1 /* 2 * Copyright(c) 2015-2018 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 #include <linux/spinlock.h> 49 #include <linux/pci.h> 50 #include <linux/io.h> 51 #include <linux/delay.h> 52 #include <linux/netdevice.h> 53 #include <linux/vmalloc.h> 54 #include <linux/module.h> 55 #include <linux/prefetch.h> 56 #include <rdma/ib_verbs.h> 57 58 #include "hfi.h" 59 #include "trace.h" 60 #include "qp.h" 61 #include "sdma.h" 62 #include "debugfs.h" 63 #include "vnic.h" 64 #include "fault.h" 65 66 #undef pr_fmt 67 #define pr_fmt(fmt) DRIVER_NAME ": " fmt 68 69 /* 70 * The size has to be longer than this string, so we can append 71 * board/chip information to it in the initialization code. 72 */ 73 const char ib_hfi1_version[] = HFI1_DRIVER_VERSION "\n"; 74 75 DEFINE_SPINLOCK(hfi1_devs_lock); 76 LIST_HEAD(hfi1_dev_list); 77 DEFINE_MUTEX(hfi1_mutex); /* general driver use */ 78 79 unsigned int hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU; 80 module_param_named(max_mtu, hfi1_max_mtu, uint, S_IRUGO); 81 MODULE_PARM_DESC(max_mtu, "Set max MTU bytes, default is " __stringify( 82 HFI1_DEFAULT_MAX_MTU)); 83 84 unsigned int hfi1_cu = 1; 85 module_param_named(cu, hfi1_cu, uint, S_IRUGO); 86 MODULE_PARM_DESC(cu, "Credit return units"); 87 88 unsigned long hfi1_cap_mask = HFI1_CAP_MASK_DEFAULT; 89 static int hfi1_caps_set(const char *val, const struct kernel_param *kp); 90 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp); 91 static const struct kernel_param_ops cap_ops = { 92 .set = hfi1_caps_set, 93 .get = hfi1_caps_get 94 }; 95 module_param_cb(cap_mask, &cap_ops, &hfi1_cap_mask, S_IWUSR | S_IRUGO); 96 MODULE_PARM_DESC(cap_mask, "Bit mask of enabled/disabled HW features"); 97 98 MODULE_LICENSE("Dual BSD/GPL"); 99 MODULE_DESCRIPTION("Intel Omni-Path Architecture driver"); 100 101 /* 102 * MAX_PKT_RCV is the max # if packets processed per receive interrupt. 103 */ 104 #define MAX_PKT_RECV 64 105 /* 106 * MAX_PKT_THREAD_RCV is the max # of packets processed before 107 * the qp_wait_list queue is flushed. 108 */ 109 #define MAX_PKT_RECV_THREAD (MAX_PKT_RECV * 4) 110 #define EGR_HEAD_UPDATE_THRESHOLD 16 111 112 struct hfi1_ib_stats hfi1_stats; 113 114 static int hfi1_caps_set(const char *val, const struct kernel_param *kp) 115 { 116 int ret = 0; 117 unsigned long *cap_mask_ptr = (unsigned long *)kp->arg, 118 cap_mask = *cap_mask_ptr, value, diff, 119 write_mask = ((HFI1_CAP_WRITABLE_MASK << HFI1_CAP_USER_SHIFT) | 120 HFI1_CAP_WRITABLE_MASK); 121 122 ret = kstrtoul(val, 0, &value); 123 if (ret) { 124 pr_warn("Invalid module parameter value for 'cap_mask'\n"); 125 goto done; 126 } 127 /* Get the changed bits (except the locked bit) */ 128 diff = value ^ (cap_mask & ~HFI1_CAP_LOCKED_SMASK); 129 130 /* Remove any bits that are not allowed to change after driver load */ 131 if (HFI1_CAP_LOCKED() && (diff & ~write_mask)) { 132 pr_warn("Ignoring non-writable capability bits %#lx\n", 133 diff & ~write_mask); 134 diff &= write_mask; 135 } 136 137 /* Mask off any reserved bits */ 138 diff &= ~HFI1_CAP_RESERVED_MASK; 139 /* Clear any previously set and changing bits */ 140 cap_mask &= ~diff; 141 /* Update the bits with the new capability */ 142 cap_mask |= (value & diff); 143 /* Check for any kernel/user restrictions */ 144 diff = (cap_mask & (HFI1_CAP_MUST_HAVE_KERN << HFI1_CAP_USER_SHIFT)) ^ 145 ((cap_mask & HFI1_CAP_MUST_HAVE_KERN) << HFI1_CAP_USER_SHIFT); 146 cap_mask &= ~diff; 147 /* Set the bitmask to the final set */ 148 *cap_mask_ptr = cap_mask; 149 done: 150 return ret; 151 } 152 153 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp) 154 { 155 unsigned long cap_mask = *(unsigned long *)kp->arg; 156 157 cap_mask &= ~HFI1_CAP_LOCKED_SMASK; 158 cap_mask |= ((cap_mask & HFI1_CAP_K2U) << HFI1_CAP_USER_SHIFT); 159 160 return scnprintf(buffer, PAGE_SIZE, "0x%lx", cap_mask); 161 } 162 163 struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi) 164 { 165 struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi); 166 struct hfi1_devdata *dd = container_of(ibdev, 167 struct hfi1_devdata, verbs_dev); 168 return dd->pcidev; 169 } 170 171 /* 172 * Return count of units with at least one port ACTIVE. 173 */ 174 int hfi1_count_active_units(void) 175 { 176 struct hfi1_devdata *dd; 177 struct hfi1_pportdata *ppd; 178 unsigned long flags; 179 int pidx, nunits_active = 0; 180 181 spin_lock_irqsave(&hfi1_devs_lock, flags); 182 list_for_each_entry(dd, &hfi1_dev_list, list) { 183 if (!(dd->flags & HFI1_PRESENT) || !dd->kregbase1) 184 continue; 185 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 186 ppd = dd->pport + pidx; 187 if (ppd->lid && ppd->linkup) { 188 nunits_active++; 189 break; 190 } 191 } 192 } 193 spin_unlock_irqrestore(&hfi1_devs_lock, flags); 194 return nunits_active; 195 } 196 197 /* 198 * Get address of eager buffer from it's index (allocated in chunks, not 199 * contiguous). 200 */ 201 static inline void *get_egrbuf(const struct hfi1_ctxtdata *rcd, u64 rhf, 202 u8 *update) 203 { 204 u32 idx = rhf_egr_index(rhf), offset = rhf_egr_buf_offset(rhf); 205 206 *update |= !(idx & (rcd->egrbufs.threshold - 1)) && !offset; 207 return (void *)(((u64)(rcd->egrbufs.rcvtids[idx].addr)) + 208 (offset * RCV_BUF_BLOCK_SIZE)); 209 } 210 211 static inline void *hfi1_get_header(struct hfi1_ctxtdata *rcd, 212 __le32 *rhf_addr) 213 { 214 u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr)); 215 216 return (void *)(rhf_addr - rcd->rhf_offset + offset); 217 } 218 219 static inline struct ib_header *hfi1_get_msgheader(struct hfi1_ctxtdata *rcd, 220 __le32 *rhf_addr) 221 { 222 return (struct ib_header *)hfi1_get_header(rcd, rhf_addr); 223 } 224 225 static inline struct hfi1_16b_header 226 *hfi1_get_16B_header(struct hfi1_ctxtdata *rcd, 227 __le32 *rhf_addr) 228 { 229 return (struct hfi1_16b_header *)hfi1_get_header(rcd, rhf_addr); 230 } 231 232 /* 233 * Validate and encode the a given RcvArray Buffer size. 234 * The function will check whether the given size falls within 235 * allowed size ranges for the respective type and, optionally, 236 * return the proper encoding. 237 */ 238 int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encoded) 239 { 240 if (unlikely(!PAGE_ALIGNED(size))) 241 return 0; 242 if (unlikely(size < MIN_EAGER_BUFFER)) 243 return 0; 244 if (size > 245 (type == PT_EAGER ? MAX_EAGER_BUFFER : MAX_EXPECTED_BUFFER)) 246 return 0; 247 if (encoded) 248 *encoded = ilog2(size / PAGE_SIZE) + 1; 249 return 1; 250 } 251 252 static void rcv_hdrerr(struct hfi1_ctxtdata *rcd, struct hfi1_pportdata *ppd, 253 struct hfi1_packet *packet) 254 { 255 struct ib_header *rhdr = packet->hdr; 256 u32 rte = rhf_rcv_type_err(packet->rhf); 257 u32 mlid_base; 258 struct hfi1_ibport *ibp = rcd_to_iport(rcd); 259 struct hfi1_devdata *dd = ppd->dd; 260 struct hfi1_ibdev *verbs_dev = &dd->verbs_dev; 261 struct rvt_dev_info *rdi = &verbs_dev->rdi; 262 263 if ((packet->rhf & RHF_DC_ERR) && 264 hfi1_dbg_fault_suppress_err(verbs_dev)) 265 return; 266 267 if (packet->rhf & (RHF_VCRC_ERR | RHF_ICRC_ERR)) 268 return; 269 270 if (packet->etype == RHF_RCV_TYPE_BYPASS) { 271 goto drop; 272 } else { 273 u8 lnh = ib_get_lnh(rhdr); 274 275 mlid_base = be16_to_cpu(IB_MULTICAST_LID_BASE); 276 if (lnh == HFI1_LRH_BTH) { 277 packet->ohdr = &rhdr->u.oth; 278 } else if (lnh == HFI1_LRH_GRH) { 279 packet->ohdr = &rhdr->u.l.oth; 280 packet->grh = &rhdr->u.l.grh; 281 } else { 282 goto drop; 283 } 284 } 285 286 if (packet->rhf & RHF_TID_ERR) { 287 /* For TIDERR and RC QPs preemptively schedule a NAK */ 288 u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */ 289 u32 dlid = ib_get_dlid(rhdr); 290 u32 qp_num; 291 292 /* Sanity check packet */ 293 if (tlen < 24) 294 goto drop; 295 296 /* Check for GRH */ 297 if (packet->grh) { 298 u32 vtf; 299 struct ib_grh *grh = packet->grh; 300 301 if (grh->next_hdr != IB_GRH_NEXT_HDR) 302 goto drop; 303 vtf = be32_to_cpu(grh->version_tclass_flow); 304 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION) 305 goto drop; 306 } 307 308 /* Get the destination QP number. */ 309 qp_num = ib_bth_get_qpn(packet->ohdr); 310 if (dlid < mlid_base) { 311 struct rvt_qp *qp; 312 unsigned long flags; 313 314 rcu_read_lock(); 315 qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num); 316 if (!qp) { 317 rcu_read_unlock(); 318 goto drop; 319 } 320 321 /* 322 * Handle only RC QPs - for other QP types drop error 323 * packet. 324 */ 325 spin_lock_irqsave(&qp->r_lock, flags); 326 327 /* Check for valid receive state. */ 328 if (!(ib_rvt_state_ops[qp->state] & 329 RVT_PROCESS_RECV_OK)) { 330 ibp->rvp.n_pkt_drops++; 331 } 332 333 switch (qp->ibqp.qp_type) { 334 case IB_QPT_RC: 335 hfi1_rc_hdrerr(rcd, packet, qp); 336 break; 337 default: 338 /* For now don't handle any other QP types */ 339 break; 340 } 341 342 spin_unlock_irqrestore(&qp->r_lock, flags); 343 rcu_read_unlock(); 344 } /* Unicast QP */ 345 } /* Valid packet with TIDErr */ 346 347 /* handle "RcvTypeErr" flags */ 348 switch (rte) { 349 case RHF_RTE_ERROR_OP_CODE_ERR: 350 { 351 void *ebuf = NULL; 352 u8 opcode; 353 354 if (rhf_use_egr_bfr(packet->rhf)) 355 ebuf = packet->ebuf; 356 357 if (!ebuf) 358 goto drop; /* this should never happen */ 359 360 opcode = ib_bth_get_opcode(packet->ohdr); 361 if (opcode == IB_OPCODE_CNP) { 362 /* 363 * Only in pre-B0 h/w is the CNP_OPCODE handled 364 * via this code path. 365 */ 366 struct rvt_qp *qp = NULL; 367 u32 lqpn, rqpn; 368 u16 rlid; 369 u8 svc_type, sl, sc5; 370 371 sc5 = hfi1_9B_get_sc5(rhdr, packet->rhf); 372 sl = ibp->sc_to_sl[sc5]; 373 374 lqpn = ib_bth_get_qpn(packet->ohdr); 375 rcu_read_lock(); 376 qp = rvt_lookup_qpn(rdi, &ibp->rvp, lqpn); 377 if (!qp) { 378 rcu_read_unlock(); 379 goto drop; 380 } 381 382 switch (qp->ibqp.qp_type) { 383 case IB_QPT_UD: 384 rlid = 0; 385 rqpn = 0; 386 svc_type = IB_CC_SVCTYPE_UD; 387 break; 388 case IB_QPT_UC: 389 rlid = ib_get_slid(rhdr); 390 rqpn = qp->remote_qpn; 391 svc_type = IB_CC_SVCTYPE_UC; 392 break; 393 default: 394 rcu_read_unlock(); 395 goto drop; 396 } 397 398 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type); 399 rcu_read_unlock(); 400 } 401 402 packet->rhf &= ~RHF_RCV_TYPE_ERR_SMASK; 403 break; 404 } 405 default: 406 break; 407 } 408 409 drop: 410 return; 411 } 412 413 static inline void init_packet(struct hfi1_ctxtdata *rcd, 414 struct hfi1_packet *packet) 415 { 416 packet->rsize = rcd->rcvhdrqentsize; /* words */ 417 packet->maxcnt = rcd->rcvhdrq_cnt * packet->rsize; /* words */ 418 packet->rcd = rcd; 419 packet->updegr = 0; 420 packet->etail = -1; 421 packet->rhf_addr = get_rhf_addr(rcd); 422 packet->rhf = rhf_to_cpu(packet->rhf_addr); 423 packet->rhqoff = rcd->head; 424 packet->numpkt = 0; 425 } 426 427 /* We support only two types - 9B and 16B for now */ 428 static const hfi1_handle_cnp hfi1_handle_cnp_tbl[2] = { 429 [HFI1_PKT_TYPE_9B] = &return_cnp, 430 [HFI1_PKT_TYPE_16B] = &return_cnp_16B 431 }; 432 433 /** 434 * hfi1_process_ecn_slowpath - Process FECN or BECN bits 435 * @qp: The packet's destination QP 436 * @pkt: The packet itself. 437 * @prescan: Is the caller the RXQ prescan 438 * 439 * Process the packet's FECN or BECN bits. By now, the packet 440 * has already been evaluated whether processing of those bit should 441 * be done. 442 * The significance of the @prescan argument is that if the caller 443 * is the RXQ prescan, a CNP will be send out instead of waiting for the 444 * normal packet processing to send an ACK with BECN set (or a CNP). 445 */ 446 bool hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt, 447 bool prescan) 448 { 449 struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num); 450 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 451 struct ib_other_headers *ohdr = pkt->ohdr; 452 struct ib_grh *grh = pkt->grh; 453 u32 rqpn = 0; 454 u16 pkey; 455 u32 rlid, slid, dlid = 0; 456 u8 hdr_type, sc, svc_type, opcode; 457 bool is_mcast = false, ignore_fecn = false, do_cnp = false, 458 fecn, becn; 459 460 /* can be called from prescan */ 461 if (pkt->etype == RHF_RCV_TYPE_BYPASS) { 462 pkey = hfi1_16B_get_pkey(pkt->hdr); 463 sc = hfi1_16B_get_sc(pkt->hdr); 464 dlid = hfi1_16B_get_dlid(pkt->hdr); 465 slid = hfi1_16B_get_slid(pkt->hdr); 466 is_mcast = hfi1_is_16B_mcast(dlid); 467 opcode = ib_bth_get_opcode(ohdr); 468 hdr_type = HFI1_PKT_TYPE_16B; 469 fecn = hfi1_16B_get_fecn(pkt->hdr); 470 becn = hfi1_16B_get_becn(pkt->hdr); 471 } else { 472 pkey = ib_bth_get_pkey(ohdr); 473 sc = hfi1_9B_get_sc5(pkt->hdr, pkt->rhf); 474 dlid = qp->ibqp.qp_type != IB_QPT_UD ? ib_get_dlid(pkt->hdr) : 475 ppd->lid; 476 slid = ib_get_slid(pkt->hdr); 477 is_mcast = (dlid > be16_to_cpu(IB_MULTICAST_LID_BASE)) && 478 (dlid != be16_to_cpu(IB_LID_PERMISSIVE)); 479 opcode = ib_bth_get_opcode(ohdr); 480 hdr_type = HFI1_PKT_TYPE_9B; 481 fecn = ib_bth_get_fecn(ohdr); 482 becn = ib_bth_get_becn(ohdr); 483 } 484 485 switch (qp->ibqp.qp_type) { 486 case IB_QPT_UD: 487 rlid = slid; 488 rqpn = ib_get_sqpn(pkt->ohdr); 489 svc_type = IB_CC_SVCTYPE_UD; 490 break; 491 case IB_QPT_SMI: 492 case IB_QPT_GSI: 493 rlid = slid; 494 rqpn = ib_get_sqpn(pkt->ohdr); 495 svc_type = IB_CC_SVCTYPE_UD; 496 break; 497 case IB_QPT_UC: 498 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr); 499 rqpn = qp->remote_qpn; 500 svc_type = IB_CC_SVCTYPE_UC; 501 break; 502 case IB_QPT_RC: 503 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr); 504 rqpn = qp->remote_qpn; 505 svc_type = IB_CC_SVCTYPE_RC; 506 break; 507 default: 508 return false; 509 } 510 511 ignore_fecn = is_mcast || (opcode == IB_OPCODE_CNP) || 512 (opcode == IB_OPCODE_RC_ACKNOWLEDGE); 513 /* 514 * ACKNOWLEDGE packets do not get a CNP but this will be 515 * guarded by ignore_fecn above. 516 */ 517 do_cnp = prescan || 518 (opcode >= IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST && 519 opcode <= IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE); 520 521 /* Call appropriate CNP handler */ 522 if (!ignore_fecn && do_cnp && fecn) 523 hfi1_handle_cnp_tbl[hdr_type](ibp, qp, rqpn, pkey, 524 dlid, rlid, sc, grh); 525 526 if (becn) { 527 u32 lqpn = be32_to_cpu(ohdr->bth[1]) & RVT_QPN_MASK; 528 u8 sl = ibp->sc_to_sl[sc]; 529 530 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type); 531 } 532 return !ignore_fecn && fecn; 533 } 534 535 struct ps_mdata { 536 struct hfi1_ctxtdata *rcd; 537 u32 rsize; 538 u32 maxcnt; 539 u32 ps_head; 540 u32 ps_tail; 541 u32 ps_seq; 542 }; 543 544 static inline void init_ps_mdata(struct ps_mdata *mdata, 545 struct hfi1_packet *packet) 546 { 547 struct hfi1_ctxtdata *rcd = packet->rcd; 548 549 mdata->rcd = rcd; 550 mdata->rsize = packet->rsize; 551 mdata->maxcnt = packet->maxcnt; 552 mdata->ps_head = packet->rhqoff; 553 554 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) { 555 mdata->ps_tail = get_rcvhdrtail(rcd); 556 if (rcd->ctxt == HFI1_CTRL_CTXT) 557 mdata->ps_seq = rcd->seq_cnt; 558 else 559 mdata->ps_seq = 0; /* not used with DMA_RTAIL */ 560 } else { 561 mdata->ps_tail = 0; /* used only with DMA_RTAIL*/ 562 mdata->ps_seq = rcd->seq_cnt; 563 } 564 } 565 566 static inline int ps_done(struct ps_mdata *mdata, u64 rhf, 567 struct hfi1_ctxtdata *rcd) 568 { 569 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) 570 return mdata->ps_head == mdata->ps_tail; 571 return mdata->ps_seq != rhf_rcv_seq(rhf); 572 } 573 574 static inline int ps_skip(struct ps_mdata *mdata, u64 rhf, 575 struct hfi1_ctxtdata *rcd) 576 { 577 /* 578 * Control context can potentially receive an invalid rhf. 579 * Drop such packets. 580 */ 581 if ((rcd->ctxt == HFI1_CTRL_CTXT) && (mdata->ps_head != mdata->ps_tail)) 582 return mdata->ps_seq != rhf_rcv_seq(rhf); 583 584 return 0; 585 } 586 587 static inline void update_ps_mdata(struct ps_mdata *mdata, 588 struct hfi1_ctxtdata *rcd) 589 { 590 mdata->ps_head += mdata->rsize; 591 if (mdata->ps_head >= mdata->maxcnt) 592 mdata->ps_head = 0; 593 594 /* Control context must do seq counting */ 595 if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) || 596 (rcd->ctxt == HFI1_CTRL_CTXT)) { 597 if (++mdata->ps_seq > 13) 598 mdata->ps_seq = 1; 599 } 600 } 601 602 /* 603 * prescan_rxq - search through the receive queue looking for packets 604 * containing Excplicit Congestion Notifications (FECNs, or BECNs). 605 * When an ECN is found, process the Congestion Notification, and toggle 606 * it off. 607 * This is declared as a macro to allow quick checking of the port to avoid 608 * the overhead of a function call if not enabled. 609 */ 610 #define prescan_rxq(rcd, packet) \ 611 do { \ 612 if (rcd->ppd->cc_prescan) \ 613 __prescan_rxq(packet); \ 614 } while (0) 615 static void __prescan_rxq(struct hfi1_packet *packet) 616 { 617 struct hfi1_ctxtdata *rcd = packet->rcd; 618 struct ps_mdata mdata; 619 620 init_ps_mdata(&mdata, packet); 621 622 while (1) { 623 struct hfi1_ibport *ibp = rcd_to_iport(rcd); 624 __le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head + 625 packet->rcd->rhf_offset; 626 struct rvt_qp *qp; 627 struct ib_header *hdr; 628 struct rvt_dev_info *rdi = &rcd->dd->verbs_dev.rdi; 629 u64 rhf = rhf_to_cpu(rhf_addr); 630 u32 etype = rhf_rcv_type(rhf), qpn, bth1; 631 u8 lnh; 632 633 if (ps_done(&mdata, rhf, rcd)) 634 break; 635 636 if (ps_skip(&mdata, rhf, rcd)) 637 goto next; 638 639 if (etype != RHF_RCV_TYPE_IB) 640 goto next; 641 642 packet->hdr = hfi1_get_msgheader(packet->rcd, rhf_addr); 643 hdr = packet->hdr; 644 lnh = ib_get_lnh(hdr); 645 646 if (lnh == HFI1_LRH_BTH) { 647 packet->ohdr = &hdr->u.oth; 648 packet->grh = NULL; 649 } else if (lnh == HFI1_LRH_GRH) { 650 packet->ohdr = &hdr->u.l.oth; 651 packet->grh = &hdr->u.l.grh; 652 } else { 653 goto next; /* just in case */ 654 } 655 656 if (!hfi1_may_ecn(packet)) 657 goto next; 658 659 bth1 = be32_to_cpu(packet->ohdr->bth[1]); 660 qpn = bth1 & RVT_QPN_MASK; 661 rcu_read_lock(); 662 qp = rvt_lookup_qpn(rdi, &ibp->rvp, qpn); 663 664 if (!qp) { 665 rcu_read_unlock(); 666 goto next; 667 } 668 669 hfi1_process_ecn_slowpath(qp, packet, true); 670 rcu_read_unlock(); 671 672 /* turn off BECN, FECN */ 673 bth1 &= ~(IB_FECN_SMASK | IB_BECN_SMASK); 674 packet->ohdr->bth[1] = cpu_to_be32(bth1); 675 next: 676 update_ps_mdata(&mdata, rcd); 677 } 678 } 679 680 static void process_rcv_qp_work(struct hfi1_packet *packet) 681 { 682 struct rvt_qp *qp, *nqp; 683 struct hfi1_ctxtdata *rcd = packet->rcd; 684 685 /* 686 * Iterate over all QPs waiting to respond. 687 * The list won't change since the IRQ is only run on one CPU. 688 */ 689 list_for_each_entry_safe(qp, nqp, &rcd->qp_wait_list, rspwait) { 690 list_del_init(&qp->rspwait); 691 if (qp->r_flags & RVT_R_RSP_NAK) { 692 qp->r_flags &= ~RVT_R_RSP_NAK; 693 packet->qp = qp; 694 hfi1_send_rc_ack(packet, 0); 695 } 696 if (qp->r_flags & RVT_R_RSP_SEND) { 697 unsigned long flags; 698 699 qp->r_flags &= ~RVT_R_RSP_SEND; 700 spin_lock_irqsave(&qp->s_lock, flags); 701 if (ib_rvt_state_ops[qp->state] & 702 RVT_PROCESS_OR_FLUSH_SEND) 703 hfi1_schedule_send(qp); 704 spin_unlock_irqrestore(&qp->s_lock, flags); 705 } 706 rvt_put_qp(qp); 707 } 708 } 709 710 static noinline int max_packet_exceeded(struct hfi1_packet *packet, int thread) 711 { 712 if (thread) { 713 if ((packet->numpkt & (MAX_PKT_RECV_THREAD - 1)) == 0) 714 /* allow defered processing */ 715 process_rcv_qp_work(packet); 716 cond_resched(); 717 return RCV_PKT_OK; 718 } else { 719 this_cpu_inc(*packet->rcd->dd->rcv_limit); 720 return RCV_PKT_LIMIT; 721 } 722 } 723 724 static inline int check_max_packet(struct hfi1_packet *packet, int thread) 725 { 726 int ret = RCV_PKT_OK; 727 728 if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0)) 729 ret = max_packet_exceeded(packet, thread); 730 return ret; 731 } 732 733 static noinline int skip_rcv_packet(struct hfi1_packet *packet, int thread) 734 { 735 int ret; 736 737 /* Set up for the next packet */ 738 packet->rhqoff += packet->rsize; 739 if (packet->rhqoff >= packet->maxcnt) 740 packet->rhqoff = 0; 741 742 packet->numpkt++; 743 ret = check_max_packet(packet, thread); 744 745 packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff + 746 packet->rcd->rhf_offset; 747 packet->rhf = rhf_to_cpu(packet->rhf_addr); 748 749 return ret; 750 } 751 752 static inline int process_rcv_packet(struct hfi1_packet *packet, int thread) 753 { 754 int ret; 755 756 packet->etype = rhf_rcv_type(packet->rhf); 757 758 /* total length */ 759 packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */ 760 /* retrieve eager buffer details */ 761 packet->ebuf = NULL; 762 if (rhf_use_egr_bfr(packet->rhf)) { 763 packet->etail = rhf_egr_index(packet->rhf); 764 packet->ebuf = get_egrbuf(packet->rcd, packet->rhf, 765 &packet->updegr); 766 /* 767 * Prefetch the contents of the eager buffer. It is 768 * OK to send a negative length to prefetch_range(). 769 * The +2 is the size of the RHF. 770 */ 771 prefetch_range(packet->ebuf, 772 packet->tlen - ((packet->rcd->rcvhdrqentsize - 773 (rhf_hdrq_offset(packet->rhf) 774 + 2)) * 4)); 775 } 776 777 /* 778 * Call a type specific handler for the packet. We 779 * should be able to trust that etype won't be beyond 780 * the range of valid indexes. If so something is really 781 * wrong and we can probably just let things come 782 * crashing down. There is no need to eat another 783 * comparison in this performance critical code. 784 */ 785 packet->rcd->rhf_rcv_function_map[packet->etype](packet); 786 packet->numpkt++; 787 788 /* Set up for the next packet */ 789 packet->rhqoff += packet->rsize; 790 if (packet->rhqoff >= packet->maxcnt) 791 packet->rhqoff = 0; 792 793 ret = check_max_packet(packet, thread); 794 795 packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff + 796 packet->rcd->rhf_offset; 797 packet->rhf = rhf_to_cpu(packet->rhf_addr); 798 799 return ret; 800 } 801 802 static inline void process_rcv_update(int last, struct hfi1_packet *packet) 803 { 804 /* 805 * Update head regs etc., every 16 packets, if not last pkt, 806 * to help prevent rcvhdrq overflows, when many packets 807 * are processed and queue is nearly full. 808 * Don't request an interrupt for intermediate updates. 809 */ 810 if (!last && !(packet->numpkt & 0xf)) { 811 update_usrhead(packet->rcd, packet->rhqoff, packet->updegr, 812 packet->etail, 0, 0); 813 packet->updegr = 0; 814 } 815 packet->grh = NULL; 816 } 817 818 static inline void finish_packet(struct hfi1_packet *packet) 819 { 820 /* 821 * Nothing we need to free for the packet. 822 * 823 * The only thing we need to do is a final update and call for an 824 * interrupt 825 */ 826 update_usrhead(packet->rcd, packet->rcd->head, packet->updegr, 827 packet->etail, rcv_intr_dynamic, packet->numpkt); 828 } 829 830 /* 831 * Handle receive interrupts when using the no dma rtail option. 832 */ 833 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread) 834 { 835 u32 seq; 836 int last = RCV_PKT_OK; 837 struct hfi1_packet packet; 838 839 init_packet(rcd, &packet); 840 seq = rhf_rcv_seq(packet.rhf); 841 if (seq != rcd->seq_cnt) { 842 last = RCV_PKT_DONE; 843 goto bail; 844 } 845 846 prescan_rxq(rcd, &packet); 847 848 while (last == RCV_PKT_OK) { 849 last = process_rcv_packet(&packet, thread); 850 seq = rhf_rcv_seq(packet.rhf); 851 if (++rcd->seq_cnt > 13) 852 rcd->seq_cnt = 1; 853 if (seq != rcd->seq_cnt) 854 last = RCV_PKT_DONE; 855 process_rcv_update(last, &packet); 856 } 857 process_rcv_qp_work(&packet); 858 rcd->head = packet.rhqoff; 859 bail: 860 finish_packet(&packet); 861 return last; 862 } 863 864 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread) 865 { 866 u32 hdrqtail; 867 int last = RCV_PKT_OK; 868 struct hfi1_packet packet; 869 870 init_packet(rcd, &packet); 871 hdrqtail = get_rcvhdrtail(rcd); 872 if (packet.rhqoff == hdrqtail) { 873 last = RCV_PKT_DONE; 874 goto bail; 875 } 876 smp_rmb(); /* prevent speculative reads of dma'ed hdrq */ 877 878 prescan_rxq(rcd, &packet); 879 880 while (last == RCV_PKT_OK) { 881 last = process_rcv_packet(&packet, thread); 882 if (packet.rhqoff == hdrqtail) 883 last = RCV_PKT_DONE; 884 process_rcv_update(last, &packet); 885 } 886 process_rcv_qp_work(&packet); 887 rcd->head = packet.rhqoff; 888 bail: 889 finish_packet(&packet); 890 return last; 891 } 892 893 static inline void set_nodma_rtail(struct hfi1_devdata *dd, u16 ctxt) 894 { 895 struct hfi1_ctxtdata *rcd; 896 u16 i; 897 898 /* 899 * For dynamically allocated kernel contexts (like vnic) switch 900 * interrupt handler only for that context. Otherwise, switch 901 * interrupt handler for all statically allocated kernel contexts. 902 */ 903 if (ctxt >= dd->first_dyn_alloc_ctxt) { 904 rcd = hfi1_rcd_get_by_index_safe(dd, ctxt); 905 if (rcd) { 906 rcd->do_interrupt = 907 &handle_receive_interrupt_nodma_rtail; 908 hfi1_rcd_put(rcd); 909 } 910 return; 911 } 912 913 for (i = HFI1_CTRL_CTXT + 1; i < dd->first_dyn_alloc_ctxt; i++) { 914 rcd = hfi1_rcd_get_by_index(dd, i); 915 if (rcd) 916 rcd->do_interrupt = 917 &handle_receive_interrupt_nodma_rtail; 918 hfi1_rcd_put(rcd); 919 } 920 } 921 922 static inline void set_dma_rtail(struct hfi1_devdata *dd, u16 ctxt) 923 { 924 struct hfi1_ctxtdata *rcd; 925 u16 i; 926 927 /* 928 * For dynamically allocated kernel contexts (like vnic) switch 929 * interrupt handler only for that context. Otherwise, switch 930 * interrupt handler for all statically allocated kernel contexts. 931 */ 932 if (ctxt >= dd->first_dyn_alloc_ctxt) { 933 rcd = hfi1_rcd_get_by_index_safe(dd, ctxt); 934 if (rcd) { 935 rcd->do_interrupt = 936 &handle_receive_interrupt_dma_rtail; 937 hfi1_rcd_put(rcd); 938 } 939 return; 940 } 941 942 for (i = HFI1_CTRL_CTXT + 1; i < dd->first_dyn_alloc_ctxt; i++) { 943 rcd = hfi1_rcd_get_by_index(dd, i); 944 if (rcd) 945 rcd->do_interrupt = 946 &handle_receive_interrupt_dma_rtail; 947 hfi1_rcd_put(rcd); 948 } 949 } 950 951 void set_all_slowpath(struct hfi1_devdata *dd) 952 { 953 struct hfi1_ctxtdata *rcd; 954 u16 i; 955 956 /* HFI1_CTRL_CTXT must always use the slow path interrupt handler */ 957 for (i = HFI1_CTRL_CTXT + 1; i < dd->num_rcv_contexts; i++) { 958 rcd = hfi1_rcd_get_by_index(dd, i); 959 if (!rcd) 960 continue; 961 if (i < dd->first_dyn_alloc_ctxt || rcd->is_vnic) 962 rcd->do_interrupt = &handle_receive_interrupt; 963 964 hfi1_rcd_put(rcd); 965 } 966 } 967 968 static inline int set_armed_to_active(struct hfi1_ctxtdata *rcd, 969 struct hfi1_packet *packet, 970 struct hfi1_devdata *dd) 971 { 972 struct work_struct *lsaw = &rcd->ppd->linkstate_active_work; 973 u8 etype = rhf_rcv_type(packet->rhf); 974 u8 sc = SC15_PACKET; 975 976 if (etype == RHF_RCV_TYPE_IB) { 977 struct ib_header *hdr = hfi1_get_msgheader(packet->rcd, 978 packet->rhf_addr); 979 sc = hfi1_9B_get_sc5(hdr, packet->rhf); 980 } else if (etype == RHF_RCV_TYPE_BYPASS) { 981 struct hfi1_16b_header *hdr = hfi1_get_16B_header( 982 packet->rcd, 983 packet->rhf_addr); 984 sc = hfi1_16B_get_sc(hdr); 985 } 986 if (sc != SC15_PACKET) { 987 int hwstate = driver_lstate(rcd->ppd); 988 989 if (hwstate != IB_PORT_ACTIVE) { 990 dd_dev_info(dd, 991 "Unexpected link state %s\n", 992 opa_lstate_name(hwstate)); 993 return 0; 994 } 995 996 queue_work(rcd->ppd->link_wq, lsaw); 997 return 1; 998 } 999 return 0; 1000 } 1001 1002 /* 1003 * handle_receive_interrupt - receive a packet 1004 * @rcd: the context 1005 * 1006 * Called from interrupt handler for errors or receive interrupt. 1007 * This is the slow path interrupt handler. 1008 */ 1009 int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread) 1010 { 1011 struct hfi1_devdata *dd = rcd->dd; 1012 u32 hdrqtail; 1013 int needset, last = RCV_PKT_OK; 1014 struct hfi1_packet packet; 1015 int skip_pkt = 0; 1016 1017 /* Control context will always use the slow path interrupt handler */ 1018 needset = (rcd->ctxt == HFI1_CTRL_CTXT) ? 0 : 1; 1019 1020 init_packet(rcd, &packet); 1021 1022 if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) { 1023 u32 seq = rhf_rcv_seq(packet.rhf); 1024 1025 if (seq != rcd->seq_cnt) { 1026 last = RCV_PKT_DONE; 1027 goto bail; 1028 } 1029 hdrqtail = 0; 1030 } else { 1031 hdrqtail = get_rcvhdrtail(rcd); 1032 if (packet.rhqoff == hdrqtail) { 1033 last = RCV_PKT_DONE; 1034 goto bail; 1035 } 1036 smp_rmb(); /* prevent speculative reads of dma'ed hdrq */ 1037 1038 /* 1039 * Control context can potentially receive an invalid 1040 * rhf. Drop such packets. 1041 */ 1042 if (rcd->ctxt == HFI1_CTRL_CTXT) { 1043 u32 seq = rhf_rcv_seq(packet.rhf); 1044 1045 if (seq != rcd->seq_cnt) 1046 skip_pkt = 1; 1047 } 1048 } 1049 1050 prescan_rxq(rcd, &packet); 1051 1052 while (last == RCV_PKT_OK) { 1053 if (unlikely(dd->do_drop && 1054 atomic_xchg(&dd->drop_packet, DROP_PACKET_OFF) == 1055 DROP_PACKET_ON)) { 1056 dd->do_drop = 0; 1057 1058 /* On to the next packet */ 1059 packet.rhqoff += packet.rsize; 1060 packet.rhf_addr = (__le32 *)rcd->rcvhdrq + 1061 packet.rhqoff + 1062 rcd->rhf_offset; 1063 packet.rhf = rhf_to_cpu(packet.rhf_addr); 1064 1065 } else if (skip_pkt) { 1066 last = skip_rcv_packet(&packet, thread); 1067 skip_pkt = 0; 1068 } else { 1069 /* Auto activate link on non-SC15 packet receive */ 1070 if (unlikely(rcd->ppd->host_link_state == 1071 HLS_UP_ARMED) && 1072 set_armed_to_active(rcd, &packet, dd)) 1073 goto bail; 1074 last = process_rcv_packet(&packet, thread); 1075 } 1076 1077 if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) { 1078 u32 seq = rhf_rcv_seq(packet.rhf); 1079 1080 if (++rcd->seq_cnt > 13) 1081 rcd->seq_cnt = 1; 1082 if (seq != rcd->seq_cnt) 1083 last = RCV_PKT_DONE; 1084 if (needset) { 1085 dd_dev_info(dd, "Switching to NO_DMA_RTAIL\n"); 1086 set_nodma_rtail(dd, rcd->ctxt); 1087 needset = 0; 1088 } 1089 } else { 1090 if (packet.rhqoff == hdrqtail) 1091 last = RCV_PKT_DONE; 1092 /* 1093 * Control context can potentially receive an invalid 1094 * rhf. Drop such packets. 1095 */ 1096 if (rcd->ctxt == HFI1_CTRL_CTXT) { 1097 u32 seq = rhf_rcv_seq(packet.rhf); 1098 1099 if (++rcd->seq_cnt > 13) 1100 rcd->seq_cnt = 1; 1101 if (!last && (seq != rcd->seq_cnt)) 1102 skip_pkt = 1; 1103 } 1104 1105 if (needset) { 1106 dd_dev_info(dd, 1107 "Switching to DMA_RTAIL\n"); 1108 set_dma_rtail(dd, rcd->ctxt); 1109 needset = 0; 1110 } 1111 } 1112 1113 process_rcv_update(last, &packet); 1114 } 1115 1116 process_rcv_qp_work(&packet); 1117 rcd->head = packet.rhqoff; 1118 1119 bail: 1120 /* 1121 * Always write head at end, and setup rcv interrupt, even 1122 * if no packets were processed. 1123 */ 1124 finish_packet(&packet); 1125 return last; 1126 } 1127 1128 /* 1129 * We may discover in the interrupt that the hardware link state has 1130 * changed from ARMED to ACTIVE (due to the arrival of a non-SC15 packet), 1131 * and we need to update the driver's notion of the link state. We cannot 1132 * run set_link_state from interrupt context, so we queue this function on 1133 * a workqueue. 1134 * 1135 * We delay the regular interrupt processing until after the state changes 1136 * so that the link will be in the correct state by the time any application 1137 * we wake up attempts to send a reply to any message it received. 1138 * (Subsequent receive interrupts may possibly force the wakeup before we 1139 * update the link state.) 1140 * 1141 * The rcd is freed in hfi1_free_ctxtdata after hfi1_postinit_cleanup invokes 1142 * dd->f_cleanup(dd) to disable the interrupt handler and flush workqueues, 1143 * so we're safe from use-after-free of the rcd. 1144 */ 1145 void receive_interrupt_work(struct work_struct *work) 1146 { 1147 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 1148 linkstate_active_work); 1149 struct hfi1_devdata *dd = ppd->dd; 1150 struct hfi1_ctxtdata *rcd; 1151 u16 i; 1152 1153 /* Received non-SC15 packet implies neighbor_normal */ 1154 ppd->neighbor_normal = 1; 1155 set_link_state(ppd, HLS_UP_ACTIVE); 1156 1157 /* 1158 * Interrupt all statically allocated kernel contexts that could 1159 * have had an interrupt during auto activation. 1160 */ 1161 for (i = HFI1_CTRL_CTXT; i < dd->first_dyn_alloc_ctxt; i++) { 1162 rcd = hfi1_rcd_get_by_index(dd, i); 1163 if (rcd) 1164 force_recv_intr(rcd); 1165 hfi1_rcd_put(rcd); 1166 } 1167 } 1168 1169 /* 1170 * Convert a given MTU size to the on-wire MAD packet enumeration. 1171 * Return -1 if the size is invalid. 1172 */ 1173 int mtu_to_enum(u32 mtu, int default_if_bad) 1174 { 1175 switch (mtu) { 1176 case 0: return OPA_MTU_0; 1177 case 256: return OPA_MTU_256; 1178 case 512: return OPA_MTU_512; 1179 case 1024: return OPA_MTU_1024; 1180 case 2048: return OPA_MTU_2048; 1181 case 4096: return OPA_MTU_4096; 1182 case 8192: return OPA_MTU_8192; 1183 case 10240: return OPA_MTU_10240; 1184 } 1185 return default_if_bad; 1186 } 1187 1188 u16 enum_to_mtu(int mtu) 1189 { 1190 switch (mtu) { 1191 case OPA_MTU_0: return 0; 1192 case OPA_MTU_256: return 256; 1193 case OPA_MTU_512: return 512; 1194 case OPA_MTU_1024: return 1024; 1195 case OPA_MTU_2048: return 2048; 1196 case OPA_MTU_4096: return 4096; 1197 case OPA_MTU_8192: return 8192; 1198 case OPA_MTU_10240: return 10240; 1199 default: return 0xffff; 1200 } 1201 } 1202 1203 /* 1204 * set_mtu - set the MTU 1205 * @ppd: the per port data 1206 * 1207 * We can handle "any" incoming size, the issue here is whether we 1208 * need to restrict our outgoing size. We do not deal with what happens 1209 * to programs that are already running when the size changes. 1210 */ 1211 int set_mtu(struct hfi1_pportdata *ppd) 1212 { 1213 struct hfi1_devdata *dd = ppd->dd; 1214 int i, drain, ret = 0, is_up = 0; 1215 1216 ppd->ibmtu = 0; 1217 for (i = 0; i < ppd->vls_supported; i++) 1218 if (ppd->ibmtu < dd->vld[i].mtu) 1219 ppd->ibmtu = dd->vld[i].mtu; 1220 ppd->ibmaxlen = ppd->ibmtu + lrh_max_header_bytes(ppd->dd); 1221 1222 mutex_lock(&ppd->hls_lock); 1223 if (ppd->host_link_state == HLS_UP_INIT || 1224 ppd->host_link_state == HLS_UP_ARMED || 1225 ppd->host_link_state == HLS_UP_ACTIVE) 1226 is_up = 1; 1227 1228 drain = !is_ax(dd) && is_up; 1229 1230 if (drain) 1231 /* 1232 * MTU is specified per-VL. To ensure that no packet gets 1233 * stuck (due, e.g., to the MTU for the packet's VL being 1234 * reduced), empty the per-VL FIFOs before adjusting MTU. 1235 */ 1236 ret = stop_drain_data_vls(dd); 1237 1238 if (ret) { 1239 dd_dev_err(dd, "%s: cannot stop/drain VLs - refusing to change per-VL MTUs\n", 1240 __func__); 1241 goto err; 1242 } 1243 1244 hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_MTU, 0); 1245 1246 if (drain) 1247 open_fill_data_vls(dd); /* reopen all VLs */ 1248 1249 err: 1250 mutex_unlock(&ppd->hls_lock); 1251 1252 return ret; 1253 } 1254 1255 int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc) 1256 { 1257 struct hfi1_devdata *dd = ppd->dd; 1258 1259 ppd->lid = lid; 1260 ppd->lmc = lmc; 1261 hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LIDLMC, 0); 1262 1263 dd_dev_info(dd, "port %u: got a lid: 0x%x\n", ppd->port, lid); 1264 1265 return 0; 1266 } 1267 1268 void shutdown_led_override(struct hfi1_pportdata *ppd) 1269 { 1270 struct hfi1_devdata *dd = ppd->dd; 1271 1272 /* 1273 * This pairs with the memory barrier in hfi1_start_led_override to 1274 * ensure that we read the correct state of LED beaconing represented 1275 * by led_override_timer_active 1276 */ 1277 smp_rmb(); 1278 if (atomic_read(&ppd->led_override_timer_active)) { 1279 del_timer_sync(&ppd->led_override_timer); 1280 atomic_set(&ppd->led_override_timer_active, 0); 1281 /* Ensure the atomic_set is visible to all CPUs */ 1282 smp_wmb(); 1283 } 1284 1285 /* Hand control of the LED to the DC for normal operation */ 1286 write_csr(dd, DCC_CFG_LED_CNTRL, 0); 1287 } 1288 1289 static void run_led_override(struct timer_list *t) 1290 { 1291 struct hfi1_pportdata *ppd = from_timer(ppd, t, led_override_timer); 1292 struct hfi1_devdata *dd = ppd->dd; 1293 unsigned long timeout; 1294 int phase_idx; 1295 1296 if (!(dd->flags & HFI1_INITTED)) 1297 return; 1298 1299 phase_idx = ppd->led_override_phase & 1; 1300 1301 setextled(dd, phase_idx); 1302 1303 timeout = ppd->led_override_vals[phase_idx]; 1304 1305 /* Set up for next phase */ 1306 ppd->led_override_phase = !ppd->led_override_phase; 1307 1308 mod_timer(&ppd->led_override_timer, jiffies + timeout); 1309 } 1310 1311 /* 1312 * To have the LED blink in a particular pattern, provide timeon and timeoff 1313 * in milliseconds. 1314 * To turn off custom blinking and return to normal operation, use 1315 * shutdown_led_override() 1316 */ 1317 void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon, 1318 unsigned int timeoff) 1319 { 1320 if (!(ppd->dd->flags & HFI1_INITTED)) 1321 return; 1322 1323 /* Convert to jiffies for direct use in timer */ 1324 ppd->led_override_vals[0] = msecs_to_jiffies(timeoff); 1325 ppd->led_override_vals[1] = msecs_to_jiffies(timeon); 1326 1327 /* Arbitrarily start from LED on phase */ 1328 ppd->led_override_phase = 1; 1329 1330 /* 1331 * If the timer has not already been started, do so. Use a "quick" 1332 * timeout so the handler will be called soon to look at our request. 1333 */ 1334 if (!timer_pending(&ppd->led_override_timer)) { 1335 timer_setup(&ppd->led_override_timer, run_led_override, 0); 1336 ppd->led_override_timer.expires = jiffies + 1; 1337 add_timer(&ppd->led_override_timer); 1338 atomic_set(&ppd->led_override_timer_active, 1); 1339 /* Ensure the atomic_set is visible to all CPUs */ 1340 smp_wmb(); 1341 } 1342 } 1343 1344 /** 1345 * hfi1_reset_device - reset the chip if possible 1346 * @unit: the device to reset 1347 * 1348 * Whether or not reset is successful, we attempt to re-initialize the chip 1349 * (that is, much like a driver unload/reload). We clear the INITTED flag 1350 * so that the various entry points will fail until we reinitialize. For 1351 * now, we only allow this if no user contexts are open that use chip resources 1352 */ 1353 int hfi1_reset_device(int unit) 1354 { 1355 int ret; 1356 struct hfi1_devdata *dd = hfi1_lookup(unit); 1357 struct hfi1_pportdata *ppd; 1358 int pidx; 1359 1360 if (!dd) { 1361 ret = -ENODEV; 1362 goto bail; 1363 } 1364 1365 dd_dev_info(dd, "Reset on unit %u requested\n", unit); 1366 1367 if (!dd->kregbase1 || !(dd->flags & HFI1_PRESENT)) { 1368 dd_dev_info(dd, 1369 "Invalid unit number %u or not initialized or not present\n", 1370 unit); 1371 ret = -ENXIO; 1372 goto bail; 1373 } 1374 1375 /* If there are any user/vnic contexts, we cannot reset */ 1376 mutex_lock(&hfi1_mutex); 1377 if (dd->rcd) 1378 if (hfi1_stats.sps_ctxts) { 1379 mutex_unlock(&hfi1_mutex); 1380 ret = -EBUSY; 1381 goto bail; 1382 } 1383 mutex_unlock(&hfi1_mutex); 1384 1385 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1386 ppd = dd->pport + pidx; 1387 1388 shutdown_led_override(ppd); 1389 } 1390 if (dd->flags & HFI1_HAS_SEND_DMA) 1391 sdma_exit(dd); 1392 1393 hfi1_reset_cpu_counters(dd); 1394 1395 ret = hfi1_init(dd, 1); 1396 1397 if (ret) 1398 dd_dev_err(dd, 1399 "Reinitialize unit %u after reset failed with %d\n", 1400 unit, ret); 1401 else 1402 dd_dev_info(dd, "Reinitialized unit %u after resetting\n", 1403 unit); 1404 1405 bail: 1406 return ret; 1407 } 1408 1409 static inline void hfi1_setup_ib_header(struct hfi1_packet *packet) 1410 { 1411 packet->hdr = (struct hfi1_ib_message_header *) 1412 hfi1_get_msgheader(packet->rcd, 1413 packet->rhf_addr); 1414 packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr; 1415 } 1416 1417 static int hfi1_bypass_ingress_pkt_check(struct hfi1_packet *packet) 1418 { 1419 struct hfi1_pportdata *ppd = packet->rcd->ppd; 1420 1421 /* slid and dlid cannot be 0 */ 1422 if ((!packet->slid) || (!packet->dlid)) 1423 return -EINVAL; 1424 1425 /* Compare port lid with incoming packet dlid */ 1426 if ((!(hfi1_is_16B_mcast(packet->dlid))) && 1427 (packet->dlid != 1428 opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))) { 1429 if ((packet->dlid & ~((1 << ppd->lmc) - 1)) != ppd->lid) 1430 return -EINVAL; 1431 } 1432 1433 /* No multicast packets with SC15 */ 1434 if ((hfi1_is_16B_mcast(packet->dlid)) && (packet->sc == 0xF)) 1435 return -EINVAL; 1436 1437 /* Packets with permissive DLID always on SC15 */ 1438 if ((packet->dlid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 1439 16B)) && 1440 (packet->sc != 0xF)) 1441 return -EINVAL; 1442 1443 return 0; 1444 } 1445 1446 static int hfi1_setup_9B_packet(struct hfi1_packet *packet) 1447 { 1448 struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd); 1449 struct ib_header *hdr; 1450 u8 lnh; 1451 1452 hfi1_setup_ib_header(packet); 1453 hdr = packet->hdr; 1454 1455 lnh = ib_get_lnh(hdr); 1456 if (lnh == HFI1_LRH_BTH) { 1457 packet->ohdr = &hdr->u.oth; 1458 packet->grh = NULL; 1459 } else if (lnh == HFI1_LRH_GRH) { 1460 u32 vtf; 1461 1462 packet->ohdr = &hdr->u.l.oth; 1463 packet->grh = &hdr->u.l.grh; 1464 if (packet->grh->next_hdr != IB_GRH_NEXT_HDR) 1465 goto drop; 1466 vtf = be32_to_cpu(packet->grh->version_tclass_flow); 1467 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION) 1468 goto drop; 1469 } else { 1470 goto drop; 1471 } 1472 1473 /* Query commonly used fields from packet header */ 1474 packet->payload = packet->ebuf; 1475 packet->opcode = ib_bth_get_opcode(packet->ohdr); 1476 packet->slid = ib_get_slid(hdr); 1477 packet->dlid = ib_get_dlid(hdr); 1478 if (unlikely((packet->dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) && 1479 (packet->dlid != be16_to_cpu(IB_LID_PERMISSIVE)))) 1480 packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) - 1481 be16_to_cpu(IB_MULTICAST_LID_BASE); 1482 packet->sl = ib_get_sl(hdr); 1483 packet->sc = hfi1_9B_get_sc5(hdr, packet->rhf); 1484 packet->pad = ib_bth_get_pad(packet->ohdr); 1485 packet->extra_byte = 0; 1486 packet->pkey = ib_bth_get_pkey(packet->ohdr); 1487 packet->migrated = ib_bth_is_migration(packet->ohdr); 1488 1489 return 0; 1490 drop: 1491 ibp->rvp.n_pkt_drops++; 1492 return -EINVAL; 1493 } 1494 1495 static int hfi1_setup_bypass_packet(struct hfi1_packet *packet) 1496 { 1497 /* 1498 * Bypass packets have a different header/payload split 1499 * compared to an IB packet. 1500 * Current split is set such that 16 bytes of the actual 1501 * header is in the header buffer and the remining is in 1502 * the eager buffer. We chose 16 since hfi1 driver only 1503 * supports 16B bypass packets and we will be able to 1504 * receive the entire LRH with such a split. 1505 */ 1506 1507 struct hfi1_ctxtdata *rcd = packet->rcd; 1508 struct hfi1_pportdata *ppd = rcd->ppd; 1509 struct hfi1_ibport *ibp = &ppd->ibport_data; 1510 u8 l4; 1511 1512 packet->hdr = (struct hfi1_16b_header *) 1513 hfi1_get_16B_header(packet->rcd, 1514 packet->rhf_addr); 1515 l4 = hfi1_16B_get_l4(packet->hdr); 1516 if (l4 == OPA_16B_L4_IB_LOCAL) { 1517 packet->ohdr = packet->ebuf; 1518 packet->grh = NULL; 1519 packet->opcode = ib_bth_get_opcode(packet->ohdr); 1520 packet->pad = hfi1_16B_bth_get_pad(packet->ohdr); 1521 /* hdr_len_by_opcode already has an IB LRH factored in */ 1522 packet->hlen = hdr_len_by_opcode[packet->opcode] + 1523 (LRH_16B_BYTES - LRH_9B_BYTES); 1524 packet->migrated = opa_bth_is_migration(packet->ohdr); 1525 } else if (l4 == OPA_16B_L4_IB_GLOBAL) { 1526 u32 vtf; 1527 u8 grh_len = sizeof(struct ib_grh); 1528 1529 packet->ohdr = packet->ebuf + grh_len; 1530 packet->grh = packet->ebuf; 1531 packet->opcode = ib_bth_get_opcode(packet->ohdr); 1532 packet->pad = hfi1_16B_bth_get_pad(packet->ohdr); 1533 /* hdr_len_by_opcode already has an IB LRH factored in */ 1534 packet->hlen = hdr_len_by_opcode[packet->opcode] + 1535 (LRH_16B_BYTES - LRH_9B_BYTES) + grh_len; 1536 packet->migrated = opa_bth_is_migration(packet->ohdr); 1537 1538 if (packet->grh->next_hdr != IB_GRH_NEXT_HDR) 1539 goto drop; 1540 vtf = be32_to_cpu(packet->grh->version_tclass_flow); 1541 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION) 1542 goto drop; 1543 } else if (l4 == OPA_16B_L4_FM) { 1544 packet->mgmt = packet->ebuf; 1545 packet->ohdr = NULL; 1546 packet->grh = NULL; 1547 packet->opcode = IB_OPCODE_UD_SEND_ONLY; 1548 packet->pad = OPA_16B_L4_FM_PAD; 1549 packet->hlen = OPA_16B_L4_FM_HLEN; 1550 packet->migrated = false; 1551 } else { 1552 goto drop; 1553 } 1554 1555 /* Query commonly used fields from packet header */ 1556 packet->payload = packet->ebuf + packet->hlen - LRH_16B_BYTES; 1557 packet->slid = hfi1_16B_get_slid(packet->hdr); 1558 packet->dlid = hfi1_16B_get_dlid(packet->hdr); 1559 if (unlikely(hfi1_is_16B_mcast(packet->dlid))) 1560 packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) - 1561 opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR), 1562 16B); 1563 packet->sc = hfi1_16B_get_sc(packet->hdr); 1564 packet->sl = ibp->sc_to_sl[packet->sc]; 1565 packet->extra_byte = SIZE_OF_LT; 1566 packet->pkey = hfi1_16B_get_pkey(packet->hdr); 1567 1568 if (hfi1_bypass_ingress_pkt_check(packet)) 1569 goto drop; 1570 1571 return 0; 1572 drop: 1573 hfi1_cdbg(PKT, "%s: packet dropped\n", __func__); 1574 ibp->rvp.n_pkt_drops++; 1575 return -EINVAL; 1576 } 1577 1578 static void show_eflags_errs(struct hfi1_packet *packet) 1579 { 1580 struct hfi1_ctxtdata *rcd = packet->rcd; 1581 u32 rte = rhf_rcv_type_err(packet->rhf); 1582 1583 dd_dev_err(rcd->dd, 1584 "receive context %d: rhf 0x%016llx, errs [ %s%s%s%s%s%s%s%s] rte 0x%x\n", 1585 rcd->ctxt, packet->rhf, 1586 packet->rhf & RHF_K_HDR_LEN_ERR ? "k_hdr_len " : "", 1587 packet->rhf & RHF_DC_UNC_ERR ? "dc_unc " : "", 1588 packet->rhf & RHF_DC_ERR ? "dc " : "", 1589 packet->rhf & RHF_TID_ERR ? "tid " : "", 1590 packet->rhf & RHF_LEN_ERR ? "len " : "", 1591 packet->rhf & RHF_ECC_ERR ? "ecc " : "", 1592 packet->rhf & RHF_VCRC_ERR ? "vcrc " : "", 1593 packet->rhf & RHF_ICRC_ERR ? "icrc " : "", 1594 rte); 1595 } 1596 1597 void handle_eflags(struct hfi1_packet *packet) 1598 { 1599 struct hfi1_ctxtdata *rcd = packet->rcd; 1600 1601 rcv_hdrerr(rcd, rcd->ppd, packet); 1602 if (rhf_err_flags(packet->rhf)) 1603 show_eflags_errs(packet); 1604 } 1605 1606 /* 1607 * The following functions are called by the interrupt handler. They are type 1608 * specific handlers for each packet type. 1609 */ 1610 static int process_receive_ib(struct hfi1_packet *packet) 1611 { 1612 if (hfi1_setup_9B_packet(packet)) 1613 return RHF_RCV_CONTINUE; 1614 1615 if (unlikely(hfi1_dbg_should_fault_rx(packet))) 1616 return RHF_RCV_CONTINUE; 1617 1618 trace_hfi1_rcvhdr(packet); 1619 1620 if (unlikely(rhf_err_flags(packet->rhf))) { 1621 handle_eflags(packet); 1622 return RHF_RCV_CONTINUE; 1623 } 1624 1625 hfi1_ib_rcv(packet); 1626 return RHF_RCV_CONTINUE; 1627 } 1628 1629 static inline bool hfi1_is_vnic_packet(struct hfi1_packet *packet) 1630 { 1631 /* Packet received in VNIC context via RSM */ 1632 if (packet->rcd->is_vnic) 1633 return true; 1634 1635 if ((hfi1_16B_get_l2(packet->ebuf) == OPA_16B_L2_TYPE) && 1636 (hfi1_16B_get_l4(packet->ebuf) == OPA_16B_L4_ETHR)) 1637 return true; 1638 1639 return false; 1640 } 1641 1642 static int process_receive_bypass(struct hfi1_packet *packet) 1643 { 1644 struct hfi1_devdata *dd = packet->rcd->dd; 1645 1646 if (hfi1_is_vnic_packet(packet)) { 1647 hfi1_vnic_bypass_rcv(packet); 1648 return RHF_RCV_CONTINUE; 1649 } 1650 1651 if (hfi1_setup_bypass_packet(packet)) 1652 return RHF_RCV_CONTINUE; 1653 1654 trace_hfi1_rcvhdr(packet); 1655 1656 if (unlikely(rhf_err_flags(packet->rhf))) { 1657 handle_eflags(packet); 1658 return RHF_RCV_CONTINUE; 1659 } 1660 1661 if (hfi1_16B_get_l2(packet->hdr) == 0x2) { 1662 hfi1_16B_rcv(packet); 1663 } else { 1664 dd_dev_err(dd, 1665 "Bypass packets other than 16B are not supported in normal operation. Dropping\n"); 1666 incr_cntr64(&dd->sw_rcv_bypass_packet_errors); 1667 if (!(dd->err_info_rcvport.status_and_code & 1668 OPA_EI_STATUS_SMASK)) { 1669 u64 *flits = packet->ebuf; 1670 1671 if (flits && !(packet->rhf & RHF_LEN_ERR)) { 1672 dd->err_info_rcvport.packet_flit1 = flits[0]; 1673 dd->err_info_rcvport.packet_flit2 = 1674 packet->tlen > sizeof(flits[0]) ? 1675 flits[1] : 0; 1676 } 1677 dd->err_info_rcvport.status_and_code |= 1678 (OPA_EI_STATUS_SMASK | BAD_L2_ERR); 1679 } 1680 } 1681 return RHF_RCV_CONTINUE; 1682 } 1683 1684 static int process_receive_error(struct hfi1_packet *packet) 1685 { 1686 /* KHdrHCRCErr -- KDETH packet with a bad HCRC */ 1687 if (unlikely( 1688 hfi1_dbg_fault_suppress_err(&packet->rcd->dd->verbs_dev) && 1689 (rhf_rcv_type_err(packet->rhf) == RHF_RCV_TYPE_ERROR || 1690 packet->rhf & RHF_DC_ERR))) 1691 return RHF_RCV_CONTINUE; 1692 1693 hfi1_setup_ib_header(packet); 1694 handle_eflags(packet); 1695 1696 if (unlikely(rhf_err_flags(packet->rhf))) 1697 dd_dev_err(packet->rcd->dd, 1698 "Unhandled error packet received. Dropping.\n"); 1699 1700 return RHF_RCV_CONTINUE; 1701 } 1702 1703 static int kdeth_process_expected(struct hfi1_packet *packet) 1704 { 1705 hfi1_setup_9B_packet(packet); 1706 if (unlikely(hfi1_dbg_should_fault_rx(packet))) 1707 return RHF_RCV_CONTINUE; 1708 1709 if (unlikely(rhf_err_flags(packet->rhf))) { 1710 struct hfi1_ctxtdata *rcd = packet->rcd; 1711 1712 if (hfi1_handle_kdeth_eflags(rcd, rcd->ppd, packet)) 1713 return RHF_RCV_CONTINUE; 1714 } 1715 1716 hfi1_kdeth_expected_rcv(packet); 1717 return RHF_RCV_CONTINUE; 1718 } 1719 1720 static int kdeth_process_eager(struct hfi1_packet *packet) 1721 { 1722 hfi1_setup_9B_packet(packet); 1723 if (unlikely(hfi1_dbg_should_fault_rx(packet))) 1724 return RHF_RCV_CONTINUE; 1725 1726 trace_hfi1_rcvhdr(packet); 1727 if (unlikely(rhf_err_flags(packet->rhf))) { 1728 struct hfi1_ctxtdata *rcd = packet->rcd; 1729 1730 show_eflags_errs(packet); 1731 if (hfi1_handle_kdeth_eflags(rcd, rcd->ppd, packet)) 1732 return RHF_RCV_CONTINUE; 1733 } 1734 1735 hfi1_kdeth_eager_rcv(packet); 1736 return RHF_RCV_CONTINUE; 1737 } 1738 1739 static int process_receive_invalid(struct hfi1_packet *packet) 1740 { 1741 dd_dev_err(packet->rcd->dd, "Invalid packet type %d. Dropping\n", 1742 rhf_rcv_type(packet->rhf)); 1743 return RHF_RCV_CONTINUE; 1744 } 1745 1746 void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd) 1747 { 1748 struct hfi1_packet packet; 1749 struct ps_mdata mdata; 1750 1751 seq_printf(s, "Rcd %u: RcvHdr cnt %u entsize %u %s head %llu tail %llu\n", 1752 rcd->ctxt, rcd->rcvhdrq_cnt, rcd->rcvhdrqentsize, 1753 HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ? 1754 "dma_rtail" : "nodma_rtail", 1755 read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD) & 1756 RCV_HDR_HEAD_HEAD_MASK, 1757 read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL)); 1758 1759 init_packet(rcd, &packet); 1760 init_ps_mdata(&mdata, &packet); 1761 1762 while (1) { 1763 __le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head + 1764 rcd->rhf_offset; 1765 struct ib_header *hdr; 1766 u64 rhf = rhf_to_cpu(rhf_addr); 1767 u32 etype = rhf_rcv_type(rhf), qpn; 1768 u8 opcode; 1769 u32 psn; 1770 u8 lnh; 1771 1772 if (ps_done(&mdata, rhf, rcd)) 1773 break; 1774 1775 if (ps_skip(&mdata, rhf, rcd)) 1776 goto next; 1777 1778 if (etype > RHF_RCV_TYPE_IB) 1779 goto next; 1780 1781 packet.hdr = hfi1_get_msgheader(rcd, rhf_addr); 1782 hdr = packet.hdr; 1783 1784 lnh = be16_to_cpu(hdr->lrh[0]) & 3; 1785 1786 if (lnh == HFI1_LRH_BTH) 1787 packet.ohdr = &hdr->u.oth; 1788 else if (lnh == HFI1_LRH_GRH) 1789 packet.ohdr = &hdr->u.l.oth; 1790 else 1791 goto next; /* just in case */ 1792 1793 opcode = (be32_to_cpu(packet.ohdr->bth[0]) >> 24); 1794 qpn = be32_to_cpu(packet.ohdr->bth[1]) & RVT_QPN_MASK; 1795 psn = mask_psn(be32_to_cpu(packet.ohdr->bth[2])); 1796 1797 seq_printf(s, "\tEnt %u: opcode 0x%x, qpn 0x%x, psn 0x%x\n", 1798 mdata.ps_head, opcode, qpn, psn); 1799 next: 1800 update_ps_mdata(&mdata, rcd); 1801 } 1802 } 1803 1804 const rhf_rcv_function_ptr normal_rhf_rcv_functions[] = { 1805 [RHF_RCV_TYPE_EXPECTED] = kdeth_process_expected, 1806 [RHF_RCV_TYPE_EAGER] = kdeth_process_eager, 1807 [RHF_RCV_TYPE_IB] = process_receive_ib, 1808 [RHF_RCV_TYPE_ERROR] = process_receive_error, 1809 [RHF_RCV_TYPE_BYPASS] = process_receive_bypass, 1810 [RHF_RCV_TYPE_INVALID5] = process_receive_invalid, 1811 [RHF_RCV_TYPE_INVALID6] = process_receive_invalid, 1812 [RHF_RCV_TYPE_INVALID7] = process_receive_invalid, 1813 }; 1814