1 /*
2  * Copyright(c) 2015-2017 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <linux/spinlock.h>
49 #include <linux/pci.h>
50 #include <linux/io.h>
51 #include <linux/delay.h>
52 #include <linux/netdevice.h>
53 #include <linux/vmalloc.h>
54 #include <linux/module.h>
55 #include <linux/prefetch.h>
56 #include <rdma/ib_verbs.h>
57 
58 #include "hfi.h"
59 #include "trace.h"
60 #include "qp.h"
61 #include "sdma.h"
62 #include "debugfs.h"
63 #include "vnic.h"
64 
65 #undef pr_fmt
66 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
67 
68 /*
69  * The size has to be longer than this string, so we can append
70  * board/chip information to it in the initialization code.
71  */
72 const char ib_hfi1_version[] = HFI1_DRIVER_VERSION "\n";
73 
74 DEFINE_SPINLOCK(hfi1_devs_lock);
75 LIST_HEAD(hfi1_dev_list);
76 DEFINE_MUTEX(hfi1_mutex);	/* general driver use */
77 
78 unsigned int hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
79 module_param_named(max_mtu, hfi1_max_mtu, uint, S_IRUGO);
80 MODULE_PARM_DESC(max_mtu, "Set max MTU bytes, default is " __stringify(
81 		 HFI1_DEFAULT_MAX_MTU));
82 
83 unsigned int hfi1_cu = 1;
84 module_param_named(cu, hfi1_cu, uint, S_IRUGO);
85 MODULE_PARM_DESC(cu, "Credit return units");
86 
87 unsigned long hfi1_cap_mask = HFI1_CAP_MASK_DEFAULT;
88 static int hfi1_caps_set(const char *val, const struct kernel_param *kp);
89 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp);
90 static const struct kernel_param_ops cap_ops = {
91 	.set = hfi1_caps_set,
92 	.get = hfi1_caps_get
93 };
94 module_param_cb(cap_mask, &cap_ops, &hfi1_cap_mask, S_IWUSR | S_IRUGO);
95 MODULE_PARM_DESC(cap_mask, "Bit mask of enabled/disabled HW features");
96 
97 MODULE_LICENSE("Dual BSD/GPL");
98 MODULE_DESCRIPTION("Intel Omni-Path Architecture driver");
99 
100 /*
101  * MAX_PKT_RCV is the max # if packets processed per receive interrupt.
102  */
103 #define MAX_PKT_RECV 64
104 /*
105  * MAX_PKT_THREAD_RCV is the max # of packets processed before
106  * the qp_wait_list queue is flushed.
107  */
108 #define MAX_PKT_RECV_THREAD (MAX_PKT_RECV * 4)
109 #define EGR_HEAD_UPDATE_THRESHOLD 16
110 
111 struct hfi1_ib_stats hfi1_stats;
112 
113 static int hfi1_caps_set(const char *val, const struct kernel_param *kp)
114 {
115 	int ret = 0;
116 	unsigned long *cap_mask_ptr = (unsigned long *)kp->arg,
117 		cap_mask = *cap_mask_ptr, value, diff,
118 		write_mask = ((HFI1_CAP_WRITABLE_MASK << HFI1_CAP_USER_SHIFT) |
119 			      HFI1_CAP_WRITABLE_MASK);
120 
121 	ret = kstrtoul(val, 0, &value);
122 	if (ret) {
123 		pr_warn("Invalid module parameter value for 'cap_mask'\n");
124 		goto done;
125 	}
126 	/* Get the changed bits (except the locked bit) */
127 	diff = value ^ (cap_mask & ~HFI1_CAP_LOCKED_SMASK);
128 
129 	/* Remove any bits that are not allowed to change after driver load */
130 	if (HFI1_CAP_LOCKED() && (diff & ~write_mask)) {
131 		pr_warn("Ignoring non-writable capability bits %#lx\n",
132 			diff & ~write_mask);
133 		diff &= write_mask;
134 	}
135 
136 	/* Mask off any reserved bits */
137 	diff &= ~HFI1_CAP_RESERVED_MASK;
138 	/* Clear any previously set and changing bits */
139 	cap_mask &= ~diff;
140 	/* Update the bits with the new capability */
141 	cap_mask |= (value & diff);
142 	/* Check for any kernel/user restrictions */
143 	diff = (cap_mask & (HFI1_CAP_MUST_HAVE_KERN << HFI1_CAP_USER_SHIFT)) ^
144 		((cap_mask & HFI1_CAP_MUST_HAVE_KERN) << HFI1_CAP_USER_SHIFT);
145 	cap_mask &= ~diff;
146 	/* Set the bitmask to the final set */
147 	*cap_mask_ptr = cap_mask;
148 done:
149 	return ret;
150 }
151 
152 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp)
153 {
154 	unsigned long cap_mask = *(unsigned long *)kp->arg;
155 
156 	cap_mask &= ~HFI1_CAP_LOCKED_SMASK;
157 	cap_mask |= ((cap_mask & HFI1_CAP_K2U) << HFI1_CAP_USER_SHIFT);
158 
159 	return scnprintf(buffer, PAGE_SIZE, "0x%lx", cap_mask);
160 }
161 
162 const char *get_unit_name(int unit)
163 {
164 	static char iname[16];
165 
166 	snprintf(iname, sizeof(iname), DRIVER_NAME "_%u", unit);
167 	return iname;
168 }
169 
170 const char *get_card_name(struct rvt_dev_info *rdi)
171 {
172 	struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi);
173 	struct hfi1_devdata *dd = container_of(ibdev,
174 					       struct hfi1_devdata, verbs_dev);
175 	return get_unit_name(dd->unit);
176 }
177 
178 struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi)
179 {
180 	struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi);
181 	struct hfi1_devdata *dd = container_of(ibdev,
182 					       struct hfi1_devdata, verbs_dev);
183 	return dd->pcidev;
184 }
185 
186 /*
187  * Return count of units with at least one port ACTIVE.
188  */
189 int hfi1_count_active_units(void)
190 {
191 	struct hfi1_devdata *dd;
192 	struct hfi1_pportdata *ppd;
193 	unsigned long flags;
194 	int pidx, nunits_active = 0;
195 
196 	spin_lock_irqsave(&hfi1_devs_lock, flags);
197 	list_for_each_entry(dd, &hfi1_dev_list, list) {
198 		if (!(dd->flags & HFI1_PRESENT) || !dd->kregbase1)
199 			continue;
200 		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
201 			ppd = dd->pport + pidx;
202 			if (ppd->lid && ppd->linkup) {
203 				nunits_active++;
204 				break;
205 			}
206 		}
207 	}
208 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
209 	return nunits_active;
210 }
211 
212 /*
213  * Get address of eager buffer from it's index (allocated in chunks, not
214  * contiguous).
215  */
216 static inline void *get_egrbuf(const struct hfi1_ctxtdata *rcd, u64 rhf,
217 			       u8 *update)
218 {
219 	u32 idx = rhf_egr_index(rhf), offset = rhf_egr_buf_offset(rhf);
220 
221 	*update |= !(idx & (rcd->egrbufs.threshold - 1)) && !offset;
222 	return (void *)(((u64)(rcd->egrbufs.rcvtids[idx].addr)) +
223 			(offset * RCV_BUF_BLOCK_SIZE));
224 }
225 
226 static inline void *hfi1_get_header(struct hfi1_devdata *dd,
227 				    __le32 *rhf_addr)
228 {
229 	u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
230 
231 	return (void *)(rhf_addr - dd->rhf_offset + offset);
232 }
233 
234 static inline struct ib_header *hfi1_get_msgheader(struct hfi1_devdata *dd,
235 						   __le32 *rhf_addr)
236 {
237 	return (struct ib_header *)hfi1_get_header(dd, rhf_addr);
238 }
239 
240 static inline struct hfi1_16b_header
241 		*hfi1_get_16B_header(struct hfi1_devdata *dd,
242 				     __le32 *rhf_addr)
243 {
244 	return (struct hfi1_16b_header *)hfi1_get_header(dd, rhf_addr);
245 }
246 
247 /*
248  * Validate and encode the a given RcvArray Buffer size.
249  * The function will check whether the given size falls within
250  * allowed size ranges for the respective type and, optionally,
251  * return the proper encoding.
252  */
253 int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encoded)
254 {
255 	if (unlikely(!PAGE_ALIGNED(size)))
256 		return 0;
257 	if (unlikely(size < MIN_EAGER_BUFFER))
258 		return 0;
259 	if (size >
260 	    (type == PT_EAGER ? MAX_EAGER_BUFFER : MAX_EXPECTED_BUFFER))
261 		return 0;
262 	if (encoded)
263 		*encoded = ilog2(size / PAGE_SIZE) + 1;
264 	return 1;
265 }
266 
267 static void rcv_hdrerr(struct hfi1_ctxtdata *rcd, struct hfi1_pportdata *ppd,
268 		       struct hfi1_packet *packet)
269 {
270 	struct ib_header *rhdr = packet->hdr;
271 	u32 rte = rhf_rcv_type_err(packet->rhf);
272 	u32 mlid_base;
273 	struct hfi1_ibport *ibp = rcd_to_iport(rcd);
274 	struct hfi1_devdata *dd = ppd->dd;
275 	struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
276 
277 	if (packet->rhf & (RHF_VCRC_ERR | RHF_ICRC_ERR))
278 		return;
279 
280 	if (packet->etype == RHF_RCV_TYPE_BYPASS) {
281 		goto drop;
282 	} else {
283 		u8 lnh = ib_get_lnh(rhdr);
284 
285 		mlid_base = be16_to_cpu(IB_MULTICAST_LID_BASE);
286 		if (lnh == HFI1_LRH_BTH) {
287 			packet->ohdr = &rhdr->u.oth;
288 		} else if (lnh == HFI1_LRH_GRH) {
289 			packet->ohdr = &rhdr->u.l.oth;
290 			packet->grh = &rhdr->u.l.grh;
291 		} else {
292 			goto drop;
293 		}
294 	}
295 
296 	if (packet->rhf & RHF_TID_ERR) {
297 		/* For TIDERR and RC QPs preemptively schedule a NAK */
298 		u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */
299 		u32 dlid = ib_get_dlid(rhdr);
300 		u32 qp_num;
301 
302 		/* Sanity check packet */
303 		if (tlen < 24)
304 			goto drop;
305 
306 		/* Check for GRH */
307 		if (packet->grh) {
308 			u32 vtf;
309 			struct ib_grh *grh = packet->grh;
310 
311 			if (grh->next_hdr != IB_GRH_NEXT_HDR)
312 				goto drop;
313 			vtf = be32_to_cpu(grh->version_tclass_flow);
314 			if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
315 				goto drop;
316 		}
317 
318 		/* Get the destination QP number. */
319 		qp_num = ib_bth_get_qpn(packet->ohdr);
320 		if (dlid < mlid_base) {
321 			struct rvt_qp *qp;
322 			unsigned long flags;
323 
324 			rcu_read_lock();
325 			qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
326 			if (!qp) {
327 				rcu_read_unlock();
328 				goto drop;
329 			}
330 
331 			/*
332 			 * Handle only RC QPs - for other QP types drop error
333 			 * packet.
334 			 */
335 			spin_lock_irqsave(&qp->r_lock, flags);
336 
337 			/* Check for valid receive state. */
338 			if (!(ib_rvt_state_ops[qp->state] &
339 			      RVT_PROCESS_RECV_OK)) {
340 				ibp->rvp.n_pkt_drops++;
341 			}
342 
343 			switch (qp->ibqp.qp_type) {
344 			case IB_QPT_RC:
345 				hfi1_rc_hdrerr(rcd, packet, qp);
346 				break;
347 			default:
348 				/* For now don't handle any other QP types */
349 				break;
350 			}
351 
352 			spin_unlock_irqrestore(&qp->r_lock, flags);
353 			rcu_read_unlock();
354 		} /* Unicast QP */
355 	} /* Valid packet with TIDErr */
356 
357 	/* handle "RcvTypeErr" flags */
358 	switch (rte) {
359 	case RHF_RTE_ERROR_OP_CODE_ERR:
360 	{
361 		void *ebuf = NULL;
362 		u8 opcode;
363 
364 		if (rhf_use_egr_bfr(packet->rhf))
365 			ebuf = packet->ebuf;
366 
367 		if (!ebuf)
368 			goto drop; /* this should never happen */
369 
370 		opcode = ib_bth_get_opcode(packet->ohdr);
371 		if (opcode == IB_OPCODE_CNP) {
372 			/*
373 			 * Only in pre-B0 h/w is the CNP_OPCODE handled
374 			 * via this code path.
375 			 */
376 			struct rvt_qp *qp = NULL;
377 			u32 lqpn, rqpn;
378 			u16 rlid;
379 			u8 svc_type, sl, sc5;
380 
381 			sc5 = hfi1_9B_get_sc5(rhdr, packet->rhf);
382 			sl = ibp->sc_to_sl[sc5];
383 
384 			lqpn = ib_bth_get_qpn(packet->ohdr);
385 			rcu_read_lock();
386 			qp = rvt_lookup_qpn(rdi, &ibp->rvp, lqpn);
387 			if (!qp) {
388 				rcu_read_unlock();
389 				goto drop;
390 			}
391 
392 			switch (qp->ibqp.qp_type) {
393 			case IB_QPT_UD:
394 				rlid = 0;
395 				rqpn = 0;
396 				svc_type = IB_CC_SVCTYPE_UD;
397 				break;
398 			case IB_QPT_UC:
399 				rlid = ib_get_slid(rhdr);
400 				rqpn = qp->remote_qpn;
401 				svc_type = IB_CC_SVCTYPE_UC;
402 				break;
403 			default:
404 				goto drop;
405 			}
406 
407 			process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
408 			rcu_read_unlock();
409 		}
410 
411 		packet->rhf &= ~RHF_RCV_TYPE_ERR_SMASK;
412 		break;
413 	}
414 	default:
415 		break;
416 	}
417 
418 drop:
419 	return;
420 }
421 
422 static inline void init_packet(struct hfi1_ctxtdata *rcd,
423 			       struct hfi1_packet *packet)
424 {
425 	packet->rsize = rcd->rcvhdrqentsize; /* words */
426 	packet->maxcnt = rcd->rcvhdrq_cnt * packet->rsize; /* words */
427 	packet->rcd = rcd;
428 	packet->updegr = 0;
429 	packet->etail = -1;
430 	packet->rhf_addr = get_rhf_addr(rcd);
431 	packet->rhf = rhf_to_cpu(packet->rhf_addr);
432 	packet->rhqoff = rcd->head;
433 	packet->numpkt = 0;
434 }
435 
436 /* We support only two types - 9B and 16B for now */
437 static const hfi1_handle_cnp hfi1_handle_cnp_tbl[2] = {
438 	[HFI1_PKT_TYPE_9B] = &return_cnp,
439 	[HFI1_PKT_TYPE_16B] = &return_cnp_16B
440 };
441 
442 void hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt,
443 			       bool do_cnp)
444 {
445 	struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
446 	struct ib_other_headers *ohdr = pkt->ohdr;
447 	struct ib_grh *grh = pkt->grh;
448 	u32 rqpn = 0, bth1;
449 	u16 pkey, rlid, dlid = ib_get_dlid(pkt->hdr);
450 	u8 hdr_type, sc, svc_type;
451 	bool is_mcast = false;
452 
453 	if (pkt->etype == RHF_RCV_TYPE_BYPASS) {
454 		is_mcast = hfi1_is_16B_mcast(dlid);
455 		pkey = hfi1_16B_get_pkey(pkt->hdr);
456 		sc = hfi1_16B_get_sc(pkt->hdr);
457 		hdr_type = HFI1_PKT_TYPE_16B;
458 	} else {
459 		is_mcast = (dlid > be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
460 			   (dlid != be16_to_cpu(IB_LID_PERMISSIVE));
461 		pkey = ib_bth_get_pkey(ohdr);
462 		sc = hfi1_9B_get_sc5(pkt->hdr, pkt->rhf);
463 		hdr_type = HFI1_PKT_TYPE_9B;
464 	}
465 
466 	switch (qp->ibqp.qp_type) {
467 	case IB_QPT_SMI:
468 	case IB_QPT_GSI:
469 	case IB_QPT_UD:
470 		rlid = ib_get_slid(pkt->hdr);
471 		rqpn = ib_get_sqpn(pkt->ohdr);
472 		svc_type = IB_CC_SVCTYPE_UD;
473 		break;
474 	case IB_QPT_UC:
475 		rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
476 		rqpn = qp->remote_qpn;
477 		svc_type = IB_CC_SVCTYPE_UC;
478 		break;
479 	case IB_QPT_RC:
480 		rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
481 		rqpn = qp->remote_qpn;
482 		svc_type = IB_CC_SVCTYPE_RC;
483 		break;
484 	default:
485 		return;
486 	}
487 
488 	bth1 = be32_to_cpu(ohdr->bth[1]);
489 	/* Call appropriate CNP handler */
490 	if (do_cnp && (bth1 & IB_FECN_SMASK))
491 		hfi1_handle_cnp_tbl[hdr_type](ibp, qp, rqpn, pkey,
492 					      dlid, rlid, sc, grh);
493 
494 	if (!is_mcast && (bth1 & IB_BECN_SMASK)) {
495 		struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
496 		u32 lqpn = bth1 & RVT_QPN_MASK;
497 		u8 sl = ibp->sc_to_sl[sc];
498 
499 		process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
500 	}
501 
502 }
503 
504 struct ps_mdata {
505 	struct hfi1_ctxtdata *rcd;
506 	u32 rsize;
507 	u32 maxcnt;
508 	u32 ps_head;
509 	u32 ps_tail;
510 	u32 ps_seq;
511 };
512 
513 static inline void init_ps_mdata(struct ps_mdata *mdata,
514 				 struct hfi1_packet *packet)
515 {
516 	struct hfi1_ctxtdata *rcd = packet->rcd;
517 
518 	mdata->rcd = rcd;
519 	mdata->rsize = packet->rsize;
520 	mdata->maxcnt = packet->maxcnt;
521 	mdata->ps_head = packet->rhqoff;
522 
523 	if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
524 		mdata->ps_tail = get_rcvhdrtail(rcd);
525 		if (rcd->ctxt == HFI1_CTRL_CTXT)
526 			mdata->ps_seq = rcd->seq_cnt;
527 		else
528 			mdata->ps_seq = 0; /* not used with DMA_RTAIL */
529 	} else {
530 		mdata->ps_tail = 0; /* used only with DMA_RTAIL*/
531 		mdata->ps_seq = rcd->seq_cnt;
532 	}
533 }
534 
535 static inline int ps_done(struct ps_mdata *mdata, u64 rhf,
536 			  struct hfi1_ctxtdata *rcd)
537 {
538 	if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
539 		return mdata->ps_head == mdata->ps_tail;
540 	return mdata->ps_seq != rhf_rcv_seq(rhf);
541 }
542 
543 static inline int ps_skip(struct ps_mdata *mdata, u64 rhf,
544 			  struct hfi1_ctxtdata *rcd)
545 {
546 	/*
547 	 * Control context can potentially receive an invalid rhf.
548 	 * Drop such packets.
549 	 */
550 	if ((rcd->ctxt == HFI1_CTRL_CTXT) && (mdata->ps_head != mdata->ps_tail))
551 		return mdata->ps_seq != rhf_rcv_seq(rhf);
552 
553 	return 0;
554 }
555 
556 static inline void update_ps_mdata(struct ps_mdata *mdata,
557 				   struct hfi1_ctxtdata *rcd)
558 {
559 	mdata->ps_head += mdata->rsize;
560 	if (mdata->ps_head >= mdata->maxcnt)
561 		mdata->ps_head = 0;
562 
563 	/* Control context must do seq counting */
564 	if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ||
565 	    (rcd->ctxt == HFI1_CTRL_CTXT)) {
566 		if (++mdata->ps_seq > 13)
567 			mdata->ps_seq = 1;
568 	}
569 }
570 
571 /*
572  * prescan_rxq - search through the receive queue looking for packets
573  * containing Excplicit Congestion Notifications (FECNs, or BECNs).
574  * When an ECN is found, process the Congestion Notification, and toggle
575  * it off.
576  * This is declared as a macro to allow quick checking of the port to avoid
577  * the overhead of a function call if not enabled.
578  */
579 #define prescan_rxq(rcd, packet) \
580 	do { \
581 		if (rcd->ppd->cc_prescan) \
582 			__prescan_rxq(packet); \
583 	} while (0)
584 static void __prescan_rxq(struct hfi1_packet *packet)
585 {
586 	struct hfi1_ctxtdata *rcd = packet->rcd;
587 	struct ps_mdata mdata;
588 
589 	init_ps_mdata(&mdata, packet);
590 
591 	while (1) {
592 		struct hfi1_devdata *dd = rcd->dd;
593 		struct hfi1_ibport *ibp = rcd_to_iport(rcd);
594 		__le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
595 					 dd->rhf_offset;
596 		struct rvt_qp *qp;
597 		struct ib_header *hdr;
598 		struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
599 		u64 rhf = rhf_to_cpu(rhf_addr);
600 		u32 etype = rhf_rcv_type(rhf), qpn, bth1;
601 		int is_ecn = 0;
602 		u8 lnh;
603 
604 		if (ps_done(&mdata, rhf, rcd))
605 			break;
606 
607 		if (ps_skip(&mdata, rhf, rcd))
608 			goto next;
609 
610 		if (etype != RHF_RCV_TYPE_IB)
611 			goto next;
612 
613 		packet->hdr = hfi1_get_msgheader(dd, rhf_addr);
614 		hdr = packet->hdr;
615 		lnh = ib_get_lnh(hdr);
616 
617 		if (lnh == HFI1_LRH_BTH) {
618 			packet->ohdr = &hdr->u.oth;
619 			packet->grh = NULL;
620 		} else if (lnh == HFI1_LRH_GRH) {
621 			packet->ohdr = &hdr->u.l.oth;
622 			packet->grh = &hdr->u.l.grh;
623 		} else {
624 			goto next; /* just in case */
625 		}
626 
627 		bth1 = be32_to_cpu(packet->ohdr->bth[1]);
628 		is_ecn = !!(bth1 & (IB_FECN_SMASK | IB_BECN_SMASK));
629 
630 		if (!is_ecn)
631 			goto next;
632 
633 		qpn = bth1 & RVT_QPN_MASK;
634 		rcu_read_lock();
635 		qp = rvt_lookup_qpn(rdi, &ibp->rvp, qpn);
636 
637 		if (!qp) {
638 			rcu_read_unlock();
639 			goto next;
640 		}
641 
642 		process_ecn(qp, packet, true);
643 		rcu_read_unlock();
644 
645 		/* turn off BECN, FECN */
646 		bth1 &= ~(IB_FECN_SMASK | IB_BECN_SMASK);
647 		packet->ohdr->bth[1] = cpu_to_be32(bth1);
648 next:
649 		update_ps_mdata(&mdata, rcd);
650 	}
651 }
652 
653 static void process_rcv_qp_work(struct hfi1_ctxtdata *rcd)
654 {
655 	struct rvt_qp *qp, *nqp;
656 
657 	/*
658 	 * Iterate over all QPs waiting to respond.
659 	 * The list won't change since the IRQ is only run on one CPU.
660 	 */
661 	list_for_each_entry_safe(qp, nqp, &rcd->qp_wait_list, rspwait) {
662 		list_del_init(&qp->rspwait);
663 		if (qp->r_flags & RVT_R_RSP_NAK) {
664 			qp->r_flags &= ~RVT_R_RSP_NAK;
665 			hfi1_send_rc_ack(rcd, qp, 0);
666 		}
667 		if (qp->r_flags & RVT_R_RSP_SEND) {
668 			unsigned long flags;
669 
670 			qp->r_flags &= ~RVT_R_RSP_SEND;
671 			spin_lock_irqsave(&qp->s_lock, flags);
672 			if (ib_rvt_state_ops[qp->state] &
673 					RVT_PROCESS_OR_FLUSH_SEND)
674 				hfi1_schedule_send(qp);
675 			spin_unlock_irqrestore(&qp->s_lock, flags);
676 		}
677 		rvt_put_qp(qp);
678 	}
679 }
680 
681 static noinline int max_packet_exceeded(struct hfi1_packet *packet, int thread)
682 {
683 	if (thread) {
684 		if ((packet->numpkt & (MAX_PKT_RECV_THREAD - 1)) == 0)
685 			/* allow defered processing */
686 			process_rcv_qp_work(packet->rcd);
687 		cond_resched();
688 		return RCV_PKT_OK;
689 	} else {
690 		this_cpu_inc(*packet->rcd->dd->rcv_limit);
691 		return RCV_PKT_LIMIT;
692 	}
693 }
694 
695 static inline int check_max_packet(struct hfi1_packet *packet, int thread)
696 {
697 	int ret = RCV_PKT_OK;
698 
699 	if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0))
700 		ret = max_packet_exceeded(packet, thread);
701 	return ret;
702 }
703 
704 static noinline int skip_rcv_packet(struct hfi1_packet *packet, int thread)
705 {
706 	int ret;
707 
708 	/* Set up for the next packet */
709 	packet->rhqoff += packet->rsize;
710 	if (packet->rhqoff >= packet->maxcnt)
711 		packet->rhqoff = 0;
712 
713 	packet->numpkt++;
714 	ret = check_max_packet(packet, thread);
715 
716 	packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
717 				     packet->rcd->dd->rhf_offset;
718 	packet->rhf = rhf_to_cpu(packet->rhf_addr);
719 
720 	return ret;
721 }
722 
723 static inline int process_rcv_packet(struct hfi1_packet *packet, int thread)
724 {
725 	int ret;
726 
727 	packet->etype = rhf_rcv_type(packet->rhf);
728 
729 	/* total length */
730 	packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */
731 	/* retrieve eager buffer details */
732 	packet->ebuf = NULL;
733 	if (rhf_use_egr_bfr(packet->rhf)) {
734 		packet->etail = rhf_egr_index(packet->rhf);
735 		packet->ebuf = get_egrbuf(packet->rcd, packet->rhf,
736 				 &packet->updegr);
737 		/*
738 		 * Prefetch the contents of the eager buffer.  It is
739 		 * OK to send a negative length to prefetch_range().
740 		 * The +2 is the size of the RHF.
741 		 */
742 		prefetch_range(packet->ebuf,
743 			       packet->tlen - ((packet->rcd->rcvhdrqentsize -
744 					       (rhf_hdrq_offset(packet->rhf)
745 						+ 2)) * 4));
746 	}
747 
748 	/*
749 	 * Call a type specific handler for the packet. We
750 	 * should be able to trust that etype won't be beyond
751 	 * the range of valid indexes. If so something is really
752 	 * wrong and we can probably just let things come
753 	 * crashing down. There is no need to eat another
754 	 * comparison in this performance critical code.
755 	 */
756 	packet->rcd->dd->rhf_rcv_function_map[packet->etype](packet);
757 	packet->numpkt++;
758 
759 	/* Set up for the next packet */
760 	packet->rhqoff += packet->rsize;
761 	if (packet->rhqoff >= packet->maxcnt)
762 		packet->rhqoff = 0;
763 
764 	ret = check_max_packet(packet, thread);
765 
766 	packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
767 				      packet->rcd->dd->rhf_offset;
768 	packet->rhf = rhf_to_cpu(packet->rhf_addr);
769 
770 	return ret;
771 }
772 
773 static inline void process_rcv_update(int last, struct hfi1_packet *packet)
774 {
775 	/*
776 	 * Update head regs etc., every 16 packets, if not last pkt,
777 	 * to help prevent rcvhdrq overflows, when many packets
778 	 * are processed and queue is nearly full.
779 	 * Don't request an interrupt for intermediate updates.
780 	 */
781 	if (!last && !(packet->numpkt & 0xf)) {
782 		update_usrhead(packet->rcd, packet->rhqoff, packet->updegr,
783 			       packet->etail, 0, 0);
784 		packet->updegr = 0;
785 	}
786 	packet->grh = NULL;
787 }
788 
789 static inline void finish_packet(struct hfi1_packet *packet)
790 {
791 	/*
792 	 * Nothing we need to free for the packet.
793 	 *
794 	 * The only thing we need to do is a final update and call for an
795 	 * interrupt
796 	 */
797 	update_usrhead(packet->rcd, packet->rcd->head, packet->updegr,
798 		       packet->etail, rcv_intr_dynamic, packet->numpkt);
799 }
800 
801 /*
802  * Handle receive interrupts when using the no dma rtail option.
803  */
804 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread)
805 {
806 	u32 seq;
807 	int last = RCV_PKT_OK;
808 	struct hfi1_packet packet;
809 
810 	init_packet(rcd, &packet);
811 	seq = rhf_rcv_seq(packet.rhf);
812 	if (seq != rcd->seq_cnt) {
813 		last = RCV_PKT_DONE;
814 		goto bail;
815 	}
816 
817 	prescan_rxq(rcd, &packet);
818 
819 	while (last == RCV_PKT_OK) {
820 		last = process_rcv_packet(&packet, thread);
821 		seq = rhf_rcv_seq(packet.rhf);
822 		if (++rcd->seq_cnt > 13)
823 			rcd->seq_cnt = 1;
824 		if (seq != rcd->seq_cnt)
825 			last = RCV_PKT_DONE;
826 		process_rcv_update(last, &packet);
827 	}
828 	process_rcv_qp_work(rcd);
829 	rcd->head = packet.rhqoff;
830 bail:
831 	finish_packet(&packet);
832 	return last;
833 }
834 
835 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread)
836 {
837 	u32 hdrqtail;
838 	int last = RCV_PKT_OK;
839 	struct hfi1_packet packet;
840 
841 	init_packet(rcd, &packet);
842 	hdrqtail = get_rcvhdrtail(rcd);
843 	if (packet.rhqoff == hdrqtail) {
844 		last = RCV_PKT_DONE;
845 		goto bail;
846 	}
847 	smp_rmb();  /* prevent speculative reads of dma'ed hdrq */
848 
849 	prescan_rxq(rcd, &packet);
850 
851 	while (last == RCV_PKT_OK) {
852 		last = process_rcv_packet(&packet, thread);
853 		if (packet.rhqoff == hdrqtail)
854 			last = RCV_PKT_DONE;
855 		process_rcv_update(last, &packet);
856 	}
857 	process_rcv_qp_work(rcd);
858 	rcd->head = packet.rhqoff;
859 bail:
860 	finish_packet(&packet);
861 	return last;
862 }
863 
864 static inline void set_nodma_rtail(struct hfi1_devdata *dd, u16 ctxt)
865 {
866 	struct hfi1_ctxtdata *rcd;
867 	u16 i;
868 
869 	/*
870 	 * For dynamically allocated kernel contexts (like vnic) switch
871 	 * interrupt handler only for that context. Otherwise, switch
872 	 * interrupt handler for all statically allocated kernel contexts.
873 	 */
874 	if (ctxt >= dd->first_dyn_alloc_ctxt) {
875 		rcd = hfi1_rcd_get_by_index_safe(dd, ctxt);
876 		if (rcd) {
877 			rcd->do_interrupt =
878 				&handle_receive_interrupt_nodma_rtail;
879 			hfi1_rcd_put(rcd);
880 		}
881 		return;
882 	}
883 
884 	for (i = HFI1_CTRL_CTXT + 1; i < dd->first_dyn_alloc_ctxt; i++) {
885 		rcd = hfi1_rcd_get_by_index(dd, i);
886 		if (rcd)
887 			rcd->do_interrupt =
888 				&handle_receive_interrupt_nodma_rtail;
889 		hfi1_rcd_put(rcd);
890 	}
891 }
892 
893 static inline void set_dma_rtail(struct hfi1_devdata *dd, u16 ctxt)
894 {
895 	struct hfi1_ctxtdata *rcd;
896 	u16 i;
897 
898 	/*
899 	 * For dynamically allocated kernel contexts (like vnic) switch
900 	 * interrupt handler only for that context. Otherwise, switch
901 	 * interrupt handler for all statically allocated kernel contexts.
902 	 */
903 	if (ctxt >= dd->first_dyn_alloc_ctxt) {
904 		rcd = hfi1_rcd_get_by_index_safe(dd, ctxt);
905 		if (rcd) {
906 			rcd->do_interrupt =
907 				&handle_receive_interrupt_dma_rtail;
908 			hfi1_rcd_put(rcd);
909 		}
910 		return;
911 	}
912 
913 	for (i = HFI1_CTRL_CTXT + 1; i < dd->first_dyn_alloc_ctxt; i++) {
914 		rcd = hfi1_rcd_get_by_index(dd, i);
915 		if (rcd)
916 			rcd->do_interrupt =
917 				&handle_receive_interrupt_dma_rtail;
918 		hfi1_rcd_put(rcd);
919 	}
920 }
921 
922 void set_all_slowpath(struct hfi1_devdata *dd)
923 {
924 	struct hfi1_ctxtdata *rcd;
925 	u16 i;
926 
927 	/* HFI1_CTRL_CTXT must always use the slow path interrupt handler */
928 	for (i = HFI1_CTRL_CTXT + 1; i < dd->num_rcv_contexts; i++) {
929 		rcd = hfi1_rcd_get_by_index(dd, i);
930 		if (!rcd)
931 			continue;
932 		if (i < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
933 			rcd->do_interrupt = &handle_receive_interrupt;
934 
935 		hfi1_rcd_put(rcd);
936 	}
937 }
938 
939 static inline int set_armed_to_active(struct hfi1_ctxtdata *rcd,
940 				      struct hfi1_packet *packet,
941 				      struct hfi1_devdata *dd)
942 {
943 	struct work_struct *lsaw = &rcd->ppd->linkstate_active_work;
944 	u8 etype = rhf_rcv_type(packet->rhf);
945 	u8 sc = SC15_PACKET;
946 
947 	if (etype == RHF_RCV_TYPE_IB) {
948 		struct ib_header *hdr = hfi1_get_msgheader(packet->rcd->dd,
949 							   packet->rhf_addr);
950 		sc = hfi1_9B_get_sc5(hdr, packet->rhf);
951 	} else if (etype == RHF_RCV_TYPE_BYPASS) {
952 		struct hfi1_16b_header *hdr = hfi1_get_16B_header(
953 						packet->rcd->dd,
954 						packet->rhf_addr);
955 		sc = hfi1_16B_get_sc(hdr);
956 	}
957 	if (sc != SC15_PACKET) {
958 		int hwstate = driver_lstate(rcd->ppd);
959 
960 		if (hwstate != IB_PORT_ACTIVE) {
961 			dd_dev_info(dd,
962 				    "Unexpected link state %s\n",
963 				    opa_lstate_name(hwstate));
964 			return 0;
965 		}
966 
967 		queue_work(rcd->ppd->link_wq, lsaw);
968 		return 1;
969 	}
970 	return 0;
971 }
972 
973 /*
974  * handle_receive_interrupt - receive a packet
975  * @rcd: the context
976  *
977  * Called from interrupt handler for errors or receive interrupt.
978  * This is the slow path interrupt handler.
979  */
980 int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread)
981 {
982 	struct hfi1_devdata *dd = rcd->dd;
983 	u32 hdrqtail;
984 	int needset, last = RCV_PKT_OK;
985 	struct hfi1_packet packet;
986 	int skip_pkt = 0;
987 
988 	/* Control context will always use the slow path interrupt handler */
989 	needset = (rcd->ctxt == HFI1_CTRL_CTXT) ? 0 : 1;
990 
991 	init_packet(rcd, &packet);
992 
993 	if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
994 		u32 seq = rhf_rcv_seq(packet.rhf);
995 
996 		if (seq != rcd->seq_cnt) {
997 			last = RCV_PKT_DONE;
998 			goto bail;
999 		}
1000 		hdrqtail = 0;
1001 	} else {
1002 		hdrqtail = get_rcvhdrtail(rcd);
1003 		if (packet.rhqoff == hdrqtail) {
1004 			last = RCV_PKT_DONE;
1005 			goto bail;
1006 		}
1007 		smp_rmb();  /* prevent speculative reads of dma'ed hdrq */
1008 
1009 		/*
1010 		 * Control context can potentially receive an invalid
1011 		 * rhf. Drop such packets.
1012 		 */
1013 		if (rcd->ctxt == HFI1_CTRL_CTXT) {
1014 			u32 seq = rhf_rcv_seq(packet.rhf);
1015 
1016 			if (seq != rcd->seq_cnt)
1017 				skip_pkt = 1;
1018 		}
1019 	}
1020 
1021 	prescan_rxq(rcd, &packet);
1022 
1023 	while (last == RCV_PKT_OK) {
1024 		if (unlikely(dd->do_drop &&
1025 			     atomic_xchg(&dd->drop_packet, DROP_PACKET_OFF) ==
1026 			     DROP_PACKET_ON)) {
1027 			dd->do_drop = 0;
1028 
1029 			/* On to the next packet */
1030 			packet.rhqoff += packet.rsize;
1031 			packet.rhf_addr = (__le32 *)rcd->rcvhdrq +
1032 					  packet.rhqoff +
1033 					  dd->rhf_offset;
1034 			packet.rhf = rhf_to_cpu(packet.rhf_addr);
1035 
1036 		} else if (skip_pkt) {
1037 			last = skip_rcv_packet(&packet, thread);
1038 			skip_pkt = 0;
1039 		} else {
1040 			/* Auto activate link on non-SC15 packet receive */
1041 			if (unlikely(rcd->ppd->host_link_state ==
1042 				     HLS_UP_ARMED) &&
1043 			    set_armed_to_active(rcd, &packet, dd))
1044 				goto bail;
1045 			last = process_rcv_packet(&packet, thread);
1046 		}
1047 
1048 		if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
1049 			u32 seq = rhf_rcv_seq(packet.rhf);
1050 
1051 			if (++rcd->seq_cnt > 13)
1052 				rcd->seq_cnt = 1;
1053 			if (seq != rcd->seq_cnt)
1054 				last = RCV_PKT_DONE;
1055 			if (needset) {
1056 				dd_dev_info(dd, "Switching to NO_DMA_RTAIL\n");
1057 				set_nodma_rtail(dd, rcd->ctxt);
1058 				needset = 0;
1059 			}
1060 		} else {
1061 			if (packet.rhqoff == hdrqtail)
1062 				last = RCV_PKT_DONE;
1063 			/*
1064 			 * Control context can potentially receive an invalid
1065 			 * rhf. Drop such packets.
1066 			 */
1067 			if (rcd->ctxt == HFI1_CTRL_CTXT) {
1068 				u32 seq = rhf_rcv_seq(packet.rhf);
1069 
1070 				if (++rcd->seq_cnt > 13)
1071 					rcd->seq_cnt = 1;
1072 				if (!last && (seq != rcd->seq_cnt))
1073 					skip_pkt = 1;
1074 			}
1075 
1076 			if (needset) {
1077 				dd_dev_info(dd,
1078 					    "Switching to DMA_RTAIL\n");
1079 				set_dma_rtail(dd, rcd->ctxt);
1080 				needset = 0;
1081 			}
1082 		}
1083 
1084 		process_rcv_update(last, &packet);
1085 	}
1086 
1087 	process_rcv_qp_work(rcd);
1088 	rcd->head = packet.rhqoff;
1089 
1090 bail:
1091 	/*
1092 	 * Always write head at end, and setup rcv interrupt, even
1093 	 * if no packets were processed.
1094 	 */
1095 	finish_packet(&packet);
1096 	return last;
1097 }
1098 
1099 /*
1100  * We may discover in the interrupt that the hardware link state has
1101  * changed from ARMED to ACTIVE (due to the arrival of a non-SC15 packet),
1102  * and we need to update the driver's notion of the link state.  We cannot
1103  * run set_link_state from interrupt context, so we queue this function on
1104  * a workqueue.
1105  *
1106  * We delay the regular interrupt processing until after the state changes
1107  * so that the link will be in the correct state by the time any application
1108  * we wake up attempts to send a reply to any message it received.
1109  * (Subsequent receive interrupts may possibly force the wakeup before we
1110  * update the link state.)
1111  *
1112  * The rcd is freed in hfi1_free_ctxtdata after hfi1_postinit_cleanup invokes
1113  * dd->f_cleanup(dd) to disable the interrupt handler and flush workqueues,
1114  * so we're safe from use-after-free of the rcd.
1115  */
1116 void receive_interrupt_work(struct work_struct *work)
1117 {
1118 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
1119 						  linkstate_active_work);
1120 	struct hfi1_devdata *dd = ppd->dd;
1121 	struct hfi1_ctxtdata *rcd;
1122 	u16 i;
1123 
1124 	/* Received non-SC15 packet implies neighbor_normal */
1125 	ppd->neighbor_normal = 1;
1126 	set_link_state(ppd, HLS_UP_ACTIVE);
1127 
1128 	/*
1129 	 * Interrupt all statically allocated kernel contexts that could
1130 	 * have had an interrupt during auto activation.
1131 	 */
1132 	for (i = HFI1_CTRL_CTXT; i < dd->first_dyn_alloc_ctxt; i++) {
1133 		rcd = hfi1_rcd_get_by_index(dd, i);
1134 		if (rcd)
1135 			force_recv_intr(rcd);
1136 		hfi1_rcd_put(rcd);
1137 	}
1138 }
1139 
1140 /*
1141  * Convert a given MTU size to the on-wire MAD packet enumeration.
1142  * Return -1 if the size is invalid.
1143  */
1144 int mtu_to_enum(u32 mtu, int default_if_bad)
1145 {
1146 	switch (mtu) {
1147 	case     0: return OPA_MTU_0;
1148 	case   256: return OPA_MTU_256;
1149 	case   512: return OPA_MTU_512;
1150 	case  1024: return OPA_MTU_1024;
1151 	case  2048: return OPA_MTU_2048;
1152 	case  4096: return OPA_MTU_4096;
1153 	case  8192: return OPA_MTU_8192;
1154 	case 10240: return OPA_MTU_10240;
1155 	}
1156 	return default_if_bad;
1157 }
1158 
1159 u16 enum_to_mtu(int mtu)
1160 {
1161 	switch (mtu) {
1162 	case OPA_MTU_0:     return 0;
1163 	case OPA_MTU_256:   return 256;
1164 	case OPA_MTU_512:   return 512;
1165 	case OPA_MTU_1024:  return 1024;
1166 	case OPA_MTU_2048:  return 2048;
1167 	case OPA_MTU_4096:  return 4096;
1168 	case OPA_MTU_8192:  return 8192;
1169 	case OPA_MTU_10240: return 10240;
1170 	default: return 0xffff;
1171 	}
1172 }
1173 
1174 /*
1175  * set_mtu - set the MTU
1176  * @ppd: the per port data
1177  *
1178  * We can handle "any" incoming size, the issue here is whether we
1179  * need to restrict our outgoing size.  We do not deal with what happens
1180  * to programs that are already running when the size changes.
1181  */
1182 int set_mtu(struct hfi1_pportdata *ppd)
1183 {
1184 	struct hfi1_devdata *dd = ppd->dd;
1185 	int i, drain, ret = 0, is_up = 0;
1186 
1187 	ppd->ibmtu = 0;
1188 	for (i = 0; i < ppd->vls_supported; i++)
1189 		if (ppd->ibmtu < dd->vld[i].mtu)
1190 			ppd->ibmtu = dd->vld[i].mtu;
1191 	ppd->ibmaxlen = ppd->ibmtu + lrh_max_header_bytes(ppd->dd);
1192 
1193 	mutex_lock(&ppd->hls_lock);
1194 	if (ppd->host_link_state == HLS_UP_INIT ||
1195 	    ppd->host_link_state == HLS_UP_ARMED ||
1196 	    ppd->host_link_state == HLS_UP_ACTIVE)
1197 		is_up = 1;
1198 
1199 	drain = !is_ax(dd) && is_up;
1200 
1201 	if (drain)
1202 		/*
1203 		 * MTU is specified per-VL. To ensure that no packet gets
1204 		 * stuck (due, e.g., to the MTU for the packet's VL being
1205 		 * reduced), empty the per-VL FIFOs before adjusting MTU.
1206 		 */
1207 		ret = stop_drain_data_vls(dd);
1208 
1209 	if (ret) {
1210 		dd_dev_err(dd, "%s: cannot stop/drain VLs - refusing to change per-VL MTUs\n",
1211 			   __func__);
1212 		goto err;
1213 	}
1214 
1215 	hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_MTU, 0);
1216 
1217 	if (drain)
1218 		open_fill_data_vls(dd); /* reopen all VLs */
1219 
1220 err:
1221 	mutex_unlock(&ppd->hls_lock);
1222 
1223 	return ret;
1224 }
1225 
1226 int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc)
1227 {
1228 	struct hfi1_devdata *dd = ppd->dd;
1229 
1230 	ppd->lid = lid;
1231 	ppd->lmc = lmc;
1232 	hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LIDLMC, 0);
1233 
1234 	dd_dev_info(dd, "port %u: got a lid: 0x%x\n", ppd->port, lid);
1235 
1236 	return 0;
1237 }
1238 
1239 void shutdown_led_override(struct hfi1_pportdata *ppd)
1240 {
1241 	struct hfi1_devdata *dd = ppd->dd;
1242 
1243 	/*
1244 	 * This pairs with the memory barrier in hfi1_start_led_override to
1245 	 * ensure that we read the correct state of LED beaconing represented
1246 	 * by led_override_timer_active
1247 	 */
1248 	smp_rmb();
1249 	if (atomic_read(&ppd->led_override_timer_active)) {
1250 		del_timer_sync(&ppd->led_override_timer);
1251 		atomic_set(&ppd->led_override_timer_active, 0);
1252 		/* Ensure the atomic_set is visible to all CPUs */
1253 		smp_wmb();
1254 	}
1255 
1256 	/* Hand control of the LED to the DC for normal operation */
1257 	write_csr(dd, DCC_CFG_LED_CNTRL, 0);
1258 }
1259 
1260 static void run_led_override(struct timer_list *t)
1261 {
1262 	struct hfi1_pportdata *ppd = from_timer(ppd, t, led_override_timer);
1263 	struct hfi1_devdata *dd = ppd->dd;
1264 	unsigned long timeout;
1265 	int phase_idx;
1266 
1267 	if (!(dd->flags & HFI1_INITTED))
1268 		return;
1269 
1270 	phase_idx = ppd->led_override_phase & 1;
1271 
1272 	setextled(dd, phase_idx);
1273 
1274 	timeout = ppd->led_override_vals[phase_idx];
1275 
1276 	/* Set up for next phase */
1277 	ppd->led_override_phase = !ppd->led_override_phase;
1278 
1279 	mod_timer(&ppd->led_override_timer, jiffies + timeout);
1280 }
1281 
1282 /*
1283  * To have the LED blink in a particular pattern, provide timeon and timeoff
1284  * in milliseconds.
1285  * To turn off custom blinking and return to normal operation, use
1286  * shutdown_led_override()
1287  */
1288 void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon,
1289 			     unsigned int timeoff)
1290 {
1291 	if (!(ppd->dd->flags & HFI1_INITTED))
1292 		return;
1293 
1294 	/* Convert to jiffies for direct use in timer */
1295 	ppd->led_override_vals[0] = msecs_to_jiffies(timeoff);
1296 	ppd->led_override_vals[1] = msecs_to_jiffies(timeon);
1297 
1298 	/* Arbitrarily start from LED on phase */
1299 	ppd->led_override_phase = 1;
1300 
1301 	/*
1302 	 * If the timer has not already been started, do so. Use a "quick"
1303 	 * timeout so the handler will be called soon to look at our request.
1304 	 */
1305 	if (!timer_pending(&ppd->led_override_timer)) {
1306 		timer_setup(&ppd->led_override_timer, run_led_override, 0);
1307 		ppd->led_override_timer.expires = jiffies + 1;
1308 		add_timer(&ppd->led_override_timer);
1309 		atomic_set(&ppd->led_override_timer_active, 1);
1310 		/* Ensure the atomic_set is visible to all CPUs */
1311 		smp_wmb();
1312 	}
1313 }
1314 
1315 /**
1316  * hfi1_reset_device - reset the chip if possible
1317  * @unit: the device to reset
1318  *
1319  * Whether or not reset is successful, we attempt to re-initialize the chip
1320  * (that is, much like a driver unload/reload).  We clear the INITTED flag
1321  * so that the various entry points will fail until we reinitialize.  For
1322  * now, we only allow this if no user contexts are open that use chip resources
1323  */
1324 int hfi1_reset_device(int unit)
1325 {
1326 	int ret;
1327 	struct hfi1_devdata *dd = hfi1_lookup(unit);
1328 	struct hfi1_pportdata *ppd;
1329 	int pidx;
1330 
1331 	if (!dd) {
1332 		ret = -ENODEV;
1333 		goto bail;
1334 	}
1335 
1336 	dd_dev_info(dd, "Reset on unit %u requested\n", unit);
1337 
1338 	if (!dd->kregbase1 || !(dd->flags & HFI1_PRESENT)) {
1339 		dd_dev_info(dd,
1340 			    "Invalid unit number %u or not initialized or not present\n",
1341 			    unit);
1342 		ret = -ENXIO;
1343 		goto bail;
1344 	}
1345 
1346 	/* If there are any user/vnic contexts, we cannot reset */
1347 	mutex_lock(&hfi1_mutex);
1348 	if (dd->rcd)
1349 		if (hfi1_stats.sps_ctxts) {
1350 			mutex_unlock(&hfi1_mutex);
1351 			ret = -EBUSY;
1352 			goto bail;
1353 		}
1354 	mutex_unlock(&hfi1_mutex);
1355 
1356 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1357 		ppd = dd->pport + pidx;
1358 
1359 		shutdown_led_override(ppd);
1360 	}
1361 	if (dd->flags & HFI1_HAS_SEND_DMA)
1362 		sdma_exit(dd);
1363 
1364 	hfi1_reset_cpu_counters(dd);
1365 
1366 	ret = hfi1_init(dd, 1);
1367 
1368 	if (ret)
1369 		dd_dev_err(dd,
1370 			   "Reinitialize unit %u after reset failed with %d\n",
1371 			   unit, ret);
1372 	else
1373 		dd_dev_info(dd, "Reinitialized unit %u after resetting\n",
1374 			    unit);
1375 
1376 bail:
1377 	return ret;
1378 }
1379 
1380 static inline void hfi1_setup_ib_header(struct hfi1_packet *packet)
1381 {
1382 	packet->hdr = (struct hfi1_ib_message_header *)
1383 			hfi1_get_msgheader(packet->rcd->dd,
1384 					   packet->rhf_addr);
1385 	packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr;
1386 }
1387 
1388 static int hfi1_bypass_ingress_pkt_check(struct hfi1_packet *packet)
1389 {
1390 	struct hfi1_pportdata *ppd = packet->rcd->ppd;
1391 
1392 	/* slid and dlid cannot be 0 */
1393 	if ((!packet->slid) || (!packet->dlid))
1394 		return -EINVAL;
1395 
1396 	/* Compare port lid with incoming packet dlid */
1397 	if ((!(hfi1_is_16B_mcast(packet->dlid))) &&
1398 	    (packet->dlid !=
1399 		opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))) {
1400 		if (packet->dlid != ppd->lid)
1401 			return -EINVAL;
1402 	}
1403 
1404 	/* No multicast packets with SC15 */
1405 	if ((hfi1_is_16B_mcast(packet->dlid)) && (packet->sc == 0xF))
1406 		return -EINVAL;
1407 
1408 	/* Packets with permissive DLID always on SC15 */
1409 	if ((packet->dlid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE),
1410 					 16B)) &&
1411 	    (packet->sc != 0xF))
1412 		return -EINVAL;
1413 
1414 	return 0;
1415 }
1416 
1417 static int hfi1_setup_9B_packet(struct hfi1_packet *packet)
1418 {
1419 	struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
1420 	struct ib_header *hdr;
1421 	u8 lnh;
1422 
1423 	hfi1_setup_ib_header(packet);
1424 	hdr = packet->hdr;
1425 
1426 	lnh = ib_get_lnh(hdr);
1427 	if (lnh == HFI1_LRH_BTH) {
1428 		packet->ohdr = &hdr->u.oth;
1429 		packet->grh = NULL;
1430 	} else if (lnh == HFI1_LRH_GRH) {
1431 		u32 vtf;
1432 
1433 		packet->ohdr = &hdr->u.l.oth;
1434 		packet->grh = &hdr->u.l.grh;
1435 		if (packet->grh->next_hdr != IB_GRH_NEXT_HDR)
1436 			goto drop;
1437 		vtf = be32_to_cpu(packet->grh->version_tclass_flow);
1438 		if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
1439 			goto drop;
1440 	} else {
1441 		goto drop;
1442 	}
1443 
1444 	/* Query commonly used fields from packet header */
1445 	packet->payload = packet->ebuf;
1446 	packet->opcode = ib_bth_get_opcode(packet->ohdr);
1447 	packet->slid = ib_get_slid(hdr);
1448 	packet->dlid = ib_get_dlid(hdr);
1449 	if (unlikely((packet->dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
1450 		     (packet->dlid != be16_to_cpu(IB_LID_PERMISSIVE))))
1451 		packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) -
1452 				be16_to_cpu(IB_MULTICAST_LID_BASE);
1453 	packet->sl = ib_get_sl(hdr);
1454 	packet->sc = hfi1_9B_get_sc5(hdr, packet->rhf);
1455 	packet->pad = ib_bth_get_pad(packet->ohdr);
1456 	packet->extra_byte = 0;
1457 	packet->fecn = ib_bth_get_fecn(packet->ohdr);
1458 	packet->becn = ib_bth_get_becn(packet->ohdr);
1459 
1460 	return 0;
1461 drop:
1462 	ibp->rvp.n_pkt_drops++;
1463 	return -EINVAL;
1464 }
1465 
1466 static int hfi1_setup_bypass_packet(struct hfi1_packet *packet)
1467 {
1468 	/*
1469 	 * Bypass packets have a different header/payload split
1470 	 * compared to an IB packet.
1471 	 * Current split is set such that 16 bytes of the actual
1472 	 * header is in the header buffer and the remining is in
1473 	 * the eager buffer. We chose 16 since hfi1 driver only
1474 	 * supports 16B bypass packets and we will be able to
1475 	 * receive the entire LRH with such a split.
1476 	 */
1477 
1478 	struct hfi1_ctxtdata *rcd = packet->rcd;
1479 	struct hfi1_pportdata *ppd = rcd->ppd;
1480 	struct hfi1_ibport *ibp = &ppd->ibport_data;
1481 	u8 l4;
1482 	u8 grh_len;
1483 
1484 	packet->hdr = (struct hfi1_16b_header *)
1485 			hfi1_get_16B_header(packet->rcd->dd,
1486 					    packet->rhf_addr);
1487 	packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr;
1488 
1489 	l4 = hfi1_16B_get_l4(packet->hdr);
1490 	if (l4 == OPA_16B_L4_IB_LOCAL) {
1491 		grh_len = 0;
1492 		packet->ohdr = packet->ebuf;
1493 		packet->grh = NULL;
1494 	} else if (l4 == OPA_16B_L4_IB_GLOBAL) {
1495 		u32 vtf;
1496 
1497 		grh_len = sizeof(struct ib_grh);
1498 		packet->ohdr = packet->ebuf + grh_len;
1499 		packet->grh = packet->ebuf;
1500 		if (packet->grh->next_hdr != IB_GRH_NEXT_HDR)
1501 			goto drop;
1502 		vtf = be32_to_cpu(packet->grh->version_tclass_flow);
1503 		if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
1504 			goto drop;
1505 	} else {
1506 		goto drop;
1507 	}
1508 
1509 	/* Query commonly used fields from packet header */
1510 	packet->opcode = ib_bth_get_opcode(packet->ohdr);
1511 	packet->hlen = hdr_len_by_opcode[packet->opcode] + 8 + grh_len;
1512 	packet->payload = packet->ebuf + packet->hlen - (4 * sizeof(u32));
1513 	packet->slid = hfi1_16B_get_slid(packet->hdr);
1514 	packet->dlid = hfi1_16B_get_dlid(packet->hdr);
1515 	if (unlikely(hfi1_is_16B_mcast(packet->dlid)))
1516 		packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) -
1517 				opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR),
1518 					    16B);
1519 	packet->sc = hfi1_16B_get_sc(packet->hdr);
1520 	packet->sl = ibp->sc_to_sl[packet->sc];
1521 	packet->pad = hfi1_16B_bth_get_pad(packet->ohdr);
1522 	packet->extra_byte = SIZE_OF_LT;
1523 	packet->fecn = hfi1_16B_get_fecn(packet->hdr);
1524 	packet->becn = hfi1_16B_get_becn(packet->hdr);
1525 
1526 	if (hfi1_bypass_ingress_pkt_check(packet))
1527 		goto drop;
1528 
1529 	return 0;
1530 drop:
1531 	hfi1_cdbg(PKT, "%s: packet dropped\n", __func__);
1532 	ibp->rvp.n_pkt_drops++;
1533 	return -EINVAL;
1534 }
1535 
1536 void handle_eflags(struct hfi1_packet *packet)
1537 {
1538 	struct hfi1_ctxtdata *rcd = packet->rcd;
1539 	u32 rte = rhf_rcv_type_err(packet->rhf);
1540 
1541 	rcv_hdrerr(rcd, rcd->ppd, packet);
1542 	if (rhf_err_flags(packet->rhf))
1543 		dd_dev_err(rcd->dd,
1544 			   "receive context %d: rhf 0x%016llx, errs [ %s%s%s%s%s%s%s%s] rte 0x%x\n",
1545 			   rcd->ctxt, packet->rhf,
1546 			   packet->rhf & RHF_K_HDR_LEN_ERR ? "k_hdr_len " : "",
1547 			   packet->rhf & RHF_DC_UNC_ERR ? "dc_unc " : "",
1548 			   packet->rhf & RHF_DC_ERR ? "dc " : "",
1549 			   packet->rhf & RHF_TID_ERR ? "tid " : "",
1550 			   packet->rhf & RHF_LEN_ERR ? "len " : "",
1551 			   packet->rhf & RHF_ECC_ERR ? "ecc " : "",
1552 			   packet->rhf & RHF_VCRC_ERR ? "vcrc " : "",
1553 			   packet->rhf & RHF_ICRC_ERR ? "icrc " : "",
1554 			   rte);
1555 }
1556 
1557 /*
1558  * The following functions are called by the interrupt handler. They are type
1559  * specific handlers for each packet type.
1560  */
1561 int process_receive_ib(struct hfi1_packet *packet)
1562 {
1563 	if (unlikely(hfi1_dbg_fault_packet(packet)))
1564 		return RHF_RCV_CONTINUE;
1565 
1566 	if (hfi1_setup_9B_packet(packet))
1567 		return RHF_RCV_CONTINUE;
1568 
1569 	trace_hfi1_rcvhdr(packet->rcd->ppd->dd,
1570 			  packet->rcd->ctxt,
1571 			  rhf_err_flags(packet->rhf),
1572 			  RHF_RCV_TYPE_IB,
1573 			  packet->hlen,
1574 			  packet->tlen,
1575 			  packet->updegr,
1576 			  rhf_egr_index(packet->rhf));
1577 
1578 	if (unlikely(
1579 		 (hfi1_dbg_fault_suppress_err(&packet->rcd->dd->verbs_dev) &&
1580 		 (packet->rhf & RHF_DC_ERR))))
1581 		return RHF_RCV_CONTINUE;
1582 
1583 	if (unlikely(rhf_err_flags(packet->rhf))) {
1584 		handle_eflags(packet);
1585 		return RHF_RCV_CONTINUE;
1586 	}
1587 
1588 	hfi1_ib_rcv(packet);
1589 	return RHF_RCV_CONTINUE;
1590 }
1591 
1592 static inline bool hfi1_is_vnic_packet(struct hfi1_packet *packet)
1593 {
1594 	/* Packet received in VNIC context via RSM */
1595 	if (packet->rcd->is_vnic)
1596 		return true;
1597 
1598 	if ((hfi1_16B_get_l2(packet->ebuf) == OPA_16B_L2_TYPE) &&
1599 	    (hfi1_16B_get_l4(packet->ebuf) == OPA_16B_L4_ETHR))
1600 		return true;
1601 
1602 	return false;
1603 }
1604 
1605 int process_receive_bypass(struct hfi1_packet *packet)
1606 {
1607 	struct hfi1_devdata *dd = packet->rcd->dd;
1608 
1609 	if (hfi1_is_vnic_packet(packet)) {
1610 		hfi1_vnic_bypass_rcv(packet);
1611 		return RHF_RCV_CONTINUE;
1612 	}
1613 
1614 	if (hfi1_setup_bypass_packet(packet))
1615 		return RHF_RCV_CONTINUE;
1616 
1617 	if (unlikely(rhf_err_flags(packet->rhf))) {
1618 		handle_eflags(packet);
1619 		return RHF_RCV_CONTINUE;
1620 	}
1621 
1622 	if (hfi1_16B_get_l2(packet->hdr) == 0x2) {
1623 		hfi1_16B_rcv(packet);
1624 	} else {
1625 		dd_dev_err(dd,
1626 			   "Bypass packets other than 16B are not supported in normal operation. Dropping\n");
1627 		incr_cntr64(&dd->sw_rcv_bypass_packet_errors);
1628 		if (!(dd->err_info_rcvport.status_and_code &
1629 		      OPA_EI_STATUS_SMASK)) {
1630 			u64 *flits = packet->ebuf;
1631 
1632 			if (flits && !(packet->rhf & RHF_LEN_ERR)) {
1633 				dd->err_info_rcvport.packet_flit1 = flits[0];
1634 				dd->err_info_rcvport.packet_flit2 =
1635 					packet->tlen > sizeof(flits[0]) ?
1636 					flits[1] : 0;
1637 			}
1638 			dd->err_info_rcvport.status_and_code |=
1639 				(OPA_EI_STATUS_SMASK | BAD_L2_ERR);
1640 		}
1641 	}
1642 	return RHF_RCV_CONTINUE;
1643 }
1644 
1645 int process_receive_error(struct hfi1_packet *packet)
1646 {
1647 	/* KHdrHCRCErr -- KDETH packet with a bad HCRC */
1648 	if (unlikely(
1649 		 hfi1_dbg_fault_suppress_err(&packet->rcd->dd->verbs_dev) &&
1650 		 rhf_rcv_type_err(packet->rhf) == 3))
1651 		return RHF_RCV_CONTINUE;
1652 
1653 	hfi1_setup_ib_header(packet);
1654 	handle_eflags(packet);
1655 
1656 	if (unlikely(rhf_err_flags(packet->rhf)))
1657 		dd_dev_err(packet->rcd->dd,
1658 			   "Unhandled error packet received. Dropping.\n");
1659 
1660 	return RHF_RCV_CONTINUE;
1661 }
1662 
1663 int kdeth_process_expected(struct hfi1_packet *packet)
1664 {
1665 	if (unlikely(hfi1_dbg_fault_packet(packet)))
1666 		return RHF_RCV_CONTINUE;
1667 
1668 	hfi1_setup_ib_header(packet);
1669 	if (unlikely(rhf_err_flags(packet->rhf)))
1670 		handle_eflags(packet);
1671 
1672 	dd_dev_err(packet->rcd->dd,
1673 		   "Unhandled expected packet received. Dropping.\n");
1674 	return RHF_RCV_CONTINUE;
1675 }
1676 
1677 int kdeth_process_eager(struct hfi1_packet *packet)
1678 {
1679 	hfi1_setup_ib_header(packet);
1680 	if (unlikely(rhf_err_flags(packet->rhf)))
1681 		handle_eflags(packet);
1682 	if (unlikely(hfi1_dbg_fault_packet(packet)))
1683 		return RHF_RCV_CONTINUE;
1684 
1685 	dd_dev_err(packet->rcd->dd,
1686 		   "Unhandled eager packet received. Dropping.\n");
1687 	return RHF_RCV_CONTINUE;
1688 }
1689 
1690 int process_receive_invalid(struct hfi1_packet *packet)
1691 {
1692 	dd_dev_err(packet->rcd->dd, "Invalid packet type %d. Dropping\n",
1693 		   rhf_rcv_type(packet->rhf));
1694 	return RHF_RCV_CONTINUE;
1695 }
1696 
1697 void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd)
1698 {
1699 	struct hfi1_packet packet;
1700 	struct ps_mdata mdata;
1701 
1702 	seq_printf(s, "Rcd %u: RcvHdr cnt %u entsize %u %s head %llu tail %llu\n",
1703 		   rcd->ctxt, rcd->rcvhdrq_cnt, rcd->rcvhdrqentsize,
1704 		   HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
1705 		   "dma_rtail" : "nodma_rtail",
1706 		   read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD) &
1707 		   RCV_HDR_HEAD_HEAD_MASK,
1708 		   read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL));
1709 
1710 	init_packet(rcd, &packet);
1711 	init_ps_mdata(&mdata, &packet);
1712 
1713 	while (1) {
1714 		struct hfi1_devdata *dd = rcd->dd;
1715 		__le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
1716 					 dd->rhf_offset;
1717 		struct ib_header *hdr;
1718 		u64 rhf = rhf_to_cpu(rhf_addr);
1719 		u32 etype = rhf_rcv_type(rhf), qpn;
1720 		u8 opcode;
1721 		u32 psn;
1722 		u8 lnh;
1723 
1724 		if (ps_done(&mdata, rhf, rcd))
1725 			break;
1726 
1727 		if (ps_skip(&mdata, rhf, rcd))
1728 			goto next;
1729 
1730 		if (etype > RHF_RCV_TYPE_IB)
1731 			goto next;
1732 
1733 		packet.hdr = hfi1_get_msgheader(dd, rhf_addr);
1734 		hdr = packet.hdr;
1735 
1736 		lnh = be16_to_cpu(hdr->lrh[0]) & 3;
1737 
1738 		if (lnh == HFI1_LRH_BTH)
1739 			packet.ohdr = &hdr->u.oth;
1740 		else if (lnh == HFI1_LRH_GRH)
1741 			packet.ohdr = &hdr->u.l.oth;
1742 		else
1743 			goto next; /* just in case */
1744 
1745 		opcode = (be32_to_cpu(packet.ohdr->bth[0]) >> 24);
1746 		qpn = be32_to_cpu(packet.ohdr->bth[1]) & RVT_QPN_MASK;
1747 		psn = mask_psn(be32_to_cpu(packet.ohdr->bth[2]));
1748 
1749 		seq_printf(s, "\tEnt %u: opcode 0x%x, qpn 0x%x, psn 0x%x\n",
1750 			   mdata.ps_head, opcode, qpn, psn);
1751 next:
1752 		update_ps_mdata(&mdata, rcd);
1753 	}
1754 }
1755