1 /* 2 * Copyright(c) 2015-2017 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 #include <linux/spinlock.h> 49 #include <linux/pci.h> 50 #include <linux/io.h> 51 #include <linux/delay.h> 52 #include <linux/netdevice.h> 53 #include <linux/vmalloc.h> 54 #include <linux/module.h> 55 #include <linux/prefetch.h> 56 #include <rdma/ib_verbs.h> 57 58 #include "hfi.h" 59 #include "trace.h" 60 #include "qp.h" 61 #include "sdma.h" 62 #include "debugfs.h" 63 #include "vnic.h" 64 65 #undef pr_fmt 66 #define pr_fmt(fmt) DRIVER_NAME ": " fmt 67 68 /* 69 * The size has to be longer than this string, so we can append 70 * board/chip information to it in the initialization code. 71 */ 72 const char ib_hfi1_version[] = HFI1_DRIVER_VERSION "\n"; 73 74 DEFINE_SPINLOCK(hfi1_devs_lock); 75 LIST_HEAD(hfi1_dev_list); 76 DEFINE_MUTEX(hfi1_mutex); /* general driver use */ 77 78 unsigned int hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU; 79 module_param_named(max_mtu, hfi1_max_mtu, uint, S_IRUGO); 80 MODULE_PARM_DESC(max_mtu, "Set max MTU bytes, default is " __stringify( 81 HFI1_DEFAULT_MAX_MTU)); 82 83 unsigned int hfi1_cu = 1; 84 module_param_named(cu, hfi1_cu, uint, S_IRUGO); 85 MODULE_PARM_DESC(cu, "Credit return units"); 86 87 unsigned long hfi1_cap_mask = HFI1_CAP_MASK_DEFAULT; 88 static int hfi1_caps_set(const char *val, const struct kernel_param *kp); 89 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp); 90 static const struct kernel_param_ops cap_ops = { 91 .set = hfi1_caps_set, 92 .get = hfi1_caps_get 93 }; 94 module_param_cb(cap_mask, &cap_ops, &hfi1_cap_mask, S_IWUSR | S_IRUGO); 95 MODULE_PARM_DESC(cap_mask, "Bit mask of enabled/disabled HW features"); 96 97 MODULE_LICENSE("Dual BSD/GPL"); 98 MODULE_DESCRIPTION("Intel Omni-Path Architecture driver"); 99 100 /* 101 * MAX_PKT_RCV is the max # if packets processed per receive interrupt. 102 */ 103 #define MAX_PKT_RECV 64 104 /* 105 * MAX_PKT_THREAD_RCV is the max # of packets processed before 106 * the qp_wait_list queue is flushed. 107 */ 108 #define MAX_PKT_RECV_THREAD (MAX_PKT_RECV * 4) 109 #define EGR_HEAD_UPDATE_THRESHOLD 16 110 111 struct hfi1_ib_stats hfi1_stats; 112 113 static int hfi1_caps_set(const char *val, const struct kernel_param *kp) 114 { 115 int ret = 0; 116 unsigned long *cap_mask_ptr = (unsigned long *)kp->arg, 117 cap_mask = *cap_mask_ptr, value, diff, 118 write_mask = ((HFI1_CAP_WRITABLE_MASK << HFI1_CAP_USER_SHIFT) | 119 HFI1_CAP_WRITABLE_MASK); 120 121 ret = kstrtoul(val, 0, &value); 122 if (ret) { 123 pr_warn("Invalid module parameter value for 'cap_mask'\n"); 124 goto done; 125 } 126 /* Get the changed bits (except the locked bit) */ 127 diff = value ^ (cap_mask & ~HFI1_CAP_LOCKED_SMASK); 128 129 /* Remove any bits that are not allowed to change after driver load */ 130 if (HFI1_CAP_LOCKED() && (diff & ~write_mask)) { 131 pr_warn("Ignoring non-writable capability bits %#lx\n", 132 diff & ~write_mask); 133 diff &= write_mask; 134 } 135 136 /* Mask off any reserved bits */ 137 diff &= ~HFI1_CAP_RESERVED_MASK; 138 /* Clear any previously set and changing bits */ 139 cap_mask &= ~diff; 140 /* Update the bits with the new capability */ 141 cap_mask |= (value & diff); 142 /* Check for any kernel/user restrictions */ 143 diff = (cap_mask & (HFI1_CAP_MUST_HAVE_KERN << HFI1_CAP_USER_SHIFT)) ^ 144 ((cap_mask & HFI1_CAP_MUST_HAVE_KERN) << HFI1_CAP_USER_SHIFT); 145 cap_mask &= ~diff; 146 /* Set the bitmask to the final set */ 147 *cap_mask_ptr = cap_mask; 148 done: 149 return ret; 150 } 151 152 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp) 153 { 154 unsigned long cap_mask = *(unsigned long *)kp->arg; 155 156 cap_mask &= ~HFI1_CAP_LOCKED_SMASK; 157 cap_mask |= ((cap_mask & HFI1_CAP_K2U) << HFI1_CAP_USER_SHIFT); 158 159 return scnprintf(buffer, PAGE_SIZE, "0x%lx", cap_mask); 160 } 161 162 const char *get_unit_name(int unit) 163 { 164 static char iname[16]; 165 166 snprintf(iname, sizeof(iname), DRIVER_NAME "_%u", unit); 167 return iname; 168 } 169 170 const char *get_card_name(struct rvt_dev_info *rdi) 171 { 172 struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi); 173 struct hfi1_devdata *dd = container_of(ibdev, 174 struct hfi1_devdata, verbs_dev); 175 return get_unit_name(dd->unit); 176 } 177 178 struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi) 179 { 180 struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi); 181 struct hfi1_devdata *dd = container_of(ibdev, 182 struct hfi1_devdata, verbs_dev); 183 return dd->pcidev; 184 } 185 186 /* 187 * Return count of units with at least one port ACTIVE. 188 */ 189 int hfi1_count_active_units(void) 190 { 191 struct hfi1_devdata *dd; 192 struct hfi1_pportdata *ppd; 193 unsigned long flags; 194 int pidx, nunits_active = 0; 195 196 spin_lock_irqsave(&hfi1_devs_lock, flags); 197 list_for_each_entry(dd, &hfi1_dev_list, list) { 198 if (!(dd->flags & HFI1_PRESENT) || !dd->kregbase1) 199 continue; 200 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 201 ppd = dd->pport + pidx; 202 if (ppd->lid && ppd->linkup) { 203 nunits_active++; 204 break; 205 } 206 } 207 } 208 spin_unlock_irqrestore(&hfi1_devs_lock, flags); 209 return nunits_active; 210 } 211 212 /* 213 * Get address of eager buffer from it's index (allocated in chunks, not 214 * contiguous). 215 */ 216 static inline void *get_egrbuf(const struct hfi1_ctxtdata *rcd, u64 rhf, 217 u8 *update) 218 { 219 u32 idx = rhf_egr_index(rhf), offset = rhf_egr_buf_offset(rhf); 220 221 *update |= !(idx & (rcd->egrbufs.threshold - 1)) && !offset; 222 return (void *)(((u64)(rcd->egrbufs.rcvtids[idx].addr)) + 223 (offset * RCV_BUF_BLOCK_SIZE)); 224 } 225 226 static inline void *hfi1_get_header(struct hfi1_devdata *dd, 227 __le32 *rhf_addr) 228 { 229 u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr)); 230 231 return (void *)(rhf_addr - dd->rhf_offset + offset); 232 } 233 234 static inline struct ib_header *hfi1_get_msgheader(struct hfi1_devdata *dd, 235 __le32 *rhf_addr) 236 { 237 return (struct ib_header *)hfi1_get_header(dd, rhf_addr); 238 } 239 240 static inline struct hfi1_16b_header 241 *hfi1_get_16B_header(struct hfi1_devdata *dd, 242 __le32 *rhf_addr) 243 { 244 return (struct hfi1_16b_header *)hfi1_get_header(dd, rhf_addr); 245 } 246 247 /* 248 * Validate and encode the a given RcvArray Buffer size. 249 * The function will check whether the given size falls within 250 * allowed size ranges for the respective type and, optionally, 251 * return the proper encoding. 252 */ 253 int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encoded) 254 { 255 if (unlikely(!PAGE_ALIGNED(size))) 256 return 0; 257 if (unlikely(size < MIN_EAGER_BUFFER)) 258 return 0; 259 if (size > 260 (type == PT_EAGER ? MAX_EAGER_BUFFER : MAX_EXPECTED_BUFFER)) 261 return 0; 262 if (encoded) 263 *encoded = ilog2(size / PAGE_SIZE) + 1; 264 return 1; 265 } 266 267 static void rcv_hdrerr(struct hfi1_ctxtdata *rcd, struct hfi1_pportdata *ppd, 268 struct hfi1_packet *packet) 269 { 270 struct ib_header *rhdr = packet->hdr; 271 u32 rte = rhf_rcv_type_err(packet->rhf); 272 u32 mlid_base; 273 struct hfi1_ibport *ibp = rcd_to_iport(rcd); 274 struct hfi1_devdata *dd = ppd->dd; 275 struct rvt_dev_info *rdi = &dd->verbs_dev.rdi; 276 277 if (packet->rhf & (RHF_VCRC_ERR | RHF_ICRC_ERR)) 278 return; 279 280 if (packet->etype == RHF_RCV_TYPE_BYPASS) { 281 goto drop; 282 } else { 283 u8 lnh = ib_get_lnh(rhdr); 284 285 mlid_base = be16_to_cpu(IB_MULTICAST_LID_BASE); 286 if (lnh == HFI1_LRH_BTH) { 287 packet->ohdr = &rhdr->u.oth; 288 } else if (lnh == HFI1_LRH_GRH) { 289 packet->ohdr = &rhdr->u.l.oth; 290 packet->grh = &rhdr->u.l.grh; 291 } else { 292 goto drop; 293 } 294 } 295 296 if (packet->rhf & RHF_TID_ERR) { 297 /* For TIDERR and RC QPs preemptively schedule a NAK */ 298 u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */ 299 u32 dlid = ib_get_dlid(rhdr); 300 u32 qp_num; 301 302 /* Sanity check packet */ 303 if (tlen < 24) 304 goto drop; 305 306 /* Check for GRH */ 307 if (packet->grh) { 308 u32 vtf; 309 struct ib_grh *grh = packet->grh; 310 311 if (grh->next_hdr != IB_GRH_NEXT_HDR) 312 goto drop; 313 vtf = be32_to_cpu(grh->version_tclass_flow); 314 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION) 315 goto drop; 316 } 317 318 /* Get the destination QP number. */ 319 qp_num = ib_bth_get_qpn(packet->ohdr); 320 if (dlid < mlid_base) { 321 struct rvt_qp *qp; 322 unsigned long flags; 323 324 rcu_read_lock(); 325 qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num); 326 if (!qp) { 327 rcu_read_unlock(); 328 goto drop; 329 } 330 331 /* 332 * Handle only RC QPs - for other QP types drop error 333 * packet. 334 */ 335 spin_lock_irqsave(&qp->r_lock, flags); 336 337 /* Check for valid receive state. */ 338 if (!(ib_rvt_state_ops[qp->state] & 339 RVT_PROCESS_RECV_OK)) { 340 ibp->rvp.n_pkt_drops++; 341 } 342 343 switch (qp->ibqp.qp_type) { 344 case IB_QPT_RC: 345 hfi1_rc_hdrerr(rcd, packet, qp); 346 break; 347 default: 348 /* For now don't handle any other QP types */ 349 break; 350 } 351 352 spin_unlock_irqrestore(&qp->r_lock, flags); 353 rcu_read_unlock(); 354 } /* Unicast QP */ 355 } /* Valid packet with TIDErr */ 356 357 /* handle "RcvTypeErr" flags */ 358 switch (rte) { 359 case RHF_RTE_ERROR_OP_CODE_ERR: 360 { 361 void *ebuf = NULL; 362 u8 opcode; 363 364 if (rhf_use_egr_bfr(packet->rhf)) 365 ebuf = packet->ebuf; 366 367 if (!ebuf) 368 goto drop; /* this should never happen */ 369 370 opcode = ib_bth_get_opcode(packet->ohdr); 371 if (opcode == IB_OPCODE_CNP) { 372 /* 373 * Only in pre-B0 h/w is the CNP_OPCODE handled 374 * via this code path. 375 */ 376 struct rvt_qp *qp = NULL; 377 u32 lqpn, rqpn; 378 u16 rlid; 379 u8 svc_type, sl, sc5; 380 381 sc5 = hfi1_9B_get_sc5(rhdr, packet->rhf); 382 sl = ibp->sc_to_sl[sc5]; 383 384 lqpn = ib_bth_get_qpn(packet->ohdr); 385 rcu_read_lock(); 386 qp = rvt_lookup_qpn(rdi, &ibp->rvp, lqpn); 387 if (!qp) { 388 rcu_read_unlock(); 389 goto drop; 390 } 391 392 switch (qp->ibqp.qp_type) { 393 case IB_QPT_UD: 394 rlid = 0; 395 rqpn = 0; 396 svc_type = IB_CC_SVCTYPE_UD; 397 break; 398 case IB_QPT_UC: 399 rlid = ib_get_slid(rhdr); 400 rqpn = qp->remote_qpn; 401 svc_type = IB_CC_SVCTYPE_UC; 402 break; 403 default: 404 goto drop; 405 } 406 407 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type); 408 rcu_read_unlock(); 409 } 410 411 packet->rhf &= ~RHF_RCV_TYPE_ERR_SMASK; 412 break; 413 } 414 default: 415 break; 416 } 417 418 drop: 419 return; 420 } 421 422 static inline void init_packet(struct hfi1_ctxtdata *rcd, 423 struct hfi1_packet *packet) 424 { 425 packet->rsize = rcd->rcvhdrqentsize; /* words */ 426 packet->maxcnt = rcd->rcvhdrq_cnt * packet->rsize; /* words */ 427 packet->rcd = rcd; 428 packet->updegr = 0; 429 packet->etail = -1; 430 packet->rhf_addr = get_rhf_addr(rcd); 431 packet->rhf = rhf_to_cpu(packet->rhf_addr); 432 packet->rhqoff = rcd->head; 433 packet->numpkt = 0; 434 } 435 436 void hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt, 437 bool do_cnp) 438 { 439 struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num); 440 struct ib_other_headers *ohdr = pkt->ohdr; 441 struct ib_grh *grh = pkt->grh; 442 u32 rqpn = 0, bth1; 443 u16 pkey, rlid, dlid = ib_get_dlid(pkt->hdr); 444 u8 hdr_type, sc, svc_type; 445 bool is_mcast = false; 446 447 if (pkt->etype == RHF_RCV_TYPE_BYPASS) { 448 is_mcast = hfi1_is_16B_mcast(dlid); 449 pkey = hfi1_16B_get_pkey(pkt->hdr); 450 sc = hfi1_16B_get_sc(pkt->hdr); 451 hdr_type = HFI1_PKT_TYPE_16B; 452 } else { 453 is_mcast = (dlid > be16_to_cpu(IB_MULTICAST_LID_BASE)) && 454 (dlid != be16_to_cpu(IB_LID_PERMISSIVE)); 455 pkey = ib_bth_get_pkey(ohdr); 456 sc = hfi1_9B_get_sc5(pkt->hdr, pkt->rhf); 457 hdr_type = HFI1_PKT_TYPE_9B; 458 } 459 460 switch (qp->ibqp.qp_type) { 461 case IB_QPT_SMI: 462 case IB_QPT_GSI: 463 case IB_QPT_UD: 464 rlid = ib_get_slid(pkt->hdr); 465 rqpn = ib_get_sqpn(pkt->ohdr); 466 svc_type = IB_CC_SVCTYPE_UD; 467 break; 468 case IB_QPT_UC: 469 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr); 470 rqpn = qp->remote_qpn; 471 svc_type = IB_CC_SVCTYPE_UC; 472 break; 473 case IB_QPT_RC: 474 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr); 475 rqpn = qp->remote_qpn; 476 svc_type = IB_CC_SVCTYPE_RC; 477 break; 478 default: 479 return; 480 } 481 482 bth1 = be32_to_cpu(ohdr->bth[1]); 483 /* Call appropriate CNP handler */ 484 if (do_cnp && (bth1 & IB_FECN_SMASK)) 485 hfi1_handle_cnp_tbl[hdr_type](ibp, qp, rqpn, pkey, 486 dlid, rlid, sc, grh); 487 488 if (!is_mcast && (bth1 & IB_BECN_SMASK)) { 489 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 490 u32 lqpn = bth1 & RVT_QPN_MASK; 491 u8 sl = ibp->sc_to_sl[sc]; 492 493 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type); 494 } 495 496 } 497 498 struct ps_mdata { 499 struct hfi1_ctxtdata *rcd; 500 u32 rsize; 501 u32 maxcnt; 502 u32 ps_head; 503 u32 ps_tail; 504 u32 ps_seq; 505 }; 506 507 static inline void init_ps_mdata(struct ps_mdata *mdata, 508 struct hfi1_packet *packet) 509 { 510 struct hfi1_ctxtdata *rcd = packet->rcd; 511 512 mdata->rcd = rcd; 513 mdata->rsize = packet->rsize; 514 mdata->maxcnt = packet->maxcnt; 515 mdata->ps_head = packet->rhqoff; 516 517 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) { 518 mdata->ps_tail = get_rcvhdrtail(rcd); 519 if (rcd->ctxt == HFI1_CTRL_CTXT) 520 mdata->ps_seq = rcd->seq_cnt; 521 else 522 mdata->ps_seq = 0; /* not used with DMA_RTAIL */ 523 } else { 524 mdata->ps_tail = 0; /* used only with DMA_RTAIL*/ 525 mdata->ps_seq = rcd->seq_cnt; 526 } 527 } 528 529 static inline int ps_done(struct ps_mdata *mdata, u64 rhf, 530 struct hfi1_ctxtdata *rcd) 531 { 532 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) 533 return mdata->ps_head == mdata->ps_tail; 534 return mdata->ps_seq != rhf_rcv_seq(rhf); 535 } 536 537 static inline int ps_skip(struct ps_mdata *mdata, u64 rhf, 538 struct hfi1_ctxtdata *rcd) 539 { 540 /* 541 * Control context can potentially receive an invalid rhf. 542 * Drop such packets. 543 */ 544 if ((rcd->ctxt == HFI1_CTRL_CTXT) && (mdata->ps_head != mdata->ps_tail)) 545 return mdata->ps_seq != rhf_rcv_seq(rhf); 546 547 return 0; 548 } 549 550 static inline void update_ps_mdata(struct ps_mdata *mdata, 551 struct hfi1_ctxtdata *rcd) 552 { 553 mdata->ps_head += mdata->rsize; 554 if (mdata->ps_head >= mdata->maxcnt) 555 mdata->ps_head = 0; 556 557 /* Control context must do seq counting */ 558 if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) || 559 (rcd->ctxt == HFI1_CTRL_CTXT)) { 560 if (++mdata->ps_seq > 13) 561 mdata->ps_seq = 1; 562 } 563 } 564 565 /* 566 * prescan_rxq - search through the receive queue looking for packets 567 * containing Excplicit Congestion Notifications (FECNs, or BECNs). 568 * When an ECN is found, process the Congestion Notification, and toggle 569 * it off. 570 * This is declared as a macro to allow quick checking of the port to avoid 571 * the overhead of a function call if not enabled. 572 */ 573 #define prescan_rxq(rcd, packet) \ 574 do { \ 575 if (rcd->ppd->cc_prescan) \ 576 __prescan_rxq(packet); \ 577 } while (0) 578 static void __prescan_rxq(struct hfi1_packet *packet) 579 { 580 struct hfi1_ctxtdata *rcd = packet->rcd; 581 struct ps_mdata mdata; 582 583 init_ps_mdata(&mdata, packet); 584 585 while (1) { 586 struct hfi1_devdata *dd = rcd->dd; 587 struct hfi1_ibport *ibp = rcd_to_iport(rcd); 588 __le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head + 589 dd->rhf_offset; 590 struct rvt_qp *qp; 591 struct ib_header *hdr; 592 struct rvt_dev_info *rdi = &dd->verbs_dev.rdi; 593 u64 rhf = rhf_to_cpu(rhf_addr); 594 u32 etype = rhf_rcv_type(rhf), qpn, bth1; 595 int is_ecn = 0; 596 u8 lnh; 597 598 if (ps_done(&mdata, rhf, rcd)) 599 break; 600 601 if (ps_skip(&mdata, rhf, rcd)) 602 goto next; 603 604 if (etype != RHF_RCV_TYPE_IB) 605 goto next; 606 607 packet->hdr = hfi1_get_msgheader(dd, rhf_addr); 608 hdr = packet->hdr; 609 lnh = ib_get_lnh(hdr); 610 611 if (lnh == HFI1_LRH_BTH) { 612 packet->ohdr = &hdr->u.oth; 613 packet->grh = NULL; 614 } else if (lnh == HFI1_LRH_GRH) { 615 packet->ohdr = &hdr->u.l.oth; 616 packet->grh = &hdr->u.l.grh; 617 } else { 618 goto next; /* just in case */ 619 } 620 621 bth1 = be32_to_cpu(packet->ohdr->bth[1]); 622 is_ecn = !!(bth1 & (IB_FECN_SMASK | IB_BECN_SMASK)); 623 624 if (!is_ecn) 625 goto next; 626 627 qpn = bth1 & RVT_QPN_MASK; 628 rcu_read_lock(); 629 qp = rvt_lookup_qpn(rdi, &ibp->rvp, qpn); 630 631 if (!qp) { 632 rcu_read_unlock(); 633 goto next; 634 } 635 636 process_ecn(qp, packet, true); 637 rcu_read_unlock(); 638 639 /* turn off BECN, FECN */ 640 bth1 &= ~(IB_FECN_SMASK | IB_BECN_SMASK); 641 packet->ohdr->bth[1] = cpu_to_be32(bth1); 642 next: 643 update_ps_mdata(&mdata, rcd); 644 } 645 } 646 647 static void process_rcv_qp_work(struct hfi1_ctxtdata *rcd) 648 { 649 struct rvt_qp *qp, *nqp; 650 651 /* 652 * Iterate over all QPs waiting to respond. 653 * The list won't change since the IRQ is only run on one CPU. 654 */ 655 list_for_each_entry_safe(qp, nqp, &rcd->qp_wait_list, rspwait) { 656 list_del_init(&qp->rspwait); 657 if (qp->r_flags & RVT_R_RSP_NAK) { 658 qp->r_flags &= ~RVT_R_RSP_NAK; 659 hfi1_send_rc_ack(rcd, qp, 0); 660 } 661 if (qp->r_flags & RVT_R_RSP_SEND) { 662 unsigned long flags; 663 664 qp->r_flags &= ~RVT_R_RSP_SEND; 665 spin_lock_irqsave(&qp->s_lock, flags); 666 if (ib_rvt_state_ops[qp->state] & 667 RVT_PROCESS_OR_FLUSH_SEND) 668 hfi1_schedule_send(qp); 669 spin_unlock_irqrestore(&qp->s_lock, flags); 670 } 671 rvt_put_qp(qp); 672 } 673 } 674 675 static noinline int max_packet_exceeded(struct hfi1_packet *packet, int thread) 676 { 677 if (thread) { 678 if ((packet->numpkt & (MAX_PKT_RECV_THREAD - 1)) == 0) 679 /* allow defered processing */ 680 process_rcv_qp_work(packet->rcd); 681 cond_resched(); 682 return RCV_PKT_OK; 683 } else { 684 this_cpu_inc(*packet->rcd->dd->rcv_limit); 685 return RCV_PKT_LIMIT; 686 } 687 } 688 689 static inline int check_max_packet(struct hfi1_packet *packet, int thread) 690 { 691 int ret = RCV_PKT_OK; 692 693 if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0)) 694 ret = max_packet_exceeded(packet, thread); 695 return ret; 696 } 697 698 static noinline int skip_rcv_packet(struct hfi1_packet *packet, int thread) 699 { 700 int ret; 701 702 /* Set up for the next packet */ 703 packet->rhqoff += packet->rsize; 704 if (packet->rhqoff >= packet->maxcnt) 705 packet->rhqoff = 0; 706 707 packet->numpkt++; 708 ret = check_max_packet(packet, thread); 709 710 packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff + 711 packet->rcd->dd->rhf_offset; 712 packet->rhf = rhf_to_cpu(packet->rhf_addr); 713 714 return ret; 715 } 716 717 static inline int process_rcv_packet(struct hfi1_packet *packet, int thread) 718 { 719 int ret; 720 721 packet->etype = rhf_rcv_type(packet->rhf); 722 723 /* total length */ 724 packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */ 725 /* retrieve eager buffer details */ 726 packet->ebuf = NULL; 727 if (rhf_use_egr_bfr(packet->rhf)) { 728 packet->etail = rhf_egr_index(packet->rhf); 729 packet->ebuf = get_egrbuf(packet->rcd, packet->rhf, 730 &packet->updegr); 731 /* 732 * Prefetch the contents of the eager buffer. It is 733 * OK to send a negative length to prefetch_range(). 734 * The +2 is the size of the RHF. 735 */ 736 prefetch_range(packet->ebuf, 737 packet->tlen - ((packet->rcd->rcvhdrqentsize - 738 (rhf_hdrq_offset(packet->rhf) 739 + 2)) * 4)); 740 } 741 742 /* 743 * Call a type specific handler for the packet. We 744 * should be able to trust that etype won't be beyond 745 * the range of valid indexes. If so something is really 746 * wrong and we can probably just let things come 747 * crashing down. There is no need to eat another 748 * comparison in this performance critical code. 749 */ 750 packet->rcd->dd->rhf_rcv_function_map[packet->etype](packet); 751 packet->numpkt++; 752 753 /* Set up for the next packet */ 754 packet->rhqoff += packet->rsize; 755 if (packet->rhqoff >= packet->maxcnt) 756 packet->rhqoff = 0; 757 758 ret = check_max_packet(packet, thread); 759 760 packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff + 761 packet->rcd->dd->rhf_offset; 762 packet->rhf = rhf_to_cpu(packet->rhf_addr); 763 764 return ret; 765 } 766 767 static inline void process_rcv_update(int last, struct hfi1_packet *packet) 768 { 769 /* 770 * Update head regs etc., every 16 packets, if not last pkt, 771 * to help prevent rcvhdrq overflows, when many packets 772 * are processed and queue is nearly full. 773 * Don't request an interrupt for intermediate updates. 774 */ 775 if (!last && !(packet->numpkt & 0xf)) { 776 update_usrhead(packet->rcd, packet->rhqoff, packet->updegr, 777 packet->etail, 0, 0); 778 packet->updegr = 0; 779 } 780 packet->grh = NULL; 781 } 782 783 static inline void finish_packet(struct hfi1_packet *packet) 784 { 785 /* 786 * Nothing we need to free for the packet. 787 * 788 * The only thing we need to do is a final update and call for an 789 * interrupt 790 */ 791 update_usrhead(packet->rcd, packet->rcd->head, packet->updegr, 792 packet->etail, rcv_intr_dynamic, packet->numpkt); 793 } 794 795 /* 796 * Handle receive interrupts when using the no dma rtail option. 797 */ 798 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread) 799 { 800 u32 seq; 801 int last = RCV_PKT_OK; 802 struct hfi1_packet packet; 803 804 init_packet(rcd, &packet); 805 seq = rhf_rcv_seq(packet.rhf); 806 if (seq != rcd->seq_cnt) { 807 last = RCV_PKT_DONE; 808 goto bail; 809 } 810 811 prescan_rxq(rcd, &packet); 812 813 while (last == RCV_PKT_OK) { 814 last = process_rcv_packet(&packet, thread); 815 seq = rhf_rcv_seq(packet.rhf); 816 if (++rcd->seq_cnt > 13) 817 rcd->seq_cnt = 1; 818 if (seq != rcd->seq_cnt) 819 last = RCV_PKT_DONE; 820 process_rcv_update(last, &packet); 821 } 822 process_rcv_qp_work(rcd); 823 rcd->head = packet.rhqoff; 824 bail: 825 finish_packet(&packet); 826 return last; 827 } 828 829 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread) 830 { 831 u32 hdrqtail; 832 int last = RCV_PKT_OK; 833 struct hfi1_packet packet; 834 835 init_packet(rcd, &packet); 836 hdrqtail = get_rcvhdrtail(rcd); 837 if (packet.rhqoff == hdrqtail) { 838 last = RCV_PKT_DONE; 839 goto bail; 840 } 841 smp_rmb(); /* prevent speculative reads of dma'ed hdrq */ 842 843 prescan_rxq(rcd, &packet); 844 845 while (last == RCV_PKT_OK) { 846 last = process_rcv_packet(&packet, thread); 847 if (packet.rhqoff == hdrqtail) 848 last = RCV_PKT_DONE; 849 process_rcv_update(last, &packet); 850 } 851 process_rcv_qp_work(rcd); 852 rcd->head = packet.rhqoff; 853 bail: 854 finish_packet(&packet); 855 return last; 856 } 857 858 static inline void set_nodma_rtail(struct hfi1_devdata *dd, u16 ctxt) 859 { 860 struct hfi1_ctxtdata *rcd; 861 u16 i; 862 863 /* 864 * For dynamically allocated kernel contexts (like vnic) switch 865 * interrupt handler only for that context. Otherwise, switch 866 * interrupt handler for all statically allocated kernel contexts. 867 */ 868 if (ctxt >= dd->first_dyn_alloc_ctxt) { 869 rcd = hfi1_rcd_get_by_index(dd, ctxt); 870 if (rcd) { 871 rcd->do_interrupt = 872 &handle_receive_interrupt_nodma_rtail; 873 hfi1_rcd_put(rcd); 874 } 875 return; 876 } 877 878 for (i = HFI1_CTRL_CTXT + 1; i < dd->first_dyn_alloc_ctxt; i++) { 879 rcd = hfi1_rcd_get_by_index(dd, i); 880 if (rcd) 881 rcd->do_interrupt = 882 &handle_receive_interrupt_nodma_rtail; 883 hfi1_rcd_put(rcd); 884 } 885 } 886 887 static inline void set_dma_rtail(struct hfi1_devdata *dd, u16 ctxt) 888 { 889 struct hfi1_ctxtdata *rcd; 890 u16 i; 891 892 /* 893 * For dynamically allocated kernel contexts (like vnic) switch 894 * interrupt handler only for that context. Otherwise, switch 895 * interrupt handler for all statically allocated kernel contexts. 896 */ 897 if (ctxt >= dd->first_dyn_alloc_ctxt) { 898 rcd = hfi1_rcd_get_by_index(dd, ctxt); 899 if (rcd) { 900 rcd->do_interrupt = 901 &handle_receive_interrupt_dma_rtail; 902 hfi1_rcd_put(rcd); 903 } 904 return; 905 } 906 907 for (i = HFI1_CTRL_CTXT + 1; i < dd->first_dyn_alloc_ctxt; i++) { 908 rcd = hfi1_rcd_get_by_index(dd, i); 909 if (rcd) 910 rcd->do_interrupt = 911 &handle_receive_interrupt_dma_rtail; 912 hfi1_rcd_put(rcd); 913 } 914 } 915 916 void set_all_slowpath(struct hfi1_devdata *dd) 917 { 918 struct hfi1_ctxtdata *rcd; 919 u16 i; 920 921 /* HFI1_CTRL_CTXT must always use the slow path interrupt handler */ 922 for (i = HFI1_CTRL_CTXT + 1; i < dd->num_rcv_contexts; i++) { 923 rcd = hfi1_rcd_get_by_index(dd, i); 924 if (!rcd) 925 continue; 926 if ((i < dd->first_dyn_alloc_ctxt) || 927 (rcd->sc && (rcd->sc->type == SC_KERNEL))) { 928 rcd->do_interrupt = &handle_receive_interrupt; 929 } 930 hfi1_rcd_put(rcd); 931 } 932 } 933 934 static inline int set_armed_to_active(struct hfi1_ctxtdata *rcd, 935 struct hfi1_packet *packet, 936 struct hfi1_devdata *dd) 937 { 938 struct work_struct *lsaw = &rcd->ppd->linkstate_active_work; 939 u8 etype = rhf_rcv_type(packet->rhf); 940 u8 sc = SC15_PACKET; 941 942 if (etype == RHF_RCV_TYPE_IB) { 943 struct ib_header *hdr = hfi1_get_msgheader(packet->rcd->dd, 944 packet->rhf_addr); 945 sc = hfi1_9B_get_sc5(hdr, packet->rhf); 946 } else if (etype == RHF_RCV_TYPE_BYPASS) { 947 struct hfi1_16b_header *hdr = hfi1_get_16B_header( 948 packet->rcd->dd, 949 packet->rhf_addr); 950 sc = hfi1_16B_get_sc(hdr); 951 } 952 if (sc != SC15_PACKET) { 953 int hwstate = driver_lstate(rcd->ppd); 954 955 if (hwstate != IB_PORT_ACTIVE) { 956 dd_dev_info(dd, 957 "Unexpected link state %s\n", 958 opa_lstate_name(hwstate)); 959 return 0; 960 } 961 962 queue_work(rcd->ppd->link_wq, lsaw); 963 return 1; 964 } 965 return 0; 966 } 967 968 /* 969 * handle_receive_interrupt - receive a packet 970 * @rcd: the context 971 * 972 * Called from interrupt handler for errors or receive interrupt. 973 * This is the slow path interrupt handler. 974 */ 975 int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread) 976 { 977 struct hfi1_devdata *dd = rcd->dd; 978 u32 hdrqtail; 979 int needset, last = RCV_PKT_OK; 980 struct hfi1_packet packet; 981 int skip_pkt = 0; 982 983 /* Control context will always use the slow path interrupt handler */ 984 needset = (rcd->ctxt == HFI1_CTRL_CTXT) ? 0 : 1; 985 986 init_packet(rcd, &packet); 987 988 if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) { 989 u32 seq = rhf_rcv_seq(packet.rhf); 990 991 if (seq != rcd->seq_cnt) { 992 last = RCV_PKT_DONE; 993 goto bail; 994 } 995 hdrqtail = 0; 996 } else { 997 hdrqtail = get_rcvhdrtail(rcd); 998 if (packet.rhqoff == hdrqtail) { 999 last = RCV_PKT_DONE; 1000 goto bail; 1001 } 1002 smp_rmb(); /* prevent speculative reads of dma'ed hdrq */ 1003 1004 /* 1005 * Control context can potentially receive an invalid 1006 * rhf. Drop such packets. 1007 */ 1008 if (rcd->ctxt == HFI1_CTRL_CTXT) { 1009 u32 seq = rhf_rcv_seq(packet.rhf); 1010 1011 if (seq != rcd->seq_cnt) 1012 skip_pkt = 1; 1013 } 1014 } 1015 1016 prescan_rxq(rcd, &packet); 1017 1018 while (last == RCV_PKT_OK) { 1019 if (unlikely(dd->do_drop && 1020 atomic_xchg(&dd->drop_packet, DROP_PACKET_OFF) == 1021 DROP_PACKET_ON)) { 1022 dd->do_drop = 0; 1023 1024 /* On to the next packet */ 1025 packet.rhqoff += packet.rsize; 1026 packet.rhf_addr = (__le32 *)rcd->rcvhdrq + 1027 packet.rhqoff + 1028 dd->rhf_offset; 1029 packet.rhf = rhf_to_cpu(packet.rhf_addr); 1030 1031 } else if (skip_pkt) { 1032 last = skip_rcv_packet(&packet, thread); 1033 skip_pkt = 0; 1034 } else { 1035 /* Auto activate link on non-SC15 packet receive */ 1036 if (unlikely(rcd->ppd->host_link_state == 1037 HLS_UP_ARMED) && 1038 set_armed_to_active(rcd, &packet, dd)) 1039 goto bail; 1040 last = process_rcv_packet(&packet, thread); 1041 } 1042 1043 if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) { 1044 u32 seq = rhf_rcv_seq(packet.rhf); 1045 1046 if (++rcd->seq_cnt > 13) 1047 rcd->seq_cnt = 1; 1048 if (seq != rcd->seq_cnt) 1049 last = RCV_PKT_DONE; 1050 if (needset) { 1051 dd_dev_info(dd, "Switching to NO_DMA_RTAIL\n"); 1052 set_nodma_rtail(dd, rcd->ctxt); 1053 needset = 0; 1054 } 1055 } else { 1056 if (packet.rhqoff == hdrqtail) 1057 last = RCV_PKT_DONE; 1058 /* 1059 * Control context can potentially receive an invalid 1060 * rhf. Drop such packets. 1061 */ 1062 if (rcd->ctxt == HFI1_CTRL_CTXT) { 1063 u32 seq = rhf_rcv_seq(packet.rhf); 1064 1065 if (++rcd->seq_cnt > 13) 1066 rcd->seq_cnt = 1; 1067 if (!last && (seq != rcd->seq_cnt)) 1068 skip_pkt = 1; 1069 } 1070 1071 if (needset) { 1072 dd_dev_info(dd, 1073 "Switching to DMA_RTAIL\n"); 1074 set_dma_rtail(dd, rcd->ctxt); 1075 needset = 0; 1076 } 1077 } 1078 1079 process_rcv_update(last, &packet); 1080 } 1081 1082 process_rcv_qp_work(rcd); 1083 rcd->head = packet.rhqoff; 1084 1085 bail: 1086 /* 1087 * Always write head at end, and setup rcv interrupt, even 1088 * if no packets were processed. 1089 */ 1090 finish_packet(&packet); 1091 return last; 1092 } 1093 1094 /* 1095 * We may discover in the interrupt that the hardware link state has 1096 * changed from ARMED to ACTIVE (due to the arrival of a non-SC15 packet), 1097 * and we need to update the driver's notion of the link state. We cannot 1098 * run set_link_state from interrupt context, so we queue this function on 1099 * a workqueue. 1100 * 1101 * We delay the regular interrupt processing until after the state changes 1102 * so that the link will be in the correct state by the time any application 1103 * we wake up attempts to send a reply to any message it received. 1104 * (Subsequent receive interrupts may possibly force the wakeup before we 1105 * update the link state.) 1106 * 1107 * The rcd is freed in hfi1_free_ctxtdata after hfi1_postinit_cleanup invokes 1108 * dd->f_cleanup(dd) to disable the interrupt handler and flush workqueues, 1109 * so we're safe from use-after-free of the rcd. 1110 */ 1111 void receive_interrupt_work(struct work_struct *work) 1112 { 1113 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 1114 linkstate_active_work); 1115 struct hfi1_devdata *dd = ppd->dd; 1116 struct hfi1_ctxtdata *rcd; 1117 u16 i; 1118 1119 /* Received non-SC15 packet implies neighbor_normal */ 1120 ppd->neighbor_normal = 1; 1121 set_link_state(ppd, HLS_UP_ACTIVE); 1122 1123 /* 1124 * Interrupt all statically allocated kernel contexts that could 1125 * have had an interrupt during auto activation. 1126 */ 1127 for (i = HFI1_CTRL_CTXT; i < dd->first_dyn_alloc_ctxt; i++) { 1128 rcd = hfi1_rcd_get_by_index(dd, i); 1129 if (rcd) 1130 force_recv_intr(rcd); 1131 hfi1_rcd_put(rcd); 1132 } 1133 } 1134 1135 /* 1136 * Convert a given MTU size to the on-wire MAD packet enumeration. 1137 * Return -1 if the size is invalid. 1138 */ 1139 int mtu_to_enum(u32 mtu, int default_if_bad) 1140 { 1141 switch (mtu) { 1142 case 0: return OPA_MTU_0; 1143 case 256: return OPA_MTU_256; 1144 case 512: return OPA_MTU_512; 1145 case 1024: return OPA_MTU_1024; 1146 case 2048: return OPA_MTU_2048; 1147 case 4096: return OPA_MTU_4096; 1148 case 8192: return OPA_MTU_8192; 1149 case 10240: return OPA_MTU_10240; 1150 } 1151 return default_if_bad; 1152 } 1153 1154 u16 enum_to_mtu(int mtu) 1155 { 1156 switch (mtu) { 1157 case OPA_MTU_0: return 0; 1158 case OPA_MTU_256: return 256; 1159 case OPA_MTU_512: return 512; 1160 case OPA_MTU_1024: return 1024; 1161 case OPA_MTU_2048: return 2048; 1162 case OPA_MTU_4096: return 4096; 1163 case OPA_MTU_8192: return 8192; 1164 case OPA_MTU_10240: return 10240; 1165 default: return 0xffff; 1166 } 1167 } 1168 1169 /* 1170 * set_mtu - set the MTU 1171 * @ppd: the per port data 1172 * 1173 * We can handle "any" incoming size, the issue here is whether we 1174 * need to restrict our outgoing size. We do not deal with what happens 1175 * to programs that are already running when the size changes. 1176 */ 1177 int set_mtu(struct hfi1_pportdata *ppd) 1178 { 1179 struct hfi1_devdata *dd = ppd->dd; 1180 int i, drain, ret = 0, is_up = 0; 1181 1182 ppd->ibmtu = 0; 1183 for (i = 0; i < ppd->vls_supported; i++) 1184 if (ppd->ibmtu < dd->vld[i].mtu) 1185 ppd->ibmtu = dd->vld[i].mtu; 1186 ppd->ibmaxlen = ppd->ibmtu + lrh_max_header_bytes(ppd->dd); 1187 1188 mutex_lock(&ppd->hls_lock); 1189 if (ppd->host_link_state == HLS_UP_INIT || 1190 ppd->host_link_state == HLS_UP_ARMED || 1191 ppd->host_link_state == HLS_UP_ACTIVE) 1192 is_up = 1; 1193 1194 drain = !is_ax(dd) && is_up; 1195 1196 if (drain) 1197 /* 1198 * MTU is specified per-VL. To ensure that no packet gets 1199 * stuck (due, e.g., to the MTU for the packet's VL being 1200 * reduced), empty the per-VL FIFOs before adjusting MTU. 1201 */ 1202 ret = stop_drain_data_vls(dd); 1203 1204 if (ret) { 1205 dd_dev_err(dd, "%s: cannot stop/drain VLs - refusing to change per-VL MTUs\n", 1206 __func__); 1207 goto err; 1208 } 1209 1210 hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_MTU, 0); 1211 1212 if (drain) 1213 open_fill_data_vls(dd); /* reopen all VLs */ 1214 1215 err: 1216 mutex_unlock(&ppd->hls_lock); 1217 1218 return ret; 1219 } 1220 1221 int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc) 1222 { 1223 struct hfi1_devdata *dd = ppd->dd; 1224 1225 ppd->lid = lid; 1226 ppd->lmc = lmc; 1227 hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LIDLMC, 0); 1228 1229 dd_dev_info(dd, "port %u: got a lid: 0x%x\n", ppd->port, lid); 1230 1231 return 0; 1232 } 1233 1234 void shutdown_led_override(struct hfi1_pportdata *ppd) 1235 { 1236 struct hfi1_devdata *dd = ppd->dd; 1237 1238 /* 1239 * This pairs with the memory barrier in hfi1_start_led_override to 1240 * ensure that we read the correct state of LED beaconing represented 1241 * by led_override_timer_active 1242 */ 1243 smp_rmb(); 1244 if (atomic_read(&ppd->led_override_timer_active)) { 1245 del_timer_sync(&ppd->led_override_timer); 1246 atomic_set(&ppd->led_override_timer_active, 0); 1247 /* Ensure the atomic_set is visible to all CPUs */ 1248 smp_wmb(); 1249 } 1250 1251 /* Hand control of the LED to the DC for normal operation */ 1252 write_csr(dd, DCC_CFG_LED_CNTRL, 0); 1253 } 1254 1255 static void run_led_override(unsigned long opaque) 1256 { 1257 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)opaque; 1258 struct hfi1_devdata *dd = ppd->dd; 1259 unsigned long timeout; 1260 int phase_idx; 1261 1262 if (!(dd->flags & HFI1_INITTED)) 1263 return; 1264 1265 phase_idx = ppd->led_override_phase & 1; 1266 1267 setextled(dd, phase_idx); 1268 1269 timeout = ppd->led_override_vals[phase_idx]; 1270 1271 /* Set up for next phase */ 1272 ppd->led_override_phase = !ppd->led_override_phase; 1273 1274 mod_timer(&ppd->led_override_timer, jiffies + timeout); 1275 } 1276 1277 /* 1278 * To have the LED blink in a particular pattern, provide timeon and timeoff 1279 * in milliseconds. 1280 * To turn off custom blinking and return to normal operation, use 1281 * shutdown_led_override() 1282 */ 1283 void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon, 1284 unsigned int timeoff) 1285 { 1286 if (!(ppd->dd->flags & HFI1_INITTED)) 1287 return; 1288 1289 /* Convert to jiffies for direct use in timer */ 1290 ppd->led_override_vals[0] = msecs_to_jiffies(timeoff); 1291 ppd->led_override_vals[1] = msecs_to_jiffies(timeon); 1292 1293 /* Arbitrarily start from LED on phase */ 1294 ppd->led_override_phase = 1; 1295 1296 /* 1297 * If the timer has not already been started, do so. Use a "quick" 1298 * timeout so the handler will be called soon to look at our request. 1299 */ 1300 if (!timer_pending(&ppd->led_override_timer)) { 1301 setup_timer(&ppd->led_override_timer, run_led_override, 1302 (unsigned long)ppd); 1303 ppd->led_override_timer.expires = jiffies + 1; 1304 add_timer(&ppd->led_override_timer); 1305 atomic_set(&ppd->led_override_timer_active, 1); 1306 /* Ensure the atomic_set is visible to all CPUs */ 1307 smp_wmb(); 1308 } 1309 } 1310 1311 /** 1312 * hfi1_reset_device - reset the chip if possible 1313 * @unit: the device to reset 1314 * 1315 * Whether or not reset is successful, we attempt to re-initialize the chip 1316 * (that is, much like a driver unload/reload). We clear the INITTED flag 1317 * so that the various entry points will fail until we reinitialize. For 1318 * now, we only allow this if no user contexts are open that use chip resources 1319 */ 1320 int hfi1_reset_device(int unit) 1321 { 1322 int ret; 1323 struct hfi1_devdata *dd = hfi1_lookup(unit); 1324 struct hfi1_pportdata *ppd; 1325 int pidx; 1326 1327 if (!dd) { 1328 ret = -ENODEV; 1329 goto bail; 1330 } 1331 1332 dd_dev_info(dd, "Reset on unit %u requested\n", unit); 1333 1334 if (!dd->kregbase1 || !(dd->flags & HFI1_PRESENT)) { 1335 dd_dev_info(dd, 1336 "Invalid unit number %u or not initialized or not present\n", 1337 unit); 1338 ret = -ENXIO; 1339 goto bail; 1340 } 1341 1342 /* If there are any user/vnic contexts, we cannot reset */ 1343 mutex_lock(&hfi1_mutex); 1344 if (dd->rcd) 1345 if (hfi1_stats.sps_ctxts) { 1346 mutex_unlock(&hfi1_mutex); 1347 ret = -EBUSY; 1348 goto bail; 1349 } 1350 mutex_unlock(&hfi1_mutex); 1351 1352 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1353 ppd = dd->pport + pidx; 1354 1355 shutdown_led_override(ppd); 1356 } 1357 if (dd->flags & HFI1_HAS_SEND_DMA) 1358 sdma_exit(dd); 1359 1360 hfi1_reset_cpu_counters(dd); 1361 1362 ret = hfi1_init(dd, 1); 1363 1364 if (ret) 1365 dd_dev_err(dd, 1366 "Reinitialize unit %u after reset failed with %d\n", 1367 unit, ret); 1368 else 1369 dd_dev_info(dd, "Reinitialized unit %u after resetting\n", 1370 unit); 1371 1372 bail: 1373 return ret; 1374 } 1375 1376 static inline void hfi1_setup_ib_header(struct hfi1_packet *packet) 1377 { 1378 packet->hdr = (struct hfi1_ib_message_header *) 1379 hfi1_get_msgheader(packet->rcd->dd, 1380 packet->rhf_addr); 1381 packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr; 1382 } 1383 1384 static int hfi1_bypass_ingress_pkt_check(struct hfi1_packet *packet) 1385 { 1386 struct hfi1_pportdata *ppd = packet->rcd->ppd; 1387 1388 /* slid and dlid cannot be 0 */ 1389 if ((!packet->slid) || (!packet->dlid)) 1390 return -EINVAL; 1391 1392 /* Compare port lid with incoming packet dlid */ 1393 if ((!(hfi1_is_16B_mcast(packet->dlid))) && 1394 (packet->dlid != 1395 opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))) { 1396 if (packet->dlid != ppd->lid) 1397 return -EINVAL; 1398 } 1399 1400 /* No multicast packets with SC15 */ 1401 if ((hfi1_is_16B_mcast(packet->dlid)) && (packet->sc == 0xF)) 1402 return -EINVAL; 1403 1404 /* Packets with permissive DLID always on SC15 */ 1405 if ((packet->dlid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 1406 16B)) && 1407 (packet->sc != 0xF)) 1408 return -EINVAL; 1409 1410 return 0; 1411 } 1412 1413 static int hfi1_setup_9B_packet(struct hfi1_packet *packet) 1414 { 1415 struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd); 1416 struct ib_header *hdr; 1417 u8 lnh; 1418 1419 hfi1_setup_ib_header(packet); 1420 hdr = packet->hdr; 1421 1422 lnh = ib_get_lnh(hdr); 1423 if (lnh == HFI1_LRH_BTH) { 1424 packet->ohdr = &hdr->u.oth; 1425 packet->grh = NULL; 1426 } else if (lnh == HFI1_LRH_GRH) { 1427 u32 vtf; 1428 1429 packet->ohdr = &hdr->u.l.oth; 1430 packet->grh = &hdr->u.l.grh; 1431 if (packet->grh->next_hdr != IB_GRH_NEXT_HDR) 1432 goto drop; 1433 vtf = be32_to_cpu(packet->grh->version_tclass_flow); 1434 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION) 1435 goto drop; 1436 } else { 1437 goto drop; 1438 } 1439 1440 /* Query commonly used fields from packet header */ 1441 packet->payload = packet->ebuf; 1442 packet->opcode = ib_bth_get_opcode(packet->ohdr); 1443 packet->slid = ib_get_slid(hdr); 1444 packet->dlid = ib_get_dlid(hdr); 1445 if (unlikely((packet->dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) && 1446 (packet->dlid != be16_to_cpu(IB_LID_PERMISSIVE)))) 1447 packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) - 1448 be16_to_cpu(IB_MULTICAST_LID_BASE); 1449 packet->sl = ib_get_sl(hdr); 1450 packet->sc = hfi1_9B_get_sc5(hdr, packet->rhf); 1451 packet->pad = ib_bth_get_pad(packet->ohdr); 1452 packet->extra_byte = 0; 1453 packet->fecn = ib_bth_get_fecn(packet->ohdr); 1454 packet->becn = ib_bth_get_becn(packet->ohdr); 1455 1456 return 0; 1457 drop: 1458 ibp->rvp.n_pkt_drops++; 1459 return -EINVAL; 1460 } 1461 1462 static int hfi1_setup_bypass_packet(struct hfi1_packet *packet) 1463 { 1464 /* 1465 * Bypass packets have a different header/payload split 1466 * compared to an IB packet. 1467 * Current split is set such that 16 bytes of the actual 1468 * header is in the header buffer and the remining is in 1469 * the eager buffer. We chose 16 since hfi1 driver only 1470 * supports 16B bypass packets and we will be able to 1471 * receive the entire LRH with such a split. 1472 */ 1473 1474 struct hfi1_ctxtdata *rcd = packet->rcd; 1475 struct hfi1_pportdata *ppd = rcd->ppd; 1476 struct hfi1_ibport *ibp = &ppd->ibport_data; 1477 u8 l4; 1478 u8 grh_len; 1479 1480 packet->hdr = (struct hfi1_16b_header *) 1481 hfi1_get_16B_header(packet->rcd->dd, 1482 packet->rhf_addr); 1483 packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr; 1484 1485 l4 = hfi1_16B_get_l4(packet->hdr); 1486 if (l4 == OPA_16B_L4_IB_LOCAL) { 1487 grh_len = 0; 1488 packet->ohdr = packet->ebuf; 1489 packet->grh = NULL; 1490 } else if (l4 == OPA_16B_L4_IB_GLOBAL) { 1491 u32 vtf; 1492 1493 grh_len = sizeof(struct ib_grh); 1494 packet->ohdr = packet->ebuf + grh_len; 1495 packet->grh = packet->ebuf; 1496 if (packet->grh->next_hdr != IB_GRH_NEXT_HDR) 1497 goto drop; 1498 vtf = be32_to_cpu(packet->grh->version_tclass_flow); 1499 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION) 1500 goto drop; 1501 } else { 1502 goto drop; 1503 } 1504 1505 /* Query commonly used fields from packet header */ 1506 packet->opcode = ib_bth_get_opcode(packet->ohdr); 1507 packet->hlen = hdr_len_by_opcode[packet->opcode] + 8 + grh_len; 1508 packet->payload = packet->ebuf + packet->hlen - (4 * sizeof(u32)); 1509 packet->slid = hfi1_16B_get_slid(packet->hdr); 1510 packet->dlid = hfi1_16B_get_dlid(packet->hdr); 1511 if (unlikely(hfi1_is_16B_mcast(packet->dlid))) 1512 packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) - 1513 opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR), 1514 16B); 1515 packet->sc = hfi1_16B_get_sc(packet->hdr); 1516 packet->sl = ibp->sc_to_sl[packet->sc]; 1517 packet->pad = hfi1_16B_bth_get_pad(packet->ohdr); 1518 packet->extra_byte = SIZE_OF_LT; 1519 packet->fecn = hfi1_16B_get_fecn(packet->hdr); 1520 packet->becn = hfi1_16B_get_becn(packet->hdr); 1521 1522 if (hfi1_bypass_ingress_pkt_check(packet)) 1523 goto drop; 1524 1525 return 0; 1526 drop: 1527 hfi1_cdbg(PKT, "%s: packet dropped\n", __func__); 1528 ibp->rvp.n_pkt_drops++; 1529 return -EINVAL; 1530 } 1531 1532 void handle_eflags(struct hfi1_packet *packet) 1533 { 1534 struct hfi1_ctxtdata *rcd = packet->rcd; 1535 u32 rte = rhf_rcv_type_err(packet->rhf); 1536 1537 rcv_hdrerr(rcd, rcd->ppd, packet); 1538 if (rhf_err_flags(packet->rhf)) 1539 dd_dev_err(rcd->dd, 1540 "receive context %d: rhf 0x%016llx, errs [ %s%s%s%s%s%s%s%s] rte 0x%x\n", 1541 rcd->ctxt, packet->rhf, 1542 packet->rhf & RHF_K_HDR_LEN_ERR ? "k_hdr_len " : "", 1543 packet->rhf & RHF_DC_UNC_ERR ? "dc_unc " : "", 1544 packet->rhf & RHF_DC_ERR ? "dc " : "", 1545 packet->rhf & RHF_TID_ERR ? "tid " : "", 1546 packet->rhf & RHF_LEN_ERR ? "len " : "", 1547 packet->rhf & RHF_ECC_ERR ? "ecc " : "", 1548 packet->rhf & RHF_VCRC_ERR ? "vcrc " : "", 1549 packet->rhf & RHF_ICRC_ERR ? "icrc " : "", 1550 rte); 1551 } 1552 1553 /* 1554 * The following functions are called by the interrupt handler. They are type 1555 * specific handlers for each packet type. 1556 */ 1557 int process_receive_ib(struct hfi1_packet *packet) 1558 { 1559 if (unlikely(hfi1_dbg_fault_packet(packet))) 1560 return RHF_RCV_CONTINUE; 1561 1562 if (hfi1_setup_9B_packet(packet)) 1563 return RHF_RCV_CONTINUE; 1564 1565 trace_hfi1_rcvhdr(packet->rcd->ppd->dd, 1566 packet->rcd->ctxt, 1567 rhf_err_flags(packet->rhf), 1568 RHF_RCV_TYPE_IB, 1569 packet->hlen, 1570 packet->tlen, 1571 packet->updegr, 1572 rhf_egr_index(packet->rhf)); 1573 1574 if (unlikely( 1575 (hfi1_dbg_fault_suppress_err(&packet->rcd->dd->verbs_dev) && 1576 (packet->rhf & RHF_DC_ERR)))) 1577 return RHF_RCV_CONTINUE; 1578 1579 if (unlikely(rhf_err_flags(packet->rhf))) { 1580 handle_eflags(packet); 1581 return RHF_RCV_CONTINUE; 1582 } 1583 1584 hfi1_ib_rcv(packet); 1585 return RHF_RCV_CONTINUE; 1586 } 1587 1588 static inline bool hfi1_is_vnic_packet(struct hfi1_packet *packet) 1589 { 1590 /* Packet received in VNIC context via RSM */ 1591 if (packet->rcd->is_vnic) 1592 return true; 1593 1594 if ((hfi1_16B_get_l2(packet->ebuf) == OPA_16B_L2_TYPE) && 1595 (hfi1_16B_get_l4(packet->ebuf) == OPA_16B_L4_ETHR)) 1596 return true; 1597 1598 return false; 1599 } 1600 1601 int process_receive_bypass(struct hfi1_packet *packet) 1602 { 1603 struct hfi1_devdata *dd = packet->rcd->dd; 1604 1605 if (hfi1_is_vnic_packet(packet)) { 1606 hfi1_vnic_bypass_rcv(packet); 1607 return RHF_RCV_CONTINUE; 1608 } 1609 1610 if (hfi1_setup_bypass_packet(packet)) 1611 return RHF_RCV_CONTINUE; 1612 1613 if (unlikely(rhf_err_flags(packet->rhf))) { 1614 handle_eflags(packet); 1615 return RHF_RCV_CONTINUE; 1616 } 1617 1618 if (hfi1_16B_get_l2(packet->hdr) == 0x2) { 1619 hfi1_16B_rcv(packet); 1620 } else { 1621 dd_dev_err(dd, 1622 "Bypass packets other than 16B are not supported in normal operation. Dropping\n"); 1623 incr_cntr64(&dd->sw_rcv_bypass_packet_errors); 1624 if (!(dd->err_info_rcvport.status_and_code & 1625 OPA_EI_STATUS_SMASK)) { 1626 u64 *flits = packet->ebuf; 1627 1628 if (flits && !(packet->rhf & RHF_LEN_ERR)) { 1629 dd->err_info_rcvport.packet_flit1 = flits[0]; 1630 dd->err_info_rcvport.packet_flit2 = 1631 packet->tlen > sizeof(flits[0]) ? 1632 flits[1] : 0; 1633 } 1634 dd->err_info_rcvport.status_and_code |= 1635 (OPA_EI_STATUS_SMASK | BAD_L2_ERR); 1636 } 1637 } 1638 return RHF_RCV_CONTINUE; 1639 } 1640 1641 int process_receive_error(struct hfi1_packet *packet) 1642 { 1643 /* KHdrHCRCErr -- KDETH packet with a bad HCRC */ 1644 if (unlikely( 1645 hfi1_dbg_fault_suppress_err(&packet->rcd->dd->verbs_dev) && 1646 rhf_rcv_type_err(packet->rhf) == 3)) 1647 return RHF_RCV_CONTINUE; 1648 1649 hfi1_setup_ib_header(packet); 1650 handle_eflags(packet); 1651 1652 if (unlikely(rhf_err_flags(packet->rhf))) 1653 dd_dev_err(packet->rcd->dd, 1654 "Unhandled error packet received. Dropping.\n"); 1655 1656 return RHF_RCV_CONTINUE; 1657 } 1658 1659 int kdeth_process_expected(struct hfi1_packet *packet) 1660 { 1661 if (unlikely(hfi1_dbg_fault_packet(packet))) 1662 return RHF_RCV_CONTINUE; 1663 1664 hfi1_setup_ib_header(packet); 1665 if (unlikely(rhf_err_flags(packet->rhf))) 1666 handle_eflags(packet); 1667 1668 dd_dev_err(packet->rcd->dd, 1669 "Unhandled expected packet received. Dropping.\n"); 1670 return RHF_RCV_CONTINUE; 1671 } 1672 1673 int kdeth_process_eager(struct hfi1_packet *packet) 1674 { 1675 hfi1_setup_ib_header(packet); 1676 if (unlikely(rhf_err_flags(packet->rhf))) 1677 handle_eflags(packet); 1678 if (unlikely(hfi1_dbg_fault_packet(packet))) 1679 return RHF_RCV_CONTINUE; 1680 1681 dd_dev_err(packet->rcd->dd, 1682 "Unhandled eager packet received. Dropping.\n"); 1683 return RHF_RCV_CONTINUE; 1684 } 1685 1686 int process_receive_invalid(struct hfi1_packet *packet) 1687 { 1688 dd_dev_err(packet->rcd->dd, "Invalid packet type %d. Dropping\n", 1689 rhf_rcv_type(packet->rhf)); 1690 return RHF_RCV_CONTINUE; 1691 } 1692 1693 void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd) 1694 { 1695 struct hfi1_packet packet; 1696 struct ps_mdata mdata; 1697 1698 seq_printf(s, "Rcd %u: RcvHdr cnt %u entsize %u %s head %llu tail %llu\n", 1699 rcd->ctxt, rcd->rcvhdrq_cnt, rcd->rcvhdrqentsize, 1700 HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ? 1701 "dma_rtail" : "nodma_rtail", 1702 read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD) & 1703 RCV_HDR_HEAD_HEAD_MASK, 1704 read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL)); 1705 1706 init_packet(rcd, &packet); 1707 init_ps_mdata(&mdata, &packet); 1708 1709 while (1) { 1710 struct hfi1_devdata *dd = rcd->dd; 1711 __le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head + 1712 dd->rhf_offset; 1713 struct ib_header *hdr; 1714 u64 rhf = rhf_to_cpu(rhf_addr); 1715 u32 etype = rhf_rcv_type(rhf), qpn; 1716 u8 opcode; 1717 u32 psn; 1718 u8 lnh; 1719 1720 if (ps_done(&mdata, rhf, rcd)) 1721 break; 1722 1723 if (ps_skip(&mdata, rhf, rcd)) 1724 goto next; 1725 1726 if (etype > RHF_RCV_TYPE_IB) 1727 goto next; 1728 1729 packet.hdr = hfi1_get_msgheader(dd, rhf_addr); 1730 hdr = packet.hdr; 1731 1732 lnh = be16_to_cpu(hdr->lrh[0]) & 3; 1733 1734 if (lnh == HFI1_LRH_BTH) 1735 packet.ohdr = &hdr->u.oth; 1736 else if (lnh == HFI1_LRH_GRH) 1737 packet.ohdr = &hdr->u.l.oth; 1738 else 1739 goto next; /* just in case */ 1740 1741 opcode = (be32_to_cpu(packet.ohdr->bth[0]) >> 24); 1742 qpn = be32_to_cpu(packet.ohdr->bth[1]) & RVT_QPN_MASK; 1743 psn = mask_psn(be32_to_cpu(packet.ohdr->bth[2])); 1744 1745 seq_printf(s, "\tEnt %u: opcode 0x%x, qpn 0x%x, psn 0x%x\n", 1746 mdata.ps_head, opcode, qpn, psn); 1747 next: 1748 update_ps_mdata(&mdata, rcd); 1749 } 1750 } 1751