1 /* 2 * Copyright(c) 2015-2017 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 #include <linux/spinlock.h> 49 #include <linux/pci.h> 50 #include <linux/io.h> 51 #include <linux/delay.h> 52 #include <linux/netdevice.h> 53 #include <linux/vmalloc.h> 54 #include <linux/module.h> 55 #include <linux/prefetch.h> 56 #include <rdma/ib_verbs.h> 57 58 #include "hfi.h" 59 #include "trace.h" 60 #include "qp.h" 61 #include "sdma.h" 62 #include "debugfs.h" 63 #include "vnic.h" 64 65 #undef pr_fmt 66 #define pr_fmt(fmt) DRIVER_NAME ": " fmt 67 68 /* 69 * The size has to be longer than this string, so we can append 70 * board/chip information to it in the initialization code. 71 */ 72 const char ib_hfi1_version[] = HFI1_DRIVER_VERSION "\n"; 73 74 DEFINE_SPINLOCK(hfi1_devs_lock); 75 LIST_HEAD(hfi1_dev_list); 76 DEFINE_MUTEX(hfi1_mutex); /* general driver use */ 77 78 unsigned int hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU; 79 module_param_named(max_mtu, hfi1_max_mtu, uint, S_IRUGO); 80 MODULE_PARM_DESC(max_mtu, "Set max MTU bytes, default is " __stringify( 81 HFI1_DEFAULT_MAX_MTU)); 82 83 unsigned int hfi1_cu = 1; 84 module_param_named(cu, hfi1_cu, uint, S_IRUGO); 85 MODULE_PARM_DESC(cu, "Credit return units"); 86 87 unsigned long hfi1_cap_mask = HFI1_CAP_MASK_DEFAULT; 88 static int hfi1_caps_set(const char *val, const struct kernel_param *kp); 89 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp); 90 static const struct kernel_param_ops cap_ops = { 91 .set = hfi1_caps_set, 92 .get = hfi1_caps_get 93 }; 94 module_param_cb(cap_mask, &cap_ops, &hfi1_cap_mask, S_IWUSR | S_IRUGO); 95 MODULE_PARM_DESC(cap_mask, "Bit mask of enabled/disabled HW features"); 96 97 MODULE_LICENSE("Dual BSD/GPL"); 98 MODULE_DESCRIPTION("Intel Omni-Path Architecture driver"); 99 100 /* 101 * MAX_PKT_RCV is the max # if packets processed per receive interrupt. 102 */ 103 #define MAX_PKT_RECV 64 104 /* 105 * MAX_PKT_THREAD_RCV is the max # of packets processed before 106 * the qp_wait_list queue is flushed. 107 */ 108 #define MAX_PKT_RECV_THREAD (MAX_PKT_RECV * 4) 109 #define EGR_HEAD_UPDATE_THRESHOLD 16 110 111 struct hfi1_ib_stats hfi1_stats; 112 113 static int hfi1_caps_set(const char *val, const struct kernel_param *kp) 114 { 115 int ret = 0; 116 unsigned long *cap_mask_ptr = (unsigned long *)kp->arg, 117 cap_mask = *cap_mask_ptr, value, diff, 118 write_mask = ((HFI1_CAP_WRITABLE_MASK << HFI1_CAP_USER_SHIFT) | 119 HFI1_CAP_WRITABLE_MASK); 120 121 ret = kstrtoul(val, 0, &value); 122 if (ret) { 123 pr_warn("Invalid module parameter value for 'cap_mask'\n"); 124 goto done; 125 } 126 /* Get the changed bits (except the locked bit) */ 127 diff = value ^ (cap_mask & ~HFI1_CAP_LOCKED_SMASK); 128 129 /* Remove any bits that are not allowed to change after driver load */ 130 if (HFI1_CAP_LOCKED() && (diff & ~write_mask)) { 131 pr_warn("Ignoring non-writable capability bits %#lx\n", 132 diff & ~write_mask); 133 diff &= write_mask; 134 } 135 136 /* Mask off any reserved bits */ 137 diff &= ~HFI1_CAP_RESERVED_MASK; 138 /* Clear any previously set and changing bits */ 139 cap_mask &= ~diff; 140 /* Update the bits with the new capability */ 141 cap_mask |= (value & diff); 142 /* Check for any kernel/user restrictions */ 143 diff = (cap_mask & (HFI1_CAP_MUST_HAVE_KERN << HFI1_CAP_USER_SHIFT)) ^ 144 ((cap_mask & HFI1_CAP_MUST_HAVE_KERN) << HFI1_CAP_USER_SHIFT); 145 cap_mask &= ~diff; 146 /* Set the bitmask to the final set */ 147 *cap_mask_ptr = cap_mask; 148 done: 149 return ret; 150 } 151 152 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp) 153 { 154 unsigned long cap_mask = *(unsigned long *)kp->arg; 155 156 cap_mask &= ~HFI1_CAP_LOCKED_SMASK; 157 cap_mask |= ((cap_mask & HFI1_CAP_K2U) << HFI1_CAP_USER_SHIFT); 158 159 return scnprintf(buffer, PAGE_SIZE, "0x%lx", cap_mask); 160 } 161 162 struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi) 163 { 164 struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi); 165 struct hfi1_devdata *dd = container_of(ibdev, 166 struct hfi1_devdata, verbs_dev); 167 return dd->pcidev; 168 } 169 170 /* 171 * Return count of units with at least one port ACTIVE. 172 */ 173 int hfi1_count_active_units(void) 174 { 175 struct hfi1_devdata *dd; 176 struct hfi1_pportdata *ppd; 177 unsigned long flags; 178 int pidx, nunits_active = 0; 179 180 spin_lock_irqsave(&hfi1_devs_lock, flags); 181 list_for_each_entry(dd, &hfi1_dev_list, list) { 182 if (!(dd->flags & HFI1_PRESENT) || !dd->kregbase1) 183 continue; 184 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 185 ppd = dd->pport + pidx; 186 if (ppd->lid && ppd->linkup) { 187 nunits_active++; 188 break; 189 } 190 } 191 } 192 spin_unlock_irqrestore(&hfi1_devs_lock, flags); 193 return nunits_active; 194 } 195 196 /* 197 * Get address of eager buffer from it's index (allocated in chunks, not 198 * contiguous). 199 */ 200 static inline void *get_egrbuf(const struct hfi1_ctxtdata *rcd, u64 rhf, 201 u8 *update) 202 { 203 u32 idx = rhf_egr_index(rhf), offset = rhf_egr_buf_offset(rhf); 204 205 *update |= !(idx & (rcd->egrbufs.threshold - 1)) && !offset; 206 return (void *)(((u64)(rcd->egrbufs.rcvtids[idx].addr)) + 207 (offset * RCV_BUF_BLOCK_SIZE)); 208 } 209 210 static inline void *hfi1_get_header(struct hfi1_devdata *dd, 211 __le32 *rhf_addr) 212 { 213 u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr)); 214 215 return (void *)(rhf_addr - dd->rhf_offset + offset); 216 } 217 218 static inline struct ib_header *hfi1_get_msgheader(struct hfi1_devdata *dd, 219 __le32 *rhf_addr) 220 { 221 return (struct ib_header *)hfi1_get_header(dd, rhf_addr); 222 } 223 224 static inline struct hfi1_16b_header 225 *hfi1_get_16B_header(struct hfi1_devdata *dd, 226 __le32 *rhf_addr) 227 { 228 return (struct hfi1_16b_header *)hfi1_get_header(dd, rhf_addr); 229 } 230 231 /* 232 * Validate and encode the a given RcvArray Buffer size. 233 * The function will check whether the given size falls within 234 * allowed size ranges for the respective type and, optionally, 235 * return the proper encoding. 236 */ 237 int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encoded) 238 { 239 if (unlikely(!PAGE_ALIGNED(size))) 240 return 0; 241 if (unlikely(size < MIN_EAGER_BUFFER)) 242 return 0; 243 if (size > 244 (type == PT_EAGER ? MAX_EAGER_BUFFER : MAX_EXPECTED_BUFFER)) 245 return 0; 246 if (encoded) 247 *encoded = ilog2(size / PAGE_SIZE) + 1; 248 return 1; 249 } 250 251 static void rcv_hdrerr(struct hfi1_ctxtdata *rcd, struct hfi1_pportdata *ppd, 252 struct hfi1_packet *packet) 253 { 254 struct ib_header *rhdr = packet->hdr; 255 u32 rte = rhf_rcv_type_err(packet->rhf); 256 u32 mlid_base; 257 struct hfi1_ibport *ibp = rcd_to_iport(rcd); 258 struct hfi1_devdata *dd = ppd->dd; 259 struct hfi1_ibdev *verbs_dev = &dd->verbs_dev; 260 struct rvt_dev_info *rdi = &verbs_dev->rdi; 261 262 if ((packet->rhf & RHF_DC_ERR) && 263 hfi1_dbg_fault_suppress_err(verbs_dev)) 264 return; 265 266 if (packet->rhf & (RHF_VCRC_ERR | RHF_ICRC_ERR)) 267 return; 268 269 if (packet->etype == RHF_RCV_TYPE_BYPASS) { 270 goto drop; 271 } else { 272 u8 lnh = ib_get_lnh(rhdr); 273 274 mlid_base = be16_to_cpu(IB_MULTICAST_LID_BASE); 275 if (lnh == HFI1_LRH_BTH) { 276 packet->ohdr = &rhdr->u.oth; 277 } else if (lnh == HFI1_LRH_GRH) { 278 packet->ohdr = &rhdr->u.l.oth; 279 packet->grh = &rhdr->u.l.grh; 280 } else { 281 goto drop; 282 } 283 } 284 285 if (packet->rhf & RHF_TID_ERR) { 286 /* For TIDERR and RC QPs preemptively schedule a NAK */ 287 u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */ 288 u32 dlid = ib_get_dlid(rhdr); 289 u32 qp_num; 290 291 /* Sanity check packet */ 292 if (tlen < 24) 293 goto drop; 294 295 /* Check for GRH */ 296 if (packet->grh) { 297 u32 vtf; 298 struct ib_grh *grh = packet->grh; 299 300 if (grh->next_hdr != IB_GRH_NEXT_HDR) 301 goto drop; 302 vtf = be32_to_cpu(grh->version_tclass_flow); 303 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION) 304 goto drop; 305 } 306 307 /* Get the destination QP number. */ 308 qp_num = ib_bth_get_qpn(packet->ohdr); 309 if (dlid < mlid_base) { 310 struct rvt_qp *qp; 311 unsigned long flags; 312 313 rcu_read_lock(); 314 qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num); 315 if (!qp) { 316 rcu_read_unlock(); 317 goto drop; 318 } 319 320 /* 321 * Handle only RC QPs - for other QP types drop error 322 * packet. 323 */ 324 spin_lock_irqsave(&qp->r_lock, flags); 325 326 /* Check for valid receive state. */ 327 if (!(ib_rvt_state_ops[qp->state] & 328 RVT_PROCESS_RECV_OK)) { 329 ibp->rvp.n_pkt_drops++; 330 } 331 332 switch (qp->ibqp.qp_type) { 333 case IB_QPT_RC: 334 hfi1_rc_hdrerr(rcd, packet, qp); 335 break; 336 default: 337 /* For now don't handle any other QP types */ 338 break; 339 } 340 341 spin_unlock_irqrestore(&qp->r_lock, flags); 342 rcu_read_unlock(); 343 } /* Unicast QP */ 344 } /* Valid packet with TIDErr */ 345 346 /* handle "RcvTypeErr" flags */ 347 switch (rte) { 348 case RHF_RTE_ERROR_OP_CODE_ERR: 349 { 350 void *ebuf = NULL; 351 u8 opcode; 352 353 if (rhf_use_egr_bfr(packet->rhf)) 354 ebuf = packet->ebuf; 355 356 if (!ebuf) 357 goto drop; /* this should never happen */ 358 359 opcode = ib_bth_get_opcode(packet->ohdr); 360 if (opcode == IB_OPCODE_CNP) { 361 /* 362 * Only in pre-B0 h/w is the CNP_OPCODE handled 363 * via this code path. 364 */ 365 struct rvt_qp *qp = NULL; 366 u32 lqpn, rqpn; 367 u16 rlid; 368 u8 svc_type, sl, sc5; 369 370 sc5 = hfi1_9B_get_sc5(rhdr, packet->rhf); 371 sl = ibp->sc_to_sl[sc5]; 372 373 lqpn = ib_bth_get_qpn(packet->ohdr); 374 rcu_read_lock(); 375 qp = rvt_lookup_qpn(rdi, &ibp->rvp, lqpn); 376 if (!qp) { 377 rcu_read_unlock(); 378 goto drop; 379 } 380 381 switch (qp->ibqp.qp_type) { 382 case IB_QPT_UD: 383 rlid = 0; 384 rqpn = 0; 385 svc_type = IB_CC_SVCTYPE_UD; 386 break; 387 case IB_QPT_UC: 388 rlid = ib_get_slid(rhdr); 389 rqpn = qp->remote_qpn; 390 svc_type = IB_CC_SVCTYPE_UC; 391 break; 392 default: 393 rcu_read_unlock(); 394 goto drop; 395 } 396 397 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type); 398 rcu_read_unlock(); 399 } 400 401 packet->rhf &= ~RHF_RCV_TYPE_ERR_SMASK; 402 break; 403 } 404 default: 405 break; 406 } 407 408 drop: 409 return; 410 } 411 412 static inline void init_packet(struct hfi1_ctxtdata *rcd, 413 struct hfi1_packet *packet) 414 { 415 packet->rsize = rcd->rcvhdrqentsize; /* words */ 416 packet->maxcnt = rcd->rcvhdrq_cnt * packet->rsize; /* words */ 417 packet->rcd = rcd; 418 packet->updegr = 0; 419 packet->etail = -1; 420 packet->rhf_addr = get_rhf_addr(rcd); 421 packet->rhf = rhf_to_cpu(packet->rhf_addr); 422 packet->rhqoff = rcd->head; 423 packet->numpkt = 0; 424 } 425 426 /* We support only two types - 9B and 16B for now */ 427 static const hfi1_handle_cnp hfi1_handle_cnp_tbl[2] = { 428 [HFI1_PKT_TYPE_9B] = &return_cnp, 429 [HFI1_PKT_TYPE_16B] = &return_cnp_16B 430 }; 431 432 void hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt, 433 bool do_cnp) 434 { 435 struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num); 436 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 437 struct ib_other_headers *ohdr = pkt->ohdr; 438 struct ib_grh *grh = pkt->grh; 439 u32 rqpn = 0, bth1; 440 u16 pkey; 441 u32 rlid, slid, dlid = 0; 442 u8 hdr_type, sc, svc_type; 443 bool is_mcast = false; 444 445 /* can be called from prescan */ 446 if (pkt->etype == RHF_RCV_TYPE_BYPASS) { 447 is_mcast = hfi1_is_16B_mcast(dlid); 448 pkey = hfi1_16B_get_pkey(pkt->hdr); 449 sc = hfi1_16B_get_sc(pkt->hdr); 450 dlid = hfi1_16B_get_dlid(pkt->hdr); 451 slid = hfi1_16B_get_slid(pkt->hdr); 452 hdr_type = HFI1_PKT_TYPE_16B; 453 } else { 454 is_mcast = (dlid > be16_to_cpu(IB_MULTICAST_LID_BASE)) && 455 (dlid != be16_to_cpu(IB_LID_PERMISSIVE)); 456 pkey = ib_bth_get_pkey(ohdr); 457 sc = hfi1_9B_get_sc5(pkt->hdr, pkt->rhf); 458 dlid = ib_get_dlid(pkt->hdr); 459 slid = ib_get_slid(pkt->hdr); 460 hdr_type = HFI1_PKT_TYPE_9B; 461 } 462 463 switch (qp->ibqp.qp_type) { 464 case IB_QPT_UD: 465 dlid = ppd->lid; 466 rlid = slid; 467 rqpn = ib_get_sqpn(pkt->ohdr); 468 svc_type = IB_CC_SVCTYPE_UD; 469 break; 470 case IB_QPT_SMI: 471 case IB_QPT_GSI: 472 rlid = slid; 473 rqpn = ib_get_sqpn(pkt->ohdr); 474 svc_type = IB_CC_SVCTYPE_UD; 475 break; 476 case IB_QPT_UC: 477 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr); 478 rqpn = qp->remote_qpn; 479 svc_type = IB_CC_SVCTYPE_UC; 480 break; 481 case IB_QPT_RC: 482 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr); 483 rqpn = qp->remote_qpn; 484 svc_type = IB_CC_SVCTYPE_RC; 485 break; 486 default: 487 return; 488 } 489 490 bth1 = be32_to_cpu(ohdr->bth[1]); 491 /* Call appropriate CNP handler */ 492 if (do_cnp && (bth1 & IB_FECN_SMASK)) 493 hfi1_handle_cnp_tbl[hdr_type](ibp, qp, rqpn, pkey, 494 dlid, rlid, sc, grh); 495 496 if (!is_mcast && (bth1 & IB_BECN_SMASK)) { 497 u32 lqpn = bth1 & RVT_QPN_MASK; 498 u8 sl = ibp->sc_to_sl[sc]; 499 500 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type); 501 } 502 503 } 504 505 struct ps_mdata { 506 struct hfi1_ctxtdata *rcd; 507 u32 rsize; 508 u32 maxcnt; 509 u32 ps_head; 510 u32 ps_tail; 511 u32 ps_seq; 512 }; 513 514 static inline void init_ps_mdata(struct ps_mdata *mdata, 515 struct hfi1_packet *packet) 516 { 517 struct hfi1_ctxtdata *rcd = packet->rcd; 518 519 mdata->rcd = rcd; 520 mdata->rsize = packet->rsize; 521 mdata->maxcnt = packet->maxcnt; 522 mdata->ps_head = packet->rhqoff; 523 524 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) { 525 mdata->ps_tail = get_rcvhdrtail(rcd); 526 if (rcd->ctxt == HFI1_CTRL_CTXT) 527 mdata->ps_seq = rcd->seq_cnt; 528 else 529 mdata->ps_seq = 0; /* not used with DMA_RTAIL */ 530 } else { 531 mdata->ps_tail = 0; /* used only with DMA_RTAIL*/ 532 mdata->ps_seq = rcd->seq_cnt; 533 } 534 } 535 536 static inline int ps_done(struct ps_mdata *mdata, u64 rhf, 537 struct hfi1_ctxtdata *rcd) 538 { 539 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) 540 return mdata->ps_head == mdata->ps_tail; 541 return mdata->ps_seq != rhf_rcv_seq(rhf); 542 } 543 544 static inline int ps_skip(struct ps_mdata *mdata, u64 rhf, 545 struct hfi1_ctxtdata *rcd) 546 { 547 /* 548 * Control context can potentially receive an invalid rhf. 549 * Drop such packets. 550 */ 551 if ((rcd->ctxt == HFI1_CTRL_CTXT) && (mdata->ps_head != mdata->ps_tail)) 552 return mdata->ps_seq != rhf_rcv_seq(rhf); 553 554 return 0; 555 } 556 557 static inline void update_ps_mdata(struct ps_mdata *mdata, 558 struct hfi1_ctxtdata *rcd) 559 { 560 mdata->ps_head += mdata->rsize; 561 if (mdata->ps_head >= mdata->maxcnt) 562 mdata->ps_head = 0; 563 564 /* Control context must do seq counting */ 565 if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) || 566 (rcd->ctxt == HFI1_CTRL_CTXT)) { 567 if (++mdata->ps_seq > 13) 568 mdata->ps_seq = 1; 569 } 570 } 571 572 /* 573 * prescan_rxq - search through the receive queue looking for packets 574 * containing Excplicit Congestion Notifications (FECNs, or BECNs). 575 * When an ECN is found, process the Congestion Notification, and toggle 576 * it off. 577 * This is declared as a macro to allow quick checking of the port to avoid 578 * the overhead of a function call if not enabled. 579 */ 580 #define prescan_rxq(rcd, packet) \ 581 do { \ 582 if (rcd->ppd->cc_prescan) \ 583 __prescan_rxq(packet); \ 584 } while (0) 585 static void __prescan_rxq(struct hfi1_packet *packet) 586 { 587 struct hfi1_ctxtdata *rcd = packet->rcd; 588 struct ps_mdata mdata; 589 590 init_ps_mdata(&mdata, packet); 591 592 while (1) { 593 struct hfi1_devdata *dd = rcd->dd; 594 struct hfi1_ibport *ibp = rcd_to_iport(rcd); 595 __le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head + 596 dd->rhf_offset; 597 struct rvt_qp *qp; 598 struct ib_header *hdr; 599 struct rvt_dev_info *rdi = &dd->verbs_dev.rdi; 600 u64 rhf = rhf_to_cpu(rhf_addr); 601 u32 etype = rhf_rcv_type(rhf), qpn, bth1; 602 int is_ecn = 0; 603 u8 lnh; 604 605 if (ps_done(&mdata, rhf, rcd)) 606 break; 607 608 if (ps_skip(&mdata, rhf, rcd)) 609 goto next; 610 611 if (etype != RHF_RCV_TYPE_IB) 612 goto next; 613 614 packet->hdr = hfi1_get_msgheader(dd, rhf_addr); 615 hdr = packet->hdr; 616 lnh = ib_get_lnh(hdr); 617 618 if (lnh == HFI1_LRH_BTH) { 619 packet->ohdr = &hdr->u.oth; 620 packet->grh = NULL; 621 } else if (lnh == HFI1_LRH_GRH) { 622 packet->ohdr = &hdr->u.l.oth; 623 packet->grh = &hdr->u.l.grh; 624 } else { 625 goto next; /* just in case */ 626 } 627 628 bth1 = be32_to_cpu(packet->ohdr->bth[1]); 629 is_ecn = !!(bth1 & (IB_FECN_SMASK | IB_BECN_SMASK)); 630 631 if (!is_ecn) 632 goto next; 633 634 qpn = bth1 & RVT_QPN_MASK; 635 rcu_read_lock(); 636 qp = rvt_lookup_qpn(rdi, &ibp->rvp, qpn); 637 638 if (!qp) { 639 rcu_read_unlock(); 640 goto next; 641 } 642 643 process_ecn(qp, packet, true); 644 rcu_read_unlock(); 645 646 /* turn off BECN, FECN */ 647 bth1 &= ~(IB_FECN_SMASK | IB_BECN_SMASK); 648 packet->ohdr->bth[1] = cpu_to_be32(bth1); 649 next: 650 update_ps_mdata(&mdata, rcd); 651 } 652 } 653 654 static void process_rcv_qp_work(struct hfi1_packet *packet) 655 { 656 struct rvt_qp *qp, *nqp; 657 struct hfi1_ctxtdata *rcd = packet->rcd; 658 659 /* 660 * Iterate over all QPs waiting to respond. 661 * The list won't change since the IRQ is only run on one CPU. 662 */ 663 list_for_each_entry_safe(qp, nqp, &rcd->qp_wait_list, rspwait) { 664 list_del_init(&qp->rspwait); 665 if (qp->r_flags & RVT_R_RSP_NAK) { 666 qp->r_flags &= ~RVT_R_RSP_NAK; 667 packet->qp = qp; 668 hfi1_send_rc_ack(packet, 0); 669 } 670 if (qp->r_flags & RVT_R_RSP_SEND) { 671 unsigned long flags; 672 673 qp->r_flags &= ~RVT_R_RSP_SEND; 674 spin_lock_irqsave(&qp->s_lock, flags); 675 if (ib_rvt_state_ops[qp->state] & 676 RVT_PROCESS_OR_FLUSH_SEND) 677 hfi1_schedule_send(qp); 678 spin_unlock_irqrestore(&qp->s_lock, flags); 679 } 680 rvt_put_qp(qp); 681 } 682 } 683 684 static noinline int max_packet_exceeded(struct hfi1_packet *packet, int thread) 685 { 686 if (thread) { 687 if ((packet->numpkt & (MAX_PKT_RECV_THREAD - 1)) == 0) 688 /* allow defered processing */ 689 process_rcv_qp_work(packet); 690 cond_resched(); 691 return RCV_PKT_OK; 692 } else { 693 this_cpu_inc(*packet->rcd->dd->rcv_limit); 694 return RCV_PKT_LIMIT; 695 } 696 } 697 698 static inline int check_max_packet(struct hfi1_packet *packet, int thread) 699 { 700 int ret = RCV_PKT_OK; 701 702 if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0)) 703 ret = max_packet_exceeded(packet, thread); 704 return ret; 705 } 706 707 static noinline int skip_rcv_packet(struct hfi1_packet *packet, int thread) 708 { 709 int ret; 710 711 /* Set up for the next packet */ 712 packet->rhqoff += packet->rsize; 713 if (packet->rhqoff >= packet->maxcnt) 714 packet->rhqoff = 0; 715 716 packet->numpkt++; 717 ret = check_max_packet(packet, thread); 718 719 packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff + 720 packet->rcd->dd->rhf_offset; 721 packet->rhf = rhf_to_cpu(packet->rhf_addr); 722 723 return ret; 724 } 725 726 static inline int process_rcv_packet(struct hfi1_packet *packet, int thread) 727 { 728 int ret; 729 730 packet->etype = rhf_rcv_type(packet->rhf); 731 732 /* total length */ 733 packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */ 734 /* retrieve eager buffer details */ 735 packet->ebuf = NULL; 736 if (rhf_use_egr_bfr(packet->rhf)) { 737 packet->etail = rhf_egr_index(packet->rhf); 738 packet->ebuf = get_egrbuf(packet->rcd, packet->rhf, 739 &packet->updegr); 740 /* 741 * Prefetch the contents of the eager buffer. It is 742 * OK to send a negative length to prefetch_range(). 743 * The +2 is the size of the RHF. 744 */ 745 prefetch_range(packet->ebuf, 746 packet->tlen - ((packet->rcd->rcvhdrqentsize - 747 (rhf_hdrq_offset(packet->rhf) 748 + 2)) * 4)); 749 } 750 751 /* 752 * Call a type specific handler for the packet. We 753 * should be able to trust that etype won't be beyond 754 * the range of valid indexes. If so something is really 755 * wrong and we can probably just let things come 756 * crashing down. There is no need to eat another 757 * comparison in this performance critical code. 758 */ 759 packet->rcd->dd->rhf_rcv_function_map[packet->etype](packet); 760 packet->numpkt++; 761 762 /* Set up for the next packet */ 763 packet->rhqoff += packet->rsize; 764 if (packet->rhqoff >= packet->maxcnt) 765 packet->rhqoff = 0; 766 767 ret = check_max_packet(packet, thread); 768 769 packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff + 770 packet->rcd->dd->rhf_offset; 771 packet->rhf = rhf_to_cpu(packet->rhf_addr); 772 773 return ret; 774 } 775 776 static inline void process_rcv_update(int last, struct hfi1_packet *packet) 777 { 778 /* 779 * Update head regs etc., every 16 packets, if not last pkt, 780 * to help prevent rcvhdrq overflows, when many packets 781 * are processed and queue is nearly full. 782 * Don't request an interrupt for intermediate updates. 783 */ 784 if (!last && !(packet->numpkt & 0xf)) { 785 update_usrhead(packet->rcd, packet->rhqoff, packet->updegr, 786 packet->etail, 0, 0); 787 packet->updegr = 0; 788 } 789 packet->grh = NULL; 790 } 791 792 static inline void finish_packet(struct hfi1_packet *packet) 793 { 794 /* 795 * Nothing we need to free for the packet. 796 * 797 * The only thing we need to do is a final update and call for an 798 * interrupt 799 */ 800 update_usrhead(packet->rcd, packet->rcd->head, packet->updegr, 801 packet->etail, rcv_intr_dynamic, packet->numpkt); 802 } 803 804 /* 805 * Handle receive interrupts when using the no dma rtail option. 806 */ 807 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread) 808 { 809 u32 seq; 810 int last = RCV_PKT_OK; 811 struct hfi1_packet packet; 812 813 init_packet(rcd, &packet); 814 seq = rhf_rcv_seq(packet.rhf); 815 if (seq != rcd->seq_cnt) { 816 last = RCV_PKT_DONE; 817 goto bail; 818 } 819 820 prescan_rxq(rcd, &packet); 821 822 while (last == RCV_PKT_OK) { 823 last = process_rcv_packet(&packet, thread); 824 seq = rhf_rcv_seq(packet.rhf); 825 if (++rcd->seq_cnt > 13) 826 rcd->seq_cnt = 1; 827 if (seq != rcd->seq_cnt) 828 last = RCV_PKT_DONE; 829 process_rcv_update(last, &packet); 830 } 831 process_rcv_qp_work(&packet); 832 rcd->head = packet.rhqoff; 833 bail: 834 finish_packet(&packet); 835 return last; 836 } 837 838 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread) 839 { 840 u32 hdrqtail; 841 int last = RCV_PKT_OK; 842 struct hfi1_packet packet; 843 844 init_packet(rcd, &packet); 845 hdrqtail = get_rcvhdrtail(rcd); 846 if (packet.rhqoff == hdrqtail) { 847 last = RCV_PKT_DONE; 848 goto bail; 849 } 850 smp_rmb(); /* prevent speculative reads of dma'ed hdrq */ 851 852 prescan_rxq(rcd, &packet); 853 854 while (last == RCV_PKT_OK) { 855 last = process_rcv_packet(&packet, thread); 856 if (packet.rhqoff == hdrqtail) 857 last = RCV_PKT_DONE; 858 process_rcv_update(last, &packet); 859 } 860 process_rcv_qp_work(&packet); 861 rcd->head = packet.rhqoff; 862 bail: 863 finish_packet(&packet); 864 return last; 865 } 866 867 static inline void set_nodma_rtail(struct hfi1_devdata *dd, u16 ctxt) 868 { 869 struct hfi1_ctxtdata *rcd; 870 u16 i; 871 872 /* 873 * For dynamically allocated kernel contexts (like vnic) switch 874 * interrupt handler only for that context. Otherwise, switch 875 * interrupt handler for all statically allocated kernel contexts. 876 */ 877 if (ctxt >= dd->first_dyn_alloc_ctxt) { 878 rcd = hfi1_rcd_get_by_index_safe(dd, ctxt); 879 if (rcd) { 880 rcd->do_interrupt = 881 &handle_receive_interrupt_nodma_rtail; 882 hfi1_rcd_put(rcd); 883 } 884 return; 885 } 886 887 for (i = HFI1_CTRL_CTXT + 1; i < dd->first_dyn_alloc_ctxt; i++) { 888 rcd = hfi1_rcd_get_by_index(dd, i); 889 if (rcd) 890 rcd->do_interrupt = 891 &handle_receive_interrupt_nodma_rtail; 892 hfi1_rcd_put(rcd); 893 } 894 } 895 896 static inline void set_dma_rtail(struct hfi1_devdata *dd, u16 ctxt) 897 { 898 struct hfi1_ctxtdata *rcd; 899 u16 i; 900 901 /* 902 * For dynamically allocated kernel contexts (like vnic) switch 903 * interrupt handler only for that context. Otherwise, switch 904 * interrupt handler for all statically allocated kernel contexts. 905 */ 906 if (ctxt >= dd->first_dyn_alloc_ctxt) { 907 rcd = hfi1_rcd_get_by_index_safe(dd, ctxt); 908 if (rcd) { 909 rcd->do_interrupt = 910 &handle_receive_interrupt_dma_rtail; 911 hfi1_rcd_put(rcd); 912 } 913 return; 914 } 915 916 for (i = HFI1_CTRL_CTXT + 1; i < dd->first_dyn_alloc_ctxt; i++) { 917 rcd = hfi1_rcd_get_by_index(dd, i); 918 if (rcd) 919 rcd->do_interrupt = 920 &handle_receive_interrupt_dma_rtail; 921 hfi1_rcd_put(rcd); 922 } 923 } 924 925 void set_all_slowpath(struct hfi1_devdata *dd) 926 { 927 struct hfi1_ctxtdata *rcd; 928 u16 i; 929 930 /* HFI1_CTRL_CTXT must always use the slow path interrupt handler */ 931 for (i = HFI1_CTRL_CTXT + 1; i < dd->num_rcv_contexts; i++) { 932 rcd = hfi1_rcd_get_by_index(dd, i); 933 if (!rcd) 934 continue; 935 if (i < dd->first_dyn_alloc_ctxt || rcd->is_vnic) 936 rcd->do_interrupt = &handle_receive_interrupt; 937 938 hfi1_rcd_put(rcd); 939 } 940 } 941 942 static inline int set_armed_to_active(struct hfi1_ctxtdata *rcd, 943 struct hfi1_packet *packet, 944 struct hfi1_devdata *dd) 945 { 946 struct work_struct *lsaw = &rcd->ppd->linkstate_active_work; 947 u8 etype = rhf_rcv_type(packet->rhf); 948 u8 sc = SC15_PACKET; 949 950 if (etype == RHF_RCV_TYPE_IB) { 951 struct ib_header *hdr = hfi1_get_msgheader(packet->rcd->dd, 952 packet->rhf_addr); 953 sc = hfi1_9B_get_sc5(hdr, packet->rhf); 954 } else if (etype == RHF_RCV_TYPE_BYPASS) { 955 struct hfi1_16b_header *hdr = hfi1_get_16B_header( 956 packet->rcd->dd, 957 packet->rhf_addr); 958 sc = hfi1_16B_get_sc(hdr); 959 } 960 if (sc != SC15_PACKET) { 961 int hwstate = driver_lstate(rcd->ppd); 962 963 if (hwstate != IB_PORT_ACTIVE) { 964 dd_dev_info(dd, 965 "Unexpected link state %s\n", 966 opa_lstate_name(hwstate)); 967 return 0; 968 } 969 970 queue_work(rcd->ppd->link_wq, lsaw); 971 return 1; 972 } 973 return 0; 974 } 975 976 /* 977 * handle_receive_interrupt - receive a packet 978 * @rcd: the context 979 * 980 * Called from interrupt handler for errors or receive interrupt. 981 * This is the slow path interrupt handler. 982 */ 983 int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread) 984 { 985 struct hfi1_devdata *dd = rcd->dd; 986 u32 hdrqtail; 987 int needset, last = RCV_PKT_OK; 988 struct hfi1_packet packet; 989 int skip_pkt = 0; 990 991 /* Control context will always use the slow path interrupt handler */ 992 needset = (rcd->ctxt == HFI1_CTRL_CTXT) ? 0 : 1; 993 994 init_packet(rcd, &packet); 995 996 if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) { 997 u32 seq = rhf_rcv_seq(packet.rhf); 998 999 if (seq != rcd->seq_cnt) { 1000 last = RCV_PKT_DONE; 1001 goto bail; 1002 } 1003 hdrqtail = 0; 1004 } else { 1005 hdrqtail = get_rcvhdrtail(rcd); 1006 if (packet.rhqoff == hdrqtail) { 1007 last = RCV_PKT_DONE; 1008 goto bail; 1009 } 1010 smp_rmb(); /* prevent speculative reads of dma'ed hdrq */ 1011 1012 /* 1013 * Control context can potentially receive an invalid 1014 * rhf. Drop such packets. 1015 */ 1016 if (rcd->ctxt == HFI1_CTRL_CTXT) { 1017 u32 seq = rhf_rcv_seq(packet.rhf); 1018 1019 if (seq != rcd->seq_cnt) 1020 skip_pkt = 1; 1021 } 1022 } 1023 1024 prescan_rxq(rcd, &packet); 1025 1026 while (last == RCV_PKT_OK) { 1027 if (unlikely(dd->do_drop && 1028 atomic_xchg(&dd->drop_packet, DROP_PACKET_OFF) == 1029 DROP_PACKET_ON)) { 1030 dd->do_drop = 0; 1031 1032 /* On to the next packet */ 1033 packet.rhqoff += packet.rsize; 1034 packet.rhf_addr = (__le32 *)rcd->rcvhdrq + 1035 packet.rhqoff + 1036 dd->rhf_offset; 1037 packet.rhf = rhf_to_cpu(packet.rhf_addr); 1038 1039 } else if (skip_pkt) { 1040 last = skip_rcv_packet(&packet, thread); 1041 skip_pkt = 0; 1042 } else { 1043 /* Auto activate link on non-SC15 packet receive */ 1044 if (unlikely(rcd->ppd->host_link_state == 1045 HLS_UP_ARMED) && 1046 set_armed_to_active(rcd, &packet, dd)) 1047 goto bail; 1048 last = process_rcv_packet(&packet, thread); 1049 } 1050 1051 if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) { 1052 u32 seq = rhf_rcv_seq(packet.rhf); 1053 1054 if (++rcd->seq_cnt > 13) 1055 rcd->seq_cnt = 1; 1056 if (seq != rcd->seq_cnt) 1057 last = RCV_PKT_DONE; 1058 if (needset) { 1059 dd_dev_info(dd, "Switching to NO_DMA_RTAIL\n"); 1060 set_nodma_rtail(dd, rcd->ctxt); 1061 needset = 0; 1062 } 1063 } else { 1064 if (packet.rhqoff == hdrqtail) 1065 last = RCV_PKT_DONE; 1066 /* 1067 * Control context can potentially receive an invalid 1068 * rhf. Drop such packets. 1069 */ 1070 if (rcd->ctxt == HFI1_CTRL_CTXT) { 1071 u32 seq = rhf_rcv_seq(packet.rhf); 1072 1073 if (++rcd->seq_cnt > 13) 1074 rcd->seq_cnt = 1; 1075 if (!last && (seq != rcd->seq_cnt)) 1076 skip_pkt = 1; 1077 } 1078 1079 if (needset) { 1080 dd_dev_info(dd, 1081 "Switching to DMA_RTAIL\n"); 1082 set_dma_rtail(dd, rcd->ctxt); 1083 needset = 0; 1084 } 1085 } 1086 1087 process_rcv_update(last, &packet); 1088 } 1089 1090 process_rcv_qp_work(&packet); 1091 rcd->head = packet.rhqoff; 1092 1093 bail: 1094 /* 1095 * Always write head at end, and setup rcv interrupt, even 1096 * if no packets were processed. 1097 */ 1098 finish_packet(&packet); 1099 return last; 1100 } 1101 1102 /* 1103 * We may discover in the interrupt that the hardware link state has 1104 * changed from ARMED to ACTIVE (due to the arrival of a non-SC15 packet), 1105 * and we need to update the driver's notion of the link state. We cannot 1106 * run set_link_state from interrupt context, so we queue this function on 1107 * a workqueue. 1108 * 1109 * We delay the regular interrupt processing until after the state changes 1110 * so that the link will be in the correct state by the time any application 1111 * we wake up attempts to send a reply to any message it received. 1112 * (Subsequent receive interrupts may possibly force the wakeup before we 1113 * update the link state.) 1114 * 1115 * The rcd is freed in hfi1_free_ctxtdata after hfi1_postinit_cleanup invokes 1116 * dd->f_cleanup(dd) to disable the interrupt handler and flush workqueues, 1117 * so we're safe from use-after-free of the rcd. 1118 */ 1119 void receive_interrupt_work(struct work_struct *work) 1120 { 1121 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 1122 linkstate_active_work); 1123 struct hfi1_devdata *dd = ppd->dd; 1124 struct hfi1_ctxtdata *rcd; 1125 u16 i; 1126 1127 /* Received non-SC15 packet implies neighbor_normal */ 1128 ppd->neighbor_normal = 1; 1129 set_link_state(ppd, HLS_UP_ACTIVE); 1130 1131 /* 1132 * Interrupt all statically allocated kernel contexts that could 1133 * have had an interrupt during auto activation. 1134 */ 1135 for (i = HFI1_CTRL_CTXT; i < dd->first_dyn_alloc_ctxt; i++) { 1136 rcd = hfi1_rcd_get_by_index(dd, i); 1137 if (rcd) 1138 force_recv_intr(rcd); 1139 hfi1_rcd_put(rcd); 1140 } 1141 } 1142 1143 /* 1144 * Convert a given MTU size to the on-wire MAD packet enumeration. 1145 * Return -1 if the size is invalid. 1146 */ 1147 int mtu_to_enum(u32 mtu, int default_if_bad) 1148 { 1149 switch (mtu) { 1150 case 0: return OPA_MTU_0; 1151 case 256: return OPA_MTU_256; 1152 case 512: return OPA_MTU_512; 1153 case 1024: return OPA_MTU_1024; 1154 case 2048: return OPA_MTU_2048; 1155 case 4096: return OPA_MTU_4096; 1156 case 8192: return OPA_MTU_8192; 1157 case 10240: return OPA_MTU_10240; 1158 } 1159 return default_if_bad; 1160 } 1161 1162 u16 enum_to_mtu(int mtu) 1163 { 1164 switch (mtu) { 1165 case OPA_MTU_0: return 0; 1166 case OPA_MTU_256: return 256; 1167 case OPA_MTU_512: return 512; 1168 case OPA_MTU_1024: return 1024; 1169 case OPA_MTU_2048: return 2048; 1170 case OPA_MTU_4096: return 4096; 1171 case OPA_MTU_8192: return 8192; 1172 case OPA_MTU_10240: return 10240; 1173 default: return 0xffff; 1174 } 1175 } 1176 1177 /* 1178 * set_mtu - set the MTU 1179 * @ppd: the per port data 1180 * 1181 * We can handle "any" incoming size, the issue here is whether we 1182 * need to restrict our outgoing size. We do not deal with what happens 1183 * to programs that are already running when the size changes. 1184 */ 1185 int set_mtu(struct hfi1_pportdata *ppd) 1186 { 1187 struct hfi1_devdata *dd = ppd->dd; 1188 int i, drain, ret = 0, is_up = 0; 1189 1190 ppd->ibmtu = 0; 1191 for (i = 0; i < ppd->vls_supported; i++) 1192 if (ppd->ibmtu < dd->vld[i].mtu) 1193 ppd->ibmtu = dd->vld[i].mtu; 1194 ppd->ibmaxlen = ppd->ibmtu + lrh_max_header_bytes(ppd->dd); 1195 1196 mutex_lock(&ppd->hls_lock); 1197 if (ppd->host_link_state == HLS_UP_INIT || 1198 ppd->host_link_state == HLS_UP_ARMED || 1199 ppd->host_link_state == HLS_UP_ACTIVE) 1200 is_up = 1; 1201 1202 drain = !is_ax(dd) && is_up; 1203 1204 if (drain) 1205 /* 1206 * MTU is specified per-VL. To ensure that no packet gets 1207 * stuck (due, e.g., to the MTU for the packet's VL being 1208 * reduced), empty the per-VL FIFOs before adjusting MTU. 1209 */ 1210 ret = stop_drain_data_vls(dd); 1211 1212 if (ret) { 1213 dd_dev_err(dd, "%s: cannot stop/drain VLs - refusing to change per-VL MTUs\n", 1214 __func__); 1215 goto err; 1216 } 1217 1218 hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_MTU, 0); 1219 1220 if (drain) 1221 open_fill_data_vls(dd); /* reopen all VLs */ 1222 1223 err: 1224 mutex_unlock(&ppd->hls_lock); 1225 1226 return ret; 1227 } 1228 1229 int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc) 1230 { 1231 struct hfi1_devdata *dd = ppd->dd; 1232 1233 ppd->lid = lid; 1234 ppd->lmc = lmc; 1235 hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LIDLMC, 0); 1236 1237 dd_dev_info(dd, "port %u: got a lid: 0x%x\n", ppd->port, lid); 1238 1239 return 0; 1240 } 1241 1242 void shutdown_led_override(struct hfi1_pportdata *ppd) 1243 { 1244 struct hfi1_devdata *dd = ppd->dd; 1245 1246 /* 1247 * This pairs with the memory barrier in hfi1_start_led_override to 1248 * ensure that we read the correct state of LED beaconing represented 1249 * by led_override_timer_active 1250 */ 1251 smp_rmb(); 1252 if (atomic_read(&ppd->led_override_timer_active)) { 1253 del_timer_sync(&ppd->led_override_timer); 1254 atomic_set(&ppd->led_override_timer_active, 0); 1255 /* Ensure the atomic_set is visible to all CPUs */ 1256 smp_wmb(); 1257 } 1258 1259 /* Hand control of the LED to the DC for normal operation */ 1260 write_csr(dd, DCC_CFG_LED_CNTRL, 0); 1261 } 1262 1263 static void run_led_override(struct timer_list *t) 1264 { 1265 struct hfi1_pportdata *ppd = from_timer(ppd, t, led_override_timer); 1266 struct hfi1_devdata *dd = ppd->dd; 1267 unsigned long timeout; 1268 int phase_idx; 1269 1270 if (!(dd->flags & HFI1_INITTED)) 1271 return; 1272 1273 phase_idx = ppd->led_override_phase & 1; 1274 1275 setextled(dd, phase_idx); 1276 1277 timeout = ppd->led_override_vals[phase_idx]; 1278 1279 /* Set up for next phase */ 1280 ppd->led_override_phase = !ppd->led_override_phase; 1281 1282 mod_timer(&ppd->led_override_timer, jiffies + timeout); 1283 } 1284 1285 /* 1286 * To have the LED blink in a particular pattern, provide timeon and timeoff 1287 * in milliseconds. 1288 * To turn off custom blinking and return to normal operation, use 1289 * shutdown_led_override() 1290 */ 1291 void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon, 1292 unsigned int timeoff) 1293 { 1294 if (!(ppd->dd->flags & HFI1_INITTED)) 1295 return; 1296 1297 /* Convert to jiffies for direct use in timer */ 1298 ppd->led_override_vals[0] = msecs_to_jiffies(timeoff); 1299 ppd->led_override_vals[1] = msecs_to_jiffies(timeon); 1300 1301 /* Arbitrarily start from LED on phase */ 1302 ppd->led_override_phase = 1; 1303 1304 /* 1305 * If the timer has not already been started, do so. Use a "quick" 1306 * timeout so the handler will be called soon to look at our request. 1307 */ 1308 if (!timer_pending(&ppd->led_override_timer)) { 1309 timer_setup(&ppd->led_override_timer, run_led_override, 0); 1310 ppd->led_override_timer.expires = jiffies + 1; 1311 add_timer(&ppd->led_override_timer); 1312 atomic_set(&ppd->led_override_timer_active, 1); 1313 /* Ensure the atomic_set is visible to all CPUs */ 1314 smp_wmb(); 1315 } 1316 } 1317 1318 /** 1319 * hfi1_reset_device - reset the chip if possible 1320 * @unit: the device to reset 1321 * 1322 * Whether or not reset is successful, we attempt to re-initialize the chip 1323 * (that is, much like a driver unload/reload). We clear the INITTED flag 1324 * so that the various entry points will fail until we reinitialize. For 1325 * now, we only allow this if no user contexts are open that use chip resources 1326 */ 1327 int hfi1_reset_device(int unit) 1328 { 1329 int ret; 1330 struct hfi1_devdata *dd = hfi1_lookup(unit); 1331 struct hfi1_pportdata *ppd; 1332 int pidx; 1333 1334 if (!dd) { 1335 ret = -ENODEV; 1336 goto bail; 1337 } 1338 1339 dd_dev_info(dd, "Reset on unit %u requested\n", unit); 1340 1341 if (!dd->kregbase1 || !(dd->flags & HFI1_PRESENT)) { 1342 dd_dev_info(dd, 1343 "Invalid unit number %u or not initialized or not present\n", 1344 unit); 1345 ret = -ENXIO; 1346 goto bail; 1347 } 1348 1349 /* If there are any user/vnic contexts, we cannot reset */ 1350 mutex_lock(&hfi1_mutex); 1351 if (dd->rcd) 1352 if (hfi1_stats.sps_ctxts) { 1353 mutex_unlock(&hfi1_mutex); 1354 ret = -EBUSY; 1355 goto bail; 1356 } 1357 mutex_unlock(&hfi1_mutex); 1358 1359 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1360 ppd = dd->pport + pidx; 1361 1362 shutdown_led_override(ppd); 1363 } 1364 if (dd->flags & HFI1_HAS_SEND_DMA) 1365 sdma_exit(dd); 1366 1367 hfi1_reset_cpu_counters(dd); 1368 1369 ret = hfi1_init(dd, 1); 1370 1371 if (ret) 1372 dd_dev_err(dd, 1373 "Reinitialize unit %u after reset failed with %d\n", 1374 unit, ret); 1375 else 1376 dd_dev_info(dd, "Reinitialized unit %u after resetting\n", 1377 unit); 1378 1379 bail: 1380 return ret; 1381 } 1382 1383 static inline void hfi1_setup_ib_header(struct hfi1_packet *packet) 1384 { 1385 packet->hdr = (struct hfi1_ib_message_header *) 1386 hfi1_get_msgheader(packet->rcd->dd, 1387 packet->rhf_addr); 1388 packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr; 1389 } 1390 1391 static int hfi1_bypass_ingress_pkt_check(struct hfi1_packet *packet) 1392 { 1393 struct hfi1_pportdata *ppd = packet->rcd->ppd; 1394 1395 /* slid and dlid cannot be 0 */ 1396 if ((!packet->slid) || (!packet->dlid)) 1397 return -EINVAL; 1398 1399 /* Compare port lid with incoming packet dlid */ 1400 if ((!(hfi1_is_16B_mcast(packet->dlid))) && 1401 (packet->dlid != 1402 opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))) { 1403 if (packet->dlid != ppd->lid) 1404 return -EINVAL; 1405 } 1406 1407 /* No multicast packets with SC15 */ 1408 if ((hfi1_is_16B_mcast(packet->dlid)) && (packet->sc == 0xF)) 1409 return -EINVAL; 1410 1411 /* Packets with permissive DLID always on SC15 */ 1412 if ((packet->dlid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 1413 16B)) && 1414 (packet->sc != 0xF)) 1415 return -EINVAL; 1416 1417 return 0; 1418 } 1419 1420 static int hfi1_setup_9B_packet(struct hfi1_packet *packet) 1421 { 1422 struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd); 1423 struct ib_header *hdr; 1424 u8 lnh; 1425 1426 hfi1_setup_ib_header(packet); 1427 hdr = packet->hdr; 1428 1429 lnh = ib_get_lnh(hdr); 1430 if (lnh == HFI1_LRH_BTH) { 1431 packet->ohdr = &hdr->u.oth; 1432 packet->grh = NULL; 1433 } else if (lnh == HFI1_LRH_GRH) { 1434 u32 vtf; 1435 1436 packet->ohdr = &hdr->u.l.oth; 1437 packet->grh = &hdr->u.l.grh; 1438 if (packet->grh->next_hdr != IB_GRH_NEXT_HDR) 1439 goto drop; 1440 vtf = be32_to_cpu(packet->grh->version_tclass_flow); 1441 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION) 1442 goto drop; 1443 } else { 1444 goto drop; 1445 } 1446 1447 /* Query commonly used fields from packet header */ 1448 packet->payload = packet->ebuf; 1449 packet->opcode = ib_bth_get_opcode(packet->ohdr); 1450 packet->slid = ib_get_slid(hdr); 1451 packet->dlid = ib_get_dlid(hdr); 1452 if (unlikely((packet->dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) && 1453 (packet->dlid != be16_to_cpu(IB_LID_PERMISSIVE)))) 1454 packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) - 1455 be16_to_cpu(IB_MULTICAST_LID_BASE); 1456 packet->sl = ib_get_sl(hdr); 1457 packet->sc = hfi1_9B_get_sc5(hdr, packet->rhf); 1458 packet->pad = ib_bth_get_pad(packet->ohdr); 1459 packet->extra_byte = 0; 1460 packet->pkey = ib_bth_get_pkey(packet->ohdr); 1461 packet->migrated = ib_bth_is_migration(packet->ohdr); 1462 1463 return 0; 1464 drop: 1465 ibp->rvp.n_pkt_drops++; 1466 return -EINVAL; 1467 } 1468 1469 static int hfi1_setup_bypass_packet(struct hfi1_packet *packet) 1470 { 1471 /* 1472 * Bypass packets have a different header/payload split 1473 * compared to an IB packet. 1474 * Current split is set such that 16 bytes of the actual 1475 * header is in the header buffer and the remining is in 1476 * the eager buffer. We chose 16 since hfi1 driver only 1477 * supports 16B bypass packets and we will be able to 1478 * receive the entire LRH with such a split. 1479 */ 1480 1481 struct hfi1_ctxtdata *rcd = packet->rcd; 1482 struct hfi1_pportdata *ppd = rcd->ppd; 1483 struct hfi1_ibport *ibp = &ppd->ibport_data; 1484 u8 l4; 1485 u8 grh_len; 1486 1487 packet->hdr = (struct hfi1_16b_header *) 1488 hfi1_get_16B_header(packet->rcd->dd, 1489 packet->rhf_addr); 1490 packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr; 1491 1492 l4 = hfi1_16B_get_l4(packet->hdr); 1493 if (l4 == OPA_16B_L4_IB_LOCAL) { 1494 grh_len = 0; 1495 packet->ohdr = packet->ebuf; 1496 packet->grh = NULL; 1497 } else if (l4 == OPA_16B_L4_IB_GLOBAL) { 1498 u32 vtf; 1499 1500 grh_len = sizeof(struct ib_grh); 1501 packet->ohdr = packet->ebuf + grh_len; 1502 packet->grh = packet->ebuf; 1503 if (packet->grh->next_hdr != IB_GRH_NEXT_HDR) 1504 goto drop; 1505 vtf = be32_to_cpu(packet->grh->version_tclass_flow); 1506 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION) 1507 goto drop; 1508 } else { 1509 goto drop; 1510 } 1511 1512 /* Query commonly used fields from packet header */ 1513 packet->opcode = ib_bth_get_opcode(packet->ohdr); 1514 /* hdr_len_by_opcode already has an IB LRH factored in */ 1515 packet->hlen = hdr_len_by_opcode[packet->opcode] + 1516 (LRH_16B_BYTES - LRH_9B_BYTES) + grh_len; 1517 packet->payload = packet->ebuf + packet->hlen - LRH_16B_BYTES; 1518 packet->slid = hfi1_16B_get_slid(packet->hdr); 1519 packet->dlid = hfi1_16B_get_dlid(packet->hdr); 1520 if (unlikely(hfi1_is_16B_mcast(packet->dlid))) 1521 packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) - 1522 opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR), 1523 16B); 1524 packet->sc = hfi1_16B_get_sc(packet->hdr); 1525 packet->sl = ibp->sc_to_sl[packet->sc]; 1526 packet->pad = hfi1_16B_bth_get_pad(packet->ohdr); 1527 packet->extra_byte = SIZE_OF_LT; 1528 packet->pkey = hfi1_16B_get_pkey(packet->hdr); 1529 packet->migrated = opa_bth_is_migration(packet->ohdr); 1530 1531 if (hfi1_bypass_ingress_pkt_check(packet)) 1532 goto drop; 1533 1534 return 0; 1535 drop: 1536 hfi1_cdbg(PKT, "%s: packet dropped\n", __func__); 1537 ibp->rvp.n_pkt_drops++; 1538 return -EINVAL; 1539 } 1540 1541 void handle_eflags(struct hfi1_packet *packet) 1542 { 1543 struct hfi1_ctxtdata *rcd = packet->rcd; 1544 u32 rte = rhf_rcv_type_err(packet->rhf); 1545 1546 rcv_hdrerr(rcd, rcd->ppd, packet); 1547 if (rhf_err_flags(packet->rhf)) 1548 dd_dev_err(rcd->dd, 1549 "receive context %d: rhf 0x%016llx, errs [ %s%s%s%s%s%s%s%s] rte 0x%x\n", 1550 rcd->ctxt, packet->rhf, 1551 packet->rhf & RHF_K_HDR_LEN_ERR ? "k_hdr_len " : "", 1552 packet->rhf & RHF_DC_UNC_ERR ? "dc_unc " : "", 1553 packet->rhf & RHF_DC_ERR ? "dc " : "", 1554 packet->rhf & RHF_TID_ERR ? "tid " : "", 1555 packet->rhf & RHF_LEN_ERR ? "len " : "", 1556 packet->rhf & RHF_ECC_ERR ? "ecc " : "", 1557 packet->rhf & RHF_VCRC_ERR ? "vcrc " : "", 1558 packet->rhf & RHF_ICRC_ERR ? "icrc " : "", 1559 rte); 1560 } 1561 1562 /* 1563 * The following functions are called by the interrupt handler. They are type 1564 * specific handlers for each packet type. 1565 */ 1566 int process_receive_ib(struct hfi1_packet *packet) 1567 { 1568 if (unlikely(hfi1_dbg_fault_packet(packet))) 1569 return RHF_RCV_CONTINUE; 1570 1571 if (hfi1_setup_9B_packet(packet)) 1572 return RHF_RCV_CONTINUE; 1573 1574 trace_hfi1_rcvhdr(packet); 1575 1576 if (unlikely(rhf_err_flags(packet->rhf))) { 1577 handle_eflags(packet); 1578 return RHF_RCV_CONTINUE; 1579 } 1580 1581 hfi1_ib_rcv(packet); 1582 return RHF_RCV_CONTINUE; 1583 } 1584 1585 static inline bool hfi1_is_vnic_packet(struct hfi1_packet *packet) 1586 { 1587 /* Packet received in VNIC context via RSM */ 1588 if (packet->rcd->is_vnic) 1589 return true; 1590 1591 if ((hfi1_16B_get_l2(packet->ebuf) == OPA_16B_L2_TYPE) && 1592 (hfi1_16B_get_l4(packet->ebuf) == OPA_16B_L4_ETHR)) 1593 return true; 1594 1595 return false; 1596 } 1597 1598 int process_receive_bypass(struct hfi1_packet *packet) 1599 { 1600 struct hfi1_devdata *dd = packet->rcd->dd; 1601 1602 if (hfi1_is_vnic_packet(packet)) { 1603 hfi1_vnic_bypass_rcv(packet); 1604 return RHF_RCV_CONTINUE; 1605 } 1606 1607 if (hfi1_setup_bypass_packet(packet)) 1608 return RHF_RCV_CONTINUE; 1609 1610 trace_hfi1_rcvhdr(packet); 1611 1612 if (unlikely(rhf_err_flags(packet->rhf))) { 1613 handle_eflags(packet); 1614 return RHF_RCV_CONTINUE; 1615 } 1616 1617 if (hfi1_16B_get_l2(packet->hdr) == 0x2) { 1618 hfi1_16B_rcv(packet); 1619 } else { 1620 dd_dev_err(dd, 1621 "Bypass packets other than 16B are not supported in normal operation. Dropping\n"); 1622 incr_cntr64(&dd->sw_rcv_bypass_packet_errors); 1623 if (!(dd->err_info_rcvport.status_and_code & 1624 OPA_EI_STATUS_SMASK)) { 1625 u64 *flits = packet->ebuf; 1626 1627 if (flits && !(packet->rhf & RHF_LEN_ERR)) { 1628 dd->err_info_rcvport.packet_flit1 = flits[0]; 1629 dd->err_info_rcvport.packet_flit2 = 1630 packet->tlen > sizeof(flits[0]) ? 1631 flits[1] : 0; 1632 } 1633 dd->err_info_rcvport.status_and_code |= 1634 (OPA_EI_STATUS_SMASK | BAD_L2_ERR); 1635 } 1636 } 1637 return RHF_RCV_CONTINUE; 1638 } 1639 1640 int process_receive_error(struct hfi1_packet *packet) 1641 { 1642 /* KHdrHCRCErr -- KDETH packet with a bad HCRC */ 1643 if (unlikely( 1644 hfi1_dbg_fault_suppress_err(&packet->rcd->dd->verbs_dev) && 1645 rhf_rcv_type_err(packet->rhf) == 3)) 1646 return RHF_RCV_CONTINUE; 1647 1648 hfi1_setup_ib_header(packet); 1649 handle_eflags(packet); 1650 1651 if (unlikely(rhf_err_flags(packet->rhf))) 1652 dd_dev_err(packet->rcd->dd, 1653 "Unhandled error packet received. Dropping.\n"); 1654 1655 return RHF_RCV_CONTINUE; 1656 } 1657 1658 int kdeth_process_expected(struct hfi1_packet *packet) 1659 { 1660 if (unlikely(hfi1_dbg_fault_packet(packet))) 1661 return RHF_RCV_CONTINUE; 1662 1663 hfi1_setup_ib_header(packet); 1664 if (unlikely(rhf_err_flags(packet->rhf))) 1665 handle_eflags(packet); 1666 1667 dd_dev_err(packet->rcd->dd, 1668 "Unhandled expected packet received. Dropping.\n"); 1669 return RHF_RCV_CONTINUE; 1670 } 1671 1672 int kdeth_process_eager(struct hfi1_packet *packet) 1673 { 1674 hfi1_setup_ib_header(packet); 1675 if (unlikely(rhf_err_flags(packet->rhf))) 1676 handle_eflags(packet); 1677 if (unlikely(hfi1_dbg_fault_packet(packet))) 1678 return RHF_RCV_CONTINUE; 1679 1680 dd_dev_err(packet->rcd->dd, 1681 "Unhandled eager packet received. Dropping.\n"); 1682 return RHF_RCV_CONTINUE; 1683 } 1684 1685 int process_receive_invalid(struct hfi1_packet *packet) 1686 { 1687 dd_dev_err(packet->rcd->dd, "Invalid packet type %d. Dropping\n", 1688 rhf_rcv_type(packet->rhf)); 1689 return RHF_RCV_CONTINUE; 1690 } 1691 1692 void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd) 1693 { 1694 struct hfi1_packet packet; 1695 struct ps_mdata mdata; 1696 1697 seq_printf(s, "Rcd %u: RcvHdr cnt %u entsize %u %s head %llu tail %llu\n", 1698 rcd->ctxt, rcd->rcvhdrq_cnt, rcd->rcvhdrqentsize, 1699 HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ? 1700 "dma_rtail" : "nodma_rtail", 1701 read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD) & 1702 RCV_HDR_HEAD_HEAD_MASK, 1703 read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL)); 1704 1705 init_packet(rcd, &packet); 1706 init_ps_mdata(&mdata, &packet); 1707 1708 while (1) { 1709 struct hfi1_devdata *dd = rcd->dd; 1710 __le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head + 1711 dd->rhf_offset; 1712 struct ib_header *hdr; 1713 u64 rhf = rhf_to_cpu(rhf_addr); 1714 u32 etype = rhf_rcv_type(rhf), qpn; 1715 u8 opcode; 1716 u32 psn; 1717 u8 lnh; 1718 1719 if (ps_done(&mdata, rhf, rcd)) 1720 break; 1721 1722 if (ps_skip(&mdata, rhf, rcd)) 1723 goto next; 1724 1725 if (etype > RHF_RCV_TYPE_IB) 1726 goto next; 1727 1728 packet.hdr = hfi1_get_msgheader(dd, rhf_addr); 1729 hdr = packet.hdr; 1730 1731 lnh = be16_to_cpu(hdr->lrh[0]) & 3; 1732 1733 if (lnh == HFI1_LRH_BTH) 1734 packet.ohdr = &hdr->u.oth; 1735 else if (lnh == HFI1_LRH_GRH) 1736 packet.ohdr = &hdr->u.l.oth; 1737 else 1738 goto next; /* just in case */ 1739 1740 opcode = (be32_to_cpu(packet.ohdr->bth[0]) >> 24); 1741 qpn = be32_to_cpu(packet.ohdr->bth[1]) & RVT_QPN_MASK; 1742 psn = mask_psn(be32_to_cpu(packet.ohdr->bth[2])); 1743 1744 seq_printf(s, "\tEnt %u: opcode 0x%x, qpn 0x%x, psn 0x%x\n", 1745 mdata.ps_head, opcode, qpn, psn); 1746 next: 1747 update_ps_mdata(&mdata, rcd); 1748 } 1749 } 1750