1 /* 2 * Copyright(c) 2015-2017 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 #include <linux/spinlock.h> 49 #include <linux/pci.h> 50 #include <linux/io.h> 51 #include <linux/delay.h> 52 #include <linux/netdevice.h> 53 #include <linux/vmalloc.h> 54 #include <linux/module.h> 55 #include <linux/prefetch.h> 56 #include <rdma/ib_verbs.h> 57 58 #include "hfi.h" 59 #include "trace.h" 60 #include "qp.h" 61 #include "sdma.h" 62 #include "debugfs.h" 63 #include "vnic.h" 64 65 #undef pr_fmt 66 #define pr_fmt(fmt) DRIVER_NAME ": " fmt 67 68 /* 69 * The size has to be longer than this string, so we can append 70 * board/chip information to it in the initialization code. 71 */ 72 const char ib_hfi1_version[] = HFI1_DRIVER_VERSION "\n"; 73 74 DEFINE_SPINLOCK(hfi1_devs_lock); 75 LIST_HEAD(hfi1_dev_list); 76 DEFINE_MUTEX(hfi1_mutex); /* general driver use */ 77 78 unsigned int hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU; 79 module_param_named(max_mtu, hfi1_max_mtu, uint, S_IRUGO); 80 MODULE_PARM_DESC(max_mtu, "Set max MTU bytes, default is " __stringify( 81 HFI1_DEFAULT_MAX_MTU)); 82 83 unsigned int hfi1_cu = 1; 84 module_param_named(cu, hfi1_cu, uint, S_IRUGO); 85 MODULE_PARM_DESC(cu, "Credit return units"); 86 87 unsigned long hfi1_cap_mask = HFI1_CAP_MASK_DEFAULT; 88 static int hfi1_caps_set(const char *val, const struct kernel_param *kp); 89 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp); 90 static const struct kernel_param_ops cap_ops = { 91 .set = hfi1_caps_set, 92 .get = hfi1_caps_get 93 }; 94 module_param_cb(cap_mask, &cap_ops, &hfi1_cap_mask, S_IWUSR | S_IRUGO); 95 MODULE_PARM_DESC(cap_mask, "Bit mask of enabled/disabled HW features"); 96 97 MODULE_LICENSE("Dual BSD/GPL"); 98 MODULE_DESCRIPTION("Intel Omni-Path Architecture driver"); 99 100 /* 101 * MAX_PKT_RCV is the max # if packets processed per receive interrupt. 102 */ 103 #define MAX_PKT_RECV 64 104 /* 105 * MAX_PKT_THREAD_RCV is the max # of packets processed before 106 * the qp_wait_list queue is flushed. 107 */ 108 #define MAX_PKT_RECV_THREAD (MAX_PKT_RECV * 4) 109 #define EGR_HEAD_UPDATE_THRESHOLD 16 110 111 struct hfi1_ib_stats hfi1_stats; 112 113 static int hfi1_caps_set(const char *val, const struct kernel_param *kp) 114 { 115 int ret = 0; 116 unsigned long *cap_mask_ptr = (unsigned long *)kp->arg, 117 cap_mask = *cap_mask_ptr, value, diff, 118 write_mask = ((HFI1_CAP_WRITABLE_MASK << HFI1_CAP_USER_SHIFT) | 119 HFI1_CAP_WRITABLE_MASK); 120 121 ret = kstrtoul(val, 0, &value); 122 if (ret) { 123 pr_warn("Invalid module parameter value for 'cap_mask'\n"); 124 goto done; 125 } 126 /* Get the changed bits (except the locked bit) */ 127 diff = value ^ (cap_mask & ~HFI1_CAP_LOCKED_SMASK); 128 129 /* Remove any bits that are not allowed to change after driver load */ 130 if (HFI1_CAP_LOCKED() && (diff & ~write_mask)) { 131 pr_warn("Ignoring non-writable capability bits %#lx\n", 132 diff & ~write_mask); 133 diff &= write_mask; 134 } 135 136 /* Mask off any reserved bits */ 137 diff &= ~HFI1_CAP_RESERVED_MASK; 138 /* Clear any previously set and changing bits */ 139 cap_mask &= ~diff; 140 /* Update the bits with the new capability */ 141 cap_mask |= (value & diff); 142 /* Check for any kernel/user restrictions */ 143 diff = (cap_mask & (HFI1_CAP_MUST_HAVE_KERN << HFI1_CAP_USER_SHIFT)) ^ 144 ((cap_mask & HFI1_CAP_MUST_HAVE_KERN) << HFI1_CAP_USER_SHIFT); 145 cap_mask &= ~diff; 146 /* Set the bitmask to the final set */ 147 *cap_mask_ptr = cap_mask; 148 done: 149 return ret; 150 } 151 152 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp) 153 { 154 unsigned long cap_mask = *(unsigned long *)kp->arg; 155 156 cap_mask &= ~HFI1_CAP_LOCKED_SMASK; 157 cap_mask |= ((cap_mask & HFI1_CAP_K2U) << HFI1_CAP_USER_SHIFT); 158 159 return scnprintf(buffer, PAGE_SIZE, "0x%lx", cap_mask); 160 } 161 162 const char *get_unit_name(int unit) 163 { 164 static char iname[16]; 165 166 snprintf(iname, sizeof(iname), DRIVER_NAME "_%u", unit); 167 return iname; 168 } 169 170 const char *get_card_name(struct rvt_dev_info *rdi) 171 { 172 struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi); 173 struct hfi1_devdata *dd = container_of(ibdev, 174 struct hfi1_devdata, verbs_dev); 175 return get_unit_name(dd->unit); 176 } 177 178 struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi) 179 { 180 struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi); 181 struct hfi1_devdata *dd = container_of(ibdev, 182 struct hfi1_devdata, verbs_dev); 183 return dd->pcidev; 184 } 185 186 /* 187 * Return count of units with at least one port ACTIVE. 188 */ 189 int hfi1_count_active_units(void) 190 { 191 struct hfi1_devdata *dd; 192 struct hfi1_pportdata *ppd; 193 unsigned long flags; 194 int pidx, nunits_active = 0; 195 196 spin_lock_irqsave(&hfi1_devs_lock, flags); 197 list_for_each_entry(dd, &hfi1_dev_list, list) { 198 if (!(dd->flags & HFI1_PRESENT) || !dd->kregbase1) 199 continue; 200 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 201 ppd = dd->pport + pidx; 202 if (ppd->lid && ppd->linkup) { 203 nunits_active++; 204 break; 205 } 206 } 207 } 208 spin_unlock_irqrestore(&hfi1_devs_lock, flags); 209 return nunits_active; 210 } 211 212 /* 213 * Get address of eager buffer from it's index (allocated in chunks, not 214 * contiguous). 215 */ 216 static inline void *get_egrbuf(const struct hfi1_ctxtdata *rcd, u64 rhf, 217 u8 *update) 218 { 219 u32 idx = rhf_egr_index(rhf), offset = rhf_egr_buf_offset(rhf); 220 221 *update |= !(idx & (rcd->egrbufs.threshold - 1)) && !offset; 222 return (void *)(((u64)(rcd->egrbufs.rcvtids[idx].addr)) + 223 (offset * RCV_BUF_BLOCK_SIZE)); 224 } 225 226 static inline void *hfi1_get_header(struct hfi1_devdata *dd, 227 __le32 *rhf_addr) 228 { 229 u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr)); 230 231 return (void *)(rhf_addr - dd->rhf_offset + offset); 232 } 233 234 static inline struct ib_header *hfi1_get_msgheader(struct hfi1_devdata *dd, 235 __le32 *rhf_addr) 236 { 237 return (struct ib_header *)hfi1_get_header(dd, rhf_addr); 238 } 239 240 static inline struct hfi1_16b_header 241 *hfi1_get_16B_header(struct hfi1_devdata *dd, 242 __le32 *rhf_addr) 243 { 244 return (struct hfi1_16b_header *)hfi1_get_header(dd, rhf_addr); 245 } 246 247 /* 248 * Validate and encode the a given RcvArray Buffer size. 249 * The function will check whether the given size falls within 250 * allowed size ranges for the respective type and, optionally, 251 * return the proper encoding. 252 */ 253 int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encoded) 254 { 255 if (unlikely(!PAGE_ALIGNED(size))) 256 return 0; 257 if (unlikely(size < MIN_EAGER_BUFFER)) 258 return 0; 259 if (size > 260 (type == PT_EAGER ? MAX_EAGER_BUFFER : MAX_EXPECTED_BUFFER)) 261 return 0; 262 if (encoded) 263 *encoded = ilog2(size / PAGE_SIZE) + 1; 264 return 1; 265 } 266 267 static void rcv_hdrerr(struct hfi1_ctxtdata *rcd, struct hfi1_pportdata *ppd, 268 struct hfi1_packet *packet) 269 { 270 struct ib_header *rhdr = packet->hdr; 271 u32 rte = rhf_rcv_type_err(packet->rhf); 272 u32 mlid_base; 273 struct hfi1_ibport *ibp = rcd_to_iport(rcd); 274 struct hfi1_devdata *dd = ppd->dd; 275 struct rvt_dev_info *rdi = &dd->verbs_dev.rdi; 276 277 if (packet->rhf & (RHF_VCRC_ERR | RHF_ICRC_ERR)) 278 return; 279 280 if (packet->etype == RHF_RCV_TYPE_BYPASS) { 281 goto drop; 282 } else { 283 u8 lnh = ib_get_lnh(rhdr); 284 285 mlid_base = be16_to_cpu(IB_MULTICAST_LID_BASE); 286 if (lnh == HFI1_LRH_BTH) { 287 packet->ohdr = &rhdr->u.oth; 288 } else if (lnh == HFI1_LRH_GRH) { 289 packet->ohdr = &rhdr->u.l.oth; 290 packet->grh = &rhdr->u.l.grh; 291 } else { 292 goto drop; 293 } 294 } 295 296 if (packet->rhf & RHF_TID_ERR) { 297 /* For TIDERR and RC QPs preemptively schedule a NAK */ 298 u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */ 299 u32 dlid = ib_get_dlid(rhdr); 300 u32 qp_num; 301 302 /* Sanity check packet */ 303 if (tlen < 24) 304 goto drop; 305 306 /* Check for GRH */ 307 if (packet->grh) { 308 u32 vtf; 309 struct ib_grh *grh = packet->grh; 310 311 if (grh->next_hdr != IB_GRH_NEXT_HDR) 312 goto drop; 313 vtf = be32_to_cpu(grh->version_tclass_flow); 314 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION) 315 goto drop; 316 } 317 318 /* Get the destination QP number. */ 319 qp_num = ib_bth_get_qpn(packet->ohdr); 320 if (dlid < mlid_base) { 321 struct rvt_qp *qp; 322 unsigned long flags; 323 324 rcu_read_lock(); 325 qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num); 326 if (!qp) { 327 rcu_read_unlock(); 328 goto drop; 329 } 330 331 /* 332 * Handle only RC QPs - for other QP types drop error 333 * packet. 334 */ 335 spin_lock_irqsave(&qp->r_lock, flags); 336 337 /* Check for valid receive state. */ 338 if (!(ib_rvt_state_ops[qp->state] & 339 RVT_PROCESS_RECV_OK)) { 340 ibp->rvp.n_pkt_drops++; 341 } 342 343 switch (qp->ibqp.qp_type) { 344 case IB_QPT_RC: 345 hfi1_rc_hdrerr(rcd, packet, qp); 346 break; 347 default: 348 /* For now don't handle any other QP types */ 349 break; 350 } 351 352 spin_unlock_irqrestore(&qp->r_lock, flags); 353 rcu_read_unlock(); 354 } /* Unicast QP */ 355 } /* Valid packet with TIDErr */ 356 357 /* handle "RcvTypeErr" flags */ 358 switch (rte) { 359 case RHF_RTE_ERROR_OP_CODE_ERR: 360 { 361 void *ebuf = NULL; 362 u8 opcode; 363 364 if (rhf_use_egr_bfr(packet->rhf)) 365 ebuf = packet->ebuf; 366 367 if (!ebuf) 368 goto drop; /* this should never happen */ 369 370 opcode = ib_bth_get_opcode(packet->ohdr); 371 if (opcode == IB_OPCODE_CNP) { 372 /* 373 * Only in pre-B0 h/w is the CNP_OPCODE handled 374 * via this code path. 375 */ 376 struct rvt_qp *qp = NULL; 377 u32 lqpn, rqpn; 378 u16 rlid; 379 u8 svc_type, sl, sc5; 380 381 sc5 = hfi1_9B_get_sc5(rhdr, packet->rhf); 382 sl = ibp->sc_to_sl[sc5]; 383 384 lqpn = ib_bth_get_qpn(packet->ohdr); 385 rcu_read_lock(); 386 qp = rvt_lookup_qpn(rdi, &ibp->rvp, lqpn); 387 if (!qp) { 388 rcu_read_unlock(); 389 goto drop; 390 } 391 392 switch (qp->ibqp.qp_type) { 393 case IB_QPT_UD: 394 rlid = 0; 395 rqpn = 0; 396 svc_type = IB_CC_SVCTYPE_UD; 397 break; 398 case IB_QPT_UC: 399 rlid = ib_get_slid(rhdr); 400 rqpn = qp->remote_qpn; 401 svc_type = IB_CC_SVCTYPE_UC; 402 break; 403 default: 404 goto drop; 405 } 406 407 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type); 408 rcu_read_unlock(); 409 } 410 411 packet->rhf &= ~RHF_RCV_TYPE_ERR_SMASK; 412 break; 413 } 414 default: 415 break; 416 } 417 418 drop: 419 return; 420 } 421 422 static inline void init_packet(struct hfi1_ctxtdata *rcd, 423 struct hfi1_packet *packet) 424 { 425 packet->rsize = rcd->rcvhdrqentsize; /* words */ 426 packet->maxcnt = rcd->rcvhdrq_cnt * packet->rsize; /* words */ 427 packet->rcd = rcd; 428 packet->updegr = 0; 429 packet->etail = -1; 430 packet->rhf_addr = get_rhf_addr(rcd); 431 packet->rhf = rhf_to_cpu(packet->rhf_addr); 432 packet->rhqoff = rcd->head; 433 packet->numpkt = 0; 434 } 435 436 /* We support only two types - 9B and 16B for now */ 437 static const hfi1_handle_cnp hfi1_handle_cnp_tbl[2] = { 438 [HFI1_PKT_TYPE_9B] = &return_cnp, 439 [HFI1_PKT_TYPE_16B] = &return_cnp_16B 440 }; 441 442 void hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt, 443 bool do_cnp) 444 { 445 struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num); 446 struct ib_other_headers *ohdr = pkt->ohdr; 447 struct ib_grh *grh = pkt->grh; 448 u32 rqpn = 0, bth1; 449 u16 pkey, rlid, dlid = ib_get_dlid(pkt->hdr); 450 u8 hdr_type, sc, svc_type; 451 bool is_mcast = false; 452 453 if (pkt->etype == RHF_RCV_TYPE_BYPASS) { 454 is_mcast = hfi1_is_16B_mcast(dlid); 455 pkey = hfi1_16B_get_pkey(pkt->hdr); 456 sc = hfi1_16B_get_sc(pkt->hdr); 457 hdr_type = HFI1_PKT_TYPE_16B; 458 } else { 459 is_mcast = (dlid > be16_to_cpu(IB_MULTICAST_LID_BASE)) && 460 (dlid != be16_to_cpu(IB_LID_PERMISSIVE)); 461 pkey = ib_bth_get_pkey(ohdr); 462 sc = hfi1_9B_get_sc5(pkt->hdr, pkt->rhf); 463 hdr_type = HFI1_PKT_TYPE_9B; 464 } 465 466 switch (qp->ibqp.qp_type) { 467 case IB_QPT_SMI: 468 case IB_QPT_GSI: 469 case IB_QPT_UD: 470 rlid = ib_get_slid(pkt->hdr); 471 rqpn = ib_get_sqpn(pkt->ohdr); 472 svc_type = IB_CC_SVCTYPE_UD; 473 break; 474 case IB_QPT_UC: 475 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr); 476 rqpn = qp->remote_qpn; 477 svc_type = IB_CC_SVCTYPE_UC; 478 break; 479 case IB_QPT_RC: 480 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr); 481 rqpn = qp->remote_qpn; 482 svc_type = IB_CC_SVCTYPE_RC; 483 break; 484 default: 485 return; 486 } 487 488 bth1 = be32_to_cpu(ohdr->bth[1]); 489 /* Call appropriate CNP handler */ 490 if (do_cnp && (bth1 & IB_FECN_SMASK)) 491 hfi1_handle_cnp_tbl[hdr_type](ibp, qp, rqpn, pkey, 492 dlid, rlid, sc, grh); 493 494 if (!is_mcast && (bth1 & IB_BECN_SMASK)) { 495 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 496 u32 lqpn = bth1 & RVT_QPN_MASK; 497 u8 sl = ibp->sc_to_sl[sc]; 498 499 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type); 500 } 501 502 } 503 504 struct ps_mdata { 505 struct hfi1_ctxtdata *rcd; 506 u32 rsize; 507 u32 maxcnt; 508 u32 ps_head; 509 u32 ps_tail; 510 u32 ps_seq; 511 }; 512 513 static inline void init_ps_mdata(struct ps_mdata *mdata, 514 struct hfi1_packet *packet) 515 { 516 struct hfi1_ctxtdata *rcd = packet->rcd; 517 518 mdata->rcd = rcd; 519 mdata->rsize = packet->rsize; 520 mdata->maxcnt = packet->maxcnt; 521 mdata->ps_head = packet->rhqoff; 522 523 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) { 524 mdata->ps_tail = get_rcvhdrtail(rcd); 525 if (rcd->ctxt == HFI1_CTRL_CTXT) 526 mdata->ps_seq = rcd->seq_cnt; 527 else 528 mdata->ps_seq = 0; /* not used with DMA_RTAIL */ 529 } else { 530 mdata->ps_tail = 0; /* used only with DMA_RTAIL*/ 531 mdata->ps_seq = rcd->seq_cnt; 532 } 533 } 534 535 static inline int ps_done(struct ps_mdata *mdata, u64 rhf, 536 struct hfi1_ctxtdata *rcd) 537 { 538 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) 539 return mdata->ps_head == mdata->ps_tail; 540 return mdata->ps_seq != rhf_rcv_seq(rhf); 541 } 542 543 static inline int ps_skip(struct ps_mdata *mdata, u64 rhf, 544 struct hfi1_ctxtdata *rcd) 545 { 546 /* 547 * Control context can potentially receive an invalid rhf. 548 * Drop such packets. 549 */ 550 if ((rcd->ctxt == HFI1_CTRL_CTXT) && (mdata->ps_head != mdata->ps_tail)) 551 return mdata->ps_seq != rhf_rcv_seq(rhf); 552 553 return 0; 554 } 555 556 static inline void update_ps_mdata(struct ps_mdata *mdata, 557 struct hfi1_ctxtdata *rcd) 558 { 559 mdata->ps_head += mdata->rsize; 560 if (mdata->ps_head >= mdata->maxcnt) 561 mdata->ps_head = 0; 562 563 /* Control context must do seq counting */ 564 if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) || 565 (rcd->ctxt == HFI1_CTRL_CTXT)) { 566 if (++mdata->ps_seq > 13) 567 mdata->ps_seq = 1; 568 } 569 } 570 571 /* 572 * prescan_rxq - search through the receive queue looking for packets 573 * containing Excplicit Congestion Notifications (FECNs, or BECNs). 574 * When an ECN is found, process the Congestion Notification, and toggle 575 * it off. 576 * This is declared as a macro to allow quick checking of the port to avoid 577 * the overhead of a function call if not enabled. 578 */ 579 #define prescan_rxq(rcd, packet) \ 580 do { \ 581 if (rcd->ppd->cc_prescan) \ 582 __prescan_rxq(packet); \ 583 } while (0) 584 static void __prescan_rxq(struct hfi1_packet *packet) 585 { 586 struct hfi1_ctxtdata *rcd = packet->rcd; 587 struct ps_mdata mdata; 588 589 init_ps_mdata(&mdata, packet); 590 591 while (1) { 592 struct hfi1_devdata *dd = rcd->dd; 593 struct hfi1_ibport *ibp = rcd_to_iport(rcd); 594 __le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head + 595 dd->rhf_offset; 596 struct rvt_qp *qp; 597 struct ib_header *hdr; 598 struct rvt_dev_info *rdi = &dd->verbs_dev.rdi; 599 u64 rhf = rhf_to_cpu(rhf_addr); 600 u32 etype = rhf_rcv_type(rhf), qpn, bth1; 601 int is_ecn = 0; 602 u8 lnh; 603 604 if (ps_done(&mdata, rhf, rcd)) 605 break; 606 607 if (ps_skip(&mdata, rhf, rcd)) 608 goto next; 609 610 if (etype != RHF_RCV_TYPE_IB) 611 goto next; 612 613 packet->hdr = hfi1_get_msgheader(dd, rhf_addr); 614 hdr = packet->hdr; 615 lnh = ib_get_lnh(hdr); 616 617 if (lnh == HFI1_LRH_BTH) { 618 packet->ohdr = &hdr->u.oth; 619 packet->grh = NULL; 620 } else if (lnh == HFI1_LRH_GRH) { 621 packet->ohdr = &hdr->u.l.oth; 622 packet->grh = &hdr->u.l.grh; 623 } else { 624 goto next; /* just in case */ 625 } 626 627 bth1 = be32_to_cpu(packet->ohdr->bth[1]); 628 is_ecn = !!(bth1 & (IB_FECN_SMASK | IB_BECN_SMASK)); 629 630 if (!is_ecn) 631 goto next; 632 633 qpn = bth1 & RVT_QPN_MASK; 634 rcu_read_lock(); 635 qp = rvt_lookup_qpn(rdi, &ibp->rvp, qpn); 636 637 if (!qp) { 638 rcu_read_unlock(); 639 goto next; 640 } 641 642 process_ecn(qp, packet, true); 643 rcu_read_unlock(); 644 645 /* turn off BECN, FECN */ 646 bth1 &= ~(IB_FECN_SMASK | IB_BECN_SMASK); 647 packet->ohdr->bth[1] = cpu_to_be32(bth1); 648 next: 649 update_ps_mdata(&mdata, rcd); 650 } 651 } 652 653 static void process_rcv_qp_work(struct hfi1_ctxtdata *rcd) 654 { 655 struct rvt_qp *qp, *nqp; 656 657 /* 658 * Iterate over all QPs waiting to respond. 659 * The list won't change since the IRQ is only run on one CPU. 660 */ 661 list_for_each_entry_safe(qp, nqp, &rcd->qp_wait_list, rspwait) { 662 list_del_init(&qp->rspwait); 663 if (qp->r_flags & RVT_R_RSP_NAK) { 664 qp->r_flags &= ~RVT_R_RSP_NAK; 665 hfi1_send_rc_ack(rcd, qp, 0); 666 } 667 if (qp->r_flags & RVT_R_RSP_SEND) { 668 unsigned long flags; 669 670 qp->r_flags &= ~RVT_R_RSP_SEND; 671 spin_lock_irqsave(&qp->s_lock, flags); 672 if (ib_rvt_state_ops[qp->state] & 673 RVT_PROCESS_OR_FLUSH_SEND) 674 hfi1_schedule_send(qp); 675 spin_unlock_irqrestore(&qp->s_lock, flags); 676 } 677 rvt_put_qp(qp); 678 } 679 } 680 681 static noinline int max_packet_exceeded(struct hfi1_packet *packet, int thread) 682 { 683 if (thread) { 684 if ((packet->numpkt & (MAX_PKT_RECV_THREAD - 1)) == 0) 685 /* allow defered processing */ 686 process_rcv_qp_work(packet->rcd); 687 cond_resched(); 688 return RCV_PKT_OK; 689 } else { 690 this_cpu_inc(*packet->rcd->dd->rcv_limit); 691 return RCV_PKT_LIMIT; 692 } 693 } 694 695 static inline int check_max_packet(struct hfi1_packet *packet, int thread) 696 { 697 int ret = RCV_PKT_OK; 698 699 if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0)) 700 ret = max_packet_exceeded(packet, thread); 701 return ret; 702 } 703 704 static noinline int skip_rcv_packet(struct hfi1_packet *packet, int thread) 705 { 706 int ret; 707 708 /* Set up for the next packet */ 709 packet->rhqoff += packet->rsize; 710 if (packet->rhqoff >= packet->maxcnt) 711 packet->rhqoff = 0; 712 713 packet->numpkt++; 714 ret = check_max_packet(packet, thread); 715 716 packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff + 717 packet->rcd->dd->rhf_offset; 718 packet->rhf = rhf_to_cpu(packet->rhf_addr); 719 720 return ret; 721 } 722 723 static inline int process_rcv_packet(struct hfi1_packet *packet, int thread) 724 { 725 int ret; 726 727 packet->etype = rhf_rcv_type(packet->rhf); 728 729 /* total length */ 730 packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */ 731 /* retrieve eager buffer details */ 732 packet->ebuf = NULL; 733 if (rhf_use_egr_bfr(packet->rhf)) { 734 packet->etail = rhf_egr_index(packet->rhf); 735 packet->ebuf = get_egrbuf(packet->rcd, packet->rhf, 736 &packet->updegr); 737 /* 738 * Prefetch the contents of the eager buffer. It is 739 * OK to send a negative length to prefetch_range(). 740 * The +2 is the size of the RHF. 741 */ 742 prefetch_range(packet->ebuf, 743 packet->tlen - ((packet->rcd->rcvhdrqentsize - 744 (rhf_hdrq_offset(packet->rhf) 745 + 2)) * 4)); 746 } 747 748 /* 749 * Call a type specific handler for the packet. We 750 * should be able to trust that etype won't be beyond 751 * the range of valid indexes. If so something is really 752 * wrong and we can probably just let things come 753 * crashing down. There is no need to eat another 754 * comparison in this performance critical code. 755 */ 756 packet->rcd->dd->rhf_rcv_function_map[packet->etype](packet); 757 packet->numpkt++; 758 759 /* Set up for the next packet */ 760 packet->rhqoff += packet->rsize; 761 if (packet->rhqoff >= packet->maxcnt) 762 packet->rhqoff = 0; 763 764 ret = check_max_packet(packet, thread); 765 766 packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff + 767 packet->rcd->dd->rhf_offset; 768 packet->rhf = rhf_to_cpu(packet->rhf_addr); 769 770 return ret; 771 } 772 773 static inline void process_rcv_update(int last, struct hfi1_packet *packet) 774 { 775 /* 776 * Update head regs etc., every 16 packets, if not last pkt, 777 * to help prevent rcvhdrq overflows, when many packets 778 * are processed and queue is nearly full. 779 * Don't request an interrupt for intermediate updates. 780 */ 781 if (!last && !(packet->numpkt & 0xf)) { 782 update_usrhead(packet->rcd, packet->rhqoff, packet->updegr, 783 packet->etail, 0, 0); 784 packet->updegr = 0; 785 } 786 packet->grh = NULL; 787 } 788 789 static inline void finish_packet(struct hfi1_packet *packet) 790 { 791 /* 792 * Nothing we need to free for the packet. 793 * 794 * The only thing we need to do is a final update and call for an 795 * interrupt 796 */ 797 update_usrhead(packet->rcd, packet->rcd->head, packet->updegr, 798 packet->etail, rcv_intr_dynamic, packet->numpkt); 799 } 800 801 /* 802 * Handle receive interrupts when using the no dma rtail option. 803 */ 804 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread) 805 { 806 u32 seq; 807 int last = RCV_PKT_OK; 808 struct hfi1_packet packet; 809 810 init_packet(rcd, &packet); 811 seq = rhf_rcv_seq(packet.rhf); 812 if (seq != rcd->seq_cnt) { 813 last = RCV_PKT_DONE; 814 goto bail; 815 } 816 817 prescan_rxq(rcd, &packet); 818 819 while (last == RCV_PKT_OK) { 820 last = process_rcv_packet(&packet, thread); 821 seq = rhf_rcv_seq(packet.rhf); 822 if (++rcd->seq_cnt > 13) 823 rcd->seq_cnt = 1; 824 if (seq != rcd->seq_cnt) 825 last = RCV_PKT_DONE; 826 process_rcv_update(last, &packet); 827 } 828 process_rcv_qp_work(rcd); 829 rcd->head = packet.rhqoff; 830 bail: 831 finish_packet(&packet); 832 return last; 833 } 834 835 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread) 836 { 837 u32 hdrqtail; 838 int last = RCV_PKT_OK; 839 struct hfi1_packet packet; 840 841 init_packet(rcd, &packet); 842 hdrqtail = get_rcvhdrtail(rcd); 843 if (packet.rhqoff == hdrqtail) { 844 last = RCV_PKT_DONE; 845 goto bail; 846 } 847 smp_rmb(); /* prevent speculative reads of dma'ed hdrq */ 848 849 prescan_rxq(rcd, &packet); 850 851 while (last == RCV_PKT_OK) { 852 last = process_rcv_packet(&packet, thread); 853 if (packet.rhqoff == hdrqtail) 854 last = RCV_PKT_DONE; 855 process_rcv_update(last, &packet); 856 } 857 process_rcv_qp_work(rcd); 858 rcd->head = packet.rhqoff; 859 bail: 860 finish_packet(&packet); 861 return last; 862 } 863 864 static inline void set_nodma_rtail(struct hfi1_devdata *dd, u16 ctxt) 865 { 866 struct hfi1_ctxtdata *rcd; 867 u16 i; 868 869 /* 870 * For dynamically allocated kernel contexts (like vnic) switch 871 * interrupt handler only for that context. Otherwise, switch 872 * interrupt handler for all statically allocated kernel contexts. 873 */ 874 if (ctxt >= dd->first_dyn_alloc_ctxt) { 875 rcd = hfi1_rcd_get_by_index_safe(dd, ctxt); 876 if (rcd) { 877 rcd->do_interrupt = 878 &handle_receive_interrupt_nodma_rtail; 879 hfi1_rcd_put(rcd); 880 } 881 return; 882 } 883 884 for (i = HFI1_CTRL_CTXT + 1; i < dd->first_dyn_alloc_ctxt; i++) { 885 rcd = hfi1_rcd_get_by_index(dd, i); 886 if (rcd) 887 rcd->do_interrupt = 888 &handle_receive_interrupt_nodma_rtail; 889 hfi1_rcd_put(rcd); 890 } 891 } 892 893 static inline void set_dma_rtail(struct hfi1_devdata *dd, u16 ctxt) 894 { 895 struct hfi1_ctxtdata *rcd; 896 u16 i; 897 898 /* 899 * For dynamically allocated kernel contexts (like vnic) switch 900 * interrupt handler only for that context. Otherwise, switch 901 * interrupt handler for all statically allocated kernel contexts. 902 */ 903 if (ctxt >= dd->first_dyn_alloc_ctxt) { 904 rcd = hfi1_rcd_get_by_index_safe(dd, ctxt); 905 if (rcd) { 906 rcd->do_interrupt = 907 &handle_receive_interrupt_dma_rtail; 908 hfi1_rcd_put(rcd); 909 } 910 return; 911 } 912 913 for (i = HFI1_CTRL_CTXT + 1; i < dd->first_dyn_alloc_ctxt; i++) { 914 rcd = hfi1_rcd_get_by_index(dd, i); 915 if (rcd) 916 rcd->do_interrupt = 917 &handle_receive_interrupt_dma_rtail; 918 hfi1_rcd_put(rcd); 919 } 920 } 921 922 void set_all_slowpath(struct hfi1_devdata *dd) 923 { 924 struct hfi1_ctxtdata *rcd; 925 u16 i; 926 927 /* HFI1_CTRL_CTXT must always use the slow path interrupt handler */ 928 for (i = HFI1_CTRL_CTXT + 1; i < dd->num_rcv_contexts; i++) { 929 rcd = hfi1_rcd_get_by_index(dd, i); 930 if (!rcd) 931 continue; 932 if (i < dd->first_dyn_alloc_ctxt || rcd->is_vnic) 933 rcd->do_interrupt = &handle_receive_interrupt; 934 935 hfi1_rcd_put(rcd); 936 } 937 } 938 939 static inline int set_armed_to_active(struct hfi1_ctxtdata *rcd, 940 struct hfi1_packet *packet, 941 struct hfi1_devdata *dd) 942 { 943 struct work_struct *lsaw = &rcd->ppd->linkstate_active_work; 944 u8 etype = rhf_rcv_type(packet->rhf); 945 u8 sc = SC15_PACKET; 946 947 if (etype == RHF_RCV_TYPE_IB) { 948 struct ib_header *hdr = hfi1_get_msgheader(packet->rcd->dd, 949 packet->rhf_addr); 950 sc = hfi1_9B_get_sc5(hdr, packet->rhf); 951 } else if (etype == RHF_RCV_TYPE_BYPASS) { 952 struct hfi1_16b_header *hdr = hfi1_get_16B_header( 953 packet->rcd->dd, 954 packet->rhf_addr); 955 sc = hfi1_16B_get_sc(hdr); 956 } 957 if (sc != SC15_PACKET) { 958 int hwstate = driver_lstate(rcd->ppd); 959 960 if (hwstate != IB_PORT_ACTIVE) { 961 dd_dev_info(dd, 962 "Unexpected link state %s\n", 963 opa_lstate_name(hwstate)); 964 return 0; 965 } 966 967 queue_work(rcd->ppd->link_wq, lsaw); 968 return 1; 969 } 970 return 0; 971 } 972 973 /* 974 * handle_receive_interrupt - receive a packet 975 * @rcd: the context 976 * 977 * Called from interrupt handler for errors or receive interrupt. 978 * This is the slow path interrupt handler. 979 */ 980 int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread) 981 { 982 struct hfi1_devdata *dd = rcd->dd; 983 u32 hdrqtail; 984 int needset, last = RCV_PKT_OK; 985 struct hfi1_packet packet; 986 int skip_pkt = 0; 987 988 /* Control context will always use the slow path interrupt handler */ 989 needset = (rcd->ctxt == HFI1_CTRL_CTXT) ? 0 : 1; 990 991 init_packet(rcd, &packet); 992 993 if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) { 994 u32 seq = rhf_rcv_seq(packet.rhf); 995 996 if (seq != rcd->seq_cnt) { 997 last = RCV_PKT_DONE; 998 goto bail; 999 } 1000 hdrqtail = 0; 1001 } else { 1002 hdrqtail = get_rcvhdrtail(rcd); 1003 if (packet.rhqoff == hdrqtail) { 1004 last = RCV_PKT_DONE; 1005 goto bail; 1006 } 1007 smp_rmb(); /* prevent speculative reads of dma'ed hdrq */ 1008 1009 /* 1010 * Control context can potentially receive an invalid 1011 * rhf. Drop such packets. 1012 */ 1013 if (rcd->ctxt == HFI1_CTRL_CTXT) { 1014 u32 seq = rhf_rcv_seq(packet.rhf); 1015 1016 if (seq != rcd->seq_cnt) 1017 skip_pkt = 1; 1018 } 1019 } 1020 1021 prescan_rxq(rcd, &packet); 1022 1023 while (last == RCV_PKT_OK) { 1024 if (unlikely(dd->do_drop && 1025 atomic_xchg(&dd->drop_packet, DROP_PACKET_OFF) == 1026 DROP_PACKET_ON)) { 1027 dd->do_drop = 0; 1028 1029 /* On to the next packet */ 1030 packet.rhqoff += packet.rsize; 1031 packet.rhf_addr = (__le32 *)rcd->rcvhdrq + 1032 packet.rhqoff + 1033 dd->rhf_offset; 1034 packet.rhf = rhf_to_cpu(packet.rhf_addr); 1035 1036 } else if (skip_pkt) { 1037 last = skip_rcv_packet(&packet, thread); 1038 skip_pkt = 0; 1039 } else { 1040 /* Auto activate link on non-SC15 packet receive */ 1041 if (unlikely(rcd->ppd->host_link_state == 1042 HLS_UP_ARMED) && 1043 set_armed_to_active(rcd, &packet, dd)) 1044 goto bail; 1045 last = process_rcv_packet(&packet, thread); 1046 } 1047 1048 if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) { 1049 u32 seq = rhf_rcv_seq(packet.rhf); 1050 1051 if (++rcd->seq_cnt > 13) 1052 rcd->seq_cnt = 1; 1053 if (seq != rcd->seq_cnt) 1054 last = RCV_PKT_DONE; 1055 if (needset) { 1056 dd_dev_info(dd, "Switching to NO_DMA_RTAIL\n"); 1057 set_nodma_rtail(dd, rcd->ctxt); 1058 needset = 0; 1059 } 1060 } else { 1061 if (packet.rhqoff == hdrqtail) 1062 last = RCV_PKT_DONE; 1063 /* 1064 * Control context can potentially receive an invalid 1065 * rhf. Drop such packets. 1066 */ 1067 if (rcd->ctxt == HFI1_CTRL_CTXT) { 1068 u32 seq = rhf_rcv_seq(packet.rhf); 1069 1070 if (++rcd->seq_cnt > 13) 1071 rcd->seq_cnt = 1; 1072 if (!last && (seq != rcd->seq_cnt)) 1073 skip_pkt = 1; 1074 } 1075 1076 if (needset) { 1077 dd_dev_info(dd, 1078 "Switching to DMA_RTAIL\n"); 1079 set_dma_rtail(dd, rcd->ctxt); 1080 needset = 0; 1081 } 1082 } 1083 1084 process_rcv_update(last, &packet); 1085 } 1086 1087 process_rcv_qp_work(rcd); 1088 rcd->head = packet.rhqoff; 1089 1090 bail: 1091 /* 1092 * Always write head at end, and setup rcv interrupt, even 1093 * if no packets were processed. 1094 */ 1095 finish_packet(&packet); 1096 return last; 1097 } 1098 1099 /* 1100 * We may discover in the interrupt that the hardware link state has 1101 * changed from ARMED to ACTIVE (due to the arrival of a non-SC15 packet), 1102 * and we need to update the driver's notion of the link state. We cannot 1103 * run set_link_state from interrupt context, so we queue this function on 1104 * a workqueue. 1105 * 1106 * We delay the regular interrupt processing until after the state changes 1107 * so that the link will be in the correct state by the time any application 1108 * we wake up attempts to send a reply to any message it received. 1109 * (Subsequent receive interrupts may possibly force the wakeup before we 1110 * update the link state.) 1111 * 1112 * The rcd is freed in hfi1_free_ctxtdata after hfi1_postinit_cleanup invokes 1113 * dd->f_cleanup(dd) to disable the interrupt handler and flush workqueues, 1114 * so we're safe from use-after-free of the rcd. 1115 */ 1116 void receive_interrupt_work(struct work_struct *work) 1117 { 1118 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 1119 linkstate_active_work); 1120 struct hfi1_devdata *dd = ppd->dd; 1121 struct hfi1_ctxtdata *rcd; 1122 u16 i; 1123 1124 /* Received non-SC15 packet implies neighbor_normal */ 1125 ppd->neighbor_normal = 1; 1126 set_link_state(ppd, HLS_UP_ACTIVE); 1127 1128 /* 1129 * Interrupt all statically allocated kernel contexts that could 1130 * have had an interrupt during auto activation. 1131 */ 1132 for (i = HFI1_CTRL_CTXT; i < dd->first_dyn_alloc_ctxt; i++) { 1133 rcd = hfi1_rcd_get_by_index(dd, i); 1134 if (rcd) 1135 force_recv_intr(rcd); 1136 hfi1_rcd_put(rcd); 1137 } 1138 } 1139 1140 /* 1141 * Convert a given MTU size to the on-wire MAD packet enumeration. 1142 * Return -1 if the size is invalid. 1143 */ 1144 int mtu_to_enum(u32 mtu, int default_if_bad) 1145 { 1146 switch (mtu) { 1147 case 0: return OPA_MTU_0; 1148 case 256: return OPA_MTU_256; 1149 case 512: return OPA_MTU_512; 1150 case 1024: return OPA_MTU_1024; 1151 case 2048: return OPA_MTU_2048; 1152 case 4096: return OPA_MTU_4096; 1153 case 8192: return OPA_MTU_8192; 1154 case 10240: return OPA_MTU_10240; 1155 } 1156 return default_if_bad; 1157 } 1158 1159 u16 enum_to_mtu(int mtu) 1160 { 1161 switch (mtu) { 1162 case OPA_MTU_0: return 0; 1163 case OPA_MTU_256: return 256; 1164 case OPA_MTU_512: return 512; 1165 case OPA_MTU_1024: return 1024; 1166 case OPA_MTU_2048: return 2048; 1167 case OPA_MTU_4096: return 4096; 1168 case OPA_MTU_8192: return 8192; 1169 case OPA_MTU_10240: return 10240; 1170 default: return 0xffff; 1171 } 1172 } 1173 1174 /* 1175 * set_mtu - set the MTU 1176 * @ppd: the per port data 1177 * 1178 * We can handle "any" incoming size, the issue here is whether we 1179 * need to restrict our outgoing size. We do not deal with what happens 1180 * to programs that are already running when the size changes. 1181 */ 1182 int set_mtu(struct hfi1_pportdata *ppd) 1183 { 1184 struct hfi1_devdata *dd = ppd->dd; 1185 int i, drain, ret = 0, is_up = 0; 1186 1187 ppd->ibmtu = 0; 1188 for (i = 0; i < ppd->vls_supported; i++) 1189 if (ppd->ibmtu < dd->vld[i].mtu) 1190 ppd->ibmtu = dd->vld[i].mtu; 1191 ppd->ibmaxlen = ppd->ibmtu + lrh_max_header_bytes(ppd->dd); 1192 1193 mutex_lock(&ppd->hls_lock); 1194 if (ppd->host_link_state == HLS_UP_INIT || 1195 ppd->host_link_state == HLS_UP_ARMED || 1196 ppd->host_link_state == HLS_UP_ACTIVE) 1197 is_up = 1; 1198 1199 drain = !is_ax(dd) && is_up; 1200 1201 if (drain) 1202 /* 1203 * MTU is specified per-VL. To ensure that no packet gets 1204 * stuck (due, e.g., to the MTU for the packet's VL being 1205 * reduced), empty the per-VL FIFOs before adjusting MTU. 1206 */ 1207 ret = stop_drain_data_vls(dd); 1208 1209 if (ret) { 1210 dd_dev_err(dd, "%s: cannot stop/drain VLs - refusing to change per-VL MTUs\n", 1211 __func__); 1212 goto err; 1213 } 1214 1215 hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_MTU, 0); 1216 1217 if (drain) 1218 open_fill_data_vls(dd); /* reopen all VLs */ 1219 1220 err: 1221 mutex_unlock(&ppd->hls_lock); 1222 1223 return ret; 1224 } 1225 1226 int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc) 1227 { 1228 struct hfi1_devdata *dd = ppd->dd; 1229 1230 ppd->lid = lid; 1231 ppd->lmc = lmc; 1232 hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LIDLMC, 0); 1233 1234 dd_dev_info(dd, "port %u: got a lid: 0x%x\n", ppd->port, lid); 1235 1236 return 0; 1237 } 1238 1239 void shutdown_led_override(struct hfi1_pportdata *ppd) 1240 { 1241 struct hfi1_devdata *dd = ppd->dd; 1242 1243 /* 1244 * This pairs with the memory barrier in hfi1_start_led_override to 1245 * ensure that we read the correct state of LED beaconing represented 1246 * by led_override_timer_active 1247 */ 1248 smp_rmb(); 1249 if (atomic_read(&ppd->led_override_timer_active)) { 1250 del_timer_sync(&ppd->led_override_timer); 1251 atomic_set(&ppd->led_override_timer_active, 0); 1252 /* Ensure the atomic_set is visible to all CPUs */ 1253 smp_wmb(); 1254 } 1255 1256 /* Hand control of the LED to the DC for normal operation */ 1257 write_csr(dd, DCC_CFG_LED_CNTRL, 0); 1258 } 1259 1260 static void run_led_override(struct timer_list *t) 1261 { 1262 struct hfi1_pportdata *ppd = from_timer(ppd, t, led_override_timer); 1263 struct hfi1_devdata *dd = ppd->dd; 1264 unsigned long timeout; 1265 int phase_idx; 1266 1267 if (!(dd->flags & HFI1_INITTED)) 1268 return; 1269 1270 phase_idx = ppd->led_override_phase & 1; 1271 1272 setextled(dd, phase_idx); 1273 1274 timeout = ppd->led_override_vals[phase_idx]; 1275 1276 /* Set up for next phase */ 1277 ppd->led_override_phase = !ppd->led_override_phase; 1278 1279 mod_timer(&ppd->led_override_timer, jiffies + timeout); 1280 } 1281 1282 /* 1283 * To have the LED blink in a particular pattern, provide timeon and timeoff 1284 * in milliseconds. 1285 * To turn off custom blinking and return to normal operation, use 1286 * shutdown_led_override() 1287 */ 1288 void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon, 1289 unsigned int timeoff) 1290 { 1291 if (!(ppd->dd->flags & HFI1_INITTED)) 1292 return; 1293 1294 /* Convert to jiffies for direct use in timer */ 1295 ppd->led_override_vals[0] = msecs_to_jiffies(timeoff); 1296 ppd->led_override_vals[1] = msecs_to_jiffies(timeon); 1297 1298 /* Arbitrarily start from LED on phase */ 1299 ppd->led_override_phase = 1; 1300 1301 /* 1302 * If the timer has not already been started, do so. Use a "quick" 1303 * timeout so the handler will be called soon to look at our request. 1304 */ 1305 if (!timer_pending(&ppd->led_override_timer)) { 1306 timer_setup(&ppd->led_override_timer, run_led_override, 0); 1307 ppd->led_override_timer.expires = jiffies + 1; 1308 add_timer(&ppd->led_override_timer); 1309 atomic_set(&ppd->led_override_timer_active, 1); 1310 /* Ensure the atomic_set is visible to all CPUs */ 1311 smp_wmb(); 1312 } 1313 } 1314 1315 /** 1316 * hfi1_reset_device - reset the chip if possible 1317 * @unit: the device to reset 1318 * 1319 * Whether or not reset is successful, we attempt to re-initialize the chip 1320 * (that is, much like a driver unload/reload). We clear the INITTED flag 1321 * so that the various entry points will fail until we reinitialize. For 1322 * now, we only allow this if no user contexts are open that use chip resources 1323 */ 1324 int hfi1_reset_device(int unit) 1325 { 1326 int ret; 1327 struct hfi1_devdata *dd = hfi1_lookup(unit); 1328 struct hfi1_pportdata *ppd; 1329 int pidx; 1330 1331 if (!dd) { 1332 ret = -ENODEV; 1333 goto bail; 1334 } 1335 1336 dd_dev_info(dd, "Reset on unit %u requested\n", unit); 1337 1338 if (!dd->kregbase1 || !(dd->flags & HFI1_PRESENT)) { 1339 dd_dev_info(dd, 1340 "Invalid unit number %u or not initialized or not present\n", 1341 unit); 1342 ret = -ENXIO; 1343 goto bail; 1344 } 1345 1346 /* If there are any user/vnic contexts, we cannot reset */ 1347 mutex_lock(&hfi1_mutex); 1348 if (dd->rcd) 1349 if (hfi1_stats.sps_ctxts) { 1350 mutex_unlock(&hfi1_mutex); 1351 ret = -EBUSY; 1352 goto bail; 1353 } 1354 mutex_unlock(&hfi1_mutex); 1355 1356 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1357 ppd = dd->pport + pidx; 1358 1359 shutdown_led_override(ppd); 1360 } 1361 if (dd->flags & HFI1_HAS_SEND_DMA) 1362 sdma_exit(dd); 1363 1364 hfi1_reset_cpu_counters(dd); 1365 1366 ret = hfi1_init(dd, 1); 1367 1368 if (ret) 1369 dd_dev_err(dd, 1370 "Reinitialize unit %u after reset failed with %d\n", 1371 unit, ret); 1372 else 1373 dd_dev_info(dd, "Reinitialized unit %u after resetting\n", 1374 unit); 1375 1376 bail: 1377 return ret; 1378 } 1379 1380 static inline void hfi1_setup_ib_header(struct hfi1_packet *packet) 1381 { 1382 packet->hdr = (struct hfi1_ib_message_header *) 1383 hfi1_get_msgheader(packet->rcd->dd, 1384 packet->rhf_addr); 1385 packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr; 1386 } 1387 1388 static int hfi1_bypass_ingress_pkt_check(struct hfi1_packet *packet) 1389 { 1390 struct hfi1_pportdata *ppd = packet->rcd->ppd; 1391 1392 /* slid and dlid cannot be 0 */ 1393 if ((!packet->slid) || (!packet->dlid)) 1394 return -EINVAL; 1395 1396 /* Compare port lid with incoming packet dlid */ 1397 if ((!(hfi1_is_16B_mcast(packet->dlid))) && 1398 (packet->dlid != 1399 opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))) { 1400 if (packet->dlid != ppd->lid) 1401 return -EINVAL; 1402 } 1403 1404 /* No multicast packets with SC15 */ 1405 if ((hfi1_is_16B_mcast(packet->dlid)) && (packet->sc == 0xF)) 1406 return -EINVAL; 1407 1408 /* Packets with permissive DLID always on SC15 */ 1409 if ((packet->dlid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 1410 16B)) && 1411 (packet->sc != 0xF)) 1412 return -EINVAL; 1413 1414 return 0; 1415 } 1416 1417 static int hfi1_setup_9B_packet(struct hfi1_packet *packet) 1418 { 1419 struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd); 1420 struct ib_header *hdr; 1421 u8 lnh; 1422 1423 hfi1_setup_ib_header(packet); 1424 hdr = packet->hdr; 1425 1426 lnh = ib_get_lnh(hdr); 1427 if (lnh == HFI1_LRH_BTH) { 1428 packet->ohdr = &hdr->u.oth; 1429 packet->grh = NULL; 1430 } else if (lnh == HFI1_LRH_GRH) { 1431 u32 vtf; 1432 1433 packet->ohdr = &hdr->u.l.oth; 1434 packet->grh = &hdr->u.l.grh; 1435 if (packet->grh->next_hdr != IB_GRH_NEXT_HDR) 1436 goto drop; 1437 vtf = be32_to_cpu(packet->grh->version_tclass_flow); 1438 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION) 1439 goto drop; 1440 } else { 1441 goto drop; 1442 } 1443 1444 /* Query commonly used fields from packet header */ 1445 packet->payload = packet->ebuf; 1446 packet->opcode = ib_bth_get_opcode(packet->ohdr); 1447 packet->slid = ib_get_slid(hdr); 1448 packet->dlid = ib_get_dlid(hdr); 1449 if (unlikely((packet->dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) && 1450 (packet->dlid != be16_to_cpu(IB_LID_PERMISSIVE)))) 1451 packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) - 1452 be16_to_cpu(IB_MULTICAST_LID_BASE); 1453 packet->sl = ib_get_sl(hdr); 1454 packet->sc = hfi1_9B_get_sc5(hdr, packet->rhf); 1455 packet->pad = ib_bth_get_pad(packet->ohdr); 1456 packet->extra_byte = 0; 1457 packet->fecn = ib_bth_get_fecn(packet->ohdr); 1458 packet->becn = ib_bth_get_becn(packet->ohdr); 1459 1460 return 0; 1461 drop: 1462 ibp->rvp.n_pkt_drops++; 1463 return -EINVAL; 1464 } 1465 1466 static int hfi1_setup_bypass_packet(struct hfi1_packet *packet) 1467 { 1468 /* 1469 * Bypass packets have a different header/payload split 1470 * compared to an IB packet. 1471 * Current split is set such that 16 bytes of the actual 1472 * header is in the header buffer and the remining is in 1473 * the eager buffer. We chose 16 since hfi1 driver only 1474 * supports 16B bypass packets and we will be able to 1475 * receive the entire LRH with such a split. 1476 */ 1477 1478 struct hfi1_ctxtdata *rcd = packet->rcd; 1479 struct hfi1_pportdata *ppd = rcd->ppd; 1480 struct hfi1_ibport *ibp = &ppd->ibport_data; 1481 u8 l4; 1482 u8 grh_len; 1483 1484 packet->hdr = (struct hfi1_16b_header *) 1485 hfi1_get_16B_header(packet->rcd->dd, 1486 packet->rhf_addr); 1487 packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr; 1488 1489 l4 = hfi1_16B_get_l4(packet->hdr); 1490 if (l4 == OPA_16B_L4_IB_LOCAL) { 1491 grh_len = 0; 1492 packet->ohdr = packet->ebuf; 1493 packet->grh = NULL; 1494 } else if (l4 == OPA_16B_L4_IB_GLOBAL) { 1495 u32 vtf; 1496 1497 grh_len = sizeof(struct ib_grh); 1498 packet->ohdr = packet->ebuf + grh_len; 1499 packet->grh = packet->ebuf; 1500 if (packet->grh->next_hdr != IB_GRH_NEXT_HDR) 1501 goto drop; 1502 vtf = be32_to_cpu(packet->grh->version_tclass_flow); 1503 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION) 1504 goto drop; 1505 } else { 1506 goto drop; 1507 } 1508 1509 /* Query commonly used fields from packet header */ 1510 packet->opcode = ib_bth_get_opcode(packet->ohdr); 1511 packet->hlen = hdr_len_by_opcode[packet->opcode] + 8 + grh_len; 1512 packet->payload = packet->ebuf + packet->hlen - (4 * sizeof(u32)); 1513 packet->slid = hfi1_16B_get_slid(packet->hdr); 1514 packet->dlid = hfi1_16B_get_dlid(packet->hdr); 1515 if (unlikely(hfi1_is_16B_mcast(packet->dlid))) 1516 packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) - 1517 opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR), 1518 16B); 1519 packet->sc = hfi1_16B_get_sc(packet->hdr); 1520 packet->sl = ibp->sc_to_sl[packet->sc]; 1521 packet->pad = hfi1_16B_bth_get_pad(packet->ohdr); 1522 packet->extra_byte = SIZE_OF_LT; 1523 packet->fecn = hfi1_16B_get_fecn(packet->hdr); 1524 packet->becn = hfi1_16B_get_becn(packet->hdr); 1525 1526 if (hfi1_bypass_ingress_pkt_check(packet)) 1527 goto drop; 1528 1529 return 0; 1530 drop: 1531 hfi1_cdbg(PKT, "%s: packet dropped\n", __func__); 1532 ibp->rvp.n_pkt_drops++; 1533 return -EINVAL; 1534 } 1535 1536 void handle_eflags(struct hfi1_packet *packet) 1537 { 1538 struct hfi1_ctxtdata *rcd = packet->rcd; 1539 u32 rte = rhf_rcv_type_err(packet->rhf); 1540 1541 rcv_hdrerr(rcd, rcd->ppd, packet); 1542 if (rhf_err_flags(packet->rhf)) 1543 dd_dev_err(rcd->dd, 1544 "receive context %d: rhf 0x%016llx, errs [ %s%s%s%s%s%s%s%s] rte 0x%x\n", 1545 rcd->ctxt, packet->rhf, 1546 packet->rhf & RHF_K_HDR_LEN_ERR ? "k_hdr_len " : "", 1547 packet->rhf & RHF_DC_UNC_ERR ? "dc_unc " : "", 1548 packet->rhf & RHF_DC_ERR ? "dc " : "", 1549 packet->rhf & RHF_TID_ERR ? "tid " : "", 1550 packet->rhf & RHF_LEN_ERR ? "len " : "", 1551 packet->rhf & RHF_ECC_ERR ? "ecc " : "", 1552 packet->rhf & RHF_VCRC_ERR ? "vcrc " : "", 1553 packet->rhf & RHF_ICRC_ERR ? "icrc " : "", 1554 rte); 1555 } 1556 1557 /* 1558 * The following functions are called by the interrupt handler. They are type 1559 * specific handlers for each packet type. 1560 */ 1561 int process_receive_ib(struct hfi1_packet *packet) 1562 { 1563 if (unlikely(hfi1_dbg_fault_packet(packet))) 1564 return RHF_RCV_CONTINUE; 1565 1566 if (hfi1_setup_9B_packet(packet)) 1567 return RHF_RCV_CONTINUE; 1568 1569 trace_hfi1_rcvhdr(packet->rcd->ppd->dd, 1570 packet->rcd->ctxt, 1571 rhf_err_flags(packet->rhf), 1572 RHF_RCV_TYPE_IB, 1573 packet->hlen, 1574 packet->tlen, 1575 packet->updegr, 1576 rhf_egr_index(packet->rhf)); 1577 1578 if (unlikely( 1579 (hfi1_dbg_fault_suppress_err(&packet->rcd->dd->verbs_dev) && 1580 (packet->rhf & RHF_DC_ERR)))) 1581 return RHF_RCV_CONTINUE; 1582 1583 if (unlikely(rhf_err_flags(packet->rhf))) { 1584 handle_eflags(packet); 1585 return RHF_RCV_CONTINUE; 1586 } 1587 1588 hfi1_ib_rcv(packet); 1589 return RHF_RCV_CONTINUE; 1590 } 1591 1592 static inline bool hfi1_is_vnic_packet(struct hfi1_packet *packet) 1593 { 1594 /* Packet received in VNIC context via RSM */ 1595 if (packet->rcd->is_vnic) 1596 return true; 1597 1598 if ((hfi1_16B_get_l2(packet->ebuf) == OPA_16B_L2_TYPE) && 1599 (hfi1_16B_get_l4(packet->ebuf) == OPA_16B_L4_ETHR)) 1600 return true; 1601 1602 return false; 1603 } 1604 1605 int process_receive_bypass(struct hfi1_packet *packet) 1606 { 1607 struct hfi1_devdata *dd = packet->rcd->dd; 1608 1609 if (hfi1_is_vnic_packet(packet)) { 1610 hfi1_vnic_bypass_rcv(packet); 1611 return RHF_RCV_CONTINUE; 1612 } 1613 1614 if (hfi1_setup_bypass_packet(packet)) 1615 return RHF_RCV_CONTINUE; 1616 1617 if (unlikely(rhf_err_flags(packet->rhf))) { 1618 handle_eflags(packet); 1619 return RHF_RCV_CONTINUE; 1620 } 1621 1622 if (hfi1_16B_get_l2(packet->hdr) == 0x2) { 1623 hfi1_16B_rcv(packet); 1624 } else { 1625 dd_dev_err(dd, 1626 "Bypass packets other than 16B are not supported in normal operation. Dropping\n"); 1627 incr_cntr64(&dd->sw_rcv_bypass_packet_errors); 1628 if (!(dd->err_info_rcvport.status_and_code & 1629 OPA_EI_STATUS_SMASK)) { 1630 u64 *flits = packet->ebuf; 1631 1632 if (flits && !(packet->rhf & RHF_LEN_ERR)) { 1633 dd->err_info_rcvport.packet_flit1 = flits[0]; 1634 dd->err_info_rcvport.packet_flit2 = 1635 packet->tlen > sizeof(flits[0]) ? 1636 flits[1] : 0; 1637 } 1638 dd->err_info_rcvport.status_and_code |= 1639 (OPA_EI_STATUS_SMASK | BAD_L2_ERR); 1640 } 1641 } 1642 return RHF_RCV_CONTINUE; 1643 } 1644 1645 int process_receive_error(struct hfi1_packet *packet) 1646 { 1647 /* KHdrHCRCErr -- KDETH packet with a bad HCRC */ 1648 if (unlikely( 1649 hfi1_dbg_fault_suppress_err(&packet->rcd->dd->verbs_dev) && 1650 rhf_rcv_type_err(packet->rhf) == 3)) 1651 return RHF_RCV_CONTINUE; 1652 1653 hfi1_setup_ib_header(packet); 1654 handle_eflags(packet); 1655 1656 if (unlikely(rhf_err_flags(packet->rhf))) 1657 dd_dev_err(packet->rcd->dd, 1658 "Unhandled error packet received. Dropping.\n"); 1659 1660 return RHF_RCV_CONTINUE; 1661 } 1662 1663 int kdeth_process_expected(struct hfi1_packet *packet) 1664 { 1665 if (unlikely(hfi1_dbg_fault_packet(packet))) 1666 return RHF_RCV_CONTINUE; 1667 1668 hfi1_setup_ib_header(packet); 1669 if (unlikely(rhf_err_flags(packet->rhf))) 1670 handle_eflags(packet); 1671 1672 dd_dev_err(packet->rcd->dd, 1673 "Unhandled expected packet received. Dropping.\n"); 1674 return RHF_RCV_CONTINUE; 1675 } 1676 1677 int kdeth_process_eager(struct hfi1_packet *packet) 1678 { 1679 hfi1_setup_ib_header(packet); 1680 if (unlikely(rhf_err_flags(packet->rhf))) 1681 handle_eflags(packet); 1682 if (unlikely(hfi1_dbg_fault_packet(packet))) 1683 return RHF_RCV_CONTINUE; 1684 1685 dd_dev_err(packet->rcd->dd, 1686 "Unhandled eager packet received. Dropping.\n"); 1687 return RHF_RCV_CONTINUE; 1688 } 1689 1690 int process_receive_invalid(struct hfi1_packet *packet) 1691 { 1692 dd_dev_err(packet->rcd->dd, "Invalid packet type %d. Dropping\n", 1693 rhf_rcv_type(packet->rhf)); 1694 return RHF_RCV_CONTINUE; 1695 } 1696 1697 void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd) 1698 { 1699 struct hfi1_packet packet; 1700 struct ps_mdata mdata; 1701 1702 seq_printf(s, "Rcd %u: RcvHdr cnt %u entsize %u %s head %llu tail %llu\n", 1703 rcd->ctxt, rcd->rcvhdrq_cnt, rcd->rcvhdrqentsize, 1704 HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ? 1705 "dma_rtail" : "nodma_rtail", 1706 read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD) & 1707 RCV_HDR_HEAD_HEAD_MASK, 1708 read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL)); 1709 1710 init_packet(rcd, &packet); 1711 init_ps_mdata(&mdata, &packet); 1712 1713 while (1) { 1714 struct hfi1_devdata *dd = rcd->dd; 1715 __le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head + 1716 dd->rhf_offset; 1717 struct ib_header *hdr; 1718 u64 rhf = rhf_to_cpu(rhf_addr); 1719 u32 etype = rhf_rcv_type(rhf), qpn; 1720 u8 opcode; 1721 u32 psn; 1722 u8 lnh; 1723 1724 if (ps_done(&mdata, rhf, rcd)) 1725 break; 1726 1727 if (ps_skip(&mdata, rhf, rcd)) 1728 goto next; 1729 1730 if (etype > RHF_RCV_TYPE_IB) 1731 goto next; 1732 1733 packet.hdr = hfi1_get_msgheader(dd, rhf_addr); 1734 hdr = packet.hdr; 1735 1736 lnh = be16_to_cpu(hdr->lrh[0]) & 3; 1737 1738 if (lnh == HFI1_LRH_BTH) 1739 packet.ohdr = &hdr->u.oth; 1740 else if (lnh == HFI1_LRH_GRH) 1741 packet.ohdr = &hdr->u.l.oth; 1742 else 1743 goto next; /* just in case */ 1744 1745 opcode = (be32_to_cpu(packet.ohdr->bth[0]) >> 24); 1746 qpn = be32_to_cpu(packet.ohdr->bth[1]) & RVT_QPN_MASK; 1747 psn = mask_psn(be32_to_cpu(packet.ohdr->bth[2])); 1748 1749 seq_printf(s, "\tEnt %u: opcode 0x%x, qpn 0x%x, psn 0x%x\n", 1750 mdata.ps_head, opcode, qpn, psn); 1751 next: 1752 update_ps_mdata(&mdata, rcd); 1753 } 1754 } 1755