1 /* 2 * Copyright(c) 2015-2017 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 #include <linux/spinlock.h> 49 #include <linux/pci.h> 50 #include <linux/io.h> 51 #include <linux/delay.h> 52 #include <linux/netdevice.h> 53 #include <linux/vmalloc.h> 54 #include <linux/module.h> 55 #include <linux/prefetch.h> 56 #include <rdma/ib_verbs.h> 57 58 #include "hfi.h" 59 #include "trace.h" 60 #include "qp.h" 61 #include "sdma.h" 62 #include "debugfs.h" 63 #include "vnic.h" 64 65 #undef pr_fmt 66 #define pr_fmt(fmt) DRIVER_NAME ": " fmt 67 68 /* 69 * The size has to be longer than this string, so we can append 70 * board/chip information to it in the initialization code. 71 */ 72 const char ib_hfi1_version[] = HFI1_DRIVER_VERSION "\n"; 73 74 DEFINE_SPINLOCK(hfi1_devs_lock); 75 LIST_HEAD(hfi1_dev_list); 76 DEFINE_MUTEX(hfi1_mutex); /* general driver use */ 77 78 unsigned int hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU; 79 module_param_named(max_mtu, hfi1_max_mtu, uint, S_IRUGO); 80 MODULE_PARM_DESC(max_mtu, "Set max MTU bytes, default is " __stringify( 81 HFI1_DEFAULT_MAX_MTU)); 82 83 unsigned int hfi1_cu = 1; 84 module_param_named(cu, hfi1_cu, uint, S_IRUGO); 85 MODULE_PARM_DESC(cu, "Credit return units"); 86 87 unsigned long hfi1_cap_mask = HFI1_CAP_MASK_DEFAULT; 88 static int hfi1_caps_set(const char *val, const struct kernel_param *kp); 89 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp); 90 static const struct kernel_param_ops cap_ops = { 91 .set = hfi1_caps_set, 92 .get = hfi1_caps_get 93 }; 94 module_param_cb(cap_mask, &cap_ops, &hfi1_cap_mask, S_IWUSR | S_IRUGO); 95 MODULE_PARM_DESC(cap_mask, "Bit mask of enabled/disabled HW features"); 96 97 MODULE_LICENSE("Dual BSD/GPL"); 98 MODULE_DESCRIPTION("Intel Omni-Path Architecture driver"); 99 100 /* 101 * MAX_PKT_RCV is the max # if packets processed per receive interrupt. 102 */ 103 #define MAX_PKT_RECV 64 104 /* 105 * MAX_PKT_THREAD_RCV is the max # of packets processed before 106 * the qp_wait_list queue is flushed. 107 */ 108 #define MAX_PKT_RECV_THREAD (MAX_PKT_RECV * 4) 109 #define EGR_HEAD_UPDATE_THRESHOLD 16 110 111 struct hfi1_ib_stats hfi1_stats; 112 113 static int hfi1_caps_set(const char *val, const struct kernel_param *kp) 114 { 115 int ret = 0; 116 unsigned long *cap_mask_ptr = (unsigned long *)kp->arg, 117 cap_mask = *cap_mask_ptr, value, diff, 118 write_mask = ((HFI1_CAP_WRITABLE_MASK << HFI1_CAP_USER_SHIFT) | 119 HFI1_CAP_WRITABLE_MASK); 120 121 ret = kstrtoul(val, 0, &value); 122 if (ret) { 123 pr_warn("Invalid module parameter value for 'cap_mask'\n"); 124 goto done; 125 } 126 /* Get the changed bits (except the locked bit) */ 127 diff = value ^ (cap_mask & ~HFI1_CAP_LOCKED_SMASK); 128 129 /* Remove any bits that are not allowed to change after driver load */ 130 if (HFI1_CAP_LOCKED() && (diff & ~write_mask)) { 131 pr_warn("Ignoring non-writable capability bits %#lx\n", 132 diff & ~write_mask); 133 diff &= write_mask; 134 } 135 136 /* Mask off any reserved bits */ 137 diff &= ~HFI1_CAP_RESERVED_MASK; 138 /* Clear any previously set and changing bits */ 139 cap_mask &= ~diff; 140 /* Update the bits with the new capability */ 141 cap_mask |= (value & diff); 142 /* Check for any kernel/user restrictions */ 143 diff = (cap_mask & (HFI1_CAP_MUST_HAVE_KERN << HFI1_CAP_USER_SHIFT)) ^ 144 ((cap_mask & HFI1_CAP_MUST_HAVE_KERN) << HFI1_CAP_USER_SHIFT); 145 cap_mask &= ~diff; 146 /* Set the bitmask to the final set */ 147 *cap_mask_ptr = cap_mask; 148 done: 149 return ret; 150 } 151 152 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp) 153 { 154 unsigned long cap_mask = *(unsigned long *)kp->arg; 155 156 cap_mask &= ~HFI1_CAP_LOCKED_SMASK; 157 cap_mask |= ((cap_mask & HFI1_CAP_K2U) << HFI1_CAP_USER_SHIFT); 158 159 return scnprintf(buffer, PAGE_SIZE, "0x%lx", cap_mask); 160 } 161 162 struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi) 163 { 164 struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi); 165 struct hfi1_devdata *dd = container_of(ibdev, 166 struct hfi1_devdata, verbs_dev); 167 return dd->pcidev; 168 } 169 170 /* 171 * Return count of units with at least one port ACTIVE. 172 */ 173 int hfi1_count_active_units(void) 174 { 175 struct hfi1_devdata *dd; 176 struct hfi1_pportdata *ppd; 177 unsigned long flags; 178 int pidx, nunits_active = 0; 179 180 spin_lock_irqsave(&hfi1_devs_lock, flags); 181 list_for_each_entry(dd, &hfi1_dev_list, list) { 182 if (!(dd->flags & HFI1_PRESENT) || !dd->kregbase1) 183 continue; 184 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 185 ppd = dd->pport + pidx; 186 if (ppd->lid && ppd->linkup) { 187 nunits_active++; 188 break; 189 } 190 } 191 } 192 spin_unlock_irqrestore(&hfi1_devs_lock, flags); 193 return nunits_active; 194 } 195 196 /* 197 * Get address of eager buffer from it's index (allocated in chunks, not 198 * contiguous). 199 */ 200 static inline void *get_egrbuf(const struct hfi1_ctxtdata *rcd, u64 rhf, 201 u8 *update) 202 { 203 u32 idx = rhf_egr_index(rhf), offset = rhf_egr_buf_offset(rhf); 204 205 *update |= !(idx & (rcd->egrbufs.threshold - 1)) && !offset; 206 return (void *)(((u64)(rcd->egrbufs.rcvtids[idx].addr)) + 207 (offset * RCV_BUF_BLOCK_SIZE)); 208 } 209 210 static inline void *hfi1_get_header(struct hfi1_devdata *dd, 211 __le32 *rhf_addr) 212 { 213 u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr)); 214 215 return (void *)(rhf_addr - dd->rhf_offset + offset); 216 } 217 218 static inline struct ib_header *hfi1_get_msgheader(struct hfi1_devdata *dd, 219 __le32 *rhf_addr) 220 { 221 return (struct ib_header *)hfi1_get_header(dd, rhf_addr); 222 } 223 224 static inline struct hfi1_16b_header 225 *hfi1_get_16B_header(struct hfi1_devdata *dd, 226 __le32 *rhf_addr) 227 { 228 return (struct hfi1_16b_header *)hfi1_get_header(dd, rhf_addr); 229 } 230 231 /* 232 * Validate and encode the a given RcvArray Buffer size. 233 * The function will check whether the given size falls within 234 * allowed size ranges for the respective type and, optionally, 235 * return the proper encoding. 236 */ 237 int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encoded) 238 { 239 if (unlikely(!PAGE_ALIGNED(size))) 240 return 0; 241 if (unlikely(size < MIN_EAGER_BUFFER)) 242 return 0; 243 if (size > 244 (type == PT_EAGER ? MAX_EAGER_BUFFER : MAX_EXPECTED_BUFFER)) 245 return 0; 246 if (encoded) 247 *encoded = ilog2(size / PAGE_SIZE) + 1; 248 return 1; 249 } 250 251 static void rcv_hdrerr(struct hfi1_ctxtdata *rcd, struct hfi1_pportdata *ppd, 252 struct hfi1_packet *packet) 253 { 254 struct ib_header *rhdr = packet->hdr; 255 u32 rte = rhf_rcv_type_err(packet->rhf); 256 u32 mlid_base; 257 struct hfi1_ibport *ibp = rcd_to_iport(rcd); 258 struct hfi1_devdata *dd = ppd->dd; 259 struct hfi1_ibdev *verbs_dev = &dd->verbs_dev; 260 struct rvt_dev_info *rdi = &verbs_dev->rdi; 261 262 if ((packet->rhf & RHF_DC_ERR) && 263 hfi1_dbg_fault_suppress_err(verbs_dev)) 264 return; 265 266 if (packet->rhf & (RHF_VCRC_ERR | RHF_ICRC_ERR)) 267 return; 268 269 if (packet->etype == RHF_RCV_TYPE_BYPASS) { 270 goto drop; 271 } else { 272 u8 lnh = ib_get_lnh(rhdr); 273 274 mlid_base = be16_to_cpu(IB_MULTICAST_LID_BASE); 275 if (lnh == HFI1_LRH_BTH) { 276 packet->ohdr = &rhdr->u.oth; 277 } else if (lnh == HFI1_LRH_GRH) { 278 packet->ohdr = &rhdr->u.l.oth; 279 packet->grh = &rhdr->u.l.grh; 280 } else { 281 goto drop; 282 } 283 } 284 285 if (packet->rhf & RHF_TID_ERR) { 286 /* For TIDERR and RC QPs preemptively schedule a NAK */ 287 u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */ 288 u32 dlid = ib_get_dlid(rhdr); 289 u32 qp_num; 290 291 /* Sanity check packet */ 292 if (tlen < 24) 293 goto drop; 294 295 /* Check for GRH */ 296 if (packet->grh) { 297 u32 vtf; 298 struct ib_grh *grh = packet->grh; 299 300 if (grh->next_hdr != IB_GRH_NEXT_HDR) 301 goto drop; 302 vtf = be32_to_cpu(grh->version_tclass_flow); 303 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION) 304 goto drop; 305 } 306 307 /* Get the destination QP number. */ 308 qp_num = ib_bth_get_qpn(packet->ohdr); 309 if (dlid < mlid_base) { 310 struct rvt_qp *qp; 311 unsigned long flags; 312 313 rcu_read_lock(); 314 qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num); 315 if (!qp) { 316 rcu_read_unlock(); 317 goto drop; 318 } 319 320 /* 321 * Handle only RC QPs - for other QP types drop error 322 * packet. 323 */ 324 spin_lock_irqsave(&qp->r_lock, flags); 325 326 /* Check for valid receive state. */ 327 if (!(ib_rvt_state_ops[qp->state] & 328 RVT_PROCESS_RECV_OK)) { 329 ibp->rvp.n_pkt_drops++; 330 } 331 332 switch (qp->ibqp.qp_type) { 333 case IB_QPT_RC: 334 hfi1_rc_hdrerr(rcd, packet, qp); 335 break; 336 default: 337 /* For now don't handle any other QP types */ 338 break; 339 } 340 341 spin_unlock_irqrestore(&qp->r_lock, flags); 342 rcu_read_unlock(); 343 } /* Unicast QP */ 344 } /* Valid packet with TIDErr */ 345 346 /* handle "RcvTypeErr" flags */ 347 switch (rte) { 348 case RHF_RTE_ERROR_OP_CODE_ERR: 349 { 350 void *ebuf = NULL; 351 u8 opcode; 352 353 if (rhf_use_egr_bfr(packet->rhf)) 354 ebuf = packet->ebuf; 355 356 if (!ebuf) 357 goto drop; /* this should never happen */ 358 359 opcode = ib_bth_get_opcode(packet->ohdr); 360 if (opcode == IB_OPCODE_CNP) { 361 /* 362 * Only in pre-B0 h/w is the CNP_OPCODE handled 363 * via this code path. 364 */ 365 struct rvt_qp *qp = NULL; 366 u32 lqpn, rqpn; 367 u16 rlid; 368 u8 svc_type, sl, sc5; 369 370 sc5 = hfi1_9B_get_sc5(rhdr, packet->rhf); 371 sl = ibp->sc_to_sl[sc5]; 372 373 lqpn = ib_bth_get_qpn(packet->ohdr); 374 rcu_read_lock(); 375 qp = rvt_lookup_qpn(rdi, &ibp->rvp, lqpn); 376 if (!qp) { 377 rcu_read_unlock(); 378 goto drop; 379 } 380 381 switch (qp->ibqp.qp_type) { 382 case IB_QPT_UD: 383 rlid = 0; 384 rqpn = 0; 385 svc_type = IB_CC_SVCTYPE_UD; 386 break; 387 case IB_QPT_UC: 388 rlid = ib_get_slid(rhdr); 389 rqpn = qp->remote_qpn; 390 svc_type = IB_CC_SVCTYPE_UC; 391 break; 392 default: 393 goto drop; 394 } 395 396 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type); 397 rcu_read_unlock(); 398 } 399 400 packet->rhf &= ~RHF_RCV_TYPE_ERR_SMASK; 401 break; 402 } 403 default: 404 break; 405 } 406 407 drop: 408 return; 409 } 410 411 static inline void init_packet(struct hfi1_ctxtdata *rcd, 412 struct hfi1_packet *packet) 413 { 414 packet->rsize = rcd->rcvhdrqentsize; /* words */ 415 packet->maxcnt = rcd->rcvhdrq_cnt * packet->rsize; /* words */ 416 packet->rcd = rcd; 417 packet->updegr = 0; 418 packet->etail = -1; 419 packet->rhf_addr = get_rhf_addr(rcd); 420 packet->rhf = rhf_to_cpu(packet->rhf_addr); 421 packet->rhqoff = rcd->head; 422 packet->numpkt = 0; 423 } 424 425 /* We support only two types - 9B and 16B for now */ 426 static const hfi1_handle_cnp hfi1_handle_cnp_tbl[2] = { 427 [HFI1_PKT_TYPE_9B] = &return_cnp, 428 [HFI1_PKT_TYPE_16B] = &return_cnp_16B 429 }; 430 431 void hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt, 432 bool do_cnp) 433 { 434 struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num); 435 struct ib_other_headers *ohdr = pkt->ohdr; 436 struct ib_grh *grh = pkt->grh; 437 u32 rqpn = 0, bth1; 438 u16 pkey, rlid, dlid = ib_get_dlid(pkt->hdr); 439 u8 hdr_type, sc, svc_type; 440 bool is_mcast = false; 441 442 if (pkt->etype == RHF_RCV_TYPE_BYPASS) { 443 is_mcast = hfi1_is_16B_mcast(dlid); 444 pkey = hfi1_16B_get_pkey(pkt->hdr); 445 sc = hfi1_16B_get_sc(pkt->hdr); 446 hdr_type = HFI1_PKT_TYPE_16B; 447 } else { 448 is_mcast = (dlid > be16_to_cpu(IB_MULTICAST_LID_BASE)) && 449 (dlid != be16_to_cpu(IB_LID_PERMISSIVE)); 450 pkey = ib_bth_get_pkey(ohdr); 451 sc = hfi1_9B_get_sc5(pkt->hdr, pkt->rhf); 452 hdr_type = HFI1_PKT_TYPE_9B; 453 } 454 455 switch (qp->ibqp.qp_type) { 456 case IB_QPT_SMI: 457 case IB_QPT_GSI: 458 case IB_QPT_UD: 459 rlid = ib_get_slid(pkt->hdr); 460 rqpn = ib_get_sqpn(pkt->ohdr); 461 svc_type = IB_CC_SVCTYPE_UD; 462 break; 463 case IB_QPT_UC: 464 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr); 465 rqpn = qp->remote_qpn; 466 svc_type = IB_CC_SVCTYPE_UC; 467 break; 468 case IB_QPT_RC: 469 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr); 470 rqpn = qp->remote_qpn; 471 svc_type = IB_CC_SVCTYPE_RC; 472 break; 473 default: 474 return; 475 } 476 477 bth1 = be32_to_cpu(ohdr->bth[1]); 478 /* Call appropriate CNP handler */ 479 if (do_cnp && (bth1 & IB_FECN_SMASK)) 480 hfi1_handle_cnp_tbl[hdr_type](ibp, qp, rqpn, pkey, 481 dlid, rlid, sc, grh); 482 483 if (!is_mcast && (bth1 & IB_BECN_SMASK)) { 484 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 485 u32 lqpn = bth1 & RVT_QPN_MASK; 486 u8 sl = ibp->sc_to_sl[sc]; 487 488 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type); 489 } 490 491 } 492 493 struct ps_mdata { 494 struct hfi1_ctxtdata *rcd; 495 u32 rsize; 496 u32 maxcnt; 497 u32 ps_head; 498 u32 ps_tail; 499 u32 ps_seq; 500 }; 501 502 static inline void init_ps_mdata(struct ps_mdata *mdata, 503 struct hfi1_packet *packet) 504 { 505 struct hfi1_ctxtdata *rcd = packet->rcd; 506 507 mdata->rcd = rcd; 508 mdata->rsize = packet->rsize; 509 mdata->maxcnt = packet->maxcnt; 510 mdata->ps_head = packet->rhqoff; 511 512 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) { 513 mdata->ps_tail = get_rcvhdrtail(rcd); 514 if (rcd->ctxt == HFI1_CTRL_CTXT) 515 mdata->ps_seq = rcd->seq_cnt; 516 else 517 mdata->ps_seq = 0; /* not used with DMA_RTAIL */ 518 } else { 519 mdata->ps_tail = 0; /* used only with DMA_RTAIL*/ 520 mdata->ps_seq = rcd->seq_cnt; 521 } 522 } 523 524 static inline int ps_done(struct ps_mdata *mdata, u64 rhf, 525 struct hfi1_ctxtdata *rcd) 526 { 527 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) 528 return mdata->ps_head == mdata->ps_tail; 529 return mdata->ps_seq != rhf_rcv_seq(rhf); 530 } 531 532 static inline int ps_skip(struct ps_mdata *mdata, u64 rhf, 533 struct hfi1_ctxtdata *rcd) 534 { 535 /* 536 * Control context can potentially receive an invalid rhf. 537 * Drop such packets. 538 */ 539 if ((rcd->ctxt == HFI1_CTRL_CTXT) && (mdata->ps_head != mdata->ps_tail)) 540 return mdata->ps_seq != rhf_rcv_seq(rhf); 541 542 return 0; 543 } 544 545 static inline void update_ps_mdata(struct ps_mdata *mdata, 546 struct hfi1_ctxtdata *rcd) 547 { 548 mdata->ps_head += mdata->rsize; 549 if (mdata->ps_head >= mdata->maxcnt) 550 mdata->ps_head = 0; 551 552 /* Control context must do seq counting */ 553 if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) || 554 (rcd->ctxt == HFI1_CTRL_CTXT)) { 555 if (++mdata->ps_seq > 13) 556 mdata->ps_seq = 1; 557 } 558 } 559 560 /* 561 * prescan_rxq - search through the receive queue looking for packets 562 * containing Excplicit Congestion Notifications (FECNs, or BECNs). 563 * When an ECN is found, process the Congestion Notification, and toggle 564 * it off. 565 * This is declared as a macro to allow quick checking of the port to avoid 566 * the overhead of a function call if not enabled. 567 */ 568 #define prescan_rxq(rcd, packet) \ 569 do { \ 570 if (rcd->ppd->cc_prescan) \ 571 __prescan_rxq(packet); \ 572 } while (0) 573 static void __prescan_rxq(struct hfi1_packet *packet) 574 { 575 struct hfi1_ctxtdata *rcd = packet->rcd; 576 struct ps_mdata mdata; 577 578 init_ps_mdata(&mdata, packet); 579 580 while (1) { 581 struct hfi1_devdata *dd = rcd->dd; 582 struct hfi1_ibport *ibp = rcd_to_iport(rcd); 583 __le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head + 584 dd->rhf_offset; 585 struct rvt_qp *qp; 586 struct ib_header *hdr; 587 struct rvt_dev_info *rdi = &dd->verbs_dev.rdi; 588 u64 rhf = rhf_to_cpu(rhf_addr); 589 u32 etype = rhf_rcv_type(rhf), qpn, bth1; 590 int is_ecn = 0; 591 u8 lnh; 592 593 if (ps_done(&mdata, rhf, rcd)) 594 break; 595 596 if (ps_skip(&mdata, rhf, rcd)) 597 goto next; 598 599 if (etype != RHF_RCV_TYPE_IB) 600 goto next; 601 602 packet->hdr = hfi1_get_msgheader(dd, rhf_addr); 603 hdr = packet->hdr; 604 lnh = ib_get_lnh(hdr); 605 606 if (lnh == HFI1_LRH_BTH) { 607 packet->ohdr = &hdr->u.oth; 608 packet->grh = NULL; 609 } else if (lnh == HFI1_LRH_GRH) { 610 packet->ohdr = &hdr->u.l.oth; 611 packet->grh = &hdr->u.l.grh; 612 } else { 613 goto next; /* just in case */ 614 } 615 616 bth1 = be32_to_cpu(packet->ohdr->bth[1]); 617 is_ecn = !!(bth1 & (IB_FECN_SMASK | IB_BECN_SMASK)); 618 619 if (!is_ecn) 620 goto next; 621 622 qpn = bth1 & RVT_QPN_MASK; 623 rcu_read_lock(); 624 qp = rvt_lookup_qpn(rdi, &ibp->rvp, qpn); 625 626 if (!qp) { 627 rcu_read_unlock(); 628 goto next; 629 } 630 631 process_ecn(qp, packet, true); 632 rcu_read_unlock(); 633 634 /* turn off BECN, FECN */ 635 bth1 &= ~(IB_FECN_SMASK | IB_BECN_SMASK); 636 packet->ohdr->bth[1] = cpu_to_be32(bth1); 637 next: 638 update_ps_mdata(&mdata, rcd); 639 } 640 } 641 642 static void process_rcv_qp_work(struct hfi1_packet *packet) 643 { 644 struct rvt_qp *qp, *nqp; 645 struct hfi1_ctxtdata *rcd = packet->rcd; 646 647 /* 648 * Iterate over all QPs waiting to respond. 649 * The list won't change since the IRQ is only run on one CPU. 650 */ 651 list_for_each_entry_safe(qp, nqp, &rcd->qp_wait_list, rspwait) { 652 list_del_init(&qp->rspwait); 653 if (qp->r_flags & RVT_R_RSP_NAK) { 654 qp->r_flags &= ~RVT_R_RSP_NAK; 655 packet->qp = qp; 656 hfi1_send_rc_ack(packet, 0); 657 } 658 if (qp->r_flags & RVT_R_RSP_SEND) { 659 unsigned long flags; 660 661 qp->r_flags &= ~RVT_R_RSP_SEND; 662 spin_lock_irqsave(&qp->s_lock, flags); 663 if (ib_rvt_state_ops[qp->state] & 664 RVT_PROCESS_OR_FLUSH_SEND) 665 hfi1_schedule_send(qp); 666 spin_unlock_irqrestore(&qp->s_lock, flags); 667 } 668 rvt_put_qp(qp); 669 } 670 } 671 672 static noinline int max_packet_exceeded(struct hfi1_packet *packet, int thread) 673 { 674 if (thread) { 675 if ((packet->numpkt & (MAX_PKT_RECV_THREAD - 1)) == 0) 676 /* allow defered processing */ 677 process_rcv_qp_work(packet); 678 cond_resched(); 679 return RCV_PKT_OK; 680 } else { 681 this_cpu_inc(*packet->rcd->dd->rcv_limit); 682 return RCV_PKT_LIMIT; 683 } 684 } 685 686 static inline int check_max_packet(struct hfi1_packet *packet, int thread) 687 { 688 int ret = RCV_PKT_OK; 689 690 if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0)) 691 ret = max_packet_exceeded(packet, thread); 692 return ret; 693 } 694 695 static noinline int skip_rcv_packet(struct hfi1_packet *packet, int thread) 696 { 697 int ret; 698 699 /* Set up for the next packet */ 700 packet->rhqoff += packet->rsize; 701 if (packet->rhqoff >= packet->maxcnt) 702 packet->rhqoff = 0; 703 704 packet->numpkt++; 705 ret = check_max_packet(packet, thread); 706 707 packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff + 708 packet->rcd->dd->rhf_offset; 709 packet->rhf = rhf_to_cpu(packet->rhf_addr); 710 711 return ret; 712 } 713 714 static inline int process_rcv_packet(struct hfi1_packet *packet, int thread) 715 { 716 int ret; 717 718 packet->etype = rhf_rcv_type(packet->rhf); 719 720 /* total length */ 721 packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */ 722 /* retrieve eager buffer details */ 723 packet->ebuf = NULL; 724 if (rhf_use_egr_bfr(packet->rhf)) { 725 packet->etail = rhf_egr_index(packet->rhf); 726 packet->ebuf = get_egrbuf(packet->rcd, packet->rhf, 727 &packet->updegr); 728 /* 729 * Prefetch the contents of the eager buffer. It is 730 * OK to send a negative length to prefetch_range(). 731 * The +2 is the size of the RHF. 732 */ 733 prefetch_range(packet->ebuf, 734 packet->tlen - ((packet->rcd->rcvhdrqentsize - 735 (rhf_hdrq_offset(packet->rhf) 736 + 2)) * 4)); 737 } 738 739 /* 740 * Call a type specific handler for the packet. We 741 * should be able to trust that etype won't be beyond 742 * the range of valid indexes. If so something is really 743 * wrong and we can probably just let things come 744 * crashing down. There is no need to eat another 745 * comparison in this performance critical code. 746 */ 747 packet->rcd->dd->rhf_rcv_function_map[packet->etype](packet); 748 packet->numpkt++; 749 750 /* Set up for the next packet */ 751 packet->rhqoff += packet->rsize; 752 if (packet->rhqoff >= packet->maxcnt) 753 packet->rhqoff = 0; 754 755 ret = check_max_packet(packet, thread); 756 757 packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff + 758 packet->rcd->dd->rhf_offset; 759 packet->rhf = rhf_to_cpu(packet->rhf_addr); 760 761 return ret; 762 } 763 764 static inline void process_rcv_update(int last, struct hfi1_packet *packet) 765 { 766 /* 767 * Update head regs etc., every 16 packets, if not last pkt, 768 * to help prevent rcvhdrq overflows, when many packets 769 * are processed and queue is nearly full. 770 * Don't request an interrupt for intermediate updates. 771 */ 772 if (!last && !(packet->numpkt & 0xf)) { 773 update_usrhead(packet->rcd, packet->rhqoff, packet->updegr, 774 packet->etail, 0, 0); 775 packet->updegr = 0; 776 } 777 packet->grh = NULL; 778 } 779 780 static inline void finish_packet(struct hfi1_packet *packet) 781 { 782 /* 783 * Nothing we need to free for the packet. 784 * 785 * The only thing we need to do is a final update and call for an 786 * interrupt 787 */ 788 update_usrhead(packet->rcd, packet->rcd->head, packet->updegr, 789 packet->etail, rcv_intr_dynamic, packet->numpkt); 790 } 791 792 /* 793 * Handle receive interrupts when using the no dma rtail option. 794 */ 795 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread) 796 { 797 u32 seq; 798 int last = RCV_PKT_OK; 799 struct hfi1_packet packet; 800 801 init_packet(rcd, &packet); 802 seq = rhf_rcv_seq(packet.rhf); 803 if (seq != rcd->seq_cnt) { 804 last = RCV_PKT_DONE; 805 goto bail; 806 } 807 808 prescan_rxq(rcd, &packet); 809 810 while (last == RCV_PKT_OK) { 811 last = process_rcv_packet(&packet, thread); 812 seq = rhf_rcv_seq(packet.rhf); 813 if (++rcd->seq_cnt > 13) 814 rcd->seq_cnt = 1; 815 if (seq != rcd->seq_cnt) 816 last = RCV_PKT_DONE; 817 process_rcv_update(last, &packet); 818 } 819 process_rcv_qp_work(&packet); 820 rcd->head = packet.rhqoff; 821 bail: 822 finish_packet(&packet); 823 return last; 824 } 825 826 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread) 827 { 828 u32 hdrqtail; 829 int last = RCV_PKT_OK; 830 struct hfi1_packet packet; 831 832 init_packet(rcd, &packet); 833 hdrqtail = get_rcvhdrtail(rcd); 834 if (packet.rhqoff == hdrqtail) { 835 last = RCV_PKT_DONE; 836 goto bail; 837 } 838 smp_rmb(); /* prevent speculative reads of dma'ed hdrq */ 839 840 prescan_rxq(rcd, &packet); 841 842 while (last == RCV_PKT_OK) { 843 last = process_rcv_packet(&packet, thread); 844 if (packet.rhqoff == hdrqtail) 845 last = RCV_PKT_DONE; 846 process_rcv_update(last, &packet); 847 } 848 process_rcv_qp_work(&packet); 849 rcd->head = packet.rhqoff; 850 bail: 851 finish_packet(&packet); 852 return last; 853 } 854 855 static inline void set_nodma_rtail(struct hfi1_devdata *dd, u16 ctxt) 856 { 857 struct hfi1_ctxtdata *rcd; 858 u16 i; 859 860 /* 861 * For dynamically allocated kernel contexts (like vnic) switch 862 * interrupt handler only for that context. Otherwise, switch 863 * interrupt handler for all statically allocated kernel contexts. 864 */ 865 if (ctxt >= dd->first_dyn_alloc_ctxt) { 866 rcd = hfi1_rcd_get_by_index_safe(dd, ctxt); 867 if (rcd) { 868 rcd->do_interrupt = 869 &handle_receive_interrupt_nodma_rtail; 870 hfi1_rcd_put(rcd); 871 } 872 return; 873 } 874 875 for (i = HFI1_CTRL_CTXT + 1; i < dd->first_dyn_alloc_ctxt; i++) { 876 rcd = hfi1_rcd_get_by_index(dd, i); 877 if (rcd) 878 rcd->do_interrupt = 879 &handle_receive_interrupt_nodma_rtail; 880 hfi1_rcd_put(rcd); 881 } 882 } 883 884 static inline void set_dma_rtail(struct hfi1_devdata *dd, u16 ctxt) 885 { 886 struct hfi1_ctxtdata *rcd; 887 u16 i; 888 889 /* 890 * For dynamically allocated kernel contexts (like vnic) switch 891 * interrupt handler only for that context. Otherwise, switch 892 * interrupt handler for all statically allocated kernel contexts. 893 */ 894 if (ctxt >= dd->first_dyn_alloc_ctxt) { 895 rcd = hfi1_rcd_get_by_index_safe(dd, ctxt); 896 if (rcd) { 897 rcd->do_interrupt = 898 &handle_receive_interrupt_dma_rtail; 899 hfi1_rcd_put(rcd); 900 } 901 return; 902 } 903 904 for (i = HFI1_CTRL_CTXT + 1; i < dd->first_dyn_alloc_ctxt; i++) { 905 rcd = hfi1_rcd_get_by_index(dd, i); 906 if (rcd) 907 rcd->do_interrupt = 908 &handle_receive_interrupt_dma_rtail; 909 hfi1_rcd_put(rcd); 910 } 911 } 912 913 void set_all_slowpath(struct hfi1_devdata *dd) 914 { 915 struct hfi1_ctxtdata *rcd; 916 u16 i; 917 918 /* HFI1_CTRL_CTXT must always use the slow path interrupt handler */ 919 for (i = HFI1_CTRL_CTXT + 1; i < dd->num_rcv_contexts; i++) { 920 rcd = hfi1_rcd_get_by_index(dd, i); 921 if (!rcd) 922 continue; 923 if (i < dd->first_dyn_alloc_ctxt || rcd->is_vnic) 924 rcd->do_interrupt = &handle_receive_interrupt; 925 926 hfi1_rcd_put(rcd); 927 } 928 } 929 930 static inline int set_armed_to_active(struct hfi1_ctxtdata *rcd, 931 struct hfi1_packet *packet, 932 struct hfi1_devdata *dd) 933 { 934 struct work_struct *lsaw = &rcd->ppd->linkstate_active_work; 935 u8 etype = rhf_rcv_type(packet->rhf); 936 u8 sc = SC15_PACKET; 937 938 if (etype == RHF_RCV_TYPE_IB) { 939 struct ib_header *hdr = hfi1_get_msgheader(packet->rcd->dd, 940 packet->rhf_addr); 941 sc = hfi1_9B_get_sc5(hdr, packet->rhf); 942 } else if (etype == RHF_RCV_TYPE_BYPASS) { 943 struct hfi1_16b_header *hdr = hfi1_get_16B_header( 944 packet->rcd->dd, 945 packet->rhf_addr); 946 sc = hfi1_16B_get_sc(hdr); 947 } 948 if (sc != SC15_PACKET) { 949 int hwstate = driver_lstate(rcd->ppd); 950 951 if (hwstate != IB_PORT_ACTIVE) { 952 dd_dev_info(dd, 953 "Unexpected link state %s\n", 954 opa_lstate_name(hwstate)); 955 return 0; 956 } 957 958 queue_work(rcd->ppd->link_wq, lsaw); 959 return 1; 960 } 961 return 0; 962 } 963 964 /* 965 * handle_receive_interrupt - receive a packet 966 * @rcd: the context 967 * 968 * Called from interrupt handler for errors or receive interrupt. 969 * This is the slow path interrupt handler. 970 */ 971 int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread) 972 { 973 struct hfi1_devdata *dd = rcd->dd; 974 u32 hdrqtail; 975 int needset, last = RCV_PKT_OK; 976 struct hfi1_packet packet; 977 int skip_pkt = 0; 978 979 /* Control context will always use the slow path interrupt handler */ 980 needset = (rcd->ctxt == HFI1_CTRL_CTXT) ? 0 : 1; 981 982 init_packet(rcd, &packet); 983 984 if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) { 985 u32 seq = rhf_rcv_seq(packet.rhf); 986 987 if (seq != rcd->seq_cnt) { 988 last = RCV_PKT_DONE; 989 goto bail; 990 } 991 hdrqtail = 0; 992 } else { 993 hdrqtail = get_rcvhdrtail(rcd); 994 if (packet.rhqoff == hdrqtail) { 995 last = RCV_PKT_DONE; 996 goto bail; 997 } 998 smp_rmb(); /* prevent speculative reads of dma'ed hdrq */ 999 1000 /* 1001 * Control context can potentially receive an invalid 1002 * rhf. Drop such packets. 1003 */ 1004 if (rcd->ctxt == HFI1_CTRL_CTXT) { 1005 u32 seq = rhf_rcv_seq(packet.rhf); 1006 1007 if (seq != rcd->seq_cnt) 1008 skip_pkt = 1; 1009 } 1010 } 1011 1012 prescan_rxq(rcd, &packet); 1013 1014 while (last == RCV_PKT_OK) { 1015 if (unlikely(dd->do_drop && 1016 atomic_xchg(&dd->drop_packet, DROP_PACKET_OFF) == 1017 DROP_PACKET_ON)) { 1018 dd->do_drop = 0; 1019 1020 /* On to the next packet */ 1021 packet.rhqoff += packet.rsize; 1022 packet.rhf_addr = (__le32 *)rcd->rcvhdrq + 1023 packet.rhqoff + 1024 dd->rhf_offset; 1025 packet.rhf = rhf_to_cpu(packet.rhf_addr); 1026 1027 } else if (skip_pkt) { 1028 last = skip_rcv_packet(&packet, thread); 1029 skip_pkt = 0; 1030 } else { 1031 /* Auto activate link on non-SC15 packet receive */ 1032 if (unlikely(rcd->ppd->host_link_state == 1033 HLS_UP_ARMED) && 1034 set_armed_to_active(rcd, &packet, dd)) 1035 goto bail; 1036 last = process_rcv_packet(&packet, thread); 1037 } 1038 1039 if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) { 1040 u32 seq = rhf_rcv_seq(packet.rhf); 1041 1042 if (++rcd->seq_cnt > 13) 1043 rcd->seq_cnt = 1; 1044 if (seq != rcd->seq_cnt) 1045 last = RCV_PKT_DONE; 1046 if (needset) { 1047 dd_dev_info(dd, "Switching to NO_DMA_RTAIL\n"); 1048 set_nodma_rtail(dd, rcd->ctxt); 1049 needset = 0; 1050 } 1051 } else { 1052 if (packet.rhqoff == hdrqtail) 1053 last = RCV_PKT_DONE; 1054 /* 1055 * Control context can potentially receive an invalid 1056 * rhf. Drop such packets. 1057 */ 1058 if (rcd->ctxt == HFI1_CTRL_CTXT) { 1059 u32 seq = rhf_rcv_seq(packet.rhf); 1060 1061 if (++rcd->seq_cnt > 13) 1062 rcd->seq_cnt = 1; 1063 if (!last && (seq != rcd->seq_cnt)) 1064 skip_pkt = 1; 1065 } 1066 1067 if (needset) { 1068 dd_dev_info(dd, 1069 "Switching to DMA_RTAIL\n"); 1070 set_dma_rtail(dd, rcd->ctxt); 1071 needset = 0; 1072 } 1073 } 1074 1075 process_rcv_update(last, &packet); 1076 } 1077 1078 process_rcv_qp_work(&packet); 1079 rcd->head = packet.rhqoff; 1080 1081 bail: 1082 /* 1083 * Always write head at end, and setup rcv interrupt, even 1084 * if no packets were processed. 1085 */ 1086 finish_packet(&packet); 1087 return last; 1088 } 1089 1090 /* 1091 * We may discover in the interrupt that the hardware link state has 1092 * changed from ARMED to ACTIVE (due to the arrival of a non-SC15 packet), 1093 * and we need to update the driver's notion of the link state. We cannot 1094 * run set_link_state from interrupt context, so we queue this function on 1095 * a workqueue. 1096 * 1097 * We delay the regular interrupt processing until after the state changes 1098 * so that the link will be in the correct state by the time any application 1099 * we wake up attempts to send a reply to any message it received. 1100 * (Subsequent receive interrupts may possibly force the wakeup before we 1101 * update the link state.) 1102 * 1103 * The rcd is freed in hfi1_free_ctxtdata after hfi1_postinit_cleanup invokes 1104 * dd->f_cleanup(dd) to disable the interrupt handler and flush workqueues, 1105 * so we're safe from use-after-free of the rcd. 1106 */ 1107 void receive_interrupt_work(struct work_struct *work) 1108 { 1109 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 1110 linkstate_active_work); 1111 struct hfi1_devdata *dd = ppd->dd; 1112 struct hfi1_ctxtdata *rcd; 1113 u16 i; 1114 1115 /* Received non-SC15 packet implies neighbor_normal */ 1116 ppd->neighbor_normal = 1; 1117 set_link_state(ppd, HLS_UP_ACTIVE); 1118 1119 /* 1120 * Interrupt all statically allocated kernel contexts that could 1121 * have had an interrupt during auto activation. 1122 */ 1123 for (i = HFI1_CTRL_CTXT; i < dd->first_dyn_alloc_ctxt; i++) { 1124 rcd = hfi1_rcd_get_by_index(dd, i); 1125 if (rcd) 1126 force_recv_intr(rcd); 1127 hfi1_rcd_put(rcd); 1128 } 1129 } 1130 1131 /* 1132 * Convert a given MTU size to the on-wire MAD packet enumeration. 1133 * Return -1 if the size is invalid. 1134 */ 1135 int mtu_to_enum(u32 mtu, int default_if_bad) 1136 { 1137 switch (mtu) { 1138 case 0: return OPA_MTU_0; 1139 case 256: return OPA_MTU_256; 1140 case 512: return OPA_MTU_512; 1141 case 1024: return OPA_MTU_1024; 1142 case 2048: return OPA_MTU_2048; 1143 case 4096: return OPA_MTU_4096; 1144 case 8192: return OPA_MTU_8192; 1145 case 10240: return OPA_MTU_10240; 1146 } 1147 return default_if_bad; 1148 } 1149 1150 u16 enum_to_mtu(int mtu) 1151 { 1152 switch (mtu) { 1153 case OPA_MTU_0: return 0; 1154 case OPA_MTU_256: return 256; 1155 case OPA_MTU_512: return 512; 1156 case OPA_MTU_1024: return 1024; 1157 case OPA_MTU_2048: return 2048; 1158 case OPA_MTU_4096: return 4096; 1159 case OPA_MTU_8192: return 8192; 1160 case OPA_MTU_10240: return 10240; 1161 default: return 0xffff; 1162 } 1163 } 1164 1165 /* 1166 * set_mtu - set the MTU 1167 * @ppd: the per port data 1168 * 1169 * We can handle "any" incoming size, the issue here is whether we 1170 * need to restrict our outgoing size. We do not deal with what happens 1171 * to programs that are already running when the size changes. 1172 */ 1173 int set_mtu(struct hfi1_pportdata *ppd) 1174 { 1175 struct hfi1_devdata *dd = ppd->dd; 1176 int i, drain, ret = 0, is_up = 0; 1177 1178 ppd->ibmtu = 0; 1179 for (i = 0; i < ppd->vls_supported; i++) 1180 if (ppd->ibmtu < dd->vld[i].mtu) 1181 ppd->ibmtu = dd->vld[i].mtu; 1182 ppd->ibmaxlen = ppd->ibmtu + lrh_max_header_bytes(ppd->dd); 1183 1184 mutex_lock(&ppd->hls_lock); 1185 if (ppd->host_link_state == HLS_UP_INIT || 1186 ppd->host_link_state == HLS_UP_ARMED || 1187 ppd->host_link_state == HLS_UP_ACTIVE) 1188 is_up = 1; 1189 1190 drain = !is_ax(dd) && is_up; 1191 1192 if (drain) 1193 /* 1194 * MTU is specified per-VL. To ensure that no packet gets 1195 * stuck (due, e.g., to the MTU for the packet's VL being 1196 * reduced), empty the per-VL FIFOs before adjusting MTU. 1197 */ 1198 ret = stop_drain_data_vls(dd); 1199 1200 if (ret) { 1201 dd_dev_err(dd, "%s: cannot stop/drain VLs - refusing to change per-VL MTUs\n", 1202 __func__); 1203 goto err; 1204 } 1205 1206 hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_MTU, 0); 1207 1208 if (drain) 1209 open_fill_data_vls(dd); /* reopen all VLs */ 1210 1211 err: 1212 mutex_unlock(&ppd->hls_lock); 1213 1214 return ret; 1215 } 1216 1217 int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc) 1218 { 1219 struct hfi1_devdata *dd = ppd->dd; 1220 1221 ppd->lid = lid; 1222 ppd->lmc = lmc; 1223 hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LIDLMC, 0); 1224 1225 dd_dev_info(dd, "port %u: got a lid: 0x%x\n", ppd->port, lid); 1226 1227 return 0; 1228 } 1229 1230 void shutdown_led_override(struct hfi1_pportdata *ppd) 1231 { 1232 struct hfi1_devdata *dd = ppd->dd; 1233 1234 /* 1235 * This pairs with the memory barrier in hfi1_start_led_override to 1236 * ensure that we read the correct state of LED beaconing represented 1237 * by led_override_timer_active 1238 */ 1239 smp_rmb(); 1240 if (atomic_read(&ppd->led_override_timer_active)) { 1241 del_timer_sync(&ppd->led_override_timer); 1242 atomic_set(&ppd->led_override_timer_active, 0); 1243 /* Ensure the atomic_set is visible to all CPUs */ 1244 smp_wmb(); 1245 } 1246 1247 /* Hand control of the LED to the DC for normal operation */ 1248 write_csr(dd, DCC_CFG_LED_CNTRL, 0); 1249 } 1250 1251 static void run_led_override(struct timer_list *t) 1252 { 1253 struct hfi1_pportdata *ppd = from_timer(ppd, t, led_override_timer); 1254 struct hfi1_devdata *dd = ppd->dd; 1255 unsigned long timeout; 1256 int phase_idx; 1257 1258 if (!(dd->flags & HFI1_INITTED)) 1259 return; 1260 1261 phase_idx = ppd->led_override_phase & 1; 1262 1263 setextled(dd, phase_idx); 1264 1265 timeout = ppd->led_override_vals[phase_idx]; 1266 1267 /* Set up for next phase */ 1268 ppd->led_override_phase = !ppd->led_override_phase; 1269 1270 mod_timer(&ppd->led_override_timer, jiffies + timeout); 1271 } 1272 1273 /* 1274 * To have the LED blink in a particular pattern, provide timeon and timeoff 1275 * in milliseconds. 1276 * To turn off custom blinking and return to normal operation, use 1277 * shutdown_led_override() 1278 */ 1279 void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon, 1280 unsigned int timeoff) 1281 { 1282 if (!(ppd->dd->flags & HFI1_INITTED)) 1283 return; 1284 1285 /* Convert to jiffies for direct use in timer */ 1286 ppd->led_override_vals[0] = msecs_to_jiffies(timeoff); 1287 ppd->led_override_vals[1] = msecs_to_jiffies(timeon); 1288 1289 /* Arbitrarily start from LED on phase */ 1290 ppd->led_override_phase = 1; 1291 1292 /* 1293 * If the timer has not already been started, do so. Use a "quick" 1294 * timeout so the handler will be called soon to look at our request. 1295 */ 1296 if (!timer_pending(&ppd->led_override_timer)) { 1297 timer_setup(&ppd->led_override_timer, run_led_override, 0); 1298 ppd->led_override_timer.expires = jiffies + 1; 1299 add_timer(&ppd->led_override_timer); 1300 atomic_set(&ppd->led_override_timer_active, 1); 1301 /* Ensure the atomic_set is visible to all CPUs */ 1302 smp_wmb(); 1303 } 1304 } 1305 1306 /** 1307 * hfi1_reset_device - reset the chip if possible 1308 * @unit: the device to reset 1309 * 1310 * Whether or not reset is successful, we attempt to re-initialize the chip 1311 * (that is, much like a driver unload/reload). We clear the INITTED flag 1312 * so that the various entry points will fail until we reinitialize. For 1313 * now, we only allow this if no user contexts are open that use chip resources 1314 */ 1315 int hfi1_reset_device(int unit) 1316 { 1317 int ret; 1318 struct hfi1_devdata *dd = hfi1_lookup(unit); 1319 struct hfi1_pportdata *ppd; 1320 int pidx; 1321 1322 if (!dd) { 1323 ret = -ENODEV; 1324 goto bail; 1325 } 1326 1327 dd_dev_info(dd, "Reset on unit %u requested\n", unit); 1328 1329 if (!dd->kregbase1 || !(dd->flags & HFI1_PRESENT)) { 1330 dd_dev_info(dd, 1331 "Invalid unit number %u or not initialized or not present\n", 1332 unit); 1333 ret = -ENXIO; 1334 goto bail; 1335 } 1336 1337 /* If there are any user/vnic contexts, we cannot reset */ 1338 mutex_lock(&hfi1_mutex); 1339 if (dd->rcd) 1340 if (hfi1_stats.sps_ctxts) { 1341 mutex_unlock(&hfi1_mutex); 1342 ret = -EBUSY; 1343 goto bail; 1344 } 1345 mutex_unlock(&hfi1_mutex); 1346 1347 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1348 ppd = dd->pport + pidx; 1349 1350 shutdown_led_override(ppd); 1351 } 1352 if (dd->flags & HFI1_HAS_SEND_DMA) 1353 sdma_exit(dd); 1354 1355 hfi1_reset_cpu_counters(dd); 1356 1357 ret = hfi1_init(dd, 1); 1358 1359 if (ret) 1360 dd_dev_err(dd, 1361 "Reinitialize unit %u after reset failed with %d\n", 1362 unit, ret); 1363 else 1364 dd_dev_info(dd, "Reinitialized unit %u after resetting\n", 1365 unit); 1366 1367 bail: 1368 return ret; 1369 } 1370 1371 static inline void hfi1_setup_ib_header(struct hfi1_packet *packet) 1372 { 1373 packet->hdr = (struct hfi1_ib_message_header *) 1374 hfi1_get_msgheader(packet->rcd->dd, 1375 packet->rhf_addr); 1376 packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr; 1377 } 1378 1379 static int hfi1_bypass_ingress_pkt_check(struct hfi1_packet *packet) 1380 { 1381 struct hfi1_pportdata *ppd = packet->rcd->ppd; 1382 1383 /* slid and dlid cannot be 0 */ 1384 if ((!packet->slid) || (!packet->dlid)) 1385 return -EINVAL; 1386 1387 /* Compare port lid with incoming packet dlid */ 1388 if ((!(hfi1_is_16B_mcast(packet->dlid))) && 1389 (packet->dlid != 1390 opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))) { 1391 if (packet->dlid != ppd->lid) 1392 return -EINVAL; 1393 } 1394 1395 /* No multicast packets with SC15 */ 1396 if ((hfi1_is_16B_mcast(packet->dlid)) && (packet->sc == 0xF)) 1397 return -EINVAL; 1398 1399 /* Packets with permissive DLID always on SC15 */ 1400 if ((packet->dlid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 1401 16B)) && 1402 (packet->sc != 0xF)) 1403 return -EINVAL; 1404 1405 return 0; 1406 } 1407 1408 static int hfi1_setup_9B_packet(struct hfi1_packet *packet) 1409 { 1410 struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd); 1411 struct ib_header *hdr; 1412 u8 lnh; 1413 1414 hfi1_setup_ib_header(packet); 1415 hdr = packet->hdr; 1416 1417 lnh = ib_get_lnh(hdr); 1418 if (lnh == HFI1_LRH_BTH) { 1419 packet->ohdr = &hdr->u.oth; 1420 packet->grh = NULL; 1421 } else if (lnh == HFI1_LRH_GRH) { 1422 u32 vtf; 1423 1424 packet->ohdr = &hdr->u.l.oth; 1425 packet->grh = &hdr->u.l.grh; 1426 if (packet->grh->next_hdr != IB_GRH_NEXT_HDR) 1427 goto drop; 1428 vtf = be32_to_cpu(packet->grh->version_tclass_flow); 1429 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION) 1430 goto drop; 1431 } else { 1432 goto drop; 1433 } 1434 1435 /* Query commonly used fields from packet header */ 1436 packet->payload = packet->ebuf; 1437 packet->opcode = ib_bth_get_opcode(packet->ohdr); 1438 packet->slid = ib_get_slid(hdr); 1439 packet->dlid = ib_get_dlid(hdr); 1440 if (unlikely((packet->dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) && 1441 (packet->dlid != be16_to_cpu(IB_LID_PERMISSIVE)))) 1442 packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) - 1443 be16_to_cpu(IB_MULTICAST_LID_BASE); 1444 packet->sl = ib_get_sl(hdr); 1445 packet->sc = hfi1_9B_get_sc5(hdr, packet->rhf); 1446 packet->pad = ib_bth_get_pad(packet->ohdr); 1447 packet->extra_byte = 0; 1448 packet->pkey = ib_bth_get_pkey(packet->ohdr); 1449 packet->migrated = ib_bth_is_migration(packet->ohdr); 1450 1451 return 0; 1452 drop: 1453 ibp->rvp.n_pkt_drops++; 1454 return -EINVAL; 1455 } 1456 1457 static int hfi1_setup_bypass_packet(struct hfi1_packet *packet) 1458 { 1459 /* 1460 * Bypass packets have a different header/payload split 1461 * compared to an IB packet. 1462 * Current split is set such that 16 bytes of the actual 1463 * header is in the header buffer and the remining is in 1464 * the eager buffer. We chose 16 since hfi1 driver only 1465 * supports 16B bypass packets and we will be able to 1466 * receive the entire LRH with such a split. 1467 */ 1468 1469 struct hfi1_ctxtdata *rcd = packet->rcd; 1470 struct hfi1_pportdata *ppd = rcd->ppd; 1471 struct hfi1_ibport *ibp = &ppd->ibport_data; 1472 u8 l4; 1473 u8 grh_len; 1474 1475 packet->hdr = (struct hfi1_16b_header *) 1476 hfi1_get_16B_header(packet->rcd->dd, 1477 packet->rhf_addr); 1478 packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr; 1479 1480 l4 = hfi1_16B_get_l4(packet->hdr); 1481 if (l4 == OPA_16B_L4_IB_LOCAL) { 1482 grh_len = 0; 1483 packet->ohdr = packet->ebuf; 1484 packet->grh = NULL; 1485 } else if (l4 == OPA_16B_L4_IB_GLOBAL) { 1486 u32 vtf; 1487 1488 grh_len = sizeof(struct ib_grh); 1489 packet->ohdr = packet->ebuf + grh_len; 1490 packet->grh = packet->ebuf; 1491 if (packet->grh->next_hdr != IB_GRH_NEXT_HDR) 1492 goto drop; 1493 vtf = be32_to_cpu(packet->grh->version_tclass_flow); 1494 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION) 1495 goto drop; 1496 } else { 1497 goto drop; 1498 } 1499 1500 /* Query commonly used fields from packet header */ 1501 packet->opcode = ib_bth_get_opcode(packet->ohdr); 1502 /* hdr_len_by_opcode already has an IB LRH factored in */ 1503 packet->hlen = hdr_len_by_opcode[packet->opcode] + 1504 (LRH_16B_BYTES - LRH_9B_BYTES) + grh_len; 1505 packet->payload = packet->ebuf + packet->hlen - LRH_16B_BYTES; 1506 packet->slid = hfi1_16B_get_slid(packet->hdr); 1507 packet->dlid = hfi1_16B_get_dlid(packet->hdr); 1508 if (unlikely(hfi1_is_16B_mcast(packet->dlid))) 1509 packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) - 1510 opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR), 1511 16B); 1512 packet->sc = hfi1_16B_get_sc(packet->hdr); 1513 packet->sl = ibp->sc_to_sl[packet->sc]; 1514 packet->pad = hfi1_16B_bth_get_pad(packet->ohdr); 1515 packet->extra_byte = SIZE_OF_LT; 1516 packet->pkey = hfi1_16B_get_pkey(packet->hdr); 1517 packet->migrated = opa_bth_is_migration(packet->ohdr); 1518 1519 if (hfi1_bypass_ingress_pkt_check(packet)) 1520 goto drop; 1521 1522 return 0; 1523 drop: 1524 hfi1_cdbg(PKT, "%s: packet dropped\n", __func__); 1525 ibp->rvp.n_pkt_drops++; 1526 return -EINVAL; 1527 } 1528 1529 void handle_eflags(struct hfi1_packet *packet) 1530 { 1531 struct hfi1_ctxtdata *rcd = packet->rcd; 1532 u32 rte = rhf_rcv_type_err(packet->rhf); 1533 1534 rcv_hdrerr(rcd, rcd->ppd, packet); 1535 if (rhf_err_flags(packet->rhf)) 1536 dd_dev_err(rcd->dd, 1537 "receive context %d: rhf 0x%016llx, errs [ %s%s%s%s%s%s%s%s] rte 0x%x\n", 1538 rcd->ctxt, packet->rhf, 1539 packet->rhf & RHF_K_HDR_LEN_ERR ? "k_hdr_len " : "", 1540 packet->rhf & RHF_DC_UNC_ERR ? "dc_unc " : "", 1541 packet->rhf & RHF_DC_ERR ? "dc " : "", 1542 packet->rhf & RHF_TID_ERR ? "tid " : "", 1543 packet->rhf & RHF_LEN_ERR ? "len " : "", 1544 packet->rhf & RHF_ECC_ERR ? "ecc " : "", 1545 packet->rhf & RHF_VCRC_ERR ? "vcrc " : "", 1546 packet->rhf & RHF_ICRC_ERR ? "icrc " : "", 1547 rte); 1548 } 1549 1550 /* 1551 * The following functions are called by the interrupt handler. They are type 1552 * specific handlers for each packet type. 1553 */ 1554 int process_receive_ib(struct hfi1_packet *packet) 1555 { 1556 if (unlikely(hfi1_dbg_fault_packet(packet))) 1557 return RHF_RCV_CONTINUE; 1558 1559 if (hfi1_setup_9B_packet(packet)) 1560 return RHF_RCV_CONTINUE; 1561 1562 trace_hfi1_rcvhdr(packet); 1563 1564 if (unlikely(rhf_err_flags(packet->rhf))) { 1565 handle_eflags(packet); 1566 return RHF_RCV_CONTINUE; 1567 } 1568 1569 hfi1_ib_rcv(packet); 1570 return RHF_RCV_CONTINUE; 1571 } 1572 1573 static inline bool hfi1_is_vnic_packet(struct hfi1_packet *packet) 1574 { 1575 /* Packet received in VNIC context via RSM */ 1576 if (packet->rcd->is_vnic) 1577 return true; 1578 1579 if ((hfi1_16B_get_l2(packet->ebuf) == OPA_16B_L2_TYPE) && 1580 (hfi1_16B_get_l4(packet->ebuf) == OPA_16B_L4_ETHR)) 1581 return true; 1582 1583 return false; 1584 } 1585 1586 int process_receive_bypass(struct hfi1_packet *packet) 1587 { 1588 struct hfi1_devdata *dd = packet->rcd->dd; 1589 1590 if (hfi1_is_vnic_packet(packet)) { 1591 hfi1_vnic_bypass_rcv(packet); 1592 return RHF_RCV_CONTINUE; 1593 } 1594 1595 if (hfi1_setup_bypass_packet(packet)) 1596 return RHF_RCV_CONTINUE; 1597 1598 trace_hfi1_rcvhdr(packet); 1599 1600 if (unlikely(rhf_err_flags(packet->rhf))) { 1601 handle_eflags(packet); 1602 return RHF_RCV_CONTINUE; 1603 } 1604 1605 if (hfi1_16B_get_l2(packet->hdr) == 0x2) { 1606 hfi1_16B_rcv(packet); 1607 } else { 1608 dd_dev_err(dd, 1609 "Bypass packets other than 16B are not supported in normal operation. Dropping\n"); 1610 incr_cntr64(&dd->sw_rcv_bypass_packet_errors); 1611 if (!(dd->err_info_rcvport.status_and_code & 1612 OPA_EI_STATUS_SMASK)) { 1613 u64 *flits = packet->ebuf; 1614 1615 if (flits && !(packet->rhf & RHF_LEN_ERR)) { 1616 dd->err_info_rcvport.packet_flit1 = flits[0]; 1617 dd->err_info_rcvport.packet_flit2 = 1618 packet->tlen > sizeof(flits[0]) ? 1619 flits[1] : 0; 1620 } 1621 dd->err_info_rcvport.status_and_code |= 1622 (OPA_EI_STATUS_SMASK | BAD_L2_ERR); 1623 } 1624 } 1625 return RHF_RCV_CONTINUE; 1626 } 1627 1628 int process_receive_error(struct hfi1_packet *packet) 1629 { 1630 /* KHdrHCRCErr -- KDETH packet with a bad HCRC */ 1631 if (unlikely( 1632 hfi1_dbg_fault_suppress_err(&packet->rcd->dd->verbs_dev) && 1633 rhf_rcv_type_err(packet->rhf) == 3)) 1634 return RHF_RCV_CONTINUE; 1635 1636 hfi1_setup_ib_header(packet); 1637 handle_eflags(packet); 1638 1639 if (unlikely(rhf_err_flags(packet->rhf))) 1640 dd_dev_err(packet->rcd->dd, 1641 "Unhandled error packet received. Dropping.\n"); 1642 1643 return RHF_RCV_CONTINUE; 1644 } 1645 1646 int kdeth_process_expected(struct hfi1_packet *packet) 1647 { 1648 if (unlikely(hfi1_dbg_fault_packet(packet))) 1649 return RHF_RCV_CONTINUE; 1650 1651 hfi1_setup_ib_header(packet); 1652 if (unlikely(rhf_err_flags(packet->rhf))) 1653 handle_eflags(packet); 1654 1655 dd_dev_err(packet->rcd->dd, 1656 "Unhandled expected packet received. Dropping.\n"); 1657 return RHF_RCV_CONTINUE; 1658 } 1659 1660 int kdeth_process_eager(struct hfi1_packet *packet) 1661 { 1662 hfi1_setup_ib_header(packet); 1663 if (unlikely(rhf_err_flags(packet->rhf))) 1664 handle_eflags(packet); 1665 if (unlikely(hfi1_dbg_fault_packet(packet))) 1666 return RHF_RCV_CONTINUE; 1667 1668 dd_dev_err(packet->rcd->dd, 1669 "Unhandled eager packet received. Dropping.\n"); 1670 return RHF_RCV_CONTINUE; 1671 } 1672 1673 int process_receive_invalid(struct hfi1_packet *packet) 1674 { 1675 dd_dev_err(packet->rcd->dd, "Invalid packet type %d. Dropping\n", 1676 rhf_rcv_type(packet->rhf)); 1677 return RHF_RCV_CONTINUE; 1678 } 1679 1680 void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd) 1681 { 1682 struct hfi1_packet packet; 1683 struct ps_mdata mdata; 1684 1685 seq_printf(s, "Rcd %u: RcvHdr cnt %u entsize %u %s head %llu tail %llu\n", 1686 rcd->ctxt, rcd->rcvhdrq_cnt, rcd->rcvhdrqentsize, 1687 HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ? 1688 "dma_rtail" : "nodma_rtail", 1689 read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD) & 1690 RCV_HDR_HEAD_HEAD_MASK, 1691 read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL)); 1692 1693 init_packet(rcd, &packet); 1694 init_ps_mdata(&mdata, &packet); 1695 1696 while (1) { 1697 struct hfi1_devdata *dd = rcd->dd; 1698 __le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head + 1699 dd->rhf_offset; 1700 struct ib_header *hdr; 1701 u64 rhf = rhf_to_cpu(rhf_addr); 1702 u32 etype = rhf_rcv_type(rhf), qpn; 1703 u8 opcode; 1704 u32 psn; 1705 u8 lnh; 1706 1707 if (ps_done(&mdata, rhf, rcd)) 1708 break; 1709 1710 if (ps_skip(&mdata, rhf, rcd)) 1711 goto next; 1712 1713 if (etype > RHF_RCV_TYPE_IB) 1714 goto next; 1715 1716 packet.hdr = hfi1_get_msgheader(dd, rhf_addr); 1717 hdr = packet.hdr; 1718 1719 lnh = be16_to_cpu(hdr->lrh[0]) & 3; 1720 1721 if (lnh == HFI1_LRH_BTH) 1722 packet.ohdr = &hdr->u.oth; 1723 else if (lnh == HFI1_LRH_GRH) 1724 packet.ohdr = &hdr->u.l.oth; 1725 else 1726 goto next; /* just in case */ 1727 1728 opcode = (be32_to_cpu(packet.ohdr->bth[0]) >> 24); 1729 qpn = be32_to_cpu(packet.ohdr->bth[1]) & RVT_QPN_MASK; 1730 psn = mask_psn(be32_to_cpu(packet.ohdr->bth[2])); 1731 1732 seq_printf(s, "\tEnt %u: opcode 0x%x, qpn 0x%x, psn 0x%x\n", 1733 mdata.ps_head, opcode, qpn, psn); 1734 next: 1735 update_ps_mdata(&mdata, rcd); 1736 } 1737 } 1738