xref: /openbmc/linux/drivers/infiniband/hw/hfi1/driver.c (revision 93707cbabcc8baf2b2b5f4a99c1f08ee83eb7abd)
1 /*
2  * Copyright(c) 2015-2017 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <linux/spinlock.h>
49 #include <linux/pci.h>
50 #include <linux/io.h>
51 #include <linux/delay.h>
52 #include <linux/netdevice.h>
53 #include <linux/vmalloc.h>
54 #include <linux/module.h>
55 #include <linux/prefetch.h>
56 #include <rdma/ib_verbs.h>
57 
58 #include "hfi.h"
59 #include "trace.h"
60 #include "qp.h"
61 #include "sdma.h"
62 #include "debugfs.h"
63 #include "vnic.h"
64 
65 #undef pr_fmt
66 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
67 
68 /*
69  * The size has to be longer than this string, so we can append
70  * board/chip information to it in the initialization code.
71  */
72 const char ib_hfi1_version[] = HFI1_DRIVER_VERSION "\n";
73 
74 DEFINE_SPINLOCK(hfi1_devs_lock);
75 LIST_HEAD(hfi1_dev_list);
76 DEFINE_MUTEX(hfi1_mutex);	/* general driver use */
77 
78 unsigned int hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
79 module_param_named(max_mtu, hfi1_max_mtu, uint, S_IRUGO);
80 MODULE_PARM_DESC(max_mtu, "Set max MTU bytes, default is " __stringify(
81 		 HFI1_DEFAULT_MAX_MTU));
82 
83 unsigned int hfi1_cu = 1;
84 module_param_named(cu, hfi1_cu, uint, S_IRUGO);
85 MODULE_PARM_DESC(cu, "Credit return units");
86 
87 unsigned long hfi1_cap_mask = HFI1_CAP_MASK_DEFAULT;
88 static int hfi1_caps_set(const char *val, const struct kernel_param *kp);
89 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp);
90 static const struct kernel_param_ops cap_ops = {
91 	.set = hfi1_caps_set,
92 	.get = hfi1_caps_get
93 };
94 module_param_cb(cap_mask, &cap_ops, &hfi1_cap_mask, S_IWUSR | S_IRUGO);
95 MODULE_PARM_DESC(cap_mask, "Bit mask of enabled/disabled HW features");
96 
97 MODULE_LICENSE("Dual BSD/GPL");
98 MODULE_DESCRIPTION("Intel Omni-Path Architecture driver");
99 
100 /*
101  * MAX_PKT_RCV is the max # if packets processed per receive interrupt.
102  */
103 #define MAX_PKT_RECV 64
104 /*
105  * MAX_PKT_THREAD_RCV is the max # of packets processed before
106  * the qp_wait_list queue is flushed.
107  */
108 #define MAX_PKT_RECV_THREAD (MAX_PKT_RECV * 4)
109 #define EGR_HEAD_UPDATE_THRESHOLD 16
110 
111 struct hfi1_ib_stats hfi1_stats;
112 
113 static int hfi1_caps_set(const char *val, const struct kernel_param *kp)
114 {
115 	int ret = 0;
116 	unsigned long *cap_mask_ptr = (unsigned long *)kp->arg,
117 		cap_mask = *cap_mask_ptr, value, diff,
118 		write_mask = ((HFI1_CAP_WRITABLE_MASK << HFI1_CAP_USER_SHIFT) |
119 			      HFI1_CAP_WRITABLE_MASK);
120 
121 	ret = kstrtoul(val, 0, &value);
122 	if (ret) {
123 		pr_warn("Invalid module parameter value for 'cap_mask'\n");
124 		goto done;
125 	}
126 	/* Get the changed bits (except the locked bit) */
127 	diff = value ^ (cap_mask & ~HFI1_CAP_LOCKED_SMASK);
128 
129 	/* Remove any bits that are not allowed to change after driver load */
130 	if (HFI1_CAP_LOCKED() && (diff & ~write_mask)) {
131 		pr_warn("Ignoring non-writable capability bits %#lx\n",
132 			diff & ~write_mask);
133 		diff &= write_mask;
134 	}
135 
136 	/* Mask off any reserved bits */
137 	diff &= ~HFI1_CAP_RESERVED_MASK;
138 	/* Clear any previously set and changing bits */
139 	cap_mask &= ~diff;
140 	/* Update the bits with the new capability */
141 	cap_mask |= (value & diff);
142 	/* Check for any kernel/user restrictions */
143 	diff = (cap_mask & (HFI1_CAP_MUST_HAVE_KERN << HFI1_CAP_USER_SHIFT)) ^
144 		((cap_mask & HFI1_CAP_MUST_HAVE_KERN) << HFI1_CAP_USER_SHIFT);
145 	cap_mask &= ~diff;
146 	/* Set the bitmask to the final set */
147 	*cap_mask_ptr = cap_mask;
148 done:
149 	return ret;
150 }
151 
152 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp)
153 {
154 	unsigned long cap_mask = *(unsigned long *)kp->arg;
155 
156 	cap_mask &= ~HFI1_CAP_LOCKED_SMASK;
157 	cap_mask |= ((cap_mask & HFI1_CAP_K2U) << HFI1_CAP_USER_SHIFT);
158 
159 	return scnprintf(buffer, PAGE_SIZE, "0x%lx", cap_mask);
160 }
161 
162 struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi)
163 {
164 	struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi);
165 	struct hfi1_devdata *dd = container_of(ibdev,
166 					       struct hfi1_devdata, verbs_dev);
167 	return dd->pcidev;
168 }
169 
170 /*
171  * Return count of units with at least one port ACTIVE.
172  */
173 int hfi1_count_active_units(void)
174 {
175 	struct hfi1_devdata *dd;
176 	struct hfi1_pportdata *ppd;
177 	unsigned long flags;
178 	int pidx, nunits_active = 0;
179 
180 	spin_lock_irqsave(&hfi1_devs_lock, flags);
181 	list_for_each_entry(dd, &hfi1_dev_list, list) {
182 		if (!(dd->flags & HFI1_PRESENT) || !dd->kregbase1)
183 			continue;
184 		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
185 			ppd = dd->pport + pidx;
186 			if (ppd->lid && ppd->linkup) {
187 				nunits_active++;
188 				break;
189 			}
190 		}
191 	}
192 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
193 	return nunits_active;
194 }
195 
196 /*
197  * Get address of eager buffer from it's index (allocated in chunks, not
198  * contiguous).
199  */
200 static inline void *get_egrbuf(const struct hfi1_ctxtdata *rcd, u64 rhf,
201 			       u8 *update)
202 {
203 	u32 idx = rhf_egr_index(rhf), offset = rhf_egr_buf_offset(rhf);
204 
205 	*update |= !(idx & (rcd->egrbufs.threshold - 1)) && !offset;
206 	return (void *)(((u64)(rcd->egrbufs.rcvtids[idx].addr)) +
207 			(offset * RCV_BUF_BLOCK_SIZE));
208 }
209 
210 static inline void *hfi1_get_header(struct hfi1_devdata *dd,
211 				    __le32 *rhf_addr)
212 {
213 	u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
214 
215 	return (void *)(rhf_addr - dd->rhf_offset + offset);
216 }
217 
218 static inline struct ib_header *hfi1_get_msgheader(struct hfi1_devdata *dd,
219 						   __le32 *rhf_addr)
220 {
221 	return (struct ib_header *)hfi1_get_header(dd, rhf_addr);
222 }
223 
224 static inline struct hfi1_16b_header
225 		*hfi1_get_16B_header(struct hfi1_devdata *dd,
226 				     __le32 *rhf_addr)
227 {
228 	return (struct hfi1_16b_header *)hfi1_get_header(dd, rhf_addr);
229 }
230 
231 /*
232  * Validate and encode the a given RcvArray Buffer size.
233  * The function will check whether the given size falls within
234  * allowed size ranges for the respective type and, optionally,
235  * return the proper encoding.
236  */
237 int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encoded)
238 {
239 	if (unlikely(!PAGE_ALIGNED(size)))
240 		return 0;
241 	if (unlikely(size < MIN_EAGER_BUFFER))
242 		return 0;
243 	if (size >
244 	    (type == PT_EAGER ? MAX_EAGER_BUFFER : MAX_EXPECTED_BUFFER))
245 		return 0;
246 	if (encoded)
247 		*encoded = ilog2(size / PAGE_SIZE) + 1;
248 	return 1;
249 }
250 
251 static void rcv_hdrerr(struct hfi1_ctxtdata *rcd, struct hfi1_pportdata *ppd,
252 		       struct hfi1_packet *packet)
253 {
254 	struct ib_header *rhdr = packet->hdr;
255 	u32 rte = rhf_rcv_type_err(packet->rhf);
256 	u32 mlid_base;
257 	struct hfi1_ibport *ibp = rcd_to_iport(rcd);
258 	struct hfi1_devdata *dd = ppd->dd;
259 	struct hfi1_ibdev *verbs_dev = &dd->verbs_dev;
260 	struct rvt_dev_info *rdi = &verbs_dev->rdi;
261 
262 	if ((packet->rhf & RHF_DC_ERR) &&
263 	    hfi1_dbg_fault_suppress_err(verbs_dev))
264 		return;
265 
266 	if (packet->rhf & (RHF_VCRC_ERR | RHF_ICRC_ERR))
267 		return;
268 
269 	if (packet->etype == RHF_RCV_TYPE_BYPASS) {
270 		goto drop;
271 	} else {
272 		u8 lnh = ib_get_lnh(rhdr);
273 
274 		mlid_base = be16_to_cpu(IB_MULTICAST_LID_BASE);
275 		if (lnh == HFI1_LRH_BTH) {
276 			packet->ohdr = &rhdr->u.oth;
277 		} else if (lnh == HFI1_LRH_GRH) {
278 			packet->ohdr = &rhdr->u.l.oth;
279 			packet->grh = &rhdr->u.l.grh;
280 		} else {
281 			goto drop;
282 		}
283 	}
284 
285 	if (packet->rhf & RHF_TID_ERR) {
286 		/* For TIDERR and RC QPs preemptively schedule a NAK */
287 		u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */
288 		u32 dlid = ib_get_dlid(rhdr);
289 		u32 qp_num;
290 
291 		/* Sanity check packet */
292 		if (tlen < 24)
293 			goto drop;
294 
295 		/* Check for GRH */
296 		if (packet->grh) {
297 			u32 vtf;
298 			struct ib_grh *grh = packet->grh;
299 
300 			if (grh->next_hdr != IB_GRH_NEXT_HDR)
301 				goto drop;
302 			vtf = be32_to_cpu(grh->version_tclass_flow);
303 			if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
304 				goto drop;
305 		}
306 
307 		/* Get the destination QP number. */
308 		qp_num = ib_bth_get_qpn(packet->ohdr);
309 		if (dlid < mlid_base) {
310 			struct rvt_qp *qp;
311 			unsigned long flags;
312 
313 			rcu_read_lock();
314 			qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
315 			if (!qp) {
316 				rcu_read_unlock();
317 				goto drop;
318 			}
319 
320 			/*
321 			 * Handle only RC QPs - for other QP types drop error
322 			 * packet.
323 			 */
324 			spin_lock_irqsave(&qp->r_lock, flags);
325 
326 			/* Check for valid receive state. */
327 			if (!(ib_rvt_state_ops[qp->state] &
328 			      RVT_PROCESS_RECV_OK)) {
329 				ibp->rvp.n_pkt_drops++;
330 			}
331 
332 			switch (qp->ibqp.qp_type) {
333 			case IB_QPT_RC:
334 				hfi1_rc_hdrerr(rcd, packet, qp);
335 				break;
336 			default:
337 				/* For now don't handle any other QP types */
338 				break;
339 			}
340 
341 			spin_unlock_irqrestore(&qp->r_lock, flags);
342 			rcu_read_unlock();
343 		} /* Unicast QP */
344 	} /* Valid packet with TIDErr */
345 
346 	/* handle "RcvTypeErr" flags */
347 	switch (rte) {
348 	case RHF_RTE_ERROR_OP_CODE_ERR:
349 	{
350 		void *ebuf = NULL;
351 		u8 opcode;
352 
353 		if (rhf_use_egr_bfr(packet->rhf))
354 			ebuf = packet->ebuf;
355 
356 		if (!ebuf)
357 			goto drop; /* this should never happen */
358 
359 		opcode = ib_bth_get_opcode(packet->ohdr);
360 		if (opcode == IB_OPCODE_CNP) {
361 			/*
362 			 * Only in pre-B0 h/w is the CNP_OPCODE handled
363 			 * via this code path.
364 			 */
365 			struct rvt_qp *qp = NULL;
366 			u32 lqpn, rqpn;
367 			u16 rlid;
368 			u8 svc_type, sl, sc5;
369 
370 			sc5 = hfi1_9B_get_sc5(rhdr, packet->rhf);
371 			sl = ibp->sc_to_sl[sc5];
372 
373 			lqpn = ib_bth_get_qpn(packet->ohdr);
374 			rcu_read_lock();
375 			qp = rvt_lookup_qpn(rdi, &ibp->rvp, lqpn);
376 			if (!qp) {
377 				rcu_read_unlock();
378 				goto drop;
379 			}
380 
381 			switch (qp->ibqp.qp_type) {
382 			case IB_QPT_UD:
383 				rlid = 0;
384 				rqpn = 0;
385 				svc_type = IB_CC_SVCTYPE_UD;
386 				break;
387 			case IB_QPT_UC:
388 				rlid = ib_get_slid(rhdr);
389 				rqpn = qp->remote_qpn;
390 				svc_type = IB_CC_SVCTYPE_UC;
391 				break;
392 			default:
393 				goto drop;
394 			}
395 
396 			process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
397 			rcu_read_unlock();
398 		}
399 
400 		packet->rhf &= ~RHF_RCV_TYPE_ERR_SMASK;
401 		break;
402 	}
403 	default:
404 		break;
405 	}
406 
407 drop:
408 	return;
409 }
410 
411 static inline void init_packet(struct hfi1_ctxtdata *rcd,
412 			       struct hfi1_packet *packet)
413 {
414 	packet->rsize = rcd->rcvhdrqentsize; /* words */
415 	packet->maxcnt = rcd->rcvhdrq_cnt * packet->rsize; /* words */
416 	packet->rcd = rcd;
417 	packet->updegr = 0;
418 	packet->etail = -1;
419 	packet->rhf_addr = get_rhf_addr(rcd);
420 	packet->rhf = rhf_to_cpu(packet->rhf_addr);
421 	packet->rhqoff = rcd->head;
422 	packet->numpkt = 0;
423 }
424 
425 /* We support only two types - 9B and 16B for now */
426 static const hfi1_handle_cnp hfi1_handle_cnp_tbl[2] = {
427 	[HFI1_PKT_TYPE_9B] = &return_cnp,
428 	[HFI1_PKT_TYPE_16B] = &return_cnp_16B
429 };
430 
431 void hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt,
432 			       bool do_cnp)
433 {
434 	struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
435 	struct ib_other_headers *ohdr = pkt->ohdr;
436 	struct ib_grh *grh = pkt->grh;
437 	u32 rqpn = 0, bth1;
438 	u16 pkey, rlid, dlid = ib_get_dlid(pkt->hdr);
439 	u8 hdr_type, sc, svc_type;
440 	bool is_mcast = false;
441 
442 	if (pkt->etype == RHF_RCV_TYPE_BYPASS) {
443 		is_mcast = hfi1_is_16B_mcast(dlid);
444 		pkey = hfi1_16B_get_pkey(pkt->hdr);
445 		sc = hfi1_16B_get_sc(pkt->hdr);
446 		hdr_type = HFI1_PKT_TYPE_16B;
447 	} else {
448 		is_mcast = (dlid > be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
449 			   (dlid != be16_to_cpu(IB_LID_PERMISSIVE));
450 		pkey = ib_bth_get_pkey(ohdr);
451 		sc = hfi1_9B_get_sc5(pkt->hdr, pkt->rhf);
452 		hdr_type = HFI1_PKT_TYPE_9B;
453 	}
454 
455 	switch (qp->ibqp.qp_type) {
456 	case IB_QPT_SMI:
457 	case IB_QPT_GSI:
458 	case IB_QPT_UD:
459 		rlid = ib_get_slid(pkt->hdr);
460 		rqpn = ib_get_sqpn(pkt->ohdr);
461 		svc_type = IB_CC_SVCTYPE_UD;
462 		break;
463 	case IB_QPT_UC:
464 		rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
465 		rqpn = qp->remote_qpn;
466 		svc_type = IB_CC_SVCTYPE_UC;
467 		break;
468 	case IB_QPT_RC:
469 		rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
470 		rqpn = qp->remote_qpn;
471 		svc_type = IB_CC_SVCTYPE_RC;
472 		break;
473 	default:
474 		return;
475 	}
476 
477 	bth1 = be32_to_cpu(ohdr->bth[1]);
478 	/* Call appropriate CNP handler */
479 	if (do_cnp && (bth1 & IB_FECN_SMASK))
480 		hfi1_handle_cnp_tbl[hdr_type](ibp, qp, rqpn, pkey,
481 					      dlid, rlid, sc, grh);
482 
483 	if (!is_mcast && (bth1 & IB_BECN_SMASK)) {
484 		struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
485 		u32 lqpn = bth1 & RVT_QPN_MASK;
486 		u8 sl = ibp->sc_to_sl[sc];
487 
488 		process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
489 	}
490 
491 }
492 
493 struct ps_mdata {
494 	struct hfi1_ctxtdata *rcd;
495 	u32 rsize;
496 	u32 maxcnt;
497 	u32 ps_head;
498 	u32 ps_tail;
499 	u32 ps_seq;
500 };
501 
502 static inline void init_ps_mdata(struct ps_mdata *mdata,
503 				 struct hfi1_packet *packet)
504 {
505 	struct hfi1_ctxtdata *rcd = packet->rcd;
506 
507 	mdata->rcd = rcd;
508 	mdata->rsize = packet->rsize;
509 	mdata->maxcnt = packet->maxcnt;
510 	mdata->ps_head = packet->rhqoff;
511 
512 	if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
513 		mdata->ps_tail = get_rcvhdrtail(rcd);
514 		if (rcd->ctxt == HFI1_CTRL_CTXT)
515 			mdata->ps_seq = rcd->seq_cnt;
516 		else
517 			mdata->ps_seq = 0; /* not used with DMA_RTAIL */
518 	} else {
519 		mdata->ps_tail = 0; /* used only with DMA_RTAIL*/
520 		mdata->ps_seq = rcd->seq_cnt;
521 	}
522 }
523 
524 static inline int ps_done(struct ps_mdata *mdata, u64 rhf,
525 			  struct hfi1_ctxtdata *rcd)
526 {
527 	if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
528 		return mdata->ps_head == mdata->ps_tail;
529 	return mdata->ps_seq != rhf_rcv_seq(rhf);
530 }
531 
532 static inline int ps_skip(struct ps_mdata *mdata, u64 rhf,
533 			  struct hfi1_ctxtdata *rcd)
534 {
535 	/*
536 	 * Control context can potentially receive an invalid rhf.
537 	 * Drop such packets.
538 	 */
539 	if ((rcd->ctxt == HFI1_CTRL_CTXT) && (mdata->ps_head != mdata->ps_tail))
540 		return mdata->ps_seq != rhf_rcv_seq(rhf);
541 
542 	return 0;
543 }
544 
545 static inline void update_ps_mdata(struct ps_mdata *mdata,
546 				   struct hfi1_ctxtdata *rcd)
547 {
548 	mdata->ps_head += mdata->rsize;
549 	if (mdata->ps_head >= mdata->maxcnt)
550 		mdata->ps_head = 0;
551 
552 	/* Control context must do seq counting */
553 	if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ||
554 	    (rcd->ctxt == HFI1_CTRL_CTXT)) {
555 		if (++mdata->ps_seq > 13)
556 			mdata->ps_seq = 1;
557 	}
558 }
559 
560 /*
561  * prescan_rxq - search through the receive queue looking for packets
562  * containing Excplicit Congestion Notifications (FECNs, or BECNs).
563  * When an ECN is found, process the Congestion Notification, and toggle
564  * it off.
565  * This is declared as a macro to allow quick checking of the port to avoid
566  * the overhead of a function call if not enabled.
567  */
568 #define prescan_rxq(rcd, packet) \
569 	do { \
570 		if (rcd->ppd->cc_prescan) \
571 			__prescan_rxq(packet); \
572 	} while (0)
573 static void __prescan_rxq(struct hfi1_packet *packet)
574 {
575 	struct hfi1_ctxtdata *rcd = packet->rcd;
576 	struct ps_mdata mdata;
577 
578 	init_ps_mdata(&mdata, packet);
579 
580 	while (1) {
581 		struct hfi1_devdata *dd = rcd->dd;
582 		struct hfi1_ibport *ibp = rcd_to_iport(rcd);
583 		__le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
584 					 dd->rhf_offset;
585 		struct rvt_qp *qp;
586 		struct ib_header *hdr;
587 		struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
588 		u64 rhf = rhf_to_cpu(rhf_addr);
589 		u32 etype = rhf_rcv_type(rhf), qpn, bth1;
590 		int is_ecn = 0;
591 		u8 lnh;
592 
593 		if (ps_done(&mdata, rhf, rcd))
594 			break;
595 
596 		if (ps_skip(&mdata, rhf, rcd))
597 			goto next;
598 
599 		if (etype != RHF_RCV_TYPE_IB)
600 			goto next;
601 
602 		packet->hdr = hfi1_get_msgheader(dd, rhf_addr);
603 		hdr = packet->hdr;
604 		lnh = ib_get_lnh(hdr);
605 
606 		if (lnh == HFI1_LRH_BTH) {
607 			packet->ohdr = &hdr->u.oth;
608 			packet->grh = NULL;
609 		} else if (lnh == HFI1_LRH_GRH) {
610 			packet->ohdr = &hdr->u.l.oth;
611 			packet->grh = &hdr->u.l.grh;
612 		} else {
613 			goto next; /* just in case */
614 		}
615 
616 		bth1 = be32_to_cpu(packet->ohdr->bth[1]);
617 		is_ecn = !!(bth1 & (IB_FECN_SMASK | IB_BECN_SMASK));
618 
619 		if (!is_ecn)
620 			goto next;
621 
622 		qpn = bth1 & RVT_QPN_MASK;
623 		rcu_read_lock();
624 		qp = rvt_lookup_qpn(rdi, &ibp->rvp, qpn);
625 
626 		if (!qp) {
627 			rcu_read_unlock();
628 			goto next;
629 		}
630 
631 		process_ecn(qp, packet, true);
632 		rcu_read_unlock();
633 
634 		/* turn off BECN, FECN */
635 		bth1 &= ~(IB_FECN_SMASK | IB_BECN_SMASK);
636 		packet->ohdr->bth[1] = cpu_to_be32(bth1);
637 next:
638 		update_ps_mdata(&mdata, rcd);
639 	}
640 }
641 
642 static void process_rcv_qp_work(struct hfi1_packet *packet)
643 {
644 	struct rvt_qp *qp, *nqp;
645 	struct hfi1_ctxtdata *rcd = packet->rcd;
646 
647 	/*
648 	 * Iterate over all QPs waiting to respond.
649 	 * The list won't change since the IRQ is only run on one CPU.
650 	 */
651 	list_for_each_entry_safe(qp, nqp, &rcd->qp_wait_list, rspwait) {
652 		list_del_init(&qp->rspwait);
653 		if (qp->r_flags & RVT_R_RSP_NAK) {
654 			qp->r_flags &= ~RVT_R_RSP_NAK;
655 			packet->qp = qp;
656 			hfi1_send_rc_ack(packet, 0);
657 		}
658 		if (qp->r_flags & RVT_R_RSP_SEND) {
659 			unsigned long flags;
660 
661 			qp->r_flags &= ~RVT_R_RSP_SEND;
662 			spin_lock_irqsave(&qp->s_lock, flags);
663 			if (ib_rvt_state_ops[qp->state] &
664 					RVT_PROCESS_OR_FLUSH_SEND)
665 				hfi1_schedule_send(qp);
666 			spin_unlock_irqrestore(&qp->s_lock, flags);
667 		}
668 		rvt_put_qp(qp);
669 	}
670 }
671 
672 static noinline int max_packet_exceeded(struct hfi1_packet *packet, int thread)
673 {
674 	if (thread) {
675 		if ((packet->numpkt & (MAX_PKT_RECV_THREAD - 1)) == 0)
676 			/* allow defered processing */
677 			process_rcv_qp_work(packet);
678 		cond_resched();
679 		return RCV_PKT_OK;
680 	} else {
681 		this_cpu_inc(*packet->rcd->dd->rcv_limit);
682 		return RCV_PKT_LIMIT;
683 	}
684 }
685 
686 static inline int check_max_packet(struct hfi1_packet *packet, int thread)
687 {
688 	int ret = RCV_PKT_OK;
689 
690 	if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0))
691 		ret = max_packet_exceeded(packet, thread);
692 	return ret;
693 }
694 
695 static noinline int skip_rcv_packet(struct hfi1_packet *packet, int thread)
696 {
697 	int ret;
698 
699 	/* Set up for the next packet */
700 	packet->rhqoff += packet->rsize;
701 	if (packet->rhqoff >= packet->maxcnt)
702 		packet->rhqoff = 0;
703 
704 	packet->numpkt++;
705 	ret = check_max_packet(packet, thread);
706 
707 	packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
708 				     packet->rcd->dd->rhf_offset;
709 	packet->rhf = rhf_to_cpu(packet->rhf_addr);
710 
711 	return ret;
712 }
713 
714 static inline int process_rcv_packet(struct hfi1_packet *packet, int thread)
715 {
716 	int ret;
717 
718 	packet->etype = rhf_rcv_type(packet->rhf);
719 
720 	/* total length */
721 	packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */
722 	/* retrieve eager buffer details */
723 	packet->ebuf = NULL;
724 	if (rhf_use_egr_bfr(packet->rhf)) {
725 		packet->etail = rhf_egr_index(packet->rhf);
726 		packet->ebuf = get_egrbuf(packet->rcd, packet->rhf,
727 				 &packet->updegr);
728 		/*
729 		 * Prefetch the contents of the eager buffer.  It is
730 		 * OK to send a negative length to prefetch_range().
731 		 * The +2 is the size of the RHF.
732 		 */
733 		prefetch_range(packet->ebuf,
734 			       packet->tlen - ((packet->rcd->rcvhdrqentsize -
735 					       (rhf_hdrq_offset(packet->rhf)
736 						+ 2)) * 4));
737 	}
738 
739 	/*
740 	 * Call a type specific handler for the packet. We
741 	 * should be able to trust that etype won't be beyond
742 	 * the range of valid indexes. If so something is really
743 	 * wrong and we can probably just let things come
744 	 * crashing down. There is no need to eat another
745 	 * comparison in this performance critical code.
746 	 */
747 	packet->rcd->dd->rhf_rcv_function_map[packet->etype](packet);
748 	packet->numpkt++;
749 
750 	/* Set up for the next packet */
751 	packet->rhqoff += packet->rsize;
752 	if (packet->rhqoff >= packet->maxcnt)
753 		packet->rhqoff = 0;
754 
755 	ret = check_max_packet(packet, thread);
756 
757 	packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
758 				      packet->rcd->dd->rhf_offset;
759 	packet->rhf = rhf_to_cpu(packet->rhf_addr);
760 
761 	return ret;
762 }
763 
764 static inline void process_rcv_update(int last, struct hfi1_packet *packet)
765 {
766 	/*
767 	 * Update head regs etc., every 16 packets, if not last pkt,
768 	 * to help prevent rcvhdrq overflows, when many packets
769 	 * are processed and queue is nearly full.
770 	 * Don't request an interrupt for intermediate updates.
771 	 */
772 	if (!last && !(packet->numpkt & 0xf)) {
773 		update_usrhead(packet->rcd, packet->rhqoff, packet->updegr,
774 			       packet->etail, 0, 0);
775 		packet->updegr = 0;
776 	}
777 	packet->grh = NULL;
778 }
779 
780 static inline void finish_packet(struct hfi1_packet *packet)
781 {
782 	/*
783 	 * Nothing we need to free for the packet.
784 	 *
785 	 * The only thing we need to do is a final update and call for an
786 	 * interrupt
787 	 */
788 	update_usrhead(packet->rcd, packet->rcd->head, packet->updegr,
789 		       packet->etail, rcv_intr_dynamic, packet->numpkt);
790 }
791 
792 /*
793  * Handle receive interrupts when using the no dma rtail option.
794  */
795 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread)
796 {
797 	u32 seq;
798 	int last = RCV_PKT_OK;
799 	struct hfi1_packet packet;
800 
801 	init_packet(rcd, &packet);
802 	seq = rhf_rcv_seq(packet.rhf);
803 	if (seq != rcd->seq_cnt) {
804 		last = RCV_PKT_DONE;
805 		goto bail;
806 	}
807 
808 	prescan_rxq(rcd, &packet);
809 
810 	while (last == RCV_PKT_OK) {
811 		last = process_rcv_packet(&packet, thread);
812 		seq = rhf_rcv_seq(packet.rhf);
813 		if (++rcd->seq_cnt > 13)
814 			rcd->seq_cnt = 1;
815 		if (seq != rcd->seq_cnt)
816 			last = RCV_PKT_DONE;
817 		process_rcv_update(last, &packet);
818 	}
819 	process_rcv_qp_work(&packet);
820 	rcd->head = packet.rhqoff;
821 bail:
822 	finish_packet(&packet);
823 	return last;
824 }
825 
826 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread)
827 {
828 	u32 hdrqtail;
829 	int last = RCV_PKT_OK;
830 	struct hfi1_packet packet;
831 
832 	init_packet(rcd, &packet);
833 	hdrqtail = get_rcvhdrtail(rcd);
834 	if (packet.rhqoff == hdrqtail) {
835 		last = RCV_PKT_DONE;
836 		goto bail;
837 	}
838 	smp_rmb();  /* prevent speculative reads of dma'ed hdrq */
839 
840 	prescan_rxq(rcd, &packet);
841 
842 	while (last == RCV_PKT_OK) {
843 		last = process_rcv_packet(&packet, thread);
844 		if (packet.rhqoff == hdrqtail)
845 			last = RCV_PKT_DONE;
846 		process_rcv_update(last, &packet);
847 	}
848 	process_rcv_qp_work(&packet);
849 	rcd->head = packet.rhqoff;
850 bail:
851 	finish_packet(&packet);
852 	return last;
853 }
854 
855 static inline void set_nodma_rtail(struct hfi1_devdata *dd, u16 ctxt)
856 {
857 	struct hfi1_ctxtdata *rcd;
858 	u16 i;
859 
860 	/*
861 	 * For dynamically allocated kernel contexts (like vnic) switch
862 	 * interrupt handler only for that context. Otherwise, switch
863 	 * interrupt handler for all statically allocated kernel contexts.
864 	 */
865 	if (ctxt >= dd->first_dyn_alloc_ctxt) {
866 		rcd = hfi1_rcd_get_by_index_safe(dd, ctxt);
867 		if (rcd) {
868 			rcd->do_interrupt =
869 				&handle_receive_interrupt_nodma_rtail;
870 			hfi1_rcd_put(rcd);
871 		}
872 		return;
873 	}
874 
875 	for (i = HFI1_CTRL_CTXT + 1; i < dd->first_dyn_alloc_ctxt; i++) {
876 		rcd = hfi1_rcd_get_by_index(dd, i);
877 		if (rcd)
878 			rcd->do_interrupt =
879 				&handle_receive_interrupt_nodma_rtail;
880 		hfi1_rcd_put(rcd);
881 	}
882 }
883 
884 static inline void set_dma_rtail(struct hfi1_devdata *dd, u16 ctxt)
885 {
886 	struct hfi1_ctxtdata *rcd;
887 	u16 i;
888 
889 	/*
890 	 * For dynamically allocated kernel contexts (like vnic) switch
891 	 * interrupt handler only for that context. Otherwise, switch
892 	 * interrupt handler for all statically allocated kernel contexts.
893 	 */
894 	if (ctxt >= dd->first_dyn_alloc_ctxt) {
895 		rcd = hfi1_rcd_get_by_index_safe(dd, ctxt);
896 		if (rcd) {
897 			rcd->do_interrupt =
898 				&handle_receive_interrupt_dma_rtail;
899 			hfi1_rcd_put(rcd);
900 		}
901 		return;
902 	}
903 
904 	for (i = HFI1_CTRL_CTXT + 1; i < dd->first_dyn_alloc_ctxt; i++) {
905 		rcd = hfi1_rcd_get_by_index(dd, i);
906 		if (rcd)
907 			rcd->do_interrupt =
908 				&handle_receive_interrupt_dma_rtail;
909 		hfi1_rcd_put(rcd);
910 	}
911 }
912 
913 void set_all_slowpath(struct hfi1_devdata *dd)
914 {
915 	struct hfi1_ctxtdata *rcd;
916 	u16 i;
917 
918 	/* HFI1_CTRL_CTXT must always use the slow path interrupt handler */
919 	for (i = HFI1_CTRL_CTXT + 1; i < dd->num_rcv_contexts; i++) {
920 		rcd = hfi1_rcd_get_by_index(dd, i);
921 		if (!rcd)
922 			continue;
923 		if (i < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
924 			rcd->do_interrupt = &handle_receive_interrupt;
925 
926 		hfi1_rcd_put(rcd);
927 	}
928 }
929 
930 static inline int set_armed_to_active(struct hfi1_ctxtdata *rcd,
931 				      struct hfi1_packet *packet,
932 				      struct hfi1_devdata *dd)
933 {
934 	struct work_struct *lsaw = &rcd->ppd->linkstate_active_work;
935 	u8 etype = rhf_rcv_type(packet->rhf);
936 	u8 sc = SC15_PACKET;
937 
938 	if (etype == RHF_RCV_TYPE_IB) {
939 		struct ib_header *hdr = hfi1_get_msgheader(packet->rcd->dd,
940 							   packet->rhf_addr);
941 		sc = hfi1_9B_get_sc5(hdr, packet->rhf);
942 	} else if (etype == RHF_RCV_TYPE_BYPASS) {
943 		struct hfi1_16b_header *hdr = hfi1_get_16B_header(
944 						packet->rcd->dd,
945 						packet->rhf_addr);
946 		sc = hfi1_16B_get_sc(hdr);
947 	}
948 	if (sc != SC15_PACKET) {
949 		int hwstate = driver_lstate(rcd->ppd);
950 
951 		if (hwstate != IB_PORT_ACTIVE) {
952 			dd_dev_info(dd,
953 				    "Unexpected link state %s\n",
954 				    opa_lstate_name(hwstate));
955 			return 0;
956 		}
957 
958 		queue_work(rcd->ppd->link_wq, lsaw);
959 		return 1;
960 	}
961 	return 0;
962 }
963 
964 /*
965  * handle_receive_interrupt - receive a packet
966  * @rcd: the context
967  *
968  * Called from interrupt handler for errors or receive interrupt.
969  * This is the slow path interrupt handler.
970  */
971 int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread)
972 {
973 	struct hfi1_devdata *dd = rcd->dd;
974 	u32 hdrqtail;
975 	int needset, last = RCV_PKT_OK;
976 	struct hfi1_packet packet;
977 	int skip_pkt = 0;
978 
979 	/* Control context will always use the slow path interrupt handler */
980 	needset = (rcd->ctxt == HFI1_CTRL_CTXT) ? 0 : 1;
981 
982 	init_packet(rcd, &packet);
983 
984 	if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
985 		u32 seq = rhf_rcv_seq(packet.rhf);
986 
987 		if (seq != rcd->seq_cnt) {
988 			last = RCV_PKT_DONE;
989 			goto bail;
990 		}
991 		hdrqtail = 0;
992 	} else {
993 		hdrqtail = get_rcvhdrtail(rcd);
994 		if (packet.rhqoff == hdrqtail) {
995 			last = RCV_PKT_DONE;
996 			goto bail;
997 		}
998 		smp_rmb();  /* prevent speculative reads of dma'ed hdrq */
999 
1000 		/*
1001 		 * Control context can potentially receive an invalid
1002 		 * rhf. Drop such packets.
1003 		 */
1004 		if (rcd->ctxt == HFI1_CTRL_CTXT) {
1005 			u32 seq = rhf_rcv_seq(packet.rhf);
1006 
1007 			if (seq != rcd->seq_cnt)
1008 				skip_pkt = 1;
1009 		}
1010 	}
1011 
1012 	prescan_rxq(rcd, &packet);
1013 
1014 	while (last == RCV_PKT_OK) {
1015 		if (unlikely(dd->do_drop &&
1016 			     atomic_xchg(&dd->drop_packet, DROP_PACKET_OFF) ==
1017 			     DROP_PACKET_ON)) {
1018 			dd->do_drop = 0;
1019 
1020 			/* On to the next packet */
1021 			packet.rhqoff += packet.rsize;
1022 			packet.rhf_addr = (__le32 *)rcd->rcvhdrq +
1023 					  packet.rhqoff +
1024 					  dd->rhf_offset;
1025 			packet.rhf = rhf_to_cpu(packet.rhf_addr);
1026 
1027 		} else if (skip_pkt) {
1028 			last = skip_rcv_packet(&packet, thread);
1029 			skip_pkt = 0;
1030 		} else {
1031 			/* Auto activate link on non-SC15 packet receive */
1032 			if (unlikely(rcd->ppd->host_link_state ==
1033 				     HLS_UP_ARMED) &&
1034 			    set_armed_to_active(rcd, &packet, dd))
1035 				goto bail;
1036 			last = process_rcv_packet(&packet, thread);
1037 		}
1038 
1039 		if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
1040 			u32 seq = rhf_rcv_seq(packet.rhf);
1041 
1042 			if (++rcd->seq_cnt > 13)
1043 				rcd->seq_cnt = 1;
1044 			if (seq != rcd->seq_cnt)
1045 				last = RCV_PKT_DONE;
1046 			if (needset) {
1047 				dd_dev_info(dd, "Switching to NO_DMA_RTAIL\n");
1048 				set_nodma_rtail(dd, rcd->ctxt);
1049 				needset = 0;
1050 			}
1051 		} else {
1052 			if (packet.rhqoff == hdrqtail)
1053 				last = RCV_PKT_DONE;
1054 			/*
1055 			 * Control context can potentially receive an invalid
1056 			 * rhf. Drop such packets.
1057 			 */
1058 			if (rcd->ctxt == HFI1_CTRL_CTXT) {
1059 				u32 seq = rhf_rcv_seq(packet.rhf);
1060 
1061 				if (++rcd->seq_cnt > 13)
1062 					rcd->seq_cnt = 1;
1063 				if (!last && (seq != rcd->seq_cnt))
1064 					skip_pkt = 1;
1065 			}
1066 
1067 			if (needset) {
1068 				dd_dev_info(dd,
1069 					    "Switching to DMA_RTAIL\n");
1070 				set_dma_rtail(dd, rcd->ctxt);
1071 				needset = 0;
1072 			}
1073 		}
1074 
1075 		process_rcv_update(last, &packet);
1076 	}
1077 
1078 	process_rcv_qp_work(&packet);
1079 	rcd->head = packet.rhqoff;
1080 
1081 bail:
1082 	/*
1083 	 * Always write head at end, and setup rcv interrupt, even
1084 	 * if no packets were processed.
1085 	 */
1086 	finish_packet(&packet);
1087 	return last;
1088 }
1089 
1090 /*
1091  * We may discover in the interrupt that the hardware link state has
1092  * changed from ARMED to ACTIVE (due to the arrival of a non-SC15 packet),
1093  * and we need to update the driver's notion of the link state.  We cannot
1094  * run set_link_state from interrupt context, so we queue this function on
1095  * a workqueue.
1096  *
1097  * We delay the regular interrupt processing until after the state changes
1098  * so that the link will be in the correct state by the time any application
1099  * we wake up attempts to send a reply to any message it received.
1100  * (Subsequent receive interrupts may possibly force the wakeup before we
1101  * update the link state.)
1102  *
1103  * The rcd is freed in hfi1_free_ctxtdata after hfi1_postinit_cleanup invokes
1104  * dd->f_cleanup(dd) to disable the interrupt handler and flush workqueues,
1105  * so we're safe from use-after-free of the rcd.
1106  */
1107 void receive_interrupt_work(struct work_struct *work)
1108 {
1109 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
1110 						  linkstate_active_work);
1111 	struct hfi1_devdata *dd = ppd->dd;
1112 	struct hfi1_ctxtdata *rcd;
1113 	u16 i;
1114 
1115 	/* Received non-SC15 packet implies neighbor_normal */
1116 	ppd->neighbor_normal = 1;
1117 	set_link_state(ppd, HLS_UP_ACTIVE);
1118 
1119 	/*
1120 	 * Interrupt all statically allocated kernel contexts that could
1121 	 * have had an interrupt during auto activation.
1122 	 */
1123 	for (i = HFI1_CTRL_CTXT; i < dd->first_dyn_alloc_ctxt; i++) {
1124 		rcd = hfi1_rcd_get_by_index(dd, i);
1125 		if (rcd)
1126 			force_recv_intr(rcd);
1127 		hfi1_rcd_put(rcd);
1128 	}
1129 }
1130 
1131 /*
1132  * Convert a given MTU size to the on-wire MAD packet enumeration.
1133  * Return -1 if the size is invalid.
1134  */
1135 int mtu_to_enum(u32 mtu, int default_if_bad)
1136 {
1137 	switch (mtu) {
1138 	case     0: return OPA_MTU_0;
1139 	case   256: return OPA_MTU_256;
1140 	case   512: return OPA_MTU_512;
1141 	case  1024: return OPA_MTU_1024;
1142 	case  2048: return OPA_MTU_2048;
1143 	case  4096: return OPA_MTU_4096;
1144 	case  8192: return OPA_MTU_8192;
1145 	case 10240: return OPA_MTU_10240;
1146 	}
1147 	return default_if_bad;
1148 }
1149 
1150 u16 enum_to_mtu(int mtu)
1151 {
1152 	switch (mtu) {
1153 	case OPA_MTU_0:     return 0;
1154 	case OPA_MTU_256:   return 256;
1155 	case OPA_MTU_512:   return 512;
1156 	case OPA_MTU_1024:  return 1024;
1157 	case OPA_MTU_2048:  return 2048;
1158 	case OPA_MTU_4096:  return 4096;
1159 	case OPA_MTU_8192:  return 8192;
1160 	case OPA_MTU_10240: return 10240;
1161 	default: return 0xffff;
1162 	}
1163 }
1164 
1165 /*
1166  * set_mtu - set the MTU
1167  * @ppd: the per port data
1168  *
1169  * We can handle "any" incoming size, the issue here is whether we
1170  * need to restrict our outgoing size.  We do not deal with what happens
1171  * to programs that are already running when the size changes.
1172  */
1173 int set_mtu(struct hfi1_pportdata *ppd)
1174 {
1175 	struct hfi1_devdata *dd = ppd->dd;
1176 	int i, drain, ret = 0, is_up = 0;
1177 
1178 	ppd->ibmtu = 0;
1179 	for (i = 0; i < ppd->vls_supported; i++)
1180 		if (ppd->ibmtu < dd->vld[i].mtu)
1181 			ppd->ibmtu = dd->vld[i].mtu;
1182 	ppd->ibmaxlen = ppd->ibmtu + lrh_max_header_bytes(ppd->dd);
1183 
1184 	mutex_lock(&ppd->hls_lock);
1185 	if (ppd->host_link_state == HLS_UP_INIT ||
1186 	    ppd->host_link_state == HLS_UP_ARMED ||
1187 	    ppd->host_link_state == HLS_UP_ACTIVE)
1188 		is_up = 1;
1189 
1190 	drain = !is_ax(dd) && is_up;
1191 
1192 	if (drain)
1193 		/*
1194 		 * MTU is specified per-VL. To ensure that no packet gets
1195 		 * stuck (due, e.g., to the MTU for the packet's VL being
1196 		 * reduced), empty the per-VL FIFOs before adjusting MTU.
1197 		 */
1198 		ret = stop_drain_data_vls(dd);
1199 
1200 	if (ret) {
1201 		dd_dev_err(dd, "%s: cannot stop/drain VLs - refusing to change per-VL MTUs\n",
1202 			   __func__);
1203 		goto err;
1204 	}
1205 
1206 	hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_MTU, 0);
1207 
1208 	if (drain)
1209 		open_fill_data_vls(dd); /* reopen all VLs */
1210 
1211 err:
1212 	mutex_unlock(&ppd->hls_lock);
1213 
1214 	return ret;
1215 }
1216 
1217 int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc)
1218 {
1219 	struct hfi1_devdata *dd = ppd->dd;
1220 
1221 	ppd->lid = lid;
1222 	ppd->lmc = lmc;
1223 	hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LIDLMC, 0);
1224 
1225 	dd_dev_info(dd, "port %u: got a lid: 0x%x\n", ppd->port, lid);
1226 
1227 	return 0;
1228 }
1229 
1230 void shutdown_led_override(struct hfi1_pportdata *ppd)
1231 {
1232 	struct hfi1_devdata *dd = ppd->dd;
1233 
1234 	/*
1235 	 * This pairs with the memory barrier in hfi1_start_led_override to
1236 	 * ensure that we read the correct state of LED beaconing represented
1237 	 * by led_override_timer_active
1238 	 */
1239 	smp_rmb();
1240 	if (atomic_read(&ppd->led_override_timer_active)) {
1241 		del_timer_sync(&ppd->led_override_timer);
1242 		atomic_set(&ppd->led_override_timer_active, 0);
1243 		/* Ensure the atomic_set is visible to all CPUs */
1244 		smp_wmb();
1245 	}
1246 
1247 	/* Hand control of the LED to the DC for normal operation */
1248 	write_csr(dd, DCC_CFG_LED_CNTRL, 0);
1249 }
1250 
1251 static void run_led_override(struct timer_list *t)
1252 {
1253 	struct hfi1_pportdata *ppd = from_timer(ppd, t, led_override_timer);
1254 	struct hfi1_devdata *dd = ppd->dd;
1255 	unsigned long timeout;
1256 	int phase_idx;
1257 
1258 	if (!(dd->flags & HFI1_INITTED))
1259 		return;
1260 
1261 	phase_idx = ppd->led_override_phase & 1;
1262 
1263 	setextled(dd, phase_idx);
1264 
1265 	timeout = ppd->led_override_vals[phase_idx];
1266 
1267 	/* Set up for next phase */
1268 	ppd->led_override_phase = !ppd->led_override_phase;
1269 
1270 	mod_timer(&ppd->led_override_timer, jiffies + timeout);
1271 }
1272 
1273 /*
1274  * To have the LED blink in a particular pattern, provide timeon and timeoff
1275  * in milliseconds.
1276  * To turn off custom blinking and return to normal operation, use
1277  * shutdown_led_override()
1278  */
1279 void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon,
1280 			     unsigned int timeoff)
1281 {
1282 	if (!(ppd->dd->flags & HFI1_INITTED))
1283 		return;
1284 
1285 	/* Convert to jiffies for direct use in timer */
1286 	ppd->led_override_vals[0] = msecs_to_jiffies(timeoff);
1287 	ppd->led_override_vals[1] = msecs_to_jiffies(timeon);
1288 
1289 	/* Arbitrarily start from LED on phase */
1290 	ppd->led_override_phase = 1;
1291 
1292 	/*
1293 	 * If the timer has not already been started, do so. Use a "quick"
1294 	 * timeout so the handler will be called soon to look at our request.
1295 	 */
1296 	if (!timer_pending(&ppd->led_override_timer)) {
1297 		timer_setup(&ppd->led_override_timer, run_led_override, 0);
1298 		ppd->led_override_timer.expires = jiffies + 1;
1299 		add_timer(&ppd->led_override_timer);
1300 		atomic_set(&ppd->led_override_timer_active, 1);
1301 		/* Ensure the atomic_set is visible to all CPUs */
1302 		smp_wmb();
1303 	}
1304 }
1305 
1306 /**
1307  * hfi1_reset_device - reset the chip if possible
1308  * @unit: the device to reset
1309  *
1310  * Whether or not reset is successful, we attempt to re-initialize the chip
1311  * (that is, much like a driver unload/reload).  We clear the INITTED flag
1312  * so that the various entry points will fail until we reinitialize.  For
1313  * now, we only allow this if no user contexts are open that use chip resources
1314  */
1315 int hfi1_reset_device(int unit)
1316 {
1317 	int ret;
1318 	struct hfi1_devdata *dd = hfi1_lookup(unit);
1319 	struct hfi1_pportdata *ppd;
1320 	int pidx;
1321 
1322 	if (!dd) {
1323 		ret = -ENODEV;
1324 		goto bail;
1325 	}
1326 
1327 	dd_dev_info(dd, "Reset on unit %u requested\n", unit);
1328 
1329 	if (!dd->kregbase1 || !(dd->flags & HFI1_PRESENT)) {
1330 		dd_dev_info(dd,
1331 			    "Invalid unit number %u or not initialized or not present\n",
1332 			    unit);
1333 		ret = -ENXIO;
1334 		goto bail;
1335 	}
1336 
1337 	/* If there are any user/vnic contexts, we cannot reset */
1338 	mutex_lock(&hfi1_mutex);
1339 	if (dd->rcd)
1340 		if (hfi1_stats.sps_ctxts) {
1341 			mutex_unlock(&hfi1_mutex);
1342 			ret = -EBUSY;
1343 			goto bail;
1344 		}
1345 	mutex_unlock(&hfi1_mutex);
1346 
1347 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1348 		ppd = dd->pport + pidx;
1349 
1350 		shutdown_led_override(ppd);
1351 	}
1352 	if (dd->flags & HFI1_HAS_SEND_DMA)
1353 		sdma_exit(dd);
1354 
1355 	hfi1_reset_cpu_counters(dd);
1356 
1357 	ret = hfi1_init(dd, 1);
1358 
1359 	if (ret)
1360 		dd_dev_err(dd,
1361 			   "Reinitialize unit %u after reset failed with %d\n",
1362 			   unit, ret);
1363 	else
1364 		dd_dev_info(dd, "Reinitialized unit %u after resetting\n",
1365 			    unit);
1366 
1367 bail:
1368 	return ret;
1369 }
1370 
1371 static inline void hfi1_setup_ib_header(struct hfi1_packet *packet)
1372 {
1373 	packet->hdr = (struct hfi1_ib_message_header *)
1374 			hfi1_get_msgheader(packet->rcd->dd,
1375 					   packet->rhf_addr);
1376 	packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr;
1377 }
1378 
1379 static int hfi1_bypass_ingress_pkt_check(struct hfi1_packet *packet)
1380 {
1381 	struct hfi1_pportdata *ppd = packet->rcd->ppd;
1382 
1383 	/* slid and dlid cannot be 0 */
1384 	if ((!packet->slid) || (!packet->dlid))
1385 		return -EINVAL;
1386 
1387 	/* Compare port lid with incoming packet dlid */
1388 	if ((!(hfi1_is_16B_mcast(packet->dlid))) &&
1389 	    (packet->dlid !=
1390 		opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))) {
1391 		if (packet->dlid != ppd->lid)
1392 			return -EINVAL;
1393 	}
1394 
1395 	/* No multicast packets with SC15 */
1396 	if ((hfi1_is_16B_mcast(packet->dlid)) && (packet->sc == 0xF))
1397 		return -EINVAL;
1398 
1399 	/* Packets with permissive DLID always on SC15 */
1400 	if ((packet->dlid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE),
1401 					 16B)) &&
1402 	    (packet->sc != 0xF))
1403 		return -EINVAL;
1404 
1405 	return 0;
1406 }
1407 
1408 static int hfi1_setup_9B_packet(struct hfi1_packet *packet)
1409 {
1410 	struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
1411 	struct ib_header *hdr;
1412 	u8 lnh;
1413 
1414 	hfi1_setup_ib_header(packet);
1415 	hdr = packet->hdr;
1416 
1417 	lnh = ib_get_lnh(hdr);
1418 	if (lnh == HFI1_LRH_BTH) {
1419 		packet->ohdr = &hdr->u.oth;
1420 		packet->grh = NULL;
1421 	} else if (lnh == HFI1_LRH_GRH) {
1422 		u32 vtf;
1423 
1424 		packet->ohdr = &hdr->u.l.oth;
1425 		packet->grh = &hdr->u.l.grh;
1426 		if (packet->grh->next_hdr != IB_GRH_NEXT_HDR)
1427 			goto drop;
1428 		vtf = be32_to_cpu(packet->grh->version_tclass_flow);
1429 		if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
1430 			goto drop;
1431 	} else {
1432 		goto drop;
1433 	}
1434 
1435 	/* Query commonly used fields from packet header */
1436 	packet->payload = packet->ebuf;
1437 	packet->opcode = ib_bth_get_opcode(packet->ohdr);
1438 	packet->slid = ib_get_slid(hdr);
1439 	packet->dlid = ib_get_dlid(hdr);
1440 	if (unlikely((packet->dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
1441 		     (packet->dlid != be16_to_cpu(IB_LID_PERMISSIVE))))
1442 		packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) -
1443 				be16_to_cpu(IB_MULTICAST_LID_BASE);
1444 	packet->sl = ib_get_sl(hdr);
1445 	packet->sc = hfi1_9B_get_sc5(hdr, packet->rhf);
1446 	packet->pad = ib_bth_get_pad(packet->ohdr);
1447 	packet->extra_byte = 0;
1448 	packet->pkey = ib_bth_get_pkey(packet->ohdr);
1449 	packet->migrated = ib_bth_is_migration(packet->ohdr);
1450 
1451 	return 0;
1452 drop:
1453 	ibp->rvp.n_pkt_drops++;
1454 	return -EINVAL;
1455 }
1456 
1457 static int hfi1_setup_bypass_packet(struct hfi1_packet *packet)
1458 {
1459 	/*
1460 	 * Bypass packets have a different header/payload split
1461 	 * compared to an IB packet.
1462 	 * Current split is set such that 16 bytes of the actual
1463 	 * header is in the header buffer and the remining is in
1464 	 * the eager buffer. We chose 16 since hfi1 driver only
1465 	 * supports 16B bypass packets and we will be able to
1466 	 * receive the entire LRH with such a split.
1467 	 */
1468 
1469 	struct hfi1_ctxtdata *rcd = packet->rcd;
1470 	struct hfi1_pportdata *ppd = rcd->ppd;
1471 	struct hfi1_ibport *ibp = &ppd->ibport_data;
1472 	u8 l4;
1473 	u8 grh_len;
1474 
1475 	packet->hdr = (struct hfi1_16b_header *)
1476 			hfi1_get_16B_header(packet->rcd->dd,
1477 					    packet->rhf_addr);
1478 	packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr;
1479 
1480 	l4 = hfi1_16B_get_l4(packet->hdr);
1481 	if (l4 == OPA_16B_L4_IB_LOCAL) {
1482 		grh_len = 0;
1483 		packet->ohdr = packet->ebuf;
1484 		packet->grh = NULL;
1485 	} else if (l4 == OPA_16B_L4_IB_GLOBAL) {
1486 		u32 vtf;
1487 
1488 		grh_len = sizeof(struct ib_grh);
1489 		packet->ohdr = packet->ebuf + grh_len;
1490 		packet->grh = packet->ebuf;
1491 		if (packet->grh->next_hdr != IB_GRH_NEXT_HDR)
1492 			goto drop;
1493 		vtf = be32_to_cpu(packet->grh->version_tclass_flow);
1494 		if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
1495 			goto drop;
1496 	} else {
1497 		goto drop;
1498 	}
1499 
1500 	/* Query commonly used fields from packet header */
1501 	packet->opcode = ib_bth_get_opcode(packet->ohdr);
1502 	/* hdr_len_by_opcode already has an IB LRH factored in */
1503 	packet->hlen = hdr_len_by_opcode[packet->opcode] +
1504 		(LRH_16B_BYTES - LRH_9B_BYTES) + grh_len;
1505 	packet->payload = packet->ebuf + packet->hlen - LRH_16B_BYTES;
1506 	packet->slid = hfi1_16B_get_slid(packet->hdr);
1507 	packet->dlid = hfi1_16B_get_dlid(packet->hdr);
1508 	if (unlikely(hfi1_is_16B_mcast(packet->dlid)))
1509 		packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) -
1510 				opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR),
1511 					    16B);
1512 	packet->sc = hfi1_16B_get_sc(packet->hdr);
1513 	packet->sl = ibp->sc_to_sl[packet->sc];
1514 	packet->pad = hfi1_16B_bth_get_pad(packet->ohdr);
1515 	packet->extra_byte = SIZE_OF_LT;
1516 	packet->pkey = hfi1_16B_get_pkey(packet->hdr);
1517 	packet->migrated = opa_bth_is_migration(packet->ohdr);
1518 
1519 	if (hfi1_bypass_ingress_pkt_check(packet))
1520 		goto drop;
1521 
1522 	return 0;
1523 drop:
1524 	hfi1_cdbg(PKT, "%s: packet dropped\n", __func__);
1525 	ibp->rvp.n_pkt_drops++;
1526 	return -EINVAL;
1527 }
1528 
1529 void handle_eflags(struct hfi1_packet *packet)
1530 {
1531 	struct hfi1_ctxtdata *rcd = packet->rcd;
1532 	u32 rte = rhf_rcv_type_err(packet->rhf);
1533 
1534 	rcv_hdrerr(rcd, rcd->ppd, packet);
1535 	if (rhf_err_flags(packet->rhf))
1536 		dd_dev_err(rcd->dd,
1537 			   "receive context %d: rhf 0x%016llx, errs [ %s%s%s%s%s%s%s%s] rte 0x%x\n",
1538 			   rcd->ctxt, packet->rhf,
1539 			   packet->rhf & RHF_K_HDR_LEN_ERR ? "k_hdr_len " : "",
1540 			   packet->rhf & RHF_DC_UNC_ERR ? "dc_unc " : "",
1541 			   packet->rhf & RHF_DC_ERR ? "dc " : "",
1542 			   packet->rhf & RHF_TID_ERR ? "tid " : "",
1543 			   packet->rhf & RHF_LEN_ERR ? "len " : "",
1544 			   packet->rhf & RHF_ECC_ERR ? "ecc " : "",
1545 			   packet->rhf & RHF_VCRC_ERR ? "vcrc " : "",
1546 			   packet->rhf & RHF_ICRC_ERR ? "icrc " : "",
1547 			   rte);
1548 }
1549 
1550 /*
1551  * The following functions are called by the interrupt handler. They are type
1552  * specific handlers for each packet type.
1553  */
1554 int process_receive_ib(struct hfi1_packet *packet)
1555 {
1556 	if (unlikely(hfi1_dbg_fault_packet(packet)))
1557 		return RHF_RCV_CONTINUE;
1558 
1559 	if (hfi1_setup_9B_packet(packet))
1560 		return RHF_RCV_CONTINUE;
1561 
1562 	trace_hfi1_rcvhdr(packet);
1563 
1564 	if (unlikely(rhf_err_flags(packet->rhf))) {
1565 		handle_eflags(packet);
1566 		return RHF_RCV_CONTINUE;
1567 	}
1568 
1569 	hfi1_ib_rcv(packet);
1570 	return RHF_RCV_CONTINUE;
1571 }
1572 
1573 static inline bool hfi1_is_vnic_packet(struct hfi1_packet *packet)
1574 {
1575 	/* Packet received in VNIC context via RSM */
1576 	if (packet->rcd->is_vnic)
1577 		return true;
1578 
1579 	if ((hfi1_16B_get_l2(packet->ebuf) == OPA_16B_L2_TYPE) &&
1580 	    (hfi1_16B_get_l4(packet->ebuf) == OPA_16B_L4_ETHR))
1581 		return true;
1582 
1583 	return false;
1584 }
1585 
1586 int process_receive_bypass(struct hfi1_packet *packet)
1587 {
1588 	struct hfi1_devdata *dd = packet->rcd->dd;
1589 
1590 	if (hfi1_is_vnic_packet(packet)) {
1591 		hfi1_vnic_bypass_rcv(packet);
1592 		return RHF_RCV_CONTINUE;
1593 	}
1594 
1595 	if (hfi1_setup_bypass_packet(packet))
1596 		return RHF_RCV_CONTINUE;
1597 
1598 	trace_hfi1_rcvhdr(packet);
1599 
1600 	if (unlikely(rhf_err_flags(packet->rhf))) {
1601 		handle_eflags(packet);
1602 		return RHF_RCV_CONTINUE;
1603 	}
1604 
1605 	if (hfi1_16B_get_l2(packet->hdr) == 0x2) {
1606 		hfi1_16B_rcv(packet);
1607 	} else {
1608 		dd_dev_err(dd,
1609 			   "Bypass packets other than 16B are not supported in normal operation. Dropping\n");
1610 		incr_cntr64(&dd->sw_rcv_bypass_packet_errors);
1611 		if (!(dd->err_info_rcvport.status_and_code &
1612 		      OPA_EI_STATUS_SMASK)) {
1613 			u64 *flits = packet->ebuf;
1614 
1615 			if (flits && !(packet->rhf & RHF_LEN_ERR)) {
1616 				dd->err_info_rcvport.packet_flit1 = flits[0];
1617 				dd->err_info_rcvport.packet_flit2 =
1618 					packet->tlen > sizeof(flits[0]) ?
1619 					flits[1] : 0;
1620 			}
1621 			dd->err_info_rcvport.status_and_code |=
1622 				(OPA_EI_STATUS_SMASK | BAD_L2_ERR);
1623 		}
1624 	}
1625 	return RHF_RCV_CONTINUE;
1626 }
1627 
1628 int process_receive_error(struct hfi1_packet *packet)
1629 {
1630 	/* KHdrHCRCErr -- KDETH packet with a bad HCRC */
1631 	if (unlikely(
1632 		 hfi1_dbg_fault_suppress_err(&packet->rcd->dd->verbs_dev) &&
1633 		 rhf_rcv_type_err(packet->rhf) == 3))
1634 		return RHF_RCV_CONTINUE;
1635 
1636 	hfi1_setup_ib_header(packet);
1637 	handle_eflags(packet);
1638 
1639 	if (unlikely(rhf_err_flags(packet->rhf)))
1640 		dd_dev_err(packet->rcd->dd,
1641 			   "Unhandled error packet received. Dropping.\n");
1642 
1643 	return RHF_RCV_CONTINUE;
1644 }
1645 
1646 int kdeth_process_expected(struct hfi1_packet *packet)
1647 {
1648 	if (unlikely(hfi1_dbg_fault_packet(packet)))
1649 		return RHF_RCV_CONTINUE;
1650 
1651 	hfi1_setup_ib_header(packet);
1652 	if (unlikely(rhf_err_flags(packet->rhf)))
1653 		handle_eflags(packet);
1654 
1655 	dd_dev_err(packet->rcd->dd,
1656 		   "Unhandled expected packet received. Dropping.\n");
1657 	return RHF_RCV_CONTINUE;
1658 }
1659 
1660 int kdeth_process_eager(struct hfi1_packet *packet)
1661 {
1662 	hfi1_setup_ib_header(packet);
1663 	if (unlikely(rhf_err_flags(packet->rhf)))
1664 		handle_eflags(packet);
1665 	if (unlikely(hfi1_dbg_fault_packet(packet)))
1666 		return RHF_RCV_CONTINUE;
1667 
1668 	dd_dev_err(packet->rcd->dd,
1669 		   "Unhandled eager packet received. Dropping.\n");
1670 	return RHF_RCV_CONTINUE;
1671 }
1672 
1673 int process_receive_invalid(struct hfi1_packet *packet)
1674 {
1675 	dd_dev_err(packet->rcd->dd, "Invalid packet type %d. Dropping\n",
1676 		   rhf_rcv_type(packet->rhf));
1677 	return RHF_RCV_CONTINUE;
1678 }
1679 
1680 void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd)
1681 {
1682 	struct hfi1_packet packet;
1683 	struct ps_mdata mdata;
1684 
1685 	seq_printf(s, "Rcd %u: RcvHdr cnt %u entsize %u %s head %llu tail %llu\n",
1686 		   rcd->ctxt, rcd->rcvhdrq_cnt, rcd->rcvhdrqentsize,
1687 		   HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
1688 		   "dma_rtail" : "nodma_rtail",
1689 		   read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD) &
1690 		   RCV_HDR_HEAD_HEAD_MASK,
1691 		   read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL));
1692 
1693 	init_packet(rcd, &packet);
1694 	init_ps_mdata(&mdata, &packet);
1695 
1696 	while (1) {
1697 		struct hfi1_devdata *dd = rcd->dd;
1698 		__le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
1699 					 dd->rhf_offset;
1700 		struct ib_header *hdr;
1701 		u64 rhf = rhf_to_cpu(rhf_addr);
1702 		u32 etype = rhf_rcv_type(rhf), qpn;
1703 		u8 opcode;
1704 		u32 psn;
1705 		u8 lnh;
1706 
1707 		if (ps_done(&mdata, rhf, rcd))
1708 			break;
1709 
1710 		if (ps_skip(&mdata, rhf, rcd))
1711 			goto next;
1712 
1713 		if (etype > RHF_RCV_TYPE_IB)
1714 			goto next;
1715 
1716 		packet.hdr = hfi1_get_msgheader(dd, rhf_addr);
1717 		hdr = packet.hdr;
1718 
1719 		lnh = be16_to_cpu(hdr->lrh[0]) & 3;
1720 
1721 		if (lnh == HFI1_LRH_BTH)
1722 			packet.ohdr = &hdr->u.oth;
1723 		else if (lnh == HFI1_LRH_GRH)
1724 			packet.ohdr = &hdr->u.l.oth;
1725 		else
1726 			goto next; /* just in case */
1727 
1728 		opcode = (be32_to_cpu(packet.ohdr->bth[0]) >> 24);
1729 		qpn = be32_to_cpu(packet.ohdr->bth[1]) & RVT_QPN_MASK;
1730 		psn = mask_psn(be32_to_cpu(packet.ohdr->bth[2]));
1731 
1732 		seq_printf(s, "\tEnt %u: opcode 0x%x, qpn 0x%x, psn 0x%x\n",
1733 			   mdata.ps_head, opcode, qpn, psn);
1734 next:
1735 		update_ps_mdata(&mdata, rcd);
1736 	}
1737 }
1738