302 
303 	srcu_read_unlock(&fd->pq_srcu, idx);
304 	return reqs;
305 }
306 
307 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma)
308 {
309 	struct hfi1_filedata *fd = fp->private_data;
310 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
311 	struct hfi1_devdata *dd;
312 	unsigned long flags;
313 	u64 token = vma->vm_pgoff << PAGE_SHIFT,
314 		memaddr = 0;
315 	void *memvirt = NULL;
316 	u8 subctxt, mapio = 0, vmf = 0, type;
317 	ssize_t memlen = 0;
318 	int ret = 0;
319 	u16 ctxt;
320 
321 	if (!is_valid_mmap(token) || !uctxt ||
322 	    !(vma->vm_flags & VM_SHARED)) {
323 		ret = -EINVAL;
324 		goto done;
325 	}
326 	dd = uctxt->dd;
327 	ctxt = HFI1_MMAP_TOKEN_GET(CTXT, token);
328 	subctxt = HFI1_MMAP_TOKEN_GET(SUBCTXT, token);
329 	type = HFI1_MMAP_TOKEN_GET(TYPE, token);
330 	if (ctxt != uctxt->ctxt || subctxt != fd->subctxt) {
331 		ret = -EINVAL;
332 		goto done;
333 	}
334 
335 	flags = vma->vm_flags;
336 
337 	switch (type) {
338 	case PIO_BUFS:
339 	case PIO_BUFS_SOP:
340 		memaddr = ((dd->physaddr + TXE_PIO_SEND) +
341 				/* chip pio base */
342 			   (uctxt->sc->hw_context * BIT(16))) +
343 				/* 64K PIO space / ctxt */
344 			(type == PIO_BUFS_SOP ?
345 				(TXE_PIO_SIZE / 2) : 0); /* sop? */
346 		/*
347 		 * Map only the amount allocated to the context, not the
348 		 * entire available context's PIO space.
349 		 */
350 		memlen = PAGE_ALIGN(uctxt->sc->credits * PIO_BLOCK_SIZE);
351 		flags &= ~VM_MAYREAD;
352 		flags |= VM_DONTCOPY | VM_DONTEXPAND;
353 		vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
354 		mapio = 1;
355 		break;
356 	case PIO_CRED:
357 		if (flags & VM_WRITE) {
358 			ret = -EPERM;
359 			goto done;
360 		}
361 		/*
362 		 * The credit return location for this context could be on the
363 		 * second or third page allocated for credit returns (if number
364 		 * of enabled contexts > 64 and 128 respectively).
365 		 */
366 		memvirt = dd->cr_base[uctxt->numa_id].va;
367 		memaddr = virt_to_phys(memvirt) +
368 			(((u64)uctxt->sc->hw_free -
369 			  (u64)dd->cr_base[uctxt->numa_id].va) & PAGE_MASK);
370 		memlen = PAGE_SIZE;
371 		flags &= ~VM_MAYWRITE;
372 		flags |= VM_DONTCOPY | VM_DONTEXPAND;
373 		/*
374 		 * The driver has already allocated memory for credit
375 		 * returns and programmed it into the chip. Has that
376 		 * memory been flagged as non-cached?
377 		 */
378 		/* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */
379 		mapio = 1;
380 		break;
381 	case RCV_HDRQ:
382 		memlen = rcvhdrq_size(uctxt);
383 		memvirt = uctxt->rcvhdrq;
384 		break;
385 	case RCV_EGRBUF: {
386 		unsigned long addr;
387 		int i;
388 		/*
389 		 * The RcvEgr buffer need to be handled differently
390 		 * as multiple non-contiguous pages need to be mapped
391 		 * into the user process.
392 		 */
393 		memlen = uctxt->egrbufs.size;
394 		if ((vma->vm_end - vma->vm_start) != memlen) {
395 			dd_dev_err(dd, "Eager buffer map size invalid (%lu != %lu)\n",
396 				   (vma->vm_end - vma->vm_start), memlen);
397 			ret = -EINVAL;
398 			goto done;
399 		}
400 		if (vma->vm_flags & VM_WRITE) {
401 			ret = -EPERM;
402 			goto done;
403 		}
404 		vma->vm_flags &= ~VM_MAYWRITE;
405 		addr = vma->vm_start;
406 		for (i = 0 ; i < uctxt->egrbufs.numbufs; i++) {
407 			memlen = uctxt->egrbufs.buffers[i].len;
408 			memvirt = uctxt->egrbufs.buffers[i].addr;
409 			ret = remap_pfn_range(
410 				vma, addr,
411 				/*
412 				 * virt_to_pfn() does the same, but
413 				 * it's not available on x86_64
414 				 * when CONFIG_MMU is enabled.
415 				 */
416 				PFN_DOWN(__pa(memvirt)),
417 				memlen,
418 				vma->vm_page_prot);
419 			if (ret < 0)
420 				goto done;
421 			addr += memlen;
422 		}
423 		ret = 0;
424 		goto done;
425 	}
426 	case UREGS:
427 		/*
428 		 * Map only the page that contains this context's user
429 		 * registers.
430 		 */
431 		memaddr = (unsigned long)
432 			(dd->physaddr + RXE_PER_CONTEXT_USER)
433 			+ (uctxt->ctxt * RXE_PER_CONTEXT_SIZE);
434 		/*
435 		 * TidFlow table is on the same page as the rest of the
436 		 * user registers.
437 		 */
438 		memlen = PAGE_SIZE;
439 		flags |= VM_DONTCOPY | VM_DONTEXPAND;
440 		vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
441 		mapio = 1;
442 		break;
443 	case EVENTS:
444 		/*
445 		 * Use the page where this context's flags are. User level
446 		 * knows where it's own bitmap is within the page.
447 		 */
448 		memaddr = (unsigned long)
449 			(dd->events + uctxt_offset(uctxt)) & PAGE_MASK;
450 		memlen = PAGE_SIZE;
451 		/*
452 		 * v3.7 removes VM_RESERVED but the effect is kept by
453 		 * using VM_IO.
454 		 */
455 		flags |= VM_IO | VM_DONTEXPAND;
456 		vmf = 1;
457 		break;
458 	case STATUS:
459 		if (flags & VM_WRITE) {
460 			ret = -EPERM;
461 			goto done;
462 		}
463 		memaddr = kvirt_to_phys((void *)dd->status);
464 		memlen = PAGE_SIZE;
465 		flags |= VM_IO | VM_DONTEXPAND;
466 		break;
467 	case RTAIL:
468 		if (!HFI1_CAP_IS_USET(DMA_RTAIL)) {
469 			/*
470 			 * If the memory allocation failed, the context alloc
471 			 * also would have failed, so we would never get here
472 			 */
473 			ret = -EINVAL;
474 			goto done;
475 		}
476 		if ((flags & VM_WRITE) || !hfi1_rcvhdrtail_kvaddr(uctxt)) {
477 			ret = -EPERM;
478 			goto done;
479 		}
480 		memlen = PAGE_SIZE;
481 		memvirt = (void *)hfi1_rcvhdrtail_kvaddr(uctxt);
482 		flags &= ~VM_MAYWRITE;
483 		break;
484 	case SUBCTXT_UREGS:
485 		memaddr = (u64)uctxt->subctxt_uregbase;
486 		memlen = PAGE_SIZE;
487 		flags |= VM_IO | VM_DONTEXPAND;
488 		vmf = 1;
489 		break;
490 	case SUBCTXT_RCV_HDRQ:
491 		memaddr = (u64)uctxt->subctxt_rcvhdr_base;
492 		memlen = rcvhdrq_size(uctxt) * uctxt->subctxt_cnt;
493 		flags |= VM_IO | VM_DONTEXPAND;
494 		vmf = 1;
495 		break;
496 	case SUBCTXT_EGRBUF:
497 		memaddr = (u64)uctxt->subctxt_rcvegrbuf;
498 		memlen = uctxt->egrbufs.size * uctxt->subctxt_cnt;
499 		flags |= VM_IO | VM_DONTEXPAND;
500 		flags &= ~VM_MAYWRITE;
501 		vmf = 1;
502 		break;
503 	case SDMA_COMP: {
504 		struct hfi1_user_sdma_comp_q *cq = fd->cq;
505 
506 		if (!cq) {
507 			ret = -EFAULT;
508 			goto done;
509 		}
510 		memaddr = (u64)cq->comps;
511 		memlen = PAGE_ALIGN(sizeof(*cq->comps) * cq->nentries);
512 		flags |= VM_IO | VM_DONTEXPAND;
513 		vmf = 1;
514 		break;
515 	}
516 	default:
517 		ret = -EINVAL;
518 		break;
519 	}
520 
521 	if ((vma->vm_end - vma->vm_start) != memlen) {
522 		hfi1_cdbg(PROC, "%u:%u Memory size mismatch %lu:%lu",
523 			  uctxt->ctxt, fd->subctxt,
524 			  (vma->vm_end - vma->vm_start), memlen);
525 		ret = -EINVAL;
526 		goto done;
527 	}
528 
529 	vma->vm_flags = flags;
530 	hfi1_cdbg(PROC,
531 		  "%u:%u type:%u io/vf:%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx\n",
532 		    ctxt, subctxt, type, mapio, vmf, memaddr, memlen,
533 		    vma->vm_end - vma->vm_start, vma->vm_flags);
534 	if (vmf) {
535 		vma->vm_pgoff = PFN_DOWN(memaddr);
536 		vma->vm_ops = &vm_ops;
537 		ret = 0;
538 	} else if (mapio) {
539 		ret = io_remap_pfn_range(vma, vma->vm_start,
540 					 PFN_DOWN(memaddr),
541 					 memlen,
542 					 vma->vm_page_prot);
543 	} else if (memvirt) {
544 		ret = remap_pfn_range(vma, vma->vm_start,
545 				      PFN_DOWN(__pa(memvirt)),
546 				      memlen,
547 				      vma->vm_page_prot);
548 	} else {
549 		ret = remap_pfn_range(vma, vma->vm_start,
550 				      PFN_DOWN(memaddr),
551 				      memlen,
552 				      vma->vm_page_prot);
553 	}
554 done:
555 	return ret;
556 }
557 
558 /*
559  * Local (non-chip) user memory is not mapped right away but as it is
560  * accessed by the user-level code.
561  */
562 static vm_fault_t vma_fault(struct vm_fault *vmf)
563 {
564 	struct page *page;
565 
566 	page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT));
567 	if (!page)
568 		return VM_FAULT_SIGBUS;
569 
570 	get_page(page);
571 	vmf->page = page;
572 
573 	return 0;
574 }
575 
576 static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt)
577 {
578 	struct hfi1_ctxtdata *uctxt;
579 	__poll_t pollflag;
580 
581 	uctxt = ((struct hfi1_filedata *)fp->private_data)->uctxt;
582 	if (!uctxt)
583 		pollflag = EPOLLERR;
584 	else if (uctxt->poll_type == HFI1_POLL_TYPE_URGENT)
585 		pollflag = poll_urgent(fp, pt);
586 	else  if (uctxt->poll_type == HFI1_POLL_TYPE_ANYRCV)
587 		pollflag = poll_next(fp, pt);
588 	else /* invalid */
589 		pollflag = EPOLLERR;
590 
591 	return pollflag;
592 }
593 
594 static int hfi1_file_close(struct inode *inode, struct file *fp)
595 {
596 	struct hfi1_filedata *fdata = fp->private_data;
597 	struct hfi1_ctxtdata *uctxt = fdata->uctxt;
598 	struct hfi1_devdata *dd = container_of(inode->i_cdev,
599 					       struct hfi1_devdata,
600 					       user_cdev);
601 	unsigned long flags, *ev;
602 
603 	fp->private_data = NULL;
604 
605 	if (!uctxt)
606 		goto done;
607 
608 	hfi1_cdbg(PROC, "closing ctxt %u:%u", uctxt->ctxt, fdata->subctxt);
609 
610 	flush_wc();
611 	/* drain user sdma queue */
612 	hfi1_user_sdma_free_queues(fdata, uctxt);
613 
614 	/* release the cpu */
615 	hfi1_put_proc_affinity(fdata->rec_cpu_num);
616 
617 	/* clean up rcv side */
618 	hfi1_user_exp_rcv_free(fdata);
619 
620 	/*
621 	 * fdata->uctxt is used in the above cleanup.  It is not ready to be
622 	 * removed until here.
623 	 */
624 	fdata->uctxt = NULL;
625 	hfi1_rcd_put(uctxt);
626 
627 	/*
628 	 * Clear any left over, unhandled events so the next process that
629 	 * gets this context doesn't get confused.
630 	 */
631 	ev = dd->events + uctxt_offset(uctxt) + fdata->subctxt;
632 	*ev = 0;
633 
634 	spin_lock_irqsave(&dd->uctxt_lock, flags);
635 	__clear_bit(fdata->subctxt, uctxt->in_use_ctxts);
636 	if (!bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
637 		spin_unlock_irqrestore(&dd->uctxt_lock, flags);
638 		goto done;
639 	}
640 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
641 
642 	/*
643 	 * Disable receive context and interrupt available, reset all
644 	 * RcvCtxtCtrl bits to default values.
645 	 */
646 	hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
647 		     HFI1_RCVCTRL_TIDFLOW_DIS |
648 		     HFI1_RCVCTRL_INTRAVAIL_DIS |
649 		     HFI1_RCVCTRL_TAILUPD_DIS |
650 		     HFI1_RCVCTRL_ONE_PKT_EGR_DIS |
651 		     HFI1_RCVCTRL_NO_RHQ_DROP_DIS |
652 		     HFI1_RCVCTRL_NO_EGR_DROP_DIS |
653 		     HFI1_RCVCTRL_URGENT_DIS, uctxt);
654 	/* Clear the context's J_KEY */
655 	hfi1_clear_ctxt_jkey(dd, uctxt);
656 	/*
657 	 * If a send context is allocated, reset context integrity
658 	 * checks to default and disable the send context.
659 	 */
660 	if (uctxt->sc) {
661 		sc_disable(uctxt->sc);
662 		set_pio_integrity(uctxt->sc);
663 	}
664 
665 	hfi1_free_ctxt_rcv_groups(uctxt);
666 	hfi1_clear_ctxt_pkey(dd, uctxt);
667 
668 	uctxt->event_flags = 0;
669 
670 	deallocate_ctxt(uctxt);
671 done:
672 
673 	if (refcount_dec_and_test(&dd->user_refcount))
674 		complete(&dd->user_comp);
675 
676 	cleanup_srcu_struct(&fdata->pq_srcu);
677 	kfree(fdata);
678 	return 0;
679 }
680 
681 /*
682  * Convert kernel *virtual* addresses to physical addresses.
683  * This is used to vmalloc'ed addresses.
684  */
685 static u64 kvirt_to_phys(void *addr)
686 {
687 	struct page *page;
688 	u64 paddr = 0;
689 
690 	page = vmalloc_to_page(addr);
691 	if (page)
692 		paddr = page_to_pfn(page) << PAGE_SHIFT;
693 
694 	return paddr;
695 }
696 
697 /**
698  * complete_subctxt - complete sub-context info
699  * @fd: valid filedata pointer
700  *
701  * Sub-context info can only be set up after the base context
702  * has been completed.  This is indicated by the clearing of the
703  * HFI1_CTXT_BASE_UINIT bit.
704  *
705  * Wait for the bit to be cleared, and then complete the subcontext
706  * initialization.
707  *
708  */
709 static int complete_subctxt(struct hfi1_filedata *fd)
710 {
711 	int ret;
712 	unsigned long flags;
713 
714 	/*
715 	 * sub-context info can only be set up after the base context
716 	 * has been completed.
717 	 */
718 	ret = wait_event_interruptible(
719 		fd->uctxt->wait,
720 		!test_bit(HFI1_CTXT_BASE_UNINIT, &fd->uctxt->event_flags));
721 
722 	if (test_bit(HFI1_CTXT_BASE_FAILED, &fd->uctxt->event_flags))
723 		ret = -ENOMEM;
724 
725 	/* Finish the sub-context init */
726 	if (!ret) {
727 		fd->rec_cpu_num = hfi1_get_proc_affinity(fd->uctxt->numa_id);
728 		ret = init_user_ctxt(fd, fd->uctxt);
729 	}
730 
731 	if (ret) {
732 		spin_lock_irqsave(&fd->dd->uctxt_lock, flags);
733 		__clear_bit(fd->subctxt, fd->uctxt->in_use_ctxts);
734 		spin_unlock_irqrestore(&fd->dd->uctxt_lock, flags);
735 		hfi1_rcd_put(fd->uctxt);
736 		fd->uctxt = NULL;
737 	}
738 
739 	return ret;
740 }
741 
742 static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len)
743 {
744 	int ret;
745 	unsigned int swmajor;
746 	struct hfi1_ctxtdata *uctxt = NULL;
747 	struct hfi1_user_info uinfo;
748 
749 	if (fd->uctxt)
750 		return -EINVAL;
751 
752 	if (sizeof(uinfo) != len)
753 		return -EINVAL;
754 
755 	if (copy_from_user(&uinfo, (void __user *)arg, sizeof(uinfo)))
756 		return -EFAULT;
757 
758 	swmajor = uinfo.userversion >> 16;
759 	if (swmajor != HFI1_USER_SWMAJOR)
760 		return -ENODEV;
761 
762 	if (uinfo.subctxt_cnt > HFI1_MAX_SHARED_CTXTS)
763 		return -EINVAL;
764 
765 	/*
766 	 * Acquire the mutex to protect against multiple creations of what
767 	 * could be a shared base context.
768 	 */
769 	mutex_lock(&hfi1_mutex);
770 	/*
771 	 * Get a sub context if available  (fd->uctxt will be set).
772 	 * ret < 0 error, 0 no context, 1 sub-context found
773 	 */
774 	ret = find_sub_ctxt(fd, &uinfo);
775 
776 	/*
777 	 * Allocate a base context if context sharing is not required or a
778 	 * sub context wasn't found.
779 	 */
780 	if (!ret)
781 		ret = allocate_ctxt(fd, fd->dd, &uinfo, &uctxt);
782 
783 	mutex_unlock(&hfi1_mutex);
784 
785 	/* Depending on the context type, finish the appropriate init */
786 	switch (ret) {
787 	case 0:
788 		ret = setup_base_ctxt(fd, uctxt);
789 		if (ret)
790 			deallocate_ctxt(uctxt);
791 		break;
792 	case 1:
793 		ret = complete_subctxt(fd);
794 		break;
795 	default:
796 		break;
797 	}
798 
799 	return ret;
800 }
801 
802 /**
803  * match_ctxt - match context
804  * @fd: valid filedata pointer
805  * @uinfo: user info to compare base context with
806  * @uctxt: context to compare uinfo to.
807  *
808  * Compare the given context with the given information to see if it
809  * can be used for a sub context.
810  */
811 static int match_ctxt(struct hfi1_filedata *fd,
812 		      const struct hfi1_user_info *uinfo,
813 		      struct hfi1_ctxtdata *uctxt)
814 {
815 	struct hfi1_devdata *dd = fd->dd;
816 	unsigned long flags;
817 	u16 subctxt;
818 
819 	/* Skip dynamically allocated kernel contexts */
820 	if (uctxt->sc && (uctxt->sc->type == SC_KERNEL))
821 		return 0;
822 
823 	/* Skip ctxt if it doesn't match the requested one */
824 	if (memcmp(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)) ||
825 	    uctxt->jkey != generate_jkey(current_uid()) ||
826 	    uctxt->subctxt_id != uinfo->subctxt_id ||
827 	    uctxt->subctxt_cnt != uinfo->subctxt_cnt)
828 		return 0;
829 
830 	/* Verify the sharing process matches the base */
831 	if (uctxt->userversion != uinfo->userversion)
832 		return -EINVAL;
833 
834 	/* Find an unused sub context */
835 	spin_lock_irqsave(&dd->uctxt_lock, flags);
836 	if (bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
837 		/* context is being closed, do not use */
838 		spin_unlock_irqrestore(&dd->uctxt_lock, flags);
839 		return 0;
840 	}
841 
842 	subctxt = find_first_zero_bit(uctxt->in_use_ctxts,
843 				      HFI1_MAX_SHARED_CTXTS);
844 	if (subctxt >= uctxt->subctxt_cnt) {
845 		spin_unlock_irqrestore(&dd->uctxt_lock, flags);
846 		return -EBUSY;
847 	}
848 
849 	fd->subctxt = subctxt;
850 	__set_bit(fd->subctxt, uctxt->in_use_ctxts);
851 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
852 
853 	fd->uctxt = uctxt;
854 	hfi1_rcd_get(uctxt);
855 
856 	return 1;
857 }
858 
859 /**
860  * find_sub_ctxt - fund sub-context
861  * @fd: valid filedata pointer
862  * @uinfo: matching info to use to find a possible context to share.
863  *
864  * The hfi1_mutex must be held when this function is called.  It is
865  * necessary to ensure serialized creation of shared contexts.
866  *
867  * Return:
868  *    0      No sub-context found
869  *    1      Subcontext found and allocated
870  *    errno  EINVAL (incorrect parameters)
871  *           EBUSY (all sub contexts in use)
872  */
873 static int find_sub_ctxt(struct hfi1_filedata *fd,
874 			 const struct hfi1_user_info *uinfo)
875 {
876 	struct hfi1_ctxtdata *uctxt;
877 	struct hfi1_devdata *dd = fd->dd;
878 	u16 i;
879 	int ret;
880 
881 	if (!uinfo->subctxt_cnt)
882 		return 0;
883 
884 	for (i = dd->first_dyn_alloc_ctxt; i < dd->num_rcv_contexts; i++) {
885 		uctxt = hfi1_rcd_get_by_index(dd, i);
886 		if (uctxt) {
887 			ret = match_ctxt(fd, uinfo, uctxt);
888 			hfi1_rcd_put(uctxt);
889 			/* value of != 0 will return */
890 			if (ret)
891 				return ret;
892 		}
893 	}
894 
895 	return 0;
896 }
897 
898 static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
899 			 struct hfi1_user_info *uinfo,
900 			 struct hfi1_ctxtdata **rcd)
901 {
902 	struct hfi1_ctxtdata *uctxt;
903 	int ret, numa;
904 
905 	if (dd->flags & HFI1_FROZEN) {
906 		/*
907 		 * Pick an error that is unique from all other errors
908 		 * that are returned so the user process knows that
909 		 * it tried to allocate while the SPC was frozen.  It
910 		 * it should be able to retry with success in a short
911 		 * while.
912 		 */
913 		return -EIO;
914 	}
915 
916 	if (!dd->freectxts)
917 		return -EBUSY;
918 
919 	/*
920 	 * If we don't have a NUMA node requested, preference is towards
921 	 * device NUMA node.
922 	 */
923 	fd->rec_cpu_num = hfi1_get_proc_affinity(dd->node);
924 	if (fd->rec_cpu_num != -1)
925 		numa = cpu_to_node(fd->rec_cpu_num);
926 	else
927 		numa = numa_node_id();
928 	ret = hfi1_create_ctxtdata(dd->pport, numa, &uctxt);
929 	if (ret < 0) {
930 		dd_dev_err(dd, "user ctxtdata allocation failed\n");
931 		return ret;
932 	}
933 	hfi1_cdbg(PROC, "[%u:%u] pid %u assigned to CPU %d (NUMA %u)",
934 		  uctxt->ctxt, fd->subctxt, current->pid, fd->rec_cpu_num,
935 		  uctxt->numa_id);
936 
937 	/*
938 	 * Allocate and enable a PIO send context.
939 	 */
940 	uctxt->sc = sc_alloc(dd, SC_USER, uctxt->rcvhdrqentsize, dd->node);
941 	if (!uctxt->sc) {
942 		ret = -ENOMEM;
943 		goto ctxdata_free;
944 	}
945 	hfi1_cdbg(PROC, "allocated send context %u(%u)\n", uctxt->sc->sw_index,
946 		  uctxt->sc->hw_context);
947 	ret = sc_enable(uctxt->sc);
948 	if (ret)
949 		goto ctxdata_free;
950 
951 	/*
952 	 * Setup sub context information if the user-level has requested
953 	 * sub contexts.
954 	 * This has to be done here so the rest of the sub-contexts find the
955 	 * proper base context.
956 	 * NOTE: _set_bit() can be used here because the context creation is
957 	 * protected by the mutex (rather than the spin_lock), and will be the
958 	 * very first instance of this context.
959 	 */
960 	__set_bit(0, uctxt->in_use_ctxts);
961 	if (uinfo->subctxt_cnt)
962 		init_subctxts(uctxt, uinfo);
963 	uctxt->userversion = uinfo->userversion;
964 	uctxt->flags = hfi1_cap_mask; /* save current flag state */
965 	init_waitqueue_head(&uctxt->wait);
966 	strlcpy(uctxt->comm, current->comm, sizeof(uctxt->comm));
967 	memcpy(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid));
968 	uctxt->jkey = generate_jkey(current_uid());
969 	hfi1_stats.sps_ctxts++;
970 	/*
971 	 * Disable ASPM when there are open user/PSM contexts to avoid
972 	 * issues with ASPM L1 exit latency
973 	 */
974 	if (dd->freectxts-- == dd->num_user_contexts)
975 		aspm_disable_all(dd);
976 
977 	*rcd = uctxt;
978 
979 	return 0;
980 
981 ctxdata_free:
982 	hfi1_free_ctxt(uctxt);
983 	return ret;
984 }
985 
986 static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt)
987 {
988 	mutex_lock(&hfi1_mutex);
989 	hfi1_stats.sps_ctxts--;
990 	if (++uctxt->dd->freectxts == uctxt->dd->num_user_contexts)
991 		aspm_enable_all(uctxt->dd);
992 	mutex_unlock(&hfi1_mutex);
993 
994 	hfi1_free_ctxt(uctxt);
995 }
996 
997 static void init_subctxts(struct hfi1_ctxtdata *uctxt,
998 			  const struct hfi1_user_info *uinfo)
999 {
1000 	uctxt->subctxt_cnt = uinfo->subctxt_cnt;
1001 	uctxt->subctxt_id = uinfo->subctxt_id;
1002 	set_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
1003 }
1004 
1005 static int setup_subctxt(struct hfi1_ctxtdata *uctxt)
1006 {
1007 	int ret = 0;
1008 	u16 num_subctxts = uctxt->subctxt_cnt;
1009 
1010 	uctxt->subctxt_uregbase = vmalloc_user(PAGE_SIZE);
1011 	if (!uctxt->subctxt_uregbase)
1012 		return -ENOMEM;
1013 
1014 	/* We can take the size of the RcvHdr Queue from the master */
1015 	uctxt->subctxt_rcvhdr_base = vmalloc_user(rcvhdrq_size(uctxt) *
1016 						  num_subctxts);
1017 	if (!uctxt->subctxt_rcvhdr_base) {
1018 		ret = -ENOMEM;
1019 		goto bail_ureg;
1020 	}
1021 
1022 	uctxt->subctxt_rcvegrbuf = vmalloc_user(uctxt->egrbufs.size *
1023 						num_subctxts);
1024 	if (!uctxt->subctxt_rcvegrbuf) {
1025 		ret = -ENOMEM;
1026 		goto bail_rhdr;
1027 	}
1028 
1029 	return 0;
1030 
1031 bail_rhdr:
1032 	vfree(uctxt->subctxt_rcvhdr_base);
1033 	uctxt->subctxt_rcvhdr_base = NULL;
1034 bail_ureg:
1035 	vfree(uctxt->subctxt_uregbase);
1036 	uctxt->subctxt_uregbase = NULL;
1037 
1038 	return ret;
1039 }
1040 
1041 static void user_init(struct hfi1_ctxtdata *uctxt)
1042 {
1043 	unsigned int rcvctrl_ops = 0;
1044 
1045 	/* initialize poll variables... */
1046 	uctxt->urgent = 0;
1047 	uctxt->urgent_poll = 0;
1048 
1049 	/*
1050 	 * Now enable the ctxt for receive.
1051 	 * For chips that are set to DMA the tail register to memory
1052 	 * when they change (and when the update bit transitions from
1053 	 * 0 to 1.  So for those chips, we turn it off and then back on.
1054 	 * This will (very briefly) affect any other open ctxts, but the
1055 	 * duration is very short, and therefore isn't an issue.  We
1056 	 * explicitly set the in-memory tail copy to 0 beforehand, so we
1057 	 * don't have to wait to be sure the DMA update has happened
1058 	 * (chip resets head/tail to 0 on transition to enable).
1059 	 */
1060 	if (hfi1_rcvhdrtail_kvaddr(uctxt))
1061 		clear_rcvhdrtail(uctxt);
1062 
1063 	/* Setup J_KEY before enabling the context */
1064 	hfi1_set_ctxt_jkey(uctxt->dd, uctxt, uctxt->jkey);
1065 
1066 	rcvctrl_ops = HFI1_RCVCTRL_CTXT_ENB;
1067 	rcvctrl_ops |= HFI1_RCVCTRL_URGENT_ENB;
1068 	if (HFI1_CAP_UGET_MASK(uctxt->flags, HDRSUPP))
1069 		rcvctrl_ops |= HFI1_RCVCTRL_TIDFLOW_ENB;
1070 	/*
1071 	 * Ignore the bit in the flags for now until proper
1072 	 * support for multiple packet per rcv array entry is
1073 	 * added.
1074 	 */
1075 	if (!HFI1_CAP_UGET_MASK(uctxt->flags, MULTI_PKT_EGR))
1076 		rcvctrl_ops |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
1077 	if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_EGR_FULL))
1078 		rcvctrl_ops |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
1079 	if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_RHQ_FULL))
1080 		rcvctrl_ops |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
1081 	/*
1082 	 * The RcvCtxtCtrl.TailUpd bit has to be explicitly written.
1083 	 * We can't rely on the correct value to be set from prior
1084 	 * uses of the chip or ctxt. Therefore, add the rcvctrl op
1085 	 * for both cases.
1086 	 */
1087 	if (HFI1_CAP_UGET_MASK(uctxt->flags, DMA_RTAIL))
1088 		rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_ENB;
1089 	else
1090 		rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_DIS;
1091 	hfi1_rcvctrl(uctxt->dd, rcvctrl_ops, uctxt);
1092 }
1093 
1094 static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
1095 {
1096 	struct hfi1_ctxt_info cinfo;
1097 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1098 
1099 	if (sizeof(cinfo) != len)
1100 		return -EINVAL;
1101 
1102 	memset(&cinfo, 0, sizeof(cinfo));
1103 	cinfo.runtime_flags = (((uctxt->flags >> HFI1_CAP_MISC_SHIFT) &
1104 				HFI1_CAP_MISC_MASK) << HFI1_CAP_USER_SHIFT) |
1105 			HFI1_CAP_UGET_MASK(uctxt->flags, MASK) |
1106 			HFI1_CAP_KGET_MASK(uctxt->flags, K2U);
1107 	/* adjust flag if this fd is not able to cache */
1108 	if (!fd->use_mn)
1109 		cinfo.runtime_flags |= HFI1_CAP_TID_UNMAP; /* no caching */
1110 
1111 	cinfo.num_active = hfi1_count_active_units();
1112 	cinfo.unit = uctxt->dd->unit;
1113 	cinfo.ctxt = uctxt->ctxt;
1114 	cinfo.subctxt = fd->subctxt;
1115 	cinfo.rcvtids = roundup(uctxt->egrbufs.alloced,
1116 				uctxt->dd->rcv_entries.group_size) +
1117 		uctxt->expected_count;
1118 	cinfo.credits = uctxt->sc->credits;
1119 	cinfo.numa_node = uctxt->numa_id;
1120 	cinfo.rec_cpu = fd->rec_cpu_num;
1121 	cinfo.send_ctxt = uctxt->sc->hw_context;
1122 
1123 	cinfo.egrtids = uctxt->egrbufs.alloced;
1124 	cinfo.rcvhdrq_cnt = get_hdrq_cnt(uctxt);
1125 	cinfo.rcvhdrq_entsize = get_hdrqentsize(uctxt) << 2;
1126 	cinfo.sdma_ring_size = fd->cq->nentries;
1127 	cinfo.rcvegr_size = uctxt->egrbufs.rcvtid_size;
1128 
1129 	trace_hfi1_ctxt_info(uctxt->dd, uctxt->ctxt, fd->subctxt, &cinfo);
1130 	if (copy_to_user((void __user *)arg, &cinfo, len))
1131 		return -EFAULT;
1132 
1133 	return 0;
1134 }
1135 
1136 static int init_user_ctxt(struct hfi1_filedata *fd,
1137 			  struct hfi1_ctxtdata *uctxt)
1138 {
1139 	int ret;
1140 
1141 	ret = hfi1_user_sdma_alloc_queues(uctxt, fd);
1142 	if (ret)
1143 		return ret;
1144 
1145 	ret = hfi1_user_exp_rcv_init(fd, uctxt);
1146 	if (ret)
1147 		hfi1_user_sdma_free_queues(fd, uctxt);
1148 
1149 	return ret;
1150 }
1151 
1152 static int setup_base_ctxt(struct hfi1_filedata *fd,
1153 			   struct hfi1_ctxtdata *uctxt)
1154 {
1155 	struct hfi1_devdata *dd = uctxt->dd;
1156 	int ret = 0;
1157 
1158 	hfi1_init_ctxt(uctxt->sc);
1159 
1160 	/* Now allocate the RcvHdr queue and eager buffers. */
1161 	ret = hfi1_create_rcvhdrq(dd, uctxt);
1162 	if (ret)
1163 		goto done;
1164 
1165 	ret = hfi1_setup_eagerbufs(uctxt);
1166 	if (ret)
1167 		goto done;
1168 
1169 	/* If sub-contexts are enabled, do the appropriate setup */
1170 	if (uctxt->subctxt_cnt)
1171 		ret = setup_subctxt(uctxt);
1172 	if (ret)
1173 		goto done;
1174 
1175 	ret = hfi1_alloc_ctxt_rcv_groups(uctxt);
1176 	if (ret)
1177 		goto done;
1178 
1179 	ret = init_user_ctxt(fd, uctxt);
1180 	if (ret)
1181 		goto done;
1182 
1183 	user_init(uctxt);
1184 
1185 	/* Now that the context is set up, the fd can get a reference. */
1186 	fd->uctxt = uctxt;
1187 	hfi1_rcd_get(uctxt);
1188 
1189 done:
1190 	if (uctxt->subctxt_cnt) {
1191 		/*
1192 		 * On error, set the failed bit so sub-contexts will clean up
1193 		 * correctly.
1194 		 */
1195 		if (ret)
1196 			set_bit(HFI1_CTXT_BASE_FAILED, &uctxt->event_flags);
1197 
1198 		/*
1199 		 * Base context is done (successfully or not), notify anybody
1200 		 * using a sub-context that is waiting for this completion.
1201 		 */
1202 		clear_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
1203 		wake_up(&uctxt->wait);
1204 	}
1205 
1206 	return ret;
1207 }
1208 
1209 static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
1210 {
1211 	struct hfi1_base_info binfo;
1212 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1213 	struct hfi1_devdata *dd = uctxt->dd;
1214 	unsigned offset;
1215 
1216 	trace_hfi1_uctxtdata(uctxt->dd, uctxt, fd->subctxt);
1217 
1218 	if (sizeof(binfo) != len)
1219 		return -EINVAL;
1220 
1221 	memset(&binfo, 0, sizeof(binfo));
1222 	binfo.hw_version = dd->revision;
1223 	binfo.sw_version = HFI1_KERN_SWVERSION;
1224 	binfo.bthqp = RVT_KDETH_QP_PREFIX;
1225 	binfo.jkey = uctxt->jkey;
1226 	/*
1227 	 * If more than 64 contexts are enabled the allocated credit
1228 	 * return will span two or three contiguous pages. Since we only
1229 	 * map the page containing the context's credit return address,
1230 	 * we need to calculate the offset in the proper page.
1231 	 */
1232 	offset = ((u64)uctxt->sc->hw_free -
1233 		  (u64)dd->cr_base[uctxt->numa_id].va) % PAGE_SIZE;
1234 	binfo.sc_credits_addr = HFI1_MMAP_TOKEN(PIO_CRED, uctxt->ctxt,
1235 						fd->subctxt, offset);
1236 	binfo.pio_bufbase = HFI1_MMAP_TOKEN(PIO_BUFS, uctxt->ctxt,
1237 					    fd->subctxt,
1238 					    uctxt->sc->base_addr);
1239 	binfo.pio_bufbase_sop = HFI1_MMAP_TOKEN(PIO_BUFS_SOP,
1240 						uctxt->ctxt,
1241 						fd->subctxt,
1242 						uctxt->sc->base_addr);
1243 	binfo.rcvhdr_bufbase = HFI1_MMAP_TOKEN(RCV_HDRQ, uctxt->ctxt,
1244 					       fd->subctxt,
1245 					       uctxt->rcvhdrq);
1246 	binfo.rcvegr_bufbase = HFI1_MMAP_TOKEN(RCV_EGRBUF, uctxt->ctxt,
1247 					       fd->subctxt,
1248 					       uctxt->egrbufs.rcvtids[0].dma);
1249 	binfo.sdma_comp_bufbase = HFI1_MMAP_TOKEN(SDMA_COMP, uctxt->ctxt,
1250 						  fd->subctxt, 0);
1251 	/*
1252 	 * user regs are at
1253 	 * (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE))
1254 	 */
1255 	binfo.user_regbase = HFI1_MMAP_TOKEN(UREGS, uctxt->ctxt,
1256 					     fd->subctxt, 0);
1257 	offset = offset_in_page((uctxt_offset(uctxt) + fd->subctxt) *
1258 				sizeof(*dd->events));
1259 	binfo.events_bufbase = HFI1_MMAP_TOKEN(EVENTS, uctxt->ctxt,
1260 					       fd->subctxt,
1261 					       offset);
1262 	binfo.status_bufbase = HFI1_MMAP_TOKEN(STATUS, uctxt->ctxt,
1263 					       fd->subctxt,
1264 					       dd->status);
1265 	if (HFI1_CAP_IS_USET(DMA_RTAIL))
1266 		binfo.rcvhdrtail_base = HFI1_MMAP_TOKEN(RTAIL, uctxt->ctxt,
1267 							fd->subctxt, 0);
1268 	if (uctxt->subctxt_cnt) {
1269 		binfo.subctxt_uregbase = HFI1_MMAP_TOKEN(SUBCTXT_UREGS,
1270 							 uctxt->ctxt,
1271 							 fd->subctxt, 0);
1272 		binfo.subctxt_rcvhdrbuf = HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ,
1273 							  uctxt->ctxt,
1274 							  fd->subctxt, 0);
1275 		binfo.subctxt_rcvegrbuf = HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF,
1276 							  uctxt->ctxt,
1277 							  fd->subctxt, 0);
1278 	}
1279 
1280 	if (copy_to_user((void __user *)arg, &binfo, len))
1281 		return -EFAULT;
1282 
1283 	return 0;
1284 }
1285 
1286 /**
1287  * user_exp_rcv_setup - Set up the given tid rcv list
1288  * @fd: file data of the current driver instance
1289  * @arg: ioctl argumnent for user space information
1290  * @len: length of data structure associated with ioctl command
1291  *
1292  * Wrapper to validate ioctl information before doing _rcv_setup.
1293  *
1294  */
1295 static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
1296 			      u32 len)
1297 {
1298 	int ret;
1299 	unsigned long addr;
1300 	struct hfi1_tid_info tinfo;
1301 
1302 	if (sizeof(tinfo) != len)
1303 		return -EINVAL;
1304 
1305 	if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1306 		return -EFAULT;
1307 
1308 	ret = hfi1_user_exp_rcv_setup(fd, &tinfo);
1309 	if (!ret) {
1310 		/*
1311 		 * Copy the number of tidlist entries we used
1312 		 * and the length of the buffer we registered.
1313 		 */
1314 		addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1315 		if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1316 				 sizeof(tinfo.tidcnt)))
1317 			return -EFAULT;
1318 
1319 		addr = arg + offsetof(struct hfi1_tid_info, length);
1320 		if (copy_to_user((void __user *)addr, &tinfo.length,
1321 				 sizeof(tinfo.length)))
1322 			ret = -EFAULT;
1323 	}
1324 
1325 	return ret;
1326 }
1327 
1328 /**
1329  * user_exp_rcv_clear - Clear the given tid rcv list
1330  * @fd: file data of the current driver instance
1331  * @arg: ioctl argumnent for user space information
1332  * @len: length of data structure associated with ioctl command
1333  *
1334  * The hfi1_user_exp_rcv_clear() can be called from the error path.  Because
1335  * of this, we need to use this wrapper to copy the user space information
1336  * before doing the clear.
1337  */
1338 static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
1339 			      u32 len)
1340 {
1341 	int ret;
1342 	unsigned long addr;
1343 	struct hfi1_tid_info tinfo;
1344 
1345 	if (sizeof(tinfo) != len)
1346 		return -EINVAL;
1347 
1348 	if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1349 		return -EFAULT;
1350 
1351 	ret = hfi1_user_exp_rcv_clear(fd, &tinfo);
1352 	if (!ret) {
1353 		addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1354 		if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1355 				 sizeof(tinfo.tidcnt)))
1356 			return -EFAULT;
1357 	}
1358 
1359 	return ret;
1360 }
1361 
1362 /**
1363  * user_exp_rcv_invalid - Invalidate the given tid rcv list
1364  * @fd: file data of the current driver instance
1365  * @arg: ioctl argumnent for user space information
1366  * @len: length of data structure associated with ioctl command
1367  *
1368  * Wrapper to validate ioctl information before doing _rcv_invalid.
1369  *
1370  */
1371 static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
1372 				u32 len)
1373 {
1374 	int ret;
1375 	unsigned long addr;
1376 	struct hfi1_tid_info tinfo;
1377 
1378 	if (sizeof(tinfo) != len)
1379 		return -EINVAL;
1380 
1381 	if (!fd->invalid_tids)
1382 		return -EINVAL;
1383 
1384 	if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1385 		return -EFAULT;
1386 
1387 	ret = hfi1_user_exp_rcv_invalid(fd, &tinfo);
1388 	if (ret)
1389 		return ret;
1390 
1391 	addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1392 	if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1393 			 sizeof(tinfo.tidcnt)))
1394 		ret = -EFAULT;
1395 
1396 	return ret;
1397 }
1398 
1399 static __poll_t poll_urgent(struct file *fp,
1400 				struct poll_table_struct *pt)
1401 {
1402 	struct hfi1_filedata *fd = fp->private_data;
1403 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1404 	struct hfi1_devdata *dd = uctxt->dd;
1405 	__poll_t pollflag;
1406 
1407 	poll_wait(fp, &uctxt->wait, pt);
1408 
1409 	spin_lock_irq(&dd->uctxt_lock);
1410 	if (uctxt->urgent != uctxt->urgent_poll) {
1411 		pollflag = EPOLLIN | EPOLLRDNORM;
1412 		uctxt->urgent_poll = uctxt->urgent;
1413 	} else {
1414 		pollflag = 0;
1415 		set_bit(HFI1_CTXT_WAITING_URG, &uctxt->event_flags);
1416 	}
1417 	spin_unlock_irq(&dd->uctxt_lock);
1418 
1419 	return pollflag;
1420 }
1421 
1422 static __poll_t poll_next(struct file *fp,
1423 			      struct poll_table_struct *pt)
1424 {
1425 	struct hfi1_filedata *fd = fp->private_data;
1426 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1427 	struct hfi1_devdata *dd = uctxt->dd;
1428 	__poll_t pollflag;
1429 
1430 	poll_wait(fp, &uctxt->wait, pt);
1431 
1432 	spin_lock_irq(&dd->uctxt_lock);
1433 	if (hdrqempty(uctxt)) {
1434 		set_bit(HFI1_CTXT_WAITING_RCV, &uctxt->event_flags);
1435 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_INTRAVAIL_ENB, uctxt);
1436 		pollflag = 0;
1437 	} else {
1438 		pollflag = EPOLLIN | EPOLLRDNORM;
1439 	}
1440 	spin_unlock_irq(&dd->uctxt_lock);
1441 
1442 	return pollflag;
1443 }
1444 
1445 /*
1446  * Find all user contexts in use, and set the specified bit in their
1447  * event mask.
1448  * See also find_ctxt() for a similar use, that is specific to send buffers.
1449  */
1450 int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit)
1451 {
1452 	struct hfi1_ctxtdata *uctxt;
1453 	struct hfi1_devdata *dd = ppd->dd;
1454 	u16 ctxt;
1455 
1456 	if (!dd->events)
1457 		return -EINVAL;
1458 
1459 	for (ctxt = dd->first_dyn_alloc_ctxt; ctxt < dd->num_rcv_contexts;
1460 	     ctxt++) {
1461 		uctxt = hfi1_rcd_get_by_index(dd, ctxt);
1462 		if (uctxt) {
1463 			unsigned long *evs;
1464 			int i;
1465 			/*
1466 			 * subctxt_cnt is 0 if not shared, so do base
1467 			 * separately, first, then remaining subctxt, if any
1468 			 */
1469 			evs = dd->events + uctxt_offset(uctxt);
1470 			set_bit(evtbit, evs);
1471 			for (i = 1; i < uctxt->subctxt_cnt; i++)
1472 				set_bit(evtbit, evs + i);
1473 			hfi1_rcd_put(uctxt);
1474 		}
1475 	}
1476 
1477 	return 0;
1478 }
1479 
1480 /**
1481  * manage_rcvq - manage a context's receive queue
1482  * @uctxt: the context
1483  * @subctxt: the sub-context
1484  * @arg: start/stop action to carry out
1485  *
1486  * start_stop == 0 disables receive on the context, for use in queue
1487  * overflow conditions.  start_stop==1 re-enables, to be used to
1488  * re-init the software copy of the head register
1489  */
1490 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
1491 		       unsigned long arg)
1492 {
1493 	struct hfi1_devdata *dd = uctxt->dd;
1494 	unsigned int rcvctrl_op;
1495 	int start_stop;
1496 
1497 	if (subctxt)
1498 		return 0;
1499 
1500 	if (get_user(start_stop, (int __user *)arg))
1501 		return -EFAULT;
1502 
1503 	/* atomically clear receive enable ctxt. */
1504 	if (start_stop) {
1505 		/*
1506 		 * On enable, force in-memory copy of the tail register to
1507 		 * 0, so that protocol code doesn't have to worry about
1508 		 * whether or not the chip has yet updated the in-memory
1509 		 * copy or not on return from the system call. The chip
1510 		 * always resets it's tail register back to 0 on a
1511 		 * transition from disabled to enabled.
1512 		 */
1513 		if (hfi1_rcvhdrtail_kvaddr(uctxt))
1514 			clear_rcvhdrtail(uctxt);
1515 		rcvctrl_op = HFI1_RCVCTRL_CTXT_ENB;
1516 	} else {
1517 		rcvctrl_op = HFI1_RCVCTRL_CTXT_DIS;
1518 	}
1519 	hfi1_rcvctrl(dd, rcvctrl_op, uctxt);
1520 	/* always; new head should be equal to new tail; see above */
1521 
1522 	return 0;
1523 }
1524 
1525 /*
1526  * clear the event notifier events for this context.
1527  * User process then performs actions appropriate to bit having been
1528  * set, if desired, and checks again in future.
1529  */
1530 static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
1531 			  unsigned long arg)
1532 {
1533 	int i;
1534 	struct hfi1_devdata *dd = uctxt->dd;
1535 	unsigned long *evs;
1536 	unsigned long events;
1537 
1538 	if (!dd->events)
1539 		return 0;
1540 
1541 	if (get_user(events, (unsigned long __user *)arg))
1542 		return -EFAULT;
1543 
1544 	evs = dd->events + uctxt_offset(uctxt) + subctxt;
1545 
1546 	for (i = 0; i <= _HFI1_MAX_EVENT_BIT; i++) {
1547 		if (!test_bit(i, &events))
1548 			continue;
1549 		clear_bit(i, evs);
1550 	}
1551 	return 0;
1552 }
1553 
1554 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg)
1555 {
1556 	int i;
1557 	struct hfi1_pportdata *ppd = uctxt->ppd;
1558 	struct hfi1_devdata *dd = uctxt->dd;
1559 	u16 pkey;
1560 
1561 	if (!HFI1_CAP_IS_USET(PKEY_CHECK))
1562 		return -EPERM;
1563 
1564 	if (get_user(pkey, (u16 __user *)arg))
1565 		return -EFAULT;
1566 
1567 	if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY)
1568 		return -EINVAL;
1569 
1570 	for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++)
1571 		if (pkey == ppd->pkeys[i])
1572 			return hfi1_set_ctxt_pkey(dd, uctxt, pkey);
1573 
1574 	return -ENOENT;
1575 }
1576 
1577 /**
1578  * ctxt_reset - Reset the user context
1579  * @uctxt: valid user context
1580  */
1581 static int ctxt_reset(struct hfi1_ctxtdata *uctxt)
1582 {
1583 	struct send_context *sc;
1584 	struct hfi1_devdata *dd;
1585 	int ret = 0;
1586 
1587 	if (!uctxt || !uctxt->dd || !uctxt->sc)
1588 		return -EINVAL;
1589 
1590 	/*
1591 	 * There is no protection here. User level has to guarantee that
1592 	 * no one will be writing to the send context while it is being
1593 	 * re-initialized.  If user level breaks that guarantee, it will
1594 	 * break it's own context and no one else's.
1595 	 */
1596 	dd = uctxt->dd;
1597 	sc = uctxt->sc;
1598 
1599 	/*
1600 	 * Wait until the interrupt handler has marked the context as
1601 	 * halted or frozen. Report error if we time out.
1602 	 */
1603 	wait_event_interruptible_timeout(
1604 		sc->halt_wait, (sc->flags & SCF_HALTED),
1605 		msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
1606 	if (!(sc->flags & SCF_HALTED))
1607 		return -ENOLCK;
1608 
1609 	/*
1610 	 * If the send context was halted due to a Freeze, wait until the
1611 	 * device has been "unfrozen" before resetting the context.
1612 	 */
1613 	if (sc->flags & SCF_FROZEN) {
1614 		wait_event_interruptible_timeout(
1615 			dd->event_queue,
1616 			!(READ_ONCE(dd->flags) & HFI1_FROZEN),
1617 			msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
1618 		if (dd->flags & HFI1_FROZEN)
1619 			return -ENOLCK;
1620 
1621 		if (dd->flags & HFI1_FORCED_FREEZE)
1622 			/*
1623 			 * Don't allow context reset if we are into
1624 			 * forced freeze
1625 			 */
1626 			return -ENODEV;
1627 
1628 		sc_disable(sc);
1629 		ret = sc_enable(sc);
1630 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB, uctxt);
1631 	} else {
1632 		ret = sc_restart(sc);
1633 	}
1634 	if (!ret)
1635 		sc_return_credits(sc);
1636 
1637 	return ret;
1638 }
1639 
1640 static void user_remove(struct hfi1_devdata *dd)
1641 {
1642 
1643 	hfi1_cdev_cleanup(&dd->user_cdev, &dd->user_device);
1644 }
1645 
1646 static int user_add(struct hfi1_devdata *dd)
1647 {
1648 	char name[10];
1649 	int ret;
1650 
1651 	snprintf(name, sizeof(name), "%s_%d", class_name(), dd->unit);
1652 	ret = hfi1_cdev_init(dd->unit, name, &hfi1_file_ops,
1653 			     &dd->user_cdev, &dd->user_device,
1654 			     true, &dd->verbs_dev.rdi.ibdev.dev.kobj);
1655 	if (ret)
1656 		user_remove(dd);
1657 
1658 	return ret;
1659 }
1660 
1661 /*
1662  * Create per-unit files in /dev
1663  */
1664 int hfi1_device_create(struct hfi1_devdata *dd)
1665 {
1666 	return user_add(dd);
1667 }
1668 
1669 /*
1670  * Remove per-unit files in /dev
1671  * void, core kernel returns no errors for this stuff
1672  */
1673 void hfi1_device_remove(struct hfi1_devdata *dd)
1674 {
1675 	user_remove(dd);
1676 }
1677