1 /*
2  * Copyright(c) 2015-2018 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <linux/spinlock.h>
49 #include <linux/pci.h>
50 #include <linux/io.h>
51 #include <linux/delay.h>
52 #include <linux/netdevice.h>
53 #include <linux/vmalloc.h>
54 #include <linux/module.h>
55 #include <linux/prefetch.h>
56 #include <rdma/ib_verbs.h>
57 
58 #include "hfi.h"
59 #include "trace.h"
60 #include "qp.h"
61 #include "sdma.h"
62 #include "debugfs.h"
63 #include "vnic.h"
64 #include "fault.h"
65 
66 #undef pr_fmt
67 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
68 
69 /*
70  * The size has to be longer than this string, so we can append
71  * board/chip information to it in the initialization code.
72  */
73 const char ib_hfi1_version[] = HFI1_DRIVER_VERSION "\n";
74 
75 DEFINE_SPINLOCK(hfi1_devs_lock);
76 LIST_HEAD(hfi1_dev_list);
77 DEFINE_MUTEX(hfi1_mutex);	/* general driver use */
78 
79 unsigned int hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
80 module_param_named(max_mtu, hfi1_max_mtu, uint, S_IRUGO);
81 MODULE_PARM_DESC(max_mtu, "Set max MTU bytes, default is " __stringify(
82 		 HFI1_DEFAULT_MAX_MTU));
83 
84 unsigned int hfi1_cu = 1;
85 module_param_named(cu, hfi1_cu, uint, S_IRUGO);
86 MODULE_PARM_DESC(cu, "Credit return units");
87 
88 unsigned long hfi1_cap_mask = HFI1_CAP_MASK_DEFAULT;
89 static int hfi1_caps_set(const char *val, const struct kernel_param *kp);
90 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp);
91 static const struct kernel_param_ops cap_ops = {
92 	.set = hfi1_caps_set,
93 	.get = hfi1_caps_get
94 };
95 module_param_cb(cap_mask, &cap_ops, &hfi1_cap_mask, S_IWUSR | S_IRUGO);
96 MODULE_PARM_DESC(cap_mask, "Bit mask of enabled/disabled HW features");
97 
98 MODULE_LICENSE("Dual BSD/GPL");
99 MODULE_DESCRIPTION("Intel Omni-Path Architecture driver");
100 
101 /*
102  * MAX_PKT_RCV is the max # if packets processed per receive interrupt.
103  */
104 #define MAX_PKT_RECV 64
105 /*
106  * MAX_PKT_THREAD_RCV is the max # of packets processed before
107  * the qp_wait_list queue is flushed.
108  */
109 #define MAX_PKT_RECV_THREAD (MAX_PKT_RECV * 4)
110 #define EGR_HEAD_UPDATE_THRESHOLD 16
111 
112 struct hfi1_ib_stats hfi1_stats;
113 
114 static int hfi1_caps_set(const char *val, const struct kernel_param *kp)
115 {
116 	int ret = 0;
117 	unsigned long *cap_mask_ptr = (unsigned long *)kp->arg,
118 		cap_mask = *cap_mask_ptr, value, diff,
119 		write_mask = ((HFI1_CAP_WRITABLE_MASK << HFI1_CAP_USER_SHIFT) |
120 			      HFI1_CAP_WRITABLE_MASK);
121 
122 	ret = kstrtoul(val, 0, &value);
123 	if (ret) {
124 		pr_warn("Invalid module parameter value for 'cap_mask'\n");
125 		goto done;
126 	}
127 	/* Get the changed bits (except the locked bit) */
128 	diff = value ^ (cap_mask & ~HFI1_CAP_LOCKED_SMASK);
129 
130 	/* Remove any bits that are not allowed to change after driver load */
131 	if (HFI1_CAP_LOCKED() && (diff & ~write_mask)) {
132 		pr_warn("Ignoring non-writable capability bits %#lx\n",
133 			diff & ~write_mask);
134 		diff &= write_mask;
135 	}
136 
137 	/* Mask off any reserved bits */
138 	diff &= ~HFI1_CAP_RESERVED_MASK;
139 	/* Clear any previously set and changing bits */
140 	cap_mask &= ~diff;
141 	/* Update the bits with the new capability */
142 	cap_mask |= (value & diff);
143 	/* Check for any kernel/user restrictions */
144 	diff = (cap_mask & (HFI1_CAP_MUST_HAVE_KERN << HFI1_CAP_USER_SHIFT)) ^
145 		((cap_mask & HFI1_CAP_MUST_HAVE_KERN) << HFI1_CAP_USER_SHIFT);
146 	cap_mask &= ~diff;
147 	/* Set the bitmask to the final set */
148 	*cap_mask_ptr = cap_mask;
149 done:
150 	return ret;
151 }
152 
153 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp)
154 {
155 	unsigned long cap_mask = *(unsigned long *)kp->arg;
156 
157 	cap_mask &= ~HFI1_CAP_LOCKED_SMASK;
158 	cap_mask |= ((cap_mask & HFI1_CAP_K2U) << HFI1_CAP_USER_SHIFT);
159 
160 	return scnprintf(buffer, PAGE_SIZE, "0x%lx", cap_mask);
161 }
162 
163 struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi)
164 {
165 	struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi);
166 	struct hfi1_devdata *dd = container_of(ibdev,
167 					       struct hfi1_devdata, verbs_dev);
168 	return dd->pcidev;
169 }
170 
171 /*
172  * Return count of units with at least one port ACTIVE.
173  */
174 int hfi1_count_active_units(void)
175 {
176 	struct hfi1_devdata *dd;
177 	struct hfi1_pportdata *ppd;
178 	unsigned long flags;
179 	int pidx, nunits_active = 0;
180 
181 	spin_lock_irqsave(&hfi1_devs_lock, flags);
182 	list_for_each_entry(dd, &hfi1_dev_list, list) {
183 		if (!(dd->flags & HFI1_PRESENT) || !dd->kregbase1)
184 			continue;
185 		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
186 			ppd = dd->pport + pidx;
187 			if (ppd->lid && ppd->linkup) {
188 				nunits_active++;
189 				break;
190 			}
191 		}
192 	}
193 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
194 	return nunits_active;
195 }
196 
197 /*
198  * Get address of eager buffer from it's index (allocated in chunks, not
199  * contiguous).
200  */
201 static inline void *get_egrbuf(const struct hfi1_ctxtdata *rcd, u64 rhf,
202 			       u8 *update)
203 {
204 	u32 idx = rhf_egr_index(rhf), offset = rhf_egr_buf_offset(rhf);
205 
206 	*update |= !(idx & (rcd->egrbufs.threshold - 1)) && !offset;
207 	return (void *)(((u64)(rcd->egrbufs.rcvtids[idx].addr)) +
208 			(offset * RCV_BUF_BLOCK_SIZE));
209 }
210 
211 static inline void *hfi1_get_header(struct hfi1_ctxtdata *rcd,
212 				    __le32 *rhf_addr)
213 {
214 	u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
215 
216 	return (void *)(rhf_addr - rcd->rhf_offset + offset);
217 }
218 
219 static inline struct ib_header *hfi1_get_msgheader(struct hfi1_ctxtdata *rcd,
220 						   __le32 *rhf_addr)
221 {
222 	return (struct ib_header *)hfi1_get_header(rcd, rhf_addr);
223 }
224 
225 static inline struct hfi1_16b_header
226 		*hfi1_get_16B_header(struct hfi1_ctxtdata *rcd,
227 				     __le32 *rhf_addr)
228 {
229 	return (struct hfi1_16b_header *)hfi1_get_header(rcd, rhf_addr);
230 }
231 
232 /*
233  * Validate and encode the a given RcvArray Buffer size.
234  * The function will check whether the given size falls within
235  * allowed size ranges for the respective type and, optionally,
236  * return the proper encoding.
237  */
238 int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encoded)
239 {
240 	if (unlikely(!PAGE_ALIGNED(size)))
241 		return 0;
242 	if (unlikely(size < MIN_EAGER_BUFFER))
243 		return 0;
244 	if (size >
245 	    (type == PT_EAGER ? MAX_EAGER_BUFFER : MAX_EXPECTED_BUFFER))
246 		return 0;
247 	if (encoded)
248 		*encoded = ilog2(size / PAGE_SIZE) + 1;
249 	return 1;
250 }
251 
252 static void rcv_hdrerr(struct hfi1_ctxtdata *rcd, struct hfi1_pportdata *ppd,
253 		       struct hfi1_packet *packet)
254 {
255 	struct ib_header *rhdr = packet->hdr;
256 	u32 rte = rhf_rcv_type_err(packet->rhf);
257 	u32 mlid_base;
258 	struct hfi1_ibport *ibp = rcd_to_iport(rcd);
259 	struct hfi1_devdata *dd = ppd->dd;
260 	struct hfi1_ibdev *verbs_dev = &dd->verbs_dev;
261 	struct rvt_dev_info *rdi = &verbs_dev->rdi;
262 
263 	if ((packet->rhf & RHF_DC_ERR) &&
264 	    hfi1_dbg_fault_suppress_err(verbs_dev))
265 		return;
266 
267 	if (packet->rhf & (RHF_VCRC_ERR | RHF_ICRC_ERR))
268 		return;
269 
270 	if (packet->etype == RHF_RCV_TYPE_BYPASS) {
271 		goto drop;
272 	} else {
273 		u8 lnh = ib_get_lnh(rhdr);
274 
275 		mlid_base = be16_to_cpu(IB_MULTICAST_LID_BASE);
276 		if (lnh == HFI1_LRH_BTH) {
277 			packet->ohdr = &rhdr->u.oth;
278 		} else if (lnh == HFI1_LRH_GRH) {
279 			packet->ohdr = &rhdr->u.l.oth;
280 			packet->grh = &rhdr->u.l.grh;
281 		} else {
282 			goto drop;
283 		}
284 	}
285 
286 	if (packet->rhf & RHF_TID_ERR) {
287 		/* For TIDERR and RC QPs preemptively schedule a NAK */
288 		u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */
289 		u32 dlid = ib_get_dlid(rhdr);
290 		u32 qp_num;
291 
292 		/* Sanity check packet */
293 		if (tlen < 24)
294 			goto drop;
295 
296 		/* Check for GRH */
297 		if (packet->grh) {
298 			u32 vtf;
299 			struct ib_grh *grh = packet->grh;
300 
301 			if (grh->next_hdr != IB_GRH_NEXT_HDR)
302 				goto drop;
303 			vtf = be32_to_cpu(grh->version_tclass_flow);
304 			if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
305 				goto drop;
306 		}
307 
308 		/* Get the destination QP number. */
309 		qp_num = ib_bth_get_qpn(packet->ohdr);
310 		if (dlid < mlid_base) {
311 			struct rvt_qp *qp;
312 			unsigned long flags;
313 
314 			rcu_read_lock();
315 			qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
316 			if (!qp) {
317 				rcu_read_unlock();
318 				goto drop;
319 			}
320 
321 			/*
322 			 * Handle only RC QPs - for other QP types drop error
323 			 * packet.
324 			 */
325 			spin_lock_irqsave(&qp->r_lock, flags);
326 
327 			/* Check for valid receive state. */
328 			if (!(ib_rvt_state_ops[qp->state] &
329 			      RVT_PROCESS_RECV_OK)) {
330 				ibp->rvp.n_pkt_drops++;
331 			}
332 
333 			switch (qp->ibqp.qp_type) {
334 			case IB_QPT_RC:
335 				hfi1_rc_hdrerr(rcd, packet, qp);
336 				break;
337 			default:
338 				/* For now don't handle any other QP types */
339 				break;
340 			}
341 
342 			spin_unlock_irqrestore(&qp->r_lock, flags);
343 			rcu_read_unlock();
344 		} /* Unicast QP */
345 	} /* Valid packet with TIDErr */
346 
347 	/* handle "RcvTypeErr" flags */
348 	switch (rte) {
349 	case RHF_RTE_ERROR_OP_CODE_ERR:
350 	{
351 		void *ebuf = NULL;
352 		u8 opcode;
353 
354 		if (rhf_use_egr_bfr(packet->rhf))
355 			ebuf = packet->ebuf;
356 
357 		if (!ebuf)
358 			goto drop; /* this should never happen */
359 
360 		opcode = ib_bth_get_opcode(packet->ohdr);
361 		if (opcode == IB_OPCODE_CNP) {
362 			/*
363 			 * Only in pre-B0 h/w is the CNP_OPCODE handled
364 			 * via this code path.
365 			 */
366 			struct rvt_qp *qp = NULL;
367 			u32 lqpn, rqpn;
368 			u16 rlid;
369 			u8 svc_type, sl, sc5;
370 
371 			sc5 = hfi1_9B_get_sc5(rhdr, packet->rhf);
372 			sl = ibp->sc_to_sl[sc5];
373 
374 			lqpn = ib_bth_get_qpn(packet->ohdr);
375 			rcu_read_lock();
376 			qp = rvt_lookup_qpn(rdi, &ibp->rvp, lqpn);
377 			if (!qp) {
378 				rcu_read_unlock();
379 				goto drop;
380 			}
381 
382 			switch (qp->ibqp.qp_type) {
383 			case IB_QPT_UD:
384 				rlid = 0;
385 				rqpn = 0;
386 				svc_type = IB_CC_SVCTYPE_UD;
387 				break;
388 			case IB_QPT_UC:
389 				rlid = ib_get_slid(rhdr);
390 				rqpn = qp->remote_qpn;
391 				svc_type = IB_CC_SVCTYPE_UC;
392 				break;
393 			default:
394 				rcu_read_unlock();
395 				goto drop;
396 			}
397 
398 			process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
399 			rcu_read_unlock();
400 		}
401 
402 		packet->rhf &= ~RHF_RCV_TYPE_ERR_SMASK;
403 		break;
404 	}
405 	default:
406 		break;
407 	}
408 
409 drop:
410 	return;
411 }
412 
413 static inline void init_packet(struct hfi1_ctxtdata *rcd,
414 			       struct hfi1_packet *packet)
415 {
416 	packet->rsize = rcd->rcvhdrqentsize; /* words */
417 	packet->maxcnt = rcd->rcvhdrq_cnt * packet->rsize; /* words */
418 	packet->rcd = rcd;
419 	packet->updegr = 0;
420 	packet->etail = -1;
421 	packet->rhf_addr = get_rhf_addr(rcd);
422 	packet->rhf = rhf_to_cpu(packet->rhf_addr);
423 	packet->rhqoff = rcd->head;
424 	packet->numpkt = 0;
425 }
426 
427 /* We support only two types - 9B and 16B for now */
428 static const hfi1_handle_cnp hfi1_handle_cnp_tbl[2] = {
429 	[HFI1_PKT_TYPE_9B] = &return_cnp,
430 	[HFI1_PKT_TYPE_16B] = &return_cnp_16B
431 };
432 
433 void hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt,
434 			       bool do_cnp)
435 {
436 	struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
437 	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
438 	struct ib_other_headers *ohdr = pkt->ohdr;
439 	struct ib_grh *grh = pkt->grh;
440 	u32 rqpn = 0, bth1;
441 	u16 pkey;
442 	u32 rlid, slid, dlid = 0;
443 	u8 hdr_type, sc, svc_type;
444 	bool is_mcast = false;
445 
446 	/* can be called from prescan */
447 	if (pkt->etype == RHF_RCV_TYPE_BYPASS) {
448 		is_mcast = hfi1_is_16B_mcast(dlid);
449 		pkey = hfi1_16B_get_pkey(pkt->hdr);
450 		sc = hfi1_16B_get_sc(pkt->hdr);
451 		dlid = hfi1_16B_get_dlid(pkt->hdr);
452 		slid = hfi1_16B_get_slid(pkt->hdr);
453 		hdr_type = HFI1_PKT_TYPE_16B;
454 	} else {
455 		is_mcast = (dlid > be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
456 			   (dlid != be16_to_cpu(IB_LID_PERMISSIVE));
457 		pkey = ib_bth_get_pkey(ohdr);
458 		sc = hfi1_9B_get_sc5(pkt->hdr, pkt->rhf);
459 		dlid = ib_get_dlid(pkt->hdr);
460 		slid = ib_get_slid(pkt->hdr);
461 		hdr_type = HFI1_PKT_TYPE_9B;
462 	}
463 
464 	switch (qp->ibqp.qp_type) {
465 	case IB_QPT_UD:
466 		dlid = ppd->lid;
467 		rlid = slid;
468 		rqpn = ib_get_sqpn(pkt->ohdr);
469 		svc_type = IB_CC_SVCTYPE_UD;
470 		break;
471 	case IB_QPT_SMI:
472 	case IB_QPT_GSI:
473 		rlid = slid;
474 		rqpn = ib_get_sqpn(pkt->ohdr);
475 		svc_type = IB_CC_SVCTYPE_UD;
476 		break;
477 	case IB_QPT_UC:
478 		rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
479 		rqpn = qp->remote_qpn;
480 		svc_type = IB_CC_SVCTYPE_UC;
481 		break;
482 	case IB_QPT_RC:
483 		rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
484 		rqpn = qp->remote_qpn;
485 		svc_type = IB_CC_SVCTYPE_RC;
486 		break;
487 	default:
488 		return;
489 	}
490 
491 	bth1 = be32_to_cpu(ohdr->bth[1]);
492 	/* Call appropriate CNP handler */
493 	if (do_cnp && (bth1 & IB_FECN_SMASK))
494 		hfi1_handle_cnp_tbl[hdr_type](ibp, qp, rqpn, pkey,
495 					      dlid, rlid, sc, grh);
496 
497 	if (!is_mcast && (bth1 & IB_BECN_SMASK)) {
498 		u32 lqpn = bth1 & RVT_QPN_MASK;
499 		u8 sl = ibp->sc_to_sl[sc];
500 
501 		process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
502 	}
503 
504 }
505 
506 struct ps_mdata {
507 	struct hfi1_ctxtdata *rcd;
508 	u32 rsize;
509 	u32 maxcnt;
510 	u32 ps_head;
511 	u32 ps_tail;
512 	u32 ps_seq;
513 };
514 
515 static inline void init_ps_mdata(struct ps_mdata *mdata,
516 				 struct hfi1_packet *packet)
517 {
518 	struct hfi1_ctxtdata *rcd = packet->rcd;
519 
520 	mdata->rcd = rcd;
521 	mdata->rsize = packet->rsize;
522 	mdata->maxcnt = packet->maxcnt;
523 	mdata->ps_head = packet->rhqoff;
524 
525 	if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
526 		mdata->ps_tail = get_rcvhdrtail(rcd);
527 		if (rcd->ctxt == HFI1_CTRL_CTXT)
528 			mdata->ps_seq = rcd->seq_cnt;
529 		else
530 			mdata->ps_seq = 0; /* not used with DMA_RTAIL */
531 	} else {
532 		mdata->ps_tail = 0; /* used only with DMA_RTAIL*/
533 		mdata->ps_seq = rcd->seq_cnt;
534 	}
535 }
536 
537 static inline int ps_done(struct ps_mdata *mdata, u64 rhf,
538 			  struct hfi1_ctxtdata *rcd)
539 {
540 	if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
541 		return mdata->ps_head == mdata->ps_tail;
542 	return mdata->ps_seq != rhf_rcv_seq(rhf);
543 }
544 
545 static inline int ps_skip(struct ps_mdata *mdata, u64 rhf,
546 			  struct hfi1_ctxtdata *rcd)
547 {
548 	/*
549 	 * Control context can potentially receive an invalid rhf.
550 	 * Drop such packets.
551 	 */
552 	if ((rcd->ctxt == HFI1_CTRL_CTXT) && (mdata->ps_head != mdata->ps_tail))
553 		return mdata->ps_seq != rhf_rcv_seq(rhf);
554 
555 	return 0;
556 }
557 
558 static inline void update_ps_mdata(struct ps_mdata *mdata,
559 				   struct hfi1_ctxtdata *rcd)
560 {
561 	mdata->ps_head += mdata->rsize;
562 	if (mdata->ps_head >= mdata->maxcnt)
563 		mdata->ps_head = 0;
564 
565 	/* Control context must do seq counting */
566 	if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ||
567 	    (rcd->ctxt == HFI1_CTRL_CTXT)) {
568 		if (++mdata->ps_seq > 13)
569 			mdata->ps_seq = 1;
570 	}
571 }
572 
573 /*
574  * prescan_rxq - search through the receive queue looking for packets
575  * containing Excplicit Congestion Notifications (FECNs, or BECNs).
576  * When an ECN is found, process the Congestion Notification, and toggle
577  * it off.
578  * This is declared as a macro to allow quick checking of the port to avoid
579  * the overhead of a function call if not enabled.
580  */
581 #define prescan_rxq(rcd, packet) \
582 	do { \
583 		if (rcd->ppd->cc_prescan) \
584 			__prescan_rxq(packet); \
585 	} while (0)
586 static void __prescan_rxq(struct hfi1_packet *packet)
587 {
588 	struct hfi1_ctxtdata *rcd = packet->rcd;
589 	struct ps_mdata mdata;
590 
591 	init_ps_mdata(&mdata, packet);
592 
593 	while (1) {
594 		struct hfi1_ibport *ibp = rcd_to_iport(rcd);
595 		__le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
596 					 packet->rcd->rhf_offset;
597 		struct rvt_qp *qp;
598 		struct ib_header *hdr;
599 		struct rvt_dev_info *rdi = &rcd->dd->verbs_dev.rdi;
600 		u64 rhf = rhf_to_cpu(rhf_addr);
601 		u32 etype = rhf_rcv_type(rhf), qpn, bth1;
602 		int is_ecn = 0;
603 		u8 lnh;
604 
605 		if (ps_done(&mdata, rhf, rcd))
606 			break;
607 
608 		if (ps_skip(&mdata, rhf, rcd))
609 			goto next;
610 
611 		if (etype != RHF_RCV_TYPE_IB)
612 			goto next;
613 
614 		packet->hdr = hfi1_get_msgheader(packet->rcd, rhf_addr);
615 		hdr = packet->hdr;
616 		lnh = ib_get_lnh(hdr);
617 
618 		if (lnh == HFI1_LRH_BTH) {
619 			packet->ohdr = &hdr->u.oth;
620 			packet->grh = NULL;
621 		} else if (lnh == HFI1_LRH_GRH) {
622 			packet->ohdr = &hdr->u.l.oth;
623 			packet->grh = &hdr->u.l.grh;
624 		} else {
625 			goto next; /* just in case */
626 		}
627 
628 		bth1 = be32_to_cpu(packet->ohdr->bth[1]);
629 		is_ecn = !!(bth1 & (IB_FECN_SMASK | IB_BECN_SMASK));
630 
631 		if (!is_ecn)
632 			goto next;
633 
634 		qpn = bth1 & RVT_QPN_MASK;
635 		rcu_read_lock();
636 		qp = rvt_lookup_qpn(rdi, &ibp->rvp, qpn);
637 
638 		if (!qp) {
639 			rcu_read_unlock();
640 			goto next;
641 		}
642 
643 		process_ecn(qp, packet, true);
644 		rcu_read_unlock();
645 
646 		/* turn off BECN, FECN */
647 		bth1 &= ~(IB_FECN_SMASK | IB_BECN_SMASK);
648 		packet->ohdr->bth[1] = cpu_to_be32(bth1);
649 next:
650 		update_ps_mdata(&mdata, rcd);
651 	}
652 }
653 
654 static void process_rcv_qp_work(struct hfi1_packet *packet)
655 {
656 	struct rvt_qp *qp, *nqp;
657 	struct hfi1_ctxtdata *rcd = packet->rcd;
658 
659 	/*
660 	 * Iterate over all QPs waiting to respond.
661 	 * The list won't change since the IRQ is only run on one CPU.
662 	 */
663 	list_for_each_entry_safe(qp, nqp, &rcd->qp_wait_list, rspwait) {
664 		list_del_init(&qp->rspwait);
665 		if (qp->r_flags & RVT_R_RSP_NAK) {
666 			qp->r_flags &= ~RVT_R_RSP_NAK;
667 			packet->qp = qp;
668 			hfi1_send_rc_ack(packet, 0);
669 		}
670 		if (qp->r_flags & RVT_R_RSP_SEND) {
671 			unsigned long flags;
672 
673 			qp->r_flags &= ~RVT_R_RSP_SEND;
674 			spin_lock_irqsave(&qp->s_lock, flags);
675 			if (ib_rvt_state_ops[qp->state] &
676 					RVT_PROCESS_OR_FLUSH_SEND)
677 				hfi1_schedule_send(qp);
678 			spin_unlock_irqrestore(&qp->s_lock, flags);
679 		}
680 		rvt_put_qp(qp);
681 	}
682 }
683 
684 static noinline int max_packet_exceeded(struct hfi1_packet *packet, int thread)
685 {
686 	if (thread) {
687 		if ((packet->numpkt & (MAX_PKT_RECV_THREAD - 1)) == 0)
688 			/* allow defered processing */
689 			process_rcv_qp_work(packet);
690 		cond_resched();
691 		return RCV_PKT_OK;
692 	} else {
693 		this_cpu_inc(*packet->rcd->dd->rcv_limit);
694 		return RCV_PKT_LIMIT;
695 	}
696 }
697 
698 static inline int check_max_packet(struct hfi1_packet *packet, int thread)
699 {
700 	int ret = RCV_PKT_OK;
701 
702 	if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0))
703 		ret = max_packet_exceeded(packet, thread);
704 	return ret;
705 }
706 
707 static noinline int skip_rcv_packet(struct hfi1_packet *packet, int thread)
708 {
709 	int ret;
710 
711 	/* Set up for the next packet */
712 	packet->rhqoff += packet->rsize;
713 	if (packet->rhqoff >= packet->maxcnt)
714 		packet->rhqoff = 0;
715 
716 	packet->numpkt++;
717 	ret = check_max_packet(packet, thread);
718 
719 	packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
720 				     packet->rcd->rhf_offset;
721 	packet->rhf = rhf_to_cpu(packet->rhf_addr);
722 
723 	return ret;
724 }
725 
726 static inline int process_rcv_packet(struct hfi1_packet *packet, int thread)
727 {
728 	int ret;
729 
730 	packet->etype = rhf_rcv_type(packet->rhf);
731 
732 	/* total length */
733 	packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */
734 	/* retrieve eager buffer details */
735 	packet->ebuf = NULL;
736 	if (rhf_use_egr_bfr(packet->rhf)) {
737 		packet->etail = rhf_egr_index(packet->rhf);
738 		packet->ebuf = get_egrbuf(packet->rcd, packet->rhf,
739 				 &packet->updegr);
740 		/*
741 		 * Prefetch the contents of the eager buffer.  It is
742 		 * OK to send a negative length to prefetch_range().
743 		 * The +2 is the size of the RHF.
744 		 */
745 		prefetch_range(packet->ebuf,
746 			       packet->tlen - ((packet->rcd->rcvhdrqentsize -
747 					       (rhf_hdrq_offset(packet->rhf)
748 						+ 2)) * 4));
749 	}
750 
751 	/*
752 	 * Call a type specific handler for the packet. We
753 	 * should be able to trust that etype won't be beyond
754 	 * the range of valid indexes. If so something is really
755 	 * wrong and we can probably just let things come
756 	 * crashing down. There is no need to eat another
757 	 * comparison in this performance critical code.
758 	 */
759 	packet->rcd->rhf_rcv_function_map[packet->etype](packet);
760 	packet->numpkt++;
761 
762 	/* Set up for the next packet */
763 	packet->rhqoff += packet->rsize;
764 	if (packet->rhqoff >= packet->maxcnt)
765 		packet->rhqoff = 0;
766 
767 	ret = check_max_packet(packet, thread);
768 
769 	packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
770 				      packet->rcd->rhf_offset;
771 	packet->rhf = rhf_to_cpu(packet->rhf_addr);
772 
773 	return ret;
774 }
775 
776 static inline void process_rcv_update(int last, struct hfi1_packet *packet)
777 {
778 	/*
779 	 * Update head regs etc., every 16 packets, if not last pkt,
780 	 * to help prevent rcvhdrq overflows, when many packets
781 	 * are processed and queue is nearly full.
782 	 * Don't request an interrupt for intermediate updates.
783 	 */
784 	if (!last && !(packet->numpkt & 0xf)) {
785 		update_usrhead(packet->rcd, packet->rhqoff, packet->updegr,
786 			       packet->etail, 0, 0);
787 		packet->updegr = 0;
788 	}
789 	packet->grh = NULL;
790 }
791 
792 static inline void finish_packet(struct hfi1_packet *packet)
793 {
794 	/*
795 	 * Nothing we need to free for the packet.
796 	 *
797 	 * The only thing we need to do is a final update and call for an
798 	 * interrupt
799 	 */
800 	update_usrhead(packet->rcd, packet->rcd->head, packet->updegr,
801 		       packet->etail, rcv_intr_dynamic, packet->numpkt);
802 }
803 
804 /*
805  * Handle receive interrupts when using the no dma rtail option.
806  */
807 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread)
808 {
809 	u32 seq;
810 	int last = RCV_PKT_OK;
811 	struct hfi1_packet packet;
812 
813 	init_packet(rcd, &packet);
814 	seq = rhf_rcv_seq(packet.rhf);
815 	if (seq != rcd->seq_cnt) {
816 		last = RCV_PKT_DONE;
817 		goto bail;
818 	}
819 
820 	prescan_rxq(rcd, &packet);
821 
822 	while (last == RCV_PKT_OK) {
823 		last = process_rcv_packet(&packet, thread);
824 		seq = rhf_rcv_seq(packet.rhf);
825 		if (++rcd->seq_cnt > 13)
826 			rcd->seq_cnt = 1;
827 		if (seq != rcd->seq_cnt)
828 			last = RCV_PKT_DONE;
829 		process_rcv_update(last, &packet);
830 	}
831 	process_rcv_qp_work(&packet);
832 	rcd->head = packet.rhqoff;
833 bail:
834 	finish_packet(&packet);
835 	return last;
836 }
837 
838 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread)
839 {
840 	u32 hdrqtail;
841 	int last = RCV_PKT_OK;
842 	struct hfi1_packet packet;
843 
844 	init_packet(rcd, &packet);
845 	hdrqtail = get_rcvhdrtail(rcd);
846 	if (packet.rhqoff == hdrqtail) {
847 		last = RCV_PKT_DONE;
848 		goto bail;
849 	}
850 	smp_rmb();  /* prevent speculative reads of dma'ed hdrq */
851 
852 	prescan_rxq(rcd, &packet);
853 
854 	while (last == RCV_PKT_OK) {
855 		last = process_rcv_packet(&packet, thread);
856 		if (packet.rhqoff == hdrqtail)
857 			last = RCV_PKT_DONE;
858 		process_rcv_update(last, &packet);
859 	}
860 	process_rcv_qp_work(&packet);
861 	rcd->head = packet.rhqoff;
862 bail:
863 	finish_packet(&packet);
864 	return last;
865 }
866 
867 static inline void set_nodma_rtail(struct hfi1_devdata *dd, u16 ctxt)
868 {
869 	struct hfi1_ctxtdata *rcd;
870 	u16 i;
871 
872 	/*
873 	 * For dynamically allocated kernel contexts (like vnic) switch
874 	 * interrupt handler only for that context. Otherwise, switch
875 	 * interrupt handler for all statically allocated kernel contexts.
876 	 */
877 	if (ctxt >= dd->first_dyn_alloc_ctxt) {
878 		rcd = hfi1_rcd_get_by_index_safe(dd, ctxt);
879 		if (rcd) {
880 			rcd->do_interrupt =
881 				&handle_receive_interrupt_nodma_rtail;
882 			hfi1_rcd_put(rcd);
883 		}
884 		return;
885 	}
886 
887 	for (i = HFI1_CTRL_CTXT + 1; i < dd->first_dyn_alloc_ctxt; i++) {
888 		rcd = hfi1_rcd_get_by_index(dd, i);
889 		if (rcd)
890 			rcd->do_interrupt =
891 				&handle_receive_interrupt_nodma_rtail;
892 		hfi1_rcd_put(rcd);
893 	}
894 }
895 
896 static inline void set_dma_rtail(struct hfi1_devdata *dd, u16 ctxt)
897 {
898 	struct hfi1_ctxtdata *rcd;
899 	u16 i;
900 
901 	/*
902 	 * For dynamically allocated kernel contexts (like vnic) switch
903 	 * interrupt handler only for that context. Otherwise, switch
904 	 * interrupt handler for all statically allocated kernel contexts.
905 	 */
906 	if (ctxt >= dd->first_dyn_alloc_ctxt) {
907 		rcd = hfi1_rcd_get_by_index_safe(dd, ctxt);
908 		if (rcd) {
909 			rcd->do_interrupt =
910 				&handle_receive_interrupt_dma_rtail;
911 			hfi1_rcd_put(rcd);
912 		}
913 		return;
914 	}
915 
916 	for (i = HFI1_CTRL_CTXT + 1; i < dd->first_dyn_alloc_ctxt; i++) {
917 		rcd = hfi1_rcd_get_by_index(dd, i);
918 		if (rcd)
919 			rcd->do_interrupt =
920 				&handle_receive_interrupt_dma_rtail;
921 		hfi1_rcd_put(rcd);
922 	}
923 }
924 
925 void set_all_slowpath(struct hfi1_devdata *dd)
926 {
927 	struct hfi1_ctxtdata *rcd;
928 	u16 i;
929 
930 	/* HFI1_CTRL_CTXT must always use the slow path interrupt handler */
931 	for (i = HFI1_CTRL_CTXT + 1; i < dd->num_rcv_contexts; i++) {
932 		rcd = hfi1_rcd_get_by_index(dd, i);
933 		if (!rcd)
934 			continue;
935 		if (i < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
936 			rcd->do_interrupt = &handle_receive_interrupt;
937 
938 		hfi1_rcd_put(rcd);
939 	}
940 }
941 
942 static inline int set_armed_to_active(struct hfi1_ctxtdata *rcd,
943 				      struct hfi1_packet *packet,
944 				      struct hfi1_devdata *dd)
945 {
946 	struct work_struct *lsaw = &rcd->ppd->linkstate_active_work;
947 	u8 etype = rhf_rcv_type(packet->rhf);
948 	u8 sc = SC15_PACKET;
949 
950 	if (etype == RHF_RCV_TYPE_IB) {
951 		struct ib_header *hdr = hfi1_get_msgheader(packet->rcd,
952 							   packet->rhf_addr);
953 		sc = hfi1_9B_get_sc5(hdr, packet->rhf);
954 	} else if (etype == RHF_RCV_TYPE_BYPASS) {
955 		struct hfi1_16b_header *hdr = hfi1_get_16B_header(
956 						packet->rcd,
957 						packet->rhf_addr);
958 		sc = hfi1_16B_get_sc(hdr);
959 	}
960 	if (sc != SC15_PACKET) {
961 		int hwstate = driver_lstate(rcd->ppd);
962 
963 		if (hwstate != IB_PORT_ACTIVE) {
964 			dd_dev_info(dd,
965 				    "Unexpected link state %s\n",
966 				    opa_lstate_name(hwstate));
967 			return 0;
968 		}
969 
970 		queue_work(rcd->ppd->link_wq, lsaw);
971 		return 1;
972 	}
973 	return 0;
974 }
975 
976 /*
977  * handle_receive_interrupt - receive a packet
978  * @rcd: the context
979  *
980  * Called from interrupt handler for errors or receive interrupt.
981  * This is the slow path interrupt handler.
982  */
983 int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread)
984 {
985 	struct hfi1_devdata *dd = rcd->dd;
986 	u32 hdrqtail;
987 	int needset, last = RCV_PKT_OK;
988 	struct hfi1_packet packet;
989 	int skip_pkt = 0;
990 
991 	/* Control context will always use the slow path interrupt handler */
992 	needset = (rcd->ctxt == HFI1_CTRL_CTXT) ? 0 : 1;
993 
994 	init_packet(rcd, &packet);
995 
996 	if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
997 		u32 seq = rhf_rcv_seq(packet.rhf);
998 
999 		if (seq != rcd->seq_cnt) {
1000 			last = RCV_PKT_DONE;
1001 			goto bail;
1002 		}
1003 		hdrqtail = 0;
1004 	} else {
1005 		hdrqtail = get_rcvhdrtail(rcd);
1006 		if (packet.rhqoff == hdrqtail) {
1007 			last = RCV_PKT_DONE;
1008 			goto bail;
1009 		}
1010 		smp_rmb();  /* prevent speculative reads of dma'ed hdrq */
1011 
1012 		/*
1013 		 * Control context can potentially receive an invalid
1014 		 * rhf. Drop such packets.
1015 		 */
1016 		if (rcd->ctxt == HFI1_CTRL_CTXT) {
1017 			u32 seq = rhf_rcv_seq(packet.rhf);
1018 
1019 			if (seq != rcd->seq_cnt)
1020 				skip_pkt = 1;
1021 		}
1022 	}
1023 
1024 	prescan_rxq(rcd, &packet);
1025 
1026 	while (last == RCV_PKT_OK) {
1027 		if (unlikely(dd->do_drop &&
1028 			     atomic_xchg(&dd->drop_packet, DROP_PACKET_OFF) ==
1029 			     DROP_PACKET_ON)) {
1030 			dd->do_drop = 0;
1031 
1032 			/* On to the next packet */
1033 			packet.rhqoff += packet.rsize;
1034 			packet.rhf_addr = (__le32 *)rcd->rcvhdrq +
1035 					  packet.rhqoff +
1036 					  rcd->rhf_offset;
1037 			packet.rhf = rhf_to_cpu(packet.rhf_addr);
1038 
1039 		} else if (skip_pkt) {
1040 			last = skip_rcv_packet(&packet, thread);
1041 			skip_pkt = 0;
1042 		} else {
1043 			/* Auto activate link on non-SC15 packet receive */
1044 			if (unlikely(rcd->ppd->host_link_state ==
1045 				     HLS_UP_ARMED) &&
1046 			    set_armed_to_active(rcd, &packet, dd))
1047 				goto bail;
1048 			last = process_rcv_packet(&packet, thread);
1049 		}
1050 
1051 		if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
1052 			u32 seq = rhf_rcv_seq(packet.rhf);
1053 
1054 			if (++rcd->seq_cnt > 13)
1055 				rcd->seq_cnt = 1;
1056 			if (seq != rcd->seq_cnt)
1057 				last = RCV_PKT_DONE;
1058 			if (needset) {
1059 				dd_dev_info(dd, "Switching to NO_DMA_RTAIL\n");
1060 				set_nodma_rtail(dd, rcd->ctxt);
1061 				needset = 0;
1062 			}
1063 		} else {
1064 			if (packet.rhqoff == hdrqtail)
1065 				last = RCV_PKT_DONE;
1066 			/*
1067 			 * Control context can potentially receive an invalid
1068 			 * rhf. Drop such packets.
1069 			 */
1070 			if (rcd->ctxt == HFI1_CTRL_CTXT) {
1071 				u32 seq = rhf_rcv_seq(packet.rhf);
1072 
1073 				if (++rcd->seq_cnt > 13)
1074 					rcd->seq_cnt = 1;
1075 				if (!last && (seq != rcd->seq_cnt))
1076 					skip_pkt = 1;
1077 			}
1078 
1079 			if (needset) {
1080 				dd_dev_info(dd,
1081 					    "Switching to DMA_RTAIL\n");
1082 				set_dma_rtail(dd, rcd->ctxt);
1083 				needset = 0;
1084 			}
1085 		}
1086 
1087 		process_rcv_update(last, &packet);
1088 	}
1089 
1090 	process_rcv_qp_work(&packet);
1091 	rcd->head = packet.rhqoff;
1092 
1093 bail:
1094 	/*
1095 	 * Always write head at end, and setup rcv interrupt, even
1096 	 * if no packets were processed.
1097 	 */
1098 	finish_packet(&packet);
1099 	return last;
1100 }
1101 
1102 /*
1103  * We may discover in the interrupt that the hardware link state has
1104  * changed from ARMED to ACTIVE (due to the arrival of a non-SC15 packet),
1105  * and we need to update the driver's notion of the link state.  We cannot
1106  * run set_link_state from interrupt context, so we queue this function on
1107  * a workqueue.
1108  *
1109  * We delay the regular interrupt processing until after the state changes
1110  * so that the link will be in the correct state by the time any application
1111  * we wake up attempts to send a reply to any message it received.
1112  * (Subsequent receive interrupts may possibly force the wakeup before we
1113  * update the link state.)
1114  *
1115  * The rcd is freed in hfi1_free_ctxtdata after hfi1_postinit_cleanup invokes
1116  * dd->f_cleanup(dd) to disable the interrupt handler and flush workqueues,
1117  * so we're safe from use-after-free of the rcd.
1118  */
1119 void receive_interrupt_work(struct work_struct *work)
1120 {
1121 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
1122 						  linkstate_active_work);
1123 	struct hfi1_devdata *dd = ppd->dd;
1124 	struct hfi1_ctxtdata *rcd;
1125 	u16 i;
1126 
1127 	/* Received non-SC15 packet implies neighbor_normal */
1128 	ppd->neighbor_normal = 1;
1129 	set_link_state(ppd, HLS_UP_ACTIVE);
1130 
1131 	/*
1132 	 * Interrupt all statically allocated kernel contexts that could
1133 	 * have had an interrupt during auto activation.
1134 	 */
1135 	for (i = HFI1_CTRL_CTXT; i < dd->first_dyn_alloc_ctxt; i++) {
1136 		rcd = hfi1_rcd_get_by_index(dd, i);
1137 		if (rcd)
1138 			force_recv_intr(rcd);
1139 		hfi1_rcd_put(rcd);
1140 	}
1141 }
1142 
1143 /*
1144  * Convert a given MTU size to the on-wire MAD packet enumeration.
1145  * Return -1 if the size is invalid.
1146  */
1147 int mtu_to_enum(u32 mtu, int default_if_bad)
1148 {
1149 	switch (mtu) {
1150 	case     0: return OPA_MTU_0;
1151 	case   256: return OPA_MTU_256;
1152 	case   512: return OPA_MTU_512;
1153 	case  1024: return OPA_MTU_1024;
1154 	case  2048: return OPA_MTU_2048;
1155 	case  4096: return OPA_MTU_4096;
1156 	case  8192: return OPA_MTU_8192;
1157 	case 10240: return OPA_MTU_10240;
1158 	}
1159 	return default_if_bad;
1160 }
1161 
1162 u16 enum_to_mtu(int mtu)
1163 {
1164 	switch (mtu) {
1165 	case OPA_MTU_0:     return 0;
1166 	case OPA_MTU_256:   return 256;
1167 	case OPA_MTU_512:   return 512;
1168 	case OPA_MTU_1024:  return 1024;
1169 	case OPA_MTU_2048:  return 2048;
1170 	case OPA_MTU_4096:  return 4096;
1171 	case OPA_MTU_8192:  return 8192;
1172 	case OPA_MTU_10240: return 10240;
1173 	default: return 0xffff;
1174 	}
1175 }
1176 
1177 /*
1178  * set_mtu - set the MTU
1179  * @ppd: the per port data
1180  *
1181  * We can handle "any" incoming size, the issue here is whether we
1182  * need to restrict our outgoing size.  We do not deal with what happens
1183  * to programs that are already running when the size changes.
1184  */
1185 int set_mtu(struct hfi1_pportdata *ppd)
1186 {
1187 	struct hfi1_devdata *dd = ppd->dd;
1188 	int i, drain, ret = 0, is_up = 0;
1189 
1190 	ppd->ibmtu = 0;
1191 	for (i = 0; i < ppd->vls_supported; i++)
1192 		if (ppd->ibmtu < dd->vld[i].mtu)
1193 			ppd->ibmtu = dd->vld[i].mtu;
1194 	ppd->ibmaxlen = ppd->ibmtu + lrh_max_header_bytes(ppd->dd);
1195 
1196 	mutex_lock(&ppd->hls_lock);
1197 	if (ppd->host_link_state == HLS_UP_INIT ||
1198 	    ppd->host_link_state == HLS_UP_ARMED ||
1199 	    ppd->host_link_state == HLS_UP_ACTIVE)
1200 		is_up = 1;
1201 
1202 	drain = !is_ax(dd) && is_up;
1203 
1204 	if (drain)
1205 		/*
1206 		 * MTU is specified per-VL. To ensure that no packet gets
1207 		 * stuck (due, e.g., to the MTU for the packet's VL being
1208 		 * reduced), empty the per-VL FIFOs before adjusting MTU.
1209 		 */
1210 		ret = stop_drain_data_vls(dd);
1211 
1212 	if (ret) {
1213 		dd_dev_err(dd, "%s: cannot stop/drain VLs - refusing to change per-VL MTUs\n",
1214 			   __func__);
1215 		goto err;
1216 	}
1217 
1218 	hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_MTU, 0);
1219 
1220 	if (drain)
1221 		open_fill_data_vls(dd); /* reopen all VLs */
1222 
1223 err:
1224 	mutex_unlock(&ppd->hls_lock);
1225 
1226 	return ret;
1227 }
1228 
1229 int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc)
1230 {
1231 	struct hfi1_devdata *dd = ppd->dd;
1232 
1233 	ppd->lid = lid;
1234 	ppd->lmc = lmc;
1235 	hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LIDLMC, 0);
1236 
1237 	dd_dev_info(dd, "port %u: got a lid: 0x%x\n", ppd->port, lid);
1238 
1239 	return 0;
1240 }
1241 
1242 void shutdown_led_override(struct hfi1_pportdata *ppd)
1243 {
1244 	struct hfi1_devdata *dd = ppd->dd;
1245 
1246 	/*
1247 	 * This pairs with the memory barrier in hfi1_start_led_override to
1248 	 * ensure that we read the correct state of LED beaconing represented
1249 	 * by led_override_timer_active
1250 	 */
1251 	smp_rmb();
1252 	if (atomic_read(&ppd->led_override_timer_active)) {
1253 		del_timer_sync(&ppd->led_override_timer);
1254 		atomic_set(&ppd->led_override_timer_active, 0);
1255 		/* Ensure the atomic_set is visible to all CPUs */
1256 		smp_wmb();
1257 	}
1258 
1259 	/* Hand control of the LED to the DC for normal operation */
1260 	write_csr(dd, DCC_CFG_LED_CNTRL, 0);
1261 }
1262 
1263 static void run_led_override(struct timer_list *t)
1264 {
1265 	struct hfi1_pportdata *ppd = from_timer(ppd, t, led_override_timer);
1266 	struct hfi1_devdata *dd = ppd->dd;
1267 	unsigned long timeout;
1268 	int phase_idx;
1269 
1270 	if (!(dd->flags & HFI1_INITTED))
1271 		return;
1272 
1273 	phase_idx = ppd->led_override_phase & 1;
1274 
1275 	setextled(dd, phase_idx);
1276 
1277 	timeout = ppd->led_override_vals[phase_idx];
1278 
1279 	/* Set up for next phase */
1280 	ppd->led_override_phase = !ppd->led_override_phase;
1281 
1282 	mod_timer(&ppd->led_override_timer, jiffies + timeout);
1283 }
1284 
1285 /*
1286  * To have the LED blink in a particular pattern, provide timeon and timeoff
1287  * in milliseconds.
1288  * To turn off custom blinking and return to normal operation, use
1289  * shutdown_led_override()
1290  */
1291 void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon,
1292 			     unsigned int timeoff)
1293 {
1294 	if (!(ppd->dd->flags & HFI1_INITTED))
1295 		return;
1296 
1297 	/* Convert to jiffies for direct use in timer */
1298 	ppd->led_override_vals[0] = msecs_to_jiffies(timeoff);
1299 	ppd->led_override_vals[1] = msecs_to_jiffies(timeon);
1300 
1301 	/* Arbitrarily start from LED on phase */
1302 	ppd->led_override_phase = 1;
1303 
1304 	/*
1305 	 * If the timer has not already been started, do so. Use a "quick"
1306 	 * timeout so the handler will be called soon to look at our request.
1307 	 */
1308 	if (!timer_pending(&ppd->led_override_timer)) {
1309 		timer_setup(&ppd->led_override_timer, run_led_override, 0);
1310 		ppd->led_override_timer.expires = jiffies + 1;
1311 		add_timer(&ppd->led_override_timer);
1312 		atomic_set(&ppd->led_override_timer_active, 1);
1313 		/* Ensure the atomic_set is visible to all CPUs */
1314 		smp_wmb();
1315 	}
1316 }
1317 
1318 /**
1319  * hfi1_reset_device - reset the chip if possible
1320  * @unit: the device to reset
1321  *
1322  * Whether or not reset is successful, we attempt to re-initialize the chip
1323  * (that is, much like a driver unload/reload).  We clear the INITTED flag
1324  * so that the various entry points will fail until we reinitialize.  For
1325  * now, we only allow this if no user contexts are open that use chip resources
1326  */
1327 int hfi1_reset_device(int unit)
1328 {
1329 	int ret;
1330 	struct hfi1_devdata *dd = hfi1_lookup(unit);
1331 	struct hfi1_pportdata *ppd;
1332 	int pidx;
1333 
1334 	if (!dd) {
1335 		ret = -ENODEV;
1336 		goto bail;
1337 	}
1338 
1339 	dd_dev_info(dd, "Reset on unit %u requested\n", unit);
1340 
1341 	if (!dd->kregbase1 || !(dd->flags & HFI1_PRESENT)) {
1342 		dd_dev_info(dd,
1343 			    "Invalid unit number %u or not initialized or not present\n",
1344 			    unit);
1345 		ret = -ENXIO;
1346 		goto bail;
1347 	}
1348 
1349 	/* If there are any user/vnic contexts, we cannot reset */
1350 	mutex_lock(&hfi1_mutex);
1351 	if (dd->rcd)
1352 		if (hfi1_stats.sps_ctxts) {
1353 			mutex_unlock(&hfi1_mutex);
1354 			ret = -EBUSY;
1355 			goto bail;
1356 		}
1357 	mutex_unlock(&hfi1_mutex);
1358 
1359 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1360 		ppd = dd->pport + pidx;
1361 
1362 		shutdown_led_override(ppd);
1363 	}
1364 	if (dd->flags & HFI1_HAS_SEND_DMA)
1365 		sdma_exit(dd);
1366 
1367 	hfi1_reset_cpu_counters(dd);
1368 
1369 	ret = hfi1_init(dd, 1);
1370 
1371 	if (ret)
1372 		dd_dev_err(dd,
1373 			   "Reinitialize unit %u after reset failed with %d\n",
1374 			   unit, ret);
1375 	else
1376 		dd_dev_info(dd, "Reinitialized unit %u after resetting\n",
1377 			    unit);
1378 
1379 bail:
1380 	return ret;
1381 }
1382 
1383 static inline void hfi1_setup_ib_header(struct hfi1_packet *packet)
1384 {
1385 	packet->hdr = (struct hfi1_ib_message_header *)
1386 			hfi1_get_msgheader(packet->rcd,
1387 					   packet->rhf_addr);
1388 	packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr;
1389 }
1390 
1391 static int hfi1_bypass_ingress_pkt_check(struct hfi1_packet *packet)
1392 {
1393 	struct hfi1_pportdata *ppd = packet->rcd->ppd;
1394 
1395 	/* slid and dlid cannot be 0 */
1396 	if ((!packet->slid) || (!packet->dlid))
1397 		return -EINVAL;
1398 
1399 	/* Compare port lid with incoming packet dlid */
1400 	if ((!(hfi1_is_16B_mcast(packet->dlid))) &&
1401 	    (packet->dlid !=
1402 		opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))) {
1403 		if (packet->dlid != ppd->lid)
1404 			return -EINVAL;
1405 	}
1406 
1407 	/* No multicast packets with SC15 */
1408 	if ((hfi1_is_16B_mcast(packet->dlid)) && (packet->sc == 0xF))
1409 		return -EINVAL;
1410 
1411 	/* Packets with permissive DLID always on SC15 */
1412 	if ((packet->dlid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE),
1413 					 16B)) &&
1414 	    (packet->sc != 0xF))
1415 		return -EINVAL;
1416 
1417 	return 0;
1418 }
1419 
1420 static int hfi1_setup_9B_packet(struct hfi1_packet *packet)
1421 {
1422 	struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
1423 	struct ib_header *hdr;
1424 	u8 lnh;
1425 
1426 	hfi1_setup_ib_header(packet);
1427 	hdr = packet->hdr;
1428 
1429 	lnh = ib_get_lnh(hdr);
1430 	if (lnh == HFI1_LRH_BTH) {
1431 		packet->ohdr = &hdr->u.oth;
1432 		packet->grh = NULL;
1433 	} else if (lnh == HFI1_LRH_GRH) {
1434 		u32 vtf;
1435 
1436 		packet->ohdr = &hdr->u.l.oth;
1437 		packet->grh = &hdr->u.l.grh;
1438 		if (packet->grh->next_hdr != IB_GRH_NEXT_HDR)
1439 			goto drop;
1440 		vtf = be32_to_cpu(packet->grh->version_tclass_flow);
1441 		if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
1442 			goto drop;
1443 	} else {
1444 		goto drop;
1445 	}
1446 
1447 	/* Query commonly used fields from packet header */
1448 	packet->payload = packet->ebuf;
1449 	packet->opcode = ib_bth_get_opcode(packet->ohdr);
1450 	packet->slid = ib_get_slid(hdr);
1451 	packet->dlid = ib_get_dlid(hdr);
1452 	if (unlikely((packet->dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
1453 		     (packet->dlid != be16_to_cpu(IB_LID_PERMISSIVE))))
1454 		packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) -
1455 				be16_to_cpu(IB_MULTICAST_LID_BASE);
1456 	packet->sl = ib_get_sl(hdr);
1457 	packet->sc = hfi1_9B_get_sc5(hdr, packet->rhf);
1458 	packet->pad = ib_bth_get_pad(packet->ohdr);
1459 	packet->extra_byte = 0;
1460 	packet->pkey = ib_bth_get_pkey(packet->ohdr);
1461 	packet->migrated = ib_bth_is_migration(packet->ohdr);
1462 
1463 	return 0;
1464 drop:
1465 	ibp->rvp.n_pkt_drops++;
1466 	return -EINVAL;
1467 }
1468 
1469 static int hfi1_setup_bypass_packet(struct hfi1_packet *packet)
1470 {
1471 	/*
1472 	 * Bypass packets have a different header/payload split
1473 	 * compared to an IB packet.
1474 	 * Current split is set such that 16 bytes of the actual
1475 	 * header is in the header buffer and the remining is in
1476 	 * the eager buffer. We chose 16 since hfi1 driver only
1477 	 * supports 16B bypass packets and we will be able to
1478 	 * receive the entire LRH with such a split.
1479 	 */
1480 
1481 	struct hfi1_ctxtdata *rcd = packet->rcd;
1482 	struct hfi1_pportdata *ppd = rcd->ppd;
1483 	struct hfi1_ibport *ibp = &ppd->ibport_data;
1484 	u8 l4;
1485 
1486 	packet->hdr = (struct hfi1_16b_header *)
1487 			hfi1_get_16B_header(packet->rcd,
1488 					    packet->rhf_addr);
1489 	l4 = hfi1_16B_get_l4(packet->hdr);
1490 	if (l4 == OPA_16B_L4_IB_LOCAL) {
1491 		packet->ohdr = packet->ebuf;
1492 		packet->grh = NULL;
1493 		packet->opcode = ib_bth_get_opcode(packet->ohdr);
1494 		packet->pad = hfi1_16B_bth_get_pad(packet->ohdr);
1495 		/* hdr_len_by_opcode already has an IB LRH factored in */
1496 		packet->hlen = hdr_len_by_opcode[packet->opcode] +
1497 			(LRH_16B_BYTES - LRH_9B_BYTES);
1498 		packet->migrated = opa_bth_is_migration(packet->ohdr);
1499 	} else if (l4 == OPA_16B_L4_IB_GLOBAL) {
1500 		u32 vtf;
1501 		u8 grh_len = sizeof(struct ib_grh);
1502 
1503 		packet->ohdr = packet->ebuf + grh_len;
1504 		packet->grh = packet->ebuf;
1505 		packet->opcode = ib_bth_get_opcode(packet->ohdr);
1506 		packet->pad = hfi1_16B_bth_get_pad(packet->ohdr);
1507 		/* hdr_len_by_opcode already has an IB LRH factored in */
1508 		packet->hlen = hdr_len_by_opcode[packet->opcode] +
1509 			(LRH_16B_BYTES - LRH_9B_BYTES) + grh_len;
1510 		packet->migrated = opa_bth_is_migration(packet->ohdr);
1511 
1512 		if (packet->grh->next_hdr != IB_GRH_NEXT_HDR)
1513 			goto drop;
1514 		vtf = be32_to_cpu(packet->grh->version_tclass_flow);
1515 		if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
1516 			goto drop;
1517 	} else if (l4 == OPA_16B_L4_FM) {
1518 		packet->mgmt = packet->ebuf;
1519 		packet->ohdr = NULL;
1520 		packet->grh = NULL;
1521 		packet->opcode = IB_OPCODE_UD_SEND_ONLY;
1522 		packet->pad = OPA_16B_L4_FM_PAD;
1523 		packet->hlen = OPA_16B_L4_FM_HLEN;
1524 		packet->migrated = false;
1525 	} else {
1526 		goto drop;
1527 	}
1528 
1529 	/* Query commonly used fields from packet header */
1530 	packet->payload = packet->ebuf + packet->hlen - LRH_16B_BYTES;
1531 	packet->slid = hfi1_16B_get_slid(packet->hdr);
1532 	packet->dlid = hfi1_16B_get_dlid(packet->hdr);
1533 	if (unlikely(hfi1_is_16B_mcast(packet->dlid)))
1534 		packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) -
1535 				opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR),
1536 					    16B);
1537 	packet->sc = hfi1_16B_get_sc(packet->hdr);
1538 	packet->sl = ibp->sc_to_sl[packet->sc];
1539 	packet->extra_byte = SIZE_OF_LT;
1540 	packet->pkey = hfi1_16B_get_pkey(packet->hdr);
1541 
1542 	if (hfi1_bypass_ingress_pkt_check(packet))
1543 		goto drop;
1544 
1545 	return 0;
1546 drop:
1547 	hfi1_cdbg(PKT, "%s: packet dropped\n", __func__);
1548 	ibp->rvp.n_pkt_drops++;
1549 	return -EINVAL;
1550 }
1551 
1552 void handle_eflags(struct hfi1_packet *packet)
1553 {
1554 	struct hfi1_ctxtdata *rcd = packet->rcd;
1555 	u32 rte = rhf_rcv_type_err(packet->rhf);
1556 
1557 	rcv_hdrerr(rcd, rcd->ppd, packet);
1558 	if (rhf_err_flags(packet->rhf))
1559 		dd_dev_err(rcd->dd,
1560 			   "receive context %d: rhf 0x%016llx, errs [ %s%s%s%s%s%s%s%s] rte 0x%x\n",
1561 			   rcd->ctxt, packet->rhf,
1562 			   packet->rhf & RHF_K_HDR_LEN_ERR ? "k_hdr_len " : "",
1563 			   packet->rhf & RHF_DC_UNC_ERR ? "dc_unc " : "",
1564 			   packet->rhf & RHF_DC_ERR ? "dc " : "",
1565 			   packet->rhf & RHF_TID_ERR ? "tid " : "",
1566 			   packet->rhf & RHF_LEN_ERR ? "len " : "",
1567 			   packet->rhf & RHF_ECC_ERR ? "ecc " : "",
1568 			   packet->rhf & RHF_VCRC_ERR ? "vcrc " : "",
1569 			   packet->rhf & RHF_ICRC_ERR ? "icrc " : "",
1570 			   rte);
1571 }
1572 
1573 /*
1574  * The following functions are called by the interrupt handler. They are type
1575  * specific handlers for each packet type.
1576  */
1577 static int process_receive_ib(struct hfi1_packet *packet)
1578 {
1579 	if (hfi1_setup_9B_packet(packet))
1580 		return RHF_RCV_CONTINUE;
1581 
1582 	if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1583 		return RHF_RCV_CONTINUE;
1584 
1585 	trace_hfi1_rcvhdr(packet);
1586 
1587 	if (unlikely(rhf_err_flags(packet->rhf))) {
1588 		handle_eflags(packet);
1589 		return RHF_RCV_CONTINUE;
1590 	}
1591 
1592 	hfi1_ib_rcv(packet);
1593 	return RHF_RCV_CONTINUE;
1594 }
1595 
1596 static inline bool hfi1_is_vnic_packet(struct hfi1_packet *packet)
1597 {
1598 	/* Packet received in VNIC context via RSM */
1599 	if (packet->rcd->is_vnic)
1600 		return true;
1601 
1602 	if ((hfi1_16B_get_l2(packet->ebuf) == OPA_16B_L2_TYPE) &&
1603 	    (hfi1_16B_get_l4(packet->ebuf) == OPA_16B_L4_ETHR))
1604 		return true;
1605 
1606 	return false;
1607 }
1608 
1609 static int process_receive_bypass(struct hfi1_packet *packet)
1610 {
1611 	struct hfi1_devdata *dd = packet->rcd->dd;
1612 
1613 	if (hfi1_is_vnic_packet(packet)) {
1614 		hfi1_vnic_bypass_rcv(packet);
1615 		return RHF_RCV_CONTINUE;
1616 	}
1617 
1618 	if (hfi1_setup_bypass_packet(packet))
1619 		return RHF_RCV_CONTINUE;
1620 
1621 	trace_hfi1_rcvhdr(packet);
1622 
1623 	if (unlikely(rhf_err_flags(packet->rhf))) {
1624 		handle_eflags(packet);
1625 		return RHF_RCV_CONTINUE;
1626 	}
1627 
1628 	if (hfi1_16B_get_l2(packet->hdr) == 0x2) {
1629 		hfi1_16B_rcv(packet);
1630 	} else {
1631 		dd_dev_err(dd,
1632 			   "Bypass packets other than 16B are not supported in normal operation. Dropping\n");
1633 		incr_cntr64(&dd->sw_rcv_bypass_packet_errors);
1634 		if (!(dd->err_info_rcvport.status_and_code &
1635 		      OPA_EI_STATUS_SMASK)) {
1636 			u64 *flits = packet->ebuf;
1637 
1638 			if (flits && !(packet->rhf & RHF_LEN_ERR)) {
1639 				dd->err_info_rcvport.packet_flit1 = flits[0];
1640 				dd->err_info_rcvport.packet_flit2 =
1641 					packet->tlen > sizeof(flits[0]) ?
1642 					flits[1] : 0;
1643 			}
1644 			dd->err_info_rcvport.status_and_code |=
1645 				(OPA_EI_STATUS_SMASK | BAD_L2_ERR);
1646 		}
1647 	}
1648 	return RHF_RCV_CONTINUE;
1649 }
1650 
1651 static int process_receive_error(struct hfi1_packet *packet)
1652 {
1653 	/* KHdrHCRCErr -- KDETH packet with a bad HCRC */
1654 	if (unlikely(
1655 		 hfi1_dbg_fault_suppress_err(&packet->rcd->dd->verbs_dev) &&
1656 		 (rhf_rcv_type_err(packet->rhf) == RHF_RCV_TYPE_ERROR ||
1657 		  packet->rhf & RHF_DC_ERR)))
1658 		return RHF_RCV_CONTINUE;
1659 
1660 	hfi1_setup_ib_header(packet);
1661 	handle_eflags(packet);
1662 
1663 	if (unlikely(rhf_err_flags(packet->rhf)))
1664 		dd_dev_err(packet->rcd->dd,
1665 			   "Unhandled error packet received. Dropping.\n");
1666 
1667 	return RHF_RCV_CONTINUE;
1668 }
1669 
1670 static int kdeth_process_expected(struct hfi1_packet *packet)
1671 {
1672 	hfi1_setup_9B_packet(packet);
1673 	if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1674 		return RHF_RCV_CONTINUE;
1675 
1676 	if (unlikely(rhf_err_flags(packet->rhf)))
1677 		handle_eflags(packet);
1678 
1679 	dd_dev_err(packet->rcd->dd,
1680 		   "Unhandled expected packet received. Dropping.\n");
1681 	return RHF_RCV_CONTINUE;
1682 }
1683 
1684 static int kdeth_process_eager(struct hfi1_packet *packet)
1685 {
1686 	hfi1_setup_9B_packet(packet);
1687 	if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1688 		return RHF_RCV_CONTINUE;
1689 	if (unlikely(rhf_err_flags(packet->rhf)))
1690 		handle_eflags(packet);
1691 
1692 	dd_dev_err(packet->rcd->dd,
1693 		   "Unhandled eager packet received. Dropping.\n");
1694 	return RHF_RCV_CONTINUE;
1695 }
1696 
1697 static int process_receive_invalid(struct hfi1_packet *packet)
1698 {
1699 	dd_dev_err(packet->rcd->dd, "Invalid packet type %d. Dropping\n",
1700 		   rhf_rcv_type(packet->rhf));
1701 	return RHF_RCV_CONTINUE;
1702 }
1703 
1704 void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd)
1705 {
1706 	struct hfi1_packet packet;
1707 	struct ps_mdata mdata;
1708 
1709 	seq_printf(s, "Rcd %u: RcvHdr cnt %u entsize %u %s head %llu tail %llu\n",
1710 		   rcd->ctxt, rcd->rcvhdrq_cnt, rcd->rcvhdrqentsize,
1711 		   HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
1712 		   "dma_rtail" : "nodma_rtail",
1713 		   read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD) &
1714 		   RCV_HDR_HEAD_HEAD_MASK,
1715 		   read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL));
1716 
1717 	init_packet(rcd, &packet);
1718 	init_ps_mdata(&mdata, &packet);
1719 
1720 	while (1) {
1721 		__le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
1722 					 rcd->rhf_offset;
1723 		struct ib_header *hdr;
1724 		u64 rhf = rhf_to_cpu(rhf_addr);
1725 		u32 etype = rhf_rcv_type(rhf), qpn;
1726 		u8 opcode;
1727 		u32 psn;
1728 		u8 lnh;
1729 
1730 		if (ps_done(&mdata, rhf, rcd))
1731 			break;
1732 
1733 		if (ps_skip(&mdata, rhf, rcd))
1734 			goto next;
1735 
1736 		if (etype > RHF_RCV_TYPE_IB)
1737 			goto next;
1738 
1739 		packet.hdr = hfi1_get_msgheader(rcd, rhf_addr);
1740 		hdr = packet.hdr;
1741 
1742 		lnh = be16_to_cpu(hdr->lrh[0]) & 3;
1743 
1744 		if (lnh == HFI1_LRH_BTH)
1745 			packet.ohdr = &hdr->u.oth;
1746 		else if (lnh == HFI1_LRH_GRH)
1747 			packet.ohdr = &hdr->u.l.oth;
1748 		else
1749 			goto next; /* just in case */
1750 
1751 		opcode = (be32_to_cpu(packet.ohdr->bth[0]) >> 24);
1752 		qpn = be32_to_cpu(packet.ohdr->bth[1]) & RVT_QPN_MASK;
1753 		psn = mask_psn(be32_to_cpu(packet.ohdr->bth[2]));
1754 
1755 		seq_printf(s, "\tEnt %u: opcode 0x%x, qpn 0x%x, psn 0x%x\n",
1756 			   mdata.ps_head, opcode, qpn, psn);
1757 next:
1758 		update_ps_mdata(&mdata, rcd);
1759 	}
1760 }
1761 
1762 const rhf_rcv_function_ptr normal_rhf_rcv_functions[] = {
1763 	[RHF_RCV_TYPE_EXPECTED] = kdeth_process_expected,
1764 	[RHF_RCV_TYPE_EAGER] = kdeth_process_eager,
1765 	[RHF_RCV_TYPE_IB] = process_receive_ib,
1766 	[RHF_RCV_TYPE_ERROR] = process_receive_error,
1767 	[RHF_RCV_TYPE_BYPASS] = process_receive_bypass,
1768 	[RHF_RCV_TYPE_INVALID5] = process_receive_invalid,
1769 	[RHF_RCV_TYPE_INVALID6] = process_receive_invalid,
1770 	[RHF_RCV_TYPE_INVALID7] = process_receive_invalid,
1771 };
1772