1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
2 /*
3  * Copyright(c) 2020 Cornelis Networks, Inc.
4  * Copyright(c) 2015-2020 Intel Corporation.
5  */
6 
7 #include <linux/poll.h>
8 #include <linux/cdev.h>
9 #include <linux/vmalloc.h>
10 #include <linux/io.h>
11 #include <linux/sched/mm.h>
12 #include <linux/bitmap.h>
13 
14 #include <rdma/ib.h>
15 
16 #include "hfi.h"
17 #include "pio.h"
18 #include "device.h"
19 #include "common.h"
20 #include "trace.h"
21 #include "mmu_rb.h"
22 #include "user_sdma.h"
23 #include "user_exp_rcv.h"
24 #include "aspm.h"
25 
26 #undef pr_fmt
27 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
28 
29 #define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */
30 
31 /*
32  * File operation functions
33  */
34 static int hfi1_file_open(struct inode *inode, struct file *fp);
35 static int hfi1_file_close(struct inode *inode, struct file *fp);
36 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from);
37 static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt);
38 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma);
39 
40 static u64 kvirt_to_phys(void *addr);
41 static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len);
42 static void init_subctxts(struct hfi1_ctxtdata *uctxt,
43 			  const struct hfi1_user_info *uinfo);
44 static int init_user_ctxt(struct hfi1_filedata *fd,
45 			  struct hfi1_ctxtdata *uctxt);
46 static void user_init(struct hfi1_ctxtdata *uctxt);
47 static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
48 static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
49 static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
50 			      u32 len);
51 static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
52 			      u32 len);
53 static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
54 				u32 len);
55 static int setup_base_ctxt(struct hfi1_filedata *fd,
56 			   struct hfi1_ctxtdata *uctxt);
57 static int setup_subctxt(struct hfi1_ctxtdata *uctxt);
58 
59 static int find_sub_ctxt(struct hfi1_filedata *fd,
60 			 const struct hfi1_user_info *uinfo);
61 static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
62 			 struct hfi1_user_info *uinfo,
63 			 struct hfi1_ctxtdata **cd);
64 static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt);
65 static __poll_t poll_urgent(struct file *fp, struct poll_table_struct *pt);
66 static __poll_t poll_next(struct file *fp, struct poll_table_struct *pt);
67 static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
68 			  unsigned long arg);
69 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg);
70 static int ctxt_reset(struct hfi1_ctxtdata *uctxt);
71 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
72 		       unsigned long arg);
73 static vm_fault_t vma_fault(struct vm_fault *vmf);
74 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
75 			    unsigned long arg);
76 
77 static const struct file_operations hfi1_file_ops = {
78 	.owner = THIS_MODULE,
79 	.write_iter = hfi1_write_iter,
80 	.open = hfi1_file_open,
81 	.release = hfi1_file_close,
82 	.unlocked_ioctl = hfi1_file_ioctl,
83 	.poll = hfi1_poll,
84 	.mmap = hfi1_file_mmap,
85 	.llseek = noop_llseek,
86 };
87 
88 static const struct vm_operations_struct vm_ops = {
89 	.fault = vma_fault,
90 };
91 
92 /*
93  * Types of memories mapped into user processes' space
94  */
95 enum mmap_types {
96 	PIO_BUFS = 1,
97 	PIO_BUFS_SOP,
98 	PIO_CRED,
99 	RCV_HDRQ,
100 	RCV_EGRBUF,
101 	UREGS,
102 	EVENTS,
103 	STATUS,
104 	RTAIL,
105 	SUBCTXT_UREGS,
106 	SUBCTXT_RCV_HDRQ,
107 	SUBCTXT_EGRBUF,
108 	SDMA_COMP
109 };
110 
111 /*
112  * Masks and offsets defining the mmap tokens
113  */
114 #define HFI1_MMAP_OFFSET_MASK   0xfffULL
115 #define HFI1_MMAP_OFFSET_SHIFT  0
116 #define HFI1_MMAP_SUBCTXT_MASK  0xfULL
117 #define HFI1_MMAP_SUBCTXT_SHIFT 12
118 #define HFI1_MMAP_CTXT_MASK     0xffULL
119 #define HFI1_MMAP_CTXT_SHIFT    16
120 #define HFI1_MMAP_TYPE_MASK     0xfULL
121 #define HFI1_MMAP_TYPE_SHIFT    24
122 #define HFI1_MMAP_MAGIC_MASK    0xffffffffULL
123 #define HFI1_MMAP_MAGIC_SHIFT   32
124 
125 #define HFI1_MMAP_MAGIC         0xdabbad00
126 
127 #define HFI1_MMAP_TOKEN_SET(field, val)	\
128 	(((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT)
129 #define HFI1_MMAP_TOKEN_GET(field, token) \
130 	(((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK)
131 #define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr)   \
132 	(HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \
133 	HFI1_MMAP_TOKEN_SET(TYPE, type) | \
134 	HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \
135 	HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \
136 	HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr))))
137 
138 #define dbg(fmt, ...)				\
139 	pr_info(fmt, ##__VA_ARGS__)
140 
is_valid_mmap(u64 token)141 static inline int is_valid_mmap(u64 token)
142 {
143 	return (HFI1_MMAP_TOKEN_GET(MAGIC, token) == HFI1_MMAP_MAGIC);
144 }
145 
hfi1_file_open(struct inode * inode,struct file * fp)146 static int hfi1_file_open(struct inode *inode, struct file *fp)
147 {
148 	struct hfi1_filedata *fd;
149 	struct hfi1_devdata *dd = container_of(inode->i_cdev,
150 					       struct hfi1_devdata,
151 					       user_cdev);
152 
153 	if (!((dd->flags & HFI1_PRESENT) && dd->kregbase1))
154 		return -EINVAL;
155 
156 	if (!refcount_inc_not_zero(&dd->user_refcount))
157 		return -ENXIO;
158 
159 	/* The real work is performed later in assign_ctxt() */
160 
161 	fd = kzalloc(sizeof(*fd), GFP_KERNEL);
162 
163 	if (!fd || init_srcu_struct(&fd->pq_srcu))
164 		goto nomem;
165 	spin_lock_init(&fd->pq_rcu_lock);
166 	spin_lock_init(&fd->tid_lock);
167 	spin_lock_init(&fd->invalid_lock);
168 	fd->rec_cpu_num = -1; /* no cpu affinity by default */
169 	fd->dd = dd;
170 	fp->private_data = fd;
171 	return 0;
172 nomem:
173 	kfree(fd);
174 	fp->private_data = NULL;
175 	if (refcount_dec_and_test(&dd->user_refcount))
176 		complete(&dd->user_comp);
177 	return -ENOMEM;
178 }
179 
hfi1_file_ioctl(struct file * fp,unsigned int cmd,unsigned long arg)180 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
181 			    unsigned long arg)
182 {
183 	struct hfi1_filedata *fd = fp->private_data;
184 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
185 	int ret = 0;
186 	int uval = 0;
187 
188 	hfi1_cdbg(IOCTL, "IOCTL recv: 0x%x", cmd);
189 	if (cmd != HFI1_IOCTL_ASSIGN_CTXT &&
190 	    cmd != HFI1_IOCTL_GET_VERS &&
191 	    !uctxt)
192 		return -EINVAL;
193 
194 	switch (cmd) {
195 	case HFI1_IOCTL_ASSIGN_CTXT:
196 		ret = assign_ctxt(fd, arg, _IOC_SIZE(cmd));
197 		break;
198 
199 	case HFI1_IOCTL_CTXT_INFO:
200 		ret = get_ctxt_info(fd, arg, _IOC_SIZE(cmd));
201 		break;
202 
203 	case HFI1_IOCTL_USER_INFO:
204 		ret = get_base_info(fd, arg, _IOC_SIZE(cmd));
205 		break;
206 
207 	case HFI1_IOCTL_CREDIT_UPD:
208 		if (uctxt)
209 			sc_return_credits(uctxt->sc);
210 		break;
211 
212 	case HFI1_IOCTL_TID_UPDATE:
213 		ret = user_exp_rcv_setup(fd, arg, _IOC_SIZE(cmd));
214 		break;
215 
216 	case HFI1_IOCTL_TID_FREE:
217 		ret = user_exp_rcv_clear(fd, arg, _IOC_SIZE(cmd));
218 		break;
219 
220 	case HFI1_IOCTL_TID_INVAL_READ:
221 		ret = user_exp_rcv_invalid(fd, arg, _IOC_SIZE(cmd));
222 		break;
223 
224 	case HFI1_IOCTL_RECV_CTRL:
225 		ret = manage_rcvq(uctxt, fd->subctxt, arg);
226 		break;
227 
228 	case HFI1_IOCTL_POLL_TYPE:
229 		if (get_user(uval, (int __user *)arg))
230 			return -EFAULT;
231 		uctxt->poll_type = (typeof(uctxt->poll_type))uval;
232 		break;
233 
234 	case HFI1_IOCTL_ACK_EVENT:
235 		ret = user_event_ack(uctxt, fd->subctxt, arg);
236 		break;
237 
238 	case HFI1_IOCTL_SET_PKEY:
239 		ret = set_ctxt_pkey(uctxt, arg);
240 		break;
241 
242 	case HFI1_IOCTL_CTXT_RESET:
243 		ret = ctxt_reset(uctxt);
244 		break;
245 
246 	case HFI1_IOCTL_GET_VERS:
247 		uval = HFI1_USER_SWVERSION;
248 		if (put_user(uval, (int __user *)arg))
249 			return -EFAULT;
250 		break;
251 
252 	default:
253 		return -EINVAL;
254 	}
255 
256 	return ret;
257 }
258 
hfi1_write_iter(struct kiocb * kiocb,struct iov_iter * from)259 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from)
260 {
261 	struct hfi1_filedata *fd = kiocb->ki_filp->private_data;
262 	struct hfi1_user_sdma_pkt_q *pq;
263 	struct hfi1_user_sdma_comp_q *cq = fd->cq;
264 	int done = 0, reqs = 0;
265 	unsigned long dim = from->nr_segs;
266 	int idx;
267 
268 	if (!HFI1_CAP_IS_KSET(SDMA))
269 		return -EINVAL;
270 	if (!from->user_backed)
271 		return -EINVAL;
272 	idx = srcu_read_lock(&fd->pq_srcu);
273 	pq = srcu_dereference(fd->pq, &fd->pq_srcu);
274 	if (!cq || !pq) {
275 		srcu_read_unlock(&fd->pq_srcu, idx);
276 		return -EIO;
277 	}
278 
279 	trace_hfi1_sdma_request(fd->dd, fd->uctxt->ctxt, fd->subctxt, dim);
280 
281 	if (atomic_read(&pq->n_reqs) == pq->n_max_reqs) {
282 		srcu_read_unlock(&fd->pq_srcu, idx);
283 		return -ENOSPC;
284 	}
285 
286 	while (dim) {
287 		const struct iovec *iov = iter_iov(from);
288 		int ret;
289 		unsigned long count = 0;
290 
291 		ret = hfi1_user_sdma_process_request(
292 			fd, (struct iovec *)(iov + done),
293 			dim, &count);
294 		if (ret) {
295 			reqs = ret;
296 			break;
297 		}
298 		dim -= count;
299 		done += count;
300 		reqs++;
301 	}
302 
303 	srcu_read_unlock(&fd->pq_srcu, idx);
304 	return reqs;
305 }
306 
mmap_cdbg(u16 ctxt,u8 subctxt,u8 type,u8 mapio,u8 vmf,u64 memaddr,void * memvirt,dma_addr_t memdma,ssize_t memlen,struct vm_area_struct * vma)307 static inline void mmap_cdbg(u16 ctxt, u8 subctxt, u8 type, u8 mapio, u8 vmf,
308 			     u64 memaddr, void *memvirt, dma_addr_t memdma,
309 			     ssize_t memlen, struct vm_area_struct *vma)
310 {
311 	hfi1_cdbg(PROC,
312 		  "%u:%u type:%u io/vf/dma:%d/%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx",
313 		  ctxt, subctxt, type, mapio, vmf, !!memdma,
314 		  memaddr ?: (u64)memvirt, memlen,
315 		  vma->vm_end - vma->vm_start, vma->vm_flags);
316 }
317 
hfi1_file_mmap(struct file * fp,struct vm_area_struct * vma)318 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma)
319 {
320 	struct hfi1_filedata *fd = fp->private_data;
321 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
322 	struct hfi1_devdata *dd;
323 	unsigned long flags;
324 	u64 token = vma->vm_pgoff << PAGE_SHIFT,
325 		memaddr = 0;
326 	void *memvirt = NULL;
327 	dma_addr_t memdma = 0;
328 	u8 subctxt, mapio = 0, vmf = 0, type;
329 	ssize_t memlen = 0;
330 	int ret = 0;
331 	u16 ctxt;
332 
333 	if (!is_valid_mmap(token) || !uctxt ||
334 	    !(vma->vm_flags & VM_SHARED)) {
335 		ret = -EINVAL;
336 		goto done;
337 	}
338 	dd = uctxt->dd;
339 	ctxt = HFI1_MMAP_TOKEN_GET(CTXT, token);
340 	subctxt = HFI1_MMAP_TOKEN_GET(SUBCTXT, token);
341 	type = HFI1_MMAP_TOKEN_GET(TYPE, token);
342 	if (ctxt != uctxt->ctxt || subctxt != fd->subctxt) {
343 		ret = -EINVAL;
344 		goto done;
345 	}
346 
347 	/*
348 	 * vm_pgoff is used as a buffer selector cookie.  Always mmap from
349 	 * the beginning.
350 	 */
351 	vma->vm_pgoff = 0;
352 	flags = vma->vm_flags;
353 
354 	switch (type) {
355 	case PIO_BUFS:
356 	case PIO_BUFS_SOP:
357 		memaddr = ((dd->physaddr + TXE_PIO_SEND) +
358 				/* chip pio base */
359 			   (uctxt->sc->hw_context * BIT(16))) +
360 				/* 64K PIO space / ctxt */
361 			(type == PIO_BUFS_SOP ?
362 				(TXE_PIO_SIZE / 2) : 0); /* sop? */
363 		/*
364 		 * Map only the amount allocated to the context, not the
365 		 * entire available context's PIO space.
366 		 */
367 		memlen = PAGE_ALIGN(uctxt->sc->credits * PIO_BLOCK_SIZE);
368 		flags &= ~VM_MAYREAD;
369 		flags |= VM_DONTCOPY | VM_DONTEXPAND;
370 		vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
371 		mapio = 1;
372 		break;
373 	case PIO_CRED: {
374 		u64 cr_page_offset;
375 		if (flags & VM_WRITE) {
376 			ret = -EPERM;
377 			goto done;
378 		}
379 		/*
380 		 * The credit return location for this context could be on the
381 		 * second or third page allocated for credit returns (if number
382 		 * of enabled contexts > 64 and 128 respectively).
383 		 */
384 		cr_page_offset = ((u64)uctxt->sc->hw_free -
385 			  	     (u64)dd->cr_base[uctxt->numa_id].va) &
386 				   PAGE_MASK;
387 		memvirt = dd->cr_base[uctxt->numa_id].va + cr_page_offset;
388 		memdma = dd->cr_base[uctxt->numa_id].dma + cr_page_offset;
389 		memlen = PAGE_SIZE;
390 		flags &= ~VM_MAYWRITE;
391 		flags |= VM_DONTCOPY | VM_DONTEXPAND;
392 		/*
393 		 * The driver has already allocated memory for credit
394 		 * returns and programmed it into the chip. Has that
395 		 * memory been flagged as non-cached?
396 		 */
397 		/* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */
398 		break;
399 	}
400 	case RCV_HDRQ:
401 		memlen = rcvhdrq_size(uctxt);
402 		memvirt = uctxt->rcvhdrq;
403 		memdma = uctxt->rcvhdrq_dma;
404 		break;
405 	case RCV_EGRBUF: {
406 		unsigned long vm_start_save;
407 		unsigned long vm_end_save;
408 		int i;
409 		/*
410 		 * The RcvEgr buffer need to be handled differently
411 		 * as multiple non-contiguous pages need to be mapped
412 		 * into the user process.
413 		 */
414 		memlen = uctxt->egrbufs.size;
415 		if ((vma->vm_end - vma->vm_start) != memlen) {
416 			dd_dev_err(dd, "Eager buffer map size invalid (%lu != %lu)\n",
417 				   (vma->vm_end - vma->vm_start), memlen);
418 			ret = -EINVAL;
419 			goto done;
420 		}
421 		if (vma->vm_flags & VM_WRITE) {
422 			ret = -EPERM;
423 			goto done;
424 		}
425 		vm_flags_clear(vma, VM_MAYWRITE);
426 		/*
427 		 * Mmap multiple separate allocations into a single vma.  From
428 		 * here, dma_mmap_coherent() calls dma_direct_mmap(), which
429 		 * requires the mmap to exactly fill the vma starting at
430 		 * vma_start.  Adjust the vma start and end for each eager
431 		 * buffer segment mapped.  Restore the originals when done.
432 		 */
433 		vm_start_save = vma->vm_start;
434 		vm_end_save = vma->vm_end;
435 		vma->vm_end = vma->vm_start;
436 		for (i = 0 ; i < uctxt->egrbufs.numbufs; i++) {
437 			memlen = uctxt->egrbufs.buffers[i].len;
438 			memvirt = uctxt->egrbufs.buffers[i].addr;
439 			memdma = uctxt->egrbufs.buffers[i].dma;
440 			vma->vm_end += memlen;
441 			mmap_cdbg(ctxt, subctxt, type, mapio, vmf, memaddr,
442 				  memvirt, memdma, memlen, vma);
443 			ret = dma_mmap_coherent(&dd->pcidev->dev, vma,
444 						memvirt, memdma, memlen);
445 			if (ret < 0) {
446 				vma->vm_start = vm_start_save;
447 				vma->vm_end = vm_end_save;
448 				goto done;
449 			}
450 			vma->vm_start += memlen;
451 		}
452 		vma->vm_start = vm_start_save;
453 		vma->vm_end = vm_end_save;
454 		ret = 0;
455 		goto done;
456 	}
457 	case UREGS:
458 		/*
459 		 * Map only the page that contains this context's user
460 		 * registers.
461 		 */
462 		memaddr = (unsigned long)
463 			(dd->physaddr + RXE_PER_CONTEXT_USER)
464 			+ (uctxt->ctxt * RXE_PER_CONTEXT_SIZE);
465 		/*
466 		 * TidFlow table is on the same page as the rest of the
467 		 * user registers.
468 		 */
469 		memlen = PAGE_SIZE;
470 		flags |= VM_DONTCOPY | VM_DONTEXPAND;
471 		vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
472 		mapio = 1;
473 		break;
474 	case EVENTS:
475 		/*
476 		 * Use the page where this context's flags are. User level
477 		 * knows where it's own bitmap is within the page.
478 		 */
479 		memaddr = (unsigned long)
480 			(dd->events + uctxt_offset(uctxt)) & PAGE_MASK;
481 		memlen = PAGE_SIZE;
482 		/*
483 		 * v3.7 removes VM_RESERVED but the effect is kept by
484 		 * using VM_IO.
485 		 */
486 		flags |= VM_IO | VM_DONTEXPAND;
487 		vmf = 1;
488 		break;
489 	case STATUS:
490 		if (flags & VM_WRITE) {
491 			ret = -EPERM;
492 			goto done;
493 		}
494 		memaddr = kvirt_to_phys((void *)dd->status);
495 		memlen = PAGE_SIZE;
496 		flags |= VM_IO | VM_DONTEXPAND;
497 		break;
498 	case RTAIL:
499 		if (!HFI1_CAP_IS_USET(DMA_RTAIL)) {
500 			/*
501 			 * If the memory allocation failed, the context alloc
502 			 * also would have failed, so we would never get here
503 			 */
504 			ret = -EINVAL;
505 			goto done;
506 		}
507 		if ((flags & VM_WRITE) || !hfi1_rcvhdrtail_kvaddr(uctxt)) {
508 			ret = -EPERM;
509 			goto done;
510 		}
511 		memlen = PAGE_SIZE;
512 		memvirt = (void *)hfi1_rcvhdrtail_kvaddr(uctxt);
513 		memdma = uctxt->rcvhdrqtailaddr_dma;
514 		flags &= ~VM_MAYWRITE;
515 		break;
516 	case SUBCTXT_UREGS:
517 		memaddr = (u64)uctxt->subctxt_uregbase;
518 		memlen = PAGE_SIZE;
519 		flags |= VM_IO | VM_DONTEXPAND;
520 		vmf = 1;
521 		break;
522 	case SUBCTXT_RCV_HDRQ:
523 		memaddr = (u64)uctxt->subctxt_rcvhdr_base;
524 		memlen = rcvhdrq_size(uctxt) * uctxt->subctxt_cnt;
525 		flags |= VM_IO | VM_DONTEXPAND;
526 		vmf = 1;
527 		break;
528 	case SUBCTXT_EGRBUF:
529 		memaddr = (u64)uctxt->subctxt_rcvegrbuf;
530 		memlen = uctxt->egrbufs.size * uctxt->subctxt_cnt;
531 		flags |= VM_IO | VM_DONTEXPAND;
532 		flags &= ~VM_MAYWRITE;
533 		vmf = 1;
534 		break;
535 	case SDMA_COMP: {
536 		struct hfi1_user_sdma_comp_q *cq = fd->cq;
537 
538 		if (!cq) {
539 			ret = -EFAULT;
540 			goto done;
541 		}
542 		memaddr = (u64)cq->comps;
543 		memlen = PAGE_ALIGN(sizeof(*cq->comps) * cq->nentries);
544 		flags |= VM_IO | VM_DONTEXPAND;
545 		vmf = 1;
546 		break;
547 	}
548 	default:
549 		ret = -EINVAL;
550 		break;
551 	}
552 
553 	if ((vma->vm_end - vma->vm_start) != memlen) {
554 		hfi1_cdbg(PROC, "%u:%u Memory size mismatch %lu:%lu",
555 			  uctxt->ctxt, fd->subctxt,
556 			  (vma->vm_end - vma->vm_start), memlen);
557 		ret = -EINVAL;
558 		goto done;
559 	}
560 
561 	vm_flags_reset(vma, flags);
562 	mmap_cdbg(ctxt, subctxt, type, mapio, vmf, memaddr, memvirt, memdma,
563 		  memlen, vma);
564 	if (vmf) {
565 		vma->vm_pgoff = PFN_DOWN(memaddr);
566 		vma->vm_ops = &vm_ops;
567 		ret = 0;
568 	} else if (memdma) {
569 		ret = dma_mmap_coherent(&dd->pcidev->dev, vma,
570 					memvirt, memdma, memlen);
571 	} else if (mapio) {
572 		ret = io_remap_pfn_range(vma, vma->vm_start,
573 					 PFN_DOWN(memaddr),
574 					 memlen,
575 					 vma->vm_page_prot);
576 	} else if (memvirt) {
577 		ret = remap_pfn_range(vma, vma->vm_start,
578 				      PFN_DOWN(__pa(memvirt)),
579 				      memlen,
580 				      vma->vm_page_prot);
581 	} else {
582 		ret = remap_pfn_range(vma, vma->vm_start,
583 				      PFN_DOWN(memaddr),
584 				      memlen,
585 				      vma->vm_page_prot);
586 	}
587 done:
588 	return ret;
589 }
590 
591 /*
592  * Local (non-chip) user memory is not mapped right away but as it is
593  * accessed by the user-level code.
594  */
vma_fault(struct vm_fault * vmf)595 static vm_fault_t vma_fault(struct vm_fault *vmf)
596 {
597 	struct page *page;
598 
599 	page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT));
600 	if (!page)
601 		return VM_FAULT_SIGBUS;
602 
603 	get_page(page);
604 	vmf->page = page;
605 
606 	return 0;
607 }
608 
hfi1_poll(struct file * fp,struct poll_table_struct * pt)609 static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt)
610 {
611 	struct hfi1_ctxtdata *uctxt;
612 	__poll_t pollflag;
613 
614 	uctxt = ((struct hfi1_filedata *)fp->private_data)->uctxt;
615 	if (!uctxt)
616 		pollflag = EPOLLERR;
617 	else if (uctxt->poll_type == HFI1_POLL_TYPE_URGENT)
618 		pollflag = poll_urgent(fp, pt);
619 	else  if (uctxt->poll_type == HFI1_POLL_TYPE_ANYRCV)
620 		pollflag = poll_next(fp, pt);
621 	else /* invalid */
622 		pollflag = EPOLLERR;
623 
624 	return pollflag;
625 }
626 
hfi1_file_close(struct inode * inode,struct file * fp)627 static int hfi1_file_close(struct inode *inode, struct file *fp)
628 {
629 	struct hfi1_filedata *fdata = fp->private_data;
630 	struct hfi1_ctxtdata *uctxt = fdata->uctxt;
631 	struct hfi1_devdata *dd = container_of(inode->i_cdev,
632 					       struct hfi1_devdata,
633 					       user_cdev);
634 	unsigned long flags, *ev;
635 
636 	fp->private_data = NULL;
637 
638 	if (!uctxt)
639 		goto done;
640 
641 	hfi1_cdbg(PROC, "closing ctxt %u:%u", uctxt->ctxt, fdata->subctxt);
642 
643 	flush_wc();
644 	/* drain user sdma queue */
645 	hfi1_user_sdma_free_queues(fdata, uctxt);
646 
647 	/* release the cpu */
648 	hfi1_put_proc_affinity(fdata->rec_cpu_num);
649 
650 	/* clean up rcv side */
651 	hfi1_user_exp_rcv_free(fdata);
652 
653 	/*
654 	 * fdata->uctxt is used in the above cleanup.  It is not ready to be
655 	 * removed until here.
656 	 */
657 	fdata->uctxt = NULL;
658 	hfi1_rcd_put(uctxt);
659 
660 	/*
661 	 * Clear any left over, unhandled events so the next process that
662 	 * gets this context doesn't get confused.
663 	 */
664 	ev = dd->events + uctxt_offset(uctxt) + fdata->subctxt;
665 	*ev = 0;
666 
667 	spin_lock_irqsave(&dd->uctxt_lock, flags);
668 	__clear_bit(fdata->subctxt, uctxt->in_use_ctxts);
669 	if (!bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
670 		spin_unlock_irqrestore(&dd->uctxt_lock, flags);
671 		goto done;
672 	}
673 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
674 
675 	/*
676 	 * Disable receive context and interrupt available, reset all
677 	 * RcvCtxtCtrl bits to default values.
678 	 */
679 	hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
680 		     HFI1_RCVCTRL_TIDFLOW_DIS |
681 		     HFI1_RCVCTRL_INTRAVAIL_DIS |
682 		     HFI1_RCVCTRL_TAILUPD_DIS |
683 		     HFI1_RCVCTRL_ONE_PKT_EGR_DIS |
684 		     HFI1_RCVCTRL_NO_RHQ_DROP_DIS |
685 		     HFI1_RCVCTRL_NO_EGR_DROP_DIS |
686 		     HFI1_RCVCTRL_URGENT_DIS, uctxt);
687 	/* Clear the context's J_KEY */
688 	hfi1_clear_ctxt_jkey(dd, uctxt);
689 	/*
690 	 * If a send context is allocated, reset context integrity
691 	 * checks to default and disable the send context.
692 	 */
693 	if (uctxt->sc) {
694 		sc_disable(uctxt->sc);
695 		set_pio_integrity(uctxt->sc);
696 	}
697 
698 	hfi1_free_ctxt_rcv_groups(uctxt);
699 	hfi1_clear_ctxt_pkey(dd, uctxt);
700 
701 	uctxt->event_flags = 0;
702 
703 	deallocate_ctxt(uctxt);
704 done:
705 
706 	if (refcount_dec_and_test(&dd->user_refcount))
707 		complete(&dd->user_comp);
708 
709 	cleanup_srcu_struct(&fdata->pq_srcu);
710 	kfree(fdata);
711 	return 0;
712 }
713 
714 /*
715  * Convert kernel *virtual* addresses to physical addresses.
716  * This is used to vmalloc'ed addresses.
717  */
kvirt_to_phys(void * addr)718 static u64 kvirt_to_phys(void *addr)
719 {
720 	struct page *page;
721 	u64 paddr = 0;
722 
723 	page = vmalloc_to_page(addr);
724 	if (page)
725 		paddr = page_to_pfn(page) << PAGE_SHIFT;
726 
727 	return paddr;
728 }
729 
730 /**
731  * complete_subctxt - complete sub-context info
732  * @fd: valid filedata pointer
733  *
734  * Sub-context info can only be set up after the base context
735  * has been completed.  This is indicated by the clearing of the
736  * HFI1_CTXT_BASE_UINIT bit.
737  *
738  * Wait for the bit to be cleared, and then complete the subcontext
739  * initialization.
740  *
741  */
complete_subctxt(struct hfi1_filedata * fd)742 static int complete_subctxt(struct hfi1_filedata *fd)
743 {
744 	int ret;
745 	unsigned long flags;
746 
747 	/*
748 	 * sub-context info can only be set up after the base context
749 	 * has been completed.
750 	 */
751 	ret = wait_event_interruptible(
752 		fd->uctxt->wait,
753 		!test_bit(HFI1_CTXT_BASE_UNINIT, &fd->uctxt->event_flags));
754 
755 	if (test_bit(HFI1_CTXT_BASE_FAILED, &fd->uctxt->event_flags))
756 		ret = -ENOMEM;
757 
758 	/* Finish the sub-context init */
759 	if (!ret) {
760 		fd->rec_cpu_num = hfi1_get_proc_affinity(fd->uctxt->numa_id);
761 		ret = init_user_ctxt(fd, fd->uctxt);
762 	}
763 
764 	if (ret) {
765 		spin_lock_irqsave(&fd->dd->uctxt_lock, flags);
766 		__clear_bit(fd->subctxt, fd->uctxt->in_use_ctxts);
767 		spin_unlock_irqrestore(&fd->dd->uctxt_lock, flags);
768 		hfi1_rcd_put(fd->uctxt);
769 		fd->uctxt = NULL;
770 	}
771 
772 	return ret;
773 }
774 
assign_ctxt(struct hfi1_filedata * fd,unsigned long arg,u32 len)775 static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len)
776 {
777 	int ret;
778 	unsigned int swmajor;
779 	struct hfi1_ctxtdata *uctxt = NULL;
780 	struct hfi1_user_info uinfo;
781 
782 	if (fd->uctxt)
783 		return -EINVAL;
784 
785 	if (sizeof(uinfo) != len)
786 		return -EINVAL;
787 
788 	if (copy_from_user(&uinfo, (void __user *)arg, sizeof(uinfo)))
789 		return -EFAULT;
790 
791 	swmajor = uinfo.userversion >> 16;
792 	if (swmajor != HFI1_USER_SWMAJOR)
793 		return -ENODEV;
794 
795 	if (uinfo.subctxt_cnt > HFI1_MAX_SHARED_CTXTS)
796 		return -EINVAL;
797 
798 	/*
799 	 * Acquire the mutex to protect against multiple creations of what
800 	 * could be a shared base context.
801 	 */
802 	mutex_lock(&hfi1_mutex);
803 	/*
804 	 * Get a sub context if available  (fd->uctxt will be set).
805 	 * ret < 0 error, 0 no context, 1 sub-context found
806 	 */
807 	ret = find_sub_ctxt(fd, &uinfo);
808 
809 	/*
810 	 * Allocate a base context if context sharing is not required or a
811 	 * sub context wasn't found.
812 	 */
813 	if (!ret)
814 		ret = allocate_ctxt(fd, fd->dd, &uinfo, &uctxt);
815 
816 	mutex_unlock(&hfi1_mutex);
817 
818 	/* Depending on the context type, finish the appropriate init */
819 	switch (ret) {
820 	case 0:
821 		ret = setup_base_ctxt(fd, uctxt);
822 		if (ret)
823 			deallocate_ctxt(uctxt);
824 		break;
825 	case 1:
826 		ret = complete_subctxt(fd);
827 		break;
828 	default:
829 		break;
830 	}
831 
832 	return ret;
833 }
834 
835 /**
836  * match_ctxt - match context
837  * @fd: valid filedata pointer
838  * @uinfo: user info to compare base context with
839  * @uctxt: context to compare uinfo to.
840  *
841  * Compare the given context with the given information to see if it
842  * can be used for a sub context.
843  */
match_ctxt(struct hfi1_filedata * fd,const struct hfi1_user_info * uinfo,struct hfi1_ctxtdata * uctxt)844 static int match_ctxt(struct hfi1_filedata *fd,
845 		      const struct hfi1_user_info *uinfo,
846 		      struct hfi1_ctxtdata *uctxt)
847 {
848 	struct hfi1_devdata *dd = fd->dd;
849 	unsigned long flags;
850 	u16 subctxt;
851 
852 	/* Skip dynamically allocated kernel contexts */
853 	if (uctxt->sc && (uctxt->sc->type == SC_KERNEL))
854 		return 0;
855 
856 	/* Skip ctxt if it doesn't match the requested one */
857 	if (memcmp(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)) ||
858 	    uctxt->jkey != generate_jkey(current_uid()) ||
859 	    uctxt->subctxt_id != uinfo->subctxt_id ||
860 	    uctxt->subctxt_cnt != uinfo->subctxt_cnt)
861 		return 0;
862 
863 	/* Verify the sharing process matches the base */
864 	if (uctxt->userversion != uinfo->userversion)
865 		return -EINVAL;
866 
867 	/* Find an unused sub context */
868 	spin_lock_irqsave(&dd->uctxt_lock, flags);
869 	if (bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
870 		/* context is being closed, do not use */
871 		spin_unlock_irqrestore(&dd->uctxt_lock, flags);
872 		return 0;
873 	}
874 
875 	subctxt = find_first_zero_bit(uctxt->in_use_ctxts,
876 				      HFI1_MAX_SHARED_CTXTS);
877 	if (subctxt >= uctxt->subctxt_cnt) {
878 		spin_unlock_irqrestore(&dd->uctxt_lock, flags);
879 		return -EBUSY;
880 	}
881 
882 	fd->subctxt = subctxt;
883 	__set_bit(fd->subctxt, uctxt->in_use_ctxts);
884 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
885 
886 	fd->uctxt = uctxt;
887 	hfi1_rcd_get(uctxt);
888 
889 	return 1;
890 }
891 
892 /**
893  * find_sub_ctxt - fund sub-context
894  * @fd: valid filedata pointer
895  * @uinfo: matching info to use to find a possible context to share.
896  *
897  * The hfi1_mutex must be held when this function is called.  It is
898  * necessary to ensure serialized creation of shared contexts.
899  *
900  * Return:
901  *    0      No sub-context found
902  *    1      Subcontext found and allocated
903  *    errno  EINVAL (incorrect parameters)
904  *           EBUSY (all sub contexts in use)
905  */
find_sub_ctxt(struct hfi1_filedata * fd,const struct hfi1_user_info * uinfo)906 static int find_sub_ctxt(struct hfi1_filedata *fd,
907 			 const struct hfi1_user_info *uinfo)
908 {
909 	struct hfi1_ctxtdata *uctxt;
910 	struct hfi1_devdata *dd = fd->dd;
911 	u16 i;
912 	int ret;
913 
914 	if (!uinfo->subctxt_cnt)
915 		return 0;
916 
917 	for (i = dd->first_dyn_alloc_ctxt; i < dd->num_rcv_contexts; i++) {
918 		uctxt = hfi1_rcd_get_by_index(dd, i);
919 		if (uctxt) {
920 			ret = match_ctxt(fd, uinfo, uctxt);
921 			hfi1_rcd_put(uctxt);
922 			/* value of != 0 will return */
923 			if (ret)
924 				return ret;
925 		}
926 	}
927 
928 	return 0;
929 }
930 
allocate_ctxt(struct hfi1_filedata * fd,struct hfi1_devdata * dd,struct hfi1_user_info * uinfo,struct hfi1_ctxtdata ** rcd)931 static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
932 			 struct hfi1_user_info *uinfo,
933 			 struct hfi1_ctxtdata **rcd)
934 {
935 	struct hfi1_ctxtdata *uctxt;
936 	int ret, numa;
937 
938 	if (dd->flags & HFI1_FROZEN) {
939 		/*
940 		 * Pick an error that is unique from all other errors
941 		 * that are returned so the user process knows that
942 		 * it tried to allocate while the SPC was frozen.  It
943 		 * it should be able to retry with success in a short
944 		 * while.
945 		 */
946 		return -EIO;
947 	}
948 
949 	if (!dd->freectxts)
950 		return -EBUSY;
951 
952 	/*
953 	 * If we don't have a NUMA node requested, preference is towards
954 	 * device NUMA node.
955 	 */
956 	fd->rec_cpu_num = hfi1_get_proc_affinity(dd->node);
957 	if (fd->rec_cpu_num != -1)
958 		numa = cpu_to_node(fd->rec_cpu_num);
959 	else
960 		numa = numa_node_id();
961 	ret = hfi1_create_ctxtdata(dd->pport, numa, &uctxt);
962 	if (ret < 0) {
963 		dd_dev_err(dd, "user ctxtdata allocation failed\n");
964 		return ret;
965 	}
966 	hfi1_cdbg(PROC, "[%u:%u] pid %u assigned to CPU %d (NUMA %u)",
967 		  uctxt->ctxt, fd->subctxt, current->pid, fd->rec_cpu_num,
968 		  uctxt->numa_id);
969 
970 	/*
971 	 * Allocate and enable a PIO send context.
972 	 */
973 	uctxt->sc = sc_alloc(dd, SC_USER, uctxt->rcvhdrqentsize, dd->node);
974 	if (!uctxt->sc) {
975 		ret = -ENOMEM;
976 		goto ctxdata_free;
977 	}
978 	hfi1_cdbg(PROC, "allocated send context %u(%u)", uctxt->sc->sw_index,
979 		  uctxt->sc->hw_context);
980 	ret = sc_enable(uctxt->sc);
981 	if (ret)
982 		goto ctxdata_free;
983 
984 	/*
985 	 * Setup sub context information if the user-level has requested
986 	 * sub contexts.
987 	 * This has to be done here so the rest of the sub-contexts find the
988 	 * proper base context.
989 	 * NOTE: _set_bit() can be used here because the context creation is
990 	 * protected by the mutex (rather than the spin_lock), and will be the
991 	 * very first instance of this context.
992 	 */
993 	__set_bit(0, uctxt->in_use_ctxts);
994 	if (uinfo->subctxt_cnt)
995 		init_subctxts(uctxt, uinfo);
996 	uctxt->userversion = uinfo->userversion;
997 	uctxt->flags = hfi1_cap_mask; /* save current flag state */
998 	init_waitqueue_head(&uctxt->wait);
999 	strscpy(uctxt->comm, current->comm, sizeof(uctxt->comm));
1000 	memcpy(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid));
1001 	uctxt->jkey = generate_jkey(current_uid());
1002 	hfi1_stats.sps_ctxts++;
1003 	/*
1004 	 * Disable ASPM when there are open user/PSM contexts to avoid
1005 	 * issues with ASPM L1 exit latency
1006 	 */
1007 	if (dd->freectxts-- == dd->num_user_contexts)
1008 		aspm_disable_all(dd);
1009 
1010 	*rcd = uctxt;
1011 
1012 	return 0;
1013 
1014 ctxdata_free:
1015 	hfi1_free_ctxt(uctxt);
1016 	return ret;
1017 }
1018 
deallocate_ctxt(struct hfi1_ctxtdata * uctxt)1019 static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt)
1020 {
1021 	mutex_lock(&hfi1_mutex);
1022 	hfi1_stats.sps_ctxts--;
1023 	if (++uctxt->dd->freectxts == uctxt->dd->num_user_contexts)
1024 		aspm_enable_all(uctxt->dd);
1025 	mutex_unlock(&hfi1_mutex);
1026 
1027 	hfi1_free_ctxt(uctxt);
1028 }
1029 
init_subctxts(struct hfi1_ctxtdata * uctxt,const struct hfi1_user_info * uinfo)1030 static void init_subctxts(struct hfi1_ctxtdata *uctxt,
1031 			  const struct hfi1_user_info *uinfo)
1032 {
1033 	uctxt->subctxt_cnt = uinfo->subctxt_cnt;
1034 	uctxt->subctxt_id = uinfo->subctxt_id;
1035 	set_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
1036 }
1037 
setup_subctxt(struct hfi1_ctxtdata * uctxt)1038 static int setup_subctxt(struct hfi1_ctxtdata *uctxt)
1039 {
1040 	int ret = 0;
1041 	u16 num_subctxts = uctxt->subctxt_cnt;
1042 
1043 	uctxt->subctxt_uregbase = vmalloc_user(PAGE_SIZE);
1044 	if (!uctxt->subctxt_uregbase)
1045 		return -ENOMEM;
1046 
1047 	/* We can take the size of the RcvHdr Queue from the master */
1048 	uctxt->subctxt_rcvhdr_base = vmalloc_user(rcvhdrq_size(uctxt) *
1049 						  num_subctxts);
1050 	if (!uctxt->subctxt_rcvhdr_base) {
1051 		ret = -ENOMEM;
1052 		goto bail_ureg;
1053 	}
1054 
1055 	uctxt->subctxt_rcvegrbuf = vmalloc_user(uctxt->egrbufs.size *
1056 						num_subctxts);
1057 	if (!uctxt->subctxt_rcvegrbuf) {
1058 		ret = -ENOMEM;
1059 		goto bail_rhdr;
1060 	}
1061 
1062 	return 0;
1063 
1064 bail_rhdr:
1065 	vfree(uctxt->subctxt_rcvhdr_base);
1066 	uctxt->subctxt_rcvhdr_base = NULL;
1067 bail_ureg:
1068 	vfree(uctxt->subctxt_uregbase);
1069 	uctxt->subctxt_uregbase = NULL;
1070 
1071 	return ret;
1072 }
1073 
user_init(struct hfi1_ctxtdata * uctxt)1074 static void user_init(struct hfi1_ctxtdata *uctxt)
1075 {
1076 	unsigned int rcvctrl_ops = 0;
1077 
1078 	/* initialize poll variables... */
1079 	uctxt->urgent = 0;
1080 	uctxt->urgent_poll = 0;
1081 
1082 	/*
1083 	 * Now enable the ctxt for receive.
1084 	 * For chips that are set to DMA the tail register to memory
1085 	 * when they change (and when the update bit transitions from
1086 	 * 0 to 1.  So for those chips, we turn it off and then back on.
1087 	 * This will (very briefly) affect any other open ctxts, but the
1088 	 * duration is very short, and therefore isn't an issue.  We
1089 	 * explicitly set the in-memory tail copy to 0 beforehand, so we
1090 	 * don't have to wait to be sure the DMA update has happened
1091 	 * (chip resets head/tail to 0 on transition to enable).
1092 	 */
1093 	if (hfi1_rcvhdrtail_kvaddr(uctxt))
1094 		clear_rcvhdrtail(uctxt);
1095 
1096 	/* Setup J_KEY before enabling the context */
1097 	hfi1_set_ctxt_jkey(uctxt->dd, uctxt, uctxt->jkey);
1098 
1099 	rcvctrl_ops = HFI1_RCVCTRL_CTXT_ENB;
1100 	rcvctrl_ops |= HFI1_RCVCTRL_URGENT_ENB;
1101 	if (HFI1_CAP_UGET_MASK(uctxt->flags, HDRSUPP))
1102 		rcvctrl_ops |= HFI1_RCVCTRL_TIDFLOW_ENB;
1103 	/*
1104 	 * Ignore the bit in the flags for now until proper
1105 	 * support for multiple packet per rcv array entry is
1106 	 * added.
1107 	 */
1108 	if (!HFI1_CAP_UGET_MASK(uctxt->flags, MULTI_PKT_EGR))
1109 		rcvctrl_ops |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
1110 	if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_EGR_FULL))
1111 		rcvctrl_ops |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
1112 	if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_RHQ_FULL))
1113 		rcvctrl_ops |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
1114 	/*
1115 	 * The RcvCtxtCtrl.TailUpd bit has to be explicitly written.
1116 	 * We can't rely on the correct value to be set from prior
1117 	 * uses of the chip or ctxt. Therefore, add the rcvctrl op
1118 	 * for both cases.
1119 	 */
1120 	if (HFI1_CAP_UGET_MASK(uctxt->flags, DMA_RTAIL))
1121 		rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_ENB;
1122 	else
1123 		rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_DIS;
1124 	hfi1_rcvctrl(uctxt->dd, rcvctrl_ops, uctxt);
1125 }
1126 
get_ctxt_info(struct hfi1_filedata * fd,unsigned long arg,u32 len)1127 static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
1128 {
1129 	struct hfi1_ctxt_info cinfo;
1130 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1131 
1132 	if (sizeof(cinfo) != len)
1133 		return -EINVAL;
1134 
1135 	memset(&cinfo, 0, sizeof(cinfo));
1136 	cinfo.runtime_flags = (((uctxt->flags >> HFI1_CAP_MISC_SHIFT) &
1137 				HFI1_CAP_MISC_MASK) << HFI1_CAP_USER_SHIFT) |
1138 			HFI1_CAP_UGET_MASK(uctxt->flags, MASK) |
1139 			HFI1_CAP_KGET_MASK(uctxt->flags, K2U);
1140 	/* adjust flag if this fd is not able to cache */
1141 	if (!fd->use_mn)
1142 		cinfo.runtime_flags |= HFI1_CAP_TID_UNMAP; /* no caching */
1143 
1144 	cinfo.num_active = hfi1_count_active_units();
1145 	cinfo.unit = uctxt->dd->unit;
1146 	cinfo.ctxt = uctxt->ctxt;
1147 	cinfo.subctxt = fd->subctxt;
1148 	cinfo.rcvtids = roundup(uctxt->egrbufs.alloced,
1149 				uctxt->dd->rcv_entries.group_size) +
1150 		uctxt->expected_count;
1151 	cinfo.credits = uctxt->sc->credits;
1152 	cinfo.numa_node = uctxt->numa_id;
1153 	cinfo.rec_cpu = fd->rec_cpu_num;
1154 	cinfo.send_ctxt = uctxt->sc->hw_context;
1155 
1156 	cinfo.egrtids = uctxt->egrbufs.alloced;
1157 	cinfo.rcvhdrq_cnt = get_hdrq_cnt(uctxt);
1158 	cinfo.rcvhdrq_entsize = get_hdrqentsize(uctxt) << 2;
1159 	cinfo.sdma_ring_size = fd->cq->nentries;
1160 	cinfo.rcvegr_size = uctxt->egrbufs.rcvtid_size;
1161 
1162 	trace_hfi1_ctxt_info(uctxt->dd, uctxt->ctxt, fd->subctxt, &cinfo);
1163 	if (copy_to_user((void __user *)arg, &cinfo, len))
1164 		return -EFAULT;
1165 
1166 	return 0;
1167 }
1168 
init_user_ctxt(struct hfi1_filedata * fd,struct hfi1_ctxtdata * uctxt)1169 static int init_user_ctxt(struct hfi1_filedata *fd,
1170 			  struct hfi1_ctxtdata *uctxt)
1171 {
1172 	int ret;
1173 
1174 	ret = hfi1_user_sdma_alloc_queues(uctxt, fd);
1175 	if (ret)
1176 		return ret;
1177 
1178 	ret = hfi1_user_exp_rcv_init(fd, uctxt);
1179 	if (ret)
1180 		hfi1_user_sdma_free_queues(fd, uctxt);
1181 
1182 	return ret;
1183 }
1184 
setup_base_ctxt(struct hfi1_filedata * fd,struct hfi1_ctxtdata * uctxt)1185 static int setup_base_ctxt(struct hfi1_filedata *fd,
1186 			   struct hfi1_ctxtdata *uctxt)
1187 {
1188 	struct hfi1_devdata *dd = uctxt->dd;
1189 	int ret = 0;
1190 
1191 	hfi1_init_ctxt(uctxt->sc);
1192 
1193 	/* Now allocate the RcvHdr queue and eager buffers. */
1194 	ret = hfi1_create_rcvhdrq(dd, uctxt);
1195 	if (ret)
1196 		goto done;
1197 
1198 	ret = hfi1_setup_eagerbufs(uctxt);
1199 	if (ret)
1200 		goto done;
1201 
1202 	/* If sub-contexts are enabled, do the appropriate setup */
1203 	if (uctxt->subctxt_cnt)
1204 		ret = setup_subctxt(uctxt);
1205 	if (ret)
1206 		goto done;
1207 
1208 	ret = hfi1_alloc_ctxt_rcv_groups(uctxt);
1209 	if (ret)
1210 		goto done;
1211 
1212 	ret = init_user_ctxt(fd, uctxt);
1213 	if (ret) {
1214 		hfi1_free_ctxt_rcv_groups(uctxt);
1215 		goto done;
1216 	}
1217 
1218 	user_init(uctxt);
1219 
1220 	/* Now that the context is set up, the fd can get a reference. */
1221 	fd->uctxt = uctxt;
1222 	hfi1_rcd_get(uctxt);
1223 
1224 done:
1225 	if (uctxt->subctxt_cnt) {
1226 		/*
1227 		 * On error, set the failed bit so sub-contexts will clean up
1228 		 * correctly.
1229 		 */
1230 		if (ret)
1231 			set_bit(HFI1_CTXT_BASE_FAILED, &uctxt->event_flags);
1232 
1233 		/*
1234 		 * Base context is done (successfully or not), notify anybody
1235 		 * using a sub-context that is waiting for this completion.
1236 		 */
1237 		clear_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
1238 		wake_up(&uctxt->wait);
1239 	}
1240 
1241 	return ret;
1242 }
1243 
get_base_info(struct hfi1_filedata * fd,unsigned long arg,u32 len)1244 static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
1245 {
1246 	struct hfi1_base_info binfo;
1247 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1248 	struct hfi1_devdata *dd = uctxt->dd;
1249 	unsigned offset;
1250 
1251 	trace_hfi1_uctxtdata(uctxt->dd, uctxt, fd->subctxt);
1252 
1253 	if (sizeof(binfo) != len)
1254 		return -EINVAL;
1255 
1256 	memset(&binfo, 0, sizeof(binfo));
1257 	binfo.hw_version = dd->revision;
1258 	binfo.sw_version = HFI1_USER_SWVERSION;
1259 	binfo.bthqp = RVT_KDETH_QP_PREFIX;
1260 	binfo.jkey = uctxt->jkey;
1261 	/*
1262 	 * If more than 64 contexts are enabled the allocated credit
1263 	 * return will span two or three contiguous pages. Since we only
1264 	 * map the page containing the context's credit return address,
1265 	 * we need to calculate the offset in the proper page.
1266 	 */
1267 	offset = ((u64)uctxt->sc->hw_free -
1268 		  (u64)dd->cr_base[uctxt->numa_id].va) % PAGE_SIZE;
1269 	binfo.sc_credits_addr = HFI1_MMAP_TOKEN(PIO_CRED, uctxt->ctxt,
1270 						fd->subctxt, offset);
1271 	binfo.pio_bufbase = HFI1_MMAP_TOKEN(PIO_BUFS, uctxt->ctxt,
1272 					    fd->subctxt,
1273 					    uctxt->sc->base_addr);
1274 	binfo.pio_bufbase_sop = HFI1_MMAP_TOKEN(PIO_BUFS_SOP,
1275 						uctxt->ctxt,
1276 						fd->subctxt,
1277 						uctxt->sc->base_addr);
1278 	binfo.rcvhdr_bufbase = HFI1_MMAP_TOKEN(RCV_HDRQ, uctxt->ctxt,
1279 					       fd->subctxt,
1280 					       uctxt->rcvhdrq);
1281 	binfo.rcvegr_bufbase = HFI1_MMAP_TOKEN(RCV_EGRBUF, uctxt->ctxt,
1282 					       fd->subctxt,
1283 					       uctxt->egrbufs.rcvtids[0].dma);
1284 	binfo.sdma_comp_bufbase = HFI1_MMAP_TOKEN(SDMA_COMP, uctxt->ctxt,
1285 						  fd->subctxt, 0);
1286 	/*
1287 	 * user regs are at
1288 	 * (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE))
1289 	 */
1290 	binfo.user_regbase = HFI1_MMAP_TOKEN(UREGS, uctxt->ctxt,
1291 					     fd->subctxt, 0);
1292 	offset = offset_in_page((uctxt_offset(uctxt) + fd->subctxt) *
1293 				sizeof(*dd->events));
1294 	binfo.events_bufbase = HFI1_MMAP_TOKEN(EVENTS, uctxt->ctxt,
1295 					       fd->subctxt,
1296 					       offset);
1297 	binfo.status_bufbase = HFI1_MMAP_TOKEN(STATUS, uctxt->ctxt,
1298 					       fd->subctxt,
1299 					       dd->status);
1300 	if (HFI1_CAP_IS_USET(DMA_RTAIL))
1301 		binfo.rcvhdrtail_base = HFI1_MMAP_TOKEN(RTAIL, uctxt->ctxt,
1302 							fd->subctxt, 0);
1303 	if (uctxt->subctxt_cnt) {
1304 		binfo.subctxt_uregbase = HFI1_MMAP_TOKEN(SUBCTXT_UREGS,
1305 							 uctxt->ctxt,
1306 							 fd->subctxt, 0);
1307 		binfo.subctxt_rcvhdrbuf = HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ,
1308 							  uctxt->ctxt,
1309 							  fd->subctxt, 0);
1310 		binfo.subctxt_rcvegrbuf = HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF,
1311 							  uctxt->ctxt,
1312 							  fd->subctxt, 0);
1313 	}
1314 
1315 	if (copy_to_user((void __user *)arg, &binfo, len))
1316 		return -EFAULT;
1317 
1318 	return 0;
1319 }
1320 
1321 /**
1322  * user_exp_rcv_setup - Set up the given tid rcv list
1323  * @fd: file data of the current driver instance
1324  * @arg: ioctl argumnent for user space information
1325  * @len: length of data structure associated with ioctl command
1326  *
1327  * Wrapper to validate ioctl information before doing _rcv_setup.
1328  *
1329  */
user_exp_rcv_setup(struct hfi1_filedata * fd,unsigned long arg,u32 len)1330 static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
1331 			      u32 len)
1332 {
1333 	int ret;
1334 	unsigned long addr;
1335 	struct hfi1_tid_info tinfo;
1336 
1337 	if (sizeof(tinfo) != len)
1338 		return -EINVAL;
1339 
1340 	if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1341 		return -EFAULT;
1342 
1343 	ret = hfi1_user_exp_rcv_setup(fd, &tinfo);
1344 	if (!ret) {
1345 		/*
1346 		 * Copy the number of tidlist entries we used
1347 		 * and the length of the buffer we registered.
1348 		 */
1349 		addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1350 		if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1351 				 sizeof(tinfo.tidcnt)))
1352 			ret = -EFAULT;
1353 
1354 		addr = arg + offsetof(struct hfi1_tid_info, length);
1355 		if (!ret && copy_to_user((void __user *)addr, &tinfo.length,
1356 				 sizeof(tinfo.length)))
1357 			ret = -EFAULT;
1358 
1359 		if (ret)
1360 			hfi1_user_exp_rcv_invalid(fd, &tinfo);
1361 	}
1362 
1363 	return ret;
1364 }
1365 
1366 /**
1367  * user_exp_rcv_clear - Clear the given tid rcv list
1368  * @fd: file data of the current driver instance
1369  * @arg: ioctl argumnent for user space information
1370  * @len: length of data structure associated with ioctl command
1371  *
1372  * The hfi1_user_exp_rcv_clear() can be called from the error path.  Because
1373  * of this, we need to use this wrapper to copy the user space information
1374  * before doing the clear.
1375  */
user_exp_rcv_clear(struct hfi1_filedata * fd,unsigned long arg,u32 len)1376 static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
1377 			      u32 len)
1378 {
1379 	int ret;
1380 	unsigned long addr;
1381 	struct hfi1_tid_info tinfo;
1382 
1383 	if (sizeof(tinfo) != len)
1384 		return -EINVAL;
1385 
1386 	if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1387 		return -EFAULT;
1388 
1389 	ret = hfi1_user_exp_rcv_clear(fd, &tinfo);
1390 	if (!ret) {
1391 		addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1392 		if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1393 				 sizeof(tinfo.tidcnt)))
1394 			return -EFAULT;
1395 	}
1396 
1397 	return ret;
1398 }
1399 
1400 /**
1401  * user_exp_rcv_invalid - Invalidate the given tid rcv list
1402  * @fd: file data of the current driver instance
1403  * @arg: ioctl argumnent for user space information
1404  * @len: length of data structure associated with ioctl command
1405  *
1406  * Wrapper to validate ioctl information before doing _rcv_invalid.
1407  *
1408  */
user_exp_rcv_invalid(struct hfi1_filedata * fd,unsigned long arg,u32 len)1409 static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
1410 				u32 len)
1411 {
1412 	int ret;
1413 	unsigned long addr;
1414 	struct hfi1_tid_info tinfo;
1415 
1416 	if (sizeof(tinfo) != len)
1417 		return -EINVAL;
1418 
1419 	if (!fd->invalid_tids)
1420 		return -EINVAL;
1421 
1422 	if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1423 		return -EFAULT;
1424 
1425 	ret = hfi1_user_exp_rcv_invalid(fd, &tinfo);
1426 	if (ret)
1427 		return ret;
1428 
1429 	addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1430 	if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1431 			 sizeof(tinfo.tidcnt)))
1432 		ret = -EFAULT;
1433 
1434 	return ret;
1435 }
1436 
poll_urgent(struct file * fp,struct poll_table_struct * pt)1437 static __poll_t poll_urgent(struct file *fp,
1438 				struct poll_table_struct *pt)
1439 {
1440 	struct hfi1_filedata *fd = fp->private_data;
1441 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1442 	struct hfi1_devdata *dd = uctxt->dd;
1443 	__poll_t pollflag;
1444 
1445 	poll_wait(fp, &uctxt->wait, pt);
1446 
1447 	spin_lock_irq(&dd->uctxt_lock);
1448 	if (uctxt->urgent != uctxt->urgent_poll) {
1449 		pollflag = EPOLLIN | EPOLLRDNORM;
1450 		uctxt->urgent_poll = uctxt->urgent;
1451 	} else {
1452 		pollflag = 0;
1453 		set_bit(HFI1_CTXT_WAITING_URG, &uctxt->event_flags);
1454 	}
1455 	spin_unlock_irq(&dd->uctxt_lock);
1456 
1457 	return pollflag;
1458 }
1459 
poll_next(struct file * fp,struct poll_table_struct * pt)1460 static __poll_t poll_next(struct file *fp,
1461 			      struct poll_table_struct *pt)
1462 {
1463 	struct hfi1_filedata *fd = fp->private_data;
1464 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1465 	struct hfi1_devdata *dd = uctxt->dd;
1466 	__poll_t pollflag;
1467 
1468 	poll_wait(fp, &uctxt->wait, pt);
1469 
1470 	spin_lock_irq(&dd->uctxt_lock);
1471 	if (hdrqempty(uctxt)) {
1472 		set_bit(HFI1_CTXT_WAITING_RCV, &uctxt->event_flags);
1473 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_INTRAVAIL_ENB, uctxt);
1474 		pollflag = 0;
1475 	} else {
1476 		pollflag = EPOLLIN | EPOLLRDNORM;
1477 	}
1478 	spin_unlock_irq(&dd->uctxt_lock);
1479 
1480 	return pollflag;
1481 }
1482 
1483 /*
1484  * Find all user contexts in use, and set the specified bit in their
1485  * event mask.
1486  * See also find_ctxt() for a similar use, that is specific to send buffers.
1487  */
hfi1_set_uevent_bits(struct hfi1_pportdata * ppd,const int evtbit)1488 int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit)
1489 {
1490 	struct hfi1_ctxtdata *uctxt;
1491 	struct hfi1_devdata *dd = ppd->dd;
1492 	u16 ctxt;
1493 
1494 	if (!dd->events)
1495 		return -EINVAL;
1496 
1497 	for (ctxt = dd->first_dyn_alloc_ctxt; ctxt < dd->num_rcv_contexts;
1498 	     ctxt++) {
1499 		uctxt = hfi1_rcd_get_by_index(dd, ctxt);
1500 		if (uctxt) {
1501 			unsigned long *evs;
1502 			int i;
1503 			/*
1504 			 * subctxt_cnt is 0 if not shared, so do base
1505 			 * separately, first, then remaining subctxt, if any
1506 			 */
1507 			evs = dd->events + uctxt_offset(uctxt);
1508 			set_bit(evtbit, evs);
1509 			for (i = 1; i < uctxt->subctxt_cnt; i++)
1510 				set_bit(evtbit, evs + i);
1511 			hfi1_rcd_put(uctxt);
1512 		}
1513 	}
1514 
1515 	return 0;
1516 }
1517 
1518 /**
1519  * manage_rcvq - manage a context's receive queue
1520  * @uctxt: the context
1521  * @subctxt: the sub-context
1522  * @arg: start/stop action to carry out
1523  *
1524  * start_stop == 0 disables receive on the context, for use in queue
1525  * overflow conditions.  start_stop==1 re-enables, to be used to
1526  * re-init the software copy of the head register
1527  */
manage_rcvq(struct hfi1_ctxtdata * uctxt,u16 subctxt,unsigned long arg)1528 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
1529 		       unsigned long arg)
1530 {
1531 	struct hfi1_devdata *dd = uctxt->dd;
1532 	unsigned int rcvctrl_op;
1533 	int start_stop;
1534 
1535 	if (subctxt)
1536 		return 0;
1537 
1538 	if (get_user(start_stop, (int __user *)arg))
1539 		return -EFAULT;
1540 
1541 	/* atomically clear receive enable ctxt. */
1542 	if (start_stop) {
1543 		/*
1544 		 * On enable, force in-memory copy of the tail register to
1545 		 * 0, so that protocol code doesn't have to worry about
1546 		 * whether or not the chip has yet updated the in-memory
1547 		 * copy or not on return from the system call. The chip
1548 		 * always resets it's tail register back to 0 on a
1549 		 * transition from disabled to enabled.
1550 		 */
1551 		if (hfi1_rcvhdrtail_kvaddr(uctxt))
1552 			clear_rcvhdrtail(uctxt);
1553 		rcvctrl_op = HFI1_RCVCTRL_CTXT_ENB;
1554 	} else {
1555 		rcvctrl_op = HFI1_RCVCTRL_CTXT_DIS;
1556 	}
1557 	hfi1_rcvctrl(dd, rcvctrl_op, uctxt);
1558 	/* always; new head should be equal to new tail; see above */
1559 
1560 	return 0;
1561 }
1562 
1563 /*
1564  * clear the event notifier events for this context.
1565  * User process then performs actions appropriate to bit having been
1566  * set, if desired, and checks again in future.
1567  */
user_event_ack(struct hfi1_ctxtdata * uctxt,u16 subctxt,unsigned long arg)1568 static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
1569 			  unsigned long arg)
1570 {
1571 	int i;
1572 	struct hfi1_devdata *dd = uctxt->dd;
1573 	unsigned long *evs;
1574 	unsigned long events;
1575 
1576 	if (!dd->events)
1577 		return 0;
1578 
1579 	if (get_user(events, (unsigned long __user *)arg))
1580 		return -EFAULT;
1581 
1582 	evs = dd->events + uctxt_offset(uctxt) + subctxt;
1583 
1584 	for (i = 0; i <= _HFI1_MAX_EVENT_BIT; i++) {
1585 		if (!test_bit(i, &events))
1586 			continue;
1587 		clear_bit(i, evs);
1588 	}
1589 	return 0;
1590 }
1591 
set_ctxt_pkey(struct hfi1_ctxtdata * uctxt,unsigned long arg)1592 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg)
1593 {
1594 	int i;
1595 	struct hfi1_pportdata *ppd = uctxt->ppd;
1596 	struct hfi1_devdata *dd = uctxt->dd;
1597 	u16 pkey;
1598 
1599 	if (!HFI1_CAP_IS_USET(PKEY_CHECK))
1600 		return -EPERM;
1601 
1602 	if (get_user(pkey, (u16 __user *)arg))
1603 		return -EFAULT;
1604 
1605 	if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY)
1606 		return -EINVAL;
1607 
1608 	for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++)
1609 		if (pkey == ppd->pkeys[i])
1610 			return hfi1_set_ctxt_pkey(dd, uctxt, pkey);
1611 
1612 	return -ENOENT;
1613 }
1614 
1615 /**
1616  * ctxt_reset - Reset the user context
1617  * @uctxt: valid user context
1618  */
ctxt_reset(struct hfi1_ctxtdata * uctxt)1619 static int ctxt_reset(struct hfi1_ctxtdata *uctxt)
1620 {
1621 	struct send_context *sc;
1622 	struct hfi1_devdata *dd;
1623 	int ret = 0;
1624 
1625 	if (!uctxt || !uctxt->dd || !uctxt->sc)
1626 		return -EINVAL;
1627 
1628 	/*
1629 	 * There is no protection here. User level has to guarantee that
1630 	 * no one will be writing to the send context while it is being
1631 	 * re-initialized.  If user level breaks that guarantee, it will
1632 	 * break it's own context and no one else's.
1633 	 */
1634 	dd = uctxt->dd;
1635 	sc = uctxt->sc;
1636 
1637 	/*
1638 	 * Wait until the interrupt handler has marked the context as
1639 	 * halted or frozen. Report error if we time out.
1640 	 */
1641 	wait_event_interruptible_timeout(
1642 		sc->halt_wait, (sc->flags & SCF_HALTED),
1643 		msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
1644 	if (!(sc->flags & SCF_HALTED))
1645 		return -ENOLCK;
1646 
1647 	/*
1648 	 * If the send context was halted due to a Freeze, wait until the
1649 	 * device has been "unfrozen" before resetting the context.
1650 	 */
1651 	if (sc->flags & SCF_FROZEN) {
1652 		wait_event_interruptible_timeout(
1653 			dd->event_queue,
1654 			!(READ_ONCE(dd->flags) & HFI1_FROZEN),
1655 			msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
1656 		if (dd->flags & HFI1_FROZEN)
1657 			return -ENOLCK;
1658 
1659 		if (dd->flags & HFI1_FORCED_FREEZE)
1660 			/*
1661 			 * Don't allow context reset if we are into
1662 			 * forced freeze
1663 			 */
1664 			return -ENODEV;
1665 
1666 		sc_disable(sc);
1667 		ret = sc_enable(sc);
1668 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB, uctxt);
1669 	} else {
1670 		ret = sc_restart(sc);
1671 	}
1672 	if (!ret)
1673 		sc_return_credits(sc);
1674 
1675 	return ret;
1676 }
1677 
user_remove(struct hfi1_devdata * dd)1678 static void user_remove(struct hfi1_devdata *dd)
1679 {
1680 
1681 	hfi1_cdev_cleanup(&dd->user_cdev, &dd->user_device);
1682 }
1683 
user_add(struct hfi1_devdata * dd)1684 static int user_add(struct hfi1_devdata *dd)
1685 {
1686 	char name[10];
1687 	int ret;
1688 
1689 	snprintf(name, sizeof(name), "%s_%d", class_name(), dd->unit);
1690 	ret = hfi1_cdev_init(dd->unit, name, &hfi1_file_ops,
1691 			     &dd->user_cdev, &dd->user_device,
1692 			     true, &dd->verbs_dev.rdi.ibdev.dev.kobj);
1693 	if (ret)
1694 		user_remove(dd);
1695 
1696 	return ret;
1697 }
1698 
1699 /*
1700  * Create per-unit files in /dev
1701  */
hfi1_device_create(struct hfi1_devdata * dd)1702 int hfi1_device_create(struct hfi1_devdata *dd)
1703 {
1704 	return user_add(dd);
1705 }
1706 
1707 /*
1708  * Remove per-unit files in /dev
1709  * void, core kernel returns no errors for this stuff
1710  */
hfi1_device_remove(struct hfi1_devdata * dd)1711 void hfi1_device_remove(struct hfi1_devdata *dd)
1712 {
1713 	user_remove(dd);
1714 }
1715