1 /*
2  * Copyright(c) 2015-2017 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <linux/spinlock.h>
49 #include <linux/pci.h>
50 #include <linux/io.h>
51 #include <linux/delay.h>
52 #include <linux/netdevice.h>
53 #include <linux/vmalloc.h>
54 #include <linux/module.h>
55 #include <linux/prefetch.h>
56 #include <rdma/ib_verbs.h>
57 
58 #include "hfi.h"
59 #include "trace.h"
60 #include "qp.h"
61 #include "sdma.h"
62 #include "debugfs.h"
63 #include "vnic.h"
64 
65 #undef pr_fmt
66 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
67 
68 /*
69  * The size has to be longer than this string, so we can append
70  * board/chip information to it in the initialization code.
71  */
72 const char ib_hfi1_version[] = HFI1_DRIVER_VERSION "\n";
73 
74 DEFINE_SPINLOCK(hfi1_devs_lock);
75 LIST_HEAD(hfi1_dev_list);
76 DEFINE_MUTEX(hfi1_mutex);	/* general driver use */
77 
78 unsigned int hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
79 module_param_named(max_mtu, hfi1_max_mtu, uint, S_IRUGO);
80 MODULE_PARM_DESC(max_mtu, "Set max MTU bytes, default is " __stringify(
81 		 HFI1_DEFAULT_MAX_MTU));
82 
83 unsigned int hfi1_cu = 1;
84 module_param_named(cu, hfi1_cu, uint, S_IRUGO);
85 MODULE_PARM_DESC(cu, "Credit return units");
86 
87 unsigned long hfi1_cap_mask = HFI1_CAP_MASK_DEFAULT;
88 static int hfi1_caps_set(const char *val, const struct kernel_param *kp);
89 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp);
90 static const struct kernel_param_ops cap_ops = {
91 	.set = hfi1_caps_set,
92 	.get = hfi1_caps_get
93 };
94 module_param_cb(cap_mask, &cap_ops, &hfi1_cap_mask, S_IWUSR | S_IRUGO);
95 MODULE_PARM_DESC(cap_mask, "Bit mask of enabled/disabled HW features");
96 
97 MODULE_LICENSE("Dual BSD/GPL");
98 MODULE_DESCRIPTION("Intel Omni-Path Architecture driver");
99 
100 /*
101  * MAX_PKT_RCV is the max # if packets processed per receive interrupt.
102  */
103 #define MAX_PKT_RECV 64
104 /*
105  * MAX_PKT_THREAD_RCV is the max # of packets processed before
106  * the qp_wait_list queue is flushed.
107  */
108 #define MAX_PKT_RECV_THREAD (MAX_PKT_RECV * 4)
109 #define EGR_HEAD_UPDATE_THRESHOLD 16
110 
111 struct hfi1_ib_stats hfi1_stats;
112 
113 static int hfi1_caps_set(const char *val, const struct kernel_param *kp)
114 {
115 	int ret = 0;
116 	unsigned long *cap_mask_ptr = (unsigned long *)kp->arg,
117 		cap_mask = *cap_mask_ptr, value, diff,
118 		write_mask = ((HFI1_CAP_WRITABLE_MASK << HFI1_CAP_USER_SHIFT) |
119 			      HFI1_CAP_WRITABLE_MASK);
120 
121 	ret = kstrtoul(val, 0, &value);
122 	if (ret) {
123 		pr_warn("Invalid module parameter value for 'cap_mask'\n");
124 		goto done;
125 	}
126 	/* Get the changed bits (except the locked bit) */
127 	diff = value ^ (cap_mask & ~HFI1_CAP_LOCKED_SMASK);
128 
129 	/* Remove any bits that are not allowed to change after driver load */
130 	if (HFI1_CAP_LOCKED() && (diff & ~write_mask)) {
131 		pr_warn("Ignoring non-writable capability bits %#lx\n",
132 			diff & ~write_mask);
133 		diff &= write_mask;
134 	}
135 
136 	/* Mask off any reserved bits */
137 	diff &= ~HFI1_CAP_RESERVED_MASK;
138 	/* Clear any previously set and changing bits */
139 	cap_mask &= ~diff;
140 	/* Update the bits with the new capability */
141 	cap_mask |= (value & diff);
142 	/* Check for any kernel/user restrictions */
143 	diff = (cap_mask & (HFI1_CAP_MUST_HAVE_KERN << HFI1_CAP_USER_SHIFT)) ^
144 		((cap_mask & HFI1_CAP_MUST_HAVE_KERN) << HFI1_CAP_USER_SHIFT);
145 	cap_mask &= ~diff;
146 	/* Set the bitmask to the final set */
147 	*cap_mask_ptr = cap_mask;
148 done:
149 	return ret;
150 }
151 
152 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp)
153 {
154 	unsigned long cap_mask = *(unsigned long *)kp->arg;
155 
156 	cap_mask &= ~HFI1_CAP_LOCKED_SMASK;
157 	cap_mask |= ((cap_mask & HFI1_CAP_K2U) << HFI1_CAP_USER_SHIFT);
158 
159 	return scnprintf(buffer, PAGE_SIZE, "0x%lx", cap_mask);
160 }
161 
162 const char *get_unit_name(int unit)
163 {
164 	static char iname[16];
165 
166 	snprintf(iname, sizeof(iname), DRIVER_NAME "_%u", unit);
167 	return iname;
168 }
169 
170 const char *get_card_name(struct rvt_dev_info *rdi)
171 {
172 	struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi);
173 	struct hfi1_devdata *dd = container_of(ibdev,
174 					       struct hfi1_devdata, verbs_dev);
175 	return get_unit_name(dd->unit);
176 }
177 
178 struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi)
179 {
180 	struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi);
181 	struct hfi1_devdata *dd = container_of(ibdev,
182 					       struct hfi1_devdata, verbs_dev);
183 	return dd->pcidev;
184 }
185 
186 /*
187  * Return count of units with at least one port ACTIVE.
188  */
189 int hfi1_count_active_units(void)
190 {
191 	struct hfi1_devdata *dd;
192 	struct hfi1_pportdata *ppd;
193 	unsigned long flags;
194 	int pidx, nunits_active = 0;
195 
196 	spin_lock_irqsave(&hfi1_devs_lock, flags);
197 	list_for_each_entry(dd, &hfi1_dev_list, list) {
198 		if (!(dd->flags & HFI1_PRESENT) || !dd->kregbase1)
199 			continue;
200 		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
201 			ppd = dd->pport + pidx;
202 			if (ppd->lid && ppd->linkup) {
203 				nunits_active++;
204 				break;
205 			}
206 		}
207 	}
208 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
209 	return nunits_active;
210 }
211 
212 /*
213  * Get address of eager buffer from it's index (allocated in chunks, not
214  * contiguous).
215  */
216 static inline void *get_egrbuf(const struct hfi1_ctxtdata *rcd, u64 rhf,
217 			       u8 *update)
218 {
219 	u32 idx = rhf_egr_index(rhf), offset = rhf_egr_buf_offset(rhf);
220 
221 	*update |= !(idx & (rcd->egrbufs.threshold - 1)) && !offset;
222 	return (void *)(((u64)(rcd->egrbufs.rcvtids[idx].addr)) +
223 			(offset * RCV_BUF_BLOCK_SIZE));
224 }
225 
226 static inline void *hfi1_get_header(struct hfi1_devdata *dd,
227 				    __le32 *rhf_addr)
228 {
229 	u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
230 
231 	return (void *)(rhf_addr - dd->rhf_offset + offset);
232 }
233 
234 static inline struct ib_header *hfi1_get_msgheader(struct hfi1_devdata *dd,
235 						   __le32 *rhf_addr)
236 {
237 	return (struct ib_header *)hfi1_get_header(dd, rhf_addr);
238 }
239 
240 static inline struct hfi1_16b_header
241 		*hfi1_get_16B_header(struct hfi1_devdata *dd,
242 				     __le32 *rhf_addr)
243 {
244 	return (struct hfi1_16b_header *)hfi1_get_header(dd, rhf_addr);
245 }
246 
247 /*
248  * Validate and encode the a given RcvArray Buffer size.
249  * The function will check whether the given size falls within
250  * allowed size ranges for the respective type and, optionally,
251  * return the proper encoding.
252  */
253 int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encoded)
254 {
255 	if (unlikely(!PAGE_ALIGNED(size)))
256 		return 0;
257 	if (unlikely(size < MIN_EAGER_BUFFER))
258 		return 0;
259 	if (size >
260 	    (type == PT_EAGER ? MAX_EAGER_BUFFER : MAX_EXPECTED_BUFFER))
261 		return 0;
262 	if (encoded)
263 		*encoded = ilog2(size / PAGE_SIZE) + 1;
264 	return 1;
265 }
266 
267 static void rcv_hdrerr(struct hfi1_ctxtdata *rcd, struct hfi1_pportdata *ppd,
268 		       struct hfi1_packet *packet)
269 {
270 	struct ib_header *rhdr = packet->hdr;
271 	u32 rte = rhf_rcv_type_err(packet->rhf);
272 	u32 mlid_base;
273 	struct hfi1_ibport *ibp = rcd_to_iport(rcd);
274 	struct hfi1_devdata *dd = ppd->dd;
275 	struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
276 
277 	if (packet->rhf & (RHF_VCRC_ERR | RHF_ICRC_ERR))
278 		return;
279 
280 	if (packet->etype == RHF_RCV_TYPE_BYPASS) {
281 		goto drop;
282 	} else {
283 		u8 lnh = ib_get_lnh(rhdr);
284 
285 		mlid_base = be16_to_cpu(IB_MULTICAST_LID_BASE);
286 		if (lnh == HFI1_LRH_BTH) {
287 			packet->ohdr = &rhdr->u.oth;
288 		} else if (lnh == HFI1_LRH_GRH) {
289 			packet->ohdr = &rhdr->u.l.oth;
290 			packet->grh = &rhdr->u.l.grh;
291 		} else {
292 			goto drop;
293 		}
294 	}
295 
296 	if (packet->rhf & RHF_TID_ERR) {
297 		/* For TIDERR and RC QPs preemptively schedule a NAK */
298 		u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */
299 		u32 dlid = ib_get_dlid(rhdr);
300 		u32 qp_num;
301 
302 		/* Sanity check packet */
303 		if (tlen < 24)
304 			goto drop;
305 
306 		/* Check for GRH */
307 		if (packet->grh) {
308 			u32 vtf;
309 			struct ib_grh *grh = packet->grh;
310 
311 			if (grh->next_hdr != IB_GRH_NEXT_HDR)
312 				goto drop;
313 			vtf = be32_to_cpu(grh->version_tclass_flow);
314 			if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
315 				goto drop;
316 		}
317 
318 		/* Get the destination QP number. */
319 		qp_num = ib_bth_get_qpn(packet->ohdr);
320 		if (dlid < mlid_base) {
321 			struct rvt_qp *qp;
322 			unsigned long flags;
323 
324 			rcu_read_lock();
325 			qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
326 			if (!qp) {
327 				rcu_read_unlock();
328 				goto drop;
329 			}
330 
331 			/*
332 			 * Handle only RC QPs - for other QP types drop error
333 			 * packet.
334 			 */
335 			spin_lock_irqsave(&qp->r_lock, flags);
336 
337 			/* Check for valid receive state. */
338 			if (!(ib_rvt_state_ops[qp->state] &
339 			      RVT_PROCESS_RECV_OK)) {
340 				ibp->rvp.n_pkt_drops++;
341 			}
342 
343 			switch (qp->ibqp.qp_type) {
344 			case IB_QPT_RC:
345 				hfi1_rc_hdrerr(rcd, packet, qp);
346 				break;
347 			default:
348 				/* For now don't handle any other QP types */
349 				break;
350 			}
351 
352 			spin_unlock_irqrestore(&qp->r_lock, flags);
353 			rcu_read_unlock();
354 		} /* Unicast QP */
355 	} /* Valid packet with TIDErr */
356 
357 	/* handle "RcvTypeErr" flags */
358 	switch (rte) {
359 	case RHF_RTE_ERROR_OP_CODE_ERR:
360 	{
361 		void *ebuf = NULL;
362 		u8 opcode;
363 
364 		if (rhf_use_egr_bfr(packet->rhf))
365 			ebuf = packet->ebuf;
366 
367 		if (!ebuf)
368 			goto drop; /* this should never happen */
369 
370 		opcode = ib_bth_get_opcode(packet->ohdr);
371 		if (opcode == IB_OPCODE_CNP) {
372 			/*
373 			 * Only in pre-B0 h/w is the CNP_OPCODE handled
374 			 * via this code path.
375 			 */
376 			struct rvt_qp *qp = NULL;
377 			u32 lqpn, rqpn;
378 			u16 rlid;
379 			u8 svc_type, sl, sc5;
380 
381 			sc5 = hfi1_9B_get_sc5(rhdr, packet->rhf);
382 			sl = ibp->sc_to_sl[sc5];
383 
384 			lqpn = ib_bth_get_qpn(packet->ohdr);
385 			rcu_read_lock();
386 			qp = rvt_lookup_qpn(rdi, &ibp->rvp, lqpn);
387 			if (!qp) {
388 				rcu_read_unlock();
389 				goto drop;
390 			}
391 
392 			switch (qp->ibqp.qp_type) {
393 			case IB_QPT_UD:
394 				rlid = 0;
395 				rqpn = 0;
396 				svc_type = IB_CC_SVCTYPE_UD;
397 				break;
398 			case IB_QPT_UC:
399 				rlid = ib_get_slid(rhdr);
400 				rqpn = qp->remote_qpn;
401 				svc_type = IB_CC_SVCTYPE_UC;
402 				break;
403 			default:
404 				goto drop;
405 			}
406 
407 			process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
408 			rcu_read_unlock();
409 		}
410 
411 		packet->rhf &= ~RHF_RCV_TYPE_ERR_SMASK;
412 		break;
413 	}
414 	default:
415 		break;
416 	}
417 
418 drop:
419 	return;
420 }
421 
422 static inline void init_packet(struct hfi1_ctxtdata *rcd,
423 			       struct hfi1_packet *packet)
424 {
425 	packet->rsize = rcd->rcvhdrqentsize; /* words */
426 	packet->maxcnt = rcd->rcvhdrq_cnt * packet->rsize; /* words */
427 	packet->rcd = rcd;
428 	packet->updegr = 0;
429 	packet->etail = -1;
430 	packet->rhf_addr = get_rhf_addr(rcd);
431 	packet->rhf = rhf_to_cpu(packet->rhf_addr);
432 	packet->rhqoff = rcd->head;
433 	packet->numpkt = 0;
434 }
435 
436 void hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt,
437 			       bool do_cnp)
438 {
439 	struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
440 	struct ib_other_headers *ohdr = pkt->ohdr;
441 	struct ib_grh *grh = pkt->grh;
442 	u32 rqpn = 0, bth1;
443 	u16 pkey, rlid, dlid = ib_get_dlid(pkt->hdr);
444 	u8 hdr_type, sc, svc_type;
445 	bool is_mcast = false;
446 
447 	if (pkt->etype == RHF_RCV_TYPE_BYPASS) {
448 		is_mcast = hfi1_is_16B_mcast(dlid);
449 		pkey = hfi1_16B_get_pkey(pkt->hdr);
450 		sc = hfi1_16B_get_sc(pkt->hdr);
451 		hdr_type = HFI1_PKT_TYPE_16B;
452 	} else {
453 		is_mcast = (dlid > be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
454 			   (dlid != be16_to_cpu(IB_LID_PERMISSIVE));
455 		pkey = ib_bth_get_pkey(ohdr);
456 		sc = hfi1_9B_get_sc5(pkt->hdr, pkt->rhf);
457 		hdr_type = HFI1_PKT_TYPE_9B;
458 	}
459 
460 	switch (qp->ibqp.qp_type) {
461 	case IB_QPT_SMI:
462 	case IB_QPT_GSI:
463 	case IB_QPT_UD:
464 		rlid = ib_get_slid(pkt->hdr);
465 		rqpn = ib_get_sqpn(pkt->ohdr);
466 		svc_type = IB_CC_SVCTYPE_UD;
467 		break;
468 	case IB_QPT_UC:
469 		rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
470 		rqpn = qp->remote_qpn;
471 		svc_type = IB_CC_SVCTYPE_UC;
472 		break;
473 	case IB_QPT_RC:
474 		rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
475 		rqpn = qp->remote_qpn;
476 		svc_type = IB_CC_SVCTYPE_RC;
477 		break;
478 	default:
479 		return;
480 	}
481 
482 	bth1 = be32_to_cpu(ohdr->bth[1]);
483 	/* Call appropriate CNP handler */
484 	if (do_cnp && (bth1 & IB_FECN_SMASK))
485 		hfi1_handle_cnp_tbl[hdr_type](ibp, qp, rqpn, pkey,
486 					      dlid, rlid, sc, grh);
487 
488 	if (!is_mcast && (bth1 & IB_BECN_SMASK)) {
489 		struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
490 		u32 lqpn = bth1 & RVT_QPN_MASK;
491 		u8 sl = ibp->sc_to_sl[sc];
492 
493 		process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
494 	}
495 
496 }
497 
498 struct ps_mdata {
499 	struct hfi1_ctxtdata *rcd;
500 	u32 rsize;
501 	u32 maxcnt;
502 	u32 ps_head;
503 	u32 ps_tail;
504 	u32 ps_seq;
505 };
506 
507 static inline void init_ps_mdata(struct ps_mdata *mdata,
508 				 struct hfi1_packet *packet)
509 {
510 	struct hfi1_ctxtdata *rcd = packet->rcd;
511 
512 	mdata->rcd = rcd;
513 	mdata->rsize = packet->rsize;
514 	mdata->maxcnt = packet->maxcnt;
515 	mdata->ps_head = packet->rhqoff;
516 
517 	if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
518 		mdata->ps_tail = get_rcvhdrtail(rcd);
519 		if (rcd->ctxt == HFI1_CTRL_CTXT)
520 			mdata->ps_seq = rcd->seq_cnt;
521 		else
522 			mdata->ps_seq = 0; /* not used with DMA_RTAIL */
523 	} else {
524 		mdata->ps_tail = 0; /* used only with DMA_RTAIL*/
525 		mdata->ps_seq = rcd->seq_cnt;
526 	}
527 }
528 
529 static inline int ps_done(struct ps_mdata *mdata, u64 rhf,
530 			  struct hfi1_ctxtdata *rcd)
531 {
532 	if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
533 		return mdata->ps_head == mdata->ps_tail;
534 	return mdata->ps_seq != rhf_rcv_seq(rhf);
535 }
536 
537 static inline int ps_skip(struct ps_mdata *mdata, u64 rhf,
538 			  struct hfi1_ctxtdata *rcd)
539 {
540 	/*
541 	 * Control context can potentially receive an invalid rhf.
542 	 * Drop such packets.
543 	 */
544 	if ((rcd->ctxt == HFI1_CTRL_CTXT) && (mdata->ps_head != mdata->ps_tail))
545 		return mdata->ps_seq != rhf_rcv_seq(rhf);
546 
547 	return 0;
548 }
549 
550 static inline void update_ps_mdata(struct ps_mdata *mdata,
551 				   struct hfi1_ctxtdata *rcd)
552 {
553 	mdata->ps_head += mdata->rsize;
554 	if (mdata->ps_head >= mdata->maxcnt)
555 		mdata->ps_head = 0;
556 
557 	/* Control context must do seq counting */
558 	if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ||
559 	    (rcd->ctxt == HFI1_CTRL_CTXT)) {
560 		if (++mdata->ps_seq > 13)
561 			mdata->ps_seq = 1;
562 	}
563 }
564 
565 /*
566  * prescan_rxq - search through the receive queue looking for packets
567  * containing Excplicit Congestion Notifications (FECNs, or BECNs).
568  * When an ECN is found, process the Congestion Notification, and toggle
569  * it off.
570  * This is declared as a macro to allow quick checking of the port to avoid
571  * the overhead of a function call if not enabled.
572  */
573 #define prescan_rxq(rcd, packet) \
574 	do { \
575 		if (rcd->ppd->cc_prescan) \
576 			__prescan_rxq(packet); \
577 	} while (0)
578 static void __prescan_rxq(struct hfi1_packet *packet)
579 {
580 	struct hfi1_ctxtdata *rcd = packet->rcd;
581 	struct ps_mdata mdata;
582 
583 	init_ps_mdata(&mdata, packet);
584 
585 	while (1) {
586 		struct hfi1_devdata *dd = rcd->dd;
587 		struct hfi1_ibport *ibp = rcd_to_iport(rcd);
588 		__le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
589 					 dd->rhf_offset;
590 		struct rvt_qp *qp;
591 		struct ib_header *hdr;
592 		struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
593 		u64 rhf = rhf_to_cpu(rhf_addr);
594 		u32 etype = rhf_rcv_type(rhf), qpn, bth1;
595 		int is_ecn = 0;
596 		u8 lnh;
597 
598 		if (ps_done(&mdata, rhf, rcd))
599 			break;
600 
601 		if (ps_skip(&mdata, rhf, rcd))
602 			goto next;
603 
604 		if (etype != RHF_RCV_TYPE_IB)
605 			goto next;
606 
607 		packet->hdr = hfi1_get_msgheader(dd, rhf_addr);
608 		hdr = packet->hdr;
609 		lnh = ib_get_lnh(hdr);
610 
611 		if (lnh == HFI1_LRH_BTH) {
612 			packet->ohdr = &hdr->u.oth;
613 			packet->grh = NULL;
614 		} else if (lnh == HFI1_LRH_GRH) {
615 			packet->ohdr = &hdr->u.l.oth;
616 			packet->grh = &hdr->u.l.grh;
617 		} else {
618 			goto next; /* just in case */
619 		}
620 
621 		bth1 = be32_to_cpu(packet->ohdr->bth[1]);
622 		is_ecn = !!(bth1 & (IB_FECN_SMASK | IB_BECN_SMASK));
623 
624 		if (!is_ecn)
625 			goto next;
626 
627 		qpn = bth1 & RVT_QPN_MASK;
628 		rcu_read_lock();
629 		qp = rvt_lookup_qpn(rdi, &ibp->rvp, qpn);
630 
631 		if (!qp) {
632 			rcu_read_unlock();
633 			goto next;
634 		}
635 
636 		process_ecn(qp, packet, true);
637 		rcu_read_unlock();
638 
639 		/* turn off BECN, FECN */
640 		bth1 &= ~(IB_FECN_SMASK | IB_BECN_SMASK);
641 		packet->ohdr->bth[1] = cpu_to_be32(bth1);
642 next:
643 		update_ps_mdata(&mdata, rcd);
644 	}
645 }
646 
647 static void process_rcv_qp_work(struct hfi1_ctxtdata *rcd)
648 {
649 	struct rvt_qp *qp, *nqp;
650 
651 	/*
652 	 * Iterate over all QPs waiting to respond.
653 	 * The list won't change since the IRQ is only run on one CPU.
654 	 */
655 	list_for_each_entry_safe(qp, nqp, &rcd->qp_wait_list, rspwait) {
656 		list_del_init(&qp->rspwait);
657 		if (qp->r_flags & RVT_R_RSP_NAK) {
658 			qp->r_flags &= ~RVT_R_RSP_NAK;
659 			hfi1_send_rc_ack(rcd, qp, 0);
660 		}
661 		if (qp->r_flags & RVT_R_RSP_SEND) {
662 			unsigned long flags;
663 
664 			qp->r_flags &= ~RVT_R_RSP_SEND;
665 			spin_lock_irqsave(&qp->s_lock, flags);
666 			if (ib_rvt_state_ops[qp->state] &
667 					RVT_PROCESS_OR_FLUSH_SEND)
668 				hfi1_schedule_send(qp);
669 			spin_unlock_irqrestore(&qp->s_lock, flags);
670 		}
671 		rvt_put_qp(qp);
672 	}
673 }
674 
675 static noinline int max_packet_exceeded(struct hfi1_packet *packet, int thread)
676 {
677 	if (thread) {
678 		if ((packet->numpkt & (MAX_PKT_RECV_THREAD - 1)) == 0)
679 			/* allow defered processing */
680 			process_rcv_qp_work(packet->rcd);
681 		cond_resched();
682 		return RCV_PKT_OK;
683 	} else {
684 		this_cpu_inc(*packet->rcd->dd->rcv_limit);
685 		return RCV_PKT_LIMIT;
686 	}
687 }
688 
689 static inline int check_max_packet(struct hfi1_packet *packet, int thread)
690 {
691 	int ret = RCV_PKT_OK;
692 
693 	if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0))
694 		ret = max_packet_exceeded(packet, thread);
695 	return ret;
696 }
697 
698 static noinline int skip_rcv_packet(struct hfi1_packet *packet, int thread)
699 {
700 	int ret;
701 
702 	/* Set up for the next packet */
703 	packet->rhqoff += packet->rsize;
704 	if (packet->rhqoff >= packet->maxcnt)
705 		packet->rhqoff = 0;
706 
707 	packet->numpkt++;
708 	ret = check_max_packet(packet, thread);
709 
710 	packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
711 				     packet->rcd->dd->rhf_offset;
712 	packet->rhf = rhf_to_cpu(packet->rhf_addr);
713 
714 	return ret;
715 }
716 
717 static inline int process_rcv_packet(struct hfi1_packet *packet, int thread)
718 {
719 	int ret;
720 
721 	packet->etype = rhf_rcv_type(packet->rhf);
722 
723 	/* total length */
724 	packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */
725 	/* retrieve eager buffer details */
726 	packet->ebuf = NULL;
727 	if (rhf_use_egr_bfr(packet->rhf)) {
728 		packet->etail = rhf_egr_index(packet->rhf);
729 		packet->ebuf = get_egrbuf(packet->rcd, packet->rhf,
730 				 &packet->updegr);
731 		/*
732 		 * Prefetch the contents of the eager buffer.  It is
733 		 * OK to send a negative length to prefetch_range().
734 		 * The +2 is the size of the RHF.
735 		 */
736 		prefetch_range(packet->ebuf,
737 			       packet->tlen - ((packet->rcd->rcvhdrqentsize -
738 					       (rhf_hdrq_offset(packet->rhf)
739 						+ 2)) * 4));
740 	}
741 
742 	/*
743 	 * Call a type specific handler for the packet. We
744 	 * should be able to trust that etype won't be beyond
745 	 * the range of valid indexes. If so something is really
746 	 * wrong and we can probably just let things come
747 	 * crashing down. There is no need to eat another
748 	 * comparison in this performance critical code.
749 	 */
750 	packet->rcd->dd->rhf_rcv_function_map[packet->etype](packet);
751 	packet->numpkt++;
752 
753 	/* Set up for the next packet */
754 	packet->rhqoff += packet->rsize;
755 	if (packet->rhqoff >= packet->maxcnt)
756 		packet->rhqoff = 0;
757 
758 	ret = check_max_packet(packet, thread);
759 
760 	packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
761 				      packet->rcd->dd->rhf_offset;
762 	packet->rhf = rhf_to_cpu(packet->rhf_addr);
763 
764 	return ret;
765 }
766 
767 static inline void process_rcv_update(int last, struct hfi1_packet *packet)
768 {
769 	/*
770 	 * Update head regs etc., every 16 packets, if not last pkt,
771 	 * to help prevent rcvhdrq overflows, when many packets
772 	 * are processed and queue is nearly full.
773 	 * Don't request an interrupt for intermediate updates.
774 	 */
775 	if (!last && !(packet->numpkt & 0xf)) {
776 		update_usrhead(packet->rcd, packet->rhqoff, packet->updegr,
777 			       packet->etail, 0, 0);
778 		packet->updegr = 0;
779 	}
780 	packet->grh = NULL;
781 }
782 
783 static inline void finish_packet(struct hfi1_packet *packet)
784 {
785 	/*
786 	 * Nothing we need to free for the packet.
787 	 *
788 	 * The only thing we need to do is a final update and call for an
789 	 * interrupt
790 	 */
791 	update_usrhead(packet->rcd, packet->rcd->head, packet->updegr,
792 		       packet->etail, rcv_intr_dynamic, packet->numpkt);
793 }
794 
795 /*
796  * Handle receive interrupts when using the no dma rtail option.
797  */
798 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread)
799 {
800 	u32 seq;
801 	int last = RCV_PKT_OK;
802 	struct hfi1_packet packet;
803 
804 	init_packet(rcd, &packet);
805 	seq = rhf_rcv_seq(packet.rhf);
806 	if (seq != rcd->seq_cnt) {
807 		last = RCV_PKT_DONE;
808 		goto bail;
809 	}
810 
811 	prescan_rxq(rcd, &packet);
812 
813 	while (last == RCV_PKT_OK) {
814 		last = process_rcv_packet(&packet, thread);
815 		seq = rhf_rcv_seq(packet.rhf);
816 		if (++rcd->seq_cnt > 13)
817 			rcd->seq_cnt = 1;
818 		if (seq != rcd->seq_cnt)
819 			last = RCV_PKT_DONE;
820 		process_rcv_update(last, &packet);
821 	}
822 	process_rcv_qp_work(rcd);
823 	rcd->head = packet.rhqoff;
824 bail:
825 	finish_packet(&packet);
826 	return last;
827 }
828 
829 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread)
830 {
831 	u32 hdrqtail;
832 	int last = RCV_PKT_OK;
833 	struct hfi1_packet packet;
834 
835 	init_packet(rcd, &packet);
836 	hdrqtail = get_rcvhdrtail(rcd);
837 	if (packet.rhqoff == hdrqtail) {
838 		last = RCV_PKT_DONE;
839 		goto bail;
840 	}
841 	smp_rmb();  /* prevent speculative reads of dma'ed hdrq */
842 
843 	prescan_rxq(rcd, &packet);
844 
845 	while (last == RCV_PKT_OK) {
846 		last = process_rcv_packet(&packet, thread);
847 		if (packet.rhqoff == hdrqtail)
848 			last = RCV_PKT_DONE;
849 		process_rcv_update(last, &packet);
850 	}
851 	process_rcv_qp_work(rcd);
852 	rcd->head = packet.rhqoff;
853 bail:
854 	finish_packet(&packet);
855 	return last;
856 }
857 
858 static inline void set_nodma_rtail(struct hfi1_devdata *dd, u16 ctxt)
859 {
860 	struct hfi1_ctxtdata *rcd;
861 	u16 i;
862 
863 	/*
864 	 * For dynamically allocated kernel contexts (like vnic) switch
865 	 * interrupt handler only for that context. Otherwise, switch
866 	 * interrupt handler for all statically allocated kernel contexts.
867 	 */
868 	if (ctxt >= dd->first_dyn_alloc_ctxt) {
869 		rcd = hfi1_rcd_get_by_index(dd, ctxt);
870 		if (rcd) {
871 			rcd->do_interrupt =
872 				&handle_receive_interrupt_nodma_rtail;
873 			hfi1_rcd_put(rcd);
874 		}
875 		return;
876 	}
877 
878 	for (i = HFI1_CTRL_CTXT + 1; i < dd->first_dyn_alloc_ctxt; i++) {
879 		rcd = hfi1_rcd_get_by_index(dd, i);
880 		if (rcd)
881 			rcd->do_interrupt =
882 				&handle_receive_interrupt_nodma_rtail;
883 		hfi1_rcd_put(rcd);
884 	}
885 }
886 
887 static inline void set_dma_rtail(struct hfi1_devdata *dd, u16 ctxt)
888 {
889 	struct hfi1_ctxtdata *rcd;
890 	u16 i;
891 
892 	/*
893 	 * For dynamically allocated kernel contexts (like vnic) switch
894 	 * interrupt handler only for that context. Otherwise, switch
895 	 * interrupt handler for all statically allocated kernel contexts.
896 	 */
897 	if (ctxt >= dd->first_dyn_alloc_ctxt) {
898 		rcd = hfi1_rcd_get_by_index(dd, ctxt);
899 		if (rcd) {
900 			rcd->do_interrupt =
901 				&handle_receive_interrupt_dma_rtail;
902 			hfi1_rcd_put(rcd);
903 		}
904 		return;
905 	}
906 
907 	for (i = HFI1_CTRL_CTXT + 1; i < dd->first_dyn_alloc_ctxt; i++) {
908 		rcd = hfi1_rcd_get_by_index(dd, i);
909 		if (rcd)
910 			rcd->do_interrupt =
911 				&handle_receive_interrupt_dma_rtail;
912 		hfi1_rcd_put(rcd);
913 	}
914 }
915 
916 void set_all_slowpath(struct hfi1_devdata *dd)
917 {
918 	struct hfi1_ctxtdata *rcd;
919 	u16 i;
920 
921 	/* HFI1_CTRL_CTXT must always use the slow path interrupt handler */
922 	for (i = HFI1_CTRL_CTXT + 1; i < dd->num_rcv_contexts; i++) {
923 		rcd = hfi1_rcd_get_by_index(dd, i);
924 		if (!rcd)
925 			continue;
926 		if ((i < dd->first_dyn_alloc_ctxt) ||
927 		    (rcd->sc && (rcd->sc->type == SC_KERNEL))) {
928 			rcd->do_interrupt = &handle_receive_interrupt;
929 		}
930 		hfi1_rcd_put(rcd);
931 	}
932 }
933 
934 static inline int set_armed_to_active(struct hfi1_ctxtdata *rcd,
935 				      struct hfi1_packet *packet,
936 				      struct hfi1_devdata *dd)
937 {
938 	struct work_struct *lsaw = &rcd->ppd->linkstate_active_work;
939 	u8 etype = rhf_rcv_type(packet->rhf);
940 	u8 sc = SC15_PACKET;
941 
942 	if (etype == RHF_RCV_TYPE_IB) {
943 		struct ib_header *hdr = hfi1_get_msgheader(packet->rcd->dd,
944 							   packet->rhf_addr);
945 		sc = hfi1_9B_get_sc5(hdr, packet->rhf);
946 	} else if (etype == RHF_RCV_TYPE_BYPASS) {
947 		struct hfi1_16b_header *hdr = hfi1_get_16B_header(
948 						packet->rcd->dd,
949 						packet->rhf_addr);
950 		sc = hfi1_16B_get_sc(hdr);
951 	}
952 	if (sc != SC15_PACKET) {
953 		int hwstate = driver_lstate(rcd->ppd);
954 
955 		if (hwstate != IB_PORT_ACTIVE) {
956 			dd_dev_info(dd,
957 				    "Unexpected link state %s\n",
958 				    opa_lstate_name(hwstate));
959 			return 0;
960 		}
961 
962 		queue_work(rcd->ppd->link_wq, lsaw);
963 		return 1;
964 	}
965 	return 0;
966 }
967 
968 /*
969  * handle_receive_interrupt - receive a packet
970  * @rcd: the context
971  *
972  * Called from interrupt handler for errors or receive interrupt.
973  * This is the slow path interrupt handler.
974  */
975 int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread)
976 {
977 	struct hfi1_devdata *dd = rcd->dd;
978 	u32 hdrqtail;
979 	int needset, last = RCV_PKT_OK;
980 	struct hfi1_packet packet;
981 	int skip_pkt = 0;
982 
983 	/* Control context will always use the slow path interrupt handler */
984 	needset = (rcd->ctxt == HFI1_CTRL_CTXT) ? 0 : 1;
985 
986 	init_packet(rcd, &packet);
987 
988 	if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
989 		u32 seq = rhf_rcv_seq(packet.rhf);
990 
991 		if (seq != rcd->seq_cnt) {
992 			last = RCV_PKT_DONE;
993 			goto bail;
994 		}
995 		hdrqtail = 0;
996 	} else {
997 		hdrqtail = get_rcvhdrtail(rcd);
998 		if (packet.rhqoff == hdrqtail) {
999 			last = RCV_PKT_DONE;
1000 			goto bail;
1001 		}
1002 		smp_rmb();  /* prevent speculative reads of dma'ed hdrq */
1003 
1004 		/*
1005 		 * Control context can potentially receive an invalid
1006 		 * rhf. Drop such packets.
1007 		 */
1008 		if (rcd->ctxt == HFI1_CTRL_CTXT) {
1009 			u32 seq = rhf_rcv_seq(packet.rhf);
1010 
1011 			if (seq != rcd->seq_cnt)
1012 				skip_pkt = 1;
1013 		}
1014 	}
1015 
1016 	prescan_rxq(rcd, &packet);
1017 
1018 	while (last == RCV_PKT_OK) {
1019 		if (unlikely(dd->do_drop &&
1020 			     atomic_xchg(&dd->drop_packet, DROP_PACKET_OFF) ==
1021 			     DROP_PACKET_ON)) {
1022 			dd->do_drop = 0;
1023 
1024 			/* On to the next packet */
1025 			packet.rhqoff += packet.rsize;
1026 			packet.rhf_addr = (__le32 *)rcd->rcvhdrq +
1027 					  packet.rhqoff +
1028 					  dd->rhf_offset;
1029 			packet.rhf = rhf_to_cpu(packet.rhf_addr);
1030 
1031 		} else if (skip_pkt) {
1032 			last = skip_rcv_packet(&packet, thread);
1033 			skip_pkt = 0;
1034 		} else {
1035 			/* Auto activate link on non-SC15 packet receive */
1036 			if (unlikely(rcd->ppd->host_link_state ==
1037 				     HLS_UP_ARMED) &&
1038 			    set_armed_to_active(rcd, &packet, dd))
1039 				goto bail;
1040 			last = process_rcv_packet(&packet, thread);
1041 		}
1042 
1043 		if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
1044 			u32 seq = rhf_rcv_seq(packet.rhf);
1045 
1046 			if (++rcd->seq_cnt > 13)
1047 				rcd->seq_cnt = 1;
1048 			if (seq != rcd->seq_cnt)
1049 				last = RCV_PKT_DONE;
1050 			if (needset) {
1051 				dd_dev_info(dd, "Switching to NO_DMA_RTAIL\n");
1052 				set_nodma_rtail(dd, rcd->ctxt);
1053 				needset = 0;
1054 			}
1055 		} else {
1056 			if (packet.rhqoff == hdrqtail)
1057 				last = RCV_PKT_DONE;
1058 			/*
1059 			 * Control context can potentially receive an invalid
1060 			 * rhf. Drop such packets.
1061 			 */
1062 			if (rcd->ctxt == HFI1_CTRL_CTXT) {
1063 				u32 seq = rhf_rcv_seq(packet.rhf);
1064 
1065 				if (++rcd->seq_cnt > 13)
1066 					rcd->seq_cnt = 1;
1067 				if (!last && (seq != rcd->seq_cnt))
1068 					skip_pkt = 1;
1069 			}
1070 
1071 			if (needset) {
1072 				dd_dev_info(dd,
1073 					    "Switching to DMA_RTAIL\n");
1074 				set_dma_rtail(dd, rcd->ctxt);
1075 				needset = 0;
1076 			}
1077 		}
1078 
1079 		process_rcv_update(last, &packet);
1080 	}
1081 
1082 	process_rcv_qp_work(rcd);
1083 	rcd->head = packet.rhqoff;
1084 
1085 bail:
1086 	/*
1087 	 * Always write head at end, and setup rcv interrupt, even
1088 	 * if no packets were processed.
1089 	 */
1090 	finish_packet(&packet);
1091 	return last;
1092 }
1093 
1094 /*
1095  * We may discover in the interrupt that the hardware link state has
1096  * changed from ARMED to ACTIVE (due to the arrival of a non-SC15 packet),
1097  * and we need to update the driver's notion of the link state.  We cannot
1098  * run set_link_state from interrupt context, so we queue this function on
1099  * a workqueue.
1100  *
1101  * We delay the regular interrupt processing until after the state changes
1102  * so that the link will be in the correct state by the time any application
1103  * we wake up attempts to send a reply to any message it received.
1104  * (Subsequent receive interrupts may possibly force the wakeup before we
1105  * update the link state.)
1106  *
1107  * The rcd is freed in hfi1_free_ctxtdata after hfi1_postinit_cleanup invokes
1108  * dd->f_cleanup(dd) to disable the interrupt handler and flush workqueues,
1109  * so we're safe from use-after-free of the rcd.
1110  */
1111 void receive_interrupt_work(struct work_struct *work)
1112 {
1113 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
1114 						  linkstate_active_work);
1115 	struct hfi1_devdata *dd = ppd->dd;
1116 	struct hfi1_ctxtdata *rcd;
1117 	u16 i;
1118 
1119 	/* Received non-SC15 packet implies neighbor_normal */
1120 	ppd->neighbor_normal = 1;
1121 	set_link_state(ppd, HLS_UP_ACTIVE);
1122 
1123 	/*
1124 	 * Interrupt all statically allocated kernel contexts that could
1125 	 * have had an interrupt during auto activation.
1126 	 */
1127 	for (i = HFI1_CTRL_CTXT; i < dd->first_dyn_alloc_ctxt; i++) {
1128 		rcd = hfi1_rcd_get_by_index(dd, i);
1129 		if (rcd)
1130 			force_recv_intr(rcd);
1131 		hfi1_rcd_put(rcd);
1132 	}
1133 }
1134 
1135 /*
1136  * Convert a given MTU size to the on-wire MAD packet enumeration.
1137  * Return -1 if the size is invalid.
1138  */
1139 int mtu_to_enum(u32 mtu, int default_if_bad)
1140 {
1141 	switch (mtu) {
1142 	case     0: return OPA_MTU_0;
1143 	case   256: return OPA_MTU_256;
1144 	case   512: return OPA_MTU_512;
1145 	case  1024: return OPA_MTU_1024;
1146 	case  2048: return OPA_MTU_2048;
1147 	case  4096: return OPA_MTU_4096;
1148 	case  8192: return OPA_MTU_8192;
1149 	case 10240: return OPA_MTU_10240;
1150 	}
1151 	return default_if_bad;
1152 }
1153 
1154 u16 enum_to_mtu(int mtu)
1155 {
1156 	switch (mtu) {
1157 	case OPA_MTU_0:     return 0;
1158 	case OPA_MTU_256:   return 256;
1159 	case OPA_MTU_512:   return 512;
1160 	case OPA_MTU_1024:  return 1024;
1161 	case OPA_MTU_2048:  return 2048;
1162 	case OPA_MTU_4096:  return 4096;
1163 	case OPA_MTU_8192:  return 8192;
1164 	case OPA_MTU_10240: return 10240;
1165 	default: return 0xffff;
1166 	}
1167 }
1168 
1169 /*
1170  * set_mtu - set the MTU
1171  * @ppd: the per port data
1172  *
1173  * We can handle "any" incoming size, the issue here is whether we
1174  * need to restrict our outgoing size.  We do not deal with what happens
1175  * to programs that are already running when the size changes.
1176  */
1177 int set_mtu(struct hfi1_pportdata *ppd)
1178 {
1179 	struct hfi1_devdata *dd = ppd->dd;
1180 	int i, drain, ret = 0, is_up = 0;
1181 
1182 	ppd->ibmtu = 0;
1183 	for (i = 0; i < ppd->vls_supported; i++)
1184 		if (ppd->ibmtu < dd->vld[i].mtu)
1185 			ppd->ibmtu = dd->vld[i].mtu;
1186 	ppd->ibmaxlen = ppd->ibmtu + lrh_max_header_bytes(ppd->dd);
1187 
1188 	mutex_lock(&ppd->hls_lock);
1189 	if (ppd->host_link_state == HLS_UP_INIT ||
1190 	    ppd->host_link_state == HLS_UP_ARMED ||
1191 	    ppd->host_link_state == HLS_UP_ACTIVE)
1192 		is_up = 1;
1193 
1194 	drain = !is_ax(dd) && is_up;
1195 
1196 	if (drain)
1197 		/*
1198 		 * MTU is specified per-VL. To ensure that no packet gets
1199 		 * stuck (due, e.g., to the MTU for the packet's VL being
1200 		 * reduced), empty the per-VL FIFOs before adjusting MTU.
1201 		 */
1202 		ret = stop_drain_data_vls(dd);
1203 
1204 	if (ret) {
1205 		dd_dev_err(dd, "%s: cannot stop/drain VLs - refusing to change per-VL MTUs\n",
1206 			   __func__);
1207 		goto err;
1208 	}
1209 
1210 	hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_MTU, 0);
1211 
1212 	if (drain)
1213 		open_fill_data_vls(dd); /* reopen all VLs */
1214 
1215 err:
1216 	mutex_unlock(&ppd->hls_lock);
1217 
1218 	return ret;
1219 }
1220 
1221 int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc)
1222 {
1223 	struct hfi1_devdata *dd = ppd->dd;
1224 
1225 	ppd->lid = lid;
1226 	ppd->lmc = lmc;
1227 	hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LIDLMC, 0);
1228 
1229 	dd_dev_info(dd, "port %u: got a lid: 0x%x\n", ppd->port, lid);
1230 
1231 	return 0;
1232 }
1233 
1234 void shutdown_led_override(struct hfi1_pportdata *ppd)
1235 {
1236 	struct hfi1_devdata *dd = ppd->dd;
1237 
1238 	/*
1239 	 * This pairs with the memory barrier in hfi1_start_led_override to
1240 	 * ensure that we read the correct state of LED beaconing represented
1241 	 * by led_override_timer_active
1242 	 */
1243 	smp_rmb();
1244 	if (atomic_read(&ppd->led_override_timer_active)) {
1245 		del_timer_sync(&ppd->led_override_timer);
1246 		atomic_set(&ppd->led_override_timer_active, 0);
1247 		/* Ensure the atomic_set is visible to all CPUs */
1248 		smp_wmb();
1249 	}
1250 
1251 	/* Hand control of the LED to the DC for normal operation */
1252 	write_csr(dd, DCC_CFG_LED_CNTRL, 0);
1253 }
1254 
1255 static void run_led_override(unsigned long opaque)
1256 {
1257 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)opaque;
1258 	struct hfi1_devdata *dd = ppd->dd;
1259 	unsigned long timeout;
1260 	int phase_idx;
1261 
1262 	if (!(dd->flags & HFI1_INITTED))
1263 		return;
1264 
1265 	phase_idx = ppd->led_override_phase & 1;
1266 
1267 	setextled(dd, phase_idx);
1268 
1269 	timeout = ppd->led_override_vals[phase_idx];
1270 
1271 	/* Set up for next phase */
1272 	ppd->led_override_phase = !ppd->led_override_phase;
1273 
1274 	mod_timer(&ppd->led_override_timer, jiffies + timeout);
1275 }
1276 
1277 /*
1278  * To have the LED blink in a particular pattern, provide timeon and timeoff
1279  * in milliseconds.
1280  * To turn off custom blinking and return to normal operation, use
1281  * shutdown_led_override()
1282  */
1283 void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon,
1284 			     unsigned int timeoff)
1285 {
1286 	if (!(ppd->dd->flags & HFI1_INITTED))
1287 		return;
1288 
1289 	/* Convert to jiffies for direct use in timer */
1290 	ppd->led_override_vals[0] = msecs_to_jiffies(timeoff);
1291 	ppd->led_override_vals[1] = msecs_to_jiffies(timeon);
1292 
1293 	/* Arbitrarily start from LED on phase */
1294 	ppd->led_override_phase = 1;
1295 
1296 	/*
1297 	 * If the timer has not already been started, do so. Use a "quick"
1298 	 * timeout so the handler will be called soon to look at our request.
1299 	 */
1300 	if (!timer_pending(&ppd->led_override_timer)) {
1301 		setup_timer(&ppd->led_override_timer, run_led_override,
1302 			    (unsigned long)ppd);
1303 		ppd->led_override_timer.expires = jiffies + 1;
1304 		add_timer(&ppd->led_override_timer);
1305 		atomic_set(&ppd->led_override_timer_active, 1);
1306 		/* Ensure the atomic_set is visible to all CPUs */
1307 		smp_wmb();
1308 	}
1309 }
1310 
1311 /**
1312  * hfi1_reset_device - reset the chip if possible
1313  * @unit: the device to reset
1314  *
1315  * Whether or not reset is successful, we attempt to re-initialize the chip
1316  * (that is, much like a driver unload/reload).  We clear the INITTED flag
1317  * so that the various entry points will fail until we reinitialize.  For
1318  * now, we only allow this if no user contexts are open that use chip resources
1319  */
1320 int hfi1_reset_device(int unit)
1321 {
1322 	int ret;
1323 	struct hfi1_devdata *dd = hfi1_lookup(unit);
1324 	struct hfi1_pportdata *ppd;
1325 	int pidx;
1326 
1327 	if (!dd) {
1328 		ret = -ENODEV;
1329 		goto bail;
1330 	}
1331 
1332 	dd_dev_info(dd, "Reset on unit %u requested\n", unit);
1333 
1334 	if (!dd->kregbase1 || !(dd->flags & HFI1_PRESENT)) {
1335 		dd_dev_info(dd,
1336 			    "Invalid unit number %u or not initialized or not present\n",
1337 			    unit);
1338 		ret = -ENXIO;
1339 		goto bail;
1340 	}
1341 
1342 	/* If there are any user/vnic contexts, we cannot reset */
1343 	mutex_lock(&hfi1_mutex);
1344 	if (dd->rcd)
1345 		if (hfi1_stats.sps_ctxts) {
1346 			mutex_unlock(&hfi1_mutex);
1347 			ret = -EBUSY;
1348 			goto bail;
1349 		}
1350 	mutex_unlock(&hfi1_mutex);
1351 
1352 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1353 		ppd = dd->pport + pidx;
1354 
1355 		shutdown_led_override(ppd);
1356 	}
1357 	if (dd->flags & HFI1_HAS_SEND_DMA)
1358 		sdma_exit(dd);
1359 
1360 	hfi1_reset_cpu_counters(dd);
1361 
1362 	ret = hfi1_init(dd, 1);
1363 
1364 	if (ret)
1365 		dd_dev_err(dd,
1366 			   "Reinitialize unit %u after reset failed with %d\n",
1367 			   unit, ret);
1368 	else
1369 		dd_dev_info(dd, "Reinitialized unit %u after resetting\n",
1370 			    unit);
1371 
1372 bail:
1373 	return ret;
1374 }
1375 
1376 static inline void hfi1_setup_ib_header(struct hfi1_packet *packet)
1377 {
1378 	packet->hdr = (struct hfi1_ib_message_header *)
1379 			hfi1_get_msgheader(packet->rcd->dd,
1380 					   packet->rhf_addr);
1381 	packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr;
1382 }
1383 
1384 static int hfi1_bypass_ingress_pkt_check(struct hfi1_packet *packet)
1385 {
1386 	struct hfi1_pportdata *ppd = packet->rcd->ppd;
1387 
1388 	/* slid and dlid cannot be 0 */
1389 	if ((!packet->slid) || (!packet->dlid))
1390 		return -EINVAL;
1391 
1392 	/* Compare port lid with incoming packet dlid */
1393 	if ((!(hfi1_is_16B_mcast(packet->dlid))) &&
1394 	    (packet->dlid !=
1395 		opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))) {
1396 		if (packet->dlid != ppd->lid)
1397 			return -EINVAL;
1398 	}
1399 
1400 	/* No multicast packets with SC15 */
1401 	if ((hfi1_is_16B_mcast(packet->dlid)) && (packet->sc == 0xF))
1402 		return -EINVAL;
1403 
1404 	/* Packets with permissive DLID always on SC15 */
1405 	if ((packet->dlid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE),
1406 					 16B)) &&
1407 	    (packet->sc != 0xF))
1408 		return -EINVAL;
1409 
1410 	return 0;
1411 }
1412 
1413 static int hfi1_setup_9B_packet(struct hfi1_packet *packet)
1414 {
1415 	struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
1416 	struct ib_header *hdr;
1417 	u8 lnh;
1418 
1419 	hfi1_setup_ib_header(packet);
1420 	hdr = packet->hdr;
1421 
1422 	lnh = ib_get_lnh(hdr);
1423 	if (lnh == HFI1_LRH_BTH) {
1424 		packet->ohdr = &hdr->u.oth;
1425 		packet->grh = NULL;
1426 	} else if (lnh == HFI1_LRH_GRH) {
1427 		u32 vtf;
1428 
1429 		packet->ohdr = &hdr->u.l.oth;
1430 		packet->grh = &hdr->u.l.grh;
1431 		if (packet->grh->next_hdr != IB_GRH_NEXT_HDR)
1432 			goto drop;
1433 		vtf = be32_to_cpu(packet->grh->version_tclass_flow);
1434 		if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
1435 			goto drop;
1436 	} else {
1437 		goto drop;
1438 	}
1439 
1440 	/* Query commonly used fields from packet header */
1441 	packet->payload = packet->ebuf;
1442 	packet->opcode = ib_bth_get_opcode(packet->ohdr);
1443 	packet->slid = ib_get_slid(hdr);
1444 	packet->dlid = ib_get_dlid(hdr);
1445 	if (unlikely((packet->dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
1446 		     (packet->dlid != be16_to_cpu(IB_LID_PERMISSIVE))))
1447 		packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) -
1448 				be16_to_cpu(IB_MULTICAST_LID_BASE);
1449 	packet->sl = ib_get_sl(hdr);
1450 	packet->sc = hfi1_9B_get_sc5(hdr, packet->rhf);
1451 	packet->pad = ib_bth_get_pad(packet->ohdr);
1452 	packet->extra_byte = 0;
1453 	packet->fecn = ib_bth_get_fecn(packet->ohdr);
1454 	packet->becn = ib_bth_get_becn(packet->ohdr);
1455 
1456 	return 0;
1457 drop:
1458 	ibp->rvp.n_pkt_drops++;
1459 	return -EINVAL;
1460 }
1461 
1462 static int hfi1_setup_bypass_packet(struct hfi1_packet *packet)
1463 {
1464 	/*
1465 	 * Bypass packets have a different header/payload split
1466 	 * compared to an IB packet.
1467 	 * Current split is set such that 16 bytes of the actual
1468 	 * header is in the header buffer and the remining is in
1469 	 * the eager buffer. We chose 16 since hfi1 driver only
1470 	 * supports 16B bypass packets and we will be able to
1471 	 * receive the entire LRH with such a split.
1472 	 */
1473 
1474 	struct hfi1_ctxtdata *rcd = packet->rcd;
1475 	struct hfi1_pportdata *ppd = rcd->ppd;
1476 	struct hfi1_ibport *ibp = &ppd->ibport_data;
1477 	u8 l4;
1478 	u8 grh_len;
1479 
1480 	packet->hdr = (struct hfi1_16b_header *)
1481 			hfi1_get_16B_header(packet->rcd->dd,
1482 					    packet->rhf_addr);
1483 	packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr;
1484 
1485 	l4 = hfi1_16B_get_l4(packet->hdr);
1486 	if (l4 == OPA_16B_L4_IB_LOCAL) {
1487 		grh_len = 0;
1488 		packet->ohdr = packet->ebuf;
1489 		packet->grh = NULL;
1490 	} else if (l4 == OPA_16B_L4_IB_GLOBAL) {
1491 		u32 vtf;
1492 
1493 		grh_len = sizeof(struct ib_grh);
1494 		packet->ohdr = packet->ebuf + grh_len;
1495 		packet->grh = packet->ebuf;
1496 		if (packet->grh->next_hdr != IB_GRH_NEXT_HDR)
1497 			goto drop;
1498 		vtf = be32_to_cpu(packet->grh->version_tclass_flow);
1499 		if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
1500 			goto drop;
1501 	} else {
1502 		goto drop;
1503 	}
1504 
1505 	/* Query commonly used fields from packet header */
1506 	packet->opcode = ib_bth_get_opcode(packet->ohdr);
1507 	packet->hlen = hdr_len_by_opcode[packet->opcode] + 8 + grh_len;
1508 	packet->payload = packet->ebuf + packet->hlen - (4 * sizeof(u32));
1509 	packet->slid = hfi1_16B_get_slid(packet->hdr);
1510 	packet->dlid = hfi1_16B_get_dlid(packet->hdr);
1511 	if (unlikely(hfi1_is_16B_mcast(packet->dlid)))
1512 		packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) -
1513 				opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR),
1514 					    16B);
1515 	packet->sc = hfi1_16B_get_sc(packet->hdr);
1516 	packet->sl = ibp->sc_to_sl[packet->sc];
1517 	packet->pad = hfi1_16B_bth_get_pad(packet->ohdr);
1518 	packet->extra_byte = SIZE_OF_LT;
1519 	packet->fecn = hfi1_16B_get_fecn(packet->hdr);
1520 	packet->becn = hfi1_16B_get_becn(packet->hdr);
1521 
1522 	if (hfi1_bypass_ingress_pkt_check(packet))
1523 		goto drop;
1524 
1525 	return 0;
1526 drop:
1527 	hfi1_cdbg(PKT, "%s: packet dropped\n", __func__);
1528 	ibp->rvp.n_pkt_drops++;
1529 	return -EINVAL;
1530 }
1531 
1532 void handle_eflags(struct hfi1_packet *packet)
1533 {
1534 	struct hfi1_ctxtdata *rcd = packet->rcd;
1535 	u32 rte = rhf_rcv_type_err(packet->rhf);
1536 
1537 	rcv_hdrerr(rcd, rcd->ppd, packet);
1538 	if (rhf_err_flags(packet->rhf))
1539 		dd_dev_err(rcd->dd,
1540 			   "receive context %d: rhf 0x%016llx, errs [ %s%s%s%s%s%s%s%s] rte 0x%x\n",
1541 			   rcd->ctxt, packet->rhf,
1542 			   packet->rhf & RHF_K_HDR_LEN_ERR ? "k_hdr_len " : "",
1543 			   packet->rhf & RHF_DC_UNC_ERR ? "dc_unc " : "",
1544 			   packet->rhf & RHF_DC_ERR ? "dc " : "",
1545 			   packet->rhf & RHF_TID_ERR ? "tid " : "",
1546 			   packet->rhf & RHF_LEN_ERR ? "len " : "",
1547 			   packet->rhf & RHF_ECC_ERR ? "ecc " : "",
1548 			   packet->rhf & RHF_VCRC_ERR ? "vcrc " : "",
1549 			   packet->rhf & RHF_ICRC_ERR ? "icrc " : "",
1550 			   rte);
1551 }
1552 
1553 /*
1554  * The following functions are called by the interrupt handler. They are type
1555  * specific handlers for each packet type.
1556  */
1557 int process_receive_ib(struct hfi1_packet *packet)
1558 {
1559 	if (unlikely(hfi1_dbg_fault_packet(packet)))
1560 		return RHF_RCV_CONTINUE;
1561 
1562 	if (hfi1_setup_9B_packet(packet))
1563 		return RHF_RCV_CONTINUE;
1564 
1565 	trace_hfi1_rcvhdr(packet->rcd->ppd->dd,
1566 			  packet->rcd->ctxt,
1567 			  rhf_err_flags(packet->rhf),
1568 			  RHF_RCV_TYPE_IB,
1569 			  packet->hlen,
1570 			  packet->tlen,
1571 			  packet->updegr,
1572 			  rhf_egr_index(packet->rhf));
1573 
1574 	if (unlikely(
1575 		 (hfi1_dbg_fault_suppress_err(&packet->rcd->dd->verbs_dev) &&
1576 		 (packet->rhf & RHF_DC_ERR))))
1577 		return RHF_RCV_CONTINUE;
1578 
1579 	if (unlikely(rhf_err_flags(packet->rhf))) {
1580 		handle_eflags(packet);
1581 		return RHF_RCV_CONTINUE;
1582 	}
1583 
1584 	hfi1_ib_rcv(packet);
1585 	return RHF_RCV_CONTINUE;
1586 }
1587 
1588 static inline bool hfi1_is_vnic_packet(struct hfi1_packet *packet)
1589 {
1590 	/* Packet received in VNIC context via RSM */
1591 	if (packet->rcd->is_vnic)
1592 		return true;
1593 
1594 	if ((hfi1_16B_get_l2(packet->ebuf) == OPA_16B_L2_TYPE) &&
1595 	    (hfi1_16B_get_l4(packet->ebuf) == OPA_16B_L4_ETHR))
1596 		return true;
1597 
1598 	return false;
1599 }
1600 
1601 int process_receive_bypass(struct hfi1_packet *packet)
1602 {
1603 	struct hfi1_devdata *dd = packet->rcd->dd;
1604 
1605 	if (hfi1_is_vnic_packet(packet)) {
1606 		hfi1_vnic_bypass_rcv(packet);
1607 		return RHF_RCV_CONTINUE;
1608 	}
1609 
1610 	if (hfi1_setup_bypass_packet(packet))
1611 		return RHF_RCV_CONTINUE;
1612 
1613 	if (unlikely(rhf_err_flags(packet->rhf))) {
1614 		handle_eflags(packet);
1615 		return RHF_RCV_CONTINUE;
1616 	}
1617 
1618 	if (hfi1_16B_get_l2(packet->hdr) == 0x2) {
1619 		hfi1_16B_rcv(packet);
1620 	} else {
1621 		dd_dev_err(dd,
1622 			   "Bypass packets other than 16B are not supported in normal operation. Dropping\n");
1623 		incr_cntr64(&dd->sw_rcv_bypass_packet_errors);
1624 		if (!(dd->err_info_rcvport.status_and_code &
1625 		      OPA_EI_STATUS_SMASK)) {
1626 			u64 *flits = packet->ebuf;
1627 
1628 			if (flits && !(packet->rhf & RHF_LEN_ERR)) {
1629 				dd->err_info_rcvport.packet_flit1 = flits[0];
1630 				dd->err_info_rcvport.packet_flit2 =
1631 					packet->tlen > sizeof(flits[0]) ?
1632 					flits[1] : 0;
1633 			}
1634 			dd->err_info_rcvport.status_and_code |=
1635 				(OPA_EI_STATUS_SMASK | BAD_L2_ERR);
1636 		}
1637 	}
1638 	return RHF_RCV_CONTINUE;
1639 }
1640 
1641 int process_receive_error(struct hfi1_packet *packet)
1642 {
1643 	/* KHdrHCRCErr -- KDETH packet with a bad HCRC */
1644 	if (unlikely(
1645 		 hfi1_dbg_fault_suppress_err(&packet->rcd->dd->verbs_dev) &&
1646 		 rhf_rcv_type_err(packet->rhf) == 3))
1647 		return RHF_RCV_CONTINUE;
1648 
1649 	hfi1_setup_ib_header(packet);
1650 	handle_eflags(packet);
1651 
1652 	if (unlikely(rhf_err_flags(packet->rhf)))
1653 		dd_dev_err(packet->rcd->dd,
1654 			   "Unhandled error packet received. Dropping.\n");
1655 
1656 	return RHF_RCV_CONTINUE;
1657 }
1658 
1659 int kdeth_process_expected(struct hfi1_packet *packet)
1660 {
1661 	if (unlikely(hfi1_dbg_fault_packet(packet)))
1662 		return RHF_RCV_CONTINUE;
1663 
1664 	hfi1_setup_ib_header(packet);
1665 	if (unlikely(rhf_err_flags(packet->rhf)))
1666 		handle_eflags(packet);
1667 
1668 	dd_dev_err(packet->rcd->dd,
1669 		   "Unhandled expected packet received. Dropping.\n");
1670 	return RHF_RCV_CONTINUE;
1671 }
1672 
1673 int kdeth_process_eager(struct hfi1_packet *packet)
1674 {
1675 	hfi1_setup_ib_header(packet);
1676 	if (unlikely(rhf_err_flags(packet->rhf)))
1677 		handle_eflags(packet);
1678 	if (unlikely(hfi1_dbg_fault_packet(packet)))
1679 		return RHF_RCV_CONTINUE;
1680 
1681 	dd_dev_err(packet->rcd->dd,
1682 		   "Unhandled eager packet received. Dropping.\n");
1683 	return RHF_RCV_CONTINUE;
1684 }
1685 
1686 int process_receive_invalid(struct hfi1_packet *packet)
1687 {
1688 	dd_dev_err(packet->rcd->dd, "Invalid packet type %d. Dropping\n",
1689 		   rhf_rcv_type(packet->rhf));
1690 	return RHF_RCV_CONTINUE;
1691 }
1692 
1693 void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd)
1694 {
1695 	struct hfi1_packet packet;
1696 	struct ps_mdata mdata;
1697 
1698 	seq_printf(s, "Rcd %u: RcvHdr cnt %u entsize %u %s head %llu tail %llu\n",
1699 		   rcd->ctxt, rcd->rcvhdrq_cnt, rcd->rcvhdrqentsize,
1700 		   HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
1701 		   "dma_rtail" : "nodma_rtail",
1702 		   read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD) &
1703 		   RCV_HDR_HEAD_HEAD_MASK,
1704 		   read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL));
1705 
1706 	init_packet(rcd, &packet);
1707 	init_ps_mdata(&mdata, &packet);
1708 
1709 	while (1) {
1710 		struct hfi1_devdata *dd = rcd->dd;
1711 		__le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
1712 					 dd->rhf_offset;
1713 		struct ib_header *hdr;
1714 		u64 rhf = rhf_to_cpu(rhf_addr);
1715 		u32 etype = rhf_rcv_type(rhf), qpn;
1716 		u8 opcode;
1717 		u32 psn;
1718 		u8 lnh;
1719 
1720 		if (ps_done(&mdata, rhf, rcd))
1721 			break;
1722 
1723 		if (ps_skip(&mdata, rhf, rcd))
1724 			goto next;
1725 
1726 		if (etype > RHF_RCV_TYPE_IB)
1727 			goto next;
1728 
1729 		packet.hdr = hfi1_get_msgheader(dd, rhf_addr);
1730 		hdr = packet.hdr;
1731 
1732 		lnh = be16_to_cpu(hdr->lrh[0]) & 3;
1733 
1734 		if (lnh == HFI1_LRH_BTH)
1735 			packet.ohdr = &hdr->u.oth;
1736 		else if (lnh == HFI1_LRH_GRH)
1737 			packet.ohdr = &hdr->u.l.oth;
1738 		else
1739 			goto next; /* just in case */
1740 
1741 		opcode = (be32_to_cpu(packet.ohdr->bth[0]) >> 24);
1742 		qpn = be32_to_cpu(packet.ohdr->bth[1]) & RVT_QPN_MASK;
1743 		psn = mask_psn(be32_to_cpu(packet.ohdr->bth[2]));
1744 
1745 		seq_printf(s, "\tEnt %u: opcode 0x%x, qpn 0x%x, psn 0x%x\n",
1746 			   mdata.ps_head, opcode, qpn, psn);
1747 next:
1748 		update_ps_mdata(&mdata, rcd);
1749 	}
1750 }
1751